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Abstract. Even though the polarity is a well defined operation for arbitrary sub-
sets in the Euclidean n-dimensional space, the related operation of conjugacy of
faces appears defined in the literature exclusively for either convex bodies contain-
ning the origin as interior point and their polar sets, or for closed convex cones.
This paper extends the geometry of closed convex cones and convex bodies to un-
bounded convex sets (and, in a dual way, to those closed convex sets containing the
origin at the boundary), not only for the sake of theoretical completeness, but also
for the potential applications of this theory in the fields of Convex Programming
and Semi-infinite Programming. Introducing the recession cone into the analysis
we develop a general theory of conjugacy which, together with the new concept of
curvature index of a convex set on a face, allows us to establish a strong result on
complementary dimensions of conjugate faces which extends a well-known result
on polytopes.
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1. Introduction

In contrast with polarity, which is defined for any subset in Rn, conjugacy of faces has been
only defined for convex bodies (i.e., for full-dimensional convex and compact sets) which are
neighborhoods of the origin (see, e.g., [4] and [13]), and for pointed full-dimensional closed
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convex cones (see, e.g., [3]). This paper extends the geometry of convex cones and polyhedra
to unbounded closed convex sets and, in a dual way, to those convex sets for which the origin
is a boundary point. The geometrical properties of the (possibly unbounded) closed convex
sets have been used for algorithm constructions in Semi-infinite Programming ([2], [9], [5],
and others), and for the characterization of the solution set of linear inequality systems (in
[1], [10], [7], and [8]).

On the other hand, the new concept of “curvature index” of a convex set on a face, allows
us to establish a strong result about complementary dimensions of conjugate faces, first on
cones and then, on general closed convex sets by using the extended conjugation. These
results complete the co-dimension theorem of conjugate faces ([4], Theorem 6.10, reproduced
here as Theorem 1.1) known for polytopes as an equality.

The paper is organized as follows. In the rest of this introduction the notation is fixed
and some necessary results are recalled. In Section 2 we define the conjugacy of faces,
the so-called 4-operation, to general closed convex sets, extending and unifying to this
general frame classic results on conjugacy. Theorem 2.2 is the main result in this section and
Theorem 2.5 summarizes the resulting structure of considering the extended 4-operation. In
Section 3 we introduce the new concept of curvature index of a convex set on a face. Then,
for closed convex cones provided with the classical 4-operation, results on complementary
dimensions are established and the invariance of the curvature index through conjugacy is
proved. In particular, we give a strong result about complementary dimensions of conjugate
faces, first on cones and then, on general closed convex sets. Finally, in Section 4, results
about the curvature index and co-dimensions of faces are extended to general closed convex
sets provided with the 4-operation introduced in Section 2. Theorem 4.2 is the main result
in this section which includes graphical examples visualizing the construction of polar sets
and the techniques developed in the paper.

For notation and general concepts (e.g., those of proper face and exposed face of a convex
set) the main references are [4], [12], and [13]. We denote by θ the origin of coordinates in Rn.
Given a set ∅ 6= M ⊂ Rn, the convex, affine, conical convex (containing the origin) and linear
hulls of M are denoted by conv M , aff M , cone M and span M , respectively. Also, cl M ,
int M , bd M denote the closure, the interior and the boundary of M ; by ri M and rbd M , the
relative interior and the relative boundary of M (with regard to aff M). For C 6= ∅ convex
and closed, the dimension of C is dim C = dim aff C, 0+C denotes its recession cone, and the
linearity subspace of C is lin C = 0+C ∩ (−0+C). The feasible directions cone of C at x is
denoted by D (C, x) and the corresponding tangent cone by TC (x) = cl D (C, x) (see [6], p.
64).

We define the tangent space of C at x as TSC (x) = lin TC (x). We associate with
θ 6= x ∈ Rn and α ∈ R the hyperplane

H (x, α) = {y ∈ Rn | 〈x, y〉 = α}

and the corresponding half-space

H− (x, α) = {y ∈ Rn | 〈x, y〉 ≤ α} .
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The (positive) polar set of M ⊂ Rn, M 6= ∅, is defined as

M o = {y ∈ Rn | 〈x, y〉 ≥ −1, ∀x ∈ M} .

Obviously, M o is always convex and closed, and θ ∈ M o. Moreover, polarity inverts the
inclusion, (ρM)o = ρ−1M o for all ρ > 0, and M o = [cl conv (M ∪ {θ})]o .

If C is convex, closed, and θ ∈ C, then Coo := (Co)o = C, and we have

θ ∈ int C ⇐⇒ Co is bounded,

statement where C and Co can be interchanged. Hence, C is a convex body and θ ∈ int C if
and only if Co satisfies the same properties.

Now assume that C is a convex body such that θ ∈ int C. Then, given a face F of C, its
conjugate face is

F4 = {y ∈ Co | 〈x, y〉 = −1, ∀x ∈ F} (1)

(we respect the usual notation even though it may be sometimes ambiguous because the set C
which appears in the definition is not explicit). In fact, F4 is an exposed face of Co (C4 = ∅
and ∅4 = Co). The 4-operation defined by (1) inverts the inclusion, i.e., if F ⊂ F ′ ⊂ C

then (F ′)4 ⊂ F4 ⊂ Co, and F is an exposed face of C if and only if F44 :=
(
F4)4

= F .
If C is a convex body such that θ ∈ int C, then the 4-operation establishes a one-to-one
correspondence between the exposed faces of C and Co and the dimensions of each pair of
proper faces are related as follows ([4], Theorem 6.10).

Theorem 1.1. Let C ⊂ Rn be a convex body such that θ ∈ int C, and let F be an exposed
proper face of C. Then F4 is also an exposed proper face of Co and

dim F + dim F4 ≤ n− 1.

It is known that the equality holds if C is a polytope, i.e., conjugate faces have complementary
dimensions.

In the case of a cone K (a non-empty set which is closed under non-negative scalar multipli-
cations), its (positive) polar cone turns out to be

Ko = {y ∈ Rn | 〈x, y〉 ≥ 0, ∀x ∈ K} .

There exists a parallel conjugacy theory for pointed full-dimensional closed convex cones (see,
e.g., [3]). The conjugate of a face G 6= ∅ of K is defined as

G4 = {y ∈ Ko | 〈x, y〉 = 0, ∀x ∈ G} = Ko ∩G⊥, (2)

which is an exposed face of Ko (K4 = {θ} and {θ}4 = Ko). Moreover, if G ⊂ G′ ⊂ K then
(G′)4 ⊂ G4 ⊂ Ko, and G is an exposed face of K if and only if G44 = G.

The pointedness assumption on K (or the dual condition of the full-dimensionality) can
be removed as follows ([7]). Denoting L := lin K, and K := K ∩ L⊥, where L⊥ is the
orthogonal complement of L. The cone K turns out to be the direct sum K = L⊕K, where
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K is a pointed cone. Similarly, if G 6= ∅ is a face (an exposed face) of K and G := G ∩ L⊥,
then G = L⊕G, where G is a face (an exposed face) of K. The operations

Ko = K
o ∩ L⊥ and G4 = G

4 ∩ L⊥

coincide with the corresponding operations carried out on the linear subspace L⊥. Observe
that K4 = lin Ko, (lin K)4 = Ko, and that G is an exposed face of K if and only if G44 = G.

Working with unbounded convex sets, it is suitable to use the one-to-one correspondence
between convex cones on Rn+1 contained in the lower half-space and convex sets on Rn (see
[12], p. 20). We will use the notation (x; χ) ∈ Rn+1, where x ∈ Rn and χ ∈ R. The lower
closed half-space on Rn+1 will be denoted by H−

0 = H− ((θ; 1) , 0), and we shall identify
convex sets in Rn with convex subsets in the hyperplane H−1 = Rn × {−1} ⊂ Rn+1. Given a
convex set C ⊂ Rn, the closed cone

Ĉ := cl cone (C × {−1}) ⊂ Rn+1

will be called associated cone to C. Similarly, given a cone K ⊂ Rn the horizon cone of K
will be

K̃ := K × {0} ⊂ Rn+1.

Obviously, lin K̃ = l̃in K, dim K = dim K̃ and K̃ is closed if K is closed.
For x ∈ Rn we shall denote x̂ := (x;−1) and x̃ := (x; 0). If C is closed and convex, by

Theorem 8.2 in [12] we have

Ĉ = cone (C × {−1}) ∪ 0̃+C. (3)

Clearly, 0̃+C is an exposed face of Ĉ, and x̃ ∈ Ĉ if and only if x ∈ 0+C. Moreover, it can
be shown ([7]) that, if K is a closed convex cone such that K ⊂ H−

0 ⊂ Rn+1 and C satisfies

C × {−1} = K ∩H−1 then K = Ĉ.

Proposition 1.2. If C ⊂ Rn is a closed convex set containing the origin then Ĉo = Ĉo.

Proof. For u ∈ Rn,

û ∈ Co × {−1} ⇔ u ∈ Co

⇔ λ 〈x, u〉+ λ ≥ 0, ∀x ∈ C, ∀λ ≥ 0
⇔ 〈λx̂, û〉 ≥ 0, ∀x ∈ C, ∀λ ≥ 0
⇔ û ∈ (cone (C × {−1}))o ,

so that

Co × {−1} = (cone (C × {−1}))o ∩H−1 = Ĉo ∩H−1

and we obtain

Ĉo ∩H−1 = Co × {−1} = Ĉo ∩H−1 =
(
Ĉo ∩H−

0

)
∩H−1.
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This means that both sets, Ĉo and Ĉo ∩H−
0 , are closed convex cones contained in the lower

half-space having the same section on H−1, and so Ĉo = Ĉo ∩H−
0 . Since(

H−
0

)o
= cone {(θ;−1)} ⊂ cone (C × {−1}) ⊂ Ĉ,

Ĉo ⊂ H−
0 and we get Ĉo = Ĉo. �

Lemma 1.3. Let C ⊂ Rn be a closed convex set and let F and G be nonempty sets such that
F ⊂ C and G ⊂ 0+C. Then the following statements hold:

1. F is a (exposed) face of C if and only if F̂ is a (exposed) face of Ĉ which is not contained

in 0̃+C.

2. G is a face of 0+C if and only if G̃ is a face of Ĉ.

3. If G̃ is an exposed face of Ĉ, then G is an exposed face of 0+C.

Proof. We will prove 2. first.

2. Since 0̃+C is a face of Ĉ and G̃ ⊂ 0̃+C, we get that G̃ is face of Ĉ if and only if G̃ is face
of 0̃+C, and G̃ is face of 0̃+C if and only if G is face of 0+C.

3. If G̃ is an exposed face of Ĉ, G̃ = Ĉ ∩ H for some hyperplane H ⊂ Rn+1. Moreover
G̃ ⊂ H0 then

G̃ =
(
Ĉ ∩H

)
∩H0 =

(
Ĉ ∩H0

)
∩H = 0̃+C ∩H,

thus G̃ is an exposed face of 0̃+C in H0 and so, G is an exposed face of 0+C. (If H = H0

then G is the improper exposed face 0+C.)

1. Let F be a face of C. Let (y; γ) , (z; ζ) ∈ Ĉ and λ ∈ ]0, 1[ be such that(
x
χ

)
:= λ

(
y
γ

)
+ (1− λ)

(
z
ζ

)
∈ F̂ .

We will prove (y; γ) , (z; ζ) ∈ F̂ . Obviously γ ≤ 0, ζ ≤ 0, and χ ≤ 0.

Case I: γ < 0 and ζ < 0. Then y/ |γ| and z/ |ζ| belong to C, moreover χ < 0, x/ |χ| ∈ F ,
and

x

|χ|
=

λy + (1− λ) z

|λγ + (1− λ) ζ|
=

−λγ

|λγ + (1− λ) ζ|
y

|γ|
+

− (1− λ) ζ

|λγ + (1− λ) ζ|
z

|ζ|
,

with

−λγ

|λγ + (1− λ) ζ|
+

− (1− λ) ζ

|λγ + (1− λ) ζ|
= 1.

Since F is a face of C, we get y/ |γ| , z/ |ζ| ∈ F , therefore (y; γ) , (z; ζ) ∈ F̂ .
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Case II: γ < 0 and ζ = 0. Now y/ |γ| ∈ C, z ∈ 0+C, and χ = λγ < 0. We will prove that

y/ |γ| ∈ F and z ∈ 0+F . Since (x; χ) ∈ F̂ then 1
λ|γ| (x; χ) ∈ F̂ so 1

λ|γ|x ∈ F . Moreover, for all
µ 6= 1,

x

λ |γ|
=

y

|γ|
+

1− λ

λ |γ|
z = µ

y

|γ|
+ (1− µ)

(
y

|γ|
+

1− λ

(1− µ) λ |γ|
z

)
.

Since F is a face of C, y/ |γ| ∈ F , moreover

y

|γ|
+

1− λ

(1− µ) λ |γ|
z ∈ F

for all µ < 1, which imply z ∈ 0+F .

Case III: γ = ζ = 0. Now y, z ∈ 0+C, and χ = 0. We will prove y, z ∈ 0+F . For any w ∈ F ,
α ≥ 0, we get w + αy ∈ C, w + αz ∈ C, and w + αx ∈ F . Then

λ (w + αy) + (1− λ) (w + αz) = w + αx ∈ F,

which implies w + αy ∈ F and w + αz ∈ F , because F is a face of C. Therefore y, z ∈ 0+F .

At this point we have proved that if F is a face of C then F̂ is a face of Ĉ (obviously F̂ is

not contained in 0̃+C if F 6= ∅). Conversely, suppose F̂ is a face of Ĉ which is not contained

in 0̃+C. Denoting F × {−1} := F̂ ∩H−1, we must prove F is a face of C. Let y, z ∈ C, and

λ ∈ ]0, 1[ be such that x := λy + (1− λ) z ∈ F . Then (y;−1) ∈ Ĉ, (z;−1) ∈ Ĉ, and

(x;−1) = λ (y;−1) + (1− λ) (z;−1) ∈ F̂ ∩H−1.

Since F̂ is a face of Ĉ we conclude that (y;−1) and (z;−1) belong to F̂ , thus y, z ∈ F .
Therefore F is a face of C.

Now we will prove that if F is an exposed face of C then F̂ is an exposed face of Ĉ. Since
F = H ∩ C for some hyperplane H ⊂ Rn, the hyperplane span Ĥ ⊂ Rn+1 satisfies

span Ĥ ∩ Ĉ = Ĥ ∩ Ĉ = Ĥ ∩ C = F̂ .

Conversely, let F̂ be an exposed face of (the cone) Ĉ which is not contained in 0̃+C, i.e.,

F̂ = H ∩ Ĉ for some hyperplane (through the origin) H ⊂ Rn+1, H 6= H0. Denoting

F × {−1} := F̂ ∩H−1 we have

F × {−1} =
(
H ∩ Ĉ

)
∩H−1

= (H ∩H−1) ∩
(
Ĉ ∩H−1

)
= (H ∩H−1) ∩ (C × {−1}) .

Since H ∩H−1 is a hyperplane in the affine space Rn × {−1} we conclude that F × {−1} is
an exposed face of C × {−1} in the affine space Rn × {−1}. Therefore F is an exposed face
of C. �

Later, helped with Figure 4, we shall prove that the converse of statement 3 in Lemma 1.3
is not true.
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Corollary 1.4. If F is a nonempty face of the closed convex set C and SF is the minimal
exposed face of C containing F , then ŜF is the minimal exposed face of Ĉ containing F̂ and,

consequently, F̂4 = ŜF

4
.

We conclude this section recalling Lemma 2.2 in [11], rewritten here on our notation.

Lemma 1.5. For x ∈ C, µ > 0, the feasible directions cone of Ĉ at µx̂ satisfies:

D
(
Ĉ, µx̂

)
= D̃ (C, x) + span {x̂} .

2. Conjugacy of faces

Two difficulties can arise in the application of the 4-operation (1) to a closed convex set C
such that either it is unbounded or θ ∈ bd C. If C is unbounded, Co may have exposed faces
containing the origin which do not correspond to any face of C. In Figure 1 the exposed
faces of Co (labelled α, β and γ) are not conjugate of any face of C. On the other hand, the
face α of Co seems to be the conjugate of face 1 of C, but actually 14 = ∅.

Figure 1

Similarly, if θ ∈ bd C, exposed faces of C can exist for which it is not possible to assign any
conjugate face in Co. This is visible in Figure 2, where the exposed face 2 of C does not
correspond with any face of Co (and the same happens in Figure 1 with the face 1).

Figure 2

In order to overcome these difficulties, we introduce the recession cones 0+C and 0+ (Co) into
the analysis. In addition, it is not necessary to consider the empty face as an exposed face,
because its role will be played by the minimal faces of these cones. So from now on, “face”
will mean “nonempty face”. Since the next definition extends the classical 4-operation, we
will use the same notation. However, observe that the conjugate face of any (nonempty) face
will always be nonempty.
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Definition 2.1. Let C ⊂ Rn be a closed convex set containing the origin and let F be a face
of C. We define its conjugate face as

F4 := {y ∈ Co | 〈x, y〉 = −1, ∀x ∈ F} , (4)

if (4) is not empty. Otherwise,

F4 :=
{
y ∈ 0+ (Co) | 〈x, y〉 = 0, ∀x ∈ F

}
. (5)

If G is a face of 0+C, we define its conjugate face as

G4 = {y ∈ Co | 〈x, y〉 = 0, ∀x ∈ G} . (6)

If θ /∈ F and F is an exposed face of C, then there F4 is the set (4), i.e. ∅ 6= F4 ⊂ Co and
θ /∈ F4. Which is true because exists c ∈ Rn and α ∈ R such that 〈c, x〉 ≥ α for all x ∈ C
and 〈c, x〉 = α for all x ∈ F . Since θ ∈ C\F , α < 0 and it can be easily shown that −α−1c
belongs to the set in (4).

Clearly, given two faces F ⊂ F ′ ⊂ C, if both sets F4 and F ′4 are defined by (4) (by
(5), e.g., if θ ∈ F ), then F ′4 ⊂ F4, these sets are subsets of Co (of 0+ (Co) and so cones,
respectively). For faces G ⊂ G′ ⊂ 0+C we have θ ∈ G′4 ⊂ G4 ⊂ Co.

Let us compare Definition 2.1 with the classical one for a convex body C such that
θ ∈ int C (recall (1)). Given a face F 6= C, the minimal exposed face of C containing F
verifies F ⊂ SF ⊂ bd C, so that θ /∈ SF , and we have

∅ 6= {y ∈ Co | 〈x, y〉 = −1, ∀x ∈ SF} ⊂ {y ∈ Co | 〈x, y〉 = −1, ∀x ∈ F} .

Observe that C∆ = ∅ for the classical definition whereas C∆ = {θ} = 0+ (Co) for the previous
one.

Now we consider given a closed convex cone K and a face G of K. According to Definition
2.1, since θ ∈ G, the set in (4) is empty and so

G4 :=
{
y ∈ 0+ (Ko) | 〈x, y〉 = 0, ∀x ∈ G

}
= {y ∈ Ko | 〈x, y〉 = 0, ∀x ∈ G} ,

and this coincides with the classical definition (recall (2)).
Recalling again Figure 1, observe that the face α of Co is associated by conjugacy with

a face of 0+C.

The next theorem is based upon the identity Ĉo = Ĉo of Proposition 1.2.

Theorem 2.2. Let C ⊂ Rn be a closed convex set containing the origin. Then the following
statements hold:

1. If F is a face of C and F4 is the nonempty set (4), then:

1.A F4 is an exposed face of Co and θ /∈ F4, and

1.B F̂4 = F̂4.

2. If F is a face of C and F4 is the cone (5), then

2.A F̃4 is an exposed face of Ĉo, therefore F4 is an exposed face of 0+ (Co), and
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2.B F̃4 = F̂4.

3. If G is a face of 0+C, then

3.A G4 is an exposed face of Co and θ ∈ G4, and

3.B Ĝ4 = G̃4.

Proof. Since θ ∈ C, by Proposition 1.2 we have

Ĉo = Ĉo. (7)

The first part of 1.A is consequence of 1.B, (7), and Lemma 1.3, part 1. In fact, since F̂4 is

an exposed face of Ĉo by conjugacy on cones, then F̂4 is an exposed face of Ĉo and thus F4

turns out to be an exposed face of Co. Moreover, if θ ∈ F4 is true then (θ;−1) ∈ F̂4 = F̂4

and, by conjugacy on cones, F̂ ⊂ H0 contradicting F 6= ∅.
The equality 1.B, F̂4 = F̂4, is equivalent to

F̂4 ∩H−1 = F4 × {−1} , (8)

because F̂4 ⊂ Ĉo is a closed convex cone contained in the lower half-space. In order to prove
(8), taking into account that F4 is the set in (4) together with (7), we have

û ∈ F4 × {−1}
⇔ u ∈ F4

⇔ 〈x, u〉 = −1, ∀x ∈ F , and u ∈ Co

⇔ λ 〈x, u〉+ λ = 0, ∀x ∈ F, ∀λ ≥ 0, and u ∈ Co

⇔ 〈λx̂, û〉 = 0, ∀x ∈ F, ∀λ ≥ 0, and û ∈ Ĉo

⇔ û ∈
{

ŷ ∈ Ĉo | 〈λx̂, ŷ〉 = 0, ∀x̂ ∈ F × {−1} , ∀λ ≥ 0
}

⇔ û ∈
{

ŷ ∈ Ĉo | 〈x̂, ŷ〉 = 0, ∀x̂ ∈ F̂
}

,

and, by (2), the last set is F̂4 ∩H−1.

Analogously, the first assertion in 2.A is consequence of 2.B and (7), because if F̂4 is

an exposed face of Ĉo then F̃4 is an exposed face of Ĉo. On the other hand, we know that

F̃4 ⊂ ˜0+ (Co) and, by Lemma 1.3, part 3, we conclude that F4 is an exposed face of 0+ (Co).
Concerning 2.B we first prove that

F̂4 ⊂ ˜0+ (Co). (9)

Note that if F̂4 is the conjugate face of F̂ with regard to the cone Ĉ, then F̂4 ⊂ Ĉo.
Moreover, using (7) and (3), we have

F̂4 ⊂ Ĉo = Ĉo = cone (Co×{−1}) ∪ ˜0+ (Co).
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If (9) fails, there exists ẑ = (z;−1) ∈ F̂4 such that z ∈ Co. Recalling Definition 2.1 and the
hypothesis of 2, we get

{y ∈ Co | 〈x, y〉 = −1, ∀x ∈ F} = ∅,

so that 〈x, z〉 6= −1 for some x ∈ F . But this is not possible because x̂ ∈ F̂ and ẑ ∈ F̂4

imply

0 = 〈ẑ, x̂〉 = 〈z, x〉+ 1.

Therefore, F̂4 ⊂ ˜0+ (Co). This allows us to write:

F̂4 =
{
(y; 0) ∈ Rn+1 | y ∈ 0+ (Co) , 〈u, ỹ〉 = 0 ∀u ∈ cl cone (F × {−1})

}
=

{
(y; 0) ∈ Rn+1 | y ∈ 0+ (Co) , 〈x, y〉 = 0 ∀x ∈ F

}
= F̃4,

where the 2nd identity is consequence of the continuity on the inner product. This proves
2.B.

Now we prove 3.A using (7) and 3.B. Since G̃4 is an exposed face of Ĉo, one has that Ĝ4

is an exposed face of Ĉo. By Lemma 1.3, part 1, G4 is an exposed face of Co, with θ ∈ G4

according to Definition 2.1.

Finally, we shall prove 3.B: Ĝ4 = G̃4. Since G̃4 is a closed convex cone and G̃4 ⊂ Ĉo ⊂ H−
0 ,

we have just to prove that

G̃4 ∩H−1 = G4 × {−1} . (10)

In fact, for u ∈ Co, û ∈ Ĉo = Ĉo, we have

û ∈ G4 × {−1}
⇔ u ∈ G4

⇔ 〈x, u〉 = 0, ∀x ∈ G

⇔ 〈x̃, û〉 = 0, ∀x̃ ∈ G̃

⇔ û ∈ G̃4,

which proves (10). �

Corollary 2.3. Let C ⊂ Rn be a closed convex set containing the origin, let F be a face of
C and let SF be the minimal exposed face of C containing F. Then S4

F = F4, and θ /∈ SF if
and only if θ ∈ F4.

Proof. By Corollary 1.4,

ŜF

4
= F̂4. (11)

We shall discuss four possible cases.
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Case I: F4 is the set (4) and θ /∈ SF . By Theorem 2.2, part 1.B, F̂4 = F̂4, and taking into

account that SF is exposed and θ /∈ SF , the same result applies again, so that ŜF

4
= Ŝ4

F .

Recalling the identity (11) we obtain F̂4 = Ŝ4
F . Therefore F4 = S4

F .

Case II: If F4 is the set (4) and θ ∈ SF , again F̂4 = F̂4 and, using now Theorem 2.2, part

2.B, we get ŜF

4
= S̃4

F . Adding the equality (11) we would obtain F̂4 = S̃4
F which implies

F̂4 ⊂ H0, in contradiction with F4 ⊂ Co. Therefore Case II is impossible.

Case III: If F4 is the cone (5) and θ /∈ SF , by Theorem 2.2, part 1.B, ŜF

4
= Ŝ4

F and by

Theorem 2.2, part 2.B, F̂4 = F̃4. Appealing again to (11), Ŝ4
F = F̃4 so that Ŝ4

F ⊂ H0,
which is absurd. Therefore Case III is also impossible.

Case IV: F4 is the cone (5) and θ ∈ SF . By Theorem 2.2, part 2.B, ŜF

4
= S̃4

F and F̂4 = F̃4,

which together with (11) imply S̃4
F = F̃4. Hence S4

F = F4. �

Theorem 2.4. Let C ⊂ Rn be a closed convex set containing the origin, F ⊂ C, and
G ⊂ 0+C. The following statements hold:

1. F is an exposed face of C if and only if F = F44.

2. G̃ is an exposed face of Ĉ if and only if G = G44.

Proof. The reciprocal statements are consequences of Theorem 2.2.

1. Let F be an exposed face of C. By Lemma 1.3 we have

F̂ = F̂44. (12)

If θ /∈ F then θ /∈ F4, and by using Theorem 2.2, part 1.B, twice, we get

F̂44 = F̂4
4

= F̂44.

If θ ∈ F , by Theorem 2.2 (statements 2.B and 3.B), we obtain

F̂44 = F̃4
4

= F̂44.

In both cases F̂44 = F̂44. Combining this identity with (12) we have F̂ = F̂44, from
which we conclude F = F44.

2. Since G is a face of 0+C and G̃ is an exposed face of (the cone) Ĉ, Theorem 2.2 (parts
3.B and 2.B) yields

G̃ = G̃44 = Ĝ4
4

= G̃44,

and this entails G = G44. �

As a consequence of Theorems 2.2 and 2.4 it is easy to prove the next result on exposed faces
corresponding to a given closed convex set containing θ and its polar.
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Theorem 2.5. Let C ⊂ Rn be a closed convex set containing the origin. Let E (C) be the
set of all nonempty exposed faces of C not containing the origin, let E0 (C) be the set of all
exposed faces of C containing the origin (including the improper face C) and let E1 (C) be the
set of nonempty faces of 0+C (including 0+C) for which its horizon cone is an exposed face

of Ĉ. Analogously for Co, the three sets of exposed faces are E (Co), E0 (Co) and E1 (Co) .
Then the conjugacy of nonempty faces produces three isomorphisms,

4 : E (C) −→ E (Co) ,

4 : E0 (C) −→ E1 (Co) ,

4 : E1 (C) −→ E0 (Co) ,

all of them reverting the order given by the inclusion of faces.

3. Curvature index

We shall introduce the new concept of curvature index of a closed convex set C on a face F ,
which will allow us to establish the complementary dimensions relation between conjugate
faces on cones. Observe that D (C, x) (and so TSC (x)) is the same for all x ∈ ri F . We
denote this cone by D (C, F ).

Definition 3.1. The curvature index of a nonempty closed convex set C at x ∈ C is

cin (C, x) := dim TSC (x)− dim lin D (C, x) .

For F being a face of C, the curvature index of C on F is

cin (C, F ) := cin (C, x) ,

where x is an arbitrary element of ri F .
For G being a face of 0+C, the curvature index of C on G is

cin (C, G) := cin(Ĉ, G̃).

Observe that, since dim lin D (C, F ) = dim F , one has

cin (C, F ) = dim TSC (F )− dim F.

Figure 3 illustrates this definition. For example, cin (C1, p1) = 2 whereas cin (C2, p2) = 1.
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Figure 3

The curvature index of C on a face of the recession cone can only be seen on the cone Ĉ. In
fact, in Figure 4, cin (C, 3) = 1 and not 0, as one might suppose from just looking at 0+C.

In the rest of this section K denotes a given closed convex cone, for which the 4-operation
can be thought of in the classical way (recall 2).

Theorem 3.2. If G is a face of K ⊂ Rn, then

dim G + dim G4 + cin (K, G) = n.

Proof. Observing that D (K, G) = K + span G we get G4 = [D (K, G)]o, and applying
Corollary 14.6.1 in [12], one has

dim G4 = dim [cl D (K, G)]o

= n− dim lin cl D (K, G)

= n− dim TSK (G) ,

and because dim G = dim lin D (K, G),

dim G + dim G4 = dim lin D (K, G) + n− dim TSK (G)

= n− cin (K, G) ,

which is the aimed identity. �

For cones, the curvature index is invariant under conjugacy as the next corollary shows.

Corollary 3.3. If G is an exposed face of K ⊂ Rn then

cin (K, G) = cin
(
Ko, G4)

.

Proof. By Theorem 3.2, and noting that G = G44 because G is exposed, we have

cin (K, G) = n− dim G− dim G4

= n− dim G44 − dim G4

= cin
(
Ko, G4)

,

which ends the proof. �

Corollary 3.4. If G is a face of K ⊂ Rn, then

dim G + cin (K, G) = dim SG + cin (K, SG) ,

where SG is the minimal exposed face of K containing G.

Proof. By Theorem 3.2, and recalling that G4 = S4
G , one has

dim G + cin (K, G) = n− dim G4 = n− dim S4
G

= dim SG + cin (K,SG) ,

which proves the corollary. �
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4. Co-dimensions of conjugate faces

Now we extend the results on complementary dimensions and curvature index from cones to
general closed convex sets.

Lemma 4.1. Let F be a face of a closed convex set C ⊂ Rn. Then

cin (C, F ) = cin
(
Ĉ, F̂

)
.

Proof. Since dim F = dim lin D (C, F ) we have

cin (C, F ) = dim TSC (F )− dim F,

and

cin
(
Ĉ, F̂

)
= dim TSĈ

(
F̂

)
− dim F̂ .

If x ∈ ri F , one has x̂ ∈ ri F̂ ([12], Corollary 6.8.1), so that we only need to prove that

dim TSĈ (x̂) = dim TSC (x) + 1.

We will use now Lemma 1.5, taking into account that

cl
(
D̃ (C, x) + span {x̂}

)
= cl D̃ (C, x) + span {x̂} ,

because cl D̃ (C, x) ∩ span {x̂} is a linear subspace on Rn+1 ([12], Corollary 9.1.3). Then

TSĈ (x̂) = lin cl D
(
Ĉ, F̂

)
= lin cl

(
D̃ (C, x) + span {x̂}

)
= ˜lin TC (x) + span {x̂} .

Therefore

dim TSĈ (x̂) = dim
(

˜lin TC (x) + span {x̂}
)

= dim lin TC (x) + 1,

which is what we want to prove. �

The next result extends Theorems 1.1 and 3.2 on complementary dimensions of conjugate
exposed faces.

Theorem 4.2. Let C ⊂ Rn be a closed convex set containing the origin. Let F be a face of
C and let SF be the minimal exposed face of C containing F.
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1. If θ /∈ SF then:

dim F + dim F4 + cin (C, F ) = n− 1. (13)

2. If θ ∈ SF then:

dim F + dim F4 + cin (C, F ) = n. (14)

3. If G is a face of 0+C then

dim G + dim G4 + cin(C, G) = n. (15)

Proof. First note that dim F̂ = dim F + 1.

1. By using successively Lemma 4.1, Theorem 2.2 (part 1) and Theorem 3.2, we get

dim F + dim F4 + cin (C, F ) = (dim F̂ − 1) + (dim F̂4 − 1) + cin(Ĉ, F̂ )

= (dim F̂ + dim F̂4 + cin(Ĉ, F̂ ))− 2

= (n + 1)− 2.

2. By using successively Theorem 2.2 (part 2), Lemma 4.1 and Theorem 3.2, we obtain

dim F + dim F4 + cin (C, F ) = (dim F̂ − 1) + dim F̃4 + cin(Ĉ, F̂ )

= (dim F̂ + dim F̂4 + cin(Ĉ, F̂ ))− 1

= (n + 1)− 1.

3. By using successively Theorem 2.2 (part 3), Theorem 3.2 and Lemma 4.1, we have

dim G + dim G4 = dim G̃ + (dim Ĝ4 − 1)

= dim G̃ + dim G̃4 − 1

= (n + 1)− cin(Ĉ, G̃)− 1

= n− cin(C, G),

and the proof ends. �

Following [4], for a convex body C containing the origin as an interior point, we call a face
F such that

dim F + dim F4 = n− 1

a “perfect” face. Then we can conclude that a face F is perfect if and only if cin(C, F ) =
0. We can use cin(C, F ) = 0 as the definition of a perfect face, extending this notion to
general closed convex sets because the curvature index on a face does not depend neither on
the position of C with regard to the origin nor on the boundlessness of C. Recalling that
cin(C, F ) = dim TSC (F ) − dim F , we would say that a face F of C is perfect when the
dimensions of F and of its tangent space coincide.
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The polytopes and, in a more general way, the quasi-polyhedral sets (convex sets for which
its nonempty intersections with polytopes are polytopes), have all faces perfect. However,
there exist convex sets with all their faces being perfect which are not quasi-polyhedral. A
non quasi-polyhedral set satisfying this condition is: conv

({
(t, t2) ∈ R2 | t = 0, 1, 1

2
, 1

3
, . . .

}
∪

{(0, 1)}).
The next result shows that the curvature index of exposed faces is invariant under conjugacy.

Corollary 4.3. Let C ⊂ Rn be a closed convex set containing the origin. If F is an exposed
face of C then

cin (C, F ) = cin
(
Co, F4)

. (16)

If G is a face of 0+C such that G̃ is an exposed face of Ĉ, then

cin (C, G) = cin
(
Co, G4)

. (17)

Proof. First note that F = F44 (Theorem 2.4, part 1). We discuss two cases:

If θ /∈ F , then F4 is an exposed face of Co and θ /∈ F4. From (13) we get

cin (C, F ) = (n− 1)− dim F − dim F4

= (n− 1)− dim F44 − dim F4

= cin
(
Co, F4)

.

If θ ∈ F , then F4 is an exposed face of 0+ (Co). Successive applications of (14) and (15)
yield

cin (C, F ) = n− dim F − dim F4

= n− dim F44 − dim F4

= cin
(
Co, F4)

.

In both cases we conclude that (16) holds.

In order to prove (17), first note that G = G44 (Theorem 2.4, part 2). Applying successively
(15) and (14):

cin (C, G) = n− dim G− dim G4

= n− dim G44 − dim G4

= cin
(
Co, G4)

,

which proves (17). �

Corollary 4.4. Let C ⊂ Rn be a closed convex set containing the origin. Then the following
statements hold:

1. If F is a face of C and SF is the minimal exposed face of C containing F , then

dim F + cin (C, F ) = dim SF + cin (C, SF ) .

2. If G is a face of 0+C and SG is the minimal exposed face of Ĉ containing G̃, then

dim G + cin (C, G) = dim SG + cin (C, SG) .
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Proof. It is direct consequence of Theorem 4.2, repeating the same argument as in the proof
of Corollary 4.3, but using now F4 = S4

F (Corollary 2.3) and G4 = S4
G (by conjugacy on

cones). �

Finally we illustrate the usefulness of the tools developed along the paper by means of two
representative examples.

First, let us consider the closed convex set C ⊂ R2 in Figure 4. Since C has recession
directions and θ ∈ bd C, we must include the recession cones into the analysis. At exposed
points, as b and c, the curvature index is 1 (recall Definition 3.1) and, according to Theorem
4.2, these points are associated by conjugacy with exposed points of Co which have a curvature
index of 1 (Corollary 4.3). The face a is not exposed and, by Corollary 2.3, its behavior under
conjugacy depends on the minimal exposed face containing it, in this case the face 1. Since
the origin belongs to face 1 we have that 14

(
= a4

)
is an exposed face of 0+ (Co) with

dimension 1 and curvature index 0 (because cin (C, 1) = 0). By a straightforward application
of Definition 2.1 we infer that C4 ⊂ 0+ (Co) and C4 = {θ}, i.e., {θ} is an exposed face of

0+ (Co). According to Theorem 2.5, (0+ (Co))
4

is an exposed face of C containing the origin;

in fact, it is the minimal exposed face containing the origin, so that (0+ (Co))
4

is the face
1. This fact allows us to establish that 0+ (Co) is the halfline of nonnegative x′s. In order

to analyze the behavior of the faces on 0+C we need to look at the associated cone Ĉ, since
the curvature index on these faces can only be appreciated on this cone. Looking at Figure
4, it is clear that cin (C, 2) = 0 and cin (C, 3) = 1 from where we conclude that dim

(
24

)
= 1

and dim
(
34

)
= 0 according to Theorem 4.2. Moreover, from Definition 2.1, 24 and 34

are exposed faces of Co containing the origin. Trivially d4 = Co and (0+C)
4

= 34 = {θ}.
Concerning statement 3 in Lemma 1.3, observe from faces 3 and 3̃ that G being exposed face
of 0+C does not imply G̃ being exposed face of Ĉ.

Figure 4
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Now we calculate the polar body of the double cone C1 in Figure 5. For the sake of simplicity
θ ∈ int C1. The exposed points α and β in C1 correspond by conjugacy with 2-dimensional
faces of Co

1 (Theorem 4.2). Exposed points, as 1 and 2 in C1, are associated with 1-dimensional
faces of Co

1 , because the curvature index is 1 on these faces. On edges of C1, as a,b and c,
the curvature index is 1. Therefore their corresponding conjugate faces have dimension zero.

Figure 5
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