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Intuitionistic Fuzzy 6-Closure Operator

[. M. Hanafy, A. M. Abd El-Aziz & T. M. Salman

Abstract

The concepts of fuzzy 0-open (6-closed)sets and fuzzy 6-closure opera-
tor are introduced and discussed in intuitionistic fuzzy topological spaces.
As applications of these concepts, certain functions are characterized in
terms of intuitionistic fuzzy 6-closure operator.
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1. Introduction

Fuzzy sets were introduced by Zadeh[10] in 1965. A fuzzy set U in a uni-
verse X is a mapping from X to the unit interval [0, 1]. For any = € X, the
number U(z) is called the membership degree of z in U. As a generalization
of this notion, Atanassov[l] introduced the fundamental concept of intuition-
istic fuzzy sets. While fuzzy sets give a degree of membership of an element
in a given set, intuitionistic fuzzy sets give both a degree of membership and
of non-membership. Both degrees belong to the interval [0, 1], and their sum
shoud not exceed 1 (we will, formally, define the intuitionistic fuzzy set in sec-
tion 2). Coker[2-4] and Hanafy[6] introduced the notion of intuitionistic fuzzy
topological space, fuzzy continuity and some other related concepts. The con-
cept of f—closure operator in a fuzzy topological spaces is introduced in [9]. In
the present paper our aim is to introduce and study the concept of §—closure
operator in intuitionistic fuzzy topological spaces. In section 3 of this paper we
develop the concept of intuitionistic fuzzy #—closure operators. Intuitionistic
fuzzy regular space is introduced and characterized in terms of intuitionis-
tic fuzzy 6—closure. The functions of fuzzy strongly 6—continuous[8|, fuzzy
6—continuous[9], fuzzy weakly continuous[9] and fuzzy A\0—continuous|7] were
introduced in fuzzy topological spaces. Section 4 is devoted to introduce these
functions in intuitionistic fuzzy topological spaces and also includes the charac-
terizations of these functions with the help of the notion of intuitionistic fuzzy



28 I. M. HANAFY, A. M. ABD EL-Aziz & T. M. SALMAN

f—closures. For definitions and results not explained in this paper, we refer to
the papers [1, 2, 4].

2. Preliminaries

Definition 2.1[1]. Let X be a nonempty fixed set. An intuitionistic fuzzy
set (IFS, for short) U is an object having the form U = {(x, u, (x),, (z)) :
x € X} where the functions p, : X — I and v, : X — I denote respectively
the degree of membership (namely pu, (z)) and the degree of nonmembership
(namely v, (z)) of each element z € X to the set U, and 0 < p, () 4+, (z) <1
for each =z € X.

For the sake of simplicity, we shall frequently use the symbol U = (z, u,, (z),
v, (x)) for the IFS U = {(z, 1, (), 7, (x)) : * € X}. Every fuzzy set U on a
nonempty set X is obviously an IFS having the form U = (x, u, (),1 — p,, (z)).

Definition 2.2[1]. Let X be a nonempty set and let the IFS’s U and V be in
the form U = (a:,,uU(x),’yU(:c)), V= <SC,,U,V(£L‘),’}/V(ZL')> and let {UJ VS J} be
an arbitrary family of IFS’s in X. Then

(1) U<V iff py(x) < py(x) and v, (z) > 7, (2), Vo € X;

(i8) U = (2.7, ()., (x)) 7 € X}

(iii) 1 Uy = {{2. A py (2),V 3, (@) £ @ € X

() U T; = {2V py, (@), 7, (@) s 2 € X}
(
(

v) 1= {(z,1,0) : x € X} and 0= {(2,0,1) : z € X};
vi) U=U,0=1 and 1 =0.

Definition 2.3[2]. An intuitionistic fuzzy topology (IFT, for short) on a
nonempty set X is a family ¥ of IFS’s in X satisfying the following axioms:

(i) 0,1€ ;

(i) Uy NUy € W for any Uy, Us € U;

(i) UU; € U forany { U;: j € J} C 0.

In this case the pair (X, V) is called an intuitionistic fuzzy topological space
(IFTS, for short) and each IFS in ¥ is known as an intuitionistic fuzzy open
set (IFOS, for short) in X. The complement U of IFOS U in IFTS (X, V) is
called an intuitionistic fuzzy closed set (IFCS, for short).

Definition 2.4[2]. Let X and Y be two nonempty sets and f : X — Y a
function.

@)UV ={y,u,(y),7 () :y € Y}isan IFS in Y, then the preimage of V
under f is denoted and defined by

F7HV) = {la 7 ) (@), f7How) (@) o € X}
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where [~ (uy) (@) = pv (f(2)) and £~ () (@) = W (f(2)).
(13) U = {{z,\,(2),0,(x)) : x € X} is an IFS in X, then the image of
U under f is denoted and defined by

FU) =y, FO) W), £.06,)(y)) -y € Y}

where

sup  Ay(z), fH(y) #0
zef ' (y)

0 otherwise.

and
inf  du(x), fH(y)#0

1 otherwise.

Corollary 2.5.[5]. Let U,U;(j € J) IFS’sin X, V,V;(j € J) IFS’sin YV
and f:X — Y a function. Then:
(1) U < Us :>f(U1)<f(U2)
(i) Vi <V = f~1(11) < fH(Va).
0] U < f7Yf(U)  (If f is injective, then U = f=1f(U) ).
(iv) ff7HU(V)<V (If f is surjective, then ff=1(V) =V ).
(o) £00V) 2 L) ooy 2 =
(vi) £(U > V)
(vig) f(NU;) <Nf(U;), (If f is injective, then f(NU;) = Nf(U;) ).
(viii) f~1 (V) = f~1(V).

Definition 2.6[2]. Let (X, ¥) be an IFTS and U = (z, 1, (z),7, (z)) an
IFS in X. Then the fuzzy interior and the fuzzy closure of U are defined by:
dU)=n{K:Kisan IFCSin X and U < K} and
int(U) =U{G : G is an IFOS in X and G < U}.

Definition 2.7[5]. An IFS U of an IFTS X is called:

(1) an intuitionistic fuzzy regular open set (IFROS, for short) of X if
int(cl(U)) = U;

(#4) an intuitionistic fuzzy A—open set (IFAOS, for short) of X if

U <int(cl( int(U))).
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The complement of IFROS (resp. IFAOS) is called intuitionistic fuzzy reg-
ular closed set (resp. A-closed set)(IFRCS (resp. IFACS), for short) of X.

Proposition 2.8[2]. For any IFS U in (X, ¥) we have:

(i) cl(T) = int(0), (i3) int(T) = cl(U) .

Definition 2.9[4]. Let X be a non empty set and ¢ € X a fixed element in
X. Ifa € (0,1] and b € [0,1) are two fixed real numbers such that a +b < 1,
then the IF'S c(a,b) = (x,¢cq,1 — c1-p) is called an intuitionistic fuzzy point
(IFP, for short) in X, where a denotes the degree of membership of c(a,b), b
the degree of nonmembership of ¢(a,b), and ¢ € X the support of ¢(a, b).

Definition 2.10[4]. Let c¢(a,b) be an IFP in X and U = (z, uy,~,) be
an IFS in X. Suppose further that a,b € (0,1). ¢(a,b) is said to be properly
contained in U (¢(a,b) € U, for short) iff a < py(c) and b > v, (c).

Definition 2.11[4]. (i) An IFP c(a,b) in X is said to be quasi-coincident
with the ITFS U = (x, uy, 7, ), denoted by c¢(a, b)qU, iff a > v, (¢) or b < py(c).
(73) Let U = (&, pu,y,) and V = (x, py,yy) are two IFSs in X. Then,
U and V are said to be quasi-coincident, denoted by UqV, iff there exists an
element x € X such that uy(z) > v, (x) or v, (z) < pv ().
The expression ‘not quasi-coincident’” will be abbreviated as ¢.

Proposition 2.12[4]. Let U and V be two IFS’s and ¢(a,b) an IFP in X.
Then:

UGV iffU<Y, () UqV iff ULV,

(iii) c(a,b) < U iff c(a,b)q U , (iv) c(a,b) qU iff cla,b) £ U.

Definition 2.13[4]. Let f: X — Y be a function and c(a,b) an IFP in
X. Then the image of ¢(a,b) under f, denoted by f(c(a,b)), is defined by

fela,0)) = (y, f(e)a » 1= flc)i-b) -

Proposition 2.14[6]. Let f : X — Y be a function and c(a,b) an IFP in
X.
(i) If for IFSV inY we have f(c(a,b)) qV, then c(a,b) q f~1(V).
(4) If for IFS U in X we have ¢(a,b)) ¢ U, then f(c(a,bd)) q f(U).

Definition 2.15. Let (X, V) be an IFTS on X and ¢(a,b) an IFP in X. An
IFS A is called eq—nbd(eA\g—nbd) of ¢(a, b), if there exists an IFOS (IFAOS)U
in X such that ¢(a,b)qU and U < A.
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The family of all eg—nbd(eA\g—nbd) of c(a, b) will be denoted by N4(N29)(c(a, b)).

Definition 2.16[6]. An IFTS (X, V) is said to be intuitionistic fuzzy ex-
tremely disconnected (IFEDS, for short) iff the intuitionistic fuzzy closure of
each IFOS in X is IFOS.

3. O-closure operator in IFTS’s

Definition 3.1. An IFP c¢(a,b) is said to be intuitionistic fuzzy 6-cluster
point (IF@-cluster point, for short) of an IFS U iff for each A € NZ(c(a,b)),
cl(A) qU.

The set of all [F60-cluster points of U is called the intuitionistic fuzzy 6
—closure of U and denoted by clp(U). AnIFS U will be called I F6-closed(IFOCS,
for short) iff U = ¢lp(U). The complement of an IF0-closed set is IF0-open
(IFOOS, for short). The @-interior of U is denoted and defined by

intg(U) =1 —clo(1 —=U).

Definition 3.2. An IFS U of an IFTS X is said to be e0q —nbd of an IFP
¢(a,b) if there exists an eq — nbd A of ¢(a,b) such that cl(A) ¢ U.
The family of all efg — nbd of c(a,b) will be denoted by N%4(c(a,b)).

Remark 3.3. It is clear that :
(1) IFOOSCIFOS and IFROSCIFOS
(#3) For any IFS U in an IFTS X, cl(U) < cly(U).
Example 3.4. Let X = {a,b} and U = (z, (54, 0—1_75), (5% O—Z_’4)>. Then the
family ¥ ={0,1,U} of IFS’s in X is an IFT on X. Clearly U is an IFOS in X

but not IFROS (Indeed int(cl(U)) =1#£ U ).

Example 3.5. Let X = {a,b,c} and
a b c a b c a b c a b c
U = (z,(5% oo @)l(foa 150 00)) V = (2. (3% 052 09) (65 05+ 19))-
Then the family ¥ = {0,1,U,V,U UV} of IFS’s in X is an IFT on X. Clearly
U is an IFROS but not IFAOS.

Theorem 3.6. If U is an IFOS in an IFTS X, then cl(U) = clp(U).

Proof. It is enough to prove clp(U) < cl(U).

Let c¢(a,b) be an IFP in X such that c(a,b) ¢ cl(U), then there exists V
€ N4(c(a,b)) such that VqU and hence V < U. Then cl(V) < int(U) < U,
since U is an IFOS in X. Hence cl(V)qU which implies ¢(a,b) ¢ clg(U). Then
clo(U) < c(U). Thus cl(U) = clp(U). A
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Theorem 3.7. In an IFTS (X, ¥), the following hold :
(i) Finite union and arbitrary intersection of IFOCS's in X is an IFOCS.
(#i) For two IFS’s U and V in X | if U <V | then clg(U) < clp(V).

(#it) The IFS’s 0 and 1 are IFf-closed.
Proof. The straightforward proofs are omitted. l

Remark 3.8. The set of all IFAOS’s in an IFTS (X, ¥) induce an IFTS
(X, Py) (say) which is coarser than the IFTS (X, ¥).

Remark 3.9. For an IFS U in an IFTS X, clp(U) is evidently IFCS but
not necessarily IFOCS as is seen in the following example.

Example 3.10. Let X = {a,b,c} and U = (x, (i 2, 55) (4 590 o5)) »

0.570.67 0.2
V={(2,(% 35 53) (6% 5% o)) - Then the family ¥ = {0,1,U,V} of IFS’s
in X is an IFT on X.
Let A = (z,(i%, o5 55) (7% o= 55)) be an IFS in X. Then an IFP

a(0.6,0.3) € clp(A) (because a(0.6,0.3)qU < U, cl(U) —1 qA ), also a(0.8,0.1) ¢
clp(A) ( because a(0.8,0.1)qV, cl(V) VqA). But a(0.8,0.1) € cly(a(0.6,0.3))
< clg(clg(A)). Hence, clg(A) is not IFICS.

Lemma 3.11. If U, V are IFOS’s in an IFEDS X, then
cd(V)qU = cl(V)gclp(U).

Proof. Let cl(V)qU = U < cl(V) = cl(U) < cl(V) since X is an IFEDS.
Hence cl(V)qU = cl(V)gcl(U) = cl(V)gelg(U), by Remark 3.3. B

Theorem 3.12. If U is an IFOS in an IFEDS (X, ¥), then clp(U) is an
IFACS in X.

Proof. Let ¢(a,b) be an IFP in X and let c(a,b) ¢ clp(U). Then there is
V € N4(c(a,b)) such that cl(V)qU. By Lemma 3.11, ¢l(V)gclp(U) and hence
c(a,b) > clp(U) implies c(a,b) ¢ clo(clp(U)). Then clg(cly(U)) < clp(U). But
clo(U) < clp(clg(U)), then clg(U) = clp(clg(U)) . Thus clg(U) is an IFHCS. B

Theorem 3.13. In an IFEDS (X, ¥), every IFROS in X is an IFOOS.

Proof. Let U be an IFROS in an IFEDS (X, ¥). Then U = int(cl(U)) =
c(U) = int(U) . Since U is an IFCS, U is an IFOS and by Theorem 3.6 ,
c(U) = clp(U). Now cl(U) = clg(U), i.e. int(U) = inte(U) (by Proposition
2.8). Thus U = int(U) = intp(U), and hence U is an IFOOS in (X, V). B

Theorem 3.14. An IFS U in an IFTS X is IFAO iff for each IFP c¢(a,b) in
X with ¢(a,b)qU, U is an efq — nbd of c(a,b).
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Proof. Let U be an IFHOS and c(a,b) be an IFP in X with ¢(a,b)qU.
Then by Proposition 2.12, c¢(a,b) £ U . Since U is an IFOCS, c(a,b) £ U =
clg(U). Then there exists ¢ —nbd A of c(a,b) such that cl(A)qU. Hence U is
an e0q — nbd of c(a,b).

Conversely, if c(a,b) £ U, then by by Proposition2.12, c¢(a,b)qU. Since U
is an efq — nbd of ¢(a,b), then there exists eqg — nbd A of ¢(a,b) such that cl(A)
q U and so c(a,b) & clg(U). Hence U is an IFOCS and then U is an IFOS. B

Theorem 3.15. For any IFS U in an IFTS (X, ),
cg(U) =n{clg(A) : Ae T and U < A}.

Proof. Obviously that co(U) <n{clp(A) : Ac T and U < A}.

Now, let c(a,b) € N{clp(A) : A€ ¥ and U < A}, but ¢(a,b) ¢ clg(U). Then
there exists an eq—nbd G of ¢(a, b) such that cl(G) ¢ U and hence by Proposition
2.12, U < cl(G). Then c¢(a,b) € clp(cl(G)) and consequently, c/(G)qcl(G) which
is not true. Hence the result. W

Definition 3.16. An IFTS X is said to be intuitionistic fuzzy regular (IFRS,
for short) iff for each IFP ¢(a,b) in X and each eq —nbd U of ¢(a, b), there exists
eq —nbd V of ¢(a,b) such that cl(V) < U.

Theorem 3.17. An IFTS X is IFRS iff for any IFS U in X, cl(U) = clp(U).

Proof. Let X be an IFRS. It is always true that cl(U) < clp(U) for any
IFS U. Now, let ¢(a,b) be an IFP in X with c¢(a,b) € clp(U) and let A be an
eq —nbd of ¢(a,b). Then by IFRS X, there exists eq — nbd V of ¢(a, b) such that
c(V) < A. Now, c(a,b) € clg(U) implies cl(V)qU implies AqU implies c¢(a, b) €
cl(U). Hence clg(U) < cl(U). Thus clg(U) = cl(U).

Conversely, let c(a,b) be an IF'P in X and U an eq — nbd of c(a,b). Then
c(a,b) ¢ U = cl(U) = clg(U). Thus there exists an eq —nbd V of c(a,b) such
that ¢l(V)qU and then ¢l(V) < U. Hence X is IFRS. &

Corollary 3.18 In an IFRS (X, ¥) , an IFCS is an IFOCS and hence for
any IFS U in X | clp(U) is an IFOCS.

4. Characterizations for some types of functions in terms of IF§-
closure

Definition 4.1. A function f : (X, ¥) — (Y, ®) is said to be intuitionistic
fuzzy strongly 6—continuous (IFStr-0 continuous, for short), if for each IFP
c(a,b) in X and V € N2 (f(c(a,b))), there exists U € N4(c(a,b)) such that
fle(U)) < V.
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Theorem 4.2. For a function f : (X,¥) — (Y, ®), the following are
equivalent:

(i) f is IFStr — 6 continuous.

(44) f(Clg(U)) <c(f(U)) for each IFS U in X.

(iii) clp(f~1(V)) < f=Y(cl(V)) for each IFS V in Y.

(iv) f~1(V)is an IFOCS in X for each IFCS V inY.

(v) f7Y(V)is an IFAOS in X for each IFOS V inY.

Proof. (i) = (ii): Let ¢(a,b) € clp(U) and B € NZ (f(c(a,b))). By (4),
there exists A € N4(c(a,b)) such that f(cl(A)) < B. Now, using Definition 3.1
and Proposition 2.14, we have c(a,b) € clp(U) é cl( VU = f(cl(A))gf(U) =
Bqf(U) = f(c(a,b)) € cl(f(U)) = c(a,b) € f7H(cl(f(U))). Hence clp(U) <
FH(f(U))) and so f(clp(U) < cl(f(U)).

(ii) = (i41): Obvious by putting U = f~1(V).

(iti) = (iv): Let V be an IFCS in Y. By (iii), we have clp(f~1(V)) <
f7(cl(V)) = f~1(V) which implies that f=*(V) = clg(V). Hence f~1(V) is
an IFOCS in X.

(iv) = (v): By taking the complement.

(v) => (i): Let c¢(a,b) be an IFP and B € N4 (f(c(a,b))) . By (v), f~1(B)
is an TFOOS in X. Now, using Proposition 2.14, we have f(c(a,b))¢B =
c(a,b)qfY(B) = c(a,b) ¢ f~1(B). Hence f~1(B) is an IFACS such that
c(a,b) ¢ f~1(B). Then there exists A € NZ(c(a,b)) such that cl(4) ¢f~*(B)
which implies that f(cl(A)) < B. Hence f is an IFStr — 6 continuous. B

Definition 4.3. A function f: (X, ¥) — (Y, ®) is said to be intuitionistic
fuzzy weakly continuous (IFw continuous, for short) , iff for each IFOS V' in
Y, f7HV) < int(f7H(V)))

Lemma 4.4. Let f : (X, ¥) — (Y, ®) be a function. Then for an IFS B in
Y, f(f~YB)) < B, where equality holds if f is onto.

Proof. Let B = {(y we(y),ve(y)) :y € Y} be an IFS in V. From Defini-

tion 2.4, if f~ '(y) =0, then (fF(f~1(B)(y) = 0 < B(y). Butif f~'(y) # 0
and smcef (B)=< “Hup) (@ ). /7 (v)(x)) implies

= (z, ) I

[71(B)

Y(B) I~ ( )(fE f~Y(uB)(x)). Then, we have:
FEAB) W) =y, F(F )W), = (1= fH(uB)) W)

where

FU ) = sup [T (yp)(@) = sup  pf(x) =v5(y)

z€f~1( y) z€f~1( y)
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and

(1= f—= N us)(y) = < F M ws)(y) = s ot (@) = us()

i.e.

FFADB) (W) = (v, v8), pey)) = By).

If f is onto, then for each y € Y, f~1(y) # 0 and hence we have
f(f~4B))=5. 1

Lemma 4.5. Let U be an IFS and ¢(a, b) be IFP in an IFTS (X, ¥). Then
for a function f: (X,¥)— (Y,®) if ¢(a,b) € U then f(c(a,b)) € f(U).

Proof. Let ¢(a,b) € U = { x,uy , v ). Using Definitions 2.10 and 2.13,
we have a < py(c) and  b>yy(e)
= f()a(y) < f(pu(U))(y) and 1 —-b< 1= qy(c)
= F(Oaly) < Fuo(U)(y) and F(e)s(y) < F1— 10(0)m)
= f(0)aly) < f(pu(U)
= f( u

"

1 y

)al po(@)(y) and (1= f(c)i—s)(y) > (1—F(1— v (c))(y)
) € f(

S S c

a(y)
Y)
Y)
c(a,b) ).

Theorem 4.6. For a function f : (X,V) — (Y, ®), the following are
equivalent:

(i) f is an IFw continuous.

(i1) f(cl(U)) < clp(f(U)) for each IFS U in X.

(i74) cl(f~1(V)) < f~1(clg(V)) for each IFS V in Y.

(iv) c(f~H(V)) < f~1(cl(V)) for each IFOS V in Y.

-

Proof. (i) = (ii): Let f be an IFw continuous and U any IFS in
X. Suppose c(a,b) € cl(U), then by Lemma 4.5 f(c(a,b)) € f(cl(U)). It is
enough to show that f(c(a,b)) € clp(f(U)). Let G € N2(f(c(a,b))). Then by
Proposition 2.14, we have f~1(G)qc(a,b). By IFw continuous of f, f~}(G) <
int(f~1(cl(@))) and int(f~1(cl(@))) € Ni(c(a,b)). Since c(a,b) € cl(U), we
have int(f~!(cl(G))) qU and hence cl(G)qf(U). Thus f(c(a,b)) € clo(f(U)).

(ii) = (i7i): Let V be an IFS in Y, then f~!(V) is an IFS in X. By
(ii) we have f(cl(f=1(V))) < clo(f(f~1(V))) < clg(V). Hence cl(f~1(V)) <
FHelo(V)).

(ii1) = (iv): Let V be an IFOS in Y. By Theorem 3.6, cl(V) = clp(V) and
by (ii4), we have cl(f=*(V)) < f=(cl(V)).

(iv) = (i): Let V be an IFOS in Y, and cl(f~1(V)) < f=(cl(V)). Then
from f=Y(V) < c(f~1(V)) and the fact that V be an IFOS it follows that



36 I. M. HANAFY, A. M. ABD EL-Aziz & T. M. SALMAN

UV = int(f~H(V)) < int(cd(f~1(V))) < int(f~1(cl(V))). Hence f is an
IFw continuous. B

Theorem 4.7. Let f:(X,¥)— (Y,®) be an IFw continuous function,
then:

(i) f7Y(V)is an IFCS in X, for each IFCS V in Y.

(ii) f~1(V)is an IFOS in X, for each IFOOS V inY.

Proof. (i) Let V be an IFOCS in Y, then V = cly(V). By Theorem
4.6(ii4), we have  cl(f~1(V)) < f~H(clg(V)) = f~1(V). Hence f~1(V) is an
IFCS in X.

(i) & (i1): Obvious. W

Definition 4.8. A function f : (X, ¥) — (Y, ®@) is called intuitionistic fuzzy
6—continuous (I F'6- continuous, for short), iff for each I F P ¢(a,b) in X and each
V e N2 (f(c(a,b))), there exists U € NZ(c(a, b)) such that f(cl(U)) < cl(V).

Theorem 4.9. For a function f : (X,¥) — (Y, ®), the following are
equivalent:

() f is an I F@-continuous.

(44) f(Clg(U)) < clg(f(U)), for each IFS U in X.

(iii) clp(f71(V)) < f~Y(clg(V)), for each IFS V in Y.

(iv) clp(f~1(V)) < f=1(cl(V)), for each IFOS V in Y.

f
Proof. (i) = (i#i): Let c(a,b) € clp(U) and B € N2 (f(c(a,b))).
By (i), there is A € N2(c(a,b)) such that f(cl(A)) < cl(B). Now, if c¢(a,b) €
clp(U) then cl(A)qU so that f(cl(A))qf(U) and hence cl(B)qf(U). Therefore
f(c(a,b)) € clg(f(U)) and it follows that c(a,b) € f~(clo(f(U))). Thus
clo(U) < f=Hclg(f(U))) and hence f(clo(U) < clg(f(U)).

(i) = (Gii): By (i), if f(elolf~ (V) < cla(f(f (V) < elo(V), then i
follows that cla(f~1(V)) < f~1(clo(V)).

(#it) = (iv): Clear by Theorem 3.6.

(iv) = (i): Let ¢(a,b) be an IFP in X and V € NZ (f( (a,b))). Then

f(c(a,b)) ¢ cl(cl(V)), and hence c(a,b) ¢ f=* (cl(cl(V))) y (iv), we have
( ) ¢ clo(f~ 1(cl(V))) and hence there exists U € NZ(c(a,b)) such that cl(U)
q f Yel(V)) = f~1(cl(V)) which implies f(cl(U)) < cl(V). Thus f is an

I~
I F0-continuous. W

Theorem 4.10. Let f:(X,¥) — (Y,®) be a function. If (X, ¥) is an
IFEDS, then the following are equivalent:
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(i) f is an TF6- continuous.
(ii) f~1(V)is an IFOCS in X for each IFOCS V inY.
(i73) f~Y(V) is an IFHOS in X for each IFHOS V inY.

Proof. (i) = (#4): Let V be an IFOCS in Y. Since f is an IF6-
continuous, then by (ii7) in Theorem 4.9 we have clg(f~*(V)) < f~1(clp(V)) =
f7Y(V) which implies that f=1(V) = clp(f~%(V)). Hence f~1(V) is an
IF9CS in X.

(#4) < (4#1):  Obvious.

(19) = (i): Let V bean IFOS inY. Then by Theorem 3.6 c/(V') = clp(V)
which is an TFOCS by Theorem 3.12. From (ii), f~(cl(V)) = f= (clo(V))
is an IFOCS in X. Since f~1(V) < f71(cl(V)), then clp(f~1(V)) <
f~1(cl(V)) . Hence f is an I Ff-continuous. B

Definition 4.11. A function f : (X, ¥) — (Y, @) is said to be intuitionistic
fuzzy A@—continuous(I FA6- continuous, for short), if for each IFP ¢(a,b) in X
and V € N2 (f(c(a,b))), there exists U € N9(c(a,b)) such that f(U) < V.

Definition 4.12. Let U be an IF'S of an IFTS X Then:
(i) The A—closure of U is denoted and defined by:

cdx(U)=NK:KisIFACSin X and U < K}.
(#i1) The A—interior of U is denoted and defined by:

int\(U) =V{G:Gis IFAOS in X and G < U}.

Theorem 4.13. Let f:(X,¥)— (Y, ®)be a function. then the following
are equivalent:

(i) f is an TF\@-continuous.

(i3) f ( ) is an IFHOS in X, for each IFAOS V inY.

(iii) f~Y(H ) isan IFOCS in X, for each ITFACS H in Y.

(iv) Cla( vy < f- (cl>\( )), for each IF'S V inY.

(v) f7L(intA\(Q)) < inte(f~H(Q)), for each IFS G in'Y.

Proof. (i) = (i) Let V be an IFAOS in Y and ¢(a,b) be IFP in
X such that c(a,b)qf~1(V).Since f is IFA continuous, there exists an U €
NY%(c(a,b)) such that f(U) < V. Then c(a,b)qU < f~1f(U) < f~1(V) which
shows that f~1(V) € N%(c(a,b)) and then is an IFOOS of X.

(#9) = (4#i7) by taking the complement.
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(iii) = (iv) Let V be an IFS in Y Since V < cly(V) ,then f~1(V) <
F71(clA(V)). Using (zu) F71(cl\(V)) is an TFOCS in X .Thus clg(f~1(V)) <
clo(f7H(cla(V))) = fH(elx (V).

) < f71(clA(V)), then
co(f1(V)) = fHch(V)).

Hence intg(f—i(V)) > fHclx (V).

Thus  f~'(intA(V)) < inte( .

Put G =V , then f~(intA\(G)) <inte(f1(Q))

(v) = (i) Let V be an ITFAOS in Y. Then inty(V) = V . Using (v),
UV <inte(f~1(V)). Hence f~1(V) = inte(f~2(V)) ie. f~1HV)is an
IFAOS in X. Let c(a,b) be any IFP in f~1(V). Then c(a,b)qf~1(V), hence
fle(a,b))qf f~5(V) < V. Thus for any IFP c(a,b) and each V € N29(f(c(a,b))),
there exists U = f~1(V) € N%(c(a,b)) such that f(U) < V. Thus f is IF\0
continuous function. M

Theorem 4.14. Let f be a bijective function from an IFTS(X, ¥) into
an IFTS(Y,®). Then f is an IFA0 continuous iff intx(f(U)) < f(inte(U)),
for each ITF'S U of X.

Proof. (=): Let f be an IFA0 continuous function and U be an IF'S
in X. Hence f~1(int\(f(U))) is an IFAOS in X. Since f is injective and using
Theorem 4.13(v),we have: FLintA(F(U))) < into(f7Hf(U))) = inte(U).
Since f is surjective,

FI~HintA(F(U))) < f(inte(U))de. intx(f(U)) < f(into(U)).

(<=): Let V be an IFAOS in Y. Then V = int (V). Using the hypothesis,
we have: V = int\(V) = int\(ff~1(V)) < f(inte(f~2(V))), which implies
that f=1(V) < f=f(inte(f~1(V))). From the fact that f is injective, we have:
FHV) < inte(f~1(V)). Hence f~H(V) = inte(f~1(V)) ie. f~YV) is an
IFO0S in X. Thus f is IF)\0 continuous. W

Theorem 4.15. Let f:(X,¥) — (Y, ®)be a bijective function. Then f
is an IFAG continuous iff f(clg(U)) < clx(f(U)), for each IFS U of X.
Proof. Similar to the proof of Theorem 4.14. B

Remark 4.16. From the above definitions, one can illustrate the following
implications:

I F\@-continuous = I F'strf-continuous = IF-continuous = [Fw-continuous

4

I F6-continuous
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}
_ 1 2 3 1 2 3 _ 2 3 1 2 3
A= <xa(va5b7?) (53 04701)) B= 5 ?abﬁ)v(@7ﬁ,bﬁ)>v
a C a C — a C a C
) V = (¥ (6% 52 53) (6% 597 55))-
Then the family ¥ = {0,1, A, B} of IFS’s in X is an IFT on X a

® ={0,1,U,V} of IFS’sin Y isan IFT on Y. Let f : (X,¥) — (Y, ®)be a
function defined as follows: f(a) =2, f(b) = 3 and f(c) = 1. Then f~1(U) C

int(f~1(cl(U))) =1 and f~Y(V) C int(f~1(cl(V))) = A. Thus f is an IFw
continuous but not IF-continuous.

nd the family

Remark 4.18. From the above example, one can show that IFw continuous
does not implies each of the concepts IF\f-continuous, IFstr #-continuous and
IF#-continuous.
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