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The fundamental solutions for fractional

evolution equations of parabolic type

Mahmoud M. El-Borai

Abstract

In this paper, we treat the fractional integral equation of the form

u(t) = u0 −
1

Γ(α)

Z t

0

(t− θ)α−1[A(θ)u(θ)− f(θ)]dθ,

where 0 < α ≤ 1, Γ(α) is the gamma function, {A(t) : t ≥ 0} is a family
of linear closed operators defined on a dense set D(A) in a Banach space E
into E, u0 is an element of D(A) and f is a given E-valued function defined
on an intervall [0, T ]. The existence and uniqueness of the solution of the
considerd integral equation is studied for a suitable class of the family of
operators {A(t) : tε[0, T ]}. The continuous dependence of solutions on
f and u0 is also studied. An application is given to a mixed problem of
general parbolic partial differential equations with fractional order.
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1. Introduction

In this paper, we consider the following fractional integral evolution equation,

u(t) = u0 − 1
Γ(α)

∫ t

0

(t− θ)α−1[A(θ)u(θ)− f(θ)]dθ, (1.1)

where 0 < α ≤ 1,Γ(α) is the gamma function, {A(t) : t ∈ [0, T ]} is a family
of linear closed operators defined on dense set D(A) in a Banach space E into
E, u is the unknown E-valued function , u0 ∈ D(A) and f is a given E-valued
function defined on [0, T ].
It is assumed that D(A) is independent of t. Let B(E) denote the Banach space
of all linear bounded operators in E endowed with the topology defined by the
operator norm.



30 M. M. El-Borai

We need the following conditions;

(A1): The operator [A(t)+λI]−1 exists in B(E) for any λ with Re λ ≥ 0 and

‖ [A(t) + λI]−1 ‖≤ C

| λ | +1
, (1.2)

for each t ∈ [0, T ], where C is a positive constant independent both of t and λ.

(A2): for any t1, t2, s ∈ [0, T ],

‖ [A(t2)−A(t1)]A−1(s) ‖≤ C | t2 − t1 |γ (1.3)

where 0 < γ ≤ 1 , C > 0 and the constants C and γ are independents of t1, t2
and s
(A3): The function f satisfies a uniform Holder condition (with exponent β) in
[0,T], i.e.,

‖ f(t2)− f(t1) ‖≤ C | t2 − t1 |β ,

for all t1, t2 ∈ [0, T ], where C and β are positive constants and 0 < β ≤ 1,(The
constants C and β are independent of t1 and t2)
Under condition (A1) each operator - A(s) , s ∈ [0, T ], generates an analytic
semigroup exp(−tA(s)), t > 0 and there exists a positive constant C indepen-
dent both of t and s such that

‖ An(s)exp(−tA(s)) ‖≤ C

tn
, (1.4)

where n = 0,1 , t > 0, s ∈ [0, T ], [1], [2]
In section 2, we shall construct the fundamental solution of the homogeneous

fractional differential equation

dαv(t)
dtα

+A(t)v(t) = 0, t > 0 (1.5)

We shall prove the existence and uniqueness of the solution of equation (1.5),
with the initial condition

v(0) = u0 ∈ D(A). (1.6)

The continuous dependence of the solutions of equation (1.1) on the elements
u0 and the function f is proved.
In section 3, we give an application to a mixed problem of a parabolic partial
differential equation of fractional order.
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2. The fundamental solution

We say that u is a strong solution of the fractional integral equation (1.1), if
u(t) ∈ D(A) for each t ∈ [0, T ], u, u∗are continuous in t ∈ [0, T ]and u satisfies
equation (1.1), where u∗(t) = A(t)u(t).

Let h be an E-valued function defined on [0,T]. If dh(t)
dt and the integral∫ t

τ
(t− θ)−α dh(θ)

dθ dθ exist in the abstract sense, then we use the following defini-
tion of the fractional derivative τD

α
t h(t);

τD
α
t h(t) =

1
Γ(1− α)

∫ t

τ

(t− θ)−α dh(θ)
dθ

dθ , (2.1)

[3], [4], [5].
If u is a strong solution of (1.1), then the fractional derivative

dαu

dtα
= 0D

α
t u,

exists and continuous in t ∈ [0, T ]. In this case we notice that

d

dt

∫ t

0

(t− θ)−αF (θ)dθ =
∫ t

0

(t− θ)−α dF (θ)
dθ

dθ, (2.2)

where

F (t) =
∫ t

0

(t− θ)α−1[f(θ)− u∗(θ)]dθ.

Using (1.1), (2.1) and (2.2), we get

dαu(t)
dtα

=
1

Γ(α)Γ(1− α)
d

dt

∫ t

0

∫ t

θ

(t− s)−α(s− θ)α−1(f(θ)− u∗(θ))dsdθ

= −A(t)u(t) + f(t), (2.3)

u(0) = u0. (2.4)

The converse is also true. In other words if dαu(t)
dtα is continuous in t ∈ [0, T ] and

u represents a solution of the Cauchy problem (2.3), (2.4), then u represents a
strong solution of (1.1), (this means that the integral equation (1.1) is equivalent
to the Cauchy problem (2.3), (2.4)).
We shall consider integrals of oprerator -valued functions. these integrals are
defined in the sense of Riemann with respect to the strong topology. We shall
denote by ψ(t , s) the following integral,

ψ(t, s) = α

∫ ∞

0

θtα−1ζα(θ)exp(−tαθA(s))dθ,
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where ζα is a probability density function defined on [0,∞), such that its Laplace
transform is given by ∫ ∞

0

e−θxζα(θ)dθ =
∞∑

j=0

(−x)j

Γ(1 + αj)
,

where 0 < α ≤ 1, x > 0 , [5], [7].
Lemma 2.1. The improper integral

∫∞
0
θζα(θ)A(t)exp(−ηαθA(s))dθ exists for

η > 0, t, s ∈ [0, T ] and represents a uniformly continuous function in the
uniform topology (that is in the norm of B (E)) in the variables t, η, s, where
t, s ∈ [0, T ], ε ≤ η ≤ T and ε is any positive number.
Proof: The existence of the considered improper integral is clear for η > 0, t, s ∈
[0, T ]. If 0 ≤ t1 < t1 + ∆t1 = t2 ≤ T, ε ≤ η1 < η1 + ∆η1 = η2 ≤ T, and
0 ≤ s1 < s1 + ∆s1 = s2 ≤ T , then∫ ∞

0

θζα(θ)A(t2)exp(−ηα
2 θA(s2))dθ −

∫ ∞

0

θζα(θ)A(t1)exp(−ηα
1 θA(s1))dθ

=
∫ ∞

0

θζα(θ)P (t1, t2, s2)A(s2)exp(−ηα
2 θA(s2))dθ

+
∫ ∞

0

θζ(θ)αA(t1)[exp(−ν2θA(s2))− exp(−ν1θA(s2))]exp(−ν1θA(s2))dθ

+
∫ ∞

0

θζα(θ)A(t1)[exp(−ηα
1 θA(s2))− exp(−ηα

1 θA(s1))]dθ, (2.5)

where P (t1, t2, t3) = [A(t2)−A(t1]A−1(t3), ν1 = ηα
1 /2, ν2 = ηα

2 − ηα
1 /2.

It can be proved under conditions (A1)and (A2)that

‖ A(t)[exp(−ηA(s))− exp(−ηA(τ)) ‖≤ C

η
| s− τ |γ , (2.6)

‖ A(t)[exp(−ηA(s))− exp(−τA(s))]A−1(s) ‖≤ C | η − τ |
Min(η, τ)

, (2.7)

for all η > 0, τ > 0, t, s ∈ [0, t], where the positive constant C is independent of
t, s, η and τ .
We estimate the norm of the first term on the right of (2.5) by using condition
(A2)and (1.4), the norm of the second term by using (2.7) and (1.4). We
estimate the norm of the last term on the right (2.5) by using (2.6). We thus
find that the norm of the left side of (2.5) is bounded by

C[
(∆t1)γ

εα
+

1
ε2α

{(η1 + ∆η1)α − ηα
1 }+ ε1− α(∆s1)γ ].
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This completes the proof.
Corollary. The operator - valued function ψ(t − η, η) and A(t)ψ(t − η, η)are
uniformly continuous in the uniform topology in the varaibles t, η, where 0 ≤
η ≤ t− ε, 0 ≤ t ≤ T , for any ε > 0 . Clearly

‖ ψ(t− η, η) ‖≤ C(t− η)α−1, (2.8)

where C is a positive constant independent of t, η
Lemmma 2.2. If

w1(t, τ) =
∫ t

τ

ψ(t− η, η)f(η)dη, t > τ,

then

τD
α
t w1(t, τ) = f(t)−

∫ t

τ

A(η)ψ(t− η, η)f(η)dη.

Proof. Let {fn} be a sequence of functions defined by

fn(t) = [I +
1
n
A(t)]−1f(t), t ∈ [0, T ].n = 1, 2, ...

Let us consider the integrals ;

w1n(t, τ) =
∫ t

τ

ψ(t− η, η)fn(η)dη,

w2n(t, η) = fn(η)− 1
Γ(α)

∫ t

η

(t− θ)α−1A(η)w2n(θ, η)dθ.

Since fn(t) ∈ D(A) for all t ∈ [0, T ], it follows from [8] that

w2n(t, η) =
∫ ∞

0

ζα(θ)[exp(−(t− η)αθA(η))]fn(η)dθ, (2.9)

where 0 ≤ η ≤ t. Thus

ηD
α
t w2n(t, η) =

1
Γ(1− α)

∫ t

η

(t− s)−α dw2n(s, η)
ds

ds

=
−α

Γ(1− α

∫ t

η

∫ ∞

0

(t−s)−α(s−η)α−1θζα(θ)A(η)[exp(−(s−η)αθA(η))]fn(η)dθds

= −A(η)w2n(t, η). (2.10)

Using (2.9) and (2.10), we get

τD
α
t ωn(t, τ) =

d

dt

∫ t

τ

∫ ∞

0

ζα(θ)[exp(−(t− η))αθA(η))]fn(η)dθdη

= fn(t)−
∫ t

τ

A(η)ψ(t− η, η)fn(η)dη
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According to lemma (2.1), we notice that A(η)ψ(t − η, η) is uniformly con-
tinouous function in the uniform topology in the variables t, η ∈ [0, T ] where
t−η ≥ ε. Since f satisfies condition (A3), it follows that the integral

∫ t

τ
A(η)ψ(t−

η, η)f(η)dη exists (comp [8]). We notice that;

‖ A(η)ψ(t− η, η) ‖≤ C

t− η
, (2.11)

for all t, η ∈ [0, T ], t− η ≥∈. Clearly

‖ [I +
1
n
A(t)]−1 − I ‖≤ C + 1, (2.12)

where as for x ∈ D(A);

‖ [I +
1
n
A(t)]−1x− x ‖≤ C

n
‖ A(t)x ‖ .

Using (2.12) and noticing that f satisfies condition (A3), we deduce that the
sequence {fn}uniformly converges to f with respect to t ∈ [0, T ]. Using (2.11),
we get for any positive number ε, the following inequality

‖
∫ t−ε

τ

A(η)ψ(t− η, η)[fn(η)− f(η)]dη ‖≤ Cε[ln(t− τ)− lnε],

for sufficiently large n. Consequently.

lim
n →∞ τD

α
t w1n(t, τ) = f(t)−

∫ t

τ

A(η)ψ(t− η, η)f(η)dη,

uniformly with respect to t ∈ [0, T ], t > τ . This completes the proof.
Let

φ1(t, τ) = [A(t)−A(τ)]ψ(t− τ, τ),

φk+1(t, τ) =
∫ t

τ

φk(t, s)φ1(s, τ)ds, k = 1, 2, ...

Using condition (A2), we get

‖ φ1(t, τ) ‖≤
∫ ∞

0

‖ S(t, τ, θ) ‖‖ A(τ)exp(−(t− τ)αθA(τ)) ‖ dθ ≤ C(t− τ)γ−1 ,

(2.13)
where

S(t, τ, θ) = αθ(t− τ)α−1ζα(θ)P (t, τ, τ).

Using lemma (2.1), we conclude that φ1is uniformly continuous in t, τ in the
uniform topology, provided that t − τ ≥ ε > 0. Now one verifies by induction
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that all the functions φk, k = 1, 2, . . . are uniformly continuous in t, τ in the
uniform topology for t− τ ≥∈ t, τ,∈ [0, T ], and

‖ φk(t, τ) ‖≤ Ck(t− τ)γk−1

Γ(γk)
. (2.14)

Using inequalities (2.14), one can justify the relation∫ t

τ

φ(t, s)φ1(s, τ)ds =
∞∑

k=1

∫ t

τ

φk(t, s)φ1(s, τ)ds ,

where

φ(t, τ) =
∞∑

k=1

φk(t, τ),

It is easy to see that
‖ φ(t, τ) ‖≤ C(t− τ)γ−1. (2.15)

The function φ is uniformly continuous in the uniform topology in t, τ provided
that 0 ≤ τ ≤ t− ε, ε ≤ t ≤ T for any ε > 0. Using Fubini’s theorem, we deduce
that φ is the unique solution of the integral equation

φ(t, τ) = φ1(t, τ) +
∫ t

τ

φ(t, s)φ1(s, τ)ds. (2.16)

Lemma 2.3. For any 0 < δ < γ, 0 ≤ τ < t1 < t2 ≤ T ;

‖ φ(t2, τ)− φ(t1, τ) ‖≤ C(t2 − t1)γ−δ(t1 − τ)δ−1 (2.17)

where the positive constant C does not depend on t1, t2 and τ .
Proof. from (2.13), we get

‖ φ1(t2, τ)− φ1(t1, τ) ‖≤ 2C(t1 − τ)γ−1. (2.18)

Writting
φ1(t2, τ)− φ1(t1, τ) = P (t1, t2, τ)A(τ)ψ(t2 − τ, τ)+

P (t1, τ, τ)A(τ)[ψ(t2 − τ, τ)− ψ(t1 − τ, τ)],

Λ(t1, t2, τ) = P (t1, τ, τ)A(τ)[ψ(t2 − τ, τ)− ψ(t1 − τ, τ)],

we get
‖ P (t1, t2, τ)A(τ)ψ(t2 − τ, τ) ‖≤ C(t2 − t1)γ(t1 − τ)−1,

‖ Λ(t1, t2, τ) ‖≤ 2C(t1 − τ)γ−1.

We can write

Λ(t1, t2, τ) =
∫ ∞

0

P1(t1, t2, t3, τ, θ)dθ +
∫ ∞

0

P2(t1, t2, t3, τ, θ)dθ,
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where

P1(t1, t2, τ, θ) = αθζα(θ)[A(t1)−A(τ)]P3(t1, t2, t3, τ, θ)exp[−(t1 − τ)αθA(τ)],

P3(t1, t2, t3, τ, θ) = (t2−τ)α−1exp[−{(t2−τ)α−(t1−τ)α}θA(τ)]−(t2−τ)α−1I,

We can find t3 and t4 such that t1 < t3 < t2, t1 < t4 < t2 and

P3(t1, t2, t3, τ, θ) =

(t2 − τ)α−1exp[−α(t2 − t1)(t3 − τ)α−1θA(τ)]− (t2 − τ)α−1I,

P2(t1, t2, t3, τ, θ) =

αθζα(θ)[A(t1)−A(τ)][(t2 − τ)α−1 − (t1 − τ)α−1]exp[−(t1 − τ)θA(τ)]

= α(α− 1)θζα(θ)(t2 − t1)(t4 − τ)α−2[A(t1)−A(τ)]exp[−(t1 − τ)θA(τ)].

We notice that
P3(t1, t2, t3, τ, θ) =

−αθ(t2 − τ)α−1(t3 − τ)α−1

∫ t2−t1

0

A(τ)exp[−ηαθ(t3 − τ)α−1A(τ)]dη.

Now it is easy to see that

‖ Λ(t1, t2, τ) ‖≤ C(t1 − τ)γ−2(t2 − t1).

Using the two bounds of ‖ Λ(t1, t2, τ) ‖ we get

‖ Λ(t1, t2, τ) ‖=‖ Λ(t1, t2, τ) ‖γ‖ Λ(t1, t2, τ) ‖1−γ

≤ C(t1 − τ)−1(t2 − t1)γ

consequently

‖ φ1(t2, τ)− φ1(t1, τ) ‖≤ C(t1 − τ)−1(t2 − t1)γ . (2.19)

Using (2.18) and (2.19), we get

‖ φ1(t2, τ)− φ1(t1, τ) ‖δ1+δ2≤ Cδ1+δ2(t2 − t1)γδ1(t1 − τ)δ2γ−δ1−δ2 ,

where δ1 > 0, δ2 > 0. Thus

‖ φ(t2, τ)− φ1(t1, τ) ‖≤ C(t2 − t1)γ−δ(t1 − τ)δ−1, (2.20)

where δ = δ2γ
δ1+δ2

< γ
Using (2.16), we get

φ(t2, τ)− φ(t1, τ) = φ1(t2, τ)− φ1(t1, τ)+
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+
∫ t1

τ

[φ1(t2, s)− φ1(t1, s)]φ(s, τ)ds+
∫ t2

t1

φ1(t2, s)φ(s, τ)ds. (2.21)

We estimate the norm of the first term on the right of (2.21) by using (2.20),
the norm of the second by using (2.13) and (2.15). After simple calculations,
the required result follows.
We shall make use of the inequality

‖ A(t)A−1(s) ‖≤ C,

which follows from condition (A2) where t, s ∈ [0, T ] and C is a positive constant
independent both of t and s.
Theorem 2.1. There exists an operator - valued function Q(t) with values in
B(E), defined and strongly continuous in t for 0 ≤ t ≤ T such that:
(B1) The fractional deivative dαQ(t)

dtα exists in the strong topology and belongs
to B(E) for 0 ≤ t ≤ T and is strongly continuous in t for 0 ≤ t ≤ T ,
(B2) The range of Q (t) is included in D(A) for 0 ≤ t ≤ T ,
(B3) For any u0 ∈ E, Q(t)u0 satisfies the fractional differential equation

dαQ(t)
dtα

u0 +A(t)Q(t)u0 = 0, 0 < t ≤ T, (2.22)

(B4) Q(0) = A−1(0)
(B5) A solution of the Cauchy problem (1.5), (1.6) is given by
v(t) = Q(t)A(0)u0, for any u0 ∈ D(A).
Proof. We set

Q(t) = A−1(0) +
∫ t

0

ψ(t− η, η)U(η)dη. (2.23)

We shall determine the operator valued function U(t) such that Q(t)u0 satisfies
equation(2.22). Using formally lemma (2.2), we get

U(t)u0 +
∫ t

0

φ1(t, η)U(η)u0dη = −A(t)A−1(0)u0, (2.24)

(Comp [9] , [10] , [11]).
The operator- valued function U(t) can be obtained by successive approxima-
tions, that is we put

U(t) =
∞∑

k=0

Uk(t),

where U0(t) = −A(t)A−1(0) ,

Uk+1(t) = −
∫ t

0

φ1(t, s)Uk(s)ds. (2.25)
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Using the properties of φk and Fubini’s theorem one easily shows by intduction
that

Uk(t) = −
∫ t

0

φk(t, s)A(s)A−1(0)ds. (2.26)

Using (2.15), (2.25) and (2.26) we deduce that the series
∑∞

k=0 Uk(t) uniformly
coverges on [0, T ]. It is clear that U(t) is given by

U(t) = −A(t)A−1(0)−
∫ t

0

φ(t, s)A(s)A−1(0)ds. (2.27)

Using (2.15) , we get
‖ U(t) ‖≤ C + Ctγ . (2.28)

It is easy to see that

U(t2)− U(t1) = [A(t1)−A(t2)]A−1(0)

−
∫ t1

0

[φ(t2, s)− φ(t1, s)]A(s)A−1(0)ds−
∫ t2

t1

φ(t2, s)A(s)A−1(0)ds.

Using condition (A2)and lemma (2.3), we fined

‖ U(t2)− U(t1) ‖≤ C(t2 − t1)γ +
c

δ
(t2 − t1)γ−δtδ1 +

c

γ
(t2 − t1)γ , (2.29)

where t2 > t1, t1, t2 ∈ [0, T ] and C is positive constant independent of t1, t2. Re-
calling that ψ(t−η, η) is uniformly continuous in t, η provided t−η ≥ ε > 0 and
using (2.8), (2.29), one can verify without difficulty that

∫ t

0
ψ(t− η, η)U(η)dη is

uniformly continuous (in the norm of B (E))in t ∈ [0, T ]. Using (2.28), we get
‖ Q(t) ‖≤ C, for all t ∈ [0, T ], where C is a positive constant independent of
t. It is also obvious that Q(0) = A−1(0) and Q(t)u0 is contiuous in t ∈ [0, T ]
for every u0 ∈ E. Let us prove now that the range of Q(t)included in D(A) for
0 < t ≤ T .
Using (2.29) and lemma (2.1), we deduce that A(t)ψ(t− η, η)U(η) is uniformly
continuous in the uniform tolpology in the variables t, η ∈ [0, T ], provided that
t− η ≥ ε where ε is any positive number.
The operator - valued function A(t)ψ(t− η, η)U(η) can be written in the form

A(t)ψ(t− η, η)U(η) = A(t)[ψ(t− η, η)− ψ(t− η, t)]U(η)

+A(t)ψ(t− η, t)[U(η)− U(t)] +A(t)ψ(t− η, t)U(t). (2.30)

By using (2.6) and (2.28), we find that the norm of the first term on the right
of (2.30) is bounded by C(t−η)γ−1. By using (1.4) and (2.29), we find that the
norm of the second term on the right of (2.30) is bounded by C(t − η)γ−δ−1,
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(where C is a generic positive constant independent both of t and η). Using
these estimations and noticing that;∫ t

0

A(t)ψ(t− η, η)U(η)u0dη =
∫ t

0

A(t)[ψ(t− η, η)− ψ(t− η, t)]U(η)u0dη +

∫ t

0

A(t)ψ(t−η, t)[U(η)−U(t)]u0dη−
∫ ∞

0

ζα(θ)[exp(−tαθA(t)]U(t)u0dθ+U(t)u0.

One can deduce that the integral
∫ t

0
A(t)ψ(t − η, η)U(η)u0dη is continuous in

t ∈ [0, T ], for every u0 ∈ E. Consequently the range of Q (t) is included in
D(A) for every t ∈ [0, T ]. It can be proved that there are two positive constants
C and δ such that

‖ A(t)Q(t)u0 ‖≤ C + Ctδ, t ∈ [0, T ],

where 0 < δ < 1 and C is independent of t, u0 ∈ E. Using (2.23), (2.29) and
lemma (2.2), one can easily show that dαQ(t)

dtα u0 exists and represents a contin-
uous function in t ∈ [0, T ] for every u0 ∈ E.
It is clear also that Q(t)u0 satisfies equation (2.22). The function v(t) =
Q(t)A(0)u0 represents a solution of the Cauchy problem (1.5) (1.6), if u0 ∈
D(A). This completes the proof of the properties B1, . . . , B5

Theorem 2.2. A solution of the Cauchy problem (2.3) , (2.4) is given by

u(t) = u0 +
∫ t

0

ψ(t− η, η)U(η)A(0)u0dη

+
∫ t

0

ψ(t− η, η)f(η)dη +
∫ t

0

∫ η

0

ψ(t− η, η)φ(η, s)f(s)dsdη, (2.31)

or

u(t) = u0 −
∫ t

0

ψ(t− η, η)A(η)u0dη −
∫ t

0

∫ η

0

ψ(t− η, η)φ(η, s)A(s)u0dsdη

∫ t

0

ψ(t− η, η)f(η)dη +
∫ t

0

∫ η

0

ψ(t− η, η)φ(η, s)f(s)ds, dη, (2.32)

where u0 ∈ D(A) and f satisfies condition (A3), t ∈ [0, T ].
Proof. We set u(t) = A−1(0)u0 +

∫ t

0
ψ(t−η, η)V (η)dη. Then we determine the

abstract function V such that u satisfies equation (2.3). The Proof is carried
out similar to Theorem 2.1.
Theorem 2.3. The strong solution of the Cauchy problem (1.5), (1.6) is unique.
Proof: We introduce the bounded operators An(t) = A(t)[I + 1

nA(t)]−1. It is
known that

‖ (An(t)− λI)−1 ‖≤ C

| λ | +1
, (2.33)
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‖ (An(t)−An(τ))A−1
n (s) ‖≤ C | t− τ |γ , (2.34)

where s, t, η ∈ [0, T ] and C is a positive constant independent of t, τ, s and n.
Consider the following Cauchy problem

dαvn(t)
dtα

+An(t)vn(t) = 0, n = 1, 2, ... (2.35)

vn(0) = u0. (2.36)

The function wn(t) = v(t)− vn(t), then satisfies

dαwn(t)
dtα

+An(t)wn(t) = gn(t), t ∈ [0, T ] (2.37)

wn(0) = 0, (2.38)

where gn(t) = [An(t)−A(t)]v(t).
The solution of the Cauchy problem (2.37), (2.38) is unique. To prove this fact,
suppose gn(t) = 0, then wn(t) satisfies

‖ wn(t) ‖≤ 1
Γ(α)

∫ t

0

(t− θ)α−1 ‖ An(θ)wn(θ) ‖ dθ

≤ Cn

Γ(α)

∫ t

0

(t− θ)α−1 ‖ wn(θ) ‖ dθ,

for every n, where Cn is a positive constant. It follows that wn(t) = 0 for all
t ∈ [0, T ].
Noticing that gn is continuous in t ∈ [0, T ] for every n = 1, 2, . . . and An(t) is
bounded operator that varies continuously in t ∈ [0, T ] (in the uniform topol-
ogy), then it is easy to see with the help of (2.3) that the unique solution of the
Cauchy problem (2.37), (2.38) is given by

wn(t) =
∫ t

0

ψn(t−η, η)gn(η)dη+
∫ t

0

∫ η

0

ψn(t−η, η)φ(n)(η, s)gn(s)dsdη, (2.39)

where

ψn(t− η, η) = α

∫ t

0

θ(t− η)α−1ζα(θ)exp[−(t− η)αθAn(η)]dθ,

φ(n)(t, τ) is the unique solution of the integral equation

φ
(n)
1 (t, τ) = φ

(n)
1 (t, τ) +

∫ t

τ

φ(n)(t, s)φ(n)
1 (s, t)ds,

φ
(n)
1 (t, τ) = [An(t)−An(τ)]ψn(t− τ, τ)
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It can be shown that the sequence {gn} uniformly converges to zero in E with
respect to t ∈ [0, T ].
Consequently by using (2.8), (2.15), (2.23), (2.34) and (2.39), we get v(t) =
limn→∞vn(t) uniformly with respect to t ∈ [0, T ] since vn(t) is defined uniquely
as the solution of the Cauchy problem (2.35), (2.36), also v(t) is unique.
The continuous dependence of solution of the Cauchy problem (2.3), (2.4) on f
and u0 is obtained from formula (2.32), (Comp [12]).
It must be noticed that the fractional differential equations have many impor-
tant applications in different branches of applied mathamatics (see [13], [14],
[15]).

3. Application

Let Ω be a bounded domain in the real n - dimensional Euclidean space Rn.For
any
0 < T < ∞, denote by QT the cylinder {(x, t) : x ∈ Ω, 0 < t < T} and by ∂Ω
the bounday of Ω.
We consider the differential operator

∂α

∂tα
+A∗(x, t,D) =

∂α

∂tα
+

∑
|q|≤2m

aq(x, t)Dq,

where A∗(x, t,D) is said to be uniformly elliptic in QT if the coefficients aq(x, t)
are bounded in QT and (−1)mRe

∑
|q|=2m aq(x, t)ξq ≥ C | ξ |2m, for all (x, t) ∈

QT and for all real ξ, where C is a positive constant independent of x, t, ξ and

| ξ |2= ξ21 + ...+ ξ2n (QT = {(x, t) : x ∈ Ω ∪ ∂ Ω, 0 ≤ t ≤ T}),

(Dq = Dq1
1 ...D

qn
n , Dj = ∂

∂xj
, |q| = q1 + ... + qn, q = (q1, ..., qn) is a

multi-index)
We consider the Cauchy problem of the fractional evolution equation

dαu

dtα
+A∗(t)u = f(t), 0 < t ≤ T, (3.1)

u(0) = u0 (3.2)

in the Hilbert space L2(Ω), where for each t , f(t) is the function f(x,t) belong-
ing to L2(Ω) and A∗(t)is the operator with domain D(A∗) = H2m(Ω)

⋂
Hm

0 (Ω)
given by A∗(t) = A∗(x, t,D). And u0 is a function in H2m(Ω)

⋂
Hm

0 (Ω) (see [8]
, [16]).
(Hm(Ω)) is the completion of the space Cm(Ω) with respect to the norm

‖ f ‖m= [
∑
|q|≤m

∫
Ω

[Dqf(x)]2dx]
1
2 ,
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Cm(Ω) is the set of all continuous function define on Ω , which have continuous
partial derivatives of order less than or equal to m, Hm

0 (Ω) is the complation of
Cm

0 (Ω) with respect to the norm ‖ f ‖m and Cm
0 (Ω) is the set of all function

f ∈ Cm(Ω) with compact supports in Ω).
It is assumed that
(I) All the coefficients aq(x, t) are continuous in QT

and | aq(x, t2)− aq(x, t1) |≤ C | t2 − t1 |γ ,
0 < γ ≤ 1, t1, t2 ∈ [0, T ] and C is a positive constant independent of t1, t2and
x ∈ Ω.
(II) [

∫
Ω
| f(x, t2) − f(x, t1) |2 dx]

1
2 ≤ C | t2 − t1 |β , 0 < β ≤ 1, C is a positive

constant independent of t1 and t2.
Theorem 3.1.Assume that A∗(x, t,D) is uniformly elliptic in QT , that (I), (II)
hold and ∂Ω is of class C2m, then there exists a unique strong solution of the
problem (3.1), (3.2).
Proof.Writting equation (3.1) in the form

dαu

dtα
+ [A∗(t) + kI]u = f(t) + ku (3.3)

we see that for some constant k, the operator A∗(t)+kI satisfies the conditions
(A1) and (A2)
Using formula (2.32), we get

u(t) = u0 −
∫ t

0

ψ(t− η, η)A(η)u0dη −
∫ t

0

∫ η

0

ψ(t− η, η)φ(η, s)A(s)u0dsdη

+
∫ t

0

ψ(t− η, η)[f(η) + ku(η)]dη +
∫ t

0

∫ η

0

ψ(t− η, η)φ(η, s)[f(s) + ku(s)]dsdη,

A(t) = A∗(t) + kI

It can be proved that u satisfies a uniform Holder condition, then the last
integral equation has the unique required solution u(t). This completes the
proof.
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