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Abstract. In Euclidean geometry a regular point on a focal surface of
a minimal surface has non negative Gauss-curvature. So a focal surface
of a minimal surface can never be a minimal surface. We classify the
minimal surfaces in Minkowski 3-space the focal surfaces of which are
minimal surfaces again.
A (Euclidean) minimal surface Φ ⊂ R3 only carries points with Ke ≤ 0,
where Ke denotes the Gauss-curvature. Parametrizing Φ by a C2-
immersion f : U ⊆ R2 → f(U) = Φ and assuming Ke < 0, the
principal curvatures (eigenvalues of the shape operator) are k1,2 =
ϕ(−Ke)

1/2, (ϕ = ±1). Then the focal surfaces Ψϕ are parametrized by
zϕ = f+(k1,2)

−1ne = f+ϕ(−Ke)
−1/2ne, where ne is the unit normal vec-

tor. If a focal point is a regular point on Ψϕ, then the Gauss-curvature
of Ψϕ is positive. More precisely it is Ke(Ψϕ) = −1/4 Ke > 0 ([10]), so
a focal surface of a minimal surface cannot be a minimal surface again.

We will prove that in Minkowski (or Lorentz) 3-space R3
1 there are (up to

scaling and Minkowski isometries) exactly two one-parameter families
of minimal surfaces with this property.
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1. Preliminaries

A Minkowski (or Lorentz) 3-space R3
1 is (R3, 〈x, y〉), where 〈x, y〉 is the scalar

product
〈x, y〉 := x1y1 + x2y2 − x3y3, x = (x1, x2, x3). (1)

A vector x ∈ R3
1 is called

spacelike ⇐⇒ 〈x, x〉 > 0,

timelike ⇐⇒ 〈x, x〉 < 0,

isotropic(lightlike) ⇐⇒ 〈x, x〉 = 0, x 6= 0.

The (Minkowski-) length of a vector x is defined by

‖x‖ := +
√
|〈x, x〉| ≥ 0. (2)

The (Minkowski-) crossproduct is x× y, where

〈x× y, z〉 = det(x, y, z). (3)

A surface Φ in R3
1 is locally parametrized by f : U ⊆ R2 → R3. Here and in

the following we assume f ∈ C∞. Local coordinates are denoted by (u, v) or
(u1 := u, u2 := v). Partial derivatives of a function s defined in U ⊂ R2 are
denoted by

s,j :=
∂

∂uj
s, s,jk :=

∂2

∂uj∂uk
s.

Via f the scalar product (1) in R3
1 induces a (pseudo-)Riemannian metric on U ,

the first fundamental form (I) with components

gjk :=

〈
∂

∂uj
f,

∂

∂uk
f

〉
: U → R. (4)

Denoting ∆ := det(gjk) a surface Φ = f(U) is called

spacelike ⇐⇒ ∆ > 0 in U,

timelike ⇐⇒ ∆ < 0 in U.

Points with ∆ = 0 are excluded. The normal vector is

n :=
f,1×f,2
‖f,1×f,2 ‖

=
f,1×f,2√

|∆|
, (5)

because of ∆ = −〈f,1×f,2 , f,1×f,2 〉. Especially points with ∆ 6= 0 are regular.
In the following we denote ε := 〈n, n〉. So in case of spacelike and timelike
surfaces we have ε = −1 and ε = 1 and the spherical image n(U) is part of
the two-sheet hyperboloid 〈x, x〉 = −1 and the one-sheet hyperboloid 〈x, x〉 = 1,
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respectively. The second fundamental form (II) and the shape operator S are
related by 〈S(f,j ), f,k 〉 = ε (II)(f,j , f,k ), where

(II)(fj, fk) =: hjk = ε〈n, f,jk 〉 =
ε√
|∆|

det(f,1 , f,2 , fjk), (6)

S(f,j ) = −n,j =: hs
jf,s with hs

j = εhjkg
ks. (7)

Mean curvature and Gauss-curvature are

H :=
1

2
trS =

ε

2∆
(h11g22 − 2h12g12 + h22g11), (8)

K := ε det S = ε
det(hjk)

∆
. (9)

In case of K we use the sign convention according to [6], [9] and [11]. From (6)
and (9) it is easy to see, that Euclidean and Minkowski Gauss-curvature have
different sign. The eigenvalues of S (principal curvatures of Φ) are

k1,2 = H ±
√

H2 − εK, ϕ = ±1. (10)

The integrability conditions of Codazzi and the Theorema egregium are

Co : hjs,k−hjk,s = Γp
jkhps − Γp

jshpk, (11)

Ga : Rpjks = Rt
jksgpt = hjkhsp − hjshkp. (12)

A regular surface Φ = f(U) ⊂ R3
1 is called a (Minkowski-) minimal surface iff

H = 0 in U . For discussions on these surfaces see for instance [1], [3], [6], [7], [8],
[11], [12], [13], [15], [16].

We need some concepts from affine differential geometry. For details see for
instance [14], [2]. From affine point of view a surface f(U) is nondegenerate if

D := det(Djk) 6= 0, Djk := det(f,1 , f,2 , f,jk ). (13)

By (6) and (9) we have D 6= 0 ⇐⇒ K 6= 0. The components of the affine metric
G of f(U) are

Gjk := |D|−1/4Djk, (14)

and the affine normal vector of Φ = f(U) is

na := (1/2)∆Gf, (15)

where ∆G is the Laplacian with respect to the affine metric. The affine shape
operator B is defined by B(f,j ) = −na,j, so the components Bk

j of B are given by

na,j =: −Bk
j f,k . (16)

Affine curvature Ka and affine mean curvature Ha are

Ka := det(B), Ha := (1/2)tr B. (17)

In case of a constant affine normal vector the surface Φ is called an improper affine
sphere and it is B = 0, Ka = Ha = 0.
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2. Focal surfaces of minimal surfaces

Excluding points with K = 0 on the minimal surface Φ = f(U) the principal
curvatures of Φ are from (10) k1,2 = ϕ(−εK)1/2, (ϕ = ±1). Then the focal surfaces
Ψϕ of Φ are parametrized by

zϕ = f + (k1,2)
−1n = f + ϕ(−εK)−1/2n, ϕ = ±1. (18)

In case of a spacelike minimal surface (ε = −1) the Gauss-curvature is positive
(cf. [8, p. 298], [6, p. 518]), so we have two different real nonzero eigenvalues ±

√
K.

A timelike minimal surface (ε = 1) has real focal surfaces iff K < 0 that means by
(6) and (9), that Φ is locally strongly convex. In the following we always assume
real focal points so from (18) there are two distinct real nonzero eigenvalues of S.
That means locally we can take lines of curvature (defined in the usual way) as
parametric lines. These parameters can be normalized in case of minimal surfaces
in the following way.

Lemma 1. (T. Weinstein [15, p. 160]) Let Φ be a minimal surface in R3
1 with

K 6= 0 and real focal surfaces. Then locally there is a parametrization f : U → R3
1

of Φ, such that

g := g11 > 0, g22 = −εg, g12 = 0,

h11 = 1, h22 = ε, h12 = 0,

where ε = −1 and ε = 1 refers to spacelike and timelike surfaces respectively.

The coordinate functions gjk and hjk of (I) and (II) respectively in Lemma 1 fulfil
the Codazzi condition (11) while the Theorema egregium (12) reads

Ga : g(g′′ − εg̈ + 2) = g′
2 − εġ2, (19)

where here as in the following the derivatives of g : U ⊆ R2 → R are denoted by

ġ :=
∂g

du
, g̈ :=

∂ 2g

du2
, g′ :=

∂g

dv
, g′′ :=

∂ 2g

dv2
, ġ′ :=

∂ 2g

du dv
.

The following lemma gives some affine quantities of f(U) = Φ using the parame-
ters of Lemma 1.

Lemma 2. [10] Let Φ be a minimal surface in R3
1 with K 6= 0. In parameters of

Lemma 1 the following holds. The affine normal is

na(Φ) =
1

2g3/2
(εġf,1 +g′f,2 +2εg n), (20)
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and the components Bk
j of the affine shape operator B are

B1
1 =

1

g3/2

(
εġ2

2g
− g′2

4g
− εg̈

2
+ 1

)
, (21)

B2
1 =

1

2g3/2

(
ġ′ − ġg′

2g

)
, (22)

B1
2 =

−ε

2g3/2

(
ġ′ − ġg′

2g

)
, (23)

B2
2 =

1

g3/2

(
−εġ2

4g
+

g′2

2g
− g′′

2
− 1

)
. (24)

The next lemma gives some quantities of the focal surfaces Ψ1 and Ψ−1 of Φ =
f(U) where f is a parametrization of Φ according to Lemma 1.

Lemma 3. [10] Let f(U) = Φ be a minimal surface in R3
1 with K 6= 0. The focal

surfaces Ψϕ of Φ = f(U) are parametrized by zϕ = f + ϕ(−εK)−1/2n, (ϕ = ±1).
In parameters of Lemma 1 the Gauss-curvature of Φ is K = −ε/g2 such that
zϕ = f + ϕg n. If Ψϕ is regular, the following holds.

(1) In case of spacelike surfaces (ε = −1) the mean curvature of Ψϕ is

H(Ψ1) =
1

8|g|3/2|g′|
(4g − g′2 − ġ2) (25)

H(Ψ−1) =
−1

8|g|3/2|ġ|
(4g − g′2 − ġ2). (26)

(2) In case of timelike surfaces (ε = 1) the mean curvature of Ψϕ is

H(Ψ1) =
−1

8|g|3/2|ġ|
(−4g + g′2 − ġ2) (27)

H(Ψ−1) =
−1

8|g|3/2|g′|
(−4g + g′2 − ġ2). (28)

(3) Denoting by g∗jk := 〈zϕ,j , zϕ,k 〉 the components of the metric of Ψϕ = zϕ(U)
it holds

∆∗ = det(g∗jk) = 2g[εg′
2
(1− εϕ)− ġ2(1 + εϕ)]. (29)

From this a regular focal surface of a spacelike minimal surface (ε = −1) is time-
like, whereas for a timelike minimal surface (ε = 1) one focal surface is spacelike
(or singular) and one timelike (or singular).

Concerning the focal surfaces we repeat a result from [10].

Theorem 1. Let f(U) = Φ ⊂ R3
1 be a regular minimal surface with K 6= 0 in U

and real focal surfaces Ψ1, Ψ−1. Then the following holds for ϕ ∈ {1,−1}:
(a) If Ψϕ is a regular surface, then K(Ψϕ) = −1/4 K, where K(Ψϕ) denotes the

Gauss-curvature of Ψϕ.
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(b) If Ψϕ is a regular surface, then it is non degenerate and the affine normal
of Ψϕ intersects the affine normal of Φ orthogonally.

(c) If Ψϕ is a regular surface then it is an affine minimal surface.

(d) If Ψ1 and Ψ−1 are both regular surfaces, then
Ka(Ψ1) : Ka(Ψ−1) = (−ε)H(Ψ1)

4 : H(Ψ−1)
4, where Ka(Ψϕ) and H(Ψϕ)

are the affine Gauss-curvature and the Minkowski mean curvature of Ψϕ

respectively.

3. Associated minimal surfaces

Using (I)-isothermal coordinates in case of a spacelike minimal surface we have

H = 0 ⇐⇒ h11 + h22 = 0 ⇐⇒ f,11 +f,22 = 0, (30)

so the coordinate functions fα : U ⊆ R2 → R, (α = 1, 2, 3) are harmonic. The
conjugate harmonic functions

f̄α : U ⊆ R2 → R, (α = 1, 2, 3),

related to fα by
f,α1 = f̄ ,α2 , f,α2 = −f̄ ,α1 (α = 1, 2, 3) (31)

determine the adjoined minimal surface Φ̄ := f̄(U), and the 1-parameter family
(λ)Φ of associated minimal surfaces, parametrized by

(λ)f(u, v) := f(u, v) cos λ + f̄(u, v) sin λ, λ ∈ R. (32)

A timelike minimal surface in Φ ⊂ R3
1 is locally a surface of translation with

isotropic generating curves g(I) and h(J):

f(u, v) = g(u) + h(v), g : I ⊆ R → R3
1, h : J ⊆ R → R3

1, (33)

where

〈ġ, ġ〉 = 〈h′, h′〉 = 0; ġ :=
dg

du
, h′ :=

dh

dv
(see [15, p. 184] or [7, p. 338]). So we have

g11 = g22 = 0, g12 = 〈ġ, h′〉 6= 0. (34)

The conjugate minimal surface Φ̄ is locally parametrized by

f̄(u, v) = g(u)− h(v), (35)

and the family of associated minimal surfaces (µ)Φ is parametrized by

(µ)f(u, v) = f(u, v) cosh µ + f̄(u, v) sinh µ, µ ∈ R. (36)

So the conjugate surface f̄(U) does not belong to the family of associated surfaces
([7, p. 338]).

Associated surfaces are well known to share metric (I), normal vector and Gauss-
curvature as in the Euclidean situation (see [15, p. 184]). From [10, Theorem 4]
the affine normalvector is invariant too.
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4. Minimal focal surfaces

In this section we will classify minimal surfaces the focal surfaces of which are
minimal surfaces again. To get examples, we consider minimal surfaces of rotation
with isotropic axis and their associates.

Taking the axis g of rotation x1 = x3, x2 = 0 we can parametrize the generating
curve c(v) = (v+m(v), 0,−v+m(v)), where m : I ⊆ R → R. Then a parametriza-
tion of a surface of rotation with axis g is (see for instance [8, p. 305], [16, p. 348]
or Section 5 in [10])

f(u, v) =

 1− u2

2
u u2

2

−u 1 u

−u2

2
u 1 + u2

2

 v + m(v)
0

−v + m(v)


= [v + m(v)− u2v,−2uv,−v + m(v)− u2v]. (37)

An easy calculation gives H = 0 ⇐⇒ m(v) = ±a2v3 + b, a 6= 0. By a translation
we can take b = 0 and we get

f(u, v) = [±a2v3 + v − u2v,−2uv,±a2v3 − v − u2v]. (38)

Change of coordinates by u = u′, v = (a
√

3)−1v′ gives the isothermic representa-
tion

f ′(u′, v′) =

[
v′(3− 3u′ 2 − εv′ 2)

3a
,−2u′v′

a
,
v′(−3− 3u′ 2 − εv′ 2)

3a

]
, (39)

where ε = −1 and ε = 1 leads to spacelike and timelike surfaces respectively.
After rescaling and writing without primes the standard representation is

f(u, v) =

[
−ε

v3

3
+ v − u2v,−2uv,−ε

v3

3
− v − u2v

]
. (40)

These minimal surfaces are well known. In case of ε = −1 the surface is called
spacelike parabolic catenoid, see [1, p. 302], [8, p. 300], [10], [11, p. 60], [16, p. 349].
In case of ε = 1 it is a timelike parabolic catenoid, see [10], [11, p. 74], [16, p. 351].

In the following we calculate the associates of the surfaces (40).

In the spacelike case (ε = −1) we have from (40)

f(u, v) =

[
v3

3
+ v − u2v,−2uv,

v3

3
− v − u2v

]
, (41)

and the adjoined surface is parametrized by

f̄(u, v) =

[
u3

3
− u− uv2, u2 − v2,

u3

3
+ u− uv2

]
. (42)

Φ̄ = f̄(R2) is a spacelike ruled minimal surface of order three (Cayley surface)
([1, p. 305], [5, p. 15], [8, p. 301], [11, p. 62], [16, p. 351]). The surface is well
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known to be the orbit of a straight line applying a certain screw motion in R3
1 ([4,

p. 311]).

In the following we denote by Σs := {(λ)Φ, λ ∈ R} the pencil of associates of
surfaces (41). According to (32), (λ)Φ is parametrized by

(λ)f(u, v) := f(u, v) cos λ + f̄(u, v) sin λ , λ ∈ R. (43)

Figure 1. Associated spacelike surfaces (λ)Φ ∈ Σs: λ = 0 (surface of rota-
tion: spacelike parabolic catenoid), λ = 3π/8, λ = π/2 (Cayley-ruled surface)

The surfaces are regular iff v 6= 0. Calculating normal n and Gauss-curvature K
for surfaces (50) we get (independently of λ)

n(u, v) =

[
1− u2 − v2

2v
,−u

v
,−1 + u2 + v2

2v

]
, K(u, v) =

1

4v4
. (44)

Inserting this according to (18) in the parametrization

(λ)zϕ(u, v) = (λ)f(u, v) + ϕ(−εK(u, v))−1/2n(u, v), (ϕ = ±1) (45)

of the focal surfaces (λ)Ψϕ, a straightforward calculation gives H((λ)Ψϕ) = 0 for
regular focal surfaces (λ)Ψϕ.

In the timelike case (ε = 1) we have from (40)

f(u, v) =

[
−v3

3
+ v − u2v,−2uv,−v3

3
− v − u2v

]
. (46)

Change of parameters u = −(u′+ v′)/2, v = (−u′+ v′)/2 gives a representation as
a surface of translation with isotropic generating curves (u′, v′ nullcoordinates).
If we write without primes again this reads

f(u, v) = g(u) + h(v) :=[
u3

6
− u

2
,−u2

2
,
u3

6
+

u

2

]
+

[
−v3

6
+

v

2
,
v2

2
,
−v3

6
− v

2

]
. (47)
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Then the conjugate surface is parametrized by

f̄(u, v) = g(u)− h(v). (48)

We denote the pencil of associates of surfaces (46) by Σt := {(µ)Φ, µ ∈ R}. Ac-
cording to (36), (µ)Φ is parametrized by

(µ)f(u, v) := f(u, v) cosh µ + f̄(u, v) sinh µ , µ ∈ R. (49)

The surfaces are regular iff u 6= v. The normal and the Gauss-curvature are

n(u, v) =

[
uv − 1

v − u
,
−v − u

v − u
,
uv + 1

v − u

]
, K(u, v) = − 4

(v − u)4
. (50)

As above a straight forward calculation shows that regular focal surfaces (µ)Ψϕ

are minimal.

Figure 2. Associated timelike surfaces (µ)Φ ∈ Σt: µ = 0 (surface of rotation:
timelike parabolic catenoid), µ = 3π/4, µ = π/2

Remark 1. The surface (48) is

f̄(u, v) =

[
v3

6
− v

2
+

u3

6
− u

2
,−1

2
(u2 + v2),

v3

6
+

v

2
+

u3

6
+

u

2

]
.

This fulfils the equation

−12x1 + (x1 − x3)
3 + 6(x1 − x3)(x2 + 1) = 0.

Replacing (x1, x2, x3) by ((x1 + x3)/
√

2, x2, (x1 − x3)/
√

2) and rescaling gives the
equation

x3
3 + 3x2x3 − 3x1 = 0,

so the surface is a Cayley ruled minimal surface again but in a timelike version.
Because of −εK < 0 holds for f̄(U), this surface and their associates have no real
focal surfaces.
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The following theorem contains a classification of minimal surfaces the focal sur-
faces of which are minimal.

Theorem 2. Assume Φ a minimal surface in R3
1 and Ψ a regular focal surface of

Φ. Then the following assertions are equivalent:

(A) Ψ is a minimal surface.

(B) In parameters according to Lemma 1 the first fundamental form of Φ = f(U)
has the components

g11(u, v) =: g(u, v) = (au + bv)2, (a, b) ∈ R2 \ {(0, 0)}, b2 − εa2 = 1,

g12(u, v) = 0, (N)

g22(u, v) = −εg(u, v),

where ε = −1 and ε = 1 refers to spacelike and timelike surfaces respectively.

(C) Φ is an improper affine sphere.

(D) Φ is a minimal surface of rotation with isotropic axis or an associate of such
a surface: Φ ∈ {Σs ∪ Σt}.

Proof. (A) ⇒ (B): Let f : U ⊆ R2 → R3
1 be a local parametrization of Φ accord-

ing to Lemma 1. This means up to a Minkowski isometry in R3
1 the surface is

determined by a C∞-function g := g11 : U ⊆ R2 → R+. Using Lemma 3 a focal
surface Ψϕ (ϕ = ±1) of Φ is parametrized by zϕ := f +ϕgn and by (25), (26) and
(27), (28) respectively we have

H(Ψϕ) = 0 ⇐⇒ g′ 2 − εġ2 = 4g. (51)

From (19) the Theorema egregium is

g(g′′ − εg̈ + 2) = g′
2 − εġ2,

what implies together with (51)

g′′ − εg̈ = 2. (52)

Differentiating (51) by u and v and multiplying by g′ and ġ respectively gives

g′ 2ġ′ − εġg′g̈ = 2ġg′

ġg′g′′ − εġ2ġ′ = 2ġg′.

Adding these equations using (51) and (52) gives

2gġ′ − ġg′ = 0,

or
g(u, v) = (α(u) + β(v))2, (53)

because of g > 0. Inserting in (51) gives

β ′ 2 − εα̇2 = 1.
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Using this and (53) calculating (52) gives

α(u) = au + a1, β(v) = bv + b1, a, b, a1, b1 ∈ R, (a, b) 6= (0, 0), b2 − εa2 = 1,

or
g(u, v) = (au + bv + c)2, c ∈ R.

If for instance a 6= 0 rescaling u → u− c
a

(which does not affect the other coordinate
functions of the fundamental forms) gives

g(u, v) = (au + bv)2, (a, b) ∈ R2 \ {(0, 0)}, b2 − εa2 = 1. (54)

(B) ⇒ (A) is straight forward from (51).

(B) ⇒ (C): (B) is valid means that in terms of parameters according to Lemma 1
the metric of the minimal surface Φ = f(U) is given by (N). The components Bk

j

of the affine shape operator B of f(U) are given by (21)–(24). A short calculation
shows B = 0, so Φ is an improper affine sphere.

(C) ⇒ (B): (C) is valid means B = 0. By (21)–(24) this is equivalent to

2 εġ2 − g′ 2 − 2 εgg̈ + 4g = 0, (55)

−ε ġ2 + 2g′ 2 − 2gg′′ − 4g = 0, (56)

2gġ′ − ġg′ = 0. (57)

Subtracting (56) from (57) and using Theorema egregium (19) gives

g′ 2 − εġ2 = 4g.

So from (51) it is H(Ψϕ) = 0. This means (A) is valid and from the first step it
is (A)⇒(B).

(D) ⇒ (B):

(a) If Φ ∈ {Σs} then by (41), (42) and (43) Φ = (λ)Φ = (λ)f(U) where

(λ)f(u, v) =

[
v3

3
+ v − u2v,−2uv,

v3

3
− v − u2v

]
cos λ +

+

[
u3

3
− u− uv2, u2 − v2,

u3

3
+ u− uv2

]
sin λ , (58)

(u, v) ∈ R2, v 6= 0, λ ∈ R. The change of parameters

u(u′, v′) =

√
2

2

(
cos

λ

2
u′ − sin

λ

2
v′
)

v(u′, v′) =

√
2

2

(
sin

λ

2
u′ + cos

λ

2
v′
)

(59)

gives for every fixed λ ∈ R a parametrization according to Lemma 1 with

g(u′, v′) =

(
u′ sin

λ

2
+ v′ cos

λ

2

)2

=: (au′ + bv′)2. (60)
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Because (λ)Φ is spacelike we have ε = −1, so it holds b2 − εa2 = 1.

(b) If Φ ∈ {Σt} then by (47), (48) and (49) Φ = (µ)Φ = (µ)f(U) where

(µ)f(u, v) = (g(u) + h(v)) cosh µ + (g(u)− h(v)) sinh µ;

g(u) =

[
u3

6
− u

2
,−u2

2
,
u3

6
+

u

2

]
, (61)

h(v) =

[
−v3

6
+

v

2
,
v2

2
,−v3

6
− v

2

]
,

(u, v) ∈ R2, u 6= v, µ ∈ R. For every fixed µ the reparametrization

u(u′, v′) =

√
2

2

(
cosh

µ

2
− sinh

µ

2

)
(u′ − v′)

v(u′, v′) =

√
2

2

(
cosh

µ

2
+ sinh

µ

2

)
(u′ + v′) (62)

gives a parametrization of (µ)Φ according to Lemma 1 with

g(u′, v′) =
(
u′ sinh

µ

2
+ v′ cosh

µ

2

)2

=: (au′ + bv′)2. (63)

Because of ε = 1 it holds b2 − εa2 = 1.

(B) ⇒ (D): Assuming (B) holds, the metric of f(U) = Φ is given by (N) with
suitable constants a and b; w.l.o.g. we take b ≥ 0. From the proof (D)⇒(B) it is
easy to see that there is a surface Φ̃ ∈ {Σs ∪ Σt}, parametrized by f̃ : U → R3

1

where the first fundamental form induced by f̃ on U coincides with (N). Then by
the theorem of H. Schwartz there is an isometry of R3

1 the application of which to
Φ gives an associate of Φ̃ (see [15, p. 185, 187]). This means (D) holds.

The next two theorems classify the focal surfaces of the surfaces characterized in
Theorem 2.

Theorem 3. Assume Φ ∈ Σs. Then a regular focal surfaces Ψϕ of Φ (ϕ = ±1)
is element of Σt.

Proof. A representation of Φ =(λ) Φ ∈ Σs is given by (58)

(λ)f(u, v) =

[
v3

3
+ v − u2v,−2uv,

v3

3
− v − u2v

]
cos λ +

+

[
u3

3
− u− uv2, u2 − v2,

u3

3
+ u− uv2

]
sin λ . (64)

The focal surfaces (λ)Ψϕ of (λ)Φ can be parameterized because of ε = −1 from
(18)

(λ)zϕ = (λ)f + ϕK−1/2n, ϕ = ±1, (65)
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where Gauss-curvature K and normal vector n are given by (44). This gives

(λ)zϕ(u, v) =[(
v3

3
+ v − u2v

)
cos λ +

(
u3

3
− u− uv2

)
sin λ + ϕ(v − vu2 − v3),

−2 uv cos λ + (u2 − v2) sin λ + ϕ(−2uv), (66)(
v3

3
− v − u2v

)
cos λ +

(
u3

3
+ u− uv2

)
sin λ + ϕ

(
−v − vu2 − v3

)]
.

From (64) and (65) we get

(λ+π)f = −(λ)f ⇒ (λ)z1 = −(λ+π)z−1,
(λ+π) z1 = −(λ)z−1. (67)

Therefore we take without restriction λ ∈ [−π/2, π/2] and λ ∈ [π/2, 3π/2] in case
of ϕ = 1 and ϕ = −1 respectively.

In case of ϕ = 1 the reparametrization

u(u′, v′) =

(
c + 1

8

)1/2

u′ +

(
c− 1

8

)1/2

v′

v(u′, v′) =

(
c− 1

8

)1/2

u′ −
(

c + 1

8

)1/2

v′ (68)

with c := (cos λ
2
)−1 ∈ [1,

√
2 ] gives the coordinate functions of the fundamental

forms of the focal surface (λ)z1(U
′) = (λ)Ψ1 according to Lemma 1

g∗11(u
′, v′) = : g∗(u′, v′) =

(
−
(

c− 1

2

)1/2

u′ +

(
c + 1

2

)1/2

v′

)2

=: (au′ + bv′)2

g∗22 = −g∗11, g∗12 = 0, h∗11 = h∗22 = 1, h∗12 = 0. (69)

The surfaces (λ)Ψ1 are timelike (ε∗ = 1), so it is b2 − ε∗a2 = 1. Theorem 2 gives
(λ)Ψ1 ∈ Σt.

In case of ϕ = −1 the reparametrization

u(u′, v′) =

(
s + 1

8

)1/2

u′ +

(
s− 1

8

)1/2

v′

v(u′, v′) = −
(

s− 1

8

)1/2

u′ +

(
s + 1

8

)1/2

v′ (70)

with s := (sin λ
2
)−1 leads analogously to

g∗(u′, v′) =

(
−
(

s− 1

2

)1/2

u′ +

(
s + 1

2

)1/2

v′

)2

(71)

and as above (λ)Ψ−1 ∈ Σt.
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Remark 2. From (69), (71) and (63), the focal surface (λ)Ψ1 and (λ)Ψ−1 of (λ)Φ
is up to a Minkowski isometry the surface (µ)Φ ∈ Σt where λ and µ are related by

(λ)Ψ1 : µ = ln
1− sin λ

2

cos λ
2

, λ ∈ [−π/2, π/2] (72)

(λ)Ψ−1 : µ = ln
1− cos λ

2

sin λ
2

, λ ∈ [π/2, 3π/2].

Theorem 4. If Φ ∈ Σt then one of the focal surfaces Ψϕ is an isotropic straight
line or a timelike surface, the other one belongs to Σs.

Proof. In case of Φ = (µ)Φ ∈ Σt a parametrization is by (47), (48) and (49)

(µ)f(u, v) =[(
u3

6
− u

2
− v3

6
+

v

2

)
cosh µ +

(
u3

6
− u

2
+

v3

6
− v

2

)
sinh µ,(

−u2

2
+

v2

2

)
cosh µ +

(
−v2

2
− u2

2

)
sinh µ, (73)(

u3

6
+

u

2
− v3

6
− v

2

)
cosh µ +

(
u3

6
+

u

2
+

v3

6
+

v

2

)
sinh µ

]
,

which is an immersion iff u 6= v what is assumed in the following. The focal
surfaces (µ)Ψϕ are from (18) because of ε = 1

(µ)zϕ = (µ)f + ϕ(−K)−1/2n, ϕ = ±1, (74)

where Gauss-curvature K and normal vector n are given by (50). This gives

(µ)zϕ(u, v) =

[(
u3

6
− u

2
− v3

6
+

v

2

)
cosh µ +

(
u3

6
− u

2
+

v3

6
− v

2

)
sinh µ+

ϕ

2
(uv − 1)(−u + v),(
−u2

2
+

v2

2

)
cosh µ +

(
−v2

2
− u2

2

)
sinh µ +

ϕ

2
(u2 − v2), (75)(

u3

6
+

u

2
− v3

6
− v

2

)
cosh µ +

(
u3

6
+

u

2
+

v3

6
+

v

2

)
sinh µ) +

ϕ

2
(uv + 1)(−u + v)

]
.

From (73) it is (−µ)f(u, v) = −(µ)f(v, u) (compare [7, p. 338]). Because of
K(u, v) = K(v, u) and n(u, v) = −n(v, u) we get

(−µ)zϕ(u, v) = −(µ)zϕ(v, u). (76)

So w.l.o.g. we assume µ ≥ 0 in the following.
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In case of ϕ = 1 the coefficients of the fundamental forms of the focal surfaces
(µ)Ψ1 = (µ)z1(U) are from (75)

g∗11 = (u− v)2(1− cosh µ− sinh µ)

g∗12 = 0

g∗22 = (u− v)2(1− cosh µ + sinh µ), (77)

h∗11 = h∗22 = 0, h∗12 =
√

2
√

cosh µ− 1.

From this it is

(µ)∆∗ = det((µ)g∗jk) = −2(u− v)4(cosh µ− 1) ≤ 0.

Because of u 6= v it is (µ)∆∗ = 0 ⇐⇒ µ = 0. From (75) (0)z1(U) is the isotropic
axis of rotation of the timelike parabolic catenoid (0)f(U) from (73).

In case of µ 6= 0 the focal surface (µ)Ψ1 = (µ)z1(U) is timelike (ε∗ = 1). From (77)
the Gauss-curvature is K∗(u, v) = (u−v)−4 > 0. Because of −ε∗K∗ < 0 it follows
from (18) that there are no real eigenvalues of the shape operator and therefore
the timelike surfaces (µ)Ψ1 cannot belong to Σt.

In case of ϕ = −1 we calculate from (75)

g∗11 = (u− v)2(1 + cosh µ + sinh µ)

g∗12 = 0

g∗22 = (u− v)2(1 + cosh µ− sinh µ), (78)

h∗11 = h∗22 = 0, h∗12 = −
√

2
√

cosh µ + 1.

Because of u 6= v it is

(µ)∆∗ = 2(u− v)4(cosh µ + 1) > 0,

so we have spacelike surfaces. Reparametrization of (75) (ϕ = −1)

u(u′, v′) = a1u
′ + b1v

′

v(u′, v′) = c1u
′ + d1v

′,

with

a1 =
1

2

(
1− tanh

µ

2

)1/2

, b1 = a1

c1 = −1

2

(
cosh

µ

2

(
cosh

µ

2
− sinh

µ

2

))−1/2

, d1 = −c1

gives parameters according to Lemma 1. Straight forward calculation gives

g∗11(u
′, v′) = : g∗(u′v′) =

(
−
(

1 + d

2

)1/2

u′ +

(
1− d

2

)1/2

v′

)2

=: (au′ + bv′)2

g∗22 = g∗11, g∗12 = 0, h∗11 = 1, h∗12 = 0, h∗22 = −1. (79)

where d := (cosh µ
2
)−1. Because of ε∗ = −1 it yields b2 − ε∗a2 = 1, so from

Theorem 2 it follows (µ)Ψ−1 ∈ Σs.
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Remark 3. From (60) and (79) the spacelike focal surface (µ)Ψ−1 of (µ)Φ ∈ Σt is
up to a Minkowski isometry the surface (λ)Φ ∈ Σs where λ and µ are related by

λ = −2 arcsin

√
1

2
+

1

2 cosh µ
2

, λ ∈
[
−π,−π

2

]
,

where surfaces (λ+π)Φ and (λ)Φ are congruent (with (λ)f(U) = (λ)Φ it is (λ+π)f =
−(λ)f from (67)). Because λ = ±π

2
would imply µ = ∞, the Cayley surface

(±π/2)Φ ∈ Σs does not appear as a focal surface of a surface (µ)Φ ∈ Σt.

Proposition. Every regular focal surface Ψ of a surface Φ ∈ {Σs ∪ Σt} is an
improper affine sphere.

Proof. (a) In case of Φ ∈ Σs this is true by Theorem 3 and Theorem 2(c).

(b) In case of Φ ∈ Σt and Ψ spacelike the assertion is true by Theorem 4 and
Theorem 2(c). If Ψ is timelike, that means Ψ = (µ)Ψ1 = (µ)z1(U) where (µ)z1

is given by (75) (ϕ = 1), a straight forward calculation gives a constant affine
normal vector parallel to the isotropic direction x1 = x3, x2 = 0.

Remark 4. The surfaces Φ ∈ {Σs ∪ Σt} are not characterized by the fact, that
the focal surfaces are improper affine spheres (see for instance Chapter 4 in [10]).

Example 1. The spacelike parabolic catenoid Φ is from (41)

f(u, v) =

[
v3

3
+ v − u2v,−2uv,

v3

3
− v − u2v

]
.

The focal surfaces are from (66) (λ = 0)

(0)zϕ(u, v) =

[(
v3

3
+ v − u2v

)
+ ϕ

(
v − vu2 − v3

)
,−2 uv + ϕ(−2uv),(

v3

3
− v − u2v

)
+ ϕ

(
−v − vu2 − v3

)]
.

(0)Ψ−1 = (0)z−1(U) is the isotropic axis of rotation, (0)Ψ1 = (0)z1(U) is a timelike
surface. Reparametrization of (0)Ψ1 according to (68) (c = 1)

u(u′, v′) = u′/2, v(u′, v′) = −v′/2

gives

(0)z1(u
′, v′) =

[
v′ 3

12
− v′ − u′ 2v′, u′v′,

v′ 3

12
+ v′ + u′ 2v′

]
. (80)

and
g∗11 = u′ 2, g∗12 = 0, g∗22 = −u′ 2, h∗11 = 1, h∗12 = 0, h∗22 = 1. (81)

On the other hand the timelike catenoid is from (47) (we write f̃ instead of f)

f̃(u, v) =

[
u3

6
− u

2
,−u2

2
,
u3

6
+

u

2

]
+

[
−v3

6
+

v

2
,
v2

2
,
−v3

6
− v

2

]
.
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Reparametrization according to (62) (µ = 0)

u(u′, v′) =

√
2

2
(u′ − v′), v(u′, v′) =

√
2

2
(u′ + v′)

gives

f̃ ′(u′, v′) =

[√
2

(
−v′ 3

12
+

v

2
− 1

4
u′ 2v′

)
, u′v′,

√
2

(
−v′ 3

12
− v

2
− 1

4
u′ 2v′

)]
(82)

and as in (81)

g11 = u′ 2, g12 = 0, g22 = −u′ 2, h11 = 1, h12 = 0, h22 = 1.

Due to the Theorem of Schwarz there is (according to Theorem 3) a Minkowski
isometry α : R3

1 → R3
1 mapping (0)z1(U

′) to f̃(U ′). With respect to the standard
basis the coordinate matrix of α is

A :=

 −3
√

2
4

0
√

2
4

0 1 0√
2

4
0 −3

√
2

4

 (83)

and from (80) and (82) it yields

f̃ ′(u′, v′) = A ((0)z1(u
′, v′))T .

That means the (regular) focal surface of a spacelike parabolic catenoid is a time-
like parabolic catenoid. An analogue consideration shows that the converse is
also true. Surface (λ = 0) ∈ Σs (first surface in Figure 1) corresponds to surface
(µ = 0) ∈ Σt (first surface in Figure 2) and vice versa.

Example 2. The (spacelike) Cayley surface (conjugate to the spacelike parabolic
catenoid (41)) is from (42)

(π/2)f(u, v) =

[
u3

3
− u− uv2, u2 − v2,

u3

3
+ u− uv2

]
.

The focal surfaces of (π/2)Φ = (π/2)f(U) are the timelike surfaces (π/2)Ψϕ parame-
trized by (66) (λ = π/2)

(π/2)zϕ(u, v) =

[(
u3

3
− u− uv2

)
+ ϕ(v − vu2 − v3), (u2 − v2) + ϕ(−2uv),(

u3

3
+ u− uv2

)
+ ϕ

(
−v − vu2 − v3

)]
,

what implies (π/2)z1(u, v) =(π/2) z−1(u,−v).
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Figure 3. Cayley surface with the two (coinciding) sheets of focal surfaces.

Reparametrization of (π/2)Ψ1 according to (68) (c =
√

2) gives

(π/2)z1(u
′, v′) =

[
−
√√

2− 1

12

(
3 v′

2
u′ + 6 u′ + u′

3 − v′
3 − v′

3
√

2− 3 v′u′
2−

3 v′u′
2
√

2 + 6 v′
√

2 + 6 v′
)

, u′v′,−
√√

2− 1

12

(
3 v′

2
u′ − 6 u′ + u′

3 − v′
3−

v′
3
√

2− 3 v′u′
2
√

2− 3 v′u′
2 − 6 v′

√
2− 6 v′

)]
, (84)

where (u′, v′) are parameters according to Lemma 1. It is

g∗11 =

(
−
√√

2− 1√
2

u′ +

√√
2 + 1√
2

v′

)2

, g∗12 = 0, g∗22 = −g∗11 (85)

h∗11 = 1, h∗12 = 0, h∗22 = 1.

Reparametrization of (π/2)Ψ−1 according to (70) (c =
√

2) gives

(π/2)z−1(u
′, v′) =(π/2) z1(u

′, v′).

On the other hand the surfaces of the timelike pencil Σt given by (61) can be
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reparametrized by (62). This gives

(µ)f̃(u′, v′) =
[
−1/12

√
2
(
sinh(µ/2)u3 + 6 sinh(µ/2)u + 3 sinh(µ/2)uv2+

cosh(µ/2)v3 − 6 cosh(µ/2)v + 3 cosh(µ/2)u2v
)
, uv, (86)

−1/12
√

2
(
sinh(µ/2)u3 − 6 sinh(µ/2)u + 3 sinh(µ/2)uv2+

cosh(µ/2)v3 + 6 cosh(µ/2)v + 3 cosh(µ/2)u2v
)]

where due to (63) it is

g(u′, v′) =
(
u′ sinh

µ

2
+ v′ cosh

µ

2

)2

. (87)

Comparing (87) with (85) gives

µ =: µ0 = ln(
√

2− 1). (88)

Inserting µ = µ0 in (86) gives (µ0)f̃(u′, v′) and comparison with (84) shows

(µ0)f̃(u′, v′) = (π/2)z1(−u′,−v′),

so the two sheets (π/2)Ψ1 and (π/2)Ψ−1 of focal Cayley-surfaces of a (spacelike)
Cayley-surface coincide with each other and with the surface (µ0)Φ ∈ Σt where µ0

is given by (88).
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