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Abstract. Let Sy denote the homothety class generated by a convex
set S CR™ Sy ={a+AS|aecR" >0} We determine conditions
for the Minkowski sum Bg + Cgx or the Minkowski difference By ~
Cy of homothety classes By and C'y generated by closed convex sets
B,C'" C R" to lie in a homothety class generated by a closed convex
set (more generally, in the union of countably many homothety classes
generated by closed convex sets).
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1. Introduction and main results

In what follows, everything takes place in the Euclidean space R™. Let us recall
that a set B is homothetic to a set A provided B = a + AA for a suitable point
a and a scalar A > 0. If A is a convex set, then the Minkowski sum of any two
homothetic copies of A is again a homothetic copy of A. In other words, the
homothety class

Ag={a+ M A|aeR"\>0}

is closed with respect to the Minkowski addition. We will say that closed convex
sets B and C form a pair of H-summands of a closed convex set A, or summands
of A with respect to homotheties, provided the Minkowski sum of any homothetic
copies of B and C' is always homothetic to A. (See Schneider’s monograph [7]
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for an extensive treatment of the Minkowski addition and subtraction of convex
bodies.) In terms of homothety classes, B and C are H-summands of A if and
only if By + Cy C Ay, where

BH+CH:{B/+CI | BIEBH,C/GCH}.

Our first result (see Theorem 1) describes the pairs of H-summands of a line-free
closed convex set in terms of homothety classes. In what follows, rec S denotes
the recession cone of a closed convex set S. In particular, rec S is a closed convex
cone with apex 0 such that S +recS =S.

Theorem 1. For a pair of line-free closed convex sets B and C, the following
conditions (1)—(3) are equivalent.

(1) By +Cy belongs to a unique homothety class generated by a line-free closed
conver Set.

(2) By + Cy lies in the union of countably many homothety classes generated
by line-free closed convex sets.

(3) There is a line-free closed convex set A such that:
(a) rec A =rec B +recC,

(b) each of the sets By = B +rec A and Cy = C + rec A is homothetic
either to A or to rec A,

(c) if A is not a cone, then at least one of the sets By, Cy is not a cone.

As follows from the proof of Theorem 1, a line-free closed convex set A with
properties (a)—(c) above satisfies the inclusion By + Cy C Ag.

Corollary 1. For a pair of compact convex sets B and C', each of the conditions
(1)—~(3) from Theorem 1 holds if and only if B and C are homothetic.

We note that Corollary 1 can be easily proved by using Radstrom’s cancellation
law [5]. The proof of Theorem 1 is based on the properties of exposed points of
the sum of two line-free closed convex sets formulated in Theorem 2. As usual,
exp S and ext S stand, respectively, for the sets of exposed and extreme points of
a convex set S.

Theorem 2. Let a line-free closed convex set A be the Minkowski sum of closed
convex sets B and C'. Then both convex sets By = B +rec A and Cy = C +rec A
are closed and satisfy the following conditions:

(1) for any point a € exp A there are unique points b € exp By and ¢ € exp Cy
such that a = b+ c,

(2) the sets

expe B ={x € exp B | 3y € exp C such that z +y € exp A},
expp C ={x €expC | Iy € exp B such that x +y € exp A}

are dense in exp By and exp Cy, respectively.
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Remark 1. Theorem 2 seems to be new even for the case of compact convex sets.
Moreover, there are convex bodies B and C in R? such that exp. B # exp B and
expy C # expC. Indeed, let B = {(z,y) | *> + y*> < 1} be the unit disk of the
coordinate plane R?, and C' = {(z,y) | 0 < z,y < 1} be the unit square. Then
b=(0,1) lies in exp B \ exp B

Remark 2. Since exp A is dense in ext A, Theorem 2 remains true if we substitute
“ext” for “exp”. Then extcB = ext B and extg(C' = ext C' provided both B and
C' are compact (see [2]). One can easily construct unbounded closed convex sets
B and C in R? such that extcB # ext By and extgC # ext Cj.

Let us recall that the Minkowski difference X ~ Y of any sets X and Y in R" is
defined by X ~Y ={z e R" |z +Y C X}. If both X and Y are closed convex
sets, then the equality X ~Y =N{X —y |y € Y} implies that X ~ Y is also
closed and convex (possibly, empty). Given n-dimensional closed convex sets B
and C, we put

By ~Cy={B ~C'|B € By, C'"e€Cy, dim(B' ~C") =n}.

An important notion here is that of tangential set introduced by Schneider |7,
p. 136]: a closed convex set D of dimension n is a tangential set of a convex body
F provided ' C D and through each boundary point of D there is a support
hyperplane to D that also supports F.

Theorem 3. For a pair of convexr bodies B and C, the following conditions
(1)—~(4) are equivalent:
1) By ~ CH C BH,

(
(2
(3

) By ~ C’H lies in a unique homothety class generated by a convex body,
) By ~ C’H lies in the union of countably many homothety classes generated
by convex bodies,

(4) B is homothetic to a tangential set of C.

Remark 3. Theorem 3 cannot be directly generalized to the case of unbounded
convex sets. Indeed, let B and C be convex sets in R? given by

B=A{(z,y) lz=20,2y 21}, C={(z,y)|z20,y=20,z+y <1}

Then B ~ vC' = B for any v > 0, while B is not homothetic to a tangential set
of C.

2. Proof of Theorem 2

We say that a closed halfspace P supports a closed convex set S provided the
boundary hyperplane of P supports S and the interior of P is disjoint from S. If
P ={z € R"| (z,e) < a} where e is a unit vector and « is a scalar, then e is
called the outward unit normal to P.
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Lemma 1. Let S be a line-free closed convexr set, and P be a closed halfspace
such that P NrecS = {0}. Then:

(1) there is a translate of P that supports S,
(2) no translate of P contains an asymptotic ray of S,

(3) if a translate Q of P is disjoint from S, then for any point x € bd @ the
tangent cone

T.(S)=cl(U{x+ A(S—z) | A >0})
is line-free and satisfies the condition Q N T,(S) = {z}.

Proof. First we claim that for any vector x the intersection (z+ P)N.S is compact.
Indeed, if (z + P) NS were unbounded, then rec ((z + P) N .S) would contain a
ray with apex 0. This and the equality rec ((z + P) N.S) = P NrecS contradict
the hypothesis.

(1) Let z+ P be a translate of P that intersects S. Because (z+ P)NS is compact,

there is a translate y+ P that supports (x+ P)N.S. Obviously, y+ P also supports
S.

(2) Assume for a moment that a translate z + P of P contains an asymptotic ray
[ of S. If x + P is a translate of P that intersects S, then (z + P) N .S should
contain the ray (z — z) + [, contradicting (a).

(3) The cone T,(95) is line-free as a tangent cone of a line-free convex set S with
x ¢ S. Assume that Q NT,(5) contains a point z # x. Then the ray [z, z) lies in
Q N T,(S), which implies that | = [z, z) — x lies in P Nrec S, a contradiction. O

Lemma 2. Let S be a line-free closed convex set, P be a closed halfspace that
supports S, and e be the outward unit normal to P. For any € > 0 there is a
closed halfspace P' such that SN P’ is an exposed point of S and the outward unit
normal €' to P’ satisfies the inequality |le — €'|| < e.

Proof. Choose a point a € SN P, and let b = a — e. Then the unit ball with
center b lies in P and touches S at a. Let B, be the ball with center b and radius
r €]0,1[. We can choose 7 so close to 1 that for any closed halfspace @ that
contains B, and is disjoint from S, the outward unit normal g to @) satisfies the
inequality |le — ¢|| < e.

As proved in [1], there is a pair of distinct parallel hyperplanes L and M both
separating S and B, such that the intersections S N L and B, N M are exposed
points of S and B,, respectively. Let P’ be the closed halfspace bounded by L
and containing B,. By the choice of r, the outward unit normal €’ to P’ satisfies
the inequality |le — €| < e. 0

I am indebted to Rolf Schneider for his comment that Lemma 2 can be proved
by using a duality argument and the fact that the set of regular point of an
n-dimensional closed convex set S C R™ is dense in the boundary of S.
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Lemma 3. ([6, Corollary9.1.2]) Let B and C be line-free closed convex sets
such that their sum A = B + C s also line-free. Then A is closed and rec A =
rec B +recC. O

We continue with the proof of Theorem 2. Because A is line-free, both By and Cj
are also line-free. Lemma 3 implies that By and Cj are closed sets and rec By =
rec Cy = rec A.

Let a be an exposed point of A, and let P be a closed halfspace supporting A
such that ANP = {a}. f a =b+¢, with b € B and ¢ € C, then, as is easily seen,
the halfspace Q) = (b—a) + P supports B at b, and the halfspace T'= (¢ —a) + P
supports C' at ¢. Moreover, BN Q = {b} and C NT = {c} since otherwise A
should intersect P along a set larger than {a}. Hence b € exp B and ¢ € expC.
Lemma 1 implies that By N @Q = {b} and Co N T = {c}. Thus b € exp By and
¢ € exp Cy.

Regarding part (2) of the theorem, we will prove only that exp. B is dense in
exp By, since the second inclusion holds by the symmetry argument. First we
observe that exp- B C exp By. Indeed, let © € exp- B and y € expy C be such
that z+vy € exp A. Choose a closed halfspace P with PN A = {x+y}. As above,
the halfspace ) = P — y satisfies Q N By = {z}. Hence x € exp By.

To prove the inclusion exp By C cl exp B, it suffices to show that
By = conv (cl exps B) + rec A. (%)

Indeed, let (%) be true. By [3, 4], we have By = conv (ext By) + rec A. Moreover,
ext By C X for any set X C By with By = conv X +rec A. Then (%) implies that
exp By C ext By C cl exps B.

Assume, for contradiction, that By # conv (cl expy B) + rec A. Then there is
a point p € exp By that does not lie in the line-free closed convex set B; =
conv (cl exps B) +rec A. Let @ be the closed halfspace such that By N Q = {p}.
Because By C By and p ¢ Bj, we have B; N Q) = @. Let e be the outward unit
normal to Q).

Since p ¢ By, the tangent cone T),(By) is line-free. Furthermore, QNT,(B;) =
{p} (see Lemma 1). Hence there is a scalar ¢ > 0 such that any closed halfspace
H with the properties p € bd H and |le — h|| < &, where h is the outward unit
normal for H, supports T,(By) at p only: HNT,(B;) = {p}.

Lemma 1 implies the existence of a translate of () that supports A. By Lemma
2, there is a closed halfspace Q)" whose outward unit normal €’ satisfies ||e—¢€'|| < €
and such that AN Q' is an exposed point of A. Let {a} = AN Q. As above,
a = b+ c with b € expp B and ¢ € expg C. Moreover, the closed halfspace
P = (b—a)+ Q' satisfies Byn P = {b}. By the choice of , the halfspace P should
be disjoint from B;. The last is in contradiction with b € exp, B C B;. Hence
By = B;. O
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3. Proof of Theorem 1
(3) = (1) Given points b, ¢ and scalars 3,y > 0, we have

(b+8B) + (c+~C) =b+ B(B +recB) + ¢+ ~(C +recC)
=b+ (B +recB+recC) + c+ y(C +rec B+ recC)
=b+ (B +recA)+c+y(C +recA)
— b+ c+ BBy +C.

If Ais a cone then A =rec A and BBy +vCy = A. Let A be distinct from a cone.
By (3c), at least one of the sets By, Cp is not a cone. Assume, for example, that
By is not a cone. In this case,

Br+vz+ (BA+yp)A, if By =x+ NA, Cy=z+ A,

By +~Cy =
o496 {ﬁx—i"%&“—i—ﬁ)\fl, if Bp=x+ AA, Cy=z+recA.

Summing up, (b+ 8B) + (¢ +~vC) is homothetic to A. Hence By + Cy C Ay

Since (1) = (2) trivially holds, it remains to prove that (2) = (3). We need some
auxiliary lemmas.

Lemma 4. Line-free closed conver sets S and T" are homothetic if and only if
rec S =recT and the sets clexp S and clexpT" are homothetic. O

Lemma 5. If the sets B and C' satisfy condition (2) of Theorem 1, then there
are scalars 0 < vy, < 79 such that B+ v,C and B + v,C' are homothetic.

Proof. Indeed, consider the family F = {B + ~vC | v > 0}. Since F lies in the
union of countably many homothety classes, and since the elements of F depend
on an uncountable parameter 7, there is a pair of scalars 0 < ; < 7, such that
the sets B + v,C' and B + 7,C' are homothetic. O

Continuing with (2) = (3), we are going to show that the set A = B+ C' satisfies
condition (3). By Lemma 3, A is a closed convex set with rec A = rec B + recC.
Furthermore, Theorem 2 obviously implies that A is a cone if and only if both B
and C' are cones, whence part (3c) also holds.

Hence it remains to prove (3b). If any of the sets By, Cp, say By, is a cone, then
By = x + rec By = x + rec A for a suitable point z, and

CQICQ+TGCA:CO+(B0—ZE):A—.T.

Thus we may assume that neither By nor () is a cone. In this case we will prove
that both By and Cj are homothetic to A. Since A = By + Cy, it is sufficient to
show that By and Cj are homothetic. By Lemma 4, By and Cj are homothetic if
and only if the sets clexp By and clexp C are homothetic, and Theorem 2 implies
that the last are homothetic if and only if cl exp B and cl expg C are homothetic.

Choose any point ag € exp A. Then ag = by+cy for suitable points by € exp- B
and ¢y € expg C. Translating B and C' on vectors —by and —cy, respectively, we
may consider that ag = by = ¢y = 0. We divide our consideration into two steps.
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1. If points a € exp A\ {0}, b € expe B, and ¢ € expg C are such that a = b+ c,
then 0, b, and c are collinear.

Indeed, assume the existence of a point a € exp A\ {0} and of points b € exp B,
¢ € expg C such that a = b+ ¢ but 0, b, and ¢ are not collinear. Then no three
of the points 0, b+ v1¢, b 4+ ¢, with 0 < 77 < 79, are collinear. Since b+ ~yc is
an exposed point of B 4+ ~vC', which has 0 as an exposed point, we conclude that
no two elements of the family {B + yC | v > 0} are homothetic, contradicting
Lemma 5.

2. There is a scalar p > 0 such that for any points a € exp A\ {0}, b € expy B,
and ¢ € expg C' with a = b+ ¢, we have ¢ = ub.

Indeed, assume the existence of points ay,as € exp A\ {0} and of corresponding
points by, b € exp B and c1,cy € expg C, with a; = b; + ¢; and ay = by + o,
such that ¢; = p1by and ¢y = usbe, where py # ps. In this case, both by + vye; =
(14 yp1)by and by +yeq = (14 ypuz2)by are exposed points of B +~C' for all v > 0.
Since 0 is an exposed point of B + (', v > 0, and since the ratio

|(1 4+ ypea)by — 0 _ L+ ym
(L +yp2)be = Of 1+ ypo

is a strictly monotone function of « on |0, 00), we conclude that no two elements
of the family {B 4+ ~vC | v > 0} are homothetic. The last is in contradiction with
Lemma 5.

Summing up, we conclude the existence of a scalar 1 > 0 such that cl exp- B =
el expg C. By Lemma 4, By and Cjy are homothetic. O

4. Proof of Theorem 3

The key role here plays the following lemma, which is a slight generalization of
Lemma 3.1.10 from [7].

Lemma 6. Given a closed convex set B of dimension n and a convex body C, the
following conditions are equivalent:

(1) there is a scalar T > 0 such that B is a tangential set of TC,
(2) there is a scalar T > 0 such that B ~~C = (1 —~/7)B for all v €]0, 7],
(3) there is a scalar v > 0 such that B ~ vC' = AB with 0 < A\ < 1.

Proof. (1) = (2) If B is a tangential set of 7C for some 7 > 0, then 7C' C B and
~vC' C /7B for any scalar v €10, 7[. In this case,

(1—~/T)B=B~~/TBC B ~~C.

To prove the opposite inclusion, choose any point + € B ~ ~v('. Equivalently,
x+yC C B. We claim that = + v/7B C B. Indeed, let P = {P,} be the family
of closed halfspaces each containing B such that the boundary hyperplane H, of
every P, € P supports B at a regular boundary point. Obviously, B = N{P, |
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P, € P}. Since B is a tangential set of 7C', each P, € P contains 7C' and H,
supports 7C'. Hence each halfspace v/7 P, contains yC' and the hyperplane v/7H,,
supports yC. Then the inclusion z + vC' C B implies that  + /7P, C P, for
all P, € P. Thus

r+~vy/tB=n{x+~/7P,| P, P} C{P,| P. € P} =B,

implying that + € B ~ /7B = (1 —v/7)B. Finally, B ~vC C (1 —v/7)B.
Since (2) trivially implies (3), it remains to show that (3) = (1). Let B ~ vC =
AB with 0 < A < 1. Then

M B = \AB) = A(B~~C) =AB ~ \C
=(B~~7C)~X\C =B~ (1+A)nC.

By induction on k£ =1,2,... we get

kp _ k-1 _ 1-)\F
NB=B~1+A+---+ X" )9C=B~y75C.

As is easily seen, \*B — rec B when k — co. By the compactness argument, we
have B ~ p,C — B ~ pC when pp — p. Hence

recB=B~71C with 7= T

1—A

It remains to prove that B is a tangential set of 7C'. Choose any point z € bd B.
Then

Az € Abd B = bd (AB) = bd (B ~ 7C).

In particular, Ax € B ~ ~C', implying that Ax +~yC C B.

We claim that Ax 4+ vC' contains a boundary point of B. Indeed, assume for
a moment that \z + vC' C int B. Since C' is compact, there is an open ball U, of
radius € > 0 centered at 0 such that the e-neighborhood Ax +~vC 4+ U; of Ax +~C
lies in B. Hence Az + U. C B ~ vC, in contradiction to Az € bd (B ~ 7C).

Let y be a point of Ax 4+ vC' that belongs to bd B. Then y = Ax + ¢ for a
point ¢ € C' and

y— A\x ye

T :1_)\:TC€7'CCB.

v =

Since y = (1 — A\)v + Az with z,y € bd B and v € B we conclude that the line
segment [z, v] lies in bd B. Hence any support hyperplane of B through y contains
x and v and thus supports B at x and 7C' at v. So B is a tangential set of 7C'.O

Remark 3. From the proof of Lemma 6 we conclude that if the sets B and C
satisfy condition (3) of the lemma, then B is a translate of a tangential set of

v/(1—=X)C.
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Let us recall (see [7, p.136]) that the inradius of a convex body B with respect to
a convex body C' is defined by

re(B) = max{\A > 0|z + \C C B}.

Lemma 7. Given convez bodies B and C, we have ro(B)rg(C) < 1. The equality
ro(B)rp(C) =1 holds if and only if B and C' are homothetic.

Proof. Put s =r¢(B) and t = rg(C). Then x+sC C B and z+tB C C for some
vectors x, z. In this case, tx 4+ stC' C tB C C' — z, implying that st < 1.

If st = 1 then from the inclusion above we deduce that tB = C' — z, whence
B is homothetic to C'. Conversely, if B = x + yC, v > 0, then, as easy to see,
rg(C) =~ and ro(B) =1 O

Lemma 8. Given convex bodies B and C' and a scalar p €]0,rc(B)[, we have
ro(B ~ pC) =ra(B) — p.

Proof. Indeed,
re(B ~ pC) =max{A\ > 0|z +AC C B~ pC, z € R"}
=max{\>0|z+ \NC+pC C B, z € R"}
=max{A\>0|z+ (A+p)C C B, z € R"}
=rc(B) = p. 0
Lemma 9. Let B and C be convexr bodies such that B ~ pC = z 4+ uB for a
vector z and scalars p €0,7¢(B)| and > 0. Then
1—prg(B) < u < 1—prp(C).
Proof. Let v be a vector such that v 4+ rg(C)B C C. According to Lemma 7,
pv + prp(C)B C pC with prg(C) < re(B)rg(C) < 1. We have
Br~pC={zeR"|z+pC CB}C{xeR"|z+pv+prg(C)B C B}
={xeR"|z+ prg(C)B C B —pv} =(B—pv)~ prg(C)B
= (B~ prp(C)B) — pv = (1= pr(C))B — pv.
Hence
24+ uB =B~ pC C(1-prg(C))B — pv,

which implies the inequality p <1 — prg(C).
On the other hand, there is a vector w such that w + ro(B)C C B, which
gives the inclusion pC' C pr5'(B)(B — w). Thus
z24+uB=B~pC={xeR"|z+pC C B}
S>{z eR"|x+ prg'(B)(B —w) C B+ prg'(B)w}
={z eR"|z+ pr;'(B)B C B+ pr;'(B)w}
— (B+ pr(Byw) ~ prg(B)B
— 15 (Byw+ (B ~ prg!(B)B)
=1 (B)w+ (1 - pr;'(B))B,
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resulting in the inequality 1 — prg'(B) < pu. O

Lemma 10. If T1,T5,... s a convergent sequence of tangential convexr bodies of
a convex body C, then their limit is also a tangential body of C.

Proof. Let T = limy_. o Ty. Choose a boundary point x of T. Then there is a
sequence of points xp € bdTy, k = 1,2,..., such that x = limy_,,, z;. For each
point x; there is a hyperplane Hj supporting T} at x; and also supporting C.
The sequence Hy, Ho, ... contains a subsequence Hi, H, ... that converges to a
hyperplane H. As is easily seen, H supports T at x and also supports C. Hence
T is a tangential body of C. O

Proof of Theorem 3. (4) = (1) By Lemma 6, every n-dimensional set
(x+AB) ~ (24+7C) = (x — 2) + AM(B ~~v/AC), A\,v >0,

is homothetic to B. Hence By ~ Cy C By.
Since the implications (1) = (2) = (3) are trivial, it remains to show that (3) =
(4). Consider the intervals

I =12"%rc(B), 2" *ro(B), k=1,2,....
By the assumption, each family
Dy ={B~\XC| € I,dm(B~\C)=n}, k=12 ...,

lies in the union of countably many homothety classes. Hence there are scalars
Ok, Yk € I and py, €]0, 1] such that 6 < v, and

B ~3C =)+ (B~ 6C), xp€R" k=1,2,....
Since
B ~3,C =B~ (:C+ (% — 0)C) = (B ~ 0;,C) ~ (7 — ) C,
we have
(B ~ 0,C) ~ (y — 0)C = x + p(B ~ 6,.C).

By Lemma 6 and Remark 3, B ~ 0,C' is a translate of a tangential set of (v, —
d)/(1 — px)C, or, equivalently, the body

Dy = (1= pu) /(v = ) (B ~ 6,.C)
is a translate of a tangential set T} of C'. Lemma 9 implies that
pr > 1 — (e — 0p)ret (B — 0,0,
which gives

’yk—ék - To(B—dkC)’

k=1,2,....
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By Lemma 8, r¢(B ~ 6,C) = r¢(B) — k. Since §; > o > --- > 0, we have
1 1 1

ro(B—0.0)  1e(B—6C) " ra(B)
As a result, all of Dy, Ds, ... are contained in a neighborhood of B ~ ¢;C. Then
we can select a subsequence D), D), ... of Dy, Ds,... that converges to a convex
body D. Since each Dy, is a translate of the tangential body 7} that contains C, the
respective subsequence 77,75, ... converges to a convex body 7. By Lemma 10,
T is a tangential body of C.
Finally, limy .. (B ~ 0;,C) = B implies that B is homothetic to T O
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