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A Classical Complex Analyst Encounters a
Post-modern Mathematical Object*

Phillip Griffiths
Institute for Advanced Study,
Princeton, U.S.A.

Abstract

We show how an elementary problem in classical function theory and
elementary projective geometry leads into a decidedly non-classical object
studied in recent times by K-theorists and algebraic number theorists. No
knowledge of algebraic K-theory will be assumed; rather the presentation
will be appropriate for a reader with a basic background in the theory of
functions of one complex variable.

This presentation has two historical sources:
e Geometry-specifically algebraic geometry
e Complex function theory-especially its use in algebraic geometry

Algebraic geometry studies the solutions to polynomial equations:

fl(Zl,...,Zn) =0

fm(zl,...,zn) =0

It begins with the study of algebraic plane curves f(z,y) = 0; next come surfaces
f(z,y,2) = 0in 3-space. (See Figs 1 and 2).

The relation of algebraic geometry to complex analysis comes through the
fundamental theorem of algebra:

*This article is a transcription made by Tom Berry of a talk given by the author at the
Mathematics Department of the Universidad Simén Bolivar, Venezuela, on February 19th,
2001. It is reproduced here with permission from the author.
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Figure 1: Some algebraic curves

Figure 2: A quadric surface

The equation
n
flz)= Zaizi =0, a, #0
i=1
has n roots, (counting multiplicities) in the complex z-plane. Moreover, any set
of n points {z1,...,2n} are the solutions to such an equation

n

f(z)= H(z —2;) =0.

i=1

We add the point 2 = 0o to get the Riemann sphere, or complex projective
line P! = CUoo (c.f. Fig. 3). Recall that the behaviour of f(z) at oo is defined
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Figure 3: The Riemann Sphere

to be the behaviour of f(1/z) at 0. Then the meromorphic functions on P!
have the same number of zeroes and poles, since

d
f#zeroes—#poles = Z Res., (—f>
L !
zEP
=0 by the Residue Theorem.

The meromorphic functions on P! are just the rational functions p(z)/q(z), p,q
polynomials.

A configuration of points z; € P! and multiplicities n; € Z is encapsulated
as the divisor Y n;[z;] (i.e. a divisor is an element of the free abelian group
on the points of P'). To any rational function f is associated its divisor (f) of
zeroes and poles:

(f) =Y ord. f[]

(where ord, f = n if f has a zero of order n at z and —n if f has a pole of order
n at z.) With this terminology, any configuration

Zn,[zz], Z’I’Li = 0

is the divisor of the rational function
1) =[G - =)™

(Here, if z; = 0o the corresponding factor is suppressed.)
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So much for polynomial equations in one variable. We turn to two variables
and look at the algebraic curve

f(z,y)=0

We draw the real solutions but consider all complex solutions. This is essentially

y2 =p4x)

Figure 4:

because of the 18th century result known as Bézout’s theorem:
The number of solutions to

f(2,y) =0
g9(z,y) =0
is deg f - deg g, provided that
1. There are only finitely many solutions.
We use complez solutions.

We count multiplicities properly (c.f. Fig.5).

we add points at infinity corresponding to “asymptotic intersections” (c.f.
Fig. 6).

These conditions are better understood in the complex projective plane
P2(C). This is C? completed by a line at infinity, whose points correspond
to directions through the origin in C?. A (necessarily) schematic picture is
given in Fig.7. Fig. 8 shows the hyperbola in the projective plane. We should
note that in P2, all lines, and in particular the coordinate axes, are P1’s.

Not every set of mn points in P2 is C N D where C = {f,(z,y) = 0}
and D = {gm(x,y) = 0} are curves of degrees n and m respectively. We may
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intersection multiplicity 3

intersection multiplicity 2

Figure 5: Intersection multiplicities

Figure 6: Asymptotic Intersections of zy = 1 with the coordinate axes

contrast the one and two variable cases by dimension counts.

dim{f(2): f(z) = 2"+ an_12""' +...a0} = n,
dim{sets of n points in C} =n
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line at infinity =
directions through

y axis origin

X axis

Figure 7: The Projective Plane P?
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Figure 8: Hyperbola in P?

so that any n points of C will be the zeros of a monic polynomial of degree n.
By contrast (taking for simplicity m = n)

dim{ fn(2,9), gn(@,9)} & n®
dim{sets of n? points in C*} ~ 2n?

The “~” indicates that the error term has degree < 1 in n. The first assertion
follows observing that a polynomial of degree k in two variables has (k+ 1)(k +
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2)/2 coefficients.

Thus not every set of 3 points is the intersection of a cubic and a line (the
points have to be collinear!), and not every set of 9 points is the intersection of
two cubics. We have the following
Problem. Study the geometric constraints on a configuration of points in P2
to be C N D for algebraic curves C,D.

Figure 9: A complete intersection.

This turns out to be closely related to the
Problem. Given D = Y n;p;, pi € P?, when is there an algebraic curve C
passing through D and a rational function

on C, with (f) = D?

Here, (f) needs to be defined. Grosso modo, C' defines a Riemann surface,
almost all of whose points can be identified with points of C, and f is a mero-
morphic function on the surface. Then (f) means the zeros and poles of f taken
with their orders, analogous to what we described for P'. At non-singular points
P of C (i.e. points where there is a tangent line) ordp(p(z,y)/q(z,y)) = { in-
tersection multiplicity of p = 0 and C at P} — { intersection multiplicity of
g=0and C at P}.

In this problem, as in the case of P!, a necessary condition on D is Y n; = 0,
but this is no longer enough.

Although this 18th century question has a 19th century answer, a closely
related question has a “new millennium” answer and leads to some of the deepest
questions in modern algebraic geometry.

To explain this we go back to the 1-variable case, and ask the question:
When is D = Ele n;[z;], z; # 0,00 the divisor of a rational function f(z) with
f(0) = f(o0)?
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C

Figure 10:

As before > Res% = 0 gives Y n; = 0, but there is an additional constraint.

Suppose I'mz; # 0. Then, integrating logszf around the contour shown in Fig.
11 and letting R — oo

Figure 11:

S ) -4

But the LHS is ) n;logz;, while, by taking a primitive of f'/f in a simply
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connected set containing the positive real axis, we find the RHS is 2my/—1m,
where m is an integer. Thus

Z n;log z; = 2mv/—1m

and, exponentiating, we obtain the further constraint

sz"’ =1

This, together with Y n; = 0, is necessary and sufficient for the existence of a
solution to the problem, as is confirmed by a dimension count.
The simplest non-trivial function f(z) with f(0) = f(o0) is

(2 —a)(z—b)

1@ = D=

with divisor
(f) = la] + [b] — [1] — [ab]
= ([a] = [1]) + ([6] = [1]) — ([ab] — [1])

This has the following meaning: let
Div(P';0,00) = {Zni[zi]azni =0, z # 0700}

Then the divisors D, = [a] — [1] generate Div(P!;0, 00), and with the function
f defined above
(f) =Da+Db_Dab

[43 R
~

Define an equivalence relation on the group Div(P1;0, ) by:
D ~ D' if 3 a rational function g, g(0) = g(c0) and (g) = D — D’

Then, using the function f
Da, + Db ~ Dab

Define Div(P';0,00) = C* by . n;i[z;] — [1, 2. This is surjective, since
D, — a, and the kernel is ), n;z; : [[; 2] =
Conclusion: The map

Div(P';0,00)/ ~ — C*
induced by Z n;z; — H 2"

is well-defined and is an isomorphism.
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Figure 12: situation in P2

Now we go to configurations of points in (P?,T) where T denotes the triangle
formed by the coordinate axes. P2 — T = C* x C*, since P2 — T is just
C? — { coordinate axes}. We set

Div(P2,T) = {anZn =0,pi & T}

and ask the question:
For D € Div(P%,T) when is there a curve C = {f(x,y) =0} and

p(z,y) ‘
q(z,y)lo

with
g = constant on TN C
(9)=D

As before, the residue theorem for logz dg/g and logy dg/g gives the con-

ditions
H ;i =1

[Tvi =1

Let Div°(P2,T) C Div(P2,T) be the subgroup satisfying these conditions.
Define an equivalence relation “~” on Div®(P?,T) to be generated by
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D; ~ D, if there exists a curve C passing through D; and D, and

a rational funcion g = 2 gzg | o such that g is constant on C'NT and
(9)=D1— D,
Define

C(P2,T) = Dit (P2, T)/ ~
Now Div(P?,T) is generated by
Dll,b = (CL, b) - (a: 1) - (Lb) + (1a 1)

Considering

Figure 13:

(z —a1)(z — a»)
(z — )(z — ara2)

on C = {y = b} gives (noting that, for any line C' passing through a vertex of
T, (C,CNT) = (P';0,00))

Da1,b + Dag,b ~ Dalaz,b
Dy2p ~ Dap+ Dap ~ Dy pe

Conclusion:
The map

DiUO(P2,T) - C* Q7 (o8
Da,b —Ha®b
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is well-defined.

It would have been much simpler if the story had ended here. But the above
map is not an isomorphism, in contrast to its analogue in the 1-variable case.
Geometrically, we also need to look at lines which do not pass through a vertex
of T.

For g = [[(z — a;)™|z4y=1 where >~ n; = 0,[[a;" =[](1 —a;)™, we get

\ X+y=1

N
XaxIS

Figure 14: z +y =1

ZDai,l—ai ~0

This intertwines z,y in a subtle way.
Definition.

K>)(C)=C"®zC"/{a® (1 —a):a€ C",a#1}

The relations a ® (1 — a) = 1 are the Steinberg relations. Then one can prove:
Theorem. The map D, — a ® b induces an isomorphism

C(P2,T) = K»(C)

Now K3(C) is a subtle arithmetic object. We set {a,b} = image of a ® b in
K5(C). Then

{a,1} =1={1,b}
{a,b} =1ifa,be Q

For example, on z =y

(aba ab) - (a,a) - (b7 b) + (17 1) ~0
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hence
Dyp+Dpo~0
which implies
{a,b} = {b,a} "
= {3,a}

Now

— 1
{aa ]-} - {a7 1- a}{a7 m}
={a,1-a} ' =1
For A\ a complex nth root of unity, A" =1
1={a,1} = {a,\}"
so that {a, A} is torsion.
Corollary Given z;,y; € Q; n; € Z, i = 1...k so that Ele n; = 0 and

Hle = Hle y;* =1, then there exists a curve C = {f(z,y) =0} and g a
rational function on C such that, with p; = (z;,y;)

@)=Y nn

and g is constant on C NT. Moreover C,g are defined over Q.

K>(C), which has provided the above corollary, is a “new millenium” object.
For example,

— 0l
TK>(C) = 2g,q

where TK,(C) indicates the tangent space (which of course needs a rigorous

definition), and Qlc /Q is the module of Kahler differentials of C/Q; that is,

the complex vector space with generators dz, z € C and relations:
d(zl + 22) =dz; +dzs VZl,ZQ eC
dqz = qdz YVgeQ,zeC
d(z122) = z1dzo + 22dz1 V21,22 € C

From these relations follow successively: dg = 0 Vg € Q; da = 0 for any
a € Q (if f(a) = 0 where f(z) € Q[z] is the minimal polynomial of & over

Q, then df (o) = f'(a)da = 0, hence da = 0). So TK,(C) = Qb/Q looks like

C/Q. K5(C) is a subtle mixture of arithmetic and geometry.



