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Abstract. The (negative) Torricelli triangle T1(ABC) of a non-
degenerate (positively oriented) triangle ABC is defined to be the trian-
gle A1B1C1, where ABC1, BCA1, and CAB1 are the equilateral trian-
gles drawn outwardly on the sides of ABC. It is known that not every
triangle is the Torricelli triangle of some initial triangle, and triangles
that are not Torricelli triangles are characterized in [28]. In the present
article it is shown that, by extending the definition of T1 such that de-
generate triangles are included, the mapping T1 becomes bijective and
every triangle is then the Torricelli triangle of a unique triangle. It is
also shown that T1 has the smoothing property, i.e., that the process of
iterating the operations T1 converges, in shape, to an equilateral triangle
for any initial triangle. Analogous statements are obtained for internally
erected equilateral triangles, and the proofs give rise to a slightly modi-
fied form of June Lester’s shape function which is expected to be useful
also in other contexts. Several further results pertaining to the various
triangles that arise from the configuration created by ABC1, BCA1,
and CAB1 are derived. These refer to Brocard angles, perspectivity
properties, and (oriented) areas.
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1. Introduction

For an arbitrary triangle ABC in the Euclidean plane let ABC1, BCA1 and CAB1

denote the equilateral triangles erected externally on the sides AB, BC, and CA
of ABC, and α1, β1, and γ1 be their circumcenters, respectively. This yields
the so-called “Napoleon figure” of ABC, and the famous Napoleon theorem says
that the triangle α1β1γ1 is equilateral and that the analogous statement holds for
internally erected equilateral triangles. For the history and many generalizations
of this theorem we refer to the survey [20] and to [26]. For example, instead of
equilateral erected triangles one might consider similar ones (see [15], [16], [26],
and of [20], § 4), or one can start with affine regular n-gons and erect regular
n-gons (cf. [1], [10], and § 6 of [20]). And even figures given like in the original
Napoleon theorem, but with only two erected triangles have interesting geometric
properties; see [8] and § 8 in [20].

However, closer to the converses of Napoleon’s theorem considered in the
present paper are the so-called Petr-Douglas-Neumann theorems (cf. [29], Chap-
ters 6, 7, 8, and 9, [9], and [20], § 7), since they refer to the free vertices of triangles
erected on the sides of given n-gons yielding, by iterations, vertex sets of regular
n-gons. Converses to this were explicitly studied in [5].

In the spirit of such converses one can also ask the following: If only the
triangle A1B1C1 of free vertices of the “Napoleon figure” described above is given,
to what extent is the original triangle determined? Moreover, can the vertices
of any triangle be free vertices of such a figure? Results in this direction were
obtained in the papers [17], [31], [34], and [35]; see also [28] and [20], § 2.

We want to complete related contributions, particularly given [34], [35], and
[28], to the following new and in a sense final results: Any triangle A1B1C1 can
be interpreted as the triangle of free vertices in a unique Napoleon figure (i.e.,
the initial triangle ABC of A1B1C1 is unique), if the construction of A1B1C1 is
extended such that also degenerate triangles are taken into consideration. Analo-
gous statements are presented for internally erected triangles, and also a related
perspectivity result is derived. Furthermore we will show that iterations of such
extended constructions have the so-called smoothing property, i.e., by iterating
the described construction (with A1B1C1 as starting point, etc.) we get a conver-
gence to the shape of an equilateral triangle. For getting this and further results
in our paper, we present a new modification of June Lester’s shape function (see
[14], [15], and [16]). We continue by using this new shape function for deriving a
sequence of theorems on Brocard angles and (oriented) areas of different triangles
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occurring in Napoleon figures created from ex- and internally erected equilateral
triangles. This seems to manifest that this new shape function can be successfully
used also in many other related contexts. So it is our hope that the methods devel-
oped here can also be generalized or applied to “more general Napoleon figures”,
e.g., with respect to higher dimensions or non-Euclidean geometries; see [23], [21],
and [22]. And one might also look for possible extensions of other results, related
to polygons with erected triangles or erected n-gons; see the surveys and papers
[18], [19], [20], [14], [8], and [30] for many results in this direction.

Since our results should be expressed in terms of oriented triangles, we have
to continue with some more precise notation regarding triangles.

2. Terminology regarding triangles

A triangle ABC is defined to be any ordered triple (A, B, C) of points in the
Euclidean plane. Thus, in general there are six different triangles having the
same set of vertices.

A triangle is called degenerate if its vertices are collinear, and non-degenerate
otherwise. It is called trivial if the three vertices coincide.

A non-degenerate triangle ABC is said to be positively oriented if the motion
A → B → C is counterclockwise, and negatively oriented if this motion is clock-
wise. Since a degenerate triangle has no apriori orientation, and since we need
all our triangles to be oriented, we stipulate that there are two copies of every
degenerate triangle ABC; one of them is positively oriented, and the other one is
negatively oriented. Thus, if we refer to a degenerate triangle ABC, we assume
that its orientation is also specified. From now on, all our triangles are oriented
and non-trivial, but not necessarily non-degenerate.

Two triangles ABC and A′B′C ′ are said to be similar if they have the same
orientation and

‖A−B‖ : ‖A′ −B′‖ = ‖B − C‖ : ‖B′ − C ′‖ = ‖C − A‖ : ‖C ′ − A′‖ (1)

holds. They are said to be anti-similar if (1) holds and they have different orien-
tations.

3. Napoleon-Torricelli configurations

In a refined manner we will now describe and analyse the geometric configuration
which is usually called “Napoleon configuration” (or can be extended to the so-
called “Torricelli configuration”; see [20], [26], and [23]).

Let ABC be a given triangle, and let ABC1, BCA1, and CAB1 be the neg-
atively oriented equilateral triangles drawn on the sides of ABC. These are the
triangles erected outwardly or inwardly on the sides of ABC according to the
case whether ABC is positively or negatively oriented, respectively. They will be
referred to as the negative ear triangles of ABC. The triangle A1B1C1, formed by
the new or free vertices, will be called the negative Torricelli triangle of ABC and
denoted by T1(ABC). Figure 1 shows the negative ear triangles ABC1, BCA1,
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Figure 1

and CAB1 for a positively oriented triangle ABC. Note that the negative ear
triangles of ACB are the inwardly erected triangles AC2B, BA2C, and CB2A.

If α1, β1, and γ1 are the circumcenters of the triangles ABC1, BCA1, and CAB1,
respectively, then a well-known theorem, customarily attributed to Napoleon
Bonaparte, states that α1β1γ1 is equilateral; see again Figure 1. We shall call
α1β1γ1 the negative Napoleon triangle of ABC and denote it by N1(ABC); see
[35]. Note once more that the negative ear, Torricelli, and Napoleon triangles are
defined for all triangles.

As already mentioned, the negative Napoleon configuration described above
corresponds to what is known as the outward Napoleon configuration if ABC is
positively oriented, and to the inward Napoleon configuration if ABC is negatively
oriented. Our Figure 2 consists of two pictures. In each of them A1B1C1 is the
negative Torricelli triangle T1(ABC), and A2B2C2 is the positive Torricelli triangle
T2(ABC) of ABC.

Figure 2
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In studying the process of iterating the Napoleon operations, it is relevant to
note that the negative Torricelli and Napoleon triangles T1(ABC) and N1(ABC)
of ABC do not necessarily have the same orientation as ABC. However, it is
proved in Corollary 5.1 that T1 eventually preserves orientation in the sense that
for a given triangle ABC, the derived triangles T n

1 (ABC) will all have the same
orientation for all n that are sufficiently large.

The positive ear, Torricelli, and Napoleon triangles are defined analogously, and
the corresponding statements can be easily formulated and checked. The posi-
tive Torricelli and Napoleon triangles of ABC will be denoted by T2(ABC) and
N2(ABC), respectively.

It should be remarked here that when ABC is negatively oriented, then the
negative and positive Torricelli triangles T1(ABC) and T2(ABC) correspond to
what the author of [4] calls the first Fermat and second Fermat triangles of ABC,
respectively. Things are reversed when ABC is positively oriented.

4. The arbitrariness of the Torricelli triangles

It is very useful to identify the Euclidean plane with the Gaussian plane C of
complex numbers; see [7], [11], and [12] for many related and elegant approaches
to interesting theorems. A triangle is then an ordered triple (A, B, C) of complex
numbers, and still we will denote it by ABC, except when there is a possibility
of misinterpreting this (to mean the product ABC).

The next theorem expresses the vertices of the negative and positive Torricelli
and Napoleon triangles of ABC in terms of A, B, and C, and conversely. Here,
and throughout this paper, ζ will denote the primitive third root e2πi/3 of 1. Thus

ζ =
−1 + i

√
3

2
, ζ2 =

−1− i
√

3

2
.

Theorem 4.1. Let A1B1C1 and A2B2C2 be the negative and positive Torricelli
triangles of triangle ABC, and let α1β1γ1 and α2β2γ2 be the negative and positive
Napoleon triangles. Then A1

B1

C1

=

 0 −ζ2 −ζ
−ζ 0 −ζ2

−ζ2 −ζ 0

 A
B
C

 ,

 A2

B2

C2

=

 0 −ζ −ζ2

−ζ2 0 −ζ
−ζ −ζ2 0

 A
B
C

 ,

 2A
2B
2C

=

 1 −ζ2 −ζ
−ζ 1 −ζ2

−ζ2 −ζ 1

 A1

B1

C1

 =

 1 −ζ −ζ2

−ζ2 1 −ζ
−ζ −ζ2 1

 A2

B2

C2

 ,

 α1

β1

γ1

 =
1− ζ

3

 0 −ζ2 1
1 0 −ζ2

−ζ2 1 0

 A
B
C

 ,

 α2

β2

γ2

 =
1− ζ

3

 0 1 −ζ2

−ζ2 0 1
1 −ζ2 0

 A
B
C

 .
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Proof. Since AC1 is obtained by rotating AB counterclockwise by 60◦, it follows
that C1 − A = −ζ(B − A), and therefore C1 = −ζ2A − ζB. The remaining
relations are analogous. �

Corollary 4.1. Every triangle is the negative Torricelli triangle of a unique tri-
angle. An analogous statement holds for positive triangles.

Proof. This follows from Theorem 4.1, where one can also read off a method for
recovering a triangle from each of its Torricelli triangles. �

Note 4.1. The corollary above would take a much less pleasant form if we would
exclude degenerate triangles. Thus the question which non-degenerate triangle
is the negative Torricelli triangle of some non-degenerate triangle has a two-fold
drawback, and it constitutes the Monthly’s Problem 3257. According to the so-
lution in [28], such a triangle ABC is characterized by either of the equivalent
conditions

10 sin α sin β sin γ >
√

3 (sin2 α + sin2 β + sin2 γ), (2)

11(a2 + b2 + c2)2 > 25(a4 + b4 + c4) (3)

with a, b, and c as side lengths and α, β, and γ as angles of ABC.

Corollary 4.2. If A1B1C1 and A2B2C2 are the negative and positive Torricelli
triangles of ABC, and if α1β1γ1 and α2β2γ2 are the corresponding negative and
positive Napoleon triangles, then the centroids of ABC, A1B1C1, A2B2C2, α1β1γ1,
and α2β2γ2 coincide.

Proof. It follows from Theorem 4.1 that

A1 = −ζ2B − ζC, B1 = −ζA− ζ2C, C1 = −ζ2A− ζB.

Therefore

A1 + B1 + C1 = (−ζ2 − ζ)(A + B + C) = (A + B + C). (4)

Analogously,

A2 + B2 + C2 = (−ζ2 − ζ)(A + B + C) = (A + B + C). (5)

The relations (4) and (5) mean that the centroids of ABC, A1B1C1, and A2B2C2

coincide. The other triangles are treated similarly. �

We end this section by remarking that the importance of the Napoleon-Torricelli
configuration has much to do with its role in locating the Fermat-Torricelli point
F of a given triangle ABC, i.e., the unique point having minimal sum of distances
of A, B, and C (see Chapter II of [3]). Referring to Figure 1, it turns out that F
is nothing but the intersection point of the lines AA1, BB1, and CC1. In terms of
perspectivities, this says that the triangles ABC and A1B1C1 are perspective and
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that their point of perspectivity is F . In addition it is known that for all triangles
ABC the negative and positive Napoleon triangles are perspective with respect to
the circumcenter of ABC, see [33], and that the negative Torricelli triangle and
ABC are perspective with respect to F , cf. [13]. The following simple proposition
exhibits one more perspectivity in the Napoleon-Torricelli configuration.

Proposition 4.1. The negative and positive Torricelli triangles of any triangle
ABC are perspective and their point of perspectivity is the circumcenter of ABC.
In fact, this is still true in the more general configuration where the six relevant
ear triangles are isosceles of arbitrary shapes.

Proof. Let A1B1C1 and A2B2C2 be the negative and positive Torricelli triangles
of a triangle ABC. Then A1BCA2 is a rhombus and therefore A1A2 is the per-
pendicular bisector of BC. Similar statements hold for B1B2 and C1C2, and the
rest follows from the fact that the perpendicular bisectors of the sides of ABC
concur at the circumcenter.

For the general statement, the quadrilateral A1BCA2 is not necessarily a
rhombus but it has the properties that A1B = A1C and A2B = A2C. Letting M
be the point of intersection of A1A2 and BC, one uses the obvious congruence of
the triangles A1BA2 and A1CA2 to show that the triangles A1BM and A1CM
are also congruent, and to conclude again that A1A2 is the perpendicular bisector
of BC. �

5. The smoothing property of the Torricelli iterations and a new shape
function φ

Using the SAS similarity theorem and the geometric interpretation of the quotient
of two complex numbers, it is easy to see that the non-degenerate triangles ABC
and A′B′C ′ are similar (respectively, anti-similar) if and only if the fractions
(A−C)/(A−B) and (A′−C ′)/(A′−B′) are equal (respectively, reciprocal). In fact,
this still holds for all non-zero triangles as long as the fraction (A− C)/(A− B)
is assigned the value ∞ when A = B 6= C. The quantity (A − C)/(A − B) is
called the shape of the triangle ABC and is studied in great detail in [14], [15],
and [16]. Denoting the shape of ABC by S(ABC), it is easy to see that S can
assume all values in the extended complex plane C∞. In fact, for fixed B and C
the function (A−B)/(A−C) is a Möbius transformation (see [25], pp. 206–223)
in A and therefore surjective. (The shape of the zero triangle A = B = C is not
defined.)

We summarize the properties of the shape function S in the first two columns
of Table 1 below, where statements in the same row are equivalent, and where
ζ = e2πi/3, as before. The third column refers to the shape function φ defined
below. Note that the positively and negatively oriented copies of a degenerate
triangle are both similar and anti-similar.

When studying Torricelli triangles (and expectedly in other contexts), we find
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it much more convenient to work with the modified shape φ defined by

φ(ABC) =
A + ζB + ζ2C

A + ζ2B + ζC
; (6)

see also the beginning of Section 6 below. It is easy to check that (A+ ζB + ζ2C)
and (A + ζ2B + ζC) are both zero if and only if A = B = C, in which case
φ(ABC) is not defined. It is also easy to see that S and φ are related by the
Möbius transformations (cf. again [25], pp. 206–223)

φ =
1 + ζS

ζ + S
, S =

ζφ− 1

ζ − φ
.

It follows that φ and S define each other uniquely, and also that φ assumes all
the values in the extended complex plane C∞. The properties of φ are exhibited
in Table 1, where again the three entries in each row are equivalent. They are
immediate, except, possibly, for the properties in rows 3–5 which are proved in
Theorem 6.1.

It is obvious that if two triangles are similar, then so are their negative Torri-
celli triangles. Similar statements hold for anti-similar triangles and for positive
Torricelli triangles. Also, we point out that the negative (analogously, positive)
Torricelli triangle of a non-degenerate triangle can be degenerate, and vice versa.

The next theorem shows that φ◦T1 and φ◦T2 are, as functions on the similarity
classes of triangles, one-to-one onto. In other words, every triangle is similar to
the negative (similarly, positive) Torricelli triangle of some triangle that is unique
up to shape. It also shows that iterating T1 (similarly T2) is a smoothing process.

Theorem 5.1. Let T1(ABC) and T2(ABC) be the negative and positive Torricelli
triangles of a triangle ABC, respectively. Then

φ(T1(ABC)) =
−1

2
φ(ABC), φ(T2(ABC)) = −2φ(ABC).

Consequently, the process of constructing either of the Torricelli triangles is a
smoothing iteration in the sense that it always results in an equilateral triangle.
In other words, the limit of the shapes of each of T n

1 (ABC) and T n
2 (ABC) is the

shape of the equilateral triangle.

Proof. Using the first equations in Theorem 4.1 and the definition of φ, we see
that

φ(A1B1C1) =
A1 + ζB1 + ζ2C1

A1 + ζ2B1 + ζC1

=
A + ζB + ζ2C

−2(A + ζ2B + ζC)
=
−φ(ABC)

2
.

Analogously, we can go on with φ(A2B2C2).
The last statement follows from the fact that the limits of (−2s)n and of

(−s/2)n, as n tends to infinity, are either 0 or infinity for all s in the extended
complex plane C∞. �
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1 ABC and UV W S(ABC) = S(UV W ). φ(ABC) = φ(UV W ).
are similar.

2 ABC and UV W S(ABC) = S(UV W ). φ(ABC) φ(UV W ) = 1.
are anti-similar.

3 ABC is S(ABC) is real. ‖φ(ABC)‖ = 1.
degenerate.

4 ABC is Im(S) > 0. ‖φ(ABC)‖ < 1.
non-degenerate and
positively oriented.

5 ABC is Im(S) < 0. ‖φ(ABC)‖ > 1.
non-degenerate and
negatively oriented.

6 The vertices C S(ABC) = 0. φ(ABC) = ζ2.
and A coincide.

7 The vertices B S(ABC) = ∞. φ(ABC) = ζ.
and A coincide.

8 The vertices B S(ABC) = 1. φ(ABC) = 1.
and C coincide.

9 ABC is S(ABC) = −1. φ(ABC) = ±1.
degenerate and
isosceles with
apex at A.

10 ABC is S(ABC) = −ζ or −ζ2. φ(ABC) = 0 or ∞.
equilateral.

11 ABC is S(ABC) = ζ or ζ2. φ(ABC) = −2 or −1/2.
isosceles with

vertex angle 120◦

at A.

Table 1

Corollary 5.1. Let ABC be a given non-equilateral triangle. Then there exists an
n0 such that T n

1 (ABC) is positively oriented and T n
2 (ABC) is negatively oriented

for all n ≥ n0.
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Proof. Since φ(ABC) is not 0 and since ‖φ(T n
2 (ABC))‖ = 2n‖φ(ABC)‖, it

follows that for sufficiently large n we have ‖φ(T n
2 (ABC))‖ > 1, and therefore

T n
2 (ABC) is negatively oriented. Here we have used Theorem 5.1 and row 5 of

Table 1.

For the statement about T1 we use row 4 of Table 1 and the fact that ‖φ(ABC)‖ 6=
∞. We remark that the statements in rows 3–5 of Table 1 are proved in Theorem
6.1. �

Another immediate consequence of Theorem 5.1 is that both T1(T2(ABC)) and
T2(T1(ABC)) have the same shape as ABC (since (-2)(-1/2) = 1). However, much
more can be said about both the sizes and locations of these triangles relative to
ABC. Recalling that the medial triangle M(XY Z) of a triangle XY Z is the
triangle whose vertices are the mid-points of the sides Y Z, ZX, and XY , respec-
tively, the next corollary says that T1(T2(ABC)) and T2(T1(ABC)) coincide, and
that they coincide with what one may call the anti-medial triangle M−1(ABC)
of ABC. This is the triangle A0B0C0 whose medial triangle is ABC, as shown
in Figure 3 below. In particular, the composition T2 ◦ T1, identical with T1 ◦ T2,
has a linear magnification factor 2. It may be added that medial and anti-medial
triangles are sometimes referred to as complementary and anti-complementary
triangles; see [2], p. 122.

Figure 3

Corollary 5.2. The negative Torricelli triangle of the positive Torricelli triangle
of ABC and the positive Torricelli triangle of the negative Torricelli triangle of
ABC coincide, and ABC is their medial triangle. In other words,

T1(T2(ABC)) = T2(T1(ABC)) = M−1(ABC),

where M−1(ABC) is the pre-medial triangle A0B0C0 of ABC shown in Figure 3.

Proof. Let T1(T2(ABC)) = A21B21C21 be the negative Torricelli triangle of the
positive Torricelli triangle of ABC. From Theorem 4.1 we get A21

B21

C21

 =

 0 −ζ2 −ζ
−ζ 0 −ζ2

−ζ2 −ζ 0

 A2

B2

C2


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=

 0 −ζ2 −ζ
−ζ 0 −ζ2

−ζ2 −ζ 0

 0 −ζ −ζ2

−ζ2 0 −ζ
−ζ −ζ2 0

 A
B
C


=

 −1 1 1
1 −1 1
1 1 −1

 A
B
C


or

A21 = −A + B + C, B21 = A−B + C, C21 = A + B − C.

Therefore

A =
B21 + C21

2
, B =

C21 + A21

2
, C =

A21 + B21

2
,

and ABC is the medial triangle of A21B21C21, i.e., of T1(T2(ABC)). The same
holds for T2(T1(ABC)). �

It is easy to see that

φ(BCA) = ζφ(ABC), φ(ACB) =
1

φ(ABC)
.

Using Theorem 5.1, it follows that if ABC is not equilateral, then neither of
the triangles T1(ABC) and T2(ABC) can be similar to any cyclic permutation of
ABC. However, the next theorem says that the same is not true for a general
permutation.

Corollary 5.3. There is a positively oriented triangle ABC for which the triangle
T1(ABC) is similar to the triangle ACB. This triangle is unique up to shape and
its angles α, β, and γ (in the standard order) are such that α = π

6
and

cos β =
3− 2

√
6

2
√

9− 3
√

6
, cos γ =

3 + 2
√

6

2
√

9 + 3
√

6
.

Similar statements hold for negatively oriented triangles and for T2.

Proof. In view of Theorem 5.1 and the fact that φ(ACB) = 1/φ(ABC), it follows
that T1(ABC) and ACB are similar if and only if φ2(ABC) = −1

2
. For positively

oriented ABC, this is equivalent, by row 4 of Table 1, to φ(ABC) = i/
√

2.
Without loss of generality, take A = 0. Then

φ(ABC) =
i√
2
⇐⇒

√
2(ζB + ζ2C) = i(ζ2B + ζC)

⇐⇒ (
√

2− iζ)B = (i− ζ
√

2)C

⇐⇒ B = i− ζ
√

2 and C =
√

2− iζ, up to similarity.
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For these A, B, and C we have

‖B‖2 = (i− ζ
√

2)(−i− ζ2
√

2) = 3−
√

6,

‖C‖2 = (
√

2− iζ)(
√

2 + iζ2) = 3 +
√

6,

‖B − C‖2 = ‖ − ζ2(i +
√

2)‖2 = 3.

The rest follows by using the law of cosines. �

6. Relations of ‖φ‖ to the Brocard angle and the areas of the Napoleon
and Torricelli triangles

The definition of φ given earlier in (6) was, in a sense, forced by Theorem 5.1.
Specifically, using the ordinary shape function S defined by S = (A−C)/(A−B),
we find that the shape S ′ of the negative Torricelli triangle of a triangle with shape
S is given by

S ′ =
S − (1− ζ)

(1− ζ)S + ζ
. (7)

Using the standard method for diagonalizing the associated system

f ′ = f − (1− ζ)g, g′ = (1− ζ)f + ζg

of difference equations, one finds that the eigenfunction of (7) is

Φ =
S + ζ2

S + ζ
,

with Φ′ = −1
2

Φ. Writing Φ in terms of A, B, and C, we obtain

Φ =
A + ζB + ζ2C

A + ζ2B + ζC
,

i.e., Φ = φ. Thus the shape function φ is the right function for dealing with the
Torricelli triangle iterations. However, due to its symmetry and simplicity, we
expect it to be useful in other contexts, too.

In general, one may define a shape function (or simply a shape) to be a function
σ that assigns to every triangle ABC an extended complex number σ(ABC) in
such a way that ABC and A′B′C ′ are similar if and only if σ(ABC) and σ(A′B′C ′)
are equal. Then it is trivial that every triangle is completely determined by its
shape (for any shape function) and its area, and that any two shape functions
determine each other uniquely. Thus, if ABC is a triangle, say of area 1 for
simplicity, then all the elements of ABC and of any configurations arising from
ABC are functions of σ(ABC) for every shape function σ. However, it would
be an advantage for a shape function σ if the various elements of ABC have
simple expressions in terms of σ(ABC). It would also be an advantage for σ
if certain natural elements of ABC can be expressed in terms of ‖σ(ABC)‖, or
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equivalently if ‖σ(ABC)‖ has an interesting geometric significance. With this in
mind, Theorems 6.2–6.5 below must come as pleasant surprises and also as further
testimony to the advantage that the shape φ has over the usual shape S. It should
be emphasized here that if σ1(ABC) and σ2(ABC) are two shape functions, then
‖σ1(ABC)‖ and ‖σ2(ABC)‖ do not necessarily determine each other. This is
true in particular for the aforementioned shapes φ and S, and it explains why
Theorems 6.2–6.5 have no analogues in terms of S.

Before proving the main theorems, we introduce the notion of oriented area
and prove a simple theorem.

Definition 6.1. Let (a1, a2), (b1, b2), and (c1, c2) be the cartesian coordinates of
the vertices A, B, and C, respectively, of a triangle ABC. The oriented area of
ABC, denoted by [ABC], is defined by

[ABC] =
1

2

∣∣∣∣∣∣
1 1 1
a1 b1 c1

a2 b2 c2

∣∣∣∣∣∣ .

It is clear that the oriented area of ABC is numerically equal to the usual area
of ABC and that the oriented area is positive or negative depending on whether
ABC is positively or negatively oriented, respectively; see [27, (9.2.8), p. 198 and
9.7.6, p. 220]. For ease of reference, we include this in the next theorem.

Theorem 6.1. Let ABC be a triangle and let

x = AB + BC + CA, (8)

y = AB + BC + CA (= x), (9)

K = x− y, (10)

where z denotes the complex conjugate of z. Then

[ABC] =
iK

4
. (11)

If ABC is non-degenerate, then

ABC is positively oriented⇐⇒ ‖φ(ABC)‖<1 ⇐⇒ [ABC]>0 ⇐⇒ iK >0,

ABC is negatively oriented⇐⇒ ‖φ(ABC)‖>1 ⇐⇒ [ABC]<0 ⇐⇒ iK <0.

If ABC is degenerate, then ‖φ(ABC)‖ = 1 and area(ABC) = [ABC] = K = 0.

Proof. Using the relations 2a1 = A + A, 2ia2 = A− A, etc., we see that

[ABC] =
1

8i

∣∣∣∣∣∣
1 1 1

A + A B + B C + C
A− A B −B C − C

∣∣∣∣∣∣
=

−i

8
(−2)

((
BA + CB + AC

)
−

(
AB + BC + CA

))
=

iK

4
.
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Next, let

v = ‖A‖2 + ‖B‖2 + ‖C‖2. (12)

Then

‖φ(ABC)‖2 =
(A + ζB + ζ2C)(A + ζ2B + ζC)

(A + ζ2B + ζC)(A + ζB + ζ2C)

=
v + ζ2x + ζy

v + ζx + ζ2y
.

Therefore

‖φ(ABC)‖2 < 1 ⇐⇒ v + ζ2x + ζy < v + ζx + ζ2y ⇐⇒ (ζ − ζ2)(x− y) > 0

⇐⇒ (ζ − ζ2)K > 0 ⇐⇒ i
√

3K > 0 ⇐⇒ iK > 0.

The remaining implications follow, as mentioned earlier, from [27, (9.2.8), p. 198
and 9.7.6, p. 220]. �

The next theorem shows the close relation between ‖φ(ABC)‖ and the Brocard
angle ω of ABC. Here, the Brocard angle ω of a triangle ABC is defined to be
the angle ∠BAP where P is the (unique) point inside ABC for which

∠BAP = ∠CBP = ∠ACP ;

see [32].

Theorem 6.2. Let ω be the Brocard angle of a triangle ABC and let
ρ = ‖φ(ABC)‖2.

1. If ABC is positively oriented, then

ρ =
cos(60◦ + ω)

cos(60◦ − ω)
, cot ω =

(1 + ρ)
√

3

1− ρ
.

2. If ABC is negatively oriented, then

ρ =
cos(60◦ − ω)

cos(60◦ + ω)
, cot ω =

(ρ + 1)
√

3

ρ− 1
.

Proof. Let x, y, K, and v be as defined in (8), (9), (10), and (12), and let

V = ‖A−B‖2 + ‖B − C‖2 + ‖C − A‖2. (13)

Then

V = (A−B)(A−B) + (B − C)(B − C) + (C − A)(C − A)

= 2v − x− y

= 2(v − y)−K,
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and therefore

2(v − y) = V + K. (14)

Using (13) and (14), we see that

ρ =
v − y + ζ2K

v − y + ζK
=

V + K + 2ζ2K

V + K + 2ζK
=

V − iK
√

3

V + iK
√

3
.

Therefore

1− ρ

1 + ρ
=

iK
√

3

V
. (15)

(a) Suppose now that ABC is positively oriented. Thus ρ < 1 and [ABC] =
area(ABC). By [32, Proposition 3], we have 4[ABC] cot ω = V. From this and
(11), it follows that

V = iK cot ω. (16)

Plugging this in (15), we see that

ρ =
iK cot ω − iK

√
3

iK cot ω + iK
√

3

=
cot ω −

√
3

cot ω +
√

3
(17)

=
cos ω −

√
3 sin ω

cos ω +
√

3 sin ω
=

cos ω cos 60◦ − sin ω sin 60◦

cos ω cos 60◦ + sin ω sin 60◦
=

cos(60◦ + ω)

cos(60◦ − ω)
.

This proves the first statement. The second one follows from (17).

(b) If ABC is negatively oriented, then ACB is positively oriented and has the
same Brocard angle. Applying (a) to ACB and using the fact that φ(ACB)
φ(ABC) = 1, we get the desired result. �

It follows from Corollary 5.2 that∣∣∣∣ [T1(T2(ABC))]

[ABC]

∣∣∣∣ =

∣∣∣∣ [T2(T1(ABC))]

[ABC]

∣∣∣∣ = 4.

The following theorem answers natural questions that this relation raises.

Theorem 6.3. Let T1(ABC) and T2(ABC) be the negative and positive Torricelli
triangles of a triangle ABC, and let N1(ABC) and N2(ABC) be the negative and
positive Napoleon triangles of ABC. Let ρ = ‖φ(ABC)‖2. Then

[T1(ABC)]

[ABC]
=

4− ρ

1− ρ
,

[T2(ABC)]

[ABC]
=

1− 4ρ

1− ρ
, (18)

[N1(ABC)]

[ABC]
=

1

1− ρ
,

[N2(ABC)]

[ABC]
=

ρ

1− ρ
. (19)
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Proof. Let x, y, K, and v be defined as in (8), (9), (10), and (12), and let
A1B1C1 = T1(ABC). Letting

x1 = A1B1 + B1C1 + C1A1

y1 = A1B1 + B1C1 + C1A1 (= x1)

K1 = x1 − y1

and using Theorem 4.1, we see that

x1 = (ζ2B + ζC)(ζ2A + ζC) + (ζ2C + ζA)(ζ2B + ζA) + (ζ2A + ζB)(ζ2C + ζB)

= ζ2v + 2x + ζy.

From this and the definition K = x− y we see that

K1 = x1 − y1 = x1 − x1

= (ζ2 − ζ)v + 2(x− y) + ζy − ζ2x

= (ζ2 − ζ)v + 2K + ζy − ζ2(y + K)

= (ζ2 − ζ)(v − y) + (2− ζ2)K. (20)

It also follows from (13) that

ρ =
v − y + ζ2K

v − y + ζK
,

and therefore

(v − y)(1− ρ) = (ζρ− ζ2)K. (21)

Multiplying (20) by (1− ρ) and using (21), we see that

(1− ρ)K1 = (ζ2 − ζ)(ζρ− ζ2)K + (2− ζ2)(1− ρ)K = (4− ρ)K,

and therefore

K1

K
=

4− ρ

1− ρ
.

Using (11), we conclude that

[T1(ABC)]

[ABC]
=

[A1B1C1]

[ABC]
=

K1

K
=

4− ρ

1− ρ
,

as desired.
To prove the statement pertaining to T2, let T2(ABC) = A2B2C2. Then it is

easy to see that T1(ACB) = A2C2B2 and that φ(ACB) = 1/φ(ABC). Using this
and the part that we have just proved, we see that

[T2(ABC)]

[ABC]
=

[A2B2C2]

[ABC]
=
−[A2C2B2]

−[ACB]
=

[T1(ACB)]

[ACB]
=

4− 1/ρ

1− 1/ρ
=

1− 4ρ

1− ρ
,
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as desired. This proves (18).
To prove (19), let α1β1γ1 = N1(ABC) and let

ξ1 = α1β1 + β1γ1 + γ1α1

η1 = α1β1 + β1γ1 + γ1α1 (= ξ1)

κ1 = ξ1 − η1.

Using Theorem 4.1, we see that

ξ1 =
1− ζ

3

1− ζ2

3
Q =

1

3
Q,

where

Q = (−ζ2B + C)(A− ζC) + (−ζ2C + A)(B − ζA) + (−ζ2A + B)(C − ζB)

= −ζv + 2x− ζ2y.

Therefore

3κ1 = 3(ξ1 − η1) = 3(ξ1 − ξ1) = Q−Q

= v(ζ2 − ζ) + 2(x− y)− ζ2y + ζx

= v(ζ2 − ζ) + 2K − ζ2y + ζ(y + K)

= (ζ2 − ζ)(v − y) + (2 + ζ)K. (22)

Multiplying (22) by (1−ρ) and using (21), we obtain (1−ρ)κ1 = K, and therefore

κ1

K
=

1

1− ρ
.

Using (11), we see that

[N1(ABC)]

[ABC]
=

[α1β1γ1]

[ABC]
=

κ1

K
=

1

1− ρ
,

as desired.
To prove the statement pertaining to N2, let N2(ABC) = α2β2γ2. Then it is

easy to see that N1(ACB) = α2γ2β2 and that φ(ACB) = 1/φ(ABC). Using this
and the part that we have just proved, we see that

[N2(ABC)]

[ABC]
=

[α2β2γ2]

[ABC]
= − [α2γ2β2]

[ABC]
= − [N1(ACB)]

[ABC]
= − 1

1− 1/ρ
=

ρ

1− ρ
,

as desired. This completes the proof. �

It is well-known that the difference between the areas of the negative and positive
Napoleon triangles of ABC is equal to that of ABC. This, as well as the seem-
ingly unknown analogue for the Torricelli triangles, follows immediately from the
previous theorem. We record these in Theorem 6.4.
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Theorem 6.4. Let U and W be the areas of the negative and positive Torricelli
triangles of a triangle ABC, and let u and w be the areas of the negative and
positive Napoleon triangles. Let ∆ be the area of ABC and let ρ = ‖φ(ABC)‖2.
Then

(a) |u− w| = ∆.

(b) If 1
4

< ρ < 4, then |U −W | = 5∆. Otherwise, U + W = 5∆.

Part (b) of Theorem 6.4 raises a natural question regarding a geometric equivalent
of the condition 1

4
< ρ < 4. The following theorem provides an answer.

Theorem 6.5. Let ω be the Brocard angle of a triangle ABC and let
ρ = ‖φ(ABC)‖2. Then

ρ = 4 or ρ =
1

4
⇐⇒ cot ω =

5
√

3

3
,

ρ > 4 or ρ <
1

4
⇐⇒ cot ω <

5
√

3

3
,

1

4
< ρ < 4 ⇐⇒ cot ω >

5
√

3

3
.

Proof. Since ‖φ(ABC)‖ ‖φ(ACB)‖ = 1 and since ABC and ACB have the same
Brocard angles, we may restrict our attention to positively oriented triangles. So
let ABC be positively oriented. Letting V and K be as defined in (13) and (10),
we see that

ρ <
1

4
⇐⇒ V − iK

√
3

V + iK
√

3
<

1

4
, by (15),

⇐⇒ 4V − 4iK
√

3 < V + iK
√

3

⇐⇒ 3V < 5iK
√

3

⇐⇒ 3iK cot ω < 5iK
√

3, by (16),

⇐⇒ cot ω <
5
√

3

3
, because iK > 0 by Theorem 6.1.

This proves the theorem. �

It is not apparent whether the condition cot ω < 5
√

3
3

has an interpretation that
is more geometric. However, letting ∆ be the area of ABC and V be the sum
a2 + b2 + c2 of the squares of its side-lengths, it follows from (16) that

4∆ cot ω = V , (23)

and it follows from Heron’s formula [27, (9.2.9), p. 198] that

16∆2 = 2(a2b2 + b2c2 + c2a2)− (a4 + b4 + c4). (24)

Squaring (23) and using (24), we obtain(
2(a2b2 + b2c2 + c2a2)− (a4 + b4 + c4)

)
cot2 ω = V 2,
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or equivalently

cot2 ω =
V 2

V 2 − 2P
,

where P = a4 + b4 + c4. It follows that

cot ω <
5
√

3

3
⇐⇒ cot2 ω <

25

3
⇐⇒ V 2

V 2 − 2P
<

25

3
⇐⇒ 25P < 11V 2.

The surprise that the last inequality 25P < 11V 2 is nothing but inequality (3) of
Note 4.1 has an explanation. In fact, a continuity argument applied to Theorem
6.5 shows that the condition cot ω = 5

√
3

3
takes place when U or W changes sign,

i.e., when U or W is 0. This happens when one of the Torricelli triangles is
degenerate – an unacceptable triangle according to [28]. For ease of reference, we
include this in the next theorem.

Theorem 6.6. Let ABC be a triangle with side-lengths a, b, and c, and with
Brocard angle ω. Then the following statements are equivalent.

(a) T1(ABC) is degenerate. (b) T2(ABC) is degenerate.
(c) T −1

1 (ABC) is degenerate. (d) T −1
2 (ABC) is degenerate.

(e) cot ω = 5
√

3
3

. (f) ‖φ(ABC)‖ = 2 or 1
2
.

(g) 25(a4 + b4 + c4) = 11(a2 + b2 + c2)2.

Proof. The equivalence of (a), (e), (f), and (g) is established above. The
equivalence of (a) and (b) follows from the fact that (e) holds for ABC if and only if
it holds for ACB, the fact that if T1(ABC) = A1B1C1, then T2(ACB) = A1C1B1,
and the fact that A1B1C1 is degenerate if and only if A1C1B1 is degenerate. As
for (c), one uses that

T −1
1 (ABC) ∼M−1(T −1

1 (ABC)) = (T2T1)(T −1
1 (ABC)) = T2(ABC).

Similarly for (d). �
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