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From elementary martingale calculus to rigorous
properties of mixtures of experts

Badih Ghattas & Gonzalo Perera

Abstract

Authors have performed learning algorithms, based on mixtures of
experts, who achieve a good performance under severe time/cost restric-
tions, and that can be applied to non-stationary data. This is of particular
interest for applications like quality of Service (QoS) prediction on IP data
networks (see [12]). In this paper we show how can all the properties of
this algorithms be proved in a strictly rigorous manner, with no other
tools that elementary martingale theory at hand.
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1 Introduction: motivation and basic ideas on Supervised
Learning Algorithms.

1.1 On-line prediction for non-stationary engineering data.

In this paper we show how very simple probabilistic tools give rigorous proof
for learning algorithms developed to solve real Engineering Applications. It is
quite usual in real Engineering problems to use machine learning algorithms, or
more precisely, supervised learning algorithms (see details in next subsection)
to control a process. Of course, those algorithms must be as efficient and low-
cost as possible. But many real engineering sets exhibit a clear non-stationary
behavior, which, a priori, are out of the scope of the most usual learning algo-
rithms.

For an example, on-line estimation of Data Networks performances is crucial
to guarantee Quality of Service (QoS) for multi-purpose networks, whose traffic
is usually non-stationary at all the possible time scales (see [14], [20]).

Algorithms for risk analysis of credit cards operations (see [5]) or surveillance
of atmospheric pollution (see [3]) are other examples of Engineering problems
where the same type of requirements (efficiency at the same time than low cost
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and short computation time for non-stationary data) appears.

Coming back to the example of QoS prediction in Data Networks, large de-
viation principles (based in the notion of effective bandwidth as presented in
[15]) have produced a series of results allowing to predict QoS at a given link,
at the level of the backbone of the network (see for instance [1], [16]) and some
partial results allowing to assure QoS from end-to-end (see for instance [4],[6]).

A relevant current of research in Data Networks has been active measure-
ment of end-to-end QoS via probe packets. The basic idea is that if one sends
some packets, the observed delay at their arrival will allow to estimate how
heavy is the current traffic in the Network and what level of QoS can be as-
sured. Even if the methodology of probe packets is not universally appliable
(see [7]), for some particular Networks and parameters, this idea has shown
to be successful. In [2] a functional regression method for non-stationary and
dependent data was developed, providing a Learning Machine algorithm that,
given the empirical distribution of the delay of the probe packets, predicts the
QoS for a video or any other heavy network process that one wants to run. In
[12], a much more general learning strategy for non-stationary data has been
built up, based on mixtures of experts with different skills.

However, there was not a detailed, rigurous proof of the results provided in
[12]. In this paper, we present a careful proof of the properties of this method.
We will prove the results in the simplest possible context. In this way, an ele-
mentary knowledge of martingale calculus and its limit theorems will be largely
enough to understand most of this paper. The extension from this context to
the general setting of [12] is an exercise for the reader that knows Machine
Learning Theory well, and is a merely technical effort for the general reader.
We hope that our choice will make this work readable for a wide mathematical
public that, hopefully, may feel interested by Machine Learning or Data Net-
work Performance matters.

To get started in the following section we present the general framekork for
Supervised Learning Algorithms.

1.2 Basic ideas of Supervised Learning.

Let P denote a probability on an underlying probability space (£2,.4), where
the couple (X,Y) is defined, where X takes values in an arbitrary mesurable
space Sy and Y takes values on a measurable space Sy.

Some notation we will use:



MIXTURES OF EXPERTS 131

e p is the joint distribution of the couple (X,Y’), that is, for any measurable
sets A C Sx and B C Sy, we have

p(Ax B)=P(X € AY € B).

o p(./X) denotes the conditional probability distribution of ¥ given X,
defined in a rigurous way as the almost surely (a.s., for short) unique
measurable function of X satisfying:

E(liyepylixeay) = E(p(B/X)1{xeay)

for any measurable sets A and B. We assume that this conditional distri-
bution is regular, what is true if Sx, Sy are standard spaces.

e 7 is the marginal law of X (i.e., 7(4) = P(X € A)); then we can write

p(AxB):/ p(B/x)w(dx) // (dy/z)m(dx).

We assume that both p and p are unknown. In this paper we also assume that
7 is unknown but the key point of the prediction problem concerns the process
of learning p (and hence, p).

In the prediction problem, we observe the value of X (w) and we are requested
to guess the value of Y(w). We will often call X the input or the pattern,
and Y output or label. In general, our prediction will be f(X(w)) where f
is a measurable function from Sx on Sy, that we call predictor. The main
problem is to find a “good” predictor, what previously requires to set a criterion
to determine whether a given predictor is “good”or not.

If we have a criterion to quantify how much we “loose” by predicting a value
u for X(w) = x where the true value was Y (w) = y and this quantification is
denoted by L(z,u,y), we may introduce the loss function

L:Sx xSy xSy = 1R.

We will assume in the sequel that L(z,u,y) > 0 and that L(z,u,y) = 0 if and
only if u =y.

From now on (X,Y) denotes a generic random vector distributed according
to p. As said before, a predictor or prediction rule is in general a measurable
function f : Sx = Sy and its quality is measured by means of the expected
loss:

r(f) = B{L(X, f(X }—/S/S (. f(z), y)p(dr, dy) =
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Hence, we say that a predictor f is better than a predictor g if TL(f) < 71(9).
For instance, if we take L(x,u,y) = 1{uzyy then 70(f) = P(f(X) #Y) (the
overall error rate).

As another classical example, if Sy is a normed space, ||.| denotes its
norm, we assume that E{||Y|?} < oo and set L(z,u,y) = |u — y||?, then
(f) = E{||f(X) =Y ||?} (the mean integrated squared error, MISE, for short).

In general, if we assume that, for any = in a set of w-probability one, there
exists an unique value f*(z) such that

/ Lz, f*(x),y)p(dy/z) < / L(z,u,y)p(dy/x) a.s. with respect to u € Sy,
Sy

Y

and if the function f* : Sx = Sy is measurable, then f* is the optimal pre-
dictor, since a straightforward computation shows that 71, (f*) < 71,(f) for any
predictor f.

In the case of the overall error rate and when p(./z) is unimodal, f*(z)
is called conditional mode or Mazimum A Posteriori (MAP) given x, and cor-
responds to the value of u that maximizes p(u/x). In the case of the MISE,
f*(X)=E(Y/X). I, for instance, Sy is a topological vector space and L sat-
isfies some regularity and convexity conditions with respect to u, the existence
of f*(x) can be shown.

The problem is that, in general, one is not able to look for a predictor on
the whole set of functions from Sy to Sy (that may be a very huge set) but
only on a given class of functions F that corresponds to the kind of predictors
that we may practically compute. In such a case, the optimal predictor f* may
be not included in F and , therefore, the best predictor that we will be able to
find is f**, such that

[ = argmin g 71 (f).

As we will see later, this predictor f** is not available in practice, since the
law p is unknown and should be estimated from data. Thus, one is not able to
minimize 77, but only an empirical estimation of it.

Remark 1.1: It is also a common practice (and in fact, this will be our case),
to consider a reward function R(z,u,y), giving the reward to be assigned to a
prediction of u for the value x when the real value is y, instead of the loss func-
tion. Despite of the fact that the practical motivation may make one approach
more appealing than the other, from the mathematical point of view, they are



MIXTURES OF EXPERTS 133

completely equivalent, since if L is a loss function and C' is a suitable constant,
then C' — L is a reward function.

Remark 1.2: It is also common (and wise), in practice, to make use of the
advice of experts, that may be human experts or previously tested algorithms.
In our case we make use of experts advice, and we think an expert as a tran-
sition matrix A(./.), that gives, for any input z, the probability A(y/x) that
this expert assigns to the output y. If an expert is used just by means of a
MAP procedure, then, we consider that his answer for an input value z is the
(unique) value a(x) € Sy such that A(a(x)/z) > A(y/x) for any y (if such an
a(z) is not unique, then some ordering or sampling procedure may be used to
choose only one).

In supervised learning, the predictor fn that we can use in practice, is based
on a training sample (X1,Y1), ..., (Xn,Yn), often assumed to be independent
and identically distributed (iid, for the sequel) according to the law p. If a class
F of functions is used, then we take as our prediction rule fn, the element of F
that minimizes

() = T3 LG F(X0), ),
=1

i.e.
fn = argmin ;e =7, o (f)-

As an estimation of the performance of this prediction rule, we might take
TL fn), but this is usually a biased estimation: it overestimates the perfor-
mance of the predictor. This is also related to what is usually called “overfit-
ting”: if, for instance, F is as big as the whole family of functions from Sx to
Sy, and X1, ..., X,, contains n different values, it is clear that fn(Xl) =Y; for
any ¢ and that 7z, ( fn) = 0 (perfect fitting over the trainig sample), but when
fn is applied to new data the result may be catastrophic (the prediction follows
so closely the particular features of the training sample, that it is statistically
very poor). This type of problems is detected if the performance of the predictor
rule is measured by means of a new sample, called the evaluation sample, which
is another 4id sample of the distribution p, (X7, Y?), ..., (X7, Y,?), independent
with respect to the training sample, and the performance of our predictor is
estimated by means of

L) = - S DXL (XD, V).

i=1

Another type of performance estimation, based on well-known procedures such
as cross-validation, bootstrap and other resampling techniques, may be used



134 B.GHATTAS & G. PERERA

in practice to give unbiased and numerically efficient estimations of the perfor-
mance, but we refer to [13] for an extensive account.

Finally, it should be noticed that when the best of all predictors is f* and
the best of possible predictors on our class is f**, the real predictor we use in
practice is fn The loss of perfomance due to the difference between f* and
f** is of modellistic nature, it depends on how clever is our choice of F. If a
bad choice of F is made, no further sampling allows to overcome this loss of
performance. This is why the difference f* — f** is often called approximation
error. On the other hand, the second loss of performance, due to the difference
between f** and fn is purely of statistical nature. If very large training sam-
ples were available (i.e., if n tends to infinity), under suitable hypothesis on the
model (see for instance [9], [10], [18] for a general exposition), f, tends to f**.
This explains why the difference f** — fn is often called estimation error.

At last, but not least, one must mention the fact that Machine Learning,
and, in particular, Supervised Learning Techniques, are also used as means to
gains insights on how does intelligence works. That is why the same subject
is also presented under the more appealing title of “Artificial Intelligence”. In
fact, Steven Smale, when requested to list the 18 most relevant mathematical
problems for the XXI century, included as Problem 18 the limits of the intelli-
gence, and if it was possible to model and describe how does intelligence evolves

(see [17]).

2 General description of the algorithm.

We will now describe the particular characteristics of our learning algorithm.
As we said in the introduction, we will develop the whole method in the simplest
case. Therefore, we will assume from now on that X takes values in a finite set
Sx ={1,...,I} and that Y takes values in Sy = {1, .., J}.

Despite the huge variety of procedures that have been proposed for super-
vised learning (linear methods, neural networks, CART, SVM, Boosting) most
of them do work well under the condition that the size of the training sample
(n), is assumed to be arbitrary large. This means that massive information is
available, allowing to drastic reduction of the estimation error and, with suit-
able modeling, very efficient learning (see, for instance, [8],[10], [13]). This is
clearly not possible for on-line applications or for applications that must exhibit
a minimum delay to give a response. And that is the case of our motivating
example of QoS prediction for Data Networks. We overcome this difficulty by
means of an iterative procedure, that uses a limited ammount of information at
each step, and that makes use of a mixture of experts.

Indeed, as predictors, we will have at hand k experts A1, ..., Ax and a class of



MIXTURES OF EXPERTS 135

models F. The experts will be fixed and will not change their behavior trough
the whole process: given one expert A; and an input x at any step of the algo-
rithm, the expert always give the same advice and predict the same value of y.
We call advisors both experts and the optimal predictor chosen from F. Hence,
we have k + 1 advisors, where indexes 1, ..., k correspond to the experts and the
index 0 to the model. It must be noticed that while A1, ..., Ax do not change
over the whole execution of our algorithm, the specific function f; selected in F
at step j, changes from one step of the algorithm to the following. As explained
in [12], the fact that the optimal predictor of the model is “fresh” (chosen again)
at each step of the algorithm, helps to achieve better performances when dealing
with non-stationary data and its a major difference with standard sequential
procedures. We assume that a familly of k£ + 1 reward functions is given. More
precisely, denote H = {0, ..., k}; we consider a function

R:Sx xSy xSy xH—1R

such that for any h =0, ..., k, R(.,.,., h) is a reward function with R(z,u,y,h)0
if u =y and R(z,u,y,h) <0 if u #y. R(z,u,y,h) represents the reward to be
asigned to the advisor h if he assigns for X = x the value u when the true value
was Y =y.

A central role in our algorithm is played by the credit matriz.

(cj(, h))xesx,heH

which encodes for the step j our confidence in the advisor h to predict the
output of x. More precisely denote:

hj(z) = argmax;,c yc;(, h),

the most credible advisor to predict x at step j (if there is more than one value
of h where the maximum is reached, we may choose for instance the biggest of
such values). Then :

e At step j, the prediction of the value to assign to x is done by the advisor
hj(z) (recalling that the case h;(xz) = 0 corresponds to the model, i.e.,

fi(z).

Once the training sample to be used at the step j is available, (X{, Ylj), ceey
(X7, Y}) (which is assumed to be iid, following the law p ), we choose f; as the
best candidate in F according to the following criteria:
fj = argmax;c 7 T (f)

where,
T
DH(f) = 2 0 ROX, F(X0), ¥7,0)

=1
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is the empirical version of the expected reward

D(f) = B{R(X, f(X),Y.0)} = > R(x, f(z),y,00p(,y)

r€Sx,yESYy

(T" is analogous to the the expected loss 7, if we think in terms of a loss function
L instead of a reward function).

Remark 2.1: Even if our method has been inspired from learning problems
on network administration, where a merely objective learning seems to be ade-
quate, it seems to be appealing to apply this system in a subjective context, for
instance, for behavioral systems (see [11]). To allow the expression of subjective
profiles, we need that different advisors gain different reward by a given decision
(further, this difference on the credited rewards may be taken as patterns to
identify such profiles). That is why we have included the “h ”component on the
function R and that is why we prefer to speak about “reward”instead of “loss
”or “cost”.

Once the model has been fitted, we proceed to the validation of the predic-
tion rule and we update the credit matrix. Since each expert Ay, ..., A uses a
MAP criterion, we denote by y1(x), ..., yr(z) the answer that each expert gives
to the input x. In the cycle j of our algorithm, we use a validation sequence
(X777, L (X7 Y7 (did and distributed according to p), independent with
respect to the training sequence of the same cycle j and independent with re-
spect to both training and validation samples of previous cycles.

Then the credits are updated as following:
e For each i = 1,...,V, compute hj(Xf’j).

e Compute the prediction for each observation of the validation sequence
by means of y,(X;"7) if hj(X;”) = h > 1 or by means of f;(X;"7) if
h;(X;”7) = 0.1In any case, let us denote by f;(X;"’) the predicted output.

e Update the credits as follows

14
1 v,J v,J v,J
¢jp1(@, h) = Cj(xahﬂ'v E R(X]7, f5(X77),Y; ’]ah)l{hj(xf=j):h,xjvizz}

i=1

Remark 2.2: Observe that to update the credit c;(x, h) we only use the obser-
vations of the validation sample where the input was x and the most credible
expert was h. In particular, if a value of z does not appear in the validation
sample, its credit is not changed, and if a given expert was less credible than
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others for any input of the validation , its credit does not change.

Some final remarks on general notation: we use the symbol “:="for a def-
inition that is set inside an equation. If C is a collection of random vari-
ables, o(C) denotes the o-algebra generated by C. If F,L are o-algebras on
Q, FVL:=0(FUL). As usual, convergence in law may be thought both at
the level of random variables or at the level of probability distributions and no-
tation may mix both levels. For instance, if Z1, ..., Z,,, .. is a sequence of random
variables and we state

li7rln Zn = N(0,1) in law ,

we are saying that, with respect to the topology of the weak convergence of
probability measures, the sequence of distribution measures P%" converges to
a standard gaussian probability measure.

3 Theoretical results.

In this section we derive the asymptotic behavior of our Restricted Resources
Learning Algorithm (RRLA, for short), when the number of iterations tends to
infinity.

We will first obtain the limit of the credit matrix (¢;(z, h))zesy,her When
j tends to infinity. Then we will compare the performance of the RRLA to
that of an algorithm based on the whole set of training sequences (i.e., with
No Restriction: we will call this algorithm NRLA, for short). In particular we
will show that, under reasonable assumptions, RRLA behaves almost as well as
NRLA, but with very lower cost and computation requirements, and therefore
it can be seen as a performant alternative that respects restrictions.

Let us set some notation and assumptions.
First of all, to avoid trivialities, we assume that 7(z)0 for any = € Sx. For each
one of the experts indexed by h =1, ...,k and any « € Sx,y € Sy, we define

rh(xvy) = R(l’,yh($), Y, h)
rn(z) = B{rn(X,Y)/X =a} = > ru(z,y)p(y/x)

yESy
With the notation of the end of the previous section, denote
[ =argmaz e rL(f), fj = argmaz pe 77 (f).

(We assume again that those maximum values are attained at a unique element
of F).
Define, for any = € Sx,y € Sy:

TO(xay) = R(I7 f**(x),y, 0)
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ro(z) = E{ro(X,Y)/X =z}
7%(x,y):=AR(x,jZ(x),y,O)
ri(x) =Y (@, y)ply/)

YyESy

Observe that 7 (x,y) (resp. 7)(z)) is a random function of (z,y) (resp. ).
Let us also call S the set of all the functions from Sx to Sy. If (X,Y) is a
random vector independent of the training sample and distributed according to
p, we have that:

E(r(X)) = B(B{R(X, [;(X),Y,0)/f;})
= S B(R(X, f(X),Y.0)/f; = FYP(f; = f)

fes

= Y E{R(X, f(X),Y,0)}P(f; = f)
fes

= Y r(HP(fi=1 (1)
feF

In the last equality, we have used the fact that fj € F. In addition, we clearly
have that:

E(rj(x)) =Y Y R(z, f(2),y,0)p(y/x)P(f; = ).

feEFyeSy

We assume from now on the following hypothesis:

e (H1) For any = € Sy, there exists an unique h(x) € H, such that

Thz)(®)0, 70 (z) < 0 if h # h(z).

Remark 3.1: Observe that if for a given value xq, r,(xo) depends only on the
values of R(zo,.,.,h). Hence, if r,(x¢) < 0 for all the values of h but there
is only one h corresponding to the maximum value maxpepry(xo), then, we
can find a suitable constant C' and modify R by means of R,.q(z,u,y,h) =
R(x,u,y,h) + Cliz—z,y, for any 2, u,y, h in such a way that for R,,,q assump-
tion (H1) holds true (and no change is introduced on the rewards for other
values of x). Therefore, (H1) essentially means that for any x, there is only
one value of h that maximizes ry(z). In practice, this is not a major restriction,
since, again, this can be obtained by means of minor modifications of R and a
fixed procedure to choose one h in case of “ties ”.
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Taking into account (H1), the following sets are well-defined

Dy ={zxe€Sx :rp(x)0}, h=0,...,k.
and we have that
k
U Dn=5x, DunDy =0 if h #1.
h=0

The following lemma plays a key role in the rest of the paper. In two items
of this lemma we will consider that T (size of the learning sequence) goes to
infinity; since for the rest of the paper 1" will be fixed, we do not emphasize the
dependence on T' of fj, To, T},

We also denote

&)=Y > Rlx, f(x),y,0)p(y/x)P(fr = f)

feEF yeSy

Lemma 3.1 Let F be any class of functions from Sx on Sy and let (X,Y) be
a random vector, independent of the training sequence, distributed according to
p. We have then that:

e i) For any j, limp f;(X) = f**(X) in law

e ii) There exists a sequence of non-negative real numbers, (a(T'))c v such
that limy o(T) = 0 and, for any j,

B{(500 = (X)) } < ().

e iii)Fiz now T': for any x, lim,, + Z?Zl ré(x) =v(z) a.s.

o iv) With the same notation as above,
E{(7(X) = 0(X))*} < a(T),

and for any x € Sx,

Proof:



140 B.GHATTAS & G. PERERA

Fix j. Observe first that

FjT(f)_F(f) = Z R(m,f(a:),y,O)(p]T(x,y) _p(xvy))a

z€Sx,yeSy

where )
pr(x,y) = Tcard{i 1<i<T:X] =2Y =y}

Since E{p}(x,y)} = p(z,y) for any z,y, we deduce that
E{T7(f)} =T(f). (2)
In addition, by the Law of Large Numbers,
lim ) (2.) — p(a,v)] = Oas., for any j.z,y.
and, therefore
lim maz ;. y)es xsy |07 (2,9) = play)| = 0 as.,
what implies in turn that
limmaz s £[0() ~ T(f)] = O as. (3)
Let wp be a point in the probability one set in which (3) holds. Define

C= ma I'(f).
fEf,f;é(f** (f)

Let 6 = 2(I'(f** — C). From (3), there exists a natural number N (depending
on wyp) such that if 7" > N, then

sup [T7.(f) —I(f)] < &
feEF

Therefore, if T > N it must be f/ = f** and (i) is proved.
From the previous argument, we also have that

lim P(f7 # f*) =0,
and, since R is bounded by (say) M,
E{(r§(X) = r0(X))*} < (2M)*P(f7 # f**)

which goes to zero with T and (ii) is proved.
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For (iii), fix z. Then, 7 (z), as said before, is a given function of the training
sequence corresponding to the cycle j. Since training sequences of differents
cycles are independent and follow the same distribution on the set of sequences

of size T', we have that r}(x), ....,r5(z), ... is an iid sequence, with mean
E{rj(x)} = > > R(x, f(x),y,0)p(y/2))P(f; = f)
fEF yeSy

Since the law of fj does not depend on j we conclude that

E{rj(2)} = 7(x)

and (iii) follows from the Law of Large Numbers.
Next, using (iii),

(r(X) =ro(X)) | }

n

S|

B{((X) = (X))} = lmB{|

J

n

= im0 — ro(X))

< @1ﬁzﬂmm—mmmm
< a(T) (by (ii))

Finally, pick any g € Sx and write down

o(T) = B{(y(X)-r(X)} = Y (v(x) = rolx))* n(x)

and we conclude that:

|wm—mmws(“ﬂ)5o

m(zo)

We will also use in the sequel the following lemma, that is an easy conse-
quence of the Law of Large Numbers for Martingales (see, for instance, [19]).

Lemma 3.2 Assume that (F;),cpy is a filtration (i.e., each F; is a sub-o-

algebra of the underlying o-algebra A and, for any i, F; C Fiy1) and that
Agy ey Ay, ... 18 a sequence of random variables such that:
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o i) A; is Fiy1- measurable for any 1.
o ii))E{A;/F;} =0 for any i.
o iii) There exists K < oo such that sup;|A;] < K, a.s.

Then, if M, = 2?701 A;, we have that

lim —2 =0 a.s.
n o n

Remark 3.3: The following fact also plays a key role in the proof of our main
results. For any x € Sy, define

A () = ()1 hs0y + 7(2) =0}
Set
Ap = {x € Sx : A\p(x)0}.

It is clear that A, = Dy, for h > 0. On the other hand, by Lemma 3.1 (iv), for
T big enough, Ay = Dy. More precisely, define

a(T)
(z)
Take T > Ty. If € Dy, then r¢(x)n and by Lemma 3.1 (iv) and the definition

of Ty, v(x)0 and = € Ag. If ¢ Dy, then ro(x) < —n and the same argument
shows that v(x) < 0, what implies that = ¢ Ag. Therefore, if T' > Tp,

n =min{|ro(z)|: z € Sx}, To =inf{T' € IN: ( ) <nVze Sx}.

3

Ap =Dy, h=1,...,0.

We have then the first result, concerning the asymptotic behaviour of the
credit matrix.

Theorem 3.1 Let T be a fixed value, T > Ty, with Ty as in Remark 3.5. As
n, tends to infinity we have that

. 1
hin(gcn(xah))zesx,hEH = (M (2)7(2) 1 {h=h(2)} )eeSx heH, G.5.

and

lim h,, () = h(x) a.s.

(what implies that h,(x) = h(x) for all n large enough, a.s.)
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Proof: Define .
U}JL = {JI € Sx: h](.’L‘) = h},

(set of points where the best advisor at cycle j is h)
T =0 ({(Xij,Yij) 1<i< T})
(o-algebra generated by the training sequence of cycle j),
V=0 ({(X07.7) 1 <i < V)

(o-algebra generated by the validation sequence of cycle j), and

j—1
= \/ (7; \ VZ)
i=1

(o-algebra generated by training and validation sequences up to cycle j — 1).
Set
Aj = Cj+1(.7;, h) - Cj(x7 h) - E{Cj+1<3;‘, h) - Cj(aj’ h)/]:j}v

that clearly satisfies all the hypotheses of Lemma 3.2.
We have that:

<l
.M<

@
Il
-

cj+1(x7 h) — G (xv h) = R(X;j’j7 fj (X;J’j)’ Yiv’j7 h)1{X2)"7:x,h(X;}"j):h}

I
<~
-

Il
—

R(Z‘, fj(%), Yz‘mj’ h)l{X;”j:z,meU}{}'

(2

We use in the following lines the fact that the validation sequence of cycle
J is independent with respect to the training sample of cycle j and with re-
spect to training and validation samples of previous cycles, and that U; is

Fj-measurable. If h > 0 and = € U}, f;j(z) = yn(z) (deterministic) and

E{cjpa(x,h) = ¢j(x,h)/F;} = E{R(z, f;(z),Y;"" h)1 (xvi—ay L weuiy}
= E{R(z,yn(z),Y;"’ h)1 (xvi—a}H  zeuiy
= ( ) ( ) {zcU}}

Therefore,
A =cjpi(x, h) —cj(z, h) — rh(x)w(sc)l{wewb} for h < k.

For h = 0, let us compute more carefully:
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E{cj(,0) = ¢j(w,0)/F;} = B{R(x, f;(2), V"7, 0L yvi_y /Fid vy

But

E{R<x’fj(x)7Y;wj’o)l{xf’j:x}/]:j} =
B{E{RG, £i(0), Y, 001 ooy T3 V T}/,

Since fj is Fj V T;-measurable and (X}, Y;"7) is independent of F; V T}, we
have that:

E{R((L’, fj(m%}/iv’j’O)l{Xf'j:x}/}—j v 73} = Z R($7fj(.’lﬁ),y,O)p(y/x)W(.T),
YyESy

what implies in turn that:

E{R(xvfj(x)v}/imjvo)l{xz’*j:x}/}—j} = Z E{R(:ufj(x),y,O)/Fj}p(y/x)w(:c)

yESy

Observe now that fj only depends on 7; and is independent of F; (by its
definition, f; only depends on the performance of the elements of the model
class F over the whole training sequence of cycle j), and thus,

> E{R(=, fi(x),y,0)/F;}p(y/x)m(x) =

yESy
S 3 Ra, £(@), 5,00 P(f; = Fp(y/2)n(a).
yESy fEF

Using now as in Lemma 3.1 the fact that the law of fj does not depend on 7,
we conclude that

E{R(z, fj(), ;" 001 xva_oy /Fj} =
Y > R f(x),y,0)P(fi = f)p(y/z)m(z)

yESy fEF

I
=
8
~—

Therefore, for h = 0,

E{cj1(,0) = ¢;(x,0)/Fj} = v(@)1 ey

what shows that for any h =1, ..., k,0 we have
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E{Cj+1(l‘, h) - Cj(l‘, h)/j:j} = )\h(x)l{zGU}{}’
and that
Aj=cjri(x, h) —cj(z, h) — )\h(as)ﬂ'(x)l{er’{} for h < 0.

Summing up both terms of this last equation with respect to j and dividing
by n, we obtain as a consequence of Lemma 3.2 that:

n

lim (cn(:/,h) — )\h(x)w(x)l/n(h)> =0, a.s.
where ) '
vn(h) = Ecard{j :0<j<n-1zeUl}.
From now on, the rest of the proof is devoted to show the following two facts:
e a) lim, v,(h) = 1{p—p(a)}, for any x, h, and
e b) lim, h,(z) = h(z).

(Observe that b) it is not a direct consequence of a), since p,(h(z)) gives only
the asymptotic frequency of h,(x) = h(z)).
To prove this, fix € Sx. Let € be an arbitrary element of (0,1). Set
a = infren|An(@)|m (7).

We already know that for almost any w in our probability space, there exists
ne(w) such that

e | 2Dy (@, ()] < S (5)

for any n > ng(w).

Fix w as before. Let us assume for a moment that:
There exists ny > ne(w) such that v,, (h(z))(w) > €. (6)

By Remark 3.4, we know that A;, = D}, for any h. Hence, A, ()0 if and only
if h = h(z). We have then that:

M), @, o)) - 5 2

() (@), () () + 2 > Ca(®P) oy for any h # h(z)

2 n1
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This implies that h,, (x)(w) = h(z) and hence,

iy (h(@)) @) +1_
ny —+ ]. ’

Vi1 (M(2))(w) =

Therefore, the same argument may be applied to n; 4+ 1 instead of n; and we
conclude that
hn(z)(w) = h(z) for any n > ny

what clearly implies

lim vy, (h)(w) = 1{h=p(2)} (W), for any h.

It is enough now to show that, on a set of probability one, there exists
e € (0,1) such that (6) holds true.
Let us call A to subset of 2 where (6) does not hold for any € € (0,1). It is
clear that
A={we: liyrlnz/n(h(x))(w) = 0}.

We will prove that P(A) = 0. Observe that the reward function R is bounded
(indeed, its domain is a finite set) and hence eal:h) g bounded, allowing to
interchange limits and expectations in the following lines.

By the definition of h,,(x) we have that, for any w in 2 and h in H,

en(z, hp(2)) cn(x,h)
Ay T > v Y
P2 () > 0 )
what implies that for any h,
B, @)y gy, @)y (7)
n n
Using that
. cn(x, h) B
hrrln max |T — Ap(@)m(z)vn(h)| =0 a.s.

and taking limits in (7) we deduce that, for any h,

limnsup E{1aM,, () (@) (2)vp (hn ()} > limnsup E( g n(x)m(z)vn(h)}.

Since the right-hand side of the last inequality is non-negative for h = h(x), so
is the left-hand side, hence
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But if we take

a(z) = hI;l}?();) ru(z),

which is negative, it is easy to check that the left-hand side of the last inequality
is smaller than

limsup E(1aa(z)m(2)1(n, (2)£h()}) (8)

and therefore (8) must be non-negative.

We will show that (8) is negative if P(A) is greater than zero, leading to a
contradiction. Taking into account that a(zx) is negative, using Fatou’s lemma
for negative functions and the fact that

lim sup l{h"(z)?ﬁh(aj)} =1over A

we conclude that (8) is smaller than
E(Laa(z)m(x)),
which is negative if P(4) > 0.0

Remark 3.4: It must be noticed that in the previous result we have assumed
that T is big enough (i.e., T' > Tp), but fixed.

Next result shows that a CLT holds for the convergence of Theorem 3.1. It
is based on the following version of the CLT for martingales (see [19]).

Lemma 3.3 Under the assumptions of Lemma 3.2, if in addition there ezists
a non-negative constant o such that

n—1
1
lim—= Y E{AZ/F} =02 bability,
171Lnn; {A7/F;} = 0° in probability
then .
lim —=M,, = N(0,0?) in law .

o

Remark 3.5: A straightforward argument gives the multivariate version of
Lemma 3.3., that may be stated as follows. Assume that (A;(1), ..., A;(d)), N
is a d-dimensional sequence such that (A;(s)), N satisfies the assumptions of
Lemma 3.2 for each s = 1, ..., d with respect to the same filtration (F;), .y and
that there exists a covariance matrix M such that

n—1
1
lim — E E{A;(s)A;(t)/Fi} = M(s,t) in probability, for any s,t =1,...,d.
non
=0
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Then if M, = (Myn(1),...., M,,(d)) is defined by M,(s) = LS FAy(s), we
have that

1
li7rln ﬁMn = N(0,M) in law.

where N (0, M) denotes a d-dimensional centered gaussian random vector with
covariance matrix M.

Theorem 3.2 We have that

1
lim /n (cn(x, h) — )\h(x)ﬂ'(x)l{h_h(x)}) = N(0,M) in law.
n n x€Sx,heH

where, for any x,x* € Sx, h,h* € H,

M(x, h;z*,h*) = A (@) A (27) 7 ()70 (2) L () =h b ) =R+ } 5
1
*V‘gh(x)”(x)l{xm*,h=h*=h(x)},

and
O0n(2) := E{R(x,yn(x),Y,h)?} for h=1,...k; Oo(x) :== E{R(z, f*(x),Y, h)?}.

Proof: Set

Aj(z,h) = cjp1(z, h) —cj(x, h) — )\h(x)w(x)l{zeUi} forx € Sx,h € H.
After Remark 3.5, it is clear that is suffices to prove the following facts:

o a) lim, =37 | B{A;(x, h)A;(x*, h*)/F;} = M (x, h; z*, h*)
in probability, for any z,z* € Sx, h,h* € H.

e b)lim, /n (% Z;ZOI 1{$€U'§} - l{h:h(m)}) =0a.s. for any xz € Sx,
he H.

By Theorem 3.1., for each x € Sx, and for any w on a set of total probability,
there exists n(w) € IN such that for any n > n(w) we have h,(z)(w) = h(z). It
is then clear that, for n > n(w), we have that

n(w)

n—1
1
|ﬁ Z 1{er,{}(W) — Lin=n()| < 7
§=0
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what clearly implies b).
We will then focus on a). It is easy to check that
E{Aj(z, h)Aj(z*, h7) [ F;} = E{(cj1(z, h)—c;(z, h))(cj41(x", B7) —c; (™, h*)}
A (@)Aps (") (2)m () P(hj(x) = h, hj(z*) = h¥).
But

E{(cjt1(z,h) —¢j(z,h))(cjpr(z™, h7) — ¢;(z™, b))} =

v Vv
1 j * * v,j *
WZZ {R(z, fj(x), Y™ h)R(2™, f;(2%), Y B x, wny Lix, em ney )

where 1{X57$_’h} = 1{X:’7:’E,hj(1):h} and 1{XS,I*,}'L*} = 1{Xtv’j:,’t*,hj(fl‘*):h*}'
If s # ¢, then

E{R(x, f;(x), Y27, h)R(x", f3(2"), "7 W) Lix, wmy L (xo o ey} =
A (@) e (@) () (%) PRy (x) = b, by (2*) = B7).
On the other hand, if s = ¢, then
E{R(x, f;(2), Y7, B)R(x", ("), Y7 W) (x, w1 (X0 am e} } =
On(2)m(2) 1 gz h=h=} P(hj(x) = h).

Therefore, we have that

E{(¢jra(a,h) = ¢j(z, b)) (e (2%, A7) — ¢j(2", h7))} =

V-1

An (@) A (@) (@) (27) P(hy(x) = h, hy(x%) = B7)

1
—Vﬂh(x)w(:r,)l{m:z*ﬁh:h*}P(hj ((E) = h),
and applying Theorem 3.1, a) follows easily.{

Remark 3.6: Observe that for each pair x,x*, the limit covariance matrix is
null except in the case h(x) = h, h(z*) = h*. Indeed, instead of the whole credit
matrix, we may consider the reduced mean credit vector (c,(z,h(x)))sesx
since no other term is relevant for the asymptotic behaviour of the algorithm.
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4 RRLA vs NRLA.

Next, we give the asymptotic behavior of the credit matrix when the NRLA
algorithm is used.

Theorem 4.1 For NRLA algorithm, we have that

. 1
hTILn(ﬁCn(x,h))a;esx,heH = (A (2)7(2) 1 {h=h(2)} )eeSx heH, .5.

Proof: For the sake of clearity, let us use a different notation for the principal
ingredients of the algorithm in the NRLA case. Let us now denote h;(z) the

analogous of h;(z), g; the analogous of f; and ¢/ the analogous of fj. More
precisely, we assume now that, at cycle j, the available training sample is

(X7, Y ) i<i<ri<s<j-

=t 4 e

Hence, from the model we choose §’ such that

§ = argmax ez [jr(f)
where

R(X7, f(X7), Y7, 0).

T
=1

FjT(f)ZjiTZ}

s=11¢

Finally, izj(x) is now the most credible advisor among tke k experts and §7,
the credit matrix is updated exactly as before (i.e., using only the validation
sequence correspondig to each cycle) and g; denotes the predictor.

If we now set . _
i)=Y R(x,¢(x),y,0)p(y/),
yESy

it is clear that

has the same law as, in the RRLA,

(1) s,

when a training sample of size jT is used, and therefore, by Lemma 3.1 ii), it
converges in L?, as j goes to infinity, to ro(z).

From now on, the proof follows very closely the arguments used in The-
orem 3.1 and may be easily reproduced by the reader. ¢
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As a direct consequence of Theorem 3.1 and 3.2, we can finally compare
the performance of RRLA and NRLA. We will compare performances by means
of the following performance ratio:

. B{R(X. [;(X),Y. (X))}
' B{R(X,g;(X),Y, h;(X))}

We have then
Theorem 4.2 If in RRLA we use T > Ty, then

E{dnx)} E{(ro(X) — v(X){xepo}}

lm7; = —— =]
J

E{rnx)} E{rnpx)}

Proof: As seen before, we have that

E{R(X, f;(X),Y,h;(X))} =

k
S 3 Mm@ Pl (@) = b),

h=0z€Sx

By Theorem 3.1,
lijr_n P{h;j(x) = h} = Lip—p(a)}s

and therefore,

lim E{R(X, f;(X),Y, h; Z Z M ()T (2) L h=h(a)y =
J h=0z€Sx

D> M (@ = E{ux)(X)}.

TESx

In a similar way, using Theorem 3.2, we deduce that

lim E{R(X, f;(X), Y, h;j(X))} = E{racx) (X))}
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Finally, observe that

E{Anx)(X)} = E{nx)(X)L{xgnor} + E{Ao(X)1{xepoy} =
E{rne) (X)1ix¢pe} + E{v(X)1{xepo}
and the result follows. ¢

The following corollary illustrates on the applications of Theorem 3.4.

Corollary 4.1

i) Under the assumptions of Theorem 3.4, we have

T)r(Dy))?
limr; > 1— M_
J E{Th(X)}
ii) Set A = mingep, ro(x), B = minggp, 7p(z) ().
Then )
. (a(T)7(Do))*®
1 > 1 — .
ST =T Ar(Do) + B(1 — 7(Dy))
Proof:

To prove i), observe that E{r,x)(X)} is positive and apply Cauchy-Schwarz
inequality and Lemma 3.1 iv) in Theorem 3.4.
To prove ii), observe that

E{ryx)(X)} = An(Do) + B (1 — m(Do)) .0

Remark 4.7: Corollary 4.1 says that if T is large, both algorithms have very
similar performances. On the other hand, if T > Tj but T is not very large, the
ratio of performances is close to one if w(Dy) is small or if A or B are large. In
simple words, this means that performance is almost the same if training sam-
ples are large, or experts are the most credible advisor for almost all inputs, or
experts have a very good mean performance (even if they are not almost allways
chosen as the best advisor) or the model has a very good mean performance.
In other words if RRLA is not close in performance to NRLA, we have awfully
chosen the ingredients of our learning machine! In [12] very impressive numeri-
cal examples of performances of both algorithms are given.

Acknowledgements: to an anonymous referee for his very precise and valu-
able suggestions.
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