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Abstract. This paper is related to the question of A. G. Horvath [3]: How to find
a basis of any n-lattice in E" such that the maximal coordinate belonging to the
minima of this lattice are “small as possible”. We prove that in the 6-dimensional

case, in every lattice there exists a basis for which all the coordinates of the minima
are —1,0, 1.

Introduction

Let E* (0, V™ (R, ( , ))) be the Euclidean n-space with a distinguished origin 0, with the
n-vector space V™, over the real numbers R, of the translation of E™ and with the posi-
tive definite symmetric scalar product ( , ) : V* x V* — R (x,y) — (x,y). Let A =
{a1,...,a,} = {a;} be a basis of V" with the Gramian G := (a;;) := ((a;,a;)) that defines

n
> a;jviv; = VvIGyv.

1,j=1

also the length |v| of any vector v := " v;a; by |v| =
i=1

A Z-lattice to the basis A is defined as

AAZ) = [ay,...,a,] = {inaz-:xi €Z forany 1=1,2,... ,n}.

i=1
As usual, Z is the set of integer numbers. The minimum m(A) of the lattice A is defined by
m(A) € RY : m(A) = |m| < |v| for an m € A\ {0} =: A and for any v € A.
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We may assume (by similarity of E™) that m(A) = 1. The set of minimum vectors is called
minima of A and denoted by

M(A) :={m € A: |m| = m(A) =: 1}.

The maximal A-coordinate of the minima of A is defined by

L(A):= max{mi GZ:inai:m,mEM(A)} € N.

=1

Consider the minimum of these maximal A-coordinates of the minima of A by changing the

basis A in A, i.e. define
L(A) := min{L(A) € N: A is any basis ofA}.
Finally, vary the lattices A in E". Then
L, = L(E") := max {L(A) € N: A is any lattice of A € E"}

has to be determined as a “max-min-max-min problem”. The problem is solved for n < 5
in [3] where the unique existence and increasing of L,, by n are also discussed. Our result is
that Lg = 1, our conjecture is that L; = 1, too. However, A. G. Horvath conjectures that
Lg = 2, he has proved Lg > 1 by the famous lattice Fg in ES.

For the proof we need a clear strategy. In details: L,, > L(A) for any lattice A in E,
however there is a lattice Ag C E"™ for which L, = L(Ag). L(Ag) < L(A) for any basis A
in Ay, but there is a basis Ag C Ag for which L(Ay) = L(Ay). L(Ay) > z; for any x; where

Ay ={a;}, D wa; =-m € M(Ag), 1 = |m| and 1 < |l| for any 1 € Ay, but there is z; in a
i=1

> wipa; = my € M(Ag) for which L(Ag) = .
i=1
By Ryshkov’s observation to the Minkowski reduction of lattice bases, we may as-

sume that any lattice A C E™ considered has n independent minima of A. These min-
ima {a;,...,a,} span a sublattice A C A such that A is an admissible extension of A, i.e.
m(A) = m(A), the minimum does not decrease under the extension. Centering is also used
instead of extension, but we use the term extension in this paper, because a centering — in
the newer terminology of higher dimensional crystallography — keeps the symmetries of a
geometric crystal class (rational, i.e. Q-class) of the starting lattice. Our extension is not
related with such a symmetry assumption. The index of the admissible extension is defined
by the number ind (A/A) = v (A) /v (A), where v (A) is the volume of a basic parallelepiped
in the lattice A (see [3], [4], [5]). In other words the factor group A\ A is a finite Abelian
group of order p and this order is called the index of the extension. Thus, studying the
admissible extensions of lattices in E" (as by S. S. Ryshkov [9] and N. V. Zaharova-Novikova
[10] up to n < 8 ) and the basis changes of A, we shall solve our problem completely. Namely,
S. S. Ryshkov’s Theorem 10 from [9] guarantees these balanced bases. Moreover, Z. Major’s
concept of non-isomorphic lattice extension by finite Abelian groups makes a clearer situa-
tion for studying lattice bases with the optimally small maximal coordinate of all minimum
lattice vectors [6].
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1. The theorem and its proving strategy

Theorem 1. Lg is equal to one, i.e., speaking in the above sense, to every Euclidean 6-lattice
A there is a basis in which the mazimal coordinate of all the minimum vectors of A is equal
to 1, at most.

In a few words we sketch the strategy of the proof. In the following we suppose that A C E°
is a lattice possessing 6 independent minima according to the introduction. Let {a;,... ,ag}
be a basis of the sublattice A C A, where a; are minimum vectors of length 1. The lattice
A is an admissible extension of the lattice A. Consider the lattice A, for which ind (A/ /_\) is
maximal. The Gramian of the lattice A is denoted by G.

Ryshkov [9] has classified the admissible extensions for n = 6, too. There are three
admissible extensions with index 2, one with index 3 and one with index 4. The proof of the
theorem is divided into three statements according to these indices. In Statement 1 we shall
investigate the case in which the index of the admissible extension is four. Up to similarity
only one lattice has an admissible extension with index four. This easily follows from [9], but
we shall give a new proof for it by estimating the sum of the elements of the Gram matrix.
Such estimations will be useful in other cases, too. In this lattice the characteristic matrix,
i.e. the system of all different minima of the lattice, can be written easily. This matrix will be
denoted by [my,... ,m,]| (see [9], [3], [4]) where £m,, ... ,+m, are all different minima of
the lattice. Finally, changing the basis of the lattice all elements of the characteristic matrix
will be 0, —1, 41, respectively.

In Statement 2 we study lattice extensions with index three and, by estimating the sum
of the elements of the Gramian, we get very interesting conditions. In accordance with these
conditions, we order the lattices into two classes. In the first case, writing all possible minima
of each lattice of this class, we can change the basis of these lattices such that the coordinates
of all possible minima of these lattices are 0, —1,+1. In the second case, we prove that for
any lattice A in this class M (A) C M (Fg) holds, where M (A) denotes all the minima of A.
A. G. Horvéth proved the following

Theorem 2. [4] L(C,) = L(A,) = L(D,) = L(Es) = L(E7) = 1 and L(Es) = 2.

In this theorem the lattices C,,, A,,, D,,, g, E7, Eg are the famous special lattices with a lot
of minima (see [2], [4]). Using this statement and the properties of the lattice Eg, this case
will also be solved. In the proof we give a new construction of Eg, namely, as the special
extension of a lattice in the role of above A. This construction stresses the geometric and
symmetry properties of Fg. We remark that lattices with maximal symmetry in E° were
given by W. Plesken and M. Pohst [8]. In the proof we use that the lattice Es has maximal
minimum vectors and maximal symmetry.

In Statement 3 we examine admissible extensions with index two. The proof is divided
into three parts, according to the three admissible extensions of index two. The basic idea of
the proof is similar to that of [4]. In all the three cases we write all possible minima of every
lattice in £ and we prove that, with respect to a suitable basis of A, the coordinates of the
minima of are +1,0.
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2. The proof

Statement 1. Let A C ES and A C A be any lattice having 6 independent minima. If
ind (A/A) = 4, then with respect to a suitable basis of A, the coordinates of the minima of A
are £1,0, respectively.

Lemma 2.1. If ind (A/A) = 4, then the lattice A = [ay,... ,ag] is the 6-dimensional cube
lattice and the minima of lattice A can be written with respect to the basis {ai, ... ,ag} in the
characteristic matriz form:

[£1 0 0 0 0 0 #+f 0 =£5]
01 0 0 0 0 £5 0 =+
0 0£1 0 0 0 £5 +12 0
0 0 0=+1 0 0+ xL 0
0 0 0 041 0 0 45 +1
0 0 0 0 0 %1 0 £5 =£5
A basis of the lattice A is {my,as, a3, a,, a5, ms}, where my (%, %, %, %,O,O)T and

111 1\T
m; (0,0,3,3,3,3) -

Proof. We shall distinguish two main cases.
1. Suppose that the lattice A has two sublattices A‘fl C A and Ag2 C A, where any above

dimension d; < 6. Let A;lj - A;lj be such that the lattice A;lj is an admissible extension of

the lattice A;lj and ind (A;lj / A;lj > = 2. Then the dimension d; > 3 so we have the following
cases.

In the first subcase d; = dy = 4. The sublattices A] and A3 are the well-known four-
dimensional space-centered cubic lattices, see e.g. [9], and the 4-lattice [aj, as, a3, a4] =
A% © A% is the 4-dimensional cubic lattice. Thus m; = ta; + 2a, + za3 + ta, € A} If
a3, a4, 85,25] = A5 C A4, then my = lag + la, + las + lag € AL Thus m; — my| =
1. The lattice A spanned by {mj,as, a3, a4, a5, my} is an admissible extension of a 6-
dimensional cubic lattice with index 4. The intersection of the lattice A with the space

of sublattice A} = [a;,ay, a5, a] is also a 4-dimensional space-centered cubic lattice, since
T ..
%al + %8.2 + %“515 + %aG =m;+my—az—ay € A. Thus mj (%, %, 0,0, %, %) S Aé The minima

of the lattice can be expressed with respect to the basis {a;} like in the statement.

If [ag, a3, a4, a5 = A} C AL, then my = Las+lag+la,+1as € AL Then |m; —my| = 2
would lead to a contradiction.

Ifdy = 4,dy =5, thenmy (3,1, 2,1.0,0)" € Afandm, (0,1, 1,1, 1 )" € Ajhold in the

27197999 ) 9992599979
basis {a;}, hence |[m; — my| < 1. Analogously, if d; = dy = 5, then m; (%, %, %, %, %,O)T €A
and my (0,%,%,%,%,%)T € A5 hold in the basis {a;}, hence |m; — my| < 1. Both are

impossible.

2. Suppose that the lattice A has a sublattice A? C A and A? is an admissible extension of the
lattice A, It is well-known that there is no lattice A? for which d < 6 and ind <Ad / F) = 4.
(We can prove this by analogy with case d = 6.) Therefore, d = 6 and ind (A/A) = 4 hold
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for lattice A C A. Then there is a lattice vector m = }Lal + iag + ;11&3 + }134 + %185 + %36 e A.
Thus

lm> = m”Gm > 1
means
3 1
3 + 3 ;jaij > 1,

hence

Zaij Z 5.

i<j

On the other hand, clearly |m — a;|*> > 1 holds, where k =1,... ,6.

3 1
—gzalj-l-g Z a;; > 1,
j=2

ool

|1’Il — a1|2 =
1<i<j

, T 3¢ 1
/m — ag| :§_§Z@i6+§zaij21-
i=1

i<j<6

Summing up these inequalities, we get

21 1
Z - 1 - Q5 > 6,
1<)
hence
SRS
i<j
This is a contradiction. O

Proof of Statement 1. It follows from Lemma 2.1, that the characteristic matrix of the minima
of A can be expressed with respect to the basis {mj, e, €3, €4, €5, ms} in the following way:

[ €1 €2 €3 €4 €5 €g My ™mo
20 000 O 1 -1 1 1 1-1-1-1 0
-11.0 0 O O O 1-1 0 O O 1 1 0
-10 10 0-1 0 1 O0O-1 0 1 0 1 O
-10 01 0-1 0 1T O O-1 1 1 0 0
o o0 o0 o601-1r 0 O O O O o0 0 0 O

0 0000 2 0 0 0 0o 0 0 0 0 1
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ms i
o o0 o o o0 o0 o0 1-1 1 1 1 -1 -1 -1
o o o o o0 o0 o0 o 1-1 0 0 0 1 1
1 o o60-1 1 1 0-1 0-1 -1 0 O 1
1 o0-1r 0 1 0 1 -1 O0-1 -1 0 0 0 1
1 -r 060 o o0 1 1 0 O 0-1 1 0 -1 1
-1 1 1r-1-1-1 1 1 1 1 -1 1 1 —1]

Linear operation with the rows of the characteristic matrix is equivalent to a basis-change of
the lattice (see [3], [4]). Adding the second row to the first one and the fifth row to the last
one, we get that the elements of the characteristic matrix are 0,1, —1. Thus, in the suitable
basis, the minima of the lattice can be written with coordinates 0,1, —1.

Statement 2. Let A C ES and A C A be any lattice possessing 6 independent minima. If
ind (A/A) = 3, then with respect to a suitable basis of A, the coordinates of the minima of A
are £1,0, respectively.

In the following lemmas we investigate the properties of the 6-lattices with index 3. In Lemma
2.2 we estimate the sum of the elements of the Gram matrix. In Lemma 2.3 we describe the
vectors that can be the minima of the lattice. By the last two lemmas we order the 6-lattices
with index 3 into two types. Lattices of the first type do not contain a 4-dimensional space-
centered cubic lattice. Those of the other type have a 4-dimensional space-centered cubic
lattice.

Lemma 2.2. Let {ay,... ,ag} of ES be a basis of the lattice A and |a;| = 1 = |O—AZ| Let

ind (A//_X) be equal to 3. Consider the points B; (%, o ,%) with respect to the basis a;, then

OB;,0By € A. If G = (ai;) is the Gram matriz of a;, then we have:
S > ay < (1)
2 — LY 4

and the length of the segment A;Bs is equal to 1 (Fig. 1).
Proof. Let OBy =b, (3, . .. ,%)T. Clearly
by = blGb, > 1

holds. Thus

2 2
§Zaij+§217

1<j

> a; > g (2)

1<j
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Consider now the points Cy; with OCy; == a + a;, where 1 < k <1 < 6. |CyyBa|*> > 1 for
every pair of indices k,[. Since the extension is admissible we have:

2 6

|C1232| —5012—5226%—#5 Z aij+§ > 1.

i=1 j=3 2<i<y

4 6
— 8 4 2 4
|Cs6Ba|* = §a56 52 E aij + 9 Z a;; + 3 > 1.

Summing up the ( 9

6 ) = 15 inequalities |Cj;By|* > 1, we get the following:

4 4

i<j

Y ay < 4 (3)

1<J

The inequality (1) follows from (2) and (3).
Analogously, we have |AyBs|? > 1 for every k= 1,... 6.

‘ABQ‘2_1——ZG1J+ ZGUZl

1<z<]

|AGBQ|2_]—_éZa6J+ Z %21

z<]<6

Again, by summing up the above inequahtles we get

- - 4 2
‘A132‘2+"'+|A6BQ|2:6+<——'2+—'4>Zaij:626.

9 9 —

1<J
The equality holds if and only if |A;Bs|? = 1 for every k, as we stated. O
Corollary. The points A;, i = 1,...,6 and point By above lie in the same 5-dimensional

hyperplane. We will denote this hyperplane by Hy. Since |OB;| = |B1Bs| and |OA;] =
1 = |A;Bs|, the hyperplane Hy is perpendicular to the segment OBy. We denote by H; the
hyperplane orthogonal to the line OB; through B; (Fig. 1).
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a, P
a;
a;
b,
B B
\Hl 2 3 B, H,
Figure 1

Lemma 2.3. Let {ay,... ,ag} of E® be a basis of the lattice A, |a;| = 1 = |@—fﬁ| and consider
that ind (A/A) be equal to 3. Then the following vectors are the possible minima of the lattice
A: j:al-, :|:b2, + (ai — aj), + (ai — bg), + ((az + aj) — bg), + ((37, + a; + ak) — b2)7 where
i,7,k = 1,...,6 and 1,7,k are pairwise distinct indices, as above by 1is %(31 + as + az+
a, +as +ag) (Fig. 1).

Proof. Let m be a parallelepiped spanned by the vectors {as,... ,ag}. We show that the
minima of the lattice A can be represented by vectors corresponding to certain diagonals and
the edges of the parallelepiped 7. In fact, if a minimum vector m from the origin properly

intersects e.g. the facet of 7 parallel to that spanned by the vectors {aj,... ,as} of m, then
v (7") > v (m), where 7’ is the parallelepiped of {a;,... a5, m}. It would be ind (A/A’") > 3
for A’ = [ay,... ,a5,m]. This would be a contradiction.

We will prove that the length of some diagonals of the parallelepiped 7 is greater than 1.
So only other diagonals and edges can be the minima of the parallelepiped 7, i.e. the minima
of the lattice A. It can easily be seen that the other minimum vectors of the lattice A can
be +by, £ (a; — bs), £((a; +a;) — by), £ ((a; +a; +a;) — by), where ¢, 5,k =1,...,6 and
1,7,k are pairwise distinct indices.

We prove that |(a; +a;) — (ay +a;)| > 1, where 4,5, k,0l = 1,...,6 and 4,j,k,[ are
pairwise distinct indices. Let cjo = a; + ag, ¢34 = az + a4, c56 = a5 + ag. Clearly |cy| < 2.
As cip + €34 + C56 = O—B@> with ¢, = O—>C’kl, Cy € Hy and Hy L O—Bé, the vectors cj; can

be written in the following form: cg = cél + clll, where cjl = By(C}; € Hy and c}ll = OBs.

Consequently, ci; + c3; + ¢35 = 0, i.e. ¢35 = — (cf; + ¢33) therefore |c5g| = |cfy + ¢34 If we
suppose that |cjy — 34| = 1, then |cf; — ¢33 = 1. As |cjy| > 1, |e&| = |cf; + 33| > V/3, thus

inequality |cs| > 2 follows from ]c26| > 1. This is a contradiction, hence |c13 — c34] # 1 and

| (ai +a;) — (ax +ay) | > 1.

Finally, it can be seen that | (a; + a; + a;) — (a; + a,, +a,,) | > 1 where 4,5, k,l,m,n =
1,...,6 and 7,7, k,l,m,n are pairwise distinct indices. Denote a; + as + a3 by cj93 and
a4 +as+ag by C456- Suppose that Ci23 —C456| = 1. Since pOiIlt 0456 with 045636 — Cy456 is the
reflected image of 0123 with 00123 — C123 in the pOiIlt Bg, we have |Bz),0123’ = |B30456| = %
On the other hand,

1 1
|BQB3|2 = |OB1|2 = ‘bl|2 = b?Gbl = 1_8 Zazj + 6

1<j
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It follows from (3) that

1<)
Hence
—_ 1 15 1 3
BoBiP< — — 4+ - =2
BB < T57s I°
- 3
| By B3| < 3

Since By Bj is perpendicular to B3Claz, |BaClas| < \/g. This is impossible, because | BoCla3]
> 1. This proves Lemma 2.3.

Lemma 2.4. Consider the lattices A and A possessing 6 independent minima. Let {ay, ... ,
ag} of E® be a basis of A and |a;| = 1. Let ind (A/A) be equal to 3. If |P—B£| > 1 for every
P € Hj for which OP ¢ A, then the possible minima of lattice A can be found (in the basis
{a;} choosing an appropriate order of vectors {a;}) in the following blocks of coordinates:

a; az a3 a4 Qa5 Gag b2 my Mo M3 MMy M5 Mg
1 0 0 0 0 O % 1 0 0 0 0 -1
010000 3 -1 1 0 0 0 0
001000 0 -1 1 0 0 0
00 0 1 0 0 5 O 0 -1 1 0 0
000 0 1 0 5 0 0 0 -1 1 0
|00 00 0 1 5 0 0 0 0 -1 1
my My Mz Mig m27_
_2 1 2 _2 1
3 3 3 3 3
1 1 2 1 1
3 3 3 3 3
1 1 1 2 1
P A SR i
P A S 3
P B G 3
3 3 3 3 3

We remark that a special lattice A, in general, does not contain all types of the above
minimum vectors, however every type of minimum vectors of a lattice A can be found among
the above vectors.

Proof. Clearly, a; are minimum vectors, where i = 1,... ,6. If |OBy| = 1, then by is also a
minimum vector. First we prove that at most two elements a;; of a row of the Gramian G
can be equal to % Suppose that in the first row we have three % elements. By Lemma 2.2

—_— 4 2
|A1B2|2:1_§<a12+"'+a16)+§(a23+"'+a56>:17
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thus

2(a2+ -+ ai) = (g3 + - + ase) -

But we have (ajp+ -+ ag) > % by assumption, therefore (ags + -+ asg) > g and

(a12+ -+ +ase) > 5. This leads to a contradiction by the inequality (3) in Lemma 2.2.
Therefore, the matrix G can be written in the following form:

- " |-
1 5 Qi3 44 A15 5
51 3 am ax ax
1 1
G- | M3 3 I 5 ass age 4
_ T (4)
a4 Q24 3 5 Q46
1 1 1
ais Q25 G35 5 5
1 1 1
L 5 QG2 A3 Q46 3 i

(Indeed, if at most two elements a;; of a row of the matrix G are equal to % and G is not in
the above form (4), then it can easily be seen that we get the above form by changing the
order of vectors a;.) Thus a12 = ags = a34 = a4 = ass = a16 = %, therefore vectors a; — ao,
A9 — Az, Az — a4, A4 — A, Ay — aAg, Ag — A1 alc minima, too.

Secondly, by Lemma 2.2 |A;By| = 1 in this lattice A, thus m;, where i = 7,... 12 are
minimum vectors. If by the notation of Lemma 2.2 |C;;Bo| = 1 holds in a lattice A, then
vectors m;, where ¢ = 13, ... ,27 are also minima of the lattice A. From Lemma 2.3 and the
condition of |P—B; | > 1 it is clear that other minimum vectors do not exist in A. We have
verified the statement.

Lemma 2.5. Considering the lattices A and A possessing 6 independent minima, let {ay,...,
ag} of E° be a basis of A where |a;] = 1. Let ind (A/A) be equal to 3. If 3P for which
|PBy| =1, where P € Hy and OP € A, then M (A) C M (Eg).

Proof. Because |BQ_B3>| = |B3By,| and hyperplane Hj is perpendicular to By By, |PBs| =
|PBy| = 1. Let PB; = m; and BoP = my, respectively Al = [a;, as, a3, my], A}
[al,ag,ag,bg] /_X;l = [a4,a5,a6,m2] and A4 = [8_4,35,&6,b2]. If P = a + as + as, then
a;+as+as+m; = %(a1+--~+aﬁ) =2by and a4 + a5 +ag+my = %(al + -+ ag) = 2bs.
Hence ind (A}/A}) = 2, where i = 1,2, namely lattices A{ and Aj are the well-known space-
centered cubic lattices. Therefore the scalar products of vectors are: (by,a;) = (by,as) =
(by,a3) = (bo,my) = 1, (ay,ay) = (a;,a3) = (a;, my) = (ay,a3) = (ay, my) = (ag,m;) =0,

resp. (bs,ay) = (by,a5) = (by,a5) = (by,my) = 3, (as,a5) = (as,a5) = (as, my) =
(a5, ag) = (a5, my) = (ag, my) = 0, (bg, be) = 1. Multiplied the equalities a; +as+az+m; =
2by and a4 + a5 + ag + my = 2by consequently by m;, my, ay, ... , a5, we get the following

form of the Gram matrix:

a14 da1s Aig

A24 QA25 A6
. a34 Aazs Q36

G =

14 Q24 Q34 1 O O

ais azs ass 0 1 0

Q16 Q26 Q36 O 0 ].

o O =
O = O
— o O
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where the following equalities hold:

a14 + a15 + a1 =
Q24 + Q25 + Q26 =
Q34 + a5 + A36 =
Q14 + Qo4 + Q34 =
Q15 + Qg5 + ags =

_ 1
Q16 + Q26 + A36 = 3 -

N NI N NI N =
—
ot
N—

It can easily be seen that the minimum vectors are in the lattice A: +a;, +(a; — by),
where ¢ = 1, ce 76, :tbg, j:ml, :tm27 + (a1 + ag — bg), + (a1 +as — bg), + (ag +ag — bg),
+ (a4 + a5 — by), = (ay + ag — by), & (a5 + ag — by). Thus, if there exists OP € A such that
]P_BQ)] = 1 and P € Hj, then lattice A has these minimum vectors. Denote the set of these
minimum vectors by M(A), as before.

Let m3 = a; + ay + a; — by and my = a3 + a5 + ag — by, resp. A = [a3, a5, ag, m3),
Ag = [33785,36,1)2], Aﬁ = [31,82,8471’114] and Ai = [31,32,84,b2]. If |m3| = ]m4| = 17
then ind (A}/A}) = 2, where ¢ = 3,4, namely lattices Aj and A} are the well-known space-
centered cubic lattices, too. So a4 = agq = ags = age = 0 and by (5) we get that asy = %,
ie. |ag —ay| = 1. Therefore the new minimum vectors are: +mj, +my, + (az—ay),
+ (a1 + a4 — bg), + (ag + a4 — bg), + (a3 +as — bg), + (a3 +ag — bg)

Let ms = a; + ag + a5 — by and mg = ay + a, + ag — by, resp. A = [ay, a4, a5, ms),
Aé = [82734736,12)2], Aé = [31,33735,m6] and Ag = [81733,35,132]. If |m5| = |m6| = ]_, then
ind (A;1 //_\f) = 2, where i = 5,6, namely lattices A and A} are the space-centered cubic
4-lattices, too. Hence aj5 = ags = 0 and by (5) we get ag; = % and finally a4 = %, ie.
lag — as| = 1 and |a; — ag| = 1. We remark that |m;| = |mg| = 1 and A} and Aj are the
space-centered cubic 4-lattices, too, where m; = a; + a4 + a5 — by, mg = ay + as + ag — by
and A} = [ay, a3, ag, ba], A} = [a;, a4, a5, bs]. In this case the minimum vectors are: 4+msj,
+mg, +m;, tmg, +(as — a;), = (a; — ag), = (a; + a5 — by), = (as + ag — by). This lattice
has 72 minimum vectors, therefore this is the lattice Fjg.

Suppose that the vector m is a minimum of the lattice A, but not a minimum of the
lattice E. So by Lemma 2.3 the vector m can be from among the vectors a;—a; or a;,+a; —b,
or a; + a; +a; — be. On the other hand, by the assumption of the lemma we can prove that
minima of A belong to the above set of minima of Eg. For example, if the minimum vector
of A is of the from m = a; +a; +a; — by, where ¢, j,k = 1,... ,6, then we get m = m; or we
have this form by changing the order of the vectors a;. If m = a; +a; — by or m = a; — a;,
then it can be seen that by changing the order of the vectors a; we get the above minimum
vectors. It follows from (5) that there is no other minimum vector. The lemma has been

proved.

Proof of Statement 2. If ind (A//_\) is equal to 3 and |PBs| > 1 for every P € Hj, OP A,
then it follows from Lemma 2.4 that the possible minima of the lattice can be written with



162 A. Végh: The Maximum of the Smallest Maximal Coordinate of ...

respect to the basis aj, as, az, a4, as, by in the following form:

€1 ey €3 €4 e5 € by my Mg m3 my Mms Mg My Mg Mg My
1 0 0 0 0 -1 0 1 0 0 0 1 -2 -1 0 0 0
0o 1.0 0 0 -1 0 -1 1 0 0 1 -1 0 -1 0 0
O 0o 1 0 0 -1 0 0 —1 1 0 1 -1 0 0 —1 0
O 0 0 1 0 -1 0 0 0 —1 1 1 -1 0 0 0 -1
O 0 0 0 1 -1 O 0 0 0 —1 2 -1 0 0 0 0
L O 0 0 0 O 3 1 0 0 0 0 -3 3 0 1 1 1
0 1 -1 -1 -1 -1 0 0 0 0 1 0 0 1 0 1 1
0 1 -1 0 0 0 1 -1 -1 -1 0 0 0 1 0 1 1
0 1 0 -1 0 0 1 -1 0 0 1 -1 -1 0 0 1 1
0 1 0 0 —1 0 1 0 —1 0 1 -1 0 1 -1 0 1
—1 1 0 0 0 -1 1 0 0 —1 1 0 —1 1 -1 1 0
1 -2 1 1 1 1 -2 1 1 1 -2 1 1 -2 1 -2 =2 |

Adding the third and fourth rows to the last row and subtracting the third row from the first
and fifth one, the elements of the characteristic matrix are 0,1, —1. Thus the coordinates of
the minima of the lattice are 0,1, —1 in this basis.

If there exists OP € A such that |[PB,| = 1 and P € Hg, then it follows from Lemma 2.5
that M (A) € M (Es), moreover, by Theorem 3 the minima of the lattice Eg can be written
with 0,1, —1 coordinates in a suitable basis. We have verified the statement.

Statement 3. Let A C ES and A C A be any lattice possessing 6 independent minima. If
ind (A/A) = 2, then with respect to a suitable basis of A the coordinates of the minima of A
are £1,0, respectively.

Proof. Tn the paper of A. G. Horvéth [3] we can see a construction of a basis A = {ay, ... ,a,}
of an n-lattice for the minimum parallelepiped 7 (my, ... ,m,) with minimal volume which
n
has the property that the edge vectors m; = ) vj;a; with coordinates vj; satisfy the following
i=1

inequalities:

(i) v;; >0, j=1,...,n v; =0 for 1<j<i<n
(11) Ogvji<vjj for 1§z<]§n

With respect to this basis each of the minima can be expressed in the form

n n n
m; = Z i jm; = Z (Z aljvﬂ) a;, wherel <I[<o.
j=1

i=1 \ j=i

Then the coordinates of the minimum vectors are:

n
my; = Zaljvﬁ. (6)
j=t
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Let now be n = 6. We distinguish three cases.

3.1. If the lattice A does not have a sublattice A? (d < 6) with index 2, then the characteristic
matrix can be started in the following way:

100 001

01 0001

001001

000101

000O0T11

|00 000 2 ]
There stand v1; = - -+ = vs5 = vg; = 1 if 1 <17 <6, ve6 = 2 and the other v;; = 0 in equation
(6). Therefore
my = qy; + Qg mer = 204g.

Assume that mg > 0.

First we investigate that mg = 2 hence ayg = 1. Because |ay;| < 1, hold m; = 0,1, 2,
where ¢ = 1,...,5. If there is a zero among m;, for example my; = 0, then the vectors
ms, m3, My, ms, My form a minimum system with index 2. This is a contradiction. If there
is a 2 among my;, where i = 1,...,5, for example m;; = 2, then the sublattice A®> spanned
by as, as, a4, as, a; + ag determines the minimum parallelepiped 7 (msy, m3, my, ms, m;) with
volume 2. This case leads also to a contradiction. Hence if mg = 2, then m; = 1, where
1=1,...,5, namely m; = mg.

Secondly, we assume mg = 1 and qqg = %, then the coordinates my;, where ¢ = 1,... 5,
are equal to zero or one. Denote the matrix of these minimum vectors by A.
Finally, if mg; = 0, then the coordinates m;;, where ¢t = 1,... ,5, are —1,0,1. Let matrix

A’ contain these minimum vectors.
Thus the characteristic matrix can be written in the following block form:

100001
010001
001001 Alla
000101
000011
loooo0o02 || || |

Subtracting the first row from the last one, it can easily be seen that every element of the
characteristic matrix is —1,0, 1, so coordinates of the minima of the lattice are also —1,0,1
in a suitable basis.

3.2. If the lattice A has a sublattice A% with index 2, then the characteristic matrix can be



164 A. Végh: The Maximum of the Smallest Maximal Coordinate of ...

written in the following blocks:

1000 10

010010 B
001010 A A
000110

000020 0 ... 0|1 ... 1 C
lo0oo0001 [0 ..0/|0 .. 0|1 .. 1]

where elements of the matrix A are —1,0,1 and elements of A" are 0,1 (see [3]). Matrix
B has four rows and C' is a one-row vector. If an element of C' is equal to 2 resp. —2,
then C' does not have any negative resp. positive coordinate. In fact, for example if m; =
(mh‘, Mog, T3;, My, 2, 1)T and m; = (mlj, Magj, M35, M4j, —1, 1>T, then

det
My; My,

2 -1
1 1

OO OO O
OO OO = O
S OO~ OO
OO = O OO

5

3

<

If an element of C is equal to 2 resp. —2, then subtracting the last row from, resp. adding the
last row to the row containing C, elements of C' become —1,0, 1. Therefore, we may assume
that the elements of C' are —1,0, 1. Let m = [z, x9, 3, T4, T5, 1] be a minimum vector, where
coordinates 1, To, 3, x4 are elements of a column of B and x5 is equal to —1,0,1. Thus the
volume of the parallelepiped 7 = 7 (m, my, m3, my4, ms, mg) is of maximum two. Suppose
that B has such an element (for example x;) whose absolute value is greater then one. Hence

T
T2
I3
Ty
Ts

1

v (m) = |det | = 221 — 5] > 2,

SO OO = O
[N eNait e N
OO~ O OO
O N == =
_ o O O oo

this is a contradiction. For this reason the elements of B are —1,0,1. Thus every element
of the characteristic matrix is —1,0, 1 except of ms5 = 2. The elements of the matrix A are
—1,0,1 and the elements of A" are 0,1. Subtracting the first row from the fifth one, we get
that the characteristic matrix has elements —1,0, 1 except if x5 = —x; = £1. In this case

v(m) =221 — x5] = |321| =3 > 2.

However, this case leads to a contradiction.

3.3. If the lattice A has a sublattice A* with index 2 (this sublattice is a 4-dimensional
space-centered cubic lattice), then the characteristic matrix can be written in the following
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blocks:

1 00 0100010O0O0T1T11]
01 00100O0O0O1TO01O0T11
001 01000O0O0O0O0I1TT1TT1TOQO0OA1
000120011111 111
0 000O0O1O0O0OO0OO0OOODODOO0OOQO

00 000010O0O0O0OO0O0O0O0,

A C E

B D F
1 ... 1 0O ... 0 1 ... 1
0 ... 0|1 ... 1)1 ... 1]

where A, C', E have three rows and B, D, F' are one-row vectors.

If an element of B, D or F is equal to 2 resp. —2, then B and F, D and F or
F, B and D do not have any negative resp. positive coordinates. In fact, for example
if m; (mh-, mMog, M3;, 27 1, O)T and m;j (mlj, maj, M3j, —1, 1, O)T, my (mlk, mop., M3k, —1, 1, ].)T7
then

1 0 0 0 miy; My 1 0 0O my; Mk

01 00 ™mo; mgj 01 00 mo; Mo

0010 mz; M3j . 0010 msz; M3k .
etlgoo0o0 2 1|7 0000 2 —1|737%

00 0O 1 1 0 00O 1 1

(0001 0 0] 0001 0 1

The proof is analogous if an element of D or F' is equal to 2 resp. —2.
From this it follows that if an element of B is equal to 2 resp. —2 and an element of D
is equal to —2 resp. 2, then F has 0 elements.

If an element of B and D is also equal to 2 resp. —2, then elements of F' are 2 resp. —2. For ex-
T T T
amplev let m; (m1i7m2i7m3ia27170) ) mj (mljam2j7m3ja27071) , Mg (m1k7m2k7m3k7‘r71a]—) .

my; M1y Mig
Ma; Moy Mok
mg; Mg; M3k
2 2 T
1 0 1
0 1 1

det =|—-4+z <2

SO OO O
[l olNeoll ™)
SO o= OO

This inequality holds for x = 2. So every element of F' is equal to 2.
We distinguish the following cases:

If B, D, F' do not have an element —2. Suppose that B has an element 2, but D does not
have an element 2. Then every element of F'is 0, 1,2. Then subtracting the fifth row from the
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fourth row, we get that elements of B, D, F' are —1,0,1. Analogously, if D has an element
2 but D does not have an element 2, then subtracting the sixth row from the fourth row, we
get that elements of B, D, F' are —1,0,1. If F' has an element 2, but B and D do not have
an element 2, then each element of B and D is 0,1. By subtracting the fifth row from the
fourth row, we get that elements of B, D, ' are —1,0,1. If B, D have an element 2, then
every element of F'is 2 and elements of B, D are positive or zero. Subtracting the fifth and
the sixth rows from the fourth row, the elements of B, D, F' are —1,0, 1.

If B, D, F' do not have an element 2, then the proof is analogous.

Suppose that there is 2 and —2 among the elements of B, D, F. If F' has an element
2, then coordinates B and D are positive or zero. Therefore B has an element 2, D has an
element —2, so every element of F' is 0. Subtracting the fifth row from the fourth row and
adding the last row to the fourth row, every element of B, D, F' becomes —1,0,1. If an
element of B is —2 and an element of D is 2, then the proof is analogous.
Let either m; = [z, 2o, x3, 24,1,0]" or m; = [y, T2, T3, 24, 0, 1" or my, = [&y, 29, 23, w4, 1,1]"
be a minimum vector, whose coordinates x1, x2, x3 are elements of a column of A or C' or E
and x4 is equal to —1,0, 1. Suppose that A or C' or F has such an element (for example )
whose absolute value is greater than one. Hence

2 00100 2 00100
2 10100 2 10100
5 01100/, 5 01100/,
det | 002 00 |lTHt L 002007
100010 000010
L 00000 1] 10000 1]
T2, 001007
2 1 0100
B v 01100, o
= |det 0020 0 | = 221 — 24| > 2.
100010
| 10000 1|

Thus the elements of A, C' and E are equal to —1,0,1. Because of myy = 2, subtracting
the first row from the fourth row, we get that the characteristic matrix has elements —1,0, 1
except if x4y = —x1 = 1. In this case

|21 — 4| = [321| = 3 > 2.

However, this case leads to a contradiction. We have verified the statement. Our Theorem 1
is completely proved.
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