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1. Introduction

1.1. The initial examples for normal verbal embeddability

The normal embedding of the group G into the group H is verbal for the word set V ∈ F∞
if the corresponding isomorphic image G̃ of G lies in the verbal subgroup V (H) of H:

G ∼= G̃ / H and G̃ ⊆ V (H)

(see [13] for background information on verbal subgroups and on varieties of groups). The first
examples of groups G which for the given word set V are not verbal and normal embeddable
– that is, there is no group H possessing a normal verbal embedding of G into H – are
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constructed by Burnside [3]. He showed that no non-abelian group G with cyclic center,
and no non-abelian group G with the property (G : G′) = p2 (p is any prime number) can
be embedded as a normal subgroup into a finite p-group H such that the isomorphic image
Ĝ of G lies in the commutator subgroup H ′ (the commutator subgroup H ′ is, of course,
the verbal subgroup V (H) for the word set consisting of a single word: V = {[x1, x2]}).
Further, Blackburn described the 2-generator groups that arise as commutator subgroups of
2-generator p-groups [2].

1.2. The problem of Heineken

After an intensive development of the theory of varieties of groups since the sixties it was
natural to consider the problem of normal verbal embeddings not merely for the commutator
subgroup but also for verbal subgroups for any V ⊆ F∞. Clearly, non-triviality should be
a natural restriction on the word set V (a word set is trivial if it is equivalent to the trivial
word). For, if V is trivial, then V (H) = {1} for any group H, and our problem has an evident
answer in this case: G = {1}.

In 1992 Heineken [6] posed the problem of normal verbal embeddability for any word
w and described the situation for all finite p-groups. The construction of [6] is based on
wreath products. Eick modified that construction and found the answer for all finite groups
and non-trivial words w [4]. The answer for the case of arbitrary non-trivial word sets and
arbitrary groups can be found in our common work [7] (see Theorem 1 in Section 2 in this
paper). Since the construction of [6] cannot be applied to the infinite groups (not even to the
infinite cyclic group), we had to build in [7] a more complicated construction that embeds
the group G into a subgroup H(G, V ) of the product SM ·Aut(G), where SM is the group of
all permutations on the group M = Hol (G×K), and where K is a group with the property
K /∈ V = var (F∞/V (F∞))).

1.3. The aim of this work

The disadvantage of the construction in [7] is that the structure of the subgroup H(G, V ) in
SM ·Aut(G) is not clearly imaginable, and that the properties of H(G, V ) are very far from
the properties of the initial group G1. In [10, 11, 12] we have developed constructions for
verbal normal and subnormal embeddings that we will use here.

The first aim of this paper is to present another, with the method of [7] not connected
construction which allows us to find a shorter and more effective proof to Main Theorem in [7].
Our argument generalizes the elegant idea of [6], and is based not on wreath products, but
on something similar, namely on the construction W (G,D,A) (see Section 2 for definitions).

Secondly, the new construction allows us to answer the following question: For a given
word set V when is a group of a given class (a soluble group, a nilpotent group, or an
SN∗-group) normal and verbal embeddable into a group of the same class? This question
is natural after we answered the similar question for abelian groups in [7, Theorem 2]. The
normal verbal embeddings of soluble groups into soluble groups were considered in [7] only for
the simplest situations where V consists of xn, of [x1, x2], or of δn(x1, . . . , x2n) [7, Theorem 3].

1For abelian (even for cyclic) groups G and Aut(G) the group H(G, V ) constructed in [7] can be insoluble.
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And the normal verbal embeddings of nilpotent groups into nilpotent groups were considered
in [7] for the case when V consists of [x1, x2] only [7, Theorem 3].

In Section 2 we present the construction of the new proof for Main Theorem [7] (The-
orem 1 in Section 2 of the current paper), and we prove the criterion for normal verbal
embeddings of soluble groups into soluble groups (Theorem 2).

In Section 3 we consider the similar question for nilpotent groups. For this case we build
a few modifications of our construction (Theorems 3, 4, and 5). As a consequence of this we
get the following generalization of the theorem of Burnside cited at the beginning:

Let G be a p-group of finite exponent and let V be any non-trivial word set. Then there exists
a p-group H with normal subgroup Ĝ ⊆ V (H) isomorphic to G if and only if for a Sylow
p-subgroup L of Aut(G) holds: V (L) ⊇ Inn(G) (Theorem 6 in Section 3).

In Section 4 we consider the normal verbal embeddings of SN∗-groups, that is, groups with
(finite or infinite) subnormal soluble ascending series (Theorem 7).

Finally, in Section 5 we consider a few more “economical” normal verbal embedding
constructions for the most “well-known” words.

My work at the Universität Würzburg, Germany (1997-98) was a great stimulus for me to see
the importance of methods of varieties of groups in embedding constructions for groups. For
that nice possibility, and also for very warm hospitality in Würzburg I am very much thankful
to Professor Dr. Hermann Heineken and to the members of the Lehrstuhl für Mathematik I.
Also, I am very much thankful to the referee for valuable remarks.

2. Construction of the normal verbal embedding, embeddings of soluble groups

2.1. The main results

We restate here the main Theorem of [7] as:

Theorem 1. Let G be an arbitrary group and V ⊆ F∞ be a non-trivial word set. Then there
exists a group H = H(G, V ) with a normal subgroup Ĝ ⊆ V (H) isomorphic to G if and only
if V (Aut(G)) ⊇ Inn(G).

And for embeddings of soluble groups:

Theorem 2. Let G be an arbitrary soluble group and V ⊆ F∞ be a non-trivial word set. Then
there exists a soluble group H = H(G, V ) with a normal subgroup Ĝ ⊆ V (H) isomorphic to
G if and only if there is a soluble subgroup B of Aut(G) such that V (B) ⊇ Inn(G).

Remark 1. As we will see, if the group G of Theorem 1 (or the soluble group G of Theorem 2)
is finite or finitely generated, the corresponding group H can be constructed to be finite or
finitely generated, respectively. And if the group G is infinite, the corresponding group H can
be constructed to have the same cardinality as G.

In order to avoid unnecessary repetitions, we will build one construction for both theorems,
and then we will consider the soluble groups as a special case.
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2.2. The construction of the group W (G, D, A)

Definition 1. Let G and D be arbitrary groups and let A be a subgroup of Aut(G) containing
the group of inner automorphisms: InnG ≤ A ≤ Aut(G). Define W (G,D,A) to be the
extension of the Cartesian product

∏
d∈DG of copies of the group G by means of the direct

product D × A defined by the operation:

ϕ(h,f)(d)
def
= f(ϕh

−1

(d))
def
= f(ϕ(dh)),

for all ϕ ∈
∏

d∈DG, and all (h, f) ∈ D × A.

And if the subgroup A of Aut(G) is not given explicitly, we take A = Aut(G).

This is the construction that we called in the introduction “not wreath products, but something
similar”. As it is easy to see, the group D functions on the copies of the group G in the
same way as the “active” group D of wreath product GWrD functions on the copies of the
“passive” group G in the base subgroup GD. For the element g ∈ G we denote by fg the
inner automorphism of W (G,D,A) induced by g (each automorphism of G can be continued
on W (G,D,A)). Further denote by ϕg the diagonal element corresponding to g ∈ G in the
Cartesian product

∏
d∈DG, that is, ϕg(d) = g for all d ∈ D. Now we embed the group G in

W (G,D,A):

g 7→ gW
def
= (1, fg)ϕg−1 , g ∈ G.

It is easy to see that this map is an injection and that:

(1, fg)ϕg−1 · (1, fg′)ϕg′−1 = (1, fg)(1, fg′) · (ϕg−1)(1,fg′ )ϕg′−1

= (1, fgg′)ϕ(gg′)−1 ,

because [
(ϕg−1)(1,fg′ )ϕg′−1

]
(d) = g′

−1
ϕg−1(d) g′ · ϕg′−1(d)

= g′
−1
g−1 g′g′

−1
= (gg′)−1 = ϕgg′(d).

Set GW = {gW | g ∈ G} to be the image of G in W (G,D,A). As we said, this embedding
modifies the argument of [6] (see also Remark 3).

2.3. The characteristic subgroups in G and the normal subgroups in W (G, D, A)

Lemma 1. A subgroup K ≤ G is characteristic in G if and only if its image KW is normal
in W (G,D,A).

Proof. Let K be characteristic in G and let gW ∈ KW. For an arbitrary h ∈ D holds

g
(h,1)
W = (1, fg)

(h,1)ϕg−1
(h,1) = (1, fg)ϕg−1

because

ϕg−1
(h,1)(d) = ϕg−1

h−1

(d) = ϕg−1(dh) = g−1 = ϕg−1(d).
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Further for an arbitrary f ∈ A holds

g
(1,f)
W = (1, fg)

(1,f)ϕ
(1,f)

g−1 = (1, ff(g))ϕf(g)−1

because (fg)
f = ff(g) and (ϕg−1)f (d) = f(g−1). Finally, for arbitrary ψ ∈

∏
d∈DG holds

gψW = ψ−1(1, fg)ϕg−1ψ

= (1, fg)(ψ
−1)(1,fg)ϕg−1ψ = (1, fg)ϕg−1

because [
(ψ−1)(1,fg)ϕg−1ψ

]
(d) = (ψ−1)(1,fg)(d) ϕg−1(d) ψ(d)

= fg
(
ψ−1(d)

)
g−1 ψ(d)

= g−1 ψ−1(d) g g−1 ψ(d) = g−1 = ϕg−1(d).

Thus, KW is normal inW (G,D,A). And ifKW is normal inW (G,D,A), then (gW )(1,f) ∈ KW

and, thus, gf = f(g) ∈ K for an arbitrary automorphism f ∈ Aut(G) and for an arbitrary
element g ∈ K. �

The presented construction allows us to embed the given group G in a bigger group
W (G,D,A) in such a way that the structure of the characteristic subgroups of G is con-
nected with the structure of the normal subgroups of W (G,D,A) in G. Additionally, the
group W (G,D,A) can have many pregiven properties because this construction inherits some
of the helpful properties of wreath products.

2.4. The verbal embedding of G in W (G, D, A)

Let now V be a non-trivial word set and let V = var (F∞/V (F∞)) be the corresponding
variety of groups. We take D = D(V ) to be such a group that:

1. D is soluble,

2. D does not belong to the variety V,

3. D is torsion-free.

Such a group D can always be chosen, and it can even be nilpotent because the finite p-
groups generate the variety of all groups, and it is sufficient to consider the corresponding
finite p-group P /∈ V and to take the free nilpotent group (of finite rank) the factor of which
is P . For the sequel let D = D(V ) be the group obtained here.

Lemma 2. Let G be a group and V be a non-trivial word set. Then, if

V (Aut(G)) ⊇ Inn(G),

then the normal subgroup GW of W (G,D,A) lies in the verbal subgroup V (W (G,D,A)).
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Proof. That GW is normal in W (G,D,A) follows from Lemma 1. Let a ∈ V (D) be an
element of infinite order, and let T be a left transversal of 〈a〉 in D. For g ∈ G and for d = tai

(t ∈ T , i ∈ Z) we define the element τg as:

τg(d) = τg(ta
i) = gi.

We have

(a−1, 1)τg = τg
−1(a−1, 1) τg

= (a−1, 1)(τg
−1)(a−1,1)τg = (a−1, 1)(ϕg−1)−1

because

(τg
−1)(a−1,1)(d) τg(d) = τg

−1(d a−1) τg(d) = g = (ϕg−1(d))−1.

Since both (a−1, 1)τg and (a−1, 1) belong to V (W (G,D,A)), we get that the element (ϕg−1)−1

and, thus, the element gW belongs to V (W (G,D,A)). �

Lemma 3. Let G be a soluble group and V be a non-trivial word set. If the group of auto-
morphisms Aut(G) has a soluble subgroup B such that V (B) ⊇ Inn(G) holds, then the group
W (G,D,B) is soluble and its normal subgroup GW lies in the verbal subgroup V (W (G,D,B)).

Proof. The proof is very similar to the proof of the previous lemma. Instead of A = Aut(G)
we should take the group B. �

Remark 2. We can notice that, if the solubility lengths of the groups G, D, B are lG,
lD, lB correspondingly, then the solubility length of the group W (G,D,B) is at most lW =
lG + max(lD, lB).

The following lemmas prove necessity of the conditions of Theorem 1 and of Theorem 2.

Lemma 4. Let G be a group and V be a non-trivial word set. Only then there exists a
group H with a normal subgroup Ĝ such that Ĝ is isomorphic to G and lies in V (G), when
V (Aut(G)) ⊇ Inn(G).

Lemma 5. Let G be a group and V be a non-trivial word set. Only then there exists a soluble
group H with a normal subgroup Ĝ such that Ĝ is isomorphic to G and lies in V (H), when
Aut(G) contains a soluble subgroup B such that V (B) ⊇ Inn(G).

Proof of Lemmas 4 and 5. This proof coincides with the proof of Lemma 2 in [7] or Lemma
2 in [6]. We briefly outline the proof because this condition is very frequently used in this
paper and we would like to show its origin. The operation of elements of H on Ĝ defines an
isomorphism between H/CH(Ĝ) and a subgroup of Aut(Ĝ). The image of ĜCH(Ĝ)/CH(Ĝ)
under this isomorphism is Inn(Ĝ). Thus, if V (Aut(G)) does not contain Inn(G) (that is, if
V (Aut(Ĝ)) does not contain Inn(Ĝ)), then holds

V (H/CH(Ĝ)) = V (H)CH(Ĝ)/CH(Ĝ) 6⊇ ĜCH(Ĝ)/CH(Ĝ).

And if H is a soluble group, the corresponding subgroup of Aut(Ĝ) also is soluble. �
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Remark 3. A comparison of the group W (G,D,A) with the construction of [6] shows that
W (G,D,A) generalizes and modifies the concept of [6] for the case of infinite groups. In [6]
the group H is the extension of the wreath product GWrS with the group Aut(G), where
S is a suitably chosen finite p-group whose verbal subgroup2 V (S) is contained in the center
of S and is of exponent m = pk = expG.

To conclude this section it remains to prove Remark 1 on cardinalities of our groups.

Proof of Remark 1. That for the finite group G the corresponding group H = H(G, V ) can
be chosen finite follows from construction of [6] (in this case there is no need in our group
W (G,D,A)). And that for the soluble finite group G the finite group H = H(G, V ) can be
chosen to be soluble follows from the properties of the construction in [6] (we will consider
them in the next section).

Let now the group G of Theorem 1 (or of Theorem 2) be finitely generated: G = 〈gi| i ∈ I〉
(card (I) <∞). Then Ĝ = 〈ĝi| i ∈ I〉 and since Ĝ lies in V (H), holds

ĝi =
(
w

(i)
1 (h

(i)
11 , . . . , h

(i)
1q1

)
)δ(i)1 · · ·

(
w(i)
u (h

(i)
u1, . . . , h

(i)
uqu)

)δ(i)u

for all i ∈ I,

where w
(i)
1 , . . . , w

(i)
u ∈ V ; δ

(i)
u = ±1; h

(i)
jk ∈ H (j = 1, . . . , u; k = 1, . . . , qi). Clearly,

the finitely generated subgroup H1 = 〈h(i)
jk | h

(i)
jk ; j = 1, . . . , u; k = 1, . . . , qi; i ∈ I〉 ≤ H

contains the subgroup Ĝ in its verbal subgroup V (H1), and Ĝ is normal in H1.

Finally, let G be an infinite (not necessarily finitely generated) group. G has a set of gen-
erators {gi| i ∈ I} of the same cardinality as G. The construction that we just built above
shows that it is possible to chose such a subgroup H1 ≤ H that H1 contains Ĝ in its verbal
subgroup V (H1), and is of the same cardinality as G. �

3. The case of nilpotent groups, generalization of a theorem of Burnside

3.1. A necessary condition

For the case of normal verbal embeddings of nilpotent groups into nilpotent groups we have
to built a slightly more complicated construction to be able to deal with relatively restricted
situations. Since nilpotence is a stronger property than solubility, we can expect that the
conditions of Lemma 4 and Lemma 5 need to be strengthened. Indeed:

Lemma 6. Let G be a nilpotent group and V be a non-trivial word set. Only then there
exists a nilpotent group H with a normal subgroup Ĝ such that Ĝ is isomorphic to G and lies
in V (G), when Aut(G) contains a nilpotent subgroup N such that V (N) ⊇ Inn(G), and the
extension of G with N (as semidirect product) is nilpotent.

2[6] considers the situation not for an arbitrary word set V but for one word w only. However, the
argument of [6] is true for any word set, too.
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Proof. The existence of the nilpotent subgroup N ⊆ Aut(G) can be proved in analogy with
the proof of Lemma 5: as N one can take the corresponding subgroup N ∼= H/CH(G) ≤
Aut(G). The group K = 〈G,N〉 is nilpotent. For, since the group H is nilpotent, it has a
central series containing the subgroup G. The images of the members of that series form a
central series in K because the operation of N on them is induced by operation of H on the
corresponding preimages. �

3.2. The case of finite nilpotent groups

It turns out that for finite nilpotent groups the condition of Lemma 6 already is sufficient:

Theorem 3. Let G be an arbitrary finite nilpotent group and V ⊆ F∞ be a non-trivial
word set. Then there exists a (finite) nilpotent group H = H(G, V ) with a normal subgroup
Ĝ ⊆ V (H) isomorphic to G if and only if there is a nilpotent subgroup N of Aut(G) such
that V (N) ⊇ Inn(G), and if the split extension of G by N is nilpotent.

Proof. The finite nilpotent groupG is the direct product of its Sylow subgroupsGp1 , . . . , Gpn .
Set pki

i = expGpi
, i = 1, . . . , n. According to Lemma 7 in [5] or Lemma 1 in [6], there is a

finite p-group Si whose verbal subgroup3 V (Si) is of exponent pki
i and lies in the center of Si.

Let now G1 pi
= Gpi

WrSi and Gpi
→ G1 pi

be the embedding g 7→ ϕg ∈ GSi
pi

(i = 1, . . . , n),
where as above: ϕg(s) = g, s ∈ Si. Then holds 〈ϕg| g ∈ G〉 ⊆ V (G1 pi

). Indeed, V (Si)
contains an element u of exponent pki

i . Take a left transversal {t1, . . . , tl} of 〈u〉 in Si and
set the following elements χg in the base subgroup GSi

pi

χg(s) =

{
g, if s = 1Si

,

1, if s 6= 1Si
.

Then ϕg =
∏

s∈Si
χsg =

∏l
j=1

(∏p
ki
i −1

k=0 χu
k

g

)tj

for any g ∈ G. But, as it is easy to compute,∏p
ki
i −1

k=0 χu
k

g =
∏p

ki
i −1

k=1 [χg, u
k] ∈ V (G1pi

) because g−(p
ki
i −1) = g (i = 1, . . . , n), and because the

verbal subgroup V (G1pi
) is normal in G1pi

. The above part of the proof is a slight variation
of the argument of [6]. Therefore, G lies in the verbal subgroup V (

∏n
i=1G1 pi

) of the direct
product of groups G1 pi

, i = 1, . . . , n. Let now H = H(G, V ) = W (G,
∏n

i=1 Si, N), where W
is a new construction that slightly differs from W . Here, too, the group

∏n
i=1 Si functions

over the direct product

GS1
p1
× · · · ×GSn

pn
, (1)

but it now functions differently. The group Si functions on copies on the copies of Gpi
as in

the previous section, and it functions trivially on the other copies of Gpj
, j 6= i. The function

of the group N on (1) is defined, as above, according to the function of N on G. Define

3In fact in the mentioned papers the groups Si are built for the case when V consists of one word w only,
but the proof is very easy to generalize for the case of an arbitrary non-trivial word set V .
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further for g ∈ G the elements gW = (1, fg)ϕg−1 . Then the group

〈Gp1 , . . . , Gpn ;
n∏
i=1

Si〉 = 〈Gp1 , S1〉 × · · · × 〈Gpn , Sn〉

= Gp1 WrS1 × · · · ×Gpn WrSn

is a nilpotent group. Since the extensions of G with
∏n

i=1 Si and with N are both nilpotent,
the extension H of G by the group (

∏n
i=1 Si) × N also is nilpotent. Further it is clear that

the subgroup GW = 〈gW | g ∈ G〉 lies in V (H). And since GW is isomorphic to G, it remains
to show that, GW is normal in H. We have to repeat here a part of the computations of the
previous section. Set gW ∈ GW . Firstly, for any x ∈

∏n
i=1 Si holds

(gW )(x,1) = (1, fg)
(x,1)ϕg−1

(x,1) = gW .

Secondly, for any f ∈ N holds (gW )(1,f) = (1, fg)
(1,f)ϕg−1

(1,f) = f(g)W . And finally, for any
element ψg′ of type:

ψg′(y) =

{
g′ for y = 1S1

1 for y 6= 1S1

for the product (1) holds the following:

(gW )ψg′ = (1, fg)
ψg′ϕg−1

ψg′ = (ψg′)
−1(1, fg)ϕg−1ψg′

= (1, fg)((ψg′)
−1)(1,fg)ϕg−1ψg′

= (1, fg)ϕg−1 = gW ,

because [
((ψg′)

−1)(1,fg)ϕg−1ψg′
]
(1S1) = fg(g

′−1
)g−1g′ = g−1g′

−1
g g−1g′ = g−1

and [
((ψg′)

−1)(1,fg)ϕg−1ψg′
]
(y) = 1 · g−1 · 1 = g−1 for all y 6= 1S1 .

Therefore, GW is normal in H = W (G,
∏n

i=1 Si, N). �

3.3. The cases with various restrictions

The following theorem holds not only for finite nilpotent groups.

Theorem 4. Let G be an arbitrary nilpotent p-group of finite exponent and V ⊆ F∞ be
a non-trivial word set. Then there exists a nilpotent group H = H(G, V ) with a normal
subgroup Ĝ ⊆ V (H) isomorphic to G if and only if there is a nilpotent subgroup N of Aut(G)
such that V (N) ⊇ Inn(G), and if the split extension of G by N is nilpotent.
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Proof. In the proof of Theorem 3 we needed finiteness of G just to guarantee that G
can be presented as direct product of nilpotent p-groups of finite exponent, and that the
corresponding wreath productGpi

WrSi is nilpotent. In this theorem, the groupG is already a
p-group and the wreath product ofG and of the corresponding finite p-group S is nilpotent [1].
The rest of the proof remains unchanged. �

Denote, as usual, by γc(x1, . . . , xc) the word [x1, . . . , xc]. Let Nc = var (F∞/γc(F∞)) be
the variety of nilpotent groups of class at most c. In the following theorem, which is a
generalization of Theorem 4 in [7], G can be any nilpotent group.

Theorem 5. Let G be an arbitrary nilpotent group and V ⊆ F∞ be a non-trivial word set
with a consequence of type γc(x1, . . . , xc). Then there exists a nilpotent group H = H(G, V )
with a normal subgroup Ĝ ⊆ V (H) isomorphic to G if and only if there is a nilpotent subgroup
N of Aut(G) such that V (N) ⊇ Inn(G), and if the split extension of G by N is nilpotent.

Proof. Consider the group w(G,C,N), where C = 〈c〉 is an infinite cyclic group. The proof
of Theorem 3 shows that in this situation it will be sufficient to find in the direct product∏

ci∈C G such a subgroup L that:

1. L contains all the elements4 ϕg, g ∈ G (as above, ϕg(c
i) = g for i ∈ Z),

2. LC ⊆ L and LN ⊆ L hold (and, consequently, the subgroup H = 〈L,C,N〉 contains
the isomorphic copy GW of G),

3. {ϕg| g ∈ G} ⊆ V (L,C) holds and, thus, GW ⊆ V (H),

4. the subgroup 〈L,C〉 is nilpotent (the subgroup 〈L,N〉 is always nilpotent).

For any family of integers {bi| i ∈ Z} the system of equations

−xi−1 + xi = bi, i ∈ Z

always has a solution in Z: one can simply take any x0 = a0 ∈ Z and then continue:
x1 = a1 = b1 + a0,

x2 = a2 = b2 + a1,

x3 = a3 = b3 + a2,

. . . . . . . . . . . . . . . . . .

and


x−1 = a−1 = a0 − b0,

x−2 = a−2 = a−1 − b−1,

x−3 = a−3 = a2 − b2,

. . . . . . . . . . . . . . . . . . .

(2)

Thus, we can inductively define µ
(1)
g = ϕg, for all g ∈ G. And if µ

(j−1)
g already defined, set

µ
(j)
g (ci) = gai for all g ∈ G and i ∈ Z, where ai (i ∈ Z) is the solution of the system (2) in

the case when gbi is equal to µ
(j−1)
g (ci). Then it is easy to check that [c, µ

(j)
g ] =

(
µ

(j)
g

)−c
=

µjg = µ
(j−1)
g . Set

Ln = 〈µ(n)
g , C,N | g ∈ G〉 ∩

∏
ci∈C

G.

4In order to make our notation more similar to the definition gW = (1, fg)ϕg−1 , we could consider not the
element ϕg but the element ϕg−1 . However, to shorten somewhat our notations we will use ϕg. Clearly, if ϕg

belongs to a subgroup of W , then ϕg−1 also belongs to that subgroup.
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It is clear that ϕg ∈ Ln (g ∈ G) and LCn ⊆ Ln, L
N
n ⊆ Ln (for f ∈ N we have f(µ

(j)
g ) = µ

(j)
f(g)).

Further we show that for our word set V one can choose a number n such that for arbitrary
g ∈ G the element ϕg lies in V (Ln). Since V has a consequence of type γk(x1, . . . , xk), always
holds γk(Ln) ⊆ V (Ln). In order to guarantee that ϕg lies in γk(Ln), it suffices to take simply
n = k + 1 and to choose L = Lk+1.

Finally, let us show that the group 〈L,C〉 is nilpotent. By the criterion of Hall, since
the group L is nilpotent, it will be sufficient to show that the factor group 〈L,C〉/L′ is
also nilpotent. Consider the word γn(x1, . . . , xn), where x1, . . . , xn are the generators of
〈L,C〉/L′. Since L/L′ is abelian, γn(x1, . . . , xn) is equal to 1 if in the set {x1, . . . , xn} there
are at least two elements from L. Thus, without loss of generality we can consider the case
when x1 is equal to µ

(j)
g and x2, . . . , xn are equal to c. According to our construction of µ

(j)
g :

[µ(j)
g , c] ∈ 〈µ(j−1)

g | g ∈ G〉,
[[µ(j)

g , c], c] ∈ 〈µ(j−2)
g | g ∈ G〉,

...

[. . . [µ(j)
g , c], . . . , c] = t ∈ 〈µ(1)

g | g ∈ G〉 = 〈ϕg| g ∈ G〉.

And, evidently, [t, c] = 1. Theorem is proved. �

3.4. A generalization of a theorem of Burnside

In [6] Heineken generalized Burnside’s theorem [3] that we mentioned at the beginning of
this paper. Heineken found the criterion for verbal normal embeddability of finite p-groups
in finite p-groups:

Let G be a finite p-group and let L be a Sylow p-subgroup of Aut(G). Then for the given word
w holds w(H) 6⊇ G for any nilpotent extension H of G if and only if w(L) 6⊇ Inn(G) for any
L.

Before we generalize this theorem for infinite p-groups, let us notice that here it plays no role
whether H is a finite p-group containing G as a normal subgroup, or any nilpotent group
with that property. For, the proof of Theorem 3 shows that if the desired normal verbal
embedding of a finite p-group into a group H is constructed, then H can also be constructed
to be finite. Thus, H = Hp1 × · · · ×Hpn , where Hpi

, i = 1, . . . , n are the Sylow subgroups of
H, and where p = pi0 . Then G is normal in Hpi0

and lies in w(Hpi0
).

Theorem 6. Let G be a p-group of finite exponent and let L be a Sylow p-subgroup of Aut(G).
Then for an arbitrary non-trivial word set V holds V (H) 6⊇ G for any extension H of G (such
that H is a p-group) if and only if V (L) 6⊇ Inn(G) for any L.

Proof. The necessity of this condition follows from the proof of Lemma 4: If the p-group H
exists, then in Aut(G) there is a (to H/CH(Ĝ) isomorphic) p-subgroup P . The subgroup P
lies in a Sylow p-subgroup L of the finite or infinite group [9] Aut(G). Thus: V (L) ⊇ Inn(G).
Now assume that the p-subgroup L exists. The proof of Theorem 5 shows that it will be
sufficient to consider as H the group W (G,D,L). �
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4. The normal verbal embeddings of SN∗-groups

4.1. SN∗-groups

A modification of our construction allows us to consider the normal verbal embeddings of
SN∗-groups. This consideration seems to be natural because the generalized soluble and
generalized nilpotent groups are natural generalizations of soluble and nilpotent groups. For
background information on SN∗-groups we refer to [15, 9, 16]. A group G is an SN∗-group
if for an ordinal number κ it has a system {Gδ| δ ≤ κ} of subgroups such that:

(1) {1}, G ∈ {Gδ| δ ≤ κ},
(2)

⋃
δ<ν Gδ = Gν for limit ordinal numbers ν ≤ κ,

(3) Gβ / Gβ+1 for non-limit ordinal numbers β + 1 ≤ κ,

(4) the factor Gβ+1/Gβ for any β + 1 ≤ κ.

4.2. The criterion for the normal verbal embeddability for SN∗-groups

Theorem 7. Let G be an arbitrary SN∗-group and V ⊆ F∞ be a non-trivial word set. Then
there exists an SN∗-group H = H(G, V ) with a normal subgroup Ĝ ⊆ V (H) isomorphic to
G if and only if there is an SN∗-subgroup B of Aut(G) such that V (B) ⊇ Inn(G).

Remark 4. Of course, here we need not to consider the cases when the groups G and H are
finite because the finite SN∗-groups simply are soluble. But here, too, we can prove that if
G is finitely generated, then G can also be chosen to be finitely generated; and if G is infinite,
then G can be chosen to be of the same cardinality as G.

Proof of Theorem 7. In the proof of Theorem 2, in order to construct a soluble group
W (G,D,B), we used a soluble subgroup B ⊆ Aut(G). The case of SN∗-groups is a little
more complicated: We have to consider not the entire group W (G,D, S), but a certain part
of the latter. The problem is that if {Gδ| δ ≤ κ} is a subnormal soluble ascending series for
G, then the system of subgroups

{∏
d∈DGδ| δ ≤ κ

}
of the Cartesian product

∏
d∈DG must

not necessarily be a soluble ascending series for
∏

d∈DG (the condition (2) may fail).

As in the proof of Lemma 2 let D be the group that we found for the variety V, let a ∈ V (D)
be an element of infinite order, and let τg, g ∈ G be the elements defined in that proof.
Denote W ∗ = 〈τg, D, S| g ∈ G〉. It is clear that:

a. GW lies in W ∗ because ϕg ∈ W ∗ and S ⊆ W ∗;

b. GW is normal in W ∗ because GW is normal even in W = W (G,D, S);

c. GW lies in V (W ∗) (see the proof of Lemma 2).

It remains to show that W ∗ is an SN∗-group provided that S and G are SN∗-groups. Denote

G∗
δ = W ∗ ∩

∏
d∈D

Gδ, δ ≤ κ.

It is easy to calculate that the conditions (1), (3) and (4) hold for G∗
δ , δ ≤ κ. Let us prove

that the condition (2) also holds. Let θ be any element of G∗
ν for the limit ordinal ν. Since
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θ ∈ W ∗, there is a finite set of elements

τg1 , . . . , τgp in
∏
d∈D

G,

d1, . . . , dq in D,

s1, . . . , sr in S,

such that θ ∈ 〈τg1 , . . . , τgp ; d1, . . . , dq; s1, . . . , sr〉. Let Gδ(θ) be the element of {Gδ| δ ≤ κ}
that contains the finite set of the elements

τg1(1), . . . , τgp(1) and
(
sj(τg1)

)
(1), . . . ,

(
sj(τgp)

)
(1); where j = 1, . . . , r.

The analysis of the operation of d1, . . . , dq and of s1, . . . , sr on
∏

d∈DG shows that θ ∈∏
d∈DGδ(θ). Thus θ ∈ G∗

δ(θ) holds, and {G∗
δ| δ ≤ κ} is a subnormal soluble ascending series

for W ∗∩
∏

d∈DG. In order to continue this series for the entire group W ∗ it remains to notice
that the factor group W ∗/

(
W ∗∩

∏
d∈DG

)
= D×S also contains subnormal soluble ascending

series {Yρ| ρ ≤ σ} (of length σ). Thus, we can define G∗
κ+ρ = Yρ ·

(
W ∗ ∩

∏
d∈DG

)
, ρ ≤ σ.

The necessity of the condition of the theorem is proved in the same manner as it was done
in Lemma 4 and Lemma 5. We use the fact that the factor groups of SN∗-groups are also
SN∗-groups. �

Proof of Remark 4. Here the same condition works as in the proof of the Remark in Section
2, together with the fact that the subgroups of SN∗-groups also are SN∗-groups. �

5. Economical embeddings

5.1. Embeddings into smaller varieties, the case of the word γn

Theorem 1 finds a general criterion for the normal verbal embeddability without taking into
account the form of the words in V . In [6] and [7] a few more economical constructions
are built for a few “well-known” words (xm, [x1, x2], etc.). This means: The analogs of the
criterion of Theorem 1 can be proved for some words in such a way that the constructed
group H is much smaller than what we get in the proof of Theorem 1.

The proof of Theorem 1 guarantees the embeddability of the group G into a group H
from the variety var (G) · (Nc ∪ var (A)), where c is the smallest number such that for some
rank n holds:

Fn(Nc) /∈ V = var (F∞/V (F∞)) . (3)

Let A be the variety of all abelian groups and let Am be the variety of abelian groups of
exponents dividing m.

Theorem 8. Let G be any group. Only then there exists a group H = H(G, γc) with a to G
isomorphic normal subgroup Ĝ ⊆ γc(H), if γc(Aut(G)) ⊇ Inn(G) holds. And if this group H
exists, it can be chosen to belong to the variety var (G) · (A ∪ var (A)).
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Notice that the construction of Theorem 1 in this situation would only guarantee that H lies
in var (G) · (Nc+1 ∪ var (A)).

Proof. Apply the construction of the proof of Theorem 5. Here the group G is not necessarily
nilpotent. But regardless of that fact the construction embeds G in a group H, where H is a
subgroup of W (G,C,Aut(G)). Evidently W (G,C,Aut(G)) ∈ var (G) · (A∪ var (A)) holds. �

5.2. The case with the word xm

Theorem 9. Let G be any group. Only then there exists a group H = H(G, xm) with a to
G isomorphic normal subgroup Ĝ ⊆ (H)m, if (Aut(G))m ⊇ Inn(G) holds. And if this group
H exists, it can be chosen to belong to the variety var (G) · (Am ∪ var (A)).

The proof of Theorem 1 guarantees the embeddability of the group G into a group H from
the variety var (G) · (A ∪ var (A)) only.

Proof. We choose
h = W (G,Cm, A),

where Cm = 〈c〉 is a cyclic group of order m. Since the subgroup GW = {(1, fg)ϕg−1| g ∈ G}
is normal in H, and since Inn(G) lies in (Aut(G))m, it remains to show that ϕg ∈ Hm, for
all g ∈ G. Take x = (c, 1)π, where

πg(c
i) =

{
g, if i = 0,

1, if i 6= 0.

Then it is easy to compute that xm = ϕg and, thus, ϕg ∈ Hm. �

5.3. The case with the word δn(x1, . . . , x2n)

Let δn(x1, . . . , x2n) be the word “of solubility”: δ0 = x, and

δn+1(x1, . . . , x2n+1) = [δn(x1, . . . , x2n), δn(x2n+1, . . . , x2n+1)],

(n ∈ N). Let Sn be the variety of the soluble groups of maximal solubility length n.

Theorem 10. Let G be any group. Only then there exists a group H = H(G, δn) with a to
G isomorphic normal subgroup Ĝ ⊆ δn(H), when δn(Aut(G)) ⊇ Inn(G) holds. And if this
group H exists, it can be chosen to belong to the variety var (G) · (Sn ∪ var (A)).

The proof of Theorem 1 guarantees the embeddability of the group G into a group H from
the variety var (G) · (Nc ∪ var (A)) only (the class c must be so large that one of the free
groups of Nc does not belong to V).

Proof. The groupW (G,C,A) (with an abelian C) cannot be used here because the extension
E of G with an abelian group C must be soluble and it cannot contain a non-trivial verbal
subgroup δn(E) (for the number n big enough). We embed G in the Cartesian wreath product

GWrC (where C = 〈c〉 is in infinite cyclic group): g 7→ ϕg, g ∈ G. Let µg = µ
(2)
g be the

element that we defined in the proof of Theorem 5. Then
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1. the isomorphic copy {ϕg| g ∈ G} of G lies in the commutator subgroup G′
1 of the group

G1 = 〈µg, c| g ∈ G〉,
2. for an arbitrary automorphism f ∈ Aut(G) there is an f1 ∈ Aut(G1) whose restriction

on the copy of G coincides with f .

We can continue this process and embed G1 into a corresponding subgroup G2 of G1 WrC),
etc.. Finally, we embed G into a soluble group Gn so that

1. the isomorphic copy {ϕg| g ∈ G} of G lies in δn(Gn),

2. for an arbitrary automorphism f ∈ Aut(G) there is an f1 ∈ Aut(Gn) whose restriction
on the copy of G coincides with f .

Let ϕ
(n)
g be the image of g in Gn. The condition 2 allows us to build an extension of Gn

with Aut(G). This extension E contains in its verbal subgroup δn(E) the normal subgroup

{fgϕ(n)

g−1| g ∈ G}. �

We could continue the research of the current paper and prove, for example, the analogs
of theorems of this section for normal verbal embeddings of nilpotent and soluble groups
into nilpotent and soluble groups, respectively. Also, the results of the previous section
about SN∗-groups have analogs for a few other classes of generalized soluble and generalized
nilpotent groups. However, we do not include those results in the current paper because here
our main aim is to present a construction for normal verbal embeddings for groups.
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