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1. Introduction

The aim of this paper is to generalize the equivariant higher algebraic K-theory
constructions in [3] from exact categories to Waldhausen categories. So, let W be
a Waldhausen category, G a finite group, X a G-set and X translation category
of X (see 4.1). Then the covariant functors from X to W also form a Waldhausen
category under cofibrations and weak equivalences induced from W (see 4.2).
We denote this category by [X, W ] and we write K(X, W ) for the Waldhausen
K-theory space/spectrum for [X, W ] and write KG

n (X,W ) := πn(K(X,W )) for
the n-th Waldhausen K-theory group for all n ≥ 0. To construct a relative
theory, let X, Y be G-sets, and Y [X, W ] a Waldhausen category defined such
that ob(Y[X, W]) = ob[X, W], cofibrations are Y -cofibrations defined in 4.5 and
weak equivalences are those defined for [X, W ]. This new Waldhausen cate-
gory yields a K-theory space/spectrum K(Y [X,W ]) and new K-theory groups
KG

n (X, W, Y ) := πn(K(Y [X, W ]) (see 5.1.1). Next, we define, for G-sets X, Y , a
new Waldhausen category [X, W ]Y consisting of “Y -projective” objects in [X, W ]
with appropriate cofibrations and weak equivalences (see 4.6), leading to a new
Waldhausen K-theory space/spectrum K([X, W ]Y ) and new K-theory groups
PG

n (X, W, Y ) := πn(K([X, W ]Y )) for all n ≥ 0 (see 5.1.1). Next, we prove that
the functors KG

n (−, W ), KG
n (−, W, Y ) and PG

n (−, W, Y ) : GSets→ Ab are Mackey
functors (see 5.1.2). Under suitable hypothesis on W , we show that KG

0 (−W ),
KG

0 (−, W, Y ) are Green functors and that KG
n (−, W ) are KG

0 (−, W ) modules and
that KG

n (−, W, Y ) and PG
n (−, W, Y ) are KG

0 (−, W, Y )-modules for all n ≥ 0. We
highlight in 5.1.5 some consequences of these results. While still on general Wald-
hausen categories we present equivariant consequences of Waldhausen K-theory,
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Additivity theorem (5.1.8) and fibration theorem (5.1.9). In Section 6, we fo-
cus on applications of the foregoing to Thomason’s “complicial bi-Waldhausen
categories” of the form Chb(C), where C is any exact category. First we obtain
connections between the foregoing theory and those in [3] (see 6.1) and then inter-
prete the theories in terms of group-rings (6.2). In the process we prove a striking
result that if R is the ring of integers in a number field, G a finite group, then the
Waldhausen’s K-groups of the category (Chb(M(RG), w) of bounded complexes
of finitely generated RG-modules with stable quasi-isomorphisms as weak equiva-
lences are finite abelian groups (see 6.4). Finally we present in 6.5 an equivariant
approximation theorem for complicial bi-Waldhausen categories (see 6.6).

Even though we have focussed in this paper on finite group actions, we ob-
serve that it should be possible to construct equivariant K-theory for Waldhausen
categories for the actions of profinite and compact Lie groups as was done for ex-
act categories in [8] and [13]. We also feel that it should be possible to interprete
the foregoing theory for Chb(C) for exact categories C like P (X) the category of
locally free sheaves of OX-modules (X a scheme) as well as M

=
(X), the category

of coherent sheaves of OX-modules where X is a Noetherian scheme.

2. Notes on notation

For a Waldhausen category W , we shall write K(W ) for the Waldhausen K-theory
space/spectrum of W . So, if K(W ) is the space Ω|ωS∗W | or spectrum {Ω|ωSn

∗W |}
we shall write Kn(W ) := πnK(W ).

For an exact category C, we shall write K(C) for the Quillen K-theory space/
spectrum of C. Hence if K(C) is the space ΩBQC or spectrum {ΩBQnC}, we shall
write πn(K(C)) := Kn(C).

For any ring A with identity, we shall write P (A) for the category of finitely
generated projective A-modules, M

=

′(A) for the category of finitely presented A-

modules, M
=

(A) the category of finitely generated A-modules and write Kn(A)

for Kn(P (A)), G′
n(A) for Kn(M

=

′(A)) and Gn(A) for Kn(M
=

(A)). The inclusions

P (A) ⊆ M
=

′(A), P (A) ⊆ M
=

(A) induce Cartan maps Kn(A) → G′
n(A), Kn(A) →

Gn(A). Note that if A is Noetherian, G′
n(A) = Gn(A) since M

=

′(A) = M
=

(A). If

A is an R-algebra finitely generated as an R-module (R a commutative ring with
identity), we shall write Gn(R, A) for Kn(PR(A)) where PR(A) is the category
of finitely generated A-modules that are projective over R. Similarly, we shall
write G′

n(R,A) for Kn(P ′
R(A) where P ′

R(A) is the category of finitely presented A-
modules that are projective over R. Note that if R is Noetherian, then G′

n(R, A) =
Gn(R,A). If G is a finite group and A = RG, we shall write G′

n(R,G) for
G′

n(R,RG), Gn(R,G) for Gn(R,RG).
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3. Some preliminaries on Waldhausen categories; Mackey functors

3.1. Generalities on Waldhausen categories

3.1.1. Definition. A category with cofibrations is a category C with zero object
together with a sub category co(C) whose morphisms are called cofibrations written
A � B and satisfying axioms:
(C1) Every isomorphism in C is a cofibration.

(C2) If A � B is a cofibration, and A→ C any C-map, then the pushout B∪A C
exists in C and the horizontal arrow in the diagram (I) is a cofibration.

A � B
↓ ↓ (I)
C � B ∪A C

• Hence coproducts exist in C and each cofibration A � B has a cokernel
C = B/A.

• Call A � B � B/A a cofibration sequence.

(C3) The unique map 0→ B is a cofibration for all C-objects B.

3.1.2. Definition. A Waldhausen category W is a category with cofibrations
together with a subcategory w(W ) of weak equivalences (w.e for short) containing
all isomorphisms and satisfying:

(W1) Gluing axiom for weak equivalences: For any commutative diagram

C ← A � B
↓ ∼ ↓ ∼ ↓ ∼
C ′ ← A′ � B′

in which the vertical maps are weak equivalences and the two right horizontal maps
are cofibrations, the induced map B ∪A C → B′ ∪A′ C ′ is also a weak equivalence.
We shall sometimes denote W by (W, w).

3.1.3. Definition. A Waldhausen subcategory W ′ of a Waldhausen category W
is a subcategory which is also Waldhausen-category such that

(a) the inclusion W ′ ⊆ W is an exact functor,

(b) the cofibrations in W ′ are the maps in W ′ which are cofibrations in W and
whose cokernels lie in W ′ and

(c) the weak equivalences in W ′ are the weak equivalences of W which lie in W ′.
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3.1.4. Definition. A Waldhausen category W is said to be saturated if whenever
f, g are composable maps and fg is a w.e. then f is a w.e. iff g is

• The cofibrations sequences in a Waldhausen category W form a category E.
Note that ob(E) consists of cofibrations sequences E : A � B � C in W . A
morphism E → E ′ : A′ � B′ � C ′ in E is a commutative diagram

(I)
E A � B � C
↓ ↓ ↓ ↓
E ′ A′ � B′ � C ′

To make E a Waldhausen category, we define a morphism E → E ′ in E to be a
cofibration if A → A′, C → C ′ and A′ ∪A B → B′ are cofibrations in W while
E → E ′ is a w.e. if its component maps A → A′, B → B′, C → C ′ are w.e. in
W . We shall sometimes write E(W ) for E.

3.1.5. Extension axiom A Waldhausen category W is said to satisfy extension
axiom if for any morphism f : E → E ′ as in 3.1.4, maps A → A′, C → C ′ being
w.e. implies that B → B′ is also a w.e.

3.1.6. Examples.
(i) Any exact category C is a Waldhausen-category where cofibrations are the

admissible monomorphisms and w.e. are isomorphisms.

(ii) If C is any exact category, then the category Chb(C) of bounded chain com-
plexes in C is a Waldhausen category where w.e. are quasi-isomorphisms
(i.e. isomorphisms on homology) and a chain map A.→ B. is a cofibration
if each Ai → Bi is a cofibration (admissible monomorphisms) in C.

(iii) Chb(C) as in (ii) above is an example of Thomason’s “complicial bi-Waldhau-
sen category” i.e., a full subcategory of Chb(A) where A is an Abelian
category (see [22]). This is because there exists a faithful embedding of C in
an abelian category A such that C ⊂ A is closed under extensions and the
exact functor C → A reflects exact sequences. Thus a morphism in Chb(C)
is a quasi-isomorphism iff its image in Chb(A) is a quasi-isomorphism. We
shall be particularly interested in the complicial bi-Waldhausen categories
Chb(P(R)), Chb(M′(R)) and Chb(M(R)).

Note: Neeman and Ranicki [19] have used the terminology “permissible
Waldhausen categories” for Thomason’s complicial bi-Waldhausen category.

(iv) Stable derived categories and Waldhausen categories Let C be an
exact category and Hb(C) the (bounded) homotopy category of C. So,
ob(Hb(C)) = Chb(C) and morphisms are homotopy classes of bounded com-
plexes. Let A(C) be the full subcategory of Hb(C) consisting of acyclic
complexes (see [4]). The derived category Db(C) of E is defined by Db(C) =
Hb(C)/A(C). A morphism of complexes in Chb(C) is called a quasi-isomor-
phism if its image in Db(C) is an isomorphism. We could also define un-
bounded derived category D(C) from unbounded complexes Ch(C). Note
that there exists a faithful embedding of C in an Abelian category A such
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that C ⊂ A is closed under extensions and the exact functor C → A reflects
exact sequences. So, a complex in Ch(C) is a cyclic iff its image in Ch(A)
is acyclic. In particular, a morphism in Ch(C) is a quasi-isomorphism iff its
image in Ch(A) is a quasi-isomorphism. Hence, the derived category D(C) is
the category obtained from Ch(C) by formally inverting quasi-isomorphisms.
Now let C =M′(R). A complex M in M′(R) is said to be compact if the
functor Hom(M,−) commutes with arbitrary set-valued coproducts. Let
Comp(R) denote the full subcategory of D(M′(R)) consisting of compact

objects. Then we have Comp(R) ⊂ Db(M′(R)) ⊂ D(M′(R)). Define the

stable derived category of bounded complexes Db(M′(R)) as the quotient
category of Db(M′(R)) with respect to Comp(R). A morphism of com-
plexes in Chb(M′(R)) is called a stable quasi-isomorphism of its image in
Db(M′(R)) is an isomorphism. The family of stable quasi-isomorphism in
A = Chb(M′(R)) is denoted ωA.

(v) Theorem [4]. w(Chb(M′(R)) forms a set of weak equivalence and satisfies
the saturation and extension axioms.

3.2. Higher K-theory of Waldhausen categories

In order to define the K-theory space K(W ) such that

πn(K(W )) = Kn(W )

for a W -category W , we construct a simplicial Waldhausen category S∗W , where
SnW is the category whose objects A are sequences of n cofibrations in W i.e.,

A : 0 = A0 � A1 � A2 → · · ·� An

together with a choice of every subquotient Aij = Aj/Ai in such a way that we
have a commutative diagram

An−1,n

↑
↑

A23 � · · · � A2n

↑ ↑
A12 � A13 � · · · � A1n

↑ ↑ ↑
A1 � A2 � A3 � · · · � An

By convention put Ajj = 0 and A0j = Aj. A morphism A → B is a natural
transformation of sequences. A weak equivalence in SnW is a map A → B such
that each Ai → Bi (and hence each Aij → Bij) is a w.e. in W . A map A→ B is
a cofibration if for every 0 ≤ i < j < k ≤ n the map of cofibration sequences is a
cofibration in E(W )

Aij � Aik � Ajk

↓ ↓ ↓
Bij � Bik � Bjk .
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For 0 < i ≤ n, define exact functors δi : SnW → Sn−1W by omitting Ai from the
notation and re-indexing the Ajk as needed. Define δ0 : SnW → Sn−1W where δ0

omits the bottom arrow. We also define si : SnW → Sn+1W by duplicating Ai

and re-indexing (see [23]). We now have a simplicial category n → wSnW with
degree-wise realisation n → B(wSn) and denote the total space by |wS∗W | (see
[24]).

3.2.1. Definition. The K-theory space of a W -category W is K(W )=Ω|wS∗W |.
For each n ≥ 0, the K-groups are defined as Kn(W ) = πn(K(W )).

Note. By iterating the S construction, one can show (see [23]) that the sequence

{Ω|wS∗W |, Ω|wS, S∗W |, . . . , Ω|wS∗W |}

forms a connective spectrum K(W ) called the K-theory spectrum of W . Hence
K(W ) is an infinite loop space, see [23].

3.2.2. Examples.
(i) Let C be an exact category, Chb(C) the category of bounded chain complexes

over C. It is a theorem of Gillet-Waldhausen that K(C) ∼= K(Chb(C)) and
so, Kn(C) ' Kn(Chb(C) for every n ≥ 0 (see [22]).

(ii) Perfect Complexes Let R be any ring with identity and M
=

′(R) the exact

category of finitely presented R-modules. (Note that M
=

′(R) = M
=

(R) if R

is Noetherian). An object M of Chb(M
=

′(R)) is called a perfect complex if

M is quasi isomorphic to a complex in Chb(P
=

(R)). The perfect complexes

form a Waldhausen subcategory Perf(R) of Chb(M
=

′(R)). So, we have

K(R) ' K(Chb(P
=

(R)) ∼= K(Perf(R))

(iii) For a Waldhausen category W , K0(W ) is the Abelian group generated by
objects of W with relations (i) A ' B ⇒ [A] = [B] and (ii) A � B � C ⇒
[B] = [A] + [C]. Note that this description agrees with the K0(C) for an
exact category C.

3.3. Mackey functors

In this subsection, we briefly introduce Mackey functors in a way relevant to our
context. For more general definition and presentation, see [1], [9] or [14].

3.3.1. Definition. Let G be a finite group, GSet the category of (finite) GSets.
A pair (M∗, M

∗) of functors GSet → R−mod is a Mackey functor if

(i) M∗ : GSet → R − mod is covariant and M∗ : GSet → R − mod is con-
travariant and M∗(X) = M∗(X) := M(X) for any GSet X
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(ii) M∗ transforms finite disjoint unions in GSet into finite products in R−mod,
i.e., the embeddings Xi ↪→ U̇Xi induce isomorphism M(X1U̇X2U̇ . . . U̇Xn) '
M(X1)×M(X2)× · · · ×M(Xn)

(iii) For any pull-back diagram

X1 ×
Y

X2
p2−−−→ X2yp1

yf2

X1 −−−→
f1

Y

in Gset,

the diagram

M(X1 ×
Y

X2)
M∗(p2)−−−−→ M(X2)

M∗(p1)

x xM∗(f2)

M(X1) −−−−→
M∗(f1)

M(Y )

commutes (Mackey subgroup property).

A morphism (or natural transformation) of Mackey functors τ : M → N consists
of a family of homomorphisms τ(X) : M(X) → N(X), indexed by the objects X
in GSet, such that τ is a natural transformation of M∗ as well as of M∗, i.e. such
that for any G-map f : X → Y the diagrams

M(X)
M∗(f)−−−−→ M(Y )yτ(X)

yτ(Y )

N(X)
N∗(f)−−−→ N(Y )

and

M(Y )
M∗(f)−−−−→ M(X)yτ(Y )

yτ(X)

N(Y )
N∗(f)−−−→ N(X)

are commutative.

A pairing M ×N → L of two Mackey functors M and N into a third one, called
L is a family of R-bilinear maps

M(X)×N(X)→ L(X) : (m, n) 7→ m · n

such that for any G-map f : X → Y the following diagrams commute

M(Y )×N(Y ) −−−→ L(Y )

M∗(f)×N∗(f)

y yL∗(f)

M(X)×N(X) −−−→ L(X)

M(X)×N(Y )
Id×M∗(f)−−−−−−→ M(X)×N(X) −−−→ L(X)yM∗(f)×Id

yL∗(f)

M(Y )×N(Y ) −−−→ L(Y )
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M(Y )×N(X)
M∗(f)×Id−−−−−−→ M(X)×N(X) −−−→ L(X)

Id×M∗(f)

y yL∗(f)

M(Y )×N(Y ) −−−→ L(Y )

(the last two being related to Frobenius reciprocity).

A Green functor is a Mackey functor G : Gset→ R−mod together with a pairing
G × G → G such that an R-bilinear map G(X) × G(X) → G(X) turns G(X)
into an R-algebra with unit 1G(X) and such that for each G-map f : X → Y , the
equation f ∗(G)(1G(Y )) = 1G(X) holds.

If G is a Green functor, M a Mackey functor and G ×M → M a pairing such
that 1G(X) acts as identity on M(X), we shall call M with respect to this pairing
a G-module.

4. Equivariant Waldhausen categories

4.1. Definiton. Let G be a finite group, X a G-set. The translation category
of X is a category X whose objects are elements of X and whose morphisms
HomX(x, x′) are triples (g, x, x′) where g ∈ G and gx = x′.

4.2. Theorem. Let W be a Waldhausen category, G a finite group, X the trans-
lation category of a G-set X, [X, W ] the category of covariant functors from X
to W . Then [X, W ] is a Waldhausen category.

Proof. Say that a morphism ζ → η in [X, W ] is a cofibration if ζ(x) � η(x) is
a cofibration in W . So, isomorphisms are cofibrations in [X, W ]. Also if ζ � η
is a cofibration and η → δ is a morphism in [X, W ], then the push-out ζ ∪ δ
defined by (ζ ∪

η
δ)(x) = ζ(x) ∪

η(x)
δ(x) exists since ζ(x) ∪

η(x)
δ(x) is a push-out in W

for all x ∈ X. Hence coproducts also exist in [X, W ]. Also, define a morphism
ζ → η in [X, W ] as a weak equivalence if ζ(x) → η(x) is a weak equivalence in
W for all x ∈ X. It can be easily checked that the weak equivalences contain all

isomorphisms and also satisfy the gluing axiom i.e. if
δ ← ζ � η
↓∼ ↓∼ ↓∼
δ′ ← ζ ′ � η′

is a

commutative diagram where the vertical maps are weak equivalences and the two
right horizontal maps are cofibrations, then the induced maps η ∪

ζ
δ → η′ ∪

ζ′
δ′ is

also a weak equivalence.

4.3. Remarks/Definitions

If W is saturated, then so is [X, W ]. For if f : ζ → ζ ′, g : ζ ′ → η are composable
arrows in [X, W ] and gf is a weak equivalence, then for any x ∈ X, (gf)(x) =
g(x)f(x) is a weak equivalence in W . But then, f(x) is a w.e. iff g(x) is for all
x ∈ X. Hence f is a w.e. iff g is
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4.4. Example. (i) Let W = Chb(C) (C an exact category) be a complicial bi-
Waldhausen category. Then for any small category `, [`, W ] is also a complicial bi-
Waldhausen category (see [5]). Hence for any GSet X, [X, Chb(C)] is a complicial
bi-Waldhausen category. We shall be interested in the cases [X, Chb(P (R))],
[X, Chb(M

=

′(R)] and [X, Chb(M
=

(R))], R a ring with identity.

(ii) Here is another way to see that [X, Chb(C)] is a complicial bi-Waldhausen

category. One can show that there is an equivalence of categories [X, Chb(C)]
F−→

Chb([X, C]) where F is defined as follows: For ζ∗ ∈ [X, Chb(C)], ζ∗(x) = {ζr(x)},
ζr(x) ∈ C where a ≤ r ≤ b for some a, b ∈ Z, and where each ζr ∈ [X, C]. Put
F (ζ∗) = ζ ′∗ ∈ Chb[X, C] where ζ ′∗ = {ζ ′r}, ζ ′r(x) = ζr(x).

4.5. Definition. Let X, Y be G-sets, and X × Y
ϕ−→ X the functor induced by

the projection X × Y
ϕ̂−→ X. Let W be a Waldhausen category. If ζ ∈ ob[X, W],

we shall write ζ ′ for ζ ◦ϕ : X×Y → X → W . Call a cofibration ζ � η in [X,W ]
a Y -cofibration if ζ ′ → η′ is a split cofibration in [X × Y , W ]. Call a cofibration
sequence ζ � η � δ in [X, W ] a Y -cofibration sequence if ζ ′ → η′ → δ′ is a split
cofibration sequence in [X × Y,W ].

We now define a new Waldhausen category Y [X, W ] as follows:

ob(Y[X, W]) = ob[X, W]. Cofibrations are Y -cofibrations and weak equivalences
are the weak equivalence in [X, W ].

4.6. Definition. With the notations as in 2.5, an object ζ ∈ [X, W ] is said to
be Y -projective if every Y -cofibration sequence ζ � η � δ in [X, W ] is a split
cofibration sequence. Let [X, W ]Y be the full subcategory of [X, W ] consisting of
Y -projective functors. Then [X, W ]Y becomes a Waldhausen category with respect
to split cofibrations and weak equivalences in [X, W ].

5. Equivariant higher K-theory constructions for Waldhausen cate-
gories

5.1. Absolute and relative equivariant theory

5.1.1. Definitions. Let G be a finite group X a G-set, W a Waldhausen cat-
egory, [X, W ] the Waldhausen category defined in Section 4. We shall write
KG(X, W ) for the Waldhausen K-theory space (or spectrum) K([X, W ]) and KG

n

(X, W ) for the Waldhausen K-theory group πn(K([X, W ]). For the Waldhausen
category Y [X, W ], we shall write KG(X,W, Y ) for the Waldhausen K-theory space
(or spectrum) K(Y [X, W ]) with corresponding nth K-theory groups KG

n (X,W, Y )
:= πn(KY [X, W ]).

Finally, we denote by PG(X, W, Y ) the Waldhausen K-theory space (or spec-
trum) K([X, W ]Y ) with corresponding n-th K-theory group πn(K([X,W ]Y ))) which
we denote by PG

n (X,W, Y ).
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5.1.2. Theorem. Let W be a Waldhausen category, G a finite group, X any
G-set. Then, in the notation of 5.1.1, we have: KG

n (−, W ), KG
n (−, W, Y ) and

PG
n (−, W, Y ) are Mackey functors: GSet → Ab.

Proof. Any G-map f : X1 → X2 defines a covariant functor f : X1 → X2

given by x → f(x), (g, x, x′) 7→ (g, f(x), f(x′)), and an exact restriction functor
f ∗ : [X2, W ]→ [X1, W ] given by ζ → ζ ◦ f . Also, f ∗ maps cofibrations to cofibra-
tions and weak equivalence to weak equivalences. So, we have an induced map
KG

n (f, W )∗ : KG
n (X2, W ) → KG

n (X1, W ) making KG
n (−, W ) contravariant functor:

GSet → Ab. The restriction functor [X2, W ] → [X1, W ] caries Y -cofibrations
over X2 to Y -cofibrations over X1 and also Y -projective functors in [X2, W ] to
Y -projective functors in [X1, W ]. Moreover, it takes w.e. to w.e. in both cases.
Hence we have induced maps

KG
n (f, W, Y )∗ : KG

n (X2, W, Y )→ KG
n (X1, W, Y )

PG
n (f, W, Y )∗ : PG

n (X2, W, Y )→ PG
n (X1, W, Y )

making KG
n (−, W, Y )∗, PG

n (−, W, Y )∗ contravariant functors GSet → Ab. Now,
any G-map f : X1 → X2 also induces an “induction functor” f∗ : [X1, W ] →
[X2, W ] as follows. For any functor ζ ∈ ob[X1, W], define f∗(ζ) ∈ [X2, W ] by
f∗(ζ)(x2) =

⊕
x1∈f−1(x2)

ζ(x1); f∗(ζ)(g, x2, x
′
2) =

⊕
x1∈f−1(x2)

ζ(g, x1, gx1). Also for any

morphism ζ → ζ ′ in [X1, W ] define (f∗)(α)(x2) =
⊕

x1∈f−1(x2)

α(x1); f∗(ζ)(x2) =⊕
x1∈f−1(x2)

ζ(x1)→ f∗(ζ
′)(x2) =

⊕
x1∈f−1(x2)

ζ ′(x1). Also, f∗ preserves cofibrations and

weak equivalences. Hence we have induced homomorphisms KG
n (f, W ) : KG

n (X1,
W ) → KG

n (X2, W ) and KG
n (−, W ) is a covariant functor GSet → Ab. Also the

induction functor preserves Y -cofibrations and Y -projective functors as well as
weak equivalences. Hence we also have induced homomorphisms

KG
n (f, W, Y )∗ : KG

n (X1, W, Y )→ KG
n (X2, W, Y )

and PG
n (f, W, Y )∗ : PG

n (X1, W, Y )→ PG
n (X2, W, Y )

making KG
n (−, W, Y ), and PG

n (−, W, Y ) covariant functions GSet → Ab. Also for
morphisms f1 : X1 → X, f2 : X2 → X in GSet and any pullback diagram

X1 ×
X

X2
f2−−−→ X2

f1

y y f2

X1 −−−→
f1

X

(I)

we have a commutative diagram

[X1 ×
X

X2, W ] −−−→ [X2, W ]y y
[X1, W ] −−−→ [X, W ]

(II)
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and hence the commutative diagram obtained by applying KG
n (−, W ), KG

n (−, W,
Y ) to diagram II above and applying PG

n (−, W, Y ) to diagram III below:

[X1 ×
X

X2, W ]Y −−−→ [X2, W ]Yy y
[X2, W ]Y −−−→ [X, W ]Y

(III)

shows that Mackey properties are satisfied. Hence KG
n (−, W ), KG

n (−, W, Y ) and
PG

n (−, W, Y ) are Mackey functors.

5.1.3. Theorem. Let W1, W2, W3 be Waldhausen categories and W1 ×W2 →
W3, (A1, A2) → A1 ◦ A2 an exact pairing of Waldhausen categories. Then the
pairing induces, for any GSet X, a pairing [X, W1]×[X, W2]→ [X, W3] and hence
a pairing

KG
0 (X, W1)×KG

n (X, W2)→ KG
n (X, W3).

Suppose that W is a Waldhausen category such that the pairing is naturally asso-
ciative and commutative and there exists E ∈ W such that E ◦X w X ◦ E w X,
then KG

0 (−, W ) is a Green functor and KG
n (−, W ) is a unitary KG

0 (−, W )-module.

Proof. The pairing W1×W2 → W3 (X1, X2)→ X1◦X induces a pairing [X, W1)×
[X, W2]→ [X, W3] given by (ζ1, ζ2)→ ζ1◦ζ2 where (ζ1◦ζ2)(x) = ζ1(x)◦ζ2(x). Now,
any ζ1 ∈ [X, W1] induces a functor ζ∗1 : [X, W2] → [X, W3] given by ζ2 → ζ1 ◦ ζ2

which preserves cofibrations and weak equivalences and hence a map

KG
n (ζ∗1 ) : KG

n (X, W2)→ KG
n (X, W3).

Now, define a map:

KG
0 (X, W1)

δ−→ Hom(KG
n (X, W2), KG

n (X, W3)) (I)

by [ζ1] → KG
n (ζ∗1 ). We now show that this map is a homomorphism. Let ζ ′1 �

ζ1 � ζ ′′1 be a cofibration sequence in [X, W1]. Then, we obtain a cofibration
sequence of functors ζ ′∗1 � ζ∗1 � ζ

′′∗
1 : [X, W2] → [X, W3] such that for each

ζ2 ∈ [X, W2], the sequence ζ ′∗1 (ζ2)→ ζ∗1 (ζ2)→ ζ
′′∗
1 (ζ2) is a cofibration sequence in

[X, W3]. Then by applying the additivity theorem for Waldhausen categories (see
[22] or [23]) we have KG

n (ζ ′∗1 ) + KG
n (ζ

′′∗
1 = KG

n (ζ∗1 ). So, δ is a homomorphism and
hence we have a pairing KG

0 (X, W1)×KG
n (X, W2)→ KG

n (X, W3). One can check
easily that far for any G-map ϕ : X ′ → X the Frobenius reciprocity law holds,
i.e.,. For ξi ∈ [X, Wi], ηi ∈ [X ′, Wi], i = 1, 2, we have canonical isomorphisms

f∗(f
∗(ζ1) ◦ ζ2) ∼= ζ1 ◦ f∗(ζ2)

f∗(ζ1 ◦ f ∗(ζ2)) ∼= f∗(ζ1) ◦ ζ2 and

f ∗(ζ1 ◦ ζ2) ∼= f ∗(ζ1) ◦ f ∗(ζ2)

Now, the pairing W ×W → W induces KG
0 (X, W ) × KG

0 (X, W ) → KG
0 (X, W )

which turns KG
0 (X,W ) into a ring with unit such that for any G-map f : X → Y ,

we have KG
0 (f, W )∗(

1KG
0 (X, W )) ≡ 1KG

0 (Y,W ). Then 1KG
0 (X, W ) acts as the

identity on KG
0 (X, W ). So, KG

0 (X,W ) is a KG
0 (X, W )-module.
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5.1.4. Theorem. Let Y be a G-set, W a Waldhausen category. If the pairing
W ×W → W is naturally associative, commutative and exact and W contains a
natural unit, then KG

0 (−, W, Y ) : Gset→ Ab is a Green functor and KG
n (−, W, Y )

and PG
n (−, W, Y ) are KG

0 (−, W, Y )-modules.

Proof. Note that for any G-set Y , the pairing [X, W ] × [X, W ] → [X, W ] takes
Y -cofibration sequence to Y -cofibration sequences and Y -projective functors to
Y -projective functors and so, we have induced pairing Y [X, W ] × Y [X, W ] →
Y [X, W ] inducing a pairing KG

0 (X, W, Y )×KG
n (X, W, Y )→ KG

n (X, W, Y ) as well
as induced pairing Y [X, W ] × [X, W ]Y → [X, W ]Y yielding K-theoretic pairing
KG

0 (X,W, Y ) × PG
n (X, W, Y ) → PG

n (X, W, Y ). If W ×W is naturally associative
and commutative and W has a natural unit, then KG

0 (−, W, Y ) is a Green functor
and PG

n (−, W, Y ) and KG
n (−, W, Y ) are KG

0 (−, W, Y )-modules.

5.1.5. Remarks. (1) It is well known that the Burnside functor Ω: GSet →
Ab is a Green functor and that any Mackey functor M : GSet → Ab is an Ω-
module and that any Green functor is an Ω-algebra (see [1], [9], [14]). Hence the
above K-functors KG

n (−, W, Y ), PG
n (−, W, Y ) and KG

n (−W ) are Ω-modules, and
KG

o (−, W, Y ) and KG
o (−, W ) are Ω-algebra.

(2) Let M be any Mackey functor: GSet → Ab, X a GSet. Define KM(X) as
the kernel of M(G/G)→ M(X) and IM(X) as the image of M(X)→ M(G/G).
An important induction result is that |G|M(G/G) ⊆ KM(X) + IM(X) for any
Mackey functor M and GSet X. This result also applies to all the K-theory
functors defined above.

(3) If M is any Mackey functor GSet → Ab X a GSet, define a Mackey functor
MX : GSet→ Ab by MX(Y ) = M(X × Y ). The projection map pr : X × Y → Y
defines a natural transformation ΘX : MX →M where ΘX(Y ) = pr: M(X×Y )→
M(Y ). M is said to be X-projective if ΘX is split surjective (see [1], [14]). Now
define the defect base DM of M by DM = {H ≤ G | XH 6= φ} where X is a
GSet (called the defect set of M) such that M is Y -projective iff there exists a
G-map f : X → Y (see [14]). If M is a module over a Green functor G , then
M is X-projective iff G is X-projective iff the induction map G(X)→ G(G/G) is
surjective. In general proving induction results reduce to determining G-sets X
for which G(X) → G(G/G) is surjective and this in turn reduces to computing
DG. Thus one could apply induction techniques to obtain results on higher K-
groups which are modules over the Green functors KG

0 (−, W ) and KG
0 (−, W, Y )

for suitable W (e.g. W = Chb(C), C a suitable exact category (see §5, as well as
[3]).

(4) One can show via general induction theory principles that for suitably cho-
sen W all the higher K-functors KG

n (−, W ), KG
n (−, W, Y ) and PG

n (−, W, Y ) are
“hyper-elementary computable” – see [2], [6], [9], [13].
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5.2. Equivariant additivity theorem

In this subsection, we present an equivariant version of additivity theorem below
(5.2.3) for Waldhausen categories. First we review the non-equivariant situation.

5.2.1. Definition. Let W , W ′ be Waldhausen categories. Say that a sequence
F ′ � F � F ′′ of exact functors F ′, F, F ′′ : W → W ′ is a cofibration sequence of
exact functors if each F ′(A) � F (A) � F ′′(A) is a cofibration in W ′ and if for
every cofibration A � B in W F (A)

⋃
F ′(A)

F ′(B)→ F (B) is a cofibration in W ′.

5.2.2. Theorem. (Additivity theorem) ([17], [24]). Let W , W ′ be Waldhausen
categories, and F ′ � F � F ′′ a cofibration sequence of exact functors from W to
W ′. Then F∗ ' F ′

∗ + F ′′
∗ : Kn(W )→ Kn(W ′).

5.2.3. Equivariant additivity theorem. Let W , W ′ be Waldhausen cate-
gories, X, Y , GSets, and F ′ � F � F ′′ cofibration sequence of exact functors
from W to W ′. Then F ′ � F � F ′′ induces a cofibration sequence F̂ ′ � F̂ � F̂ ′′

of exact functors from [X, W ] to [X, W ′]; from Y [X, W ] to Y [X, W ′]; and from
[X, W ]Y to [X, W ′]Y and hence so we have induced homomorphisms

F̂∗ ∼= F̂ ′
∗ + F̂ ′′

∗ : KG
n (X, W )→ KG

n (X, W ′)

KG
n (X, W, Y )→ KG

n (X, W ′, Y )

and PG
n (X, W, Y )→ PG

n (X, W ′, Y )

Proof. First note that [X, W ], [X, W ′]; Y [X, W ], Y [X, W ′] and [X, W ]Y , [X, W ′]Y
are all Waldhausen categories. Now define F̂ ′, F̂ and F̂ ′′ : [X, W ] → [X, W ′]

by F̂ ′(ζ)(x) = F ′(ζ(x)), F̂ (ζ)(x) = F (ζ(x)) and F̂ ′′(ζ)(x) = F ′′(ζ(x)). Then

one can check that F̂ ′ → F̂ → F̂ ′′ is a cofibration sequence of exact functors
[X, W ] → [X, W ′]. Y [X, W ] → Y [X, W ′]. and [X, W ]Y → [X, W ′]Y . Result
then follows by applying 5.2.2.

5.3. Equivariant Waldhausen fibration sequence

In this subsection, we present an equivariant version of Waldhausen fibration
sequence. First we define the necessary notion and state the non-equivariant
version.

5.3.1. Definition. Cylinder functors A Waldhausen category has a cylin-
der functor if there exists a functor T : ArW → W together with three natural
transformations p, j1, j2 such that to each morphism f : A → B, T assigns an
object Tf of W and j1 : A → Tf , j2 : B → Tf , p : Tf → B satisfying certain
properties (see [4], [24]).

Cylinder Axiom. For all f, p : Tf → B is in w(W ).
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5.3.2. Let W be a Waldhausen category. Suppose that W has two classes of
weak equivalences ν(W ), w(W ) such that ν(W ) ⊂ w(W ). Assume that w(W )
satisfies the saturation and extension axioms and has a cylinder functor T which
satisfies the cylinder axiom. Let Ww be the full subcategory of W whose objects
are those A ∈ W such that 0→ A is in w(W ). Then Ww becomes a Waldhausen
category with co(Ww) = co(W ) ∩Ww and ν(Ww) = ν(W ) ∩ (Ww).

5.3.3. Theorem. (Waldhausen fibration sequence [24]). With the notations and
hypothesis of 5.3.2, suppose that W has a cylinder functor T which is a cylinder
functor for both ν(W ) and ω(W ). Then the exact inclusion functors (W ω, ν) →
(W, ω) induce a homotopy fibre sequence of spectra

K(W ω, ν)→ K(W, ν)→ K(W, ω)

and hence a long exact sequence

Kn+1(W, ω)→ Kn(W ω)→ Kn(W, ν)→ Kn(W, ω)→

5.3.4. Now let W be a Waldhausen category with two classes of weak equiva-
lences ν(W ) and ω(W ) such that ν(W ) ⊂ ω(W ). Then for any GSet X, [X, W ]
is a Waldhausen category with two choices of w.e. ν̂[X, W ] and ω̂[X, W ] and

ν̂[X, W ) ⊆ ω̂[X, W ] where a morphism ζ
f−→ ζ ′ in ν̂[X, W ] (resp. ω̂[X, W ] if

f(x) : ζ(x) → ζ ′(x) is in νW (resp. ω(W ).) One can easily check that if ω(W )
satisfies the saturation axiom so does ω̂[X, W ] (see 2.3. iii). Suppose that ω(W )
has a cylinder functor T : Ar W → W which also satisfies cylinder axiom. .... for
all f : A → B, in W , the map p : Tf → B is in ω(W ), then T induces a functor

T̂ : Ar([X, W ]) → [X, W ] defined by T̂ (ζ → ζ ′)(x) = T (ζ(x) → ζ ′(x)) for any

x ∈ X. Also, for an map f : ζ → ζ ′ in [X, W ] the map p̂ : T̂ (f)→ ζ ′ ∈ ω̂([X, W ]).
Let [X, W ]ω̂ be the full subcategory of [X, W ] such that ζ0 → ζ ∈ ω̂[X, W ] where
ζ0(x) = 0 ∈ W for all x ∈ X. Then [X, W ]ω̂ is a Waldhausen category with
co([X, W ]ω̂) = co([X, W ) ∩ [X, W )ω̂) and ν([X, W ])ω̂ = ν̂[X, W ) ∩ [X, W ]ω̂. We
now have the following

5.3.5. Theorem. (Equivariant Waldhausen fibration sequence) Let W be a
Waldhausen category with a cylinder functor T and which also has a cylinder
functor for ν(W ) and ω(W ). Then, in the notation of 5.3.4, we have exact inclu-
sions ([X, W ]ω̂, ν̂) → ([X, W ], ν̂) and ([X, W ], ν̂) → ([X, W ], ω̂) which induce a
homotopy fibre sequence of spectra

K([X, W ]ω̂, ν̂)→ K([X, W ], ν̂)→ K([X, W ], ω̂)

and hence a long exact sequence

. . . Kn+1([X, W ], ω̂)→ Kn([X, W ]ω̂, ν̂)→ Kn([X, W ], ν̂)→ Kn([X, W ], ω̂) . . .

Proof. Similar to that of 5.3.3.
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6. Applications to complicial bi-Waldhausen categories

In this section, we shall focus attention on Waldhausen categories of the form
Chb(C) where C is an exact category. Recall from [3] that if C is an exact category
and X, Y , Gsets, KG

n (X, C) is the nth (Quillen) algebraic K-group of the exact
category [X, C] with respect to fibre-wise exact sequences; KG

n (X, C, Y ) is the nth
(Quillen) algebraic K-group of the exact category [X, C] with respect to Y -exact
sequences while PG

n (X, C, Y ) is the nth (Quillen) algebraic K-group of the category
[X, C] of Y -projective functors in [X, C] with respect to split exact sequences. We
now have the following result

6.1. Theorem. Let G be a finite group, X, Y GSets, C an exact category. Then
(1) KG

n (X, C) ∼= KG
n (X, Chb(C))

(2) KG
n (X, C, Y ) ∼= KG

n (X, Chb(C), Y )
(3) PG

n (X, C, Y ) ∼= PG
n (X, Chb(C), Y )

Proof. (1) Note that [X, C] is an exact category and [X, Chb(C)] ' Chb([X, C])
is a complicial bi-Waldhausen category. Now identify ζ ∈ [X, C] with the object
ζ∗ in Chb[X, C] defined by ζ∗(x) = chain complex consisting of a single object
ζ(x) in degree zero and zero elsewhere. The result follows by applying the Gillet-
Waldhausen theorem.

(2) Recall that KG
n (X, Chb(C), Y ) is the Waldhausen K-theory of the Waldhausen

category Y [X, Chb(C)] where obY[X, Chb(C)] = ob[X, Chb(C)], cofibrations are Y -
cofibrations in [X, Chb(C)] and weak equivalences are the weak equivalences in
(X, Chb(C)]. Also, KG

∗ (X, C, Y ) is the Quillen K-theory of the exact category
[X, C] with respect to Y -exact sequences. Denote this exact category by Y [X, C].
We can define an inclusion functor Y [X, C] ⊆ CHb(

Y [X, C]) ∼= Y [X, Chb(C)] as in
(1) and apply Gillet-Waldhausen theorem.

(3) Just as in the last two cases, we can define an inclusion functor from the exact
category [X, C]Y to the Waldhausen category Chb([X, C]Y ) ' [X, Chb(C)]Y and
apply Gillet-Waldhausen theorem.

6.2. Remarks. Applications to higher K-theory of group-rings:

(1) Recall from [3] that if X = G/H where H is a subgroup of G and R is
a commutative ring with identity, we can identify [G/H, M

=

′(R)] with M
=

′(RH)

and [G/H, P (R)] with PR(RH). Hence we can identify [G/H, Chb(M
=

′(R)] with

Chb(M
=

′(RH)) and [G/H, Chb(P (R)] with Chb(PR(RH)). So, we can identify

KG
n (G/H, M

=

′(R)) with Kn(M
=

′(RH)) = Gn(RH) when R is Noetherian. By

4.1, we can identify KG
n (G/H, Chb(M

=

′(R))) with Kn(Chb(M
=

′(RH))) ' Gn(RH)

by Gillet-Waldhausen theorem. Also KG
n (G/H, P (R)) ' Kn(ChbPR(RH)) '

Kn(PR(RH)) ' Gn(R,H) by Gillet-Waldhausen result.

(2) With the notations above, we can identify KG
n (G/H, M

=

′(R), Y ) (resp. KG
n

(G/H, P (R), Y ) with Quillen K-theory of the exact category M
=

′(RH) (resp.
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PR(RH)) with respect to exact sequences which split when restricted to the var-
ious subgroups H ′ of H with a non-empty fixed point set Y H′

(see [3], [9]). In
particular

KG
n (G/H, M

=

′(R), G/e) ' KG
n (G/H, M

=

′(R)) ' Kn(M
=

′(RH) ' G′
n(RH)

and

KG
n (G/H, P (R), G/e) ' KG

n (G/H, P (R)) ' Kn(PR(RH) ∼= Gn(R,H).

Hence we also have

KG
n (G/H, Chb(M

=

′(R), G/e) ' KG
n (G/H, Chb(M

=

′(R))

Kn(Chb(M
=

′(RG))) ' Kn(M
=

′(RG)) ' G′
n(RG)

by Gillet-Waldhausen theorem.

(3) Recall from [3] PG
n (G/H, M

=

′(R), Y ) (resp. PG
n (G/H), P (R), Y )) are the Quil-

len K-groups of the exact category M
=

′(RH) (resp. PR(RH)) that are rela-

tively projective with respect to D(Y,H) = {H ′ ≤ H | Y H′ 6= φ}. In par-
ticular PG

n (G/H, P (R), G/e) ≡ Kn(P (RH) ' Kn(RH). Hence we can identify
PG

n (G/H, Chb(P (R)), G/e) with Kn(Chb(P (RH)) ' Kn(RH) by Gillet-Waldhau-
sen theorem.

(4) In view of 6.1, we recover the relevant results and computations in [3], [9].

6.3. We now record below (6.4) an application of Waldhausen fibration sequence
5.3.3, 5.3.5 and Garkusha’s result [4] 3.1.

6.4. Theorem. (1) In the notations of 6.1, 6.2, let R be a commutative ring with
identity G a finite group, M

=

′(RG) the category of finitely presented RG-modules

Chb(M
=

′(RG)) the Waldhausen category of bounded complexes over M
=

′(RG) with

weak equivalences being stable quasi-isomorphism (see 3.1.6 (iv), (v)). Then we
have a long exact sequence for all n ≥ 0

→ Kn+1(Chb(M
=

′(RG), ω)→ PG
n (G/G, Chb(P (R)), G/e) . . .

→ KG
n (G/G, Chb(M

=

′(R), G/e)→ Kn(Chb(M
=

′(RG), ω)→ . . .

(2) If in (1), R is the ring of integers in a number field, then for all n ≥ 1,
Kn+1(Chb(M

=

′(RG), ω) is a finite Abelian group.

Proof. From 6.1, 6.2 we have

PG
n (G/G, Chb(P (R)), G/e) ∼= PG

n (G/G, P (R), G/e) ' Kn(RG)
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and

KG
n (G/G, Chb(M

=

′(R), G/e) ' KG
n (G/G, M

=

′(R), G/e) ∼= G′
n(RG).

Hence the long exact sequence follows from [4] 3.1. Now, if R is the ring of integers
in a number field F , then RG is an R-order in a semi-simple F -algebra FG and so
by [7], [10], Kn(RG), Gn(RG) are finitely generated Abelian groups for all n ≥ 1.
Hence for all n ≥ 1, Kn+1(Chb(M

=
(RG), ω) is finitely generated. So, to show that

Kn+1(Chb(M
=

(RG), ω) is finite, we only have to show that it is torsion. Now let

αn : Kn(RG)→ Gn(RG) be the Cartan map which is part of the exact sequence

· · · → Kn+1(Chb(M
=

(RG), ω)→ Kn(RG)
αn−→ Gn(RG)

→ Kn(Chb(M
=

(RG), ω)→ · · · (I)

From this sequence we have a short exact sequence

0→ Coker αn+1 → Kn+1(Chb(M
=

(RG), ω)→ Ker αn → 0 (II)

for all n ≥ 1. So, it suffices to prove that kerαn is finite and Coker αn+1 is torsion.
Now, from the commutative diagram

Kn(RG)
αn−→ Gn(RG)

↘ βn ↙ γn

Kn(FG)

we have an exact sequence 0→ Ker αn → SKn(RG)→ SGn(RG)→ Coker αn →
Coker βn → Coker γn → 0. Now for all n ≥ 1, SKn(RG) is finite (see [10] or
[11]). Hence Ker αn is finite for all n ≥ 1. Also, SGn(RG) is finite for all n ≥ 1
(see [6] or [7]) and Coker βn is torsion (see [12], 1.7). Hence Coker αn is torsion.
So, from (II), Kn+1(Chb(M

=
(RG), ω) is torsion. Since it is also finitely generated,

it is finite.
We close this section with a presentation of an equivariant approximation

theorem for complicial bi-Waldhausen categories.

6.5. Theorem. (Equivariant approximation theorem) Let W = Chb(C) and
W ′ = Chb(C ′) be two complicial bi-Waldhausen categories where C, C ′ are exact
categories. F : W → W ′ an exact functor. Suppose that the induced map of derived
categories D(W ) → D(W ′) is an equivalence of categories. Then for any GSet
X, the induced map of spectra K(F ) : K([X, W ]) → K([X, W ′]) is a homotopy
equivalence.

Proof. An exact functor F : Chb(C)→ Chb(C ′) induces a functor

F̂ : [X, Chb(C)]→ [X, Chb(C ′)], ζ → F̂ (ζ),

where F̂ (ζ(x) = F (ζ(x)). Now suppose that the induced map D(Chb(C) →
D(Chb(C ′)) is an equivalence of categories. Note that D(Chb(C)) (resp. D(Chb(C ′))
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is obtained from Chb(C) (resp. Chb(C ′)) by formally inverting quasi-isomorphisms.
Now a map ζ → η in [X, Chb(C)] is a quasi-isomorphism iff ζ(x)→ η(x) is a quasi-
isomorphism in Chb(C). The proof is now similar to [5] 5.2.
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