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Abstract. We study the classical invariant theory of the Bézoutiant
R(A, B) of a pair of binary forms A, B. It is shown that R(A, B) admits
a Taylor expansion whose coefficients are (essentially) the odd transvec-
tants (A, B)g,11; moreover R(A, B) is entirely determined by the first
two terms M = (A, B);,N = (A, B);. Using the Pliicker relations,
we give equivariant formulae which express the higher transvectants
(A, B)s, (A, B)7 in terms of M, N. We also describe a ‘generic reduc-
tion formula’ which recovers B from R(A, B) and A.
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1. Introduction

We begin by recalling the construction of the Bézoutiant of two binary forms. Let
x = (2o, 1),y = (Y0, y1) be pairs of variables, and write w = xoy; — 1 yo. If A, B
are (homogeneous) forms of order d in x, then their Bézoutiant is defined to be

R(A, B) = — [A(zo, v1) B(yo, y1) — B(xo, 1) A(yo, y1)]-

&l

Since R is symmetric in x and y of order (d — 1) in each, it can be seen as a
quadratic form over the vector space of binary forms of order (d — 1).
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If V' = Span {z, x;}, then the construction of R corresponds to the isomor-
phism of SL(V')-representations

A?Sym? V 5 Sym?(Sym® V), AA B — R(A, B).
It is easy to see that
R(aA+BB,yA+§B) = (ad—3v)R(A, B),

i.e., up to a scalar, R depends only on the pencil spanned by A, B (denoted 114 p).
Conversely, R determines the pair (A, B) up to a unimodular transformation.
Bézoutiants have been principally studied for their use in elimination theory
(e.g., see [8] or [11, vol. I, §136 ft]). In contradistinction, our interest lies in their
invariant theoretic properties (understood in the sense of Grace and Young [5]).

1.1. A summary of results

In Section 2, we recall some fundamental facts about transvectants. We will show
that R(A, B) admits a ‘Taylor series’ in w as follows:

R(A,B) =coTf +c1 TP + o TP + -+
where
o Ty.11 denotes the (2r + 1)-th transvectant of A, B,
o p denotes the operation of symmetric polarization, and

o ¢, are rational constants dependent on d and r.

Hence, from our viewpoint, a study of R(A, B) will be tantamount to a study of
the odd transvectants {7541 : 7 > 0} of A and B.

In Section 3, we formulate a second order differential equation derived from 717, T5
whose solution space is II4 p. This shows that the terms of degree < 2 in the
Taylor series implicitly determine those of higher degree. The former cannot be
chosen arbitrarily, and we give an algebraic characterization of terms which can

so appear. Specifically, we construct a set of joint covariants ®q,..., P, with
arguments M, N, with the following property: There exist A, B such that M =
(A, B)1, N = (A, B)s, if and only if Do(M,N) =--- = dy4(M,N) = 0.

We have remarked earlier that R determines II4 5. Hence, given A and R, the
form B is determined up to an additive multiple of A. In Section 4, we give an
equivariant formula for B in terms of A and R. This is called a ‘generic reduction
formula’; in analogy with a device introduced by D’Alembert in the theory of
differential equations.

In Section 5, we use the classical Pliicker relations to describe formulae which
calculate Ty, T from a knowledge of T} and T3. The question of a formula in the
general case of Ty, 1, (r > 4) is left open. Three more open problems (with some
supporting examples) are given in Section 6.
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an invitation to the University of British Columbia, where this work was done.
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2. Preliminaries

We will heavily use [5] as a standard reference for classical invariant theory.
Glenn’s treatise [2]| covers substantially the same ground. In particular, we as-
sume some familiarity with transvectants, covariants, and the symbolic calculus.
A more recent exposition of this material is given in [12]. Basic facts about the
representation theory of SLs can be found in [1, 15, 16].

The base field is throughout C. A form will always mean a homogeneous
polynomial in x. By contrast, an xy-form will involve both sets of variables, and
will be homogeneous in each set. The x-degree of a form will be called its order
(to avoid conflict with [5]). The order of an xy-form is a pair of integers.

Sometimes we will let k denote a nonzero constant which need not be precisely
specified.

2.1. SL,-modules

Let V' be a C-vector space of dimension two with the natural action of SL(V).
We write S, for the symmetric power representation Sym®V, and S.(Sf) for
Sym®(Sym/ V) etc.

The {S. : e > 0} are a complete set of finite dimensional irreducible SL(V)-
modules. By complete reducibility, each finite dimensional SL(V)-module is iso-
morphic to a direct sum of the S,. If {zo, z1} is a basis of V, then an element of
S, is a form of order e in x. We identify the projective space P¢ with PS,, and
write A € P¢ for the point represented by a (nonzero) form A. By convention,
Se=0if e <0.

2.2. Transvectants

For integers e, f > 0, we have a decomposition of SL(V)-modules

min{e,f}
Se ®Sf = @ Se+f—2r' (1>

r=0

If F, F are forms of orders e, f, the image of the projection of £ ® F' into the
r-th summand is called their r-th transvectant, denoted (E, F'),. It is a form of
order e + f — 2r, whose coefficients are linear in the coefficients of £ and F. In
coordinates, it is given by the formula

(B, F), (e —r)I(f—r)! Z (_1)1'(7’) 0"E o'F 2)

elf! pa i) Oxf 0t O Ox]

(The initial scaling factor is conventional, some authors choose it differently.) In
particular (E, F)o = E'F, and (F, F'); = k x Jacobian(F, F'). Note that

(E’ F)r = (_I)T(Fv E)Ta (3)
(E,F), = 0 for r > min{e, f}. (4)
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If E, F have the same order, then
<&E+6F77E+5F)2r+1:(045_ﬁ7)(E7F)2T+17 (5)

for arbitrary constants «, 3,7, d. This shows that the odd transvectants (£, F')g 11
are combinants of E, I, i.e., up to a scalar, they depend only on the pencil spanned
by E, F.

If E, F are given symbolically, then [5, §49] gives an algorithm for calculating
their transvectants. See Proposition 3.2 for a typical instance of its use.

The following lemma is elementary (see [3, Lemma 2.2]).

Lemma 2.1. If E, F are nonzero forms of order e such that (E,F); = 0, then
E=kF. O

2.3.

Each representation S, is self-dual, i.e., we have an isomorphism
Se — S: = HOHISL(V)(Se, C)
This map sends an order e form E to the functional

6p:S. — C, F—(E,F)..

2.4. The Gordan series

Given three forms E, F, G, this very useful series describes certain linear depen-
dency relations between transvectants of the type ((E, F'),, G). and ((E, G),, F)s.

Let E, F,G be of orders e, f, g respectively, and aq, as, a3 three integers satis-
fying the following conditions:

o aztaz<e ar+az<f, a+a<g, and
o either a; = 0 or as + ag = e (or both).

Then we have an identity

—a1— a3>( 2

€+f 2a3 Zit1 E F a3+lvG)a1+a2—i

e+g— 2a2 i+1

)
= ( )
- (_1)‘11 Z Eg S 2)( 3 E G a2+17 )a1+a3—i'

E F G
This identity is usually denoted e f g
a; ag as
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2.5. The Clebsch-Gordan series
Let y Ox denote the polarization operator

0

+ i oz,

Yo7~ oo
If F is a form of order e, then define its m-th polar to be

— |
Emzﬁiﬁiwme
which is an xy-form of order (e — m,m). By Euler’s theorem, we can recover £
from E{ by the substitution y := x. If e is even, we will denote E‘¢/? by E¥.
It is symmetric in x,y, and naturally thought of as an element of Sy(S./2).
The Clebsch-Gordan series is a more precise statement of decomposition (1).
For forms F, F' of orders e, f, it gives an identity

:mm{e,f}m (f=r).
FOOFW) = Y ety o (5P )

r

Remark 2.2. The notional distinction between the Gordan series and Clebsch-
Gordan series is merely for convenience of reference, and has no historical basis.
In fact (7) directly leads to (6) (see [5, §52]).

Now let U € 55(Sq—1). We identify U with an xy-form of order (d — 1,d — 1)
which is symmetric in both sets of variables. It can then be expressed as a ‘Taylor
series’ in w. Define constants

2
c. = 2 (27‘(11)
T _
(22Ci'+21r)

Proposition 2.3. There exists a unique sequence of forms

for 0 <r < L%J (8)

U. - (Ul,Ug,...,UQTJrl,...),

where ord Ug, 1 = 2(d — 2r — 1), such that

U= Z Crw U2r+1

r>0

Proof. First we prove the existence. Since U is symmetric in x and y, it is a linear
combination of expressions of the form

. _ood-1—i i ,d—1—j5 34 d—1—j d—1—i i
(ij) =25 ""T1 Y Y1+ ol ya iy
o d-1—i d—1—j_j
Let A=af '"'2i, B=1xy  ’2}, so

(ij) = A(x)B(y) + B(x)A(y).
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Rewrite the right-hand side as a sum of two Clebsch-Gordan series. By property
(3), only the even powers of w will survive. This shows the existence claim for
(ij), and hence in general by linearity.

Conversely, let U,, U, be two such sequences for . By the substitution y := x,
we deduce U; = U;. Now divide U — U; by w? and again let y := x etc., then we
successively see that Uy = Uj, . for all r. g

Henceforth, A, B will always denote linearly independent forms of order d. We
will write

T,:=(A,B);, 4p:=Span{A, B} CS,. 9)
Proposition 2.4. With notation as above,
R(A, B) = Z Cr (,UQT (T2T+1)p. (10)
r>0

Proof. Express A(x)B(y) and B(x)A(y) as Gordan series and subtract. By prop-
erty (3), only the odd powers of w will survive. Now divide by w, then they all
become even powers. O

It follows that the collection {7541 : 7 > 0} determines R(A, B). It will be shown
below that the terms r = 0,1 are already sufficient.

3. The Wronskian o.d.e.

3.1. Generalities on Wronskians

Given integers p, ¢ with ¢ < p+1, there is an isomorphism of SL(V')-modules (see

1, §11) )
NSy — Sq(Sp—g+1)- (11)

Composing it with the natural surjection
Sq(Sp-g+1) = Sy(p-g+1), (12)
we get the Wronskian map
© 1 NS — Sg(p—q+1)-

If Fy,..., F, are order p forms, then their Wronskian ©(F; A --- A F,) is given by
the ¢ x ¢ determinant

911,

W fOI'lSZ,]Sq.

The crucial property of the construction is that © is nonzero on decomposable
tensors, i.e., O(F1A---ANF,) =0 <= Fi\---ANF, =0 <= the F; are linearly
dependent.
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3.2.
Now let A, B, F' be of order d, with Wronskian

Axg Awoxl Ax%
W=O(AABAF)=|Bp B Bo
Fp Fuw Fi

We will evaluate W symbolically. Let us write
A=al, B=p! F=fd (13)

As usual, «, stands for the symbolic linear form apxo+ a1z, and (a 3) for ag £y —
Qaq ﬁo etc.

Lemma 3.1. With notation as above,

W= @A) ()l B "

Proof. Differentiating (13), we get expressions such as
Agoz, = d(d —1) a% % agay.

Substitute these into W and factor out a2 322 f4=2. We are left with a Van-
dermonde determinant which evaluates to (a 3)(« f)(5 f). O

Now we will rewrite W in terms of transvectants.

Proposition 3.2. With notation as in (9), we have an identity

1 d—2
(dZ—d)3W_(T1’F)2_4d—6

15 F.

Proof. Symbolically, the transvectants can be written as
L= (af)a; B Ty=(af)al s

First we calculate the transvectant (77, F'), using the algorithm given in (see [5,
§49]):

o Calculate the second polar 77. It is equal to

—(2d_4)! 2T = 1 d—3 nd—3
(2d— 2)' (yax> I = (Qd_ 2)(2d— 3) (Oéﬁ) Q, ﬁx X

{(d=1)(d-2)a; 8y +2(d - 1)* a, By o B, + (d = 1)(d — 2) B} o}

o Make substitutions o, = (a f),3, := (3 f), and multiply by f22. The
result is

~ L2 () 0B < () o

2d — 2 -
T (@) f) axfe + (a f)" Bz}

(Th, F)2
(15)
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We would like to compare (14) and (15), so we will rewrite both of them in terms
of standard monomials (see [16, Ch. 3]). Order the variables as a < # < f < x.
The monomial (3 f) «, is nonstandard, so use the Pliicker syzygy to rewrite it as

(Bf) aw = (a f) Pz — () fa-

Substitute this into the right hand sides of (14) and (15). Subtracting the two
expressions, we get

1 d—2

d—2
(dQ—d)3W24d—6(

4d — 6

(11, F)g — aB)?al Bl pd = T3 F.

This completes the proof. Il

3.3.

If M, N are forms of orders 2d — 2, 2d — 6 respectively, then we define

d—2
4d — 6

Yyun(F) = (M,F)y — NF. (16)

We are interested in the differential equation

Yun(F) =0, (17)

which we may call the Wronskian (second order) ordinary differential equation
with parameters M, N. (It is always assumed that M # 0, otherwise the equation
is of no interest.) The following corollary is immediate.

Corollary 3.3. If F is of order d, then F € 14 g iff Y7, ,(F) = 0.
Proof. Indeed, ¥r, 1,(F) = 0 iff A, B, F' are linearly dependent. O

Hence, given 17, T3, the pair {A, B} is determined up to a unimodular transfor-
mation (cf. (5)). It follows that 77, T3 together determine all the Ty, 1.

Proposition 3.4. Let M, N be of orders 2d — 2,2d — 6. Assume that (17) has
two linearly independent solutions A, B of order d. Then there exists a nonzero
constant \ such that M = ATy, N = \T13.

Proof. Multiply the identities ¥y n(A) = 0,9y n(B) = 0 by B, A respectively
and subtract, this gives B (M, A)y = A (M, B)s. Now the Gordan series

A M B B M A
d 2d—2 d |, d 2d—2 d
0o 0 2 0o 0 2

respectively give identities

(A, M)y B = (AB, M), + (A, B)1, M), + 4%2(/1, B)s M

(B,M)s A = (BA M)y + (B, A, M)y + 7 (B, A)s M.
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Subtracting and using property (3) for A, B, we get ((A, B);,M); = 0. Now
(A, B); # 0 since A, B are independent, but then Lemma 2.1 implies that M =
A (A, B); for some A. Finally

d—2 d—2
e VA= (M, A)y = A (T3, A)y = A

hence N = A\ T3. ]

TS A7

3.4.

We have shown that the following conditions are equivalent for the pair (M, N).
(i) There exist A, B such that M = (A, B);, N = (A, B)s.
(ii) There exist A, B such that
R(A, B) = co MP + c; w* N + O(w?).
(ii) The dimension of the kernel of the map ¥ n : Sq — Ss4—6 is two. (Since
we have a second order o.d.e., it can never exceed two in any case.)
We can now construct the covariants @, as in the introduction. Clearly (iii) is
equivalent to the condition that the map
Aarn : A%Sg — A(S3a-6)
be zero. Identify A%Sy; with Sy via (11). Let f; denote the image of A%y, n via
the isomorphism
Homs 1) (Sa, AS34-6) ~ Homgr 1) (C, AS3q-6 @ Sa).

Consider the composite morphism

c - A?S34-6 ® Sg ELN Sa(S2d-5) ® Sq ELN Sa2d—5) @ Sq,

where fy comes from the isomorphism (11), and f3 from the natural surjection
(12). For each 0 < r < d, we have projection maps

T 2 Sa(ed—5) @ Sa — Sa2d—a)—2r

induced by the decomposition (1).

Define ®,.(M, N) to be the image of 1 € C via the map .0 fso foo fi. This is a
joint covariant of M, N of order d(2d —4) — 2r. We will describe it in coordinates.
For 0 < i < d, define

wi:(_]- /\¢MN zg i),
s;éz

which is an element of Sg2q—5). Then

d

(fzo fao fi)(1 sz@)xo o, and @, = Z@U“%m? -

=0
All of this is stralghtforward and follows by chasing through the f;. Each ®, has
total degree d in the coefficients of M, N (because w; does).
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Theorem 3.5. Let M, N be orders 2d — 2,2d — 6 respectively. Then the pair
(M, N) satisfies the (equivalent) conditions (i)—(iii) if and only if

Q. (M,N)=0 for0<r<d.
Proof. If (iii) holds, then f; = 0, which shows the ‘only if’ part.

Conversely, assume that all the ®, vanish. Then (f;0 fyo f1)(1) = 0, which implies
that all the w; vanish. By the fundamental property of Wronskians, the forms

Yun(@izd™), 0<s<d, s#i
are linearly dependent for any i. But then the map A%y x is zero on every basis
element of A%S,, hence it is zero. This implies (iii). O
3.5. The incomplete Pliicker imbedding

The fact that R is determined by 77, T3 has the following geometric interpretation.
Assume d > 3, and let G = G(2, .S,) denote the Grassmannian of two-dimensional
subspaces in Sy. (See [6, Lecture 6] for generalities on Grassmannians.) The line
bundle Og(1) has global sections

a
W
N

H°(G,0g(1)) 2= N*Sy = Sy(S4_1) = Sod—ar—2.

s

Il
o

The usual Pliicker imbedding is given by the complete linear system |Og(1)].
Consider the subspace W = Sy o @ Saq_6 C H°(Og(1)).

Proposition 3.6. The map
p:G—PW, Plyup— [T) ® T3]
1s an imbedding.

The usual conventions ([7, Ch. II, §7]) dictate that the imbedding is in PW*, but
note the self-duality in §2.3.

Proof. We have already shown that p is a set-theoretic injection. To complete
the proof, it suffices to show that it is an injection on tangent spaces at every
point (cf. [7, Ch. II, Prop. 7.3]). The Zariski tangent space to G at II = I, p is
canonically isomorphic to Hom(II, S;/II) (see [6, Lecture 16]). Let o : IT — Sy/I1
be a tangent vector, and say

a(A)=Q+I1I, «o(B)=P+II,

for some forms P, ) of order d.

The tangent space to PW at [T} & T3] is isomorphic to W/(T} & T3). Let
dp : Tgn — T denote the induced map on tangent spaces. Then du(a) is
the element

((Av P)l + <Q7B)1) b ((Aa P)3 + (Qa B)3) eWw
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considered modulo T} @ T3. (To see this, let € be an ‘infinitesimal’. Now expand
(A+€Q,B+¢eP);,i=1,3, and set €2 =0.)

We would like to show that du is injective, hence suppose that du(a) = 0.
Then there exists a constant ¢ such that

(A, P)1+(Q, B)1 = c(A, B,
<A7P>3 + (Q7 B)3 = C(A7B)3‘
Substitute P + ¢ B for P (which does not change «/), then

(A, Ph = (B,Q)1, (A4 P)s=(B,Q)s.

If the first pair is zero, then P, () are respectively constant multiples of A, B, hence
a = 0. If not, then II4 p = Ilg g by Corollary 3.3. But this implies II4 g = Ilp,
again forcing a = 0. U

Remark 3.7. Let a C Sym® W denote the ideal generated by the coefficients of
g, ..., P4, and J the homogeneous ideal of the image u(G) C PW. Since a defines
the image set-theoretically, (1/a)sas = J. In general a and J are different ideals
(e.g., for d = 3, the former is generated in degree 3 and the latter in degree 2). I
do not know if one can state a more precise relation between them.

4. Generic reduction formulae

4.1.

We begin with the example which eventually led to the main result of this section.
A B A

Let A, B be of order 2. The series 2 2 2 implies the relation
0 1 1

(A B, A+ 5 (A, Bl A = 5 (4, A3 B

which can be rewritten as
2 (A, B)y
AT =B—
(@, ), b1 (4. 4),

Hence, given R (which involves only 77 in this case) and A, the function

2
AT, —— (A, T 1
(A, Th) — (A,A)Q(’l)l (18)
recovers B up to an additive multiple of A. (Since R(A,B + kA) = R(A, B),
the last proviso is indispensable.) We will show that there exist such formulae for

every d.

A.

We may call (18) a reduction formula in the following sense. If we are given a
linear second order o.d.e., together with one of its solutions, then a second solution
can be found by the method of ‘reduction of order’ (see [14, §44]). In our case,
we are to find B, given the equation ¢z, 1, (#') = 0 with one solution A. However,
this analogy is inexact in two respects:
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o our formula will involve all the {T%,,1}, and not merely 77, T,
o the process is algebraic and involves no integration.

Moreover, the formula is generic in the sense that it is only defined over an open
subset, e.g., the set {A € P?: (A, A); # 0} above.

4.2.

Throughout this section we assume that A, B are order d forms whose coefficients
are algebraically independent indeterminates. Write

A= Z( >apa;0 P b, (19)

Let J be an invariant of A of degree (say) n. We define its first evectant (cf. [17])
to be

&= ES g L s (20)

it is a covariant of degree-order (n — 1,d).
Lemma 4.1. We have an identity (€5, A)q = J.

Proof. Substitute (19) and (20) in formula (2). We get a nonzero term whenever
p=gq and i = d — p, hence

)24 d \* a3
pl(d — Rl
(&4 go & <d - p) " 9a,
=— a, — =J,
n ; b 8ap
the last equality is by Euler’s theorem. O

Now our generic reduction formula is as follows. Let

1
6(147 R) = _j ; Cr (gJ7 T2T+1)d—2r—17 (21)
with the ¢, as in (8).
Theorem 4.2. With notation as above,
(EJa B)d

BHAR) = B -2

A.

Hence, as long as A stays away from the hypersurface {J = 0}, we can recover B
from A and R(A, B).

Remark 4.3. If d is even, then we can take J to be the unique degree two in-
variant (A, A)s. There is no invariant in degrees < 3 if d is odd, but then there
exists a degree four invariant J = ((A4, A)a—1, (A, A)g—1)2-
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4.3.

The proof of the theorem will emerge from the discussion below. The element
AN B € N\2S; defines a map

O'A/\BISd—>Sd, F%(F,B)dA—(F,A)dB
We identify the codomain of 0 = g4,p With S as in Subsection 2.3.

Lemma 4.4. With the convention above, o is skew-symmetric, i.e.,
Oo(r)(G) = =00y (F), for F,G € Sy.
Proof. Unwinding the definitions, this becomes
(F, B)a(A, G)a = (F, A)a(B, G)a = ={(G, B)a(A, F)a — (G, A)a(B, Fa},
which is clear. U

Lemma 4.5. With notation as above,
o(F) = [(F,R)i 1 ly=x- (22)

The right hand side of this identity is interpreted as follows: calculate the (d—1)-
th transvectant of F' and R as x-forms (treating the y in R as constants). This
produces an xy-form of order (1,d — 1); finally replacing y by x gives a form of
order d.

Proof. We will calculate both sides symbolically. Let A = ad, B = ¢, F = fd,

then
A(x)B(y) — Aly)B(x)  ag By — oy 5

R pr— pr—
w w
d—1 ) )
(o By — v Br) ;) (o 5y)d_1_z(ay Be)"

= (af) Z (aq ﬂy)dilii(@y Be)".

Now calculate the (d — 1)-th transvectant of F' with each summand in the last
expression (treating o, 3, as constants). Using the algorithm of [5, §49],

(f as 7 B)amr = () @ )T B e

Hence,

[(F R Jymx = (FD)H @) fo Y (@ )T (B ) e 871 (23)

7
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Now directly from the definition,

o(F) ={(f8)"af = (f )" 3}
= (=D)(Bf) ol = (@ /) 57}
= (0B —(af) B} D (af) ™ (BF) of 57

Since (B f)ay, — (o f) B = —(a B) fz, the last expression is identical to (23). O

Lemma 4.6. Let T be an arbitrary form of order 2d — 4r — 2. Then
[(F, W TP)5, ly=x = (F, T)a—2r-1-

Proof. Let T = 247472 so that T? = ¢tJ~>~'¢J~*"~1. Then make a calculation
as in the previous lemma. Il

Now substitute the Taylor series (10) into the right hand side of (22), and use the
previous lemma. This gives the formula

o(F) = Z & (F, Tart1)a-2r-1- (24)

r>0
Now specialize to F' = £5. Then
0(5_]) = (gJ,B)dA — (SJ,A)dB = (g_],B)dA — .]B,

hence

A.

B(A,R) = —%U(gJ) _B_ (5J:]B)d

This completes the proof of Theorem 4.2. O

5. Formulae for T5 and T7

We have observed that T}, T3 determine the higher odd transvectants T5,,,. How-
ever this dependence is rather indirect, and it is unclear if one can give a formula

for the latter in terms of the former. In this section we give such explicit formulae
for T5 and Tx.

5.1. The Plucker relations

Let
QCIP’/\Sd @82(147’2

r>0

be the usual Pliicker imbedding, and let I denote the homogeneous ideal of the
image. It is well-known that I is generated by its quadratic part I, usually called
the module of Pliicker relations.

Lemma 5.1. As SL(V)-modules, Ty ~ A1S,.
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Proof. Consider the short exact sequence
0 — Hg — HO(O]}B(AQSd)(Q)) — HO(OQ(2)) — O

(The exactness on the right comes from the projective normality of the imbed-
ding.) Using the plethysm formula of [10, §1.8, Example 9], the middle term is
isomorphic to

SQ(/\QSd) ~ S(gg)(Sd) D /\4Sd.

By the Borel-Weil theorem (see [13, p. 687]), H(Og(2)) ~ S(2,2)(Sq). This com-
pletes the proof. O

Each Pliicker relation corresponds to an algebraic identity between the {7541 }.
To be more precise, let { My, 41 : 7 > 0} be generic forms of orders 2d — 4r — 2, and

S, & I an inclusion of SL(V)-modules. Then £ corresponds to a joint covariant
= (My, M3, ...) of order e and total degree two in the { My, 1}, such that

=(Th,T5,...) =0, for any A, B of order d.

Example 5.2. Assume d = 4. In this case Iy ~ S4, so we look for an order 4
covariant in M, M3. There are three ‘monomials’ of total degree 2 and order 4,
namely (M;, My)y, (My, M)y, MZ. Our covariant must be a linear combination of
these, i.e.,

=(My, M3) = ay (My, M)y + g (My, M3)s + a3 M3,

for some constants «;.

Now specialize to A = z3, B = z7, and use formula (2) to calculate Ty, T3 and
= explicitly. Since Z(77,73) must vanish identically, its coefficients give 5 linear
equations for the «;. Solving these (they must admit a nontrivial solution), we
deduce that

[y s = [25 1 =10+ —4],

which determines = (of course, up to a scalar). This ‘method of undetermined
coefficients’ (specializing the forms followed by solving linear equations) will be
liberally used in the sequel.

Example 5.3. For d = 3, the Grassmannian is a quadric hypersurface defined

by
— 1
:(M1,M3) = (M1,M1)4 - 6 'g?

5.2.

We begin with a technical lemma about the irreducible submodules of Is.

Lemma 5.4. If d > 4, then there exists exactly one copy each of the modules
Sadg—12, Sag—16 1nside .
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Proof. There are isomorphisms
]12 ~ /\4Sd ~ S4(Sd_3) ~ Sd_3(54),

where the second isomorphism is from (11), and the third is Hermite reciprocity.
Hence we may as well work with S;_3(S;). Now the following are in bijective
correspondence (see [9] for details):

o inclusions S, C Sy_3(Sy) of SL(V')-modules,
o covariants of degree-order (d — 3, e) (distinguished up to scalars) for binary
quartics.

Fortunately, a complete set of generators for the covariants of binary quartics is
known (see [5, §89]). It contains five elements, conventionally called f, H,t,1, ],
having degree-orders

(1,4), (2,4), (3,6), (2,0), (4,0).

(It is unnecessary for us to know how they are defined.) Each covariant of quartics
is a polynomial in the elements of this set.

Now it is elementary to see that only one expression of degree-order (d —
3,4d — 12) is possible, namely f¢=3. Similarly, the only possible expression for
degree-order (d — 3,4d — 16) is f° H. Hence there is exactly one copy each of
Sia—12 and Syq_16. U

5.3.

We will find the joint covariant = corresponding to Sy;_12 € I,. We look for
degree two monomials of order 4d — 12 in the {7%,,1}; any such monomial must
be of the form

(T2a+17 TQb—l—l)sv

where
o (2d —4a—2)+ (2d — 4b —2) — 25 = 4d — 12,
oab< L%J,
o s <min{2d — 4a — 2,2d — 4b — 2},
o if a = b, then s is even.

The first condition comes from the order, the rest are forced by properties (3),
(4) of transvectants. Sifting through these conditions gives only four possibilities,

namely
(T17T1)47 (T17T3)27 T327 T1T5-

Hence we have an identical relation of the form

oy (T, Th)g + ao(Th, T3)y + a3 T2 — ay Ty Ty = 0.

Specialize A, B successively to the pairs

(Ig7x(11)7 (:Eg_lxhx(li)? (ZL’S_QZL‘?,ZE(%), (:Eg_lxl,xox‘f_l),
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and use the method of undetermined coefficients. Up to a scalar, the solution is

_ 2(2d—3)? _ 4(2d—3)(d—3)
A1 = T a2 2T T gqu—2
as =1 oy = (d—3)(d—4)(2d—3)>

d(2d—5)(2d—7)(d—2) "
This gives a formula for T5.
Theorem 5.5. Assume d > 5, then

1
T5 = T ( (T17T1)4 + — (T1,T3)2 -I— — T2)
1

We can make a similar argument with Sy, 14, which leads to a formula for 77.
Define

_ 8(2d—5)(2d—T7)(2d—3) _ 60(2d—T7)(2d—5)
b= — d(d—1)(4d—13) B2 = — d(d—1)(4d—13)
By = 12(2d—3)(d—5) By = 20(2d—5)(2d—7)(d—3)
3 d(4d—13) 4 (d—1)(4d—13)(2d—3)
By =1 B = (d—5)(d—6)(2d—3)(2d—5)

d(d—1)(2d—9)(2d—11)

Theorem 5.6. Ford > 7,

1 6 B2 Bs 54
=75 B B G, Lo Ta)2 5 T Ts).

T
(Of course we can substitute for 75 using the previous result, but this would make
the formula very untidy.)

This method breaks down for higher transvectants, so a new idea will be
needed for the general case. My colleague A. Abdesselam, when shown the for-
mulae above, remarked that the coefficients look very similar to those appearing in
the classical hypergeometric series. Perhaps there is something to this suggestion.

B

(Ty,Th)e + (T1,T3)4 + — (T1,T5)2 +

6. Open problems

This section contains a series of miscellaneous calculations and examples, all of
them for small specific values of d. They should serve simultaneously as a source
of open questions and further lines of inquiry.

6.1. The Jacobian predicate
Let A, M be forms of orders d,2d — 2. Consider the following predicate

J(A, M) : there exists an order d form B such that (A, B), = M.

If J(A, M) holds, then (A, M), =k T3 A, hence A must divide (A, M),. We will
see below that this condition is sufficient for d = 2, 3, but not for d = 4.

Proposition 6.1. Assume d = 2. Then

J(A, M) < (A, M), =0,
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Proof. The forward implication is clear.

A M A
For the converse, assume (A, M); = 0. Then 2 2 2 implies that
0 1 1
((A, M)y, A)y = =1 (A, A)s M. If (A, A)y # 0, then let
B = 2 (A, M)
- (A, A)2 9 1-

If (A, A); = 0, then by a change of variable, we may assume A = z2. Then
(A, M)y = 0 implies that M = ¢; x% + ¢cp xox;. Now let B = ¢; zoxy + %x% In
either case, (A, B); = M. O

Proposition 6.2. Assume d = 3, then
J(A, M) <~ ((A, M)Q, A)l - 0

Proof. By Lemma 2.1, ((A, M)y, A); = 0 iff (A, M), = k A. This shows the
forward implication.

Conversely, assume that (A, M), = ¢ A for some constant c¢. I claim that the map
Ymge:S3 — Sz, F— (M, F)y—cF
is skew-symmetric. Indeed,

51/1M,6c(F) (G) = ((M7 F)27 G)3 - C (Fu G>3
M F G
Using 4 3 3 |, this can be transformed into
1 2 2
_((M7 G)Q? F>3 +c (Gv F)3 = _5¢M,ﬁc(G)<F)'

This proves the claim, and implies that the rank of 15, 6. must be even. Suppose
that A and another form B span its kernel. Then by Proposition 3.4, (A, B); = M
(after multiplying B by a constant if necessary). U

Example 6.3. Assume d = 4, and let A = (z¢x1)?, M = (zox1)®. Then A divides
(A, M)y =k (xoz1). However there exists no B such that (A4, B); = M. Indeed,

(A, B)l = kﬂ?o l’l(l'lel — ZL’QBIO) = (330 1'1)3
would imply z1 B,, — 2By, = k (r9z1)?. But then B = k (zor1)?, which is absurd.

The two propositions above suggest the following natural problem:

Problem 6.4. Find a (finite) number of joint covariants of A, M which simulta-
neously vanish iff J(A, M) holds.
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6.2. The resultant

Let Res(A, B) denote the resultant of A, B. Up to a scalar, it is equal to the
discriminant of R(A, B) (regarded as a quadratic form). Since the latter implicitly
depends only on 77, T3, the following problem is natural:

Problem 6.5. Give an explicit formula (in a reasonable sense) for Res(A, B) as
a joint invariant of T} and T3.

For instance, if d = 2 then k Res(4, B) = (11, 11)s.
Proposition 6.6. If d = 3, then
k Res(A, B) = T3 (11, T1)s — 6 (T1, (T1, T1)2)4-

Proof. By construction, Res = Res(A, B) is joint invariant of total degree 3 in
T1,T;. Every joint invariant is a linear combination of compound transvectants
(see [2, p. 92]), hence Res is a linear combination of terms of the form

(Xla (X27 X3)(l)b7

where a, b are integers, and each X; stands for either T} or T3. Since the total
order must be zero, > ord X; = 2(a + b). Using properties (3), (4), we are left

with only two possibifities, namely
(T37 <T1;T1>4)07 (T17 (T17T1)2)4-

Now specialize to A = zoz1(xg — 1), B = (20 + 21)(2o + 271) and use the
method of undetermined coefficients. i

Gordan [4] has given a formula for the resultant in terms of all the odd order
transvectants {75, : 7 > 0}.

6.3. The minimal equation for T3

Consider the following equivalence relation on pairs (A, B) of independent order
d forms:

(A,B) ~ (A + B,yA+6B) if ad — py=1.
An equivalence class determines and is determined by 73,T5. Let F denote the
set of equivalence classes, and consider the map

. F — A (A B) — Ti.

It is known that 7 has finite fibres, and the cardinality of the general fibre is equal
to the Catalan number p(d) = 5(2;:2) (see [3, Theorem 1.3]).
Now assume d = 4, then p(4) = 5. Let A, B be forms of order 4 with indeter-

minate coefficients, and write

6 2
6 —i i 2 .
Ty = E (i)uixg xy, T3= E (j)vjxg T,

i=0 =0
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where u;, v; are functions of the coefficients of A, B. The map 7 corresponds to a
degree 5 field extension K C L, where

K:C(uo,...,u6), LIK(Uo,Ul,’Ug).

We recall the concept of a seminvariant of a form: it is an expression in the
coefficients of the form which remains unchanged by a substitution

To — To+cxy, r1 — x1; c€ C. (25)

An alternative is to define it as the leading coefficient of a covariant (see [5, §32]).
Let

5
Y L =0, LEK, (26)
=1

denote the unique minimal equation of vy over K. Firstly, since vy is a sem-
invariant of 73 and substitutions in (25) must leave (26) unchanged, all the [;
are seminvariants of 7). Secondly, by the main theorem of [5, §33], any algebraic
relation between the seminvariants lifts to a relation between the corresponding
covariants. That is to say, we must have an identity

5
TP+ NI =0, (27)
i=1
where A; are covariants of T, and (27) reduces to (26) by the substitution z( :=
1,1 := 0. By homogeneity, A; must have degree-order (i, 2i).

6.4.

A complete set of generators for the ring of covariants of order 6 forms is given
in [5, §134]. Tt is then a routine matter to identify the A; by the method of
undetermined coefficients. I omit all calculations and merely state the result.
Define the following covariants of T;.

G20 = (T17T1)6, 24 = (T1,T1)4, 28 = (T17T1)27
gs2 = (11, q24)a, q36 = (11, q24)2, q3s = (11, G2a)1,
qaa = (T1,Q32)2-
These are all taken from the table in [5, p. 156], but the notation is modified so

that g, is of degree-order (a,b). There can be no covariant of degree-order (1, 2),
hence Ay = 0. The others are

125
Ay = —? g24
625 125
Ag = g@%*’ ¥T1QQ0
3125 625 3125
A= " — — Sl o
4 48 o4 96 G20 428 96 1432
3125 3125 3125 3125
As = 6_4T1 Qaa + Gq Us2 28 — —yp Us6 24 — 19—2T1 420 q24-

Problem 6.7. Find the equation analogous to (27) for arbitrary d.
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