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1. Introduction

R denotes a right near-ring and all near-rings considered are right near-rings and
not necessarily zero-symmetric.

The left Jacobson radical J, is not a Kurosh-Amitsur radical (KA-radical) in
the class of all near-rings, v € {0, 1, 2}. It is not known whether the left Jacobson
radical J; is a KA-radical in the class of all near-rings. Veldsman [13] introduced
the left Jacobson radicals Jy) and J3() for near-rings. These two are the only
known Jacobson-type radicals which are KA-radicals in the class of all near-rings.
Moreover, these two radicals are ideal-hereditary in the class of all zero-symmetric
near-rings. It is also known that there is no non-trivial ideal-hereditary radical in
the class of all near-rings.

In [5] and [6] the first author studied the structure of near-rings in terms of
right ideals and showed that as for rings, matrix units determined by right ideals
identifies matrix near-rings. In order to show the importance of the right Jacobson
radicals of near-rings in the extension of a form of the Wedderburn-Artin theorem
of rings involving the matrix rings to near-rings, the right Jacobson radicals of
type-v were introduced and studied by the first and second author in [7], [8], [9]
and [10], v € {0, 1, 2, s}.

In [11] and [12] the authors have shown that the right Jacobson radicals of
type-0, 1 and 2 introduced by the first two authors are KA-radicals in the class
of all zero-symmetric near-rings but they are not ideal-hereditary in that class.
In this paper right R-groups of type-0(e), right 0(e)-primitive ideals and right
0(e)-primitive near-rings are introduced. Using them the right Jacobson radical
of type-O(e) is introduced for near-rings and is denoted by Joce)- A right 0(e)-
primitive ideal of R is an equiprime ideal of R. It is shown that Jg(e) is a KA-
radical in the class of all near-rings and is an ideal-hereditary radical in the class
of all zero-symmetric near-rings.

2. Preliminaries

Near-rings considered are right near-rings and not necessarily zero-symmetric.
Unless otherwise specified R stands for a right near-ring. Near-ring notions not
defined here can be found in Pilz [4].

Ry and R, denote the zero-symmetric part and constant part of R respectively.

Now we give here some definitions and results of [7] which will be used later.

An element a € R is called right quasi-reqular if and only if the right ideal
of R generated by the set {x - ax | x € R} is R. A right ideal (left ideal, ideal,
subset) K of R is called a right quasi-reqular right ideal (left ideal, ideal, subset)
of R, if each element of K is right quasi-regular.

A right ideal K of R is called right modular if there is an element e € R such
that x - ex € K for all x € R. In this case we say that K is right modular by e.

A maximal right modular right ideal of R is called a right 0-modular right
ideal of R.

Ji/o(R) is the intersection of all right 0-modular right ideals of R and if R
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has no right 0-modular right ideals, then .Jj ,(R) = R. The largest ideal of R
contained in Jj ,(R) is denoted by Jj(R) and is called the right Jacobson radical
of R of type-0.

The largest ideal contained in a right 0O-modular right ideal of R is called a
right 0-primitive ideal of R. R is called a right 0-primitive near-ring if {0} is a
right O-primitive ideal of R.

A group (G, +) is called a right R-group if there is a mapping ((g, r) — gr)
of GXR into G such that 1. (g + h)r = gr + hr, 2. g(rs) = (gr)s, forall g, h € G
and r, s € R. A subgroup (normal subgroup) H of a right R-group G is called an
R-subgroup (ideal) of G if hr € H for all h € H and r € R.

Let G be a right R-group. An element g € G is called a generator of G if gR
= G and g(r +s) = gr + gs for all r, s € R. G is said to be monogenic if G has a
generator.

G is said to be simple if G # {0}, and G, {0} are the only ideals of G.

A monogenic right R-group G is said to be a right R-group of type-0 if G is
simple.

The annihilator of G denoted by (0 : G) is defined as (0 : G) = {a € R | Ga
— {0},

Lemma 2.1. The constant part of R is right quasi-regular.

Lemma 2.2. A nilpotent element of R is right quasi-reqular.

Theorem 2.3. J , (R) is the largest right quasi-reqular right ideal of R.
Theorem 2.4. J,(R) is the largest right quasi-regular ideal of R.

Theorem 2.5. Jj(R) is the intersection of all right 0-primitive ideals of R.

Theorem 2.6. Let P be an ideal of R. P is a right 0-primitive ideal of R if and
only if R/P is a right 0-primitive near-ring.

Proposition 2.7. Let G be a right R-group of type-0 and gy be a generator of G.
Then (0 : go) :={r € R | gor = 0} is a right 0-modular right ideal of R.

Proposition 2.8. Let G be a right R-group. G is a right R-group of type-0 if
and only if there is a maximal right modular right ideal K of R such that G is
R-isomorphic to R/K.

Proposition 2.9. Let P be an ideal of a zero-symmetric near-ring R. P is right
O-primitive if and only if P is the largest ideal of R contained in (0 : G) for some
right R-group G of type-0.

A near-ring R is called an equiprime near-ring if 0 # a € R, x, y € R and arx =
ary for all r € R, implies x = y. An ideal I of R is called equiprime if R/I is an
equiprime near-ring.

It is known that a near-ring R is equiprime if and only if

1. x, vy € R and xRy = {0} implies x = 0 or y = 0.
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2. If {0} # I is an invariant subnear-ring of R, x, y € R and ax = ay for all a
€ I implies x = y.
Moreover, an equiprime near-ring is zero-symmetric.

If T is an ideal of R, then we denote it by I <« R. A subset S of R is left
inwvariant if RS C S. By a radical class we mean a radical class in the sense of
Kurosh-Amitsur.

Let £ a class of near-rings. & is called regular, if {0} # 1 < R € & implies
that 0 # /K € & for some K < I. It is known that, if £ is a regular class, then
UE = {R | R has no non-zero homomorphic image in £} is a radical class, called
the upper radical determined by €. The subdirect closure of a class of near-rings
& is the class £ = {R | R is a subdirect sum of near-rings from £}. A class &
is called hereditary if I < R € £ implies I € £. £ is called c-hereditary if I is a
left invariant ideal of R € £ implies I € £. It is clear that a hereditary class is a
regular class. If I << R and for every non zero ideal J of R, J NI # {0}, then I is
called an essential ideal of R and is denoted by I <1 - R. A class of near-rings £
is called closed under essential extensions (essential left invariant extensions) if 1
€ &, 1 <R (Iis an essential ideal of R which is left invariant) implies R € £. A
class of near-rings &£ is said to satisfy condition (F;) if K < I < R, and I is left
invariant in R and I/K € £, then K < R.

In [2], G. L. Booth and N. J. Groenewald defined special radicals for near-
rings. A class £ consisting of equiprime near-rings is called a special class if it is
hereditary and closed under left invariant essential extensions. If R is the upper
radical in the class of all near-rings determined by a special class of near-rings,
then R is called a special radical. If R is a radical class, then the class SR = {R
| R(R) = {0}} is called the semisimple class of R.

We also need the following theorem:

Theorem 2.10. (Theorem 2.4 of [13]) Let € be a class of zero-symmetric near-
rings. If € is regular, closed under essential left invariant extensions and satisfies
condition (F;), then R := UE is c-hereditary radical class in the variety of all
near-rings, SR = € and SR is hereditary. So, R(R) =N{I <1 R| R/I € &)} for

any near-ring R.

Remark 2.11. Since all ideals in a zero-symmetric near-ring are left invariant,
under the hypothesis of Theorem 2.10, in the variety of zero-symmetric near-rings
both R and SR are hereditary and hence the radical is ideal-hereditary, that is,
if I < R, then R(I) = I NR(R).

Proposition 2.12. (Proposition 3.3 of [1]) The class of all equiprime near-rings
1s closed under essential left invariant extensions.

Proposition 2.13. (Corollary 2.4 of [1]) The class of all equiprime near-rings
satisfies condition (F;).
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3. Right Jacobson radical of type-0(e)

Throughout this section R stands for a right near-ring. Ry and R, denote the
zero-symmetric part and the constant part of R respectively.

Note that if G is a right R-group, then H := {g € G | gR = {0}} is an ideal
of G. This means, if G is a right R-group of type-0, then gR = {0} implies g = 0.

Proposition 3.1. Let G be a right R-group. Then GR. = {0} if and only if GO
= {0}.

Proof. If GR. = {0}, then clearly, GO = {0}. Suppose that GO = {0}. Let g €
G. Now 0 = (gr.)0 = g(r.0) = gr, for all r. € R.. Therefore, GR. = {0}. O

Proposition 3.2. Let G be a right R-group of type-0. If R. is contained in a
right quasi-reqular right ideal of R, then GR, = {0}.

Proof. Let gg be a generator of G. Suppose that R, is contained in a right quasi-
regular right ideal K of R. Since (0 : gy) = {r € R | gor = 0} contains the largest
right quasi-regular right ideal of R, K C (0 : gg). So goK = {0} and hence goR.
= {0}. Let g € G. Now g = gos for some s € R. So, gr. = (gos)r. = go(sr.) =0
for all . € R, as sr. € R.. Therefore, GR, = {0}. O

Corollary 3.3. Let G be a right R-group of type-0. If the normal subgroup of (R,
+) generated by R, is right quasi-reqular, then GR. = {0}.

Proof.  Suppose that < R. >, is the normal subgroup of (R, +) generated by
Re. Let x € < R, >,. Nowx = (r1 +y1 -11) + (ra + y2 - 12) + ... + (vx + ¥
- 1), wherer; € R, y; € Re. Now xr = ((r1 + y; -11) + (r2 + y2 - 12) + ... +
(tg + y& - Tx))r = (111 + yir - 1117) + (ror + yor - Tor) + ... + (TkT + YiT - TxT) €
< R. >, as y;r € R.. So, < R. >, is a right ideal of R. Since < R, >, is a right
quasi-regular right ideal of R containing R., by Proposition 3.2, GR. = {0}. O

Corollary 3.4. Let G be a right R-group of type-0. If R. is a normal subgroup
of (R, +), then GR. = {0}.

Corollary 3.5. Let G be a right R-group of type-0. If (R, +) is an abelian group,
then GR. = {0}.

Corollary 3.6. Let G be a right R-group of type-0. If R is zero-symmetric, then
GR. = GO = {0}.

Proposition 3.7. Let G be a right R-group of type-0 and GO = {0}. Then there
is a largest ideal of R contained in (0 : G) = {r € R | Gr = {0}}.

Proof.  Since GO = {0}, the zero ideal of R is contained in (0 : G). Let I and J
be ideals of R contained in (0 : G). We show now that I + J is contained in (0 :
G). Let go be a generator of the right R-group G. Let i € I, j € J and g € G. We
get r € R such that g = gor. Then g(i + j) = (gor)(1 +j) = go( r(i +J)) = go( x(i
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+3) - 1i 4 1) = go(r(i + j) - 1i) + go(ri) = goj + (gor)i =0 + 0 = 0, where j €
J.Soi+je (0: G)and hence I +J C (0 : G). From this we get that for any
collection of ideals of R contained in (0 : G) their sum is an ideal of R contained
in (0 : G). Therefore, the sum K of all ideals T of R such that T C (0 : G) is the
largest ideal of R contained in (0 : G). 0

Definition 3.8. Let G be a right R-group of type-0 and GO = {0}. Suppose that
P is the largest ideal of R contained in (0 : G) ={re€ R | Gr ={0}}. Then G is
said to be a right R-group of type-0(e) if 0 # g € G, r1, 12 € R and grry = gzry
for all z € R implies 1 - r, € P.

Remark 3.9. Let G be a right R-group of type-0(e) and P be the largest ideal
of R contained (0 : G). Let gg be a generator of G. Since goR = G, if r, 1y € R
and gry = gry for all g € G, then 1y - 15 € P.

Let G be a finite additive group and let N be a maximal normal subgroup of G.
Let K:= (N : G) = {f € My(G) | {(G) € N}. We show in the following example
that Mo(G)/K is a right My(G)-group of type-0(e).

Example 3.10. Let G be a non-zero finite additive group and let N be a maximal
normal subgroup of G. Let K := (N : G) = {f € My(G) | f(G) € N}. Since N is a
maximal normal subgroup of G, K is a maximal right ideal of My(G). Define (f +
K)h :=th + K, f, h € My(G). Now My(G)/K is a right My(G)-group of type-0 as
K is maximal and 1 + K is a generator, where 1 is the identity element in My(G).
Since My(G) is a simple near-ring, {0} is the largest ideal of My(G) contained in
(0 : My(G)/K). Suppose that 0 # s + K € My(G)/K, f, h € My(G) and (s + K)tf
= (s + K)th for all t € My(G). So, stf - sth € K. Assume that s(gg) ¢ N and f(g)
# h(g) for some gy, g € G. Let h(g) # 0. We get t € My(G) such that t(f(g)) =
0 and t(h(g)) = go. So, stf - sth € K, a contradiction. Therefore f = h, that is, f
- h € {0}. Hence, My(G)/K is a right My(G)-group of type-0(e).

From the above example it follows that if (G, 4) is a finite simple group, then
My(G) is a right My(G)-group of type-0(e).
Now we give an example of a right R-group of type-0 which is not of type-0(e).

Example 3.11. Consider G := Zg, the group of integers under addition modulo
8. Now T : G — G defined by T(g) = 5g, for all g € G is an automorphism of
G. T fixes 0, 2, 4, 6 and maps 1 to 5, 5 to 1, 7 to 3 and 3 to 7. A := {I, T}
is an automorphism group of G. {0}, {2}, {4}, {6}, {1, 5} and {3, 7} are the
orbits. Let R be the centralizer near-ring M4(G), the near-ring of all self maps
of G which fix 0 and commute with T. An element of R is completely determined
by its action on {1, 2, 3, 4, 6}. Note that for f € R, we have £(2), f(4), {(6) are
arbitrary in 2G and f(1), f(3) are arbitrary in G. This example was considered
in [3] where it was shown that J := (0 : 2G) = {f € R | f(h) = 0 for all h € 2G}
is the only non-trivial ideal of R. Let K := (2G : G) = {t € R | t(G) C 2G} #
R. Let tg be the identity element in R. Now ty + K is a generator of the right
R-group R/K. Let h € R - K. We show now that (h + K)R = R/K. Since h ¢ K,
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there is an a € G - 2G such that b := h(a) ¢ 2G. We construct an element s € R
such that s = 0 on 2G and s(1) = s(3) = a, so that s(5) = s(7) = a + 4. Since
s maps G - 2G to G - 2G, we get that to - hs € K and hence (h + K)s =ty +
K. So (h + K)R = R/K. Therefore, R/K is a right R-group of type-0. Moreover,
(R/K)J # {K}. Therefore, {0} is the largest ideal of R contained in (K : R) = {f
€ R | Rf € K} and hence Jj(R) = {0}. Consider s, s € R, where s;(1) = 1 and
0on G- {1, 5} and s3(1) = 5 and 0 on G - {1, 5}. Clearly, (h + K)s; = (h +
K)sy for allh € R as h(1) - h(5) € 2G for all h € R. But s; - so € {0}. Therefore,
by Remark 3.9, R/K is not a right R-group of type-0(e).

Proposition 3.12. Let G be right R-group of type-0(e). Then (0 : G) is an
ideal of R.

Proof.  Let P be the largest ideal of R contained in (0 : G). Let r € (0 : G).
We have gr = 0 = g0, for all g € G. Since G is a right R-group of type-0(e), by
Remark 3.9, r = r - 0 € P. Therefore, (0 : G) C P and hence (0: G) = P. O

Definition 3.13. A right modular right ideal K of R is called right 0(e)-modular
if R/K is a right R-group of type-0(e).

Definition 3.14. Let G be a right R-group of type-0(e). Then (0 : G) is called
a right 0(e)-primitive ideal of R.

Definition 3.15. A near-ring R is called right 0(e)-primitive if {0} is a right
0(e)-primitive ideal of R.

Definition 3.16. The intersection of all right 0(e)-primitive ideals of R is called
the right Jacobson radical of R of type-0(e) and is denoted by Joe) (R). If R has
no right 0(e)-primitive ideals, then Jy ., (R) is defined to be R.

Note that if R is a ring, then Jg(e)(R) = J(R), where J is the Jacobson radical of
rings.

Proposition 3.17. Let G be a monogenic right R-group. If gy is generator of
G, then K := (0 : go) ={r € R | gor = 0} is a right modular right ideal of R and
G ~ R/K as right R-groups. Hence, if G is a right R-group of type-0(e), then K
is a right 0(e)-modular right ideal of R.

Remark 3.18. Let K be a right ideal of R. Then the ideal {0} of R is contained
in K. Since K is a subgroup of (R, +), if I and J are ideals of R contained in K,
then I + J C K. So, there is a largest ideal of R contained in K.

Proposition 3.19. Let G be right R-group of type-0(e) and P := (0 : G) = {r
€ R| Gr ={0}}. Then P is the largest ideal of R contained in (0 : go), go is a
generator of the right R-group G.
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Proof.  Let gy be a generator of the right R-group G. Since GP = {0}, we have
goP = {0}. So P C (0: go). Let Q be the largest ideal of R contained in (0 : gp).
So, we have P C Q. Since R. C P, R, € Q and hence RQ C Q. Let g € G. Now g

= gor for some r € R. So, gQ = (gor)Q = go(rQ) C goQ = {0}. Therefore, Q C
(0: G) = P and hence Q = P. O

Corollary 3.20. Let P be an ideal of R. P is a right 0(e)-primitive ideal of R

if and only if P is the largest ideal of R contained in a right 0(e)-modular right
ideal of R.

Proposition 3.21. Let P be an ideal of R. P is a right 0(e)-primitive ideal of R
if and only if R/P is a right 0(e)-primitive near-ring.

Proof.  Let P be a right 0(e)-primitive ideal of R. So, we get a right 0(e)-
modular right ideal M of R such that P is the largest ideal of R contained in M.
Now M/P is a right 0(e)-modular right ideal of R/P. Since P is the largest ideal
of R contained in M, the zero ideal of R/P is the largest ideal of R/P contained in
M/P. Therefore, R/P is a right 0(e)-primitive near-ring. Suppose now that R/P
is a right 0(e)-primitive near-ring. So, we get a right 0(e)-modular right ideal
M/P of R/P such that the zero ideal of R/P is the largest ideal of R/P contained
in M/P. Clearly, M is a right 0(e)-modular right ideal of R. Since the zero ideal
of R/P is the largest ideal of R/P contained in M/P, P is the largest ideal of R
contained in M. Therefore, P is a right 0(e)-primitive ideal of R. O

From Proposition 3.21, we have the following:

Proposition 3.22. Jg(e) is the Hoehnke radical corresponding to the class of all
right 0(e)-primitive near-rings.

Definition 3.23. Let G be a right R-group of type-0(e). Then G is called faithful
if (0: G) ={0}.

Theorem 3.24. Let R be a right 0(e)-primitive near-ring. Then R is an equipri-
me near-ring.

Proof.  Since {0} is a right 0(e)-primitive ideal of R, by Proposition 3.12, {0} =
(0 : G) for a right R-group G of type-O(e). Let 0 # a € R, r1, r2 € R and axr; =
axry for all x € R. Since (0 : G) = {0}, there is a g € G such that ga # 0. Let h
:= ga. Now hxr; = hxry for all x € R. Since G is a right R-group of type-0(e), by
Proposition 3.12, r; - r2 € (0 : G) = {0}. Therefore, r; = ry and hence R is an
equiprime near-ring. Il

Corollary 3.25. A right 0(e)-primitive ideal of R is an equiprime ideal of R.
Corollary 3.26. A right 0(e)-primitive near-ring is a zero-symmetric near-ring.
Theorem 3.27. Let G be a right R-group of type-0. Suppose that S is an in-

variant subnear-ring and a right ideal of R. If GS # {0}, then G is also a right
S-group of type-0.
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Proof. Suppose that GS # {0}. Clearly, G is a right S-group. Let g € G and gS
:={gs | s € S} C G. Consider the normal subgroup < ¢S >, of (G, +) generated
by gS. Let r € R, h € < ¢S >,. Now h = (x; + d1(gs1) - x1) + (X2 + 2(gsz) -
X2) + .. + (X + J(gsk) - Xk), si € S, x; € G, 0; € {1, -1}. Since SR C S, hr =
(x1r + 61(g(s1r)) - x11) + (Xor + J2(g(ser)) - X2) + ... + (xr + Ix(g(skr)) - x41) €
< gS >,. So, < g8 >, is an ideal of the right R-group G and hence it is also an
ideal of the right S-group G. Let 0 # h € G. Suppose that hS = {0}. Since hR #
{0}, < hR >, is a non-zero ideal of the right R-group G. Since G is a simple right
R-group, < hR >,= G. So, GS = < hR >,S C < hS >, = {0}, a contradiction
to GS # {0}. Therefore, hS # {0}. Let gy be a generator of the right R-group G.
So gq is a distributive element of the right R-group G and ggR = G. Clearly, gy is
a distributive element of the right S-group G and hence gS is a subgroup of (G,
+). We have (goS)R = go(SR) C goS. So goS is an R-subgroup of G. Let g € G
and s € S. Since ggR = G, g = gor for somer € R. So g + gos - g = gor + gosS -
gor = go(r + s - 1) € goS, as S is a normal subgroup of (R, +). Therefore, goS is
an ideal of the right R-group G and hence ggS = G. So gy is also a generator of
the right S-group G. Let K be a non-zero ideal of the right S-group G. Let 0 # y
€ K. As seen above < yS >, is a non-zero ideal of the right R-group G and hence
< yS >, = G. Since G = < yS >, C K, G = K. Therefore, {0} and G are the
only ideals of the right S-group G and hence G is a right S-group of type-0. U

Theorem 3.28. Let G be a right R-group of type-0(e). Suppose that S is an
invariant subnear-ring and a right ideal of R. If GS # {0}, then G is also a right

S-group of type-0(e).

Proof.  Suppose that GS # {0}. By Theorem 3.27, G is a right S-group of type-0.
Clearly, GO = {0}. Let P be the largest ideal of S contained in (0 : G)s = {s
€S| Gs={0}}. Let 0 # g € G, s, s2 € S and gxs; = gxs for all x€ S. Let
r € R. Fix x € S. We have g(rx)s; = g(rx)s2. So gr(xs;) = gr(xsz). Since G is
a right R-group of type-0(e), by Proposition 3.12, xs; - xs5 € (0: G) = {r € R
| Gr = {0}} which is an ideal of R. Let gy be a generator of the right S-group
G. Now gp(xs; - x82) = 0 and hence goxs; = goxse. Since ggS = G, we have goR
= G. So gors; = gorsy, for all r € R. Since G is a right R-group of type-0(e), by
Proposition 3.12, 51 - s5 € (0: G). We have (0: G)g = (0: G) N S is an ideal of
S and hence P = (0 : G)s. Now s; -89 € (0: G) NS = P. Therefore, G is a right
S-group of type-0(e). O

Corollary 3.29. If R is a right 0(e)-primitive near-ring and I is a nonzero ideal
(or a nonzero invariant subnear-ring and a right ideal) of R, then I is a right
0(e)-primitive near-ring.

Corollary 3.30. The class of all right 0(e)-primitive near-rings is hereditary.
Corollary 3.31. The class of all right 0(e)-primitive near-rings is reqular.

Theorem 3.32. Suppose that S is an invariant subnear-ring of R. If G is a right
S-group of type-0, then G is also a right R-group of type-0.
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Proof. Suppose that G is a right S-group of type-0 and gy is a generator. We
have that gq is distributive over S and ggS = G. For g € G and r € R, define gr :=
go(sr) if g = gps, s € S. We show now that this operation is well defined. Suppose
that g = gos = got, s, t € S. Let r € R and h := gy(sr) - go(tr). Now hk = (go(sr)
- go(tr)k — gol(s1)K) - go((t1)k) = go(s(xK)) - go(t(rk)) — g(rk) - g(xk) = 0, for
all k € S. Therefore, hS = {0} and hence h = 0, that is, gg(sr) = go(tr). We show
that G is a right R-group of type-0. It is clear that G is a right R-group. gy =
goe for some e € S. Now G D goR = go(eR) D go(eS) = goS = G. So goR = G.
Let p, q € R and x = go(p + q) - (g0p + goa). Then xs = (go(p + q) - (gop +
g0d))s = (go(p + a))s - (2P + goq)s = go(ps + as) - (gops + goas) = (go(ps) +
go(as)) - (go(ps) + go(as)) = 0, for all s € S. Therefore, x = 0 and hence gy is a
generator of the right R-group G. It can be easily verified that the action of R on
G is an extension of the action of S on G. So, an ideal of the right R-group G is
also an ideal of the right S-group G. Since the right S-group G has no non-trivial
ideals, the right R-group G also has no non-trivial ideals. Therefore, G is also a
right R-group of type-0. O

Theorem 3.33. Let I be an essential left invariant ideal of R. If I is a right
0(e)-primitive near-ring, then R is also a right 0(e)-primitive near-ring.

Proof. Let I be a right 0(e)-primitive near-ring and G be a faithful right I-group
of type-0(e). Let r € R. Let gy be a generator of the right I-group G. Define gr :=
go(ar) if g = goa, a € I. By Theorem 3.32, G is a right R-group of type-0. Suppose
that 0 # g € G, r, s € R and gxr = gxs, for all x € R. Fix a € I. Now g((ba)r)
= g((ba)s) and hence g(b(ar)) = g(b(as)) for all b € 1. Since G is a faithful right
I-group of type-0(e), ar - as = 0, that is ar = as. Now ar = as for all a € 1. Since
[ is a right 0(e)-primitive near-ring, by Theorem 3.24, I is an equiprime near-ring.
Also, since I is an essential left invariant ideal of R, by Proposition 2.12, we get
that R is an equiprime near-ring. Since R is equiprime and ar = as for all a € |
and I is a left invariant ideal of R, we get that r =s. So, 0 =r-s € P, P is the
largest ideal of R contained in (0 : G) = {r € R | Gr = {0}}. Therefore, G is a
right R-group of type-0(e). Let r € (0 : G). Now Gr = 0. So go(ar) = 0, for all a
€ T and hence 0 = go((ba)r) = go(b(ar)) = (gob)ar for all a, b € 1. Since gol = G,
we have G(ar) = 0 for all a € I and hence Ir =0, as (0 : G); = 0. Also, since ar =
0 = a0 for all a € I and I is an invariant subnear-ring of R and R is an equiprime
near-ring, we get that r = 0. Therefore, G is a faithful right R-group of type-0(e)
and hence R is a right 0(e)-primitive near-ring. O

Theorem 3.34. The class of all right 0(e)-primitive near-rings is closed under
essential left invariant extensions.

Remark 3.35. By Proposition 2.13, the class of all equiprime near-rings satisfies
condition F;. So, the class of all right 0(e)-primitive near-rings which is a class of
equiprime near-rings also satisfies condition Fj.

By Theorem 2.10, Corollaries 3.26 and 3.31, Theorem 3.34 and Remark 3.35, we
get the following:
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Theorem 3.36. Let & be the class of all right 0(e)-primitive near-rings and UE
be the upper radical class determined by £. Then UE is a c-hereditary Kurosh-
Amitsur radical class in the variety of all near-rings with hereditary semisimple
class SUE = E. So, J’é(e) is a KA-radical in the class of all near-rings and for any
ideal I of R, Jyy(1) € Jyoy(R) N I with equality, if I is left invariant.

Corollary 3.37. Jg(e) is an ideal-hereditary KA-radical in the class of all zero-
symmetric near-rings.

Corollary 3.38. J”O(e) 15 a special radical in the class of all near-rings.

4. Relations with other radicals

In this section we see the relations of the radical Jg(e) with other known radicals
of near-rings.

P and P, denote the prime and equiprime radicals of near-rings respectively.
In view of Corollary 3.25, we have the following:

Proposition 4.1. Let R be a near-ring. Then P(R) C P.(R) C Jy.,(R).

Let (S, +) be a group containing more than two elements. Define a trivial mul-
tiplication in S by rs = rif s # 0 and 0 if s = 0 for all r, s € S. Now S is a
zero-symmetric right near-ring. Clearly, S is a left S-group of type-2 and hence S
is a simple near-ring. Therefore, S is 2-primitive on the left S-group S. So J5(S)
= {0} = P(S). It is clear that S is not equiprime and hence Jg, (R) = P.(S) = S
# {0} = P(S) = J1(S).

Now we give an example of a centralizer simple near-ring with identity which
is an equiprime, right 0(e)-primitive and left 3-primitive near-ring.

Example 4.2. Let G := Z5 X Zs, Z5 is the additive group of integers modulo
5. Define t : G — G by t(x) = 2x. t is an automorphism of the abelian group
(G, +), where (a, b) + (¢, d) = (a + ¢, b + d), (a, b), (¢, d) € G. Now order of
t € Aut G is four. So, A := {1, t, t?, t*} is a fixed point free cyclic subgroup of
Aut G. By Corollary 7.4 of Veldsman [14], the centralizer near-ring U := C(A, G)
= {f € My(G) | fs = sf for all s € A} is a simple zero-symmetric near-ring with
identity. Moreover, U is equiprime and left 2-primitive. So U is a left 3-primitive
near-ring. Clearly, M; := Z5 x {0}, My := {0} x Z5 and M3 := {(a, a) | a € Z5}
are the maximal (minimal) subgroups (normal subgroups) of G. Note that t maps
M; onto M;, i = 1, 2, 3. We show now that K; ;== {f € U | {(G) C M;},i=1, 2,
3 are the maximal right ideals of U. Clearly, K; is a proper right ideal of U. Let
K be a maximal right ideal of U. Let Gx = {x € G | x = {(y), for some f € K,
y € G}. Let x, z € G. We get {1, f; € K such that f;(y;) = x and f3(ys) = z for
some yq, yo € G. If yo = 0, then z = 0 and hence x - z = x € Gg. Suppose that
yo # 0. We get h € U such that h(yz) =y; and h =0 on G \ Ays. Now fih € K
and hence fih - {5 € K. So x - z = fi(y1) - f2(y2) = (fih - £5)(y2) € Gg. Therefore,
Gk is a (normal) subgroup of G. We show that Gx # G. Suppose that Gx = G.
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Now G \ {0} = U Ab; for some b; € G and positive integer n, Ab; are pair wise
disjoint. Since b; € Gk, we get h; € K such that b; = h;(¢;) for some ¢; € G. We
also get s; € U such that ¢; = s;(b;) and s; = 0 on G \ Ab;. Clearly, the identity
mapping I of G is given by I = hys; + hgss + -+ + h,s, € K and that K =U, a
contradiction to K # U. Therefore, Gx # G. We get a maximal normal subgroup
M of G containing Ggx. Now K C (M : G) = {f € U | {(G) € M} # U. Since K is
maximal, K = (M : G). Now it follows that each K; is a maximal right ideal of U.
We show now that U/K is a right U-group of type-0(e) under the operation (f +
K)h :=fh + K, f, h € U. Since U has the identity and K is maximal in U, U/K
is a right U-group of type-0. Obviously, (U/K)0 = {0}. Let I # v € A and let d
€ G \ M. We show that d - v(d) ¢ M. We get a normal subgroup N of G such
that G =M + N and M N N = {0}. Note that v(M) = M and v(N) = N. Let d
=m; + ny and v(d) = my + ny, my, my, € M and ny, np € N. If d - v(d) € M,
then n; - ng € NN M = {0} and hence n; = ny. Since my + ny = v(d) = v(my
+ 1ny) = v(my) + v(n;) = v(my) + v(ng), we have ny = v(ng), a contradiction
to the fact that v is fixed point free and ny # 0. Therefore, d - v(d) ¢ M. Since
U is simple, {0} is the largest ideal of U contained in (0 : U/K) = {f € U | Uf
CK}. Let qe U\ K, r, s € Uand gfr - gfs € K for all f € U. Now q(w) € M
for some w € G. Suppose that r # s. We get e € G such that r(e) # s(e). Let
r(e) # 0. Suppose that s(e) ¢ Ar(e). Define fy on G by fy(r(e)) = w and f; = 0
on G\ Ar(e). Clearly, f; € U. Now (qfor - qfps)(e) = q(w) ¢ M, a contradiction.
Assume now that s(e) € Ar(e), that is, s(e) = v(r(e)) for some v € A. Now (qfor
- qfps)(e) = q(w) - v(q(w)) € M, a contradiction. Therefore, r = s and U/K is a
right U-group of type-0(e). Hence U is a right 0(e)-primitive near-ring.

Proposition 4.3. Let G be a finite group and A be a fized point free cyclic sub-
group of Aut G. Suppose that for each maximal normal subgroup M of G there is
an element apy € G\ M and I # t € A such that s(apr) - s(t(an)) € M for all s €
A. Then the simple left 3-primitive near-ring C(A, G) is a Jg(e)—mdical near-ring
with identity.

Proof. We have that U := C(A, G) is a simple near-ring with identity. Let T be
a right U-group of type-0(e). Now T is U-isomorphic to U/K for some maximal
right ideal K of U. By the same arguments used in Example 4.2 one can easily
get that K= (M : G) = {f € U | {(G) C M} for some maximal normal subgroup
M of G. By our assumption we get ayy € G \ M and I # t € A such that s(ay) -
s(t(ap)) € M for all s € A. Define hy on G by h;(ay) = ap and hy = 0 on G\
Aays. Also define hy(ap) = t(ap) and hy = 0 on G \ Aay,. Now hy, hy € U\ K.
Now (hith; - hythe)(s(an)) = s(p(anr)) - s(p(t(anr))) if f(ars) = p(anr) for some p
€ A and 0 if f(ap;) € G \ Aays. Therefore, hith; - hithy € K for all f € U, but
h; - hy ¢ {0} which is the largest ideal of U contained in (0 : U/K). This is a
contradiction to the fact that U/K is a right U-group of type-0(e). Therefore, U
has no right U-group of type-0(e) and hence U is a Jg(e)—radical near-ring. U
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