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Abstract. In [4], Cameron and Cara showed a relationship between independent
generating sets of a group G and RWPRI geometries for G. We first notice a con-
nection between such independent generating sets in G and those in the quotient
G/®(G), where ®(G) is the Frattini subgroup of G. This suggests a similar connec-
tion for RWPRI geometries. We prove that there is a one-to-one correspondence
between the RWPRI geometries of G and those of G/®(G). Hence only RWPRI
geometries for Frattini free groups have to be considered. We use this result to
show that RWPRI geometries for p-groups are direct sums of rank one geometries.
We also give a new test which can be used when one wants to enumerate RW PRI
geometries by computer.
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1. Geometries

1.1. Basic definitions and notation

After Tits [11], there is a standard way to define an (incidence) geometry from a group and
a collection of subgroups. In this section, we recall this construction.

Let I = {1,...,n} be a finite set whose elements are called types. Let G be a group
together with a finite nonempty family of distinct subgroups (G;);c;. The (coset) pregeometry
I' =T'(G, (G;)ier) is defined as follows. The set X of elements of I consists of all cosets Gjg,
g € G, i € I. An incidence relation * is defined on X by:

Gigi * Gjgo <= Gig1 N Gigo # 0.

The type function t on I' is X — I: G;g — i and we call |I| = n the rank of I. The group
G acts on I' as an automorphism group. Indeed, by right multiplication, ¢ € G maps G;¢;
to G;g1g and this action preserves each type as well as the incidence between elements. For
each type 7, the action of GG on the elements of type ¢ is transitive and G; is the stabilizer of
the element G; of type 1.

A flag is a set of pairwise incident elements and a flag containing an element of each
type is called a chamber. The type of a flag F' is simply the image ¢(F") of ' under the type
function. We call the cardinality of ¢(F") the rank of F'.

The residue I'p of a flag F' is the pregeometry induced on the set Xr of all elements of
type I\ t(F) incident with each element of F.

1.2. More axioms

As such, the structure of a coset pregeometry is too general. In order to have a structure
that is more similar to classical geometries more axioms are needed. We follow the set of
axioms proposed by the team of Buekenhout in [3].

A pregeometry T is said to be flag-transitive (FT) provided that G acts transitively on
all flags of any given type J C I. We call T a (coset) geometry if every flag of T' is contained
in a chamber.

For J C I, we put Gy := () e G;. It I' is a flag-transitive geometry, every flag of type
J C I is the image under G of the flag F; :== {G, : j € J}. The stabilizer of F; is G; and
the residue of F; is isomorphic to the coset geometry

FFJ = F(GJ,(Gju{k} ke [\J))

The Borel subgroup of I is the subgroup B := G| = ,¢; Gi.

We call T' firm (F) provided that every non maximal flag is contained in at least two
chambers. The geometry I" is said to be residually connected (RC) whenever the incidence
graph (Xp, ) of each residue of rank > 2 is connected.

We call T' primitive (PRI) if the action of G is primitive on the elements of any given type
(i.e. all G; are maximal in G). We call " weakly primitive (WPRI) provided G acts primitively
on the set of elements of type ¢ in I' for some ¢ € I. The geometry I' is said to be residually
weakly primitive (RWPRI) whenever the residue I'r of any flag F' is weakly primitive for
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the group induced on I'r by the stabilizer Gr of F'. Similarly we define residually primitive
(RPRrI) where we require that every residue is PRI.

The reader can find a complete survey of the origins of these concepts in the Handbook
of Incidence Geometry [2].

1.3. Group theoretic formulations

When dealing with coset geometries, we have to translate the axioms mentioned above into
group theory. Assuming flag-transitivity allows us to do this easily. Detailed proofs can be
found in [5].
(F) The subgroups G, for J C I, are all distinct.
(RC) If JCTand|J|<|I|—1,then G; = (G :kel\J).
(FT) If a family (G,z; : j € J) of right cosets has pairwise non-empty intersection,
then there is an element of G lying in all these cosets.

Since the action of G on the cosets of G; is primitive if and only if G; is a maximal subgroup
of G, the RWPRI condition means that the group G; acts primitively on the elements of at
least one type in the residue of the standard flag F); = {G; | j € J} of type J. Hence the
coset geometry is residually weakly primitive if and only if the following condition holds:

(RWPRI) For any J C I, there exists k € I'\ J such that G ;) is a maximal subgroup of
Gy.

2. Independent generating sets

2.1. Definitions

Let S = {s; : i € I} be a family of elements of a group G. For J C I, let G; = (s; : i ¢ J);
we abbreviate G;y to G;. We say that S is independent if s; ¢ G; for all ¢ € I. A family of
elements which generates G is independent if and only if it is a minimal generating set (that
is, no proper subset generates G).

Like in [4], we also define a relativized version. Let B be a subgroup of G. A family
S ={s; :i € I} of elements of G, is independent relative to B if s; ¢ (B,s; : j # i), and it is
an independent generating set relative to B if in addition (BU S) = G.

2.2. Independent generating sets and the Frattini subgroup

The Frattini subgroup ®(G) of a group G is defined as the intersection of all maximal sub-
groups of G. We briefly recall the connection between ®(G) and generating sets for G. An
element © € G is a nongenerator if for every subset S of G such that (z,S) = G we have
(SY = G. An important property is that the set of all nongenerators is exactly ®(G) (see
[10], p. 156). Hence (®(G) U S) = G if and only if (S) = G.

Theorem 2.1. Let B be a subgroup of a group G and let & := ®(G). A subset {s; :i € I} is
an independent generating set of G relative to B if and only if {®s; : i € I} is an independent
generating set of G /® relative to PB/P.
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Proof. Observe that every subset of cardinality |I| in G/® may be written as S := {®s; : i €
I}, where S := {s; : 1 € I} is a subset of G. First we prove the equivalence for the generating
property. Obviously (S U B) = G implies that S U ®B/® generates G/®.

Conversely, if SU®B /® generates G/® then every coset ®g in G is a product of cosets
in SU ®B/®. This means that &g = ®h, where h is a product of elements of S U B. Hence
for all g € G we have g € (P US U B) and thus, by the non generating property of ®, we get
G = (S U B). This shows that S U ®B/® generates G/® if and only if S U B generates G.

We still have to prove the independence. First remark that if (X, H) = T for a subset X and
a subgroup H of a group T, then

X¢HeH+#T (%)

Let Gy == (B,s; : j # i) and let G; := (PB/®, ®s; : j # i). Notice that G; = (P U G,)/®.
Thus {®s; : @ € I} being an independent generating set of G/® relative to ®B/® means
®s; ¢ G; which is thus equivalent to ®s; ¢ (®,G;). Since we have shown previously that
(Ds;, (P,G;)/P) = G/P if and only if (s;, (P, G;)) = G, we can use (x) with T'= G/® to
replace ®s; Z (0, G;) by (®,G;) # G. This is equivalent to G; # G (by the non generating
property) and by (%) again (with 7' = G), this happens if and only if s; ¢ G;. H

2.3. Independent generating sets and RWPRI geometries

In [4], Cameron and Cara have shown that any firm RWPRI coset geometry gives rise to an
independent generating set S relative to the Borel subgroup.

Their construction is the following. Let I' = I'(G, (G;)icr). Choose elements s;, for
i € I, so that s; fixes the elements G; for j # ¢ but moves the element G;. In other words,
s; € Gy where G; denotes the stabilizer of the standard flag F;. Then S := {s; | i € I}
is an independent set relative to the Borel subgroup B. Furthermore if the coset geometry I
happens to be RWPRI, then S U B also generates the whole group G' and hence {s; : i € I}
is an independent generating set for G relative to B.

Moreover this construction yields a strongly independent set of G relative to B, i.e. G ;N
Gk = Gyuk for all J,K C I. Nevertheless, the converse is not true. If {s; : i € I} is a
strongly independent generating set for G relative to B, and we put G; := (B,s; : j # i),
then conditions (F) and (RC) hold, but (FT) and (RWPRI) may fail.

A natural question

Theorem 2.1 states a correspondence between independent generating sets (IGS for short) in
G and in G/®(G). Since a part of the IGS of G (respectively G/®(G)) yields the firm RWPRI
geometries of G (respectively G/®(G)), it is natural to ask whether the correspondence also
holds between firm RWPRI geometries in G and in G/®(G). This problem is the main
motivation for this paper and we will solve it in next section.
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3. New applications to RWPRI geometries

3.1. Bijection between firm RWPRI geometries of G and of G/®(G)

In general for a normal subgroup N in G, any RWPRI geometry of G/N lifts to an RWPRI
geometry of G whose Borel subgroup contains N. This is due to the bijection between
subgroups (respectively maximal subgroups) of G;/N and subgroups (respectively maximal
subgroups) of G; containing N. However, not all geometries for G come from a single quotient
G /N because we cannot be sure that all G; contain the fixed normal subgroup N. We show,
with the (F) axiom, that for N = ®(G), all RWPRI geometries of G can be obtained from
the quotient G/®(G).

The following theorem also holds when the group G is infinite.

Theorem 3.1. Let I' = I'(G, (G,)ier) be a firm RWPRI coset geometry. Then ®(G) C G;
foralliel.

Proof. For J C I, let G; := (;c;G;. By the RWPRI condition and the firm axiom (F),
there is a chain of subgroups

B=GrcCc.---C G{il,ig,ig} C G{il,ig} C Gi1 CcG

where every inclusion is strict and maximal. To simplify notation we relabel the indexes,
replacing i, by k and {1,... ,k} by k. The chain is now written as B C --- C G5 C G5 C
G1 C G =: Gy and we prove that & = &(G) C G;, Vi € I.

We proceed by induction. Since (G; is maximal in G we have ® C Gy. Assume that up to an
index k we have ® C Gy for all m < k, then if ® ¢ Gy, we derive a contradiction as follows.
Assume that the following holds:

Vm < /{Z, (I)Gmu{k} = Gm implies (I)Gmu{k} = Gm . (1)

We will prove statement (1) in the last paragraph. We claim that the first part of (1)
holds for m = k — 1. Indeed, by our induction hypothesis, ® is a normal subgroup of
Gr=1 = Nin<kGm and the subgroup PGy 1, = PGy, is strictly larger than Gy since @ ¢ Gr.
Hence maximality of Gi in G3— implies ®Gy = Gp—. Now we use statement (1) from
m==k—1uptom =1, we obtain ®G, = G. As ® is the Frattini subgroup of G, this is
only possible when G = G which contradicts axiom (F).

It remains to prove statement (1). Assume ®Gmupy = G for some m < k. Then Gm =
PGrmupy C PGr=rugy C PGr=r and PGr— = Gy=7 since ® C Gyt (here m — 1 < k).
Now G C ®Gr=quy C Grm1 together with the maximality of G in Gr—1 implies

either (A) : ®Gr=,py = G

m—1

or (B) . Gm = (I)Gmu{k}

As (A) is what we want to prove, let us show that (B) does not occur. (B) implies Gi=,(y C
PGr=iupy = Gm- Since Gr—1gy = G N Gr=, we can say that G NGy =7 is a subgroup of
G N Gr. The inclusion G C G=1 then shows that G= ) and Gy are equal. This
contradicts axiom (F), since m — 1 U {k} # m U {k} when m # k. O
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A geometry where all stabilizers G; contain a normal subgroup K of G is isomorphic to a
geometry of the quotient group G/K. More precisely:

Proposition 3.2. [2] If T'(G, (G;)ic1) is a pregeometry and if K is a normal subgroup of G
such that K < G; for every 1 € I, then
I(G, (Gi)ier) = T(G/ K, (Gi/K)ier).

From Theorem 3.1 we now conclude

Corollary 3.3. A firm RWPRI coset geometry U'(G, (G;)ier) is isomorphic to
L(G/2(G), (Gi/(G))ier)-

The groups of the form G/®(G) are called Frattini free groups and they are quite exceptional
among finite groups (see section 4.1). By the corollary we obtain:

Theorem 3.4. Every firm RWPRI geometry is isomorphic to a firm RWPRI geometry of a
Frattini free group.

3.2. Firm RWPRI geometries are trivial for p-groups
3.2.1. Direct sums of geometries

If in a rank 2 pregeometry I' each element of type 7 is incident with every element of type
J, the geometry I'(G, (G;,G;)) is called a direct sum I'; & I';. More generally if the type
set [ is a union I = I; U --- U [, of disjoint subsets such that each element of type ¢ € I}
is incident with every element of type j € I; whenever k # [, we write ' as a direct sum
I'=Ty®---@&T,, where the summand I'y, = I'(G, (G,)cr, )-

In fact, it can be proved easily that the structure and the properties of a pregeometry I'
are fully determined by those of its summands I'y,... ,I.. A flag F of [' is a union F' =
FyU---UF, of (possibly empty) flags of the summands. The residue I'r of F' is the direct
sum I'p, @ g, @ -+ - @ Ig. of the residues in the corresponding summands (where Fj, is the
intersection of ' with t71(I;)). In the same way, a chamber is a union of disjoint chambers.
I' is residually connected if and only if the summands have this property. For these reasons,
direct sum decompositions of pregeometries have a great importance (see Valette [12] for
further details and [1] for the following well-known proposition).

Proposition 3.5. ['(G, (G1,G2)) is a direct sum if and only if G1Gy = G.

3.2.2. Firm RWPRI geometries for p-groups

Let us recall that for a finite p-group P, the quotient P/®(P) is elementary abelian and has
the structure of a vector space over [F,,. Proving the following lemma is an easy exercise.

Lemma 3.6. Let G and Gy be proper subgroups of Z’; with Gy € G1. If Gy is maximal and
G1 N Gy is mazimal in Gy, then Gy is a maximal subgroup of Z’;.

Proposition 3.7. For a finite p-group G, a firm coset geometry is RWPRI if and only if it
1s RPRI.
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Proof. Since RPRI implies RWPRI, it is sufficient to show that RWPRI implies RPRI. By
Theorem 3.1 it is enough to show the property in G/®(G), which is elementary abelian. So
we may assume without restriction that G = Z’;. Write G5 for N;e;G;. For a given subset J
of I, the RWPRI and firm property, allows us (after relabeling) to achieve that all inclusions
in the following chain are strict and maximal

B:G[C"'CGJU{LQ}CGJU{l}CGJ.

Write Gx for Gk and k for {1,... ,k} (we also put 0 := (). Observe that é’k = G{k}uk 5N
G7—7- As a subgroup of an elementary abelian group, Gr—s +—5 1s also elementary abelian and we
may apply Lemma 3.6. Thus a pair of strict maximal inclusions G C G — C G — implies
that G{k}uk 5 1S proper maximal in Gk, 5.

Induction on m with k& > m > 2 yields that G OW=mn is a proper maximal subgroup of
G— so that finally Gy = G{k} is maximal in Gf = (G; and this for all k. O

Theorem 3.8. A firm RWPRI coset geometry for a p-group is a direct sum of PRI geome-
tries of rank 1.

Proof. Again by Theorem 3.1 it is sufficient to show the property in G = Z’;. The previous
theorem ensures that all stabilizers G; are maximal subgroups of G and hence (k — 1)-
dimensional subspaces. For i # j Grassmann’s dimension formula yields

Hence G; + G; must be equal to G. Proposition 3.5 terminates the proof. n

4. Implications for RWPRI geometries

4.1. Reduction to Frattini free groups

Let us first remark that the Frattini subgroup of G/®(G) is the trivial subgroup {®(G)}.
Such a group for which the Frattini subgroup is the identity, is called a Frattini free group.
The following theorem describes the structure of such groups as semi-direct products (see
[9]). We say that a group K acts semi-simply on an abelian group A if the intersection of all
maximal K-normal subgroups of A is trivial.

Theorem 4.1. Let F be a finite Frattini free group with socle S = A X B where A (resp. B)
is a direct product of abelian (resp. non-abelian) simple groups. Then F' = Ax K where K is
a subgroup of Aut(S) = Aut(A) x Aut(B) which contains B = Inn(S) and acts semi-simply
on A.

4.1.1. Frattini free groups are scarce

Considering only geometries on Frattini free groups reduces considerably the number of
groups to take into account. According to the SmallGroups library in GAP (see [8] and [7]),
there are 49,500, 460, 704 finite groups of order less than 1536 = 3 x 512 and among them
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only 7818 are Frattini free (a proportion less than 100 — 99,9999%). This is easily under-
standable since p-groups form the overwhelming majority of finite groups up to order 2000.
There are for instance more than 49 - 10° groups of order 2!° and the library of Eick, Besche
and O’Brien ([8]) suggests even that the proportion of p-groups among all finite groups up to
order n tends to 1 when n tends to infinity. Nevertheless, although there could exist billions
of groups of order p*, there is only one Frattini free group of order p*, namely the elementary
abelian group.

4.2. The ®-test for a residue

Suppose we want to test whether a collection of subgroups {Gj;,i € I} defines an RWPRI
geometry I'(G, (G)ier). According to Theorem 3.1, a first obvious test is to check whether
O(G) C G, foralliel.

The original aim of RWPRI coset geometries was to obtain a geometrical interpretation
of sporadic simple groups. All these groups have a trivial Frattini subgroup and hence
®(G) C G is certainly true. However, RWPRI property must hold for any residue and the
groups Gy involved in residues are not, in general, Frattini free.

Let F' be a flag of I'. The residue of F' must be an RWPRI geometry I'p = I'(Gy(py, (Gi N
Gyr))ienwr))- Therefore ®(Gypy) must be included in every G; N Gyp) but in general ®(G)
is not the Frattini subgroup of Gy(r). Sometimes ®(Gy(r)) is not even contained in ®(G), so
that a trivial ®(G) does not imply a trivial ®(Gyry). Even if ®(G) C G; for all i € I, there
is no guarantee that ®(Gyp)) is contained in every G; N Gyp). Hence this provides a new
test for every subgroup G ;. We refer to this as the ®-test.

Therefore, even in the geometric study of sporadic simple groups, the ®-test can be a
useful tool.

4.2.1. How to compute ®(G)?

For finite soluble groups there exist specific methods for computing the Frattini subgroup
without computing all maximal subgroups (see [6]). For non soluble groups, Eick suggests
to use the fact that ®(G) is contained in the Fitting subgroup of G.

4.3. Other reduction in some cases

In order to reduce the geometries of a group G to geometries of a quotient G/K (see Proposi-
tion 3.2), we would like to determine the largest G-normal subgroup K of the Borel subgroup
B = N;e;G;. By definition this group is K := Coreg(B) = Nije;Coreg(G;). For firm, RWPRI
geometries, we have shown that ®(G) C K and it is easy to find examples where ®(G) = K
(if G/®(G) is simple for instance).

In some cases K is a larger subgroup of G. For example in [1] we have proved that an
RPRI geometry that is not a direct sum must be a geometry I'(G, (G;);cr) where G belongs
to a very specific family of Frattini free groups, namely that of primitive groups.
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