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"Neglect of mathematics works injury to all knowledge, since he who is ignorant
of it cannot know the other sciences or the things of this world."

Roger Bacon
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PREFACE

This specialized monograph provides an account of some substantial classical and more recent 
results in the field of extremal moment problems and their relationship to stochastic orders. 
The presented topics are believed to be of primordial importance in several fields of Applied 
Probability and Statistics, especially in Actuarial Science and Finance. Probably the first and 
most classical prototype of an extremal moment problem consists of the classical Chebyshev-
Markov distribution bounds, whose origin dates back to work by Chebyshev, Markov and 
Possé in the second half of the nineteenth century. Among the more recent developments, the 
construction of extremal stop-loss transforms turns out to be very similar and equally well 
important. Both subjects are treated in an unified way as optimization problems for expected 
values of random functions by given range and known moments up to a given order, which is 
the leading and guiding theme throughout the book. All in one, our work contributes to a 
general trend in the mathematical sciences, which puts more and more emphasis on robust, 
distribution-free and extremal methods.

The intended readership, which reflects the author's motivation for writing the book, 
are groups of applied mathematical researchers and actuaries working at the interface between 
academia and industry. The first group will benefit from the first five chapters, which makes 
80% of the exposé. The second group will appreciate the final chapter, which culminates with 
a series of recent actuarial and related financial applications. This splitting into two parts 
mirrors also the historical genesis of the present subject, which has its origin in many 
mathematical statistical papers, some of which are quite old. Among the first group, we have 
especially in mind a subgroup of forthcoming twentyfirst century generation of applied 
mathematicians, which will have the task to implement in algorithmic language complex 
structures. Furthermore, the author hopes there is something to take home in several other 
fields involving related Applied and even Abstract Mathematics. For example, Chapter I 
develops a complete analytical-algebraic structure for sets of finite atomic random variables in 
low dimensions through the introduction of convenient involution mappings. This constitutes 
a clear invitation and challenge to algebraists for searching and developing a corresponding 
more general structure in arbitrary dimensions. Also, our results of this Chapter are seen as an 
application of the theory of orthogonal polynomials, which are known to be of great 
importance in many parts of Applied Mathematics. The interested actuary and finance 
specialist is advised to read first or in parallel Chapter VI, which provides motivation for most 
of the mathematical results presented in the first part. 

The chosen mathematical language is adapted to experienced applied scientists, which 
not always need an utmost precise and rigorous form, yet a sufficiently general formulation. 
Besides introductory probability theory and statistics only classical mathematics is used. No 
prerequisites are made in functional analysis (Hilbert space theory for a modern treatment of 
orthogonal polynomials), measure theory (rigorous probability theory), and the theory of 
stochastic processes (modern applied probability modelling). However, to read the succintly 
written final actuarial chapter, background knowledge on insurance mathematics is assumed. 
For this purpose, many of the excellent textbooks mentioned in the notes of Chapter VI will 
suffice. To render the text reasonably short and fluent, most sources of results have been 
reported in notes at the end of each chapter, where one finds references to additional related 
material, which hopefully will be useful for future research in the present field. The given 
numerous cross-references constitute a representative but not at all an exhaustive list of the 
available material in the academic literature.
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A great deal of non-mathematical motivation for a detailed analysis of the considered 
tools stems from Actuarial Science and Finance. For example, a main branch of Finance is 
devoted to the "modelling of financial returns", where one finds path-breaking works by 
Bachelier(1900), Mandelbrot(1963), Fama(1965) and others (see e.g. Taylor(1992)). More 
recent work includes Mittnik and Rachev(1993), as well as the current research in Chaos 
Theory along the books by Peters(1991/94) (see e.g. Thoma(1996) for a readable introduction 
into this fascinating and promising subject). Though models with infinite variance (and/or 
infinite kurtosis) can be considered, there presumably does not seem to exist a definitive 
answer for their universal applicability (see e.g. Granger and Orr(1972)). For this reason, 
moment methods still remain of general interest, also in this area, whatever the degree of 
development other methods have achieved. Furthermore, their importance can be justified 
from the sole purpose of useful comparative results. Let us underpin the need for distribution-
free and extremal moment methods by a single concrete example. One often agrees that a 
satisfactory model for daily returns in financial markets should have a probability distribution, 
which is similar to the observed empirical distribution. Among the available models, 
symmetric distributions have often been considered adequate (e.g. Taylor(1992), Section 2.8). 
Since sample estimates of the kurtosis parameter take in a majority of situations values greater 
than  6 (normal distributions have a kurtosis equal to  3), there is an obvious need for 
statistical models allowing for variation of the kurtosis parameter. In our monograph, several 
Sections are especially formulated for the important special case of symmetric random 
variables, which often turns out to be mathematically more tractable.

To preserve the unity of the subject, a comparison with other methods is not provided. 
For example, parametric or semi-parametric statistical methods of estimation could and should 
be considered and put in relation to the various bounds. Though a real-life data study is not 
given, the importance and usefulness of the approach is illustrated through different 
applications from the field of Actuarial Science and related Finance. These applications 
emphasize the importance of the subject for the theoretically inclined reader, and hopefully 
acts as stimulus to investigate difficult open mathematical problems in the field.

An informal version of this monograph has been circulated among interested 
researchers since 1998. During the last decade many further advances have been reached in 
this area, some of which have been accounted for in the additional bibliography. In particular, 
a short account of some main results is found in the appendix of Hürlimann (2002a).

Finally, I wish to thank anonymous referees from Journal of Applied Probability as 
well as Statistics and Probability Letters for useful comments on Sections IV.1, IV.2 and some 
additional references about multivariate Chebyshev inequalities in Section V.7. A first review 
of the present work by Springer-Verlag has also been used for some minor adjustements of an 
earlier version of this monograph. My very warmest thanks go to Henryk Gzyl for inviting me 
to publish this monograph in the Boletín de la Asociación Matemática Venezolana

Zurich, October 2008, Werner Hürlimann
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CHAPTER I

ORTHOGONAL POLYNOMIALS AND FINITE ATOMIC RANDOM 

VARIABLES

1. Orthogonal polynomials with respect to a given moment structure.

Consider a real random variable  X  with finite moments k
kE X ,  k=0,1,2, ... . If 

X  takes an infinite number of values, then the moment determinants

(1.1) n

n

n n

n

0

2

0 1 2

. . .

.

.

.

. . .

, , , ,...,

are non-zero. Otherwise, only a finite number of them are non-zero (e.g. Cramèr(1946), 
Section 12.6). We will assume that all are non-zero. By convention one sets  p x0 0 1( ) .

Definition 1.1.  The orthogonal polynomial of degree  n 1  with respect to the finite moment 
structure  12,...,0 nkk , also called orthogonal polynomial with respect to  X, is the unique 

monic polynomial of degree  n

(1.2) p x t x tn
n j

j
n j

j

n

n
n( ) ( ) , ,1 1

0

which satisfies the  n  linear expected value equations

(1.3) E p X X i nn
i( ) , , ,..., .0 0 1 1

Note that the terminology "orthogonal" refers to the scalar product induced by the 
expectation operator X Y E XY, , where  X, Y  are random variables for which this 
quantity exists. These orthogonal polynomials coincide with the nowadays so-called classical 
Chebyshev polynomials.

Lemma 1.1.  (Chebyshev determinant representation of the orthogonal polynomials)  The 
orthogonal polynomial of degree  n  identifies with the determinant
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Proof.  Let  0 i n . Then the expected value

E p X Xn
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. . .
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. . .

vanishes because 0 i n , and thus two rows of the determinant are equal.  

The orthogonal polynomials form an orthogonal system with respect to the scalar 
product X Y E XY, .

Lemma 1.2.  (Orthogonality relations)

(O1) E p X p Xm n( ) ( ) 0  for  m n

(O2) E p X nn
n

n

( ) , , ,...2

1

0 1 2

Proof.  The relations (O1) follow by linearity of the expectation operator using the defining 
conditions (1.3). Since  p Xn ( )   is orthogonal to the powers of  X  of degree less than  n, one 

has  E p X E p X Xn n
n( ) ( )2 . The formula in the proof of Lemma 1.1, valid for  i=n, 

shows (O2).

The concrete computation of orthogonal polynomials depends recursively only on the 
"leading" coefficients  t n

n
1  and on the moment determinants n.

Lemma 1.3.  (Three term recurrence relation for orthogonal polynomials)  The orthogonal 
polynomials satisfy the recurrence relation

(O3)

p x x t t p x c p x n

c

n n
n

n
n

n n n

n
n n

n

1 1
1

1

2

1
2

2 3( ) ( ) ( ) ( ), , ,...,

,

where the starting values are given by
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.,)(,)(,1)( 2
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2
2

2
231

2
2132

2110 xxxpxxpxp

Proof.  Clearly one can set

(1.5) p x x a p x b p xn n n j jj

n

1 0

1
( ) ( ) ( ) ( ).

Multiply this with  p x i ni ( ), ,1 and take expectations to see that  b E p Xi i ( )2 0,

hence  bi 0  by (O2) of Lemma 1.2. Setting  b cn n1   one has obtained the three term 
recurrence relation

(1.6) p x x a p x c p xn n n n n1 1( ) ( ) ( ) ( ).

The remaining coefficients are determined in two steps. First, multiply this with  Xn 1  and 
take expectation to get using (O2)

(1.7) c
E p X X

E p X X
n

n
n

n
n

n n

n

( )

( )
.

1
1

2

1
2

Second, multiply (1.6) with  p xn ( )  and take expectation to get using (1.2)

a E p X E p X X t E p X X E p X Xn n n n
n

n
n

n
n( ) ( ) ( ) ( )2 2

1
1 .

Using that ...)( 1
1

1 nn
nn

n xtxpx , one gets further

(1.8) a E p X t E p X X t E p X Xn n n
n

n
n

n
n

n
n( ) ( ) ( )2

1
1 .

Since  E p X E p X Xn n
n( ) ( )2 , as shown in the proof of Lemma 1.2, the desired value 

for the coefficient  a n   follows.

To be effective an explicit expression for the "leading" coefficient  t n
n

1  is required.

Lemma 1.4.  (Leading coefficient of orthogonal polynomials)  For  n 2   let 
M Mn

ij i j n
( )

, ,...,( ) 0 1  be the  (nxn)-matrix with elements  Mij i j, which is assumed to be 

non-singular. Further let the column vectors  m n
n n n

T( ) ( , ,..., )1 2 1   and  
t t t t tn

o
n n n n

n
n T( ) ( , , ,..., ( ) )1 2

1
11 . Then one has the linear algebraic relationship

(1.9) M t mn n n n( ) ( ) ( )( )1 1 .

In particular the leading coefficient of the orthogonal polynomial of degree  n  is the  (n-1)-th 

component of the vector )(1)( nn mM , and equals
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(1.10) t
M

n
n in

n
n ii

n

n
1

10

1

1

( )

,

where  n
nM1 det ( )   and  M n( )   is the adjoint matrix of  M n( )   with elements 

,det)1( )()( n
ij

jin
ij MM   i,j=0,...,n-1,  )(n

ijM   the matrix obtained from  M n( )   through deletion 

of the  i-th row and  j-th column.

Proof.  This is a standard exercise in Linear Algebra. By definition 1.1 the  n  linear expected 
value equations (1.3) are equivalent with the system of linear equations in the coefficients n

jt :

(1.11) ( ) , ,..., .1 0 0 1
0

j
i j j

n

j

n
t i n

Since t n
n 1  this is of the form (1.9). Inverting using the adjoint matrix shows (1.10).  

It is possible to reduce the amount of computation needed to evaluate  t n
n

1. Making the 
transformation of random variables  ( ) /X 1 , one can restrict the attention to standardized 
random variables  X  such that  1 2

20 1, . The corresponding orthogonal 
polynomials will be called standard orthogonal polynomials. Clearly the standard orthogonal 
polynomial of degree two equals  p x x x2

2 1( ) , where  t1
2

3   is the skewness 
parameter.

Lemma 1.5.  (Leading coefficient of standard orthogonal polynomials)
For  n 3  let R Rn

ij i j n
( )

, ,...,( ) 2 1  be the  (n-2)x(n-2)-matrix with elements 

R ij
j

i j i j i j( ) ( )1 1 1 , which is assumed to be non-singular. Further let the 

column vectors r R Rn
n n n

T( ) ( ,..., )2 1   and s t tn n
n
n T( ) ( ,..., )2 1 . Then one has

(1.12) R s rn n n( ) ( ) ( ) .

In particular the leading coefficient of the standard orthogonal polynomial of degree  n  is the 

(n-1)-th component of the vector  )(1)( nn rR , and equals

(1.13) t
R R

R R
n
n in

n
ini

n

in
n

ini

n1

12

1

1 12

1

( )

( )
,

where R n( )   is the adjoint matrix of  R n( )   with elements R Rij
n i j

ij
n( ) ( )( ) det ,1

(
  i,j=2,...,n-1,  

(
R ij

n( )   the matrix obtained from R n( )   through deletion of the  i-th row and  j-th column.

Proof.  Solving for t to
n n, 1   in the first two equations indexed  i=0,1  in (1.11), one obtains

(1.14) 2
0 2 1 12

1t tn j
j j j

n

j

n
( ) ( ) ,

(1.15) 2
1 1 12

1t tn j
j j j

n

j

n
( ) ( ) ,

which specialize in the standardized case  1 20 1,   to 
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(1.16) t tn j
j j

n

j

n

0 2
1( ) ,

(1.17) t tn j
j j

n

j

n

1 12
1( ) .

Consider now the equations with index  i 2. Multiply them with  2   and use (1.14), (1.15) to 
get the linear system in  t tn

n
n

2 1,...,   of order  n-2 :

(1.18)
( ) ( ( ) ,

,..., .

1 0

2 1

2
2 1 1 1 1 12

j
i j i j i j i j i j j

n

j

n
t

i n

In the standardized case this system reduces to

(1.19) ( ) ( ) , ,..., .1 0 2 11 12

j
i j i j i j j

n

j

n
t i n

Since t n
n 1  this is of the form (1.12). Inverting using the adjoint matrix shows (1.13).  

Examples 1.1.

For the lower degrees  n=3,4  one obtains the leading coefficients

(1.20) t
M

M2
3 23

22

5 3 4 3

4 3
2 1

,

(1.21) t
M M M M

M M M3
4 23 24 22 34

23
2

22 33

.

2. The algebraic moment problem.

Given the first  2n-1  moments of some real random variable  X, the algebraic moment 
problem of order  n  asks for the existence and construction of a finite atomic random variable 
with ordered support  nxx ,...,1   such that  x x xn1 2 ... , and probabilities  npp ,...,1

such that the system of non-linear equations

AMP(n) p x k ni i
k

i

n

k1
0 2 1, ,...,

is solvable. For computational purposes it suffices to know that if a solution exists, then the 
atoms of the random variable solving AMP(n) must be identical with the distinct real zeros of 
the orthogonal polynomial of degree  n, as shown by the following precise recipe.

Lemma 2.1.  (Solution of AMP(n))  Given are positive numbers  p pn1 ,...,   and real distinct 
numbers  x x xn1 2 ...   such that the system AMP(n) is solvable. Then the  x si '   are the 
distinct real zeros of the orthogonal polynomial of degree  n, that is  p xn i( ) 0,  i=1,...,n, and
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(2.1) ,,...,1,
)(

)(

ni
xx

xZE

p

ij
ji

ij
j

i

where  Z  denotes the discrete random variable with support  nxx ,...,1   and probabilities 

npp ,...,1   defined by AMP(n).

Proof.  Consider the matrix factorization

n

n
nn

n

n

n

nn

n

n
nnn

n

n

xx

xx

xx

xx

xp

xpxpxp

ppp

xx ...1

...1

..

..

...1

...1

10..00

0

..

..

0..

0..

...1

...

..

..

...

...

22

11

1
11

2211

21

121

121

10

By assumption the  p si '   are positive and the  x si '   are distinct. Therefore by Lemma 1.1 and 
this factorization, one sees that

(2.2) 0

...1

...

..

..

...

...

det)(

121

121

10

1

n

nnn

n

n

nn

xx

xp

holds if and only if  x  is one of the  x si ' .

Remark 2.1.  Multiplying each column in the determinant (2.2) by  x  and substracting it from 
the next column one obtains that

(2.3) n np x M xM1 1 0( ) det( ) ,

with M M0 1,   the moment matrices

(2.4)

12

1

1

221

10

0

...

.

.

.

...

,

...

.

.

.

...

nn

n

nn

n

MM .
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It follows that the atoms  x xn1 , ...,   are the eigenvalues of the symmetric matrix  M M M0 1 0

1
2

1
2 .

As a consequence, computation simplifies in the case of symmetric random variables.

Corollary 2.1.  The standard orthogonal polynomials of a symmetric random variable satisfy 
the simplified three term recurrence relation

(2.5) p x x p x c p x n cn n n n n
n n

n
1 1

2

1
2

2 3( ) ( ) ( ), , ,..., ,

where the starting values are given by  p x p x x p x x0 1 2
21 1( ) , ( ) , ( ) .

Proof.  A finite atomic symmetric random variable, which solves AMP(n) in case  2 1 0k ,
k=0,1,..., must have a symmetric support and symmetrically distributed probabilities. Two 
cases are possible. If  n=2r  is even it has support  11 ,...,,,..., xxxx rr   and probabilities  

11 ,...,,,..., pppp rr , and if  n=2r+1  it has support  11 ,...,,0,,..., xxxx rr   and probabilities  

101 ,...,,,,..., ppppp rr . By Lemma 2.1 and the Fundamental Theorem of Algebra, the 

corresponding orthogonal polynomials are  
r

i in xxxp
1

22 )()(   if  n=2r, and   

p x x x xn ii

r
( ) ( )2 2

1
  if  n=2r+1. In both cases the leading coefficient  t n

n
1  vanishes, 

and the result follows by Lemma 1.3.  

A main application of the algebraic moment problem, and thus also of orthogonal 
polynomials, will be the complete determination in Sections 4, 5 (respectively Section 6) of 
the sets of finite atomic random variables (respectively symmetric random variables) by given 
range and known moments up to the fourth order.

3. The classical orthogonal polynomials.

The developed results are illustrated at several fairly classical examples, which are 
known to be of great importance in the mathematical theory of special functions, and have 
applications in Physics, Engineering, and Computational Statistics.

3.1. Hermite polynomials.

The Hermite polynomials, defined by the recursion

(3.1)
H x xH x nH x n

H x H x x
n n n1 1

0 1

1 2

1

( ) ( ) ( ), , ,...,

( ) , ( ) ,

are the standard orthogonal polynomials with respect to the standard normal random variable 

X  with moments  2 1 2 0

1
0 2 1n n k

n
k, ( ). The orthogonality relation (O2) from 

Lemma 1.2 equals  E H X nn n n( ) / !2
1 , which one finds in any book discussing 

orthogonal polynomials. It follows that  c nn   and (3.1) follows by Corollary 2.1.
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3.2. Chebyshev polynomials of the first kind.

The most famous polynomials of Chebyshev type are the  T x n xn ( ) cos( arccos( ))
and satisfy the recursion

(3.2)
T x xT x T x n

T x T x x
n n n1 1

0 1

2 1 2

1

( ) ( ) ( ), , ,...,

( ) , ( ) .

They are orthogonal with respect to the symmetric weight function  f x
x

X ( )
1

1 2
defined

on  (-1,1), which has moments  
2
1

2
1

2
1

212 !)(

)(
,0

n

n

n
nn , in particular  2

1
2 . To get 

the standard orthogonal Chebyshev polynomials one must rescale the weight function to the 
standard probability density

f x f
x

x
xS X( ) ( ) , ( , ),

1

2 2

1

2
2 2

2

with moments
2
1212 2,0
nnS

n
S
n . This suggests the rescaling

(3.3) T x T
x

nn
S

n

n( ) ( ), , ,...,
( )

2
2

1 22
1

where the inner rescaling of the argument yields  2 1  and the outer one ensures a monic 
polynomial for all  n=1,2,... . From the orthogonality relation (O2) in Lemma 1.2 one gets

(3.4) E T S E T Xn
S n

n
n( ) ( )( ) ( )2 2 2 12 2 .

It follows that  cn
1
2 , and by Corollary 2.1 the rescaled recursion

(3.5)
T x xT x T x n

T x T x x T x x

n
S

n
S

n
S

S S S

1
1
2 1

0 1 2
2

2 3

1 1

( ) ( ) ( ), , ,...,

( ) , ( ) , ( ) ,

generates the standard orthogonal Chebyshev polynomials with respect to the symmetric 
random variable  S  with probability distribution

.
2

,
2

arcsin,2,2,arcsin
1

2

1
)( xx

x
xFS

In this situation the support   nxx ,...,1 , which solves AMP(n), is given explicitely by the 

analytical formulas (zeros of the Chebyshev polynomials) :

(3.6) .,...,1,
2

12
cos2 ni

n

i
xi
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3.3. Legendre polynomials.

The Legendre polynomials, defined by the recursion

(3.7)
( ) ( ) ( ) ( ) ( ), , ,...,

( ) , ( ) ,

n P x n xP x nP x n

P x P x x
n n n1 2 1 1 2

1
1 1

0 1

are orthogonal with respect to the symmetric uniform density  f xX ( ) 1
2   if  1,1x ,

f xX ( ) 0  if  x 1, which has moments  2 1 20
1

2 1n n n
, , in particular  2

1

3
.

The standard orthogonal Legendre polynomials with respect to

f x f
x

xS X( ) ( ), , ,3
3

3 3

with moments 2 1 20
3

2 1n
S

n
S

n

n
, ,  are obtained through rescaling by setting

(3.8) n n
S

nP x P
x

n( ) ( ), , , ,...
3

1 2 3 .

Inserting this in the standardized recursion

(3.9)
P x xP x c P x n

P x P x x P x x
n
S

n
S

n n
S

S S S

1 1

0 1 2
2

2 3

1 1

( ) ( ) ( ), , ,...,

( ) , ( ) , ( ) ,

and comparing with (3.7) one obtains the relations

(3.10) 3 1 2 1
11

1

1

( ) ( ) ,
( )

,n n c
n

nn n n
n

n

from which one deduces that

(3.11) n
j

n

n

j

n
n c

n

n n
nn

( )

!
, , ,...,

( )( )
, , ,...

2 1

3
1 2

3

2 1 2 1
2 31

1
2

2

.

3.4. Other orthogonal polynomials.

The other classical orthogonal polynomials are the Laguerre and generalized Laguerre
polynomials, known to be orthogonal with respect to a Gamma random variable, and the 
Jacobi polynomials. In these cases extensions of classical results have been obtained by 
Morton and Krall(1978). The Bessel polynomials, introduced by Krall and Frink(1949), are 
also known to be orthogonal with respect to a measure of bounded variation, wich however 
has failed all attempts to identify it completely (see Morton and Krall(1978) and Krall(1993)). 
It is interesting to note that the Chebyshev polynomials (1.4) are very generally orthogonal 
with respect to any moment generating linear functional  w  defined on polynomials such that 
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w x ii
i, , , ,...,0 1   as claimed by Krall(1978) (see also Maroni(1991)). Examples 

include a Cauchy representation and the explicit distributional linear functional

(3.12) w x
x

n
n

n

n

n
( ) ( )

( )

!

( )

1
0

,

where ( )n   denotes the Dirac function and its derivatives. A major problem consists to extend  
w  to appropriate spaces for which it is a continuous linear functional. Another important 
subject is the connection with ordinary differential equations, for which we recommend the 
survey paper by Krall(1993).

4. Moment inequalities.

In Section 5 the complete algebraic-analytical structure of the sets of di- and triatomic 
standard random variables by given range and known moments to the fourth order will be 
given. As a preliminary step, it is important to state the conditions under which these sets are 
non-empty. This is done in Theorem 4.1 below.

Let  a b,   be a given real interval, where the limiting cases  a=   and/or  b=   are 

allowed. Let  X  be a random variable taking values in  a b, , with finite mean    and 

variance 2 . Making use of the standard location-scale transformation  ( ) /X , it suffices 
to consider standard random variables  X  with mean zero and variance one. Under this 
assumption, let  3   be the skewness and  2 3  the kurtosis, where  4   is the 
fourth order central moment. It will be useful to set  ( )2 1 .

The whole set of standard random variables taking values in  a b,   is denoted by 

D(a,b). For fixed  n, k 2, one considers the subsets of standard  n-atomic random variables 
with known moments up to the order  k, which are defined and denoted by

(4.1) D a bk
n( ) ( , ) X D a b( , )  has a finite  n-atomic ordered support  nxx ,...,1 ,

x a bi , , such that E X j
j,  j=1,...,k .

In case the moment values are to be distinguished, the set  D a bk
n( ) ( , )   may be alternatively 

denoted by  D a bn
k

( ) ( , ; ,..., )1 . The probabilities at the atoms  xi   of a representative 
element X D a bk

n( ) ( , )   will be denoted by  pi
n( ) , or simply  p i   in case the context is clear.

4.1. Structure of standard di- and triatomic random variables.

Since they appear as extremal random variables of the moment inequalities required in 
the existence results of Subsection 4.2, it is necessary to determine partially the structure of the 
standard di- and triatomic random variables  D a b2

2( ) ( , )   and D a b2
3( ) ( , ) .

Lemma 4.1.  (Representation of diatomic random variables) A standard random variable 
X D a b2

2( ) ( , )   is uniquely determined by its ordered support  byxayx ,, , such 

that xy= 1. Moreover the probabilities at the atoms  x, y  take the values
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(4.2) p
y

y x
p

x

y xx y
( ) ( ),2 2 .

Proof.  By Lemma 2.1 (solution of AMP(2)) the atoms  x, y  are the distinct real zeros of the 
standard quadratic orthogonal polynomial

(4.3) p x x x2
2 1( ) ,

where   is a variable skewness parameter. The Vietà formulas imply the relations

(4.4) x y xy, 1.

This shows the first part of the affirmation. The formulas (4.2) for the probabilities follow 
from (2.1) of Lemma 2.1, that is from

(4.5)
xy

xX
Ep

yx

yX
Ep yx

)2()2( , .

Since  x<y  and   xy= 1, one must have  x<0<y, hence the probabilities are positive.  

Definition 4.1.  For mathematical convenience it is useful to consider a real map  j  on  
,0)0,( , which maps a non-zero element  x  to its negative inverse  j x x( ) /1 .

Since  j x x2 ( )   is the identity, the map  j  is called an involution, which for simplicity one 
denotes with a bar, that is one sets x j x( ) . This notation will be used throughout.

Lemma 4.2.  (Representation of triatomic random variables) A standard random variable 
X D a b2

3( ) ( , )  is uniquely determined by its ordered support  bzyxazyx ,,, , such 
that the following inequalities hold :

(4.6) x z z y x0, .

Moreover the probabilities at the atoms  x, y, z  take the values

(4.7) p
yz

y x z x
p

xz

y x z y
p

xy

z x z yx y z
( ) ( ) ( )

( )( )
,

( )

( )( )
,

( )( )
.3 3 31 1 1

Proof.  By Lemma 1.3, the standard cubic orthogonal polynomial equals

p x x t t p x c p x3 1
2

2
3

2 2 1( ) ( ) ( ) ( ) .

Since p x x x2
2 1( ) , t1

2 , c2
0 2

1
2

2 1( ) , one finds further

(4.8) p x x t x t x t3
3

2
3 2

2
3

2
3( ) ( ) ( ) .
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By Lemma 2.1 (solution of AMP(3)), the atoms  x, y, z  of  X D a b2
3( ) ( , )  are the distinct real 

zeros of p x3 0( ) , where , , t 2
3   are viewed as variables. The Vietà formulas imply that

(4.9)

x y z t

xy xz yz t

xyz t

2
3

2
3

2
3

,

,

.

Using that t 2
3

5 1( )   by (1.20), the variable parameters, or equivalently the variable 
moments of order 3, 4, and 5 are thus determined by the atoms as follows :

x y z xyz  (sum of first and third equation),
(4.10) ( )x y z xy xz yz   (second and first equation),

5 1( ) ( )x y z   (first equation).

The expressions (4.7) for the probabilities follow from (2.1) of Lemma 2.1, that is from

(4.11)
))((

))((
,

))((

))((
,

))((

))(( )3()3()3(

yzxz

yXxX
Ep

zyxy

zXxX
Ep

zxyx

zXyX
Ep zyx .

By (4.10) the only restrictions about the atoms is that their probabilities (4.7) must be positive. 
Since  x<y<z  one must have  1 0 1 0 1 0yz xz xy, , . Since  xz 1  one must have 
x<0<z, hence also z x0 . It follows that

(4.12)

z yz z y z y

z xz z x x z

x xy x y y x

( )

( )

( )

1 0

1 0

1 0

Therefore the atoms satisfy the inequalities (4.6).  

Remark 4.1.  Each of the boundary conditions  1+xy=0  (z  arbitrary),  1+xz=0  (y  arbitrary), 
1+yz=0  (x  arbitrary), identifies the set  D a b2

2( ) ( , )   as a subset of D a b2
3( ) ( , ) .

4.2. Moment conditions for the existence of random variables.

It is now possible to state the conditions under which there exist standard random 
variables defined on a given range with known moments up to the fourth order.

Theorem 4.1. (Moment inequalities) There exist non-degenerate standard random variables on 
a b,   with given moments to order four if and only if the following moment inequalities hold 

:

(4.13) a b0   (inequalities on the mean =0)

(4.14) 1 0ab   (inequality on the variance  2 1)
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(4.15) min maxa a b b  (inequalities on the skewness)

If  1+ab<0  then one has

(4.16) maxmin1
0

ab

ab
  (inequalities between skewness 

   and kurtosis)
The above inequalities are sharp and attained as follows :

(4.17) 1+ab=0  for a diatomic random variable with support  aa,   provided b a

(4.18) min   for a diatomic random variable with support  aa,

(4.19) max  for a diatomic random variable with support  bb ,

(4.20) ( )2 1 0  for a diatomic random variable with support  cc, , with

c 1
2

24( )

(4.21) maxmin1 ab

ab
  for a triatomic random variable with support

bbaa ),,(, , with ( , )
( )

a b
a b

ab1

Proof.  The real inequalities follow by taking expectations in the following random 
inequalities, which are valid with probability one for all  X D(a,b) :

(4.13') a X b

(4.14') ( )( )b X X a 0

(4.15') ( ) ( ) , ( ) ( )X a X a X b b X2 20 0

(4.16') ( ) ( ) , ( )( )( ( , ))X c X c b X X a X a b2 2 20 0

For a non-degenerate random variable, the inequalities in (4.13) must be strict. Sharpness of 
the inequalities is verified without difficulty. For example (4.18), (4.19) follow directly from 
the relations (4.4) in the proof of Lemma 4.1. To show (4.21) one must use the first relation in 
(4.10) for the skewness of a triatomic random variable, which yields the formula for the 

middle atom ( , )
( )

a b
a b

ab1
.

The inequalities in (4.15) yield the minimal and maximal values of the skewness for 
standard random variables on a b, . The corresponding extremal values of the kurtosis can be 
determined from the inequalities in (4.16).
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Corollary 4.1.  The extremal values of the kurtosis for standard random variables on  a b,
are given by

(4.22) 2 2,min , attained when 0

(4.23) 2
4

1

14

1 2
maxmin

2
maxminmax,2 ab

ab

ab
,

attained when 1
2 ab( )min max .

Proof.  Let  min
*

min
*( )   be the minimal value of    for which the lower bound 

( )2 1 0  is attained. It is immediate that  * 0, hence 2 3 2,min min
* .

Similarly let  max
*

max
*( )   be the maximal value of    for which the upper bound in (4.16) 

is attained. It suffices to maximize the univariate function of the skewness

(4.24) maxminmaxmin
22 )(

1
1)(

ab

ab
.

Its first and second derivatives are

(4.25) 2
1

2)(' maxminab

ab

(4.26) ' ' ( )
2

1
0

ab

It follows that  ( )   is local maximal at ' ( )* 0, hence *
min max( )1

2 ab .

Examples 4.1.

(i) Suppose that  a b b, ,1   with  b 1. Then the minimal kurtosis  2 2,min   is 

attained for the diatomic random variable with support  1,1   and probabilities 2
1

2
1 , .

(ii) Suppose that  a b b b, ,   with  b 1. Then the maximal kurtosis 

2
2 3 2,max b   is attained for the triatomic random variable with support  bb ,0,   and 

probabilities 22

2

2 2

1
,

1
,

2

1

bb

b

b
.

4.3. Other moment inequalities.

Clearly Theorem 4.1 is only one, although a most important one, among the numerous 
results in the vast subject of "moment inequalities". To stimulate further research in this area, 
let us illustrate with a survey of various possibilities, which are closely related to the results of 
Section 4.2, however without giving any proof.
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Example 4.2.

A classical problem of Chebyshev consists to find the extremal bounds of the expected value

(4.27)
b

a
xdFxgXgE )()()( ,

where  g(x)  is a positive function, and  X  is a random variable defined on  a b,   with given 
properties, say the first  k  moments known. A general solution to this problem is given by the 
Markov-Krein Theorem (see e.g. Karlin and Studden(1966)). For example, if the  k=2n-1  first 
moments are known and  g x x n( ) 2 , then the moment of order  2n  satisfies the best lower 
bound (in the notation of Lemma 1.4) :

(4.28) 2 2
1

1
n n

n

n T n nm M m,min
( ) ( ) ( ) ,

and the minimum is attained at the unique  n-atomic random variable, which solves AMP(n) 
and whose atoms are the zeros of the orthogonal polynomial  p xn ( ) 0. In the special case  

n=2  one obtains with 1 2 30 1, , ,a a b b , the minimum value

(4.29) 2
min,4 1

1

10

01
)1( T ,

which is attained at the unique  X D a b3
2( ) ( , )   with support  cc, . Clearly one recovers 

(4.20) and the fact  0  in (4.16). Using the main result (4.28), the recent paper by 
Barnes(1995) relates the range  x xn1 ,   of an arbitrary standard  n-atomic random variable 

X D k
n

2
( ) ( , )  with ordered support  nxx ,...,1   to certain determinants of moment 

matrices. He obtains an interesting general result, which turns out to be a refinement of the 
(variance) inequality  1 01x xn , which can be viewed as a restatement of the moment 
condition (4.14). For example, by known skewness and kurtosis, that is  k=2, one obtains the 
sharper (variance) inequality

(4.30)
21 4

2
1 nxx .

Example 4.3.

It is also possible to refine the main moment inequalities of Theorem 4.1 by imposing 
additional geometric restrictions, for example symmetry, unimodality, etc. For unimodal 
distributions the best lower bound for the kurtosis in dependence on the skewness has been 
given by Johnson and Rogers(1951). The corresponding best upper bound has only been found 
recently by Teuscher and Guiard(1995). Sharp inequalities between skewness and kurtosis for 
symmetric unimodal random variables are described in Rohatgi and Székely(1989).
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Example 4.4.

An important area for future research is the extension of the various existing univariate
moment inequalities to the multivariate context. For example, the maximal sample skewness
and kurtosis have been determined by Wilkins(1944) and Picard(1951) (see also Dalén(1987)).

Let  X=( ,..., )X Xn1   be a random sample of size  n  consisting of independent and 

identically distributed random variables, and let  X
n

Xii

n1
1

, S
n

X Xii

n1 2

1
( )   be the 

random sample mean and variance. Making the standard transformation  
X X

S
i   one may, 

without loss of generality, assume that  X 0, S=1. A sample, which is a realization of a 
random sample, is simply denoted with small letters by  x=( ,..., )x xn1 . Denote by  SSn   the set 
of all standardized samples such that  x 0, s=1, and by  (x), 2 (x)= (x) 3  the sample 
skewness and kurtosis of the sample x. Then the maximal sample skewness equals

(4.31)
1

2
)(max

n

n
x

nSSx
,

and is attained at the "extremal" sample

(4.32) x*=( , , ,..., )n
n n n

1
1

1

1

1

1

1
.

Similarly the maximal sample kurtosis is determined by

(4.33)
1

33
)(max

2

n

nn
x

nSSx
,

and is attained at the same "extremal" sample  x*. Moreover the relation  (x*)= (x*)2+1
shows that the equality (4.20) holds in this extreme situation. The maximal values of the 
sample moments of higher order have also been determined by Picard.

5. Structure of finite atomic random variables by known moments to order four.

As a probabilistic application of the theory of orthogonal polynomials, the complete 
algebraic-analytical structure of the sets of finite atomic random variables  D a b2

2( ) ( , ) ,
D a b3

3( ) ( , )   and  D a b4
3( ) ( , )  is derived. The structure of a special subset of  D a b4

4( ) ( , )   needed 
later in Section III.2 is also displayed.

A minimal number of notions taken from the field of Abstract Algebra is required in 
our presentation. Under an algebraic set we mean a set together with one or more operations 
acting on the elements of this set. Two sets are called isomorphic if there exists a one-to-one 
correspondence between the elements of these sets. The symbol    is used when there is an 
isomorphism between two sets.

Theorem 5.1.  (Characterization of standard diatomic random variables on  a b, ) Suppose 

that  a<0<b  and  1+ab 0. Let  ;,),(2 babaS   be the algebraic set consisting of the real 

interval  a b,   and the strictly increasing involution mapping    from  a b,   to  a b, ,
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which maps  x  to  x x1 / . Then the set  D a b2
2( ) ( , )   of all standardized diatomic random 

variables defined on  a b,   is isomorphic to the algebraic set  S a b2 ( , ), that is there exists a 

one-to-one correspondence between these sets. More precisely each  X D a b2
2( ) ( , )   is 

uniquely determined by its support  baxxx ,,, , and the probabilities are given by

(5.1) p
x

x x x
p

x

x x

x

xx x
( ) ( ),2

2
2

2

2

1

1 1
.

Proof.  By Theorem 4.1 the conditions (4.13) and (4.14) are required. Let  X D a b2
2( ) ( , )   has 

support  byxayx ,, . By Lemma 4.1 and its proof one must have  y x   and  x<0<y. 

If  x b( , )0 then y x b( , )   and the support  xx,   is not feasible. Therefore one must 

have x a b, . Since the involution    is strictly increasing, each  X  is uniquely determined 

by an atom  x a b, , which means that the sets  D a b2
2( ) ( , )   and  S a b2 ( , )  are isomorphic. 

The formulas (5.1) are a restatement of (4.2).  

Remark 5.1.  In applications the following limiting cases of one- and double-sided infinite 
intervals are often encountered :

(5.2) D a2
2( ) ( , ) X D( ,a ) :  X  has support 0,,, axxx

;0,),(2 aaS

(5.3) D2
2( ) ( , ) X D( , ) :  X  has support 0,,, xxx

);0,(),(2S

Theorem 5.2.  (Characterization of standard triatomic random variables on  a b,   with

skewness  )  Suppose the inequalities (4.13), (4.14) and (4.15) are fulfilled. Let 
;,,),(3 bcxcabaS   be the algebraic set consisting of the product of real intervals 

a c x c b, , ,  c 1
2

24( ), and the mapping    from  a c x c b, ,   to  c c, , which 

maps  (x,z)  to  ( , )
( )

x z
x z

xz1
. Then the set  D a b3

3( ) ( , )   is isomorphic to the algebraic 

set  S a b3 ( , ) . More precisely each  X D a b3
3( ) ( , )  is uniquely determined by its support 

bcxcazxzzxx ,,),(,),,(, , and the probabilities are given by the formulas

(5.4)

p
x z z

x z x z x
p

xz

x z x z x z

p
x x z

z x z x z

x x z

z

( )
( , )

( )

( )

( , )

( ( , ) )( )
,

( )

( ( , ) )( ( , ))
,

( , )

( )( ( , ))

3 3

3

1 1

1

Proof.  By Theorem 4.1 the conditions (4.13) to (4.15) are required. Let  X D a b3
3( ) ( , )  has 

support  bzyxazyx ,,, . The proof of Lemma 4.2 (with    now fixed instead of 
variable) shows the relations (4.10). The first one, which is equivalent with the condition 
E p X E X x X y X z x y z xyz3 0( ) ( )( )( ) ( )   in (1.3), implies that  

y x z
x z

xz
( , )

( )

1
, while the other two determine    and  5   in terms of    and the 
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atoms  x, z. The formulas (5.4) are a restatement of (4.7). The inequalities (4.6) must also 

hold. Using that y
x z

xz

( )

1
, one sees that the inequalities z y x  are equivalent with

(5.5) z z x x2 21 0 1 0, .

Let  c c1
2

2 1
2

24 4( ), ( )   be the zeros of the quadratic equations. Since  

x<0<z  one must have ( , ) , ,x z a c x c b . Since z y x  one gets y x z c c( , ) , .

Remarks 5.2.

(i) One shows that for fixed x a c,   the function ( , )x z   is strictly increasing in
z c b, , and for fixed z c b,   the function ( , )x z   is strictly increasing in  
x a c, .

(ii) One has the following limiting cases :

(5.6) D a3
3( ) ( , ) X D( ,a ) :  X  has support ,,),(,),,(, cxcazxzzxx ,

and E X3

;,,),(3 cxcaaS

(5.7) D3
3( ) ( , ) X D( , ) :  X  has support ,),,(, zzxx

,,),( cxczx , and E X3

;,,),(3 cxcS

(iii) Under the assumption that  a<0<b  and  1+ab 0, it becomes now clear that Lemma 4.2
classifies the set D a b2

3( ) ( , )   of all standard triatomic random variables on  a b, .

Theorem 5.3.  (Characterization of standard triatomic random variables on  a b,   with

skewness    and kurtosis  2 3)  Suppose the moment inequalities of Theorem 4.1 are 

fulfilled. Let  **
4 ,;,),( babaS   be the algebraic set consisting of the real interval a b, * ,

the map  ( , )
( )

x z
x z

xz1
, and the strictly increasing involution mapping  * from a b, *

to a b* , , which maps  x  to

(5.8)
)(

)()(4)()(

2

1 2
*

xq

xDxqxCxC
x , where

(5.9)
q x x x C x q x x

D x q x

( ) , ( ) ( ) ,

( ) ( ), ( ).

1

1

2

2
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Then the set  D a b4
3( ) ( , )   is isomorphic to the algebraic set  S a b4 ( , ). More precisely each  

X D a b4
3( ) ( , )  is uniquely determined by its support  *** ,,),,(,:,, baxxxxxzyx , and 

the probabilities are given by the formulas

(5.10)   p
q x x

p
q y y

p
q z zx y z

( ) ( ) ( )

( ) ( )
,

( ) ( )
,

( ) ( )
.3

2 2
3

2 2
3

2 21 1 1

Proof.  Clearly the moment inequalities of Theorem 4.1 are required. Let  X D a b4
3( ) ( , )  has 

support bzyxazyx ,,, . The proof of Lemma 4.2 (with  ,   now fixed) shows the 
relations (4.10). The first one, which is equivalent with the condition
E p X E X x X y X z x y z xyz3 0( ) ( )( )( ) ( )   in (1.3), implies that 

y x z
x z

xz
( , )

( )

1
. Inserted into the second one, which is equivalent with the condition 

E Xp X E X X x X y X z x y z xy xz yz3 0( ) ( )( )( ) ( ) ( ) , one

obtains that  z  is solution of the quadratic equation  q x z C x z D x( ) ( ) ( )2 0, hence  z=x*

as defined in (5.8). One verifies that the map  x*  is strictly increasing in  x, and that  (x*)*=x,
which is the defining property of an involution. Since  D a b D a b4

3
3
3( ) ( )( , ) ( , )  one knows by 

Theorem 5.2 that  ( , ) , ,x z a c x c b . However if  cbx ,*   then  ,* bxz   and the 

support  ** ),,(, xxxx   is not feasible. Therefore one must have  x a b, * . Since  *  is a 

strictly increasing involution, the image of  a b, *   is  a b* , . It remains to show the validity 

of the formulas (5.10). One knows that  y x x z x( , ),* *   are solutions of the quadratic 
equation q x z C x z D x( ) ( ) ( )2 0. One calculates

( )( ) ( )

( )

( )

( )

( )

( ) ( )

( )
,

( )
.

y x z x x y z x yz

x
C x

q x
x

D x

q x

q x x

q x

yz
q x

2

2
2 21

1

From (4.7) one gets  p
yz

y x z x q x xx
( )

( )( ) ( ) ( )
3

2 2

1

1
. The same calculations hold 

making cyclic permuations of  x, y, z. This shows (5.10).  

Remarks 5.3.  The following limiting cases are of interest :

(5.11) D a4
3( ) ( , ) X D( ,a ) :  X  has support caxxxxx ,,),,(, ** ,

and E X3 , E X4

*
4 ,;,),( caaS

(5.12) D4
3( ) ( , ) X D( , ) :  X  has support cxxxxx ,,),,(, ** ,

   and E X3 , E X4

*
4 ,;,),( cS
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The algebraic-analytical structure of the following subset of  D a b4
4( ) ( , )   will be needed 

in Section III.2 :

(5.13) ),(),()4(
2,4 baDXbaD   has a  4-atomic support byxabyxa ,,,,

such that E X3 , E X4

Note that the additional subscript  2  indicates that  2  atoms of the support, here the end points 
of the interval, are left fixed.

Theorem 5.4.  (Characterization of the set of standard four atomic random variables)
Suppose the moment inequalities (4.13) to (4.15) are fulfilled. Let ;),(,),( **)4(

2,4 aabbaS

be the algebraic set consisting of the real interval b a a* *, ( , ) , and the strictly increasing 

involution mapping   from b a a* *, ( , )   to ( , ),* *b b a , which maps  x  to

(5.14) ( ; , )
( ) ( )

( )
x a b

a b x ab ax bx

a b x abx
.

Then the set  D a b4 2
4
,

( ) ( , )   is isomorphic to the algebraic set  S a b4 2
4
,

( ) ( , ) . More precisely each 

X D a b4 2
4
,

( ) ( , )   is uniquely determined by its support  bbaxxaxxxx ),,;(,,,,, 4321 ,

x b a a* *, ( , ) , and the probabilities are given by the formulas

(5.15) .4,...,1,)4( i
xx

xX
Ep

ij ji

j
xi

In particular one has  p p x ba a
( ) ( ) ( , )4 4 , p p a bx x

( ) ( ) ( , )4 4 , p p a xb b
( ) ( ) ( , )4 4 , where one sets

(5.16) p u v
u v x a b uv x a b

z u z v z x a bz
( ) ( , )

( ( ; , )) ( ; , )

( )( )( ( ; , ))
.4

Moreover if  x b*  then  ( ; , ) ( , ),* * ( )b a b b b pa
4 0, and  if  x a a( , )*   then 

( ( , ); , ) ,* * ( )a a a b a pb
4 0.

Proof.  Let  X D a b4 2
4
,

( ) ( , )   has support  byxabyxa ,,,, . From the moment condition  

E p X E X a X x X y X b4 0( ) ( )( )( )( ) , valid by (1.3), one gets  y x a b( ; , ) .

Suppose that  b x a a a b* *( , ) ( , ) . Then the denominator of  ( ; , )x a b   is strictly 
negative. Since

( ; , )
( ( )) ( ( ) )

( ) ( ( ))
x a b

a b x a b ab

ab x a b1
,

it follows from
( ( ) )( ) ( ( ))a b ab ab a b1 2

that  ( ; , )x a b   is strictly increasing in  x. The involution property is immediately verified. 
One checks that  ( ; , ) ( , )* *b a b b b   and  ( ( , ); , )* *a a a b a . Thus    maps  
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b a a* *, ( , )   to  ( , ),* *b b a . To be feasible the probabilities must be non-negative. One 

shows that  pa
( )4 0  only if  x b*,  pb

( )4 0  only if  x a a( , )* ,  px
( )4 0  only if 

y x a b a b( ; , ) ( , ), and  p y
( )4 0 only if  x a b( , ) . It follows that  bbaxxa ),,;(,,

is uniquely determined by  x b a a* *, ( , ) .

By the same method it is certainly possible to obtain structural results for the sets 
D a bk

n( ) ( , )   for higher orders of  n  and  k. In concrete applications one has in general to rely on
numerical methods to solve the orthogonal polynomial equations  p xn ( ) 0. Our numerical 
experience with the Newton-Maehly algorithm (e.g. Stoer(1983), p.258-59), which is a 
suitable modification of the ordinary Newton algorithm, has been satisfying for solving 
AMP(n), n=6,...,15, when using a "quadruple" precision floating-point arithmetic.

6. Structure of finite atomic symmetric random variables by known kurtosis.

Consider a symmetric random variable  X  taking values in the interval  A B, . Let 
C A B1

2 ( )   be its symmetry center, which equals the mean  C. Then the variance 

necessarily satisfies the inequality  0 2 2 1
4

2E A B B A( )( ) ( ) , which is the 
non-standardized version of the moment inequality (4.14). Making use of the standard 
transformation  Z X( ) / , one sees that  Z  is standard symmetric with mean zero, 
variance one and range a a, , a E / 1. Therefore it suffices to discuss the standardized 
case. Clearly the moments of odd order of standard symmetric random variables vanish, in 
particular  0. Let  2 3  be the kurtosis, where  4 , and set  1, which is 
the same parameter as in Sections 4 and 5 because  0. By (4.16) one assumes that  1.

The whole set of standard symmetric random variables taking values in  a a,   is 
denoted by  D aS ( ) . For fixed  n k, 2  one considers the subsets of standard  n-atomic 
symmetric random variables by given range  a a,   and known moments of even order up to 
the order  2k, which are defined and denoted by

(6.1) D aS k
n

k,
( ) ( ; ,..., )2 4 2 )(aDX S   has a finite  n-atomic symmetric ordered support 

    of the form mm xxxx ,...,,,..., 11   if  n=2m  and

mm xxxx ,...,,0,,..., 11   if  n=2m+1, x a ai , ,

    such that kjXE j
j ,...,1,2

2

In case the moments are clear from the context, the simpler notation  D aS k
n
,

( ) ( )2   will be used. In 

Section III.4 the structure of the sets  D a D a D aS S S,
( )

,
( )

,
( )( ; ), ( ; ), ( ; )4

2
4

3
4

4   as well as of the 

following subset of D aS,
( ) ( ; )4
5   will be needed :

(6.2) D aS, ,
( ) ( ; )4 2
5 )(aDX S   has a  5-atomic symmetric support

,0,,,0,, axaxxa   and 4XE .
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Theorem 6.1.  (Parametrization of standard symmetric random variables)  Suppose that 
a 1 1, . The considered sets of finite atomic symmetric random variables are completely 
described as follows :

(S1) The set D aS,
( ) ( ; )4
2   is non-empty if and only if  1, and consists of the only diatomic 

random variable with support 1,1   and probabilities 2
1

2
1 , .

(S2) The set D aS,
( ) ( ; )4
3   is non-empty if and only if  2,1 a , and consists of the only 

triatomic random variable with support ,0,   and probabilities

2

1
,

1
,

2

1
.

(S3) For each 2,1 a   the elements of the set D aS,
( ) ( ; )4
4   consist of the four atomic 

random variables with support axxxxx ss ,,,,, , and probabilities

p p
x

p p
x

xx x x xs s
( ) ( ) ( ) ( )

( )
,

( )

( )
,4 4

2 2
4 4

2 2

2 2

1

2 1

1

2

1

1

where the formula x
x

x
s

2

2 1
  defines a strictly increasing involution mapping

( )s, which maps the interval a,   to the interval sa,0 . Alternatively  xs  may be 

defined as the non-negative solution of the  -equation 1 12 2( )x xs .

(S4) For each 2,1 a   the elements of the set D aS, ,
( ) ( ; )4 2
5   consist of the five atomic 

random variables with support 2)(,0,,,0,, saxaxxa , and 
probabilities

p p
x

a x a
p p

a

x x aa a x x
( ) ( ) ( ) ( )

( )
,

( ) ( )
,5 5

2 2
5 5

2

2

1

2

1

2

p
a x a

a x

s

0
5

2 2

2

1( ) ( ) ( ( ) )

( )
,  with  as  as defined under (S3).

Proof.  By Lemma 2.1 the atoms and probabilities of a finite atomic random variable solve an 
algebraic moment problem. In the special cases of standard  n-atomic symmetric random 
variables, n=2,3,4,5, the atoms are solutions of the standard orthogonal polynomials obtained 
from the recurrence relation (2.5), which yields successively

(6.3) p x x2
2 1( ) ,

(6.4) p x x x3
2

4( ) ( ), ,

(6.5) p x x t x t4
4

2
2

2 61
1

( ) ( ) , , ,

(6.6) p x x x t x t t4
4

3
2

3 3 2 8 6( ) ( ), , , .
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The probabilities taken at the atoms are obtained from the formula (2.1). A more detailed 
derivation of the various cases follows.

Case (S1) :

Since the fourth order moment of the diatomic random variable with support  1,1   is  1,
the affirmation is immediate.
Case (S2) :

Clearly the only possible support is  ,0, . The restriction about    follows from the 
range restriction.

Case (S3) :

Let  X D aS,
( ) ( ; )4
4   has support  .0,,,, axyxyyx   From the condition p x4 0( )

and  (6.5), one gets the relation

(6.7) t
x

x2

4

21 1
,

which determines by given  x  the value of the moment  6 . The atomic squares  x2, y2,
which are zeros of the quadratic equation  p x4 0( )   in  x2, satisfy by Vietà the relations

(6.8) x y t
x

x
x y t

x x

x
2 2

2

4

2
2 2

2

2 2

21 1
,

( )
,

hence  y
x

x
2

2

2 1
. Since  2,1 a   and the range of  X  is  a a, , one has  ax , .

One verifies that the square of the function  y x
x

x
s

2

2 1
  is the identity (involution 

property) and that  y=xs  is a strictly increasing function of  x  from  a,   to  sa,0 . The 
probabilities are calculated without difficulty, for example

(6.9) p
E X x X x

x x x

x

x x xx

s

s

s

s
( )

( )( ( ) )

( ( ) )

( )

( ) ( )
.4

2 2

2 2

2

2 2 2 22

1

2

1 1

2 1

Case (S4) :

Let  X D aS, ,
( ) ( ; )4 2
5   has support  .0,,,0,, ayayya   From the condition p a5 0( )

and  (6.6), one gets the relation

(6.10) t
a

a2 2

4

2
,

which determines the value of  8  as function of  , ,a 2
6. The atomic squares  a2,

y2, which are zeros of the quadratic equation  x t x t4
3

2
3 0  in  x2, satisfy
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(6.11) a y t
a

a
a y t

a a

a
2 2

3

4

2
2 2

3

2 2

2
,

( )
,

hence y
a

a
2

2

2
,  which determines 6  as function of , a, y. It remains to check for 

which values of  y  one obtains a feasible random variable. For this one calculates the 
probabilities using (2.1) :

p p
y

a a y
p p

a

y a ya a y y
( ) ( ) ( ) ( )

( )
,

( )
,5 5

2

2 2
5 5

2

2 2

1

2

1

2
p

a y a

a y

s

0
5

2 2 2

2 2

1( ) ( ) ( ( ) )
.

These are positive provided y as( , ) . Setting y x   the affirmation follows.

7. Notes.

The historical origin of the orthogonal polynomials goes back to Chebyshev, who was 
probably the first to recognize their orthogonal properties and their importance in Numerical 
and Data Analysis. A tribute to this contribution by R.Roy is found in Rassias et al.(1993).

The algebraic moment problem has been studied by Mammana(1954). Among the 
numerous monographs, which are entirely devoted to orthogonal polynomials and special 
functions, one may mention Askey(1975), Freud(1969), Rainville(1960) and Szegö(1967). 
Statistical applications of Hermite polynomials are found in the collected works of 
Cramèr(1994), papers no. 21, 25, 68. The Chebyshev polynomials of the first kind satisfy an 
optimal norm property (e.g. Karlin and Studden(1966), chap. IV, Theorem 4.2, or 
Schwarz(1986), Theorem 4.12) and solve a Lagrange interpolation problem (e.g. Demidovich 
and Maron(1987), p.553-554). Legendre polynomials find application in Gauss quadrature 
formulas (e.g. Schwarz(1986), Section 8.4).

The conditions under which their exist random variables on a finite interval with given 
moments to order four are known in the statistical literature (e.g. Jansen et al.(1986)). A recent 
general proof for the existence of moment spaces, or equivalently for the existence of random 
variables with known moments up to a given order, is in De Vylder(1996), II.Chapter 3.3. The 
lower bound on the kurtosis in dependence of the skewness has been given by Pearson(1916), 
Wilkins(1944) and Guiard(1980), while the upper bound is found in Simpson and 
Welch(1960), Jansen et al.(1986) and Teuscher and Guiard(1995). Information about the 
statistical meaning and interpretation of the skewness and kurtosis parameters can be found in 
Groeneveld(1991), Balanda and MacGillivray(1988/90), and their references.

The complete algebraic-analytical structure of the considered sets of finite atomic 
standardized random variables by given range and known moments to order four is implicit in 
Jansen et al.(1986), Section 2. However, by considering without loss of generality only 
standardized random variables, much calculation has been simplified and some results find 
improvement. Furthermore our proofs can be viewed as a direct application of the 
mathematical theory of orthogonal polynomials. This method allows us to find very simply the 
structure of the finite atomic symmetric random variables by known
kurtosis.
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CHAPTER II

BEST BOUNDS FOR EXPECTED VALUES BY KNOWN RANGE, 

MEAN AND VARIANCE

1. Introduction.

The present chapter deals with real random variables  X  taking values in a given 
interval  I=[a,b],  a b , and which have a known mean  =E[X]  and variance  

2 =Var[X]. The space of all such random variables with the characteristics  I, , , is here 
denoted by    D:=D(I, , ). Given  X D  and a transformed random variable  f(X), where  f(x)  
is a given real function, it has always been a task of practical interest to find the solutions to 
the extremal problems  )(max XfE

DX
,  )(min XfE

DX
, which consists to construct the best 

bounds for the expected values of a random function over the set of random variables with 
given range, mean and variance.

A general approach to these extremal problems is the well-known majorant/minorant
polynomial method, which consists to bound  f(x)  by some quadratic polynomial  q(x), and to 
construct a finite atomic random variable  X D  such that all atoms of  f(X)  are 
simultaneously atoms of  q(X). Indeed, suppose  q(x)  and a finite atomic  X D  have been 
found such that  Pr(q(X)=f(X))=1  and  q(x) f(x)  (resp.  q(x) f(x))  for all  x I. Then the 
expected value  E[q(X)]=E[f(X)]  depends only on  , , and thus necessarily  X maximizes  
E[f(X)]  (respectively minimizes it), and the given extremal problems are solved.

There are important applications for which the described technique works, for example 
inequalities of Chebyshev type (Section 4) and expected values of stop-loss transform type 
(Section 5). This justifies the formulation in Sections 2 and 3 of a general algorithm for 
solving these extremal problems in case the function  f(x)  is a piecewise linear function. This 
apparently severe restriction is often a convenient working hypothesis in practice. Indeed, any 
function  f(x)  can be closely approximated by piecewise linear functions  g(x)  and  h(x) such 
that  g(x) f(x) h(x), which leads after optimization to practical upper and lower bounds 
min ( ) ( ) max ( )E g X E f X E h X .

2. The quadratic polynomial method for piecewise linear functions.

The present and next Section deals with a comprehensive solution to the problem of the 
determination of best bounds for expected values  E[f(X)], where  f(x)  is a piecewise linear
function defined on  I=[a,b]  and  X D a b( , )  is a standard random variable.

In this situation there exists a decomposition in subintervals

(2.1) I I m n
i m

n

i ( )
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such that I a b a a a b i m n b bi i i m i i n, , , , ,..., , ,1 and

(2.2) ,),()( ii Ixxxf   with .,)( Rxxx iii

If there are only finitely many subintervals in  ( ,0], one can start with  m=0. Otherwise one 
starts with  m= . The abscissa of the point of intersection of two non-parallel lines  

)()( xx ji   is denoted by  d dij ji
i j

j i

.

By Lemma I.4.1, a diatomic random variable  X D a b2
2( ) ( , )   is determined by its 

support, a fact denoted by  X={u,v}, where  ( , )u v I Ii j   for some indices  nmji ,...,, .

Similarly, Lemma I.4.2 shows that a triatomic random variable  X D a b2
3( ) ( , )  is determined 

by its support, a fact denoted by  X={u,v,w}, where  ( , , )u v w I I Ii j k   for some indices  

nmkji ,...,,, . Furthermore a diatomic random variable is viewed as a special triatomic 

random variable obtained by identifying  ),(, )2(
2 baDvuX   with any 

),(,, )3(
2 baDwvuX   such that  1+uv=0  and  w  arbitrary.

The piecewise quadratic function  q(x) f(x)  is denoted by  Q(x). Note that  Q(x) 
coincides on  I i   with the quadratic polynomial  )()(:)( xxqxQ ii . Use is made of the 

backward functional operator defined by  )()(:)( xxx ijij .

To apply the majorant/minorant quadratic polynomial method, it is necessary to 
determine the set of random variables  X  such that all atoms of the transformed random 
variable  f(X)  are atoms of some quadratic random variable  q(X), where  q(x)  is some 
quadratic polynomial, and such that  q(x) f(x)  on  I  for a maximum, respectively  q(x) f(x)
on  I  for a minimum. In a first step we restrict our attention to quadratic polynomials  q(x)  
with non-zero quadratic term such that  Pr(q(X)=f(X))=1. One observes that the piecewise 
quadratic function  Q(x)=q(x) f(x)  can have at most two zeros on each subinterval  I i

(double zeros being counted twice). If an atom of  X, say  u,  is an interior point of some  I i ,
then it must be a double zero of  Q xi ( ) . Indeed  )()( xxq i   (resp. )()( xxq i )  for x I i

can only be fulfilled if the line  l i x( )  is tangent to  q(x)  at  u, that is  )(')(')(' ufuuq i ,

hence  u  is a double zero. Therefore in a first step, one has to describe the following set of 
triatomic random variables

(2.3) Df q,
3 { ),(,, )3(

2 baDwvuX : there exists a quadratic polynomial  q(x)  with 

non-zero  quadratic term such that  Pr(q(X)=f(X))=1  and  q'(x)=f'(x)  if  
  x {u,v,w}  is an interior point of some subinterval I i }.

In case  f(x)  is piecewise linear, this set can be be described completely.

Theorem 2.1.  (Classification of quadratic polynomial majorants and minorants)  Let 
X={u,v,w}  be a triatomic random variable such that  ( , , )u v w I I Ii j k . An element  

X Df q,
3   belongs necessarily to one of the following six different types, where permutations of 

the atoms are allowed :

(D1) X={u,v}  is diatomic with u v u,   double zeros of some  Q(x)  such that

ijijijijij ddddvu ),1,1(),( 22 .
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(D2) X={u,v}  is diatomic with  v  a rand point of  Ij  and u v  a double zero of some
Q(x), such that either ( ) ,i v dj i ij   or ( ) ,ii j i j i .

(T1) X={u,v,w}  with  u, v, w  double zeros of some  Q(x)  such that i j k, ,   are 

pairwise different,  d d d d d djk ik ik ij ij jk0 0 0, , , and

u d d d

v d d d

w d d d

ij ik jk

jk ij ik

ik jk ij

(T2) X={u,v,w}  with  w  a rand point of I k ,  u, v  double zeros of some  Q(x)  such that

i j k, ,   are pairwise different,  w d dik jk, , and

)()()sgn()(
)(

2
ww

uw

vw
wwu jkikik

ij

,

)()()sgn()(
)(

2
ww

uw

vw
wwv jkikjk

ij

.

(T3) X={u,v,w}  with  v, w  rand points of I Ij k, ,  u  a double zero of some  Q(x), such 

that either  (i) j i ijv d, , or  (ii) j i j i, ,

and either  (iii) k i ikw d, , or  (iv) k i k i, , and

.1
)(

)(

1
)(

)(
)sgn(

,1
)(

)(
),(

2

1

v

w
if

v

w

uv

uw

vw
vu

v

w
ifwvu

ij

ik

ij

ik

ij

ik

(T4) X={u,v,w}  with  u, v, w  rand points of I I Ii j k, , , and either  (i) i j k, ,   not all 

equal, or  (ii) i j k, ,   not all equal.

Proof.  The definition (2.3) implies that an element   X Df q,
3   has either an atom  u, which is 

double zero of  Q(x)  (types (D1), (D2), (T1), (T2), (T3)), or all three atoms of  X  are rand 
points of subintervals  I k   (type (T4)). The stated specific forms of the different types are now 
derived.

Repeated use of the fact that a quadratic polynomial is uniquely determined by three 
conditions is made. If  u  is a double zero of  )()()( xxqxQ ii , one has for a zero  v  of  

Q xj ( ) :
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(2.4)

ij
ij

ij
ijij

ij
ij

iij

if
uv

if
uv

dv

uv

v
vc

withxuxvcxq

,
)(

,
)(

))((

)(

)(
)(

),()()()(

2

2

2

2

Type D1 :

Since  v  is a double zero of  Q xj ( ), the tangent line to  q(x)  at  v  coincides with  )(xj ,

which implies the condition )(')(' vvq j . Using (2.4) one gets

2c v v uij j i( ) ( ) .

If  j i   then  c vij ( ) 0, hence j i , and )()( xxq i   has a vanishing quadratic term. 

Therefore only  j i   must be considered, which implies that  u v d ij2 . Since  v u

one gets immediately the desired formulas for  u, v.

Type D2 :

The formula (2.4) shows the existence of  q(x)  and the conditions (i), (ii) assure that the 
quadratic term of  q(x)  is non-zero.

Type T1 :

Since  u, v, w  are double zeros of  Q x Q x Q xi j k( ), ( ), ( )   respectively, cyclic permutations of 

i, j, k  and  u, v, w  in (2.4) yield 3 different expressions for  q(x) :

(i) )()()()( 2 xuxvcxq iij

(ii) )()()()( 2 xvxwcxq jjk

(iii) )()()()( 2 xwxucxq kki

The three necessary conditions  )(')(' vvq j , )(')(' wwq k , )(')(' uuq i   yield

(i) 2c v v uij j i( ) ( )

(ii) 2c w w vjk k j( ) ( )

(iii) 2c u u wki i k( ) ( )

One must have  i j k, ,   pairwise different. Otherwise  q(x)  is a linear form (same 

argument as for type D1). One obtains the system of equations

(i) u v d ij2

(ii) v w d jk2

(iii) w u d ik2
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with the indicated solution. Moreover one has  c vij ( ) 0,  c wjk ( ) 0,  c uki ( ) 0, hence 

v d d dij jk ik , w d d djk ik ij , u d d dik ij jk   are all different from zero.

Type T2 :

In case  u, v  are double zeros of  Q x Q xi j( ), ( ) , one considers the two different expressions :

(i) )()()()( 2 xuxwcxq iik

(ii) )()()()( 2 xvxwcxq jjk

The additional conditions )(')(' vvq j , )(')(' uuq i   imply the equations

(i) 2c w v uik j i( ) ( )

(ii) 2c w u vjk i j( ) ( )

If  j i   one has  c w c wik jk( ) ( ) 0, hence  q(x)  is a linear form. Thus one has  j i .

Since  c wik ( ) 0,  c wjk ( ) 0  one has also  k i , w d ik ,  k j, w d jk .

Rearranging (i), (ii) one has equivalently

(i)
2)(

)(

2

1

uw

w

uv
ikij

(ii)
2)(

)(

2

1

vw

w

uv
jkij

Through comparison one gets the relation

)(

)(
)sgn(

w

w

uw

vw

uw

vw

ik

jk .

Now rewrite (i) in the form

)()()()
2

()( 2 vwwuwwu ik
ij

.

Divide by  (u w)  and use the obtained relation to get the desired formula for  u. The 
expression for  v  is obtained similarly.

Type T3 :

Using (2.4) the condition )()( wwq k   can be written as

22 )()()()( uvwuwv ikij .

In case the constraints (i) to (iv) are not fulfilled,  q(x)  is linear. Otherwise one gets
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)(

)(
)sgn(

v

w

uv

uw

uv

uw

ij

ik ,

which implies the formula for the atom  u.

Type T4 :

If the constraints are not fulfilled, then  q(x)  is linear. Otherwise  )(),(),( wvu kji     do not 

lie on the same line and there exists always a  q(x)  through these points.  

In the situation that  f(x)  is composed of only  finitely  many piecewise linear 
segments, the formulas of Theorem 2.1 show that the set  D f q,

3 , among which global extrema 

are expected to be found, is finite. An algorithm to determine the global extrema involves the 
following steps. For each  X Df q,

3   with corresponding  q(x)  such that Pr ( ( ) ( ))q X f X 1,

test if  q(x)  is  QP-admissible (read quadratic polynomial admissible), which means that  q(x)  
is either a  QP-majorant (read quadratic polynomial majorant) such that  q x f x( ) ( )  on  I, or 
it is a  QP-minorant (read quadratic polynomial minorant) such that  q x f x( ) ( )  on  I. If  
q(x)  is a  QP-majorant (resp. a  QP-minorant) then the global maximum (resp. minimum) is 
attained at  X, and  X  induces a so-called  QP-global maximum (resp. QP-global minimum). If 
for all  X Df q,

3   the described test fails, and there exists global triatomic extremal random 

variables, then there must exist a linear function  )(x   and triatomic random variables  X  
such that  Pr( )( X =f(X))=1  and  )()( xfx   on  I  for a maximum (resp.  )()( xfx   on  

I  for a minimum). This follows because the set  3
,fD   of such random variables has been 

excluded from  Df q,
3 . Observe that these linear types of global extrema are usually not difficult 

to find (e.g. Proposition 3.1). To design a (possibly) efficient algorithm, it remains to 
formulate simple conditions, which guarantee that a given  q(x)  is  QP-admissible. This is 
done in the next Section.

3. Global triatomic extremal random variables for expected piecewise linear transforms.

The same notations as in Section 2 are used. The conditions under which a given 
quadratic polynomial is  QP-admissible are determined. The general idea is as follows. If  
X={u,v,w}  with  ( , , )u v w I I Ii j k , one determines first the condition, say (C1), under 

which Q x Q x Q xi j k( ), ( ), ( ) 0  (resp. 0). Then, given an index  s i j k, , , one imposes the 

condition that  q(x)  does not intersect with the open line segment defined by  

ssss Ixxx ,)( . Geometrically this last condition can be fulfilled in two logically 

distinct ways :

(C2) Q xs ( ) 0  (resp. 0), that is  q(x)  has at most one point of intersection with )(xs .

This holds exactly when the discriminant of   Q xs ( )  is non-positive.
(C3) The quadratic polynomial  q(x)  has two distinct points of intersection with  )(xs ,

whose first coordinates lie necessarily outside the open interval  sI , that is

sss IQQ ),()(:, .
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Two cases must be distinguished.

Case 1 :  one of Q xs ( ) , s=i,j,k, has a double zero

Permuting the indices if necessary, one can assume that  u  is a double zero of  Q xi ( ) . One has 
2)()()()()( uxvcxxqxQ ijii   and for  s i,j  one has

(3.1)
)()()()()(

)()()()()(
2 uuxuxvc

xxQxxqxQ

issiij

isiss

Its discriminant equals

(3.2)
2

2

)(

)()(
4)(),(

uv

uv
vu isij

isijs .

Case 2 :  u, v, w  are simple zeros of Q xs ( ) , s=i,j,k

By assumption  Q xi ( )   has besides  u  a second zero, say  z z u v wi ijk ( , , ) . One can set

)()(),,()()()( iijkii zxuxwvucxxqxQ ,

where the unknown constants  c c u v w z zijk i: ( , , ), :   are determined by the conditions 

)()( vvq j , )()( wwq k , which yield the equations

(3.3) )())(( vzxuvc ij

(3.4) )())(( wzwuwc ik

Rewrite (3.4) as

(3.5)
uw
w

zwc ik )(
)( .

From (3.3) one gets

)())(())(( vzwuvcwvuvc ij .

Inserting (3.3) it follows that

uv

v

uw

w

vw
c ijik

)()(1
,

which can be transformed to the equivalent form

(3.6)
uv

u

vw

w

uw
wvucc ijjk

ijk

)()(1
),,( .
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Insert (3.6) into (3.5) to obtain

(3.7)

uv

u

vw

w
w

wwvuzz
ijjk

ik
ijki )()(

)(
),,( .

For  s i,j,k  one considers now the quadratic polynomial 

)()()()()( xxQxxqxQ isiss ,

that is written out

(3.8) )()()()()( 2 uuxzucuxcxQ isijkijksiijks .

Its discriminant equals

(3.9) )(4)(),,( 2 uczucwvu isijkijkijksiijks ,

where one uses the expression

(3.10)
uw

v

uv

v

uw

w
uwczwczuc jkijik

ijkijk

)()()(
)()()( .

Making use of these preliminaries, the set of  QP-global extrema for the expected 
piecewise linear transform  E[f(X)], described as the subset of  D f q,

3   of those random variables 

leading to a  QP-admissible quadratic polynomial, is determined as follows.

Theorem 3.1 (Characterization of QP-global extremal random variables)  The quadratic 
polynomial  q(x)  associated to a triatomic random variable  X={u,v,w} Df q,

3 ,

( , , )u v w I I Ii j k , is a  QP-majorant (resp. a  QP-minorant) if and only if the following 

conditions hold :
I. Diatomic types  D1, D2

(C1) Q x Q xi j( ), ( ) 0  (resp. 0),  type D1 : j i   (resp. j i )

(C1) Q xi ( )   (resp. 0),  type D2 :
(a1) j i   (resp. j i ),  if j i

(b1) j i   (resp. j i ),  if j i

(C1) Q xj ( ) 0  (resp. 0),  type D2 :

(a2) j i   (resp. j i ), and j ij
ij

ij

jd
d u

v d
I:

( )2
o

,  if j i

(b2) j i   (resp. j i ), and j ju v I: 2
o

  if j i
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For all  s i,j  one has either

(C2) : ( , )ijs u v 0, or

(C3) 0  and s s
s i

ij

s
c v

I, :
( )2

o

II. Triatomic types  T1, T2, T3, T4

(C1) Q x Q x Q xi j k( ), ( ), ( ) 0  (resp. 0) :

Type T1 : 1sgnsgnsgn
jkij

ki

ijik

ik

ikjk

ij

dddddd
  (resp. =-1)

Type T2 : 1sgnsgn
jk

jk

ik

ik

dwdw
  (resp. =-1), and

k jk
jk

jk

kd
d v

w d
I:

( )2
o

Type T3 : (a1) 1sgn
ij

ij

dv
  (resp. =-1),  if j i ,

(b1) j i   (resp. j i ),  if j i ,

(a2) 1sgn
ik

ik

dw
  (resp. =-1),  if k i ,

(b2) k i  (resp. k i),  if k i ,

and furthermore

(a3) j ij
ij

ij

jd
d u

v d
I:

( )2
o

,  if j i ,

(b3) j ju v I: ,2
o

  if j i ,

(a4) k ik
ik

ik

kd
d u

w d
I:

( )2 o

,  if k i ,

(b4) k ku w I: 2
o

,  if k i .

Type T4 : 1),,(sgn),,(sgn),,(sgn vuwcuwvcwvuc kijjkiijk   (resp. =-1), 

and furthermore

i ijk iz u v w I: ( , , )
o

, j jki jz v w u I: ( , , )
o

, k kij kz w u v I: ( , , )
o
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(C2), (C3)  for Types T1, T2, T3 :

For all  s i,j,k  one has either : ( , )ijs u v 0, or

0  and s

ij

is
ss I

vc )(2
:,

(C2), (C3)  for Type T4 :

For all  s i,j,k  one has either : ( , , )ijks u v w 0, or

0  and s s
s i ijk ijk

ijk

s

c z u

c
I, :

( )

2

o

Proof.  One proceeds case by case.

Case I : diatomic types

(C1) type D1 :

Use (2.4) and its permuted version obtained by replacing  u  by  v  to get

Q x
v d

v u
x u

d
x ui j i

ij j i

ij

( ) ( )
( )

( )
( )

( )
( )

2
2

2

2

4 1
,

Q x
d u

u v
x v

d
x vj j i

ij j i

ij

( ) ( )
( )

( )
( )

( )
( )

2
2

2

2

4 1
,

which implies the displayed condition.

(C1) Q xi ( ) 0  (resp. 0),  type D2 :

If  j i   one argues as for type D1, hence (a1). Otherwise one has

Q x
v u

x ui
j i( )

( )

( )
( )

2
2 ,

which shows (b1).

(C1) Q xj ( )  (resp. 0),  type D2 :

Besides  =v  the quadratic polynomial  Q xj ( )  has a second zero  , which is solution of the 

equation  )()( jq , and which must lie outside the open interval  I j

o

. Using (2.4) one has 

to solve the equation

22 )()()()( uvuv ijij .
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One finds

ij

ij
ij

ij
ij

ifvu

if
dv

ud
d

,2

,
)( 2

Furthermore one has  Q x c v x u xj ij ji( ) ( ) ( ) ( )2 l   and the sign of  Q xj ( )  is 

determined by the sign of  c vij ( ) , leading to the same conditions as for  Q xi ( ) .

The conditions (C2) and (C3) follow immediately using the formulas (3.1) and (3.2) described 
in the text under Case 1.

Case II : triatomic types

(C1) type T1 :

From the proof of Theorem 2.1 one borrows the formulas

Q x c v x ui ij( ) ( ) ( )2 , Q x c w x vj jk( ) ( ) ( )2 , Q x c u x wk ki( ) ( ) ( )2 ,

which imply the desired condition.
(C1) type T2 :

The following formulas are found in the proof of Theorem 2.1 :

).()()()()()(

,)()()(

,)()()(

2

2

2

xvxwcxxQxQ

vxwcxQ

uxwcxQ

jkjkkjk

jkj

iki

The sign of these quadratic polynomials is determined by the sign of its quadratic terms, which 
implies the first statement. On the other side Q xk ( )   has besides =w  a second zero , which 

must lie outside the open interval I k

o

. The equation Qk ( ) 0  implies the relation

22 )()()()( vwvw jkjk ,

which has the unique solution

d
d v

w djk
jk

jk

( )2

.

This implies the second statement.
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(C1) type T3 :

One has the formulas

).()()()()()(

),()()()()()(

,)()()()()(

2

2

22

xuxwcxxQxQ

xuxvcxxQxQ

uxwcuxvcxQ

ikikkjk

ijijjij

ikiji

Looking at the sign of the quadratic terms implies the first statement. Besides  j v  the 

second zero  j  of  Q xj ( )  must lie outside  I j

o

. Simlarly  Q xk ( )   has two zeros  k kv, ,

of which the second one must lie outside  I k

o

. The above formulas imply the following 
equivalent statements

ijjij
ij

ij
ijj

jijjijjj

ifvuif
dv

ud
d

uvuvQ

,2,,
)(

)()()()(0)(
2

22

ikkik
ik

ik
ikk

kikkikkk

ifwuif
dw

ud
d

uwuwQ

,2,,
)(

)()()()(0)(
2

22

from which the required conditions are shown.

(C1) type T4 :

The formulas in the text under Case 2 show through permutation of indices that

Q x c u v w x x u z u v w

Q x c v w u x x u z v w u

Q x c w u v x x u z w u v

i ijk i i i i ijk

j jki j j j j jki

k kij k k k k kij

( ) ( , , ) ( ) ( ), , ( , , ),

( ) ( , , ) ( ) ( ), , ( , , ),

( ) ( , , ) ( ) ( ), , ( , , ).

The signs of the quadratic terms imply the first statement. The second affirmation is the fact 
that the corresponding zeros must lie outside the displayed open intervals.

Finally, the conditions (C2) and (C3) are clear from the distinction in the text between Cases 1 
and 2.

For specific choices of transforms and/or triatomic random variables, it is sometimes 
possible to derive general rules, which are useful in the optimization process. To illustrate let 
us derive some minimizing decision criteria. These have been applied to handle the minimum 
problem for the "two-layers stop-loss transform" in Section 5.

Proposition 3.1.  Assume the function  f(x)  is  piecewise linear convex on  I. Suppose there 
exists a triatomic random variable  3

,* ,,
iffDzyxX   such that  Pr( ( ) ( ))* *f X f Xi 1

and that 0 I i . Then X*  is a minimizing solution of the extremal problem :

)0()()(min * i
DX

fXfEXfE .
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Proof.  Since  f(x)  is convex on  I, one has from Jensen's inequality and using the fact  
0 I i   that  E f X f fi( ) ( ) ( )0   for all  X D. By assumption all the mass points of 

X*  belong to  I i   and since  f x f xi( ) ( )   on  I i , one gets  E f X fi( ) ( )* 0 . Therefore the 

lower bound is attained.

Proposition 3.2.  Assume the payoff function  f(x)  is  piecewise linear convex on  I. Suppose  
X Df q,

3   is not a type T4. Then  X  cannot minimize  E[f(X)].

Proof.  Without loss of generality let us assume that  X={u,v}  or  X={u,v,w}  with  u I i   a 
double zero of  jii IvxxqxQ ),()()( . A straightforward calculation shows that 

)()()()( 2 xuxvcxq iij , where

uv

ufvuh

vu

uvhuf

uv

v
vc ij

ij

)('),(),()('

)(

)(
)(

2
, with h u v h v u

f v f u

v u
( , ) ( , )

( ) ( )
.

Let us distinguish between two subcases.

Case 1 :  v<u

Since f(x)  is convex on  I, one has for all  x  such that  v<u<x  the inequality 

h v u
f u f x

u x
( , )

( ) ( )
. Taking limits as  x u  one has also  h(v,u) f'(u), hence  c vij ( ) 0.

Case 2 :  v>u

Similarly for all  x  such that  x<u<v  one has the inequality  h u v
f u f x

u x
( , )

( ) ( )
, and in the 

limit as  x u  one has also  h(u,v) f'(u), hence  c vij ( ) 0. In both cases one has )()( xxq i .

This implies that  q(x) f(x)  cannot hold, hence  X  cannot minimize  E[f(X)].  

Combining both results, it is possible to restrict considerably the set of triatomic 
random variables, which can minimize the expected transform.

Corollary 3.1.  Suppose the function  f(x)  is piecewise linear convex. Then the minimal 
expected value  )()(min *XfEXfE

DX
  is attained either for  X Df q* ,

3   of type T4  or for  

X D I m i nf f ii* , , ,3 0 .

4. Inequalities of Chebyshev type.

Let  ( , , )P   be a probability space such that    is the sample space,    the  -field
of events of    and  P  the probability measure. For a given event E , an  inequality of 
Chebyshev type gives precise conditions under which the probability  P(E)  is maximal 
respectively minimal, where  P  satisfies some properties.

Denoting  by  I XE ( )   the indicator function of an event E, and setting  f(X)=I XE ( ) ,
one observes that the probability of an event  E  identifies with the expected value 
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P E E f X( ) ( ) . In case  E  is a finite union of subintervals of the real numbers, the indicator 
function f(x)=I xE ( )   is piecewise linear, and thus inequalities of the Chebyshev type can in 
principle be determined by applying the algorithm to construct quadratic polynomial majorants 
and minorants, which has been systematically studied in Sections 2 and 3. To illustrate the 
method, another simple proof of the inequality of Selberg(1942) is presented.

Theorem 4.1.  Let  X D D(( , ); , )   be a real random variable with known mean  
and variance 2 , and consider the event

(4.1) XXE , .

Then the maximum of the probability  P(E)  over  D  is given and attained as in Table 4.1.

Remark 4.1.  The inequality of  Selberg generalizes the classical inequality of Chebyshev  

(4.2) 1,min)( 2XP

obtained by setting    in Table 4.1. Moreover, letting  ,   tend to infinity, one gets the 
well-known one-sided Chebyshev inequalities (see also Section III.4)

(4.3) P X( ) ( )
2

2 2

(4.4) P X( ) ( )1
2

2 2

Table 4.1 :  inequality of Selberg,  min( , ), 0

condition maximum support of finite atomic 
extremal random variable

(1) 0 1
,,,

2

xx
x

(2) 0 1
,,,

2

x
x

x

(3) , 0

(3a) 2 1 1
,,,

2

xx
x

(3b) 2 22 2 ( )

( )

2 2

2

4 ),(, 2
1

(3c) 2 2 2 2

2 2 if,,
2

if,,
2
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Proof of Theorem 4.1.  Making use of the standard location-scale transformation, it suffices 
to consider the special situation  0 1, . We proceed case by case. Notations and 
conventions are those of Section 2.
Case (1) : 0

Choose a diatomic random variable  X  with support  xx, ,  x , to see that 
1))()(( XXfP , where 1)(X   as in the following figure :

1
           0                   

Since )()( XXf   one has 1)(max EP .

Case (2) : 0

Choose a diatomic random variable  X  with support  xx, ,  x , to see that 
1))()(( XXfP , where 1)(X   as in the following figure :

          0
1

Since )()( XXf   one has 1)(max EP .

Case (3a) : 1

Choose a diatomic random variable  X  with support  xx, ,  x
1

, to see that 

1))()(( XXfP , where 1)(X   as in the following figure :
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1
      0

Since )()( XXf   one has 1)(max EP .

Case (3b) : ( ) ,2   (the case   is shown by symmetry)

One constructs a quadratic polynomial  q(x) such that  f(x) q(x), and a triatomic random 
variable with the property  P f X q X( ( ) ( )) 1  as in the following figure :

     0 1
2 ( )

Consider the decomposition of the real axis in subintervals  I xI xIi j k   such that  I i , ,

,jI , ,kI . Then the piecewise linear function  f(x)  is given by

f(x) = 

kk

ii

jj

Ixx

Ixx

Ixx

,1)(

,0)(

,1)(

In the notations of Section 2, one has  i i j j k k0 1 0 1 0, , , , . One 

considers a triatomic  X  with support  wvwvu ,,,,   rand points of I Ij k, . Then  X  is 

of type (T3) in Theorem 2.1. Since

1
)(

)(

ij

ik

ij

ik

v

w
,

one has necessarily  u v w1
2

1
2( ) ( ). The corresponding quadratic polynomial is

2
)(2

)(
x

xq .
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When is  X  a feasible triatomic random variable ? By Lemma I.4.2, this is the case exactly 
when  u w w v u0, . These inequalities imply the condition ( ) 2 .
Using Theorem 3.1, it remains to verify that  q(x)  is  QP-admissible, that is  f(x) q(x). For  X  
of type (T3) this follows from the following facts :

condition (C1) in Theorem 3.1 :

(b1)  is fulfilled : j i j i0 1 0,

(b2)  is fulfilled : k i k i0 1 0,

(b3)  is fulfilled : j i j ju v I, ( , )2
o

(b4)  is fulfilled : k i k ku w I, ( , )2
o

Finally the value of the maximum equals

E q X
E X X

( )
( ) ( )

( )

( )

( )

4 4 4
2 2

2

2

2
,

which is the required value in the standard case  0 1, .

Case (3c) : 2 ( ),   (the case   is shown by symmetry)

An appropriate quadratic polynomial is displayed in the following figure :

                                               v=      0    u=
1

The same decomposition in subintervals as in case (3b) applies. With  v=   a rand point, one 

considers a diatomic random variable  X  with support  
1

,, uvu . In Theorem 2.1, it is of 

type (D2). The corresponding quadratic polynomial equals
2

21

1
)(

x
xq .

Under which condition is  q(x)  QP-admissible ? One must check conditions (C1), (C2) in 
Theorem 3.1 :

condition (C1) :

(b1)  is fulfilled : j i j i0 1 0,

(b2)  is fulfilled : j i j ju v I, ( , )2
2 2 o
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condition (C2) :

We determine the condition under which  q(x)  does not intersect with the line segment 

l k x( ) 1,  x Ik

o

( , ) . The zeros of the quadratic polynomial  Q x q x xk k( ) ( ) ( )l

1
1

1
2

2

x
  are  k k,

2 2

. They are not in  I k

o

( , )   exactly when 

2 ( ) , the defining condition in case (3c). Furthermore  X  is a feasible diatomic 

random variable provided  u
1

, . Since  2 12   this condition is fulfilled. 

Finally the value of the maximum is

E q X
E X X

( )
( )

2 2

2 2 2

2 1

1

1

1
,

the required value in the standard case.  

5. Best bounds for expected values of stop-loss transform type.

Let  X  be a random variable defined on  I a b,   with survival function  F x( ) . The

stop-loss transform of  X  is defined and denoted by  dttFdXEd
b

d
)()()( provided

this quantity exists for all  d I. The corresponding function f x x d( ) ( ) , which equals  
( )x d   if  x>d  and zero otherwise, is clearly piecewise linear. Since  ' ( ) ( )x F x   there is 
a one-to-one correspondence between a distribution and its stop-loss transform, which both 
characterize a random variable and are thus equally well important mathematical notions.

In applications, the stop-loss transform serves as prototype of the financial instruments, 
called derivatives, extensively encountered in Reinsurance and Option Markets under the 
names stop-loss contract and call option. The following closely related financial instruments 
are important modifications of the stop-loss contract, whose corresponding functions remain in 
the piecewise linear class. The limited stop-loss contract is defined by the financial payoff  
f(x)=(x-d)+-(x-L)+, L>d, whose limited maximal payment is the amount  L-d. Its expected 
value  E f X d L( ) ( ) ( )   consists of a difference in stop-loss transforms. The franchise

deductible contract is defined by  )()()( dxxIdxf dX   with expected value  

E f X d F d d( ) ( ) ( ), while the disappearing deductible contract is generated by the 

payoff function  .,)()(
)(

1
)( 212112

12

dddxddxd
dd

xf Finally a two-

layers stop-loss contract is defined by the piecewise linear convex payoff function 
f x r x L r x M r a L M b( ) ( ) ( )( ) , , .1 0 1 It is a special case of the    
n-layers stop-loss contract defined by  f x r x d r ri i i i( ) ( ) , , ,1 0

a d d d b dn n0 1 1... , whose payment increases proportionally in each layer 
d di i1 , ,  i=1,...,n+1. In general one assumes that the financial payoff  f(x)  of a reinsurance 

contract satisfies the constraint  0 f x x( ) . This restriction is of relevance in Section 5.3.
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Based on the majorant/minorant quadratic polynomial method for piecewise linear 
functions, it is possible to derive and present in an unified way best bounds for these modified 
stop-loss transforms. After a standard location-scale transformation has been made, one can 
assume optimization takes place over the set  D(a,b)  of all standard random variables defined 
on the interval a b, .

5.1. The stop-loss transform.

The optimization problems for the "pure" stop-loss transform defined by  f(x)=(x-d)+
are solved  in Tables 5.1 and 5.2. Application of the majorant/minorant quadratic polynomial 
method is straightforward. For the maximum consult for example Jansen et al.(1986), and for 
the minimum use Corollary 3.1. Details are left to the reader.

Table 5.1 :  maximum stop-loss transform for standard random variables on  a b,

    conditions    maximum    extremal support

a d a a1
2 ( )

( )a
ad

a

1

1 2 aa,
1
2

1
2( ) ( )a a d b b 1

2
21( )d d 22 1,1 dddd

1
2 ( )b b d b

b d

b1 2 bb ,

Table 5.2 :  minimum stop-loss transform for standard random variables on  a b,

   conditions    minimum    extremal support

d a    0 dd ,

d b    -d dd ,

b d a

1 ad

b a bda ,,

Remarks 5.1.

(i)  The global extrema in the non-standardized scale with arbitrary  ,   are obtained easily 

from the stop-loss transform relationship X ZD d Z
X

d
D

( ) ( ), , .

(ii)  Applying a different method these best bounds have been obtained firstly by De Vylder 
and Goovaerts(1982) (see also Goovaerts et al.(1984), p. 316). In the present form, Table 5.1 
appears in Jansen et al.(1986), theorem 2 (with a misprint in case 3). Table 5.2 is the 
generalized version of theorem X.2.4 in Kaas et al.(1994).
(iii)  In the limiting case as  a b, , the global extrema are attained by diatomic 

random variables, the maximum at 22 1,1 ddddX   (so-called inequality of 

Bowers(1969)) and the minimum at  ddX ,   if  d<0  and at ddX ,   if  d>0.
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5.2. The limited stop-loss transform.

Best bounds for the limited stop-loss transform  E f X( )   with  f(x)=(x-d)+ (x-L)+,
L>d, have been given in Goovaerts et al.(1984). For standard random variables, the optimal 
solutions are displayed in Tables 5.3 and 5.4. The simpler limiting case  a b,   is 
summarized in Tables 5.3' and 5.4'. Since the results are known, the details of the 
majorant/minorant quadratic polynomial method are left to the reader. In a different more 
complicated and less structured form one finds Tables 5.3 and 5.4 in Goovaerts et al.(1984), p. 
357-58. Note that for Table 5.3 the subcase defined by  L a a L d L L, ( ) ( )1

2
1
2 , which 

is actually part of (3b), is misprinted there.

Table 5.3 :  maximum limited stop-loss transform for standard random variables on  [a,b]

   conditions    maximum    extremal support

   (1) b L a
( ) ( )

( )( )
( )

b a a L

a L a b a
L d

bLa ,,

   (2) L b    L-d LL,

   (3) L a :

   (3a) d a a1
2 ( )

1 ad

a a aa,

   (3b) 1
2

1
2( ) ( )a a d L L 1

2
21( )d d 22 1,1 dddd

   (3c) d L L1
2 ( ) L d

L1 2 LL ,

Table 5.4 :  minimum limited stop-loss transform for standard random variables on  [a,b]

   conditions    minimum    extremal support
   (1) b d a 1 ad

b a b d
L d

( )( )
( )

bda ,,

   (2) d a    0 dd ,

   (3) d b :

   (3a) L d d1
2 ( )

d

d
L d

2

21
( )

dd ,

   (3b) 1
2

1
2( ) ( )d d L b b 1

2
22 1( )L d L 22 1,1 LLLL

   (3c) L b b1
2 ( ) b

b

bL
dL

21

1
bb ,
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Table 5.3' :  maximum limited stop-loss transform for standard random variables on  ( , )

   conditions    maximum    extremal support
   (1)  L=0 d    {0}
   (2)  L<0   L d LL,

   (3)  L>0 :
   (3a) d L L1

2 ( ) 1
2

21( )d d 22 1,1 dddd

   (3b) d L L1
2 ( )

L d

L1 2 LL ,

Table 5.4' :  minimum limited stop-loss transform for standard random variables on  ( , )

   conditions    minimum    extremal support
   (1)  d=0    0    {0}
   (2)  d>0    0 dd ,

   (3)  d<0 :

   (3a) L d d1
2 ( )

d

d
L d

2

21
( )

dd ,

   (3b) L d d1
2 ( ) 1

2
22 1( )L d L 22 1,1 LLLL

5.3. The franchise deductible transform.

For  X D A B( , ; , )   the franchise deductible transform  E f XX ( )   is defined by 

the piecewise linear function  )()()( DxxIDxf DXX with  D 0. An optimization 

problem over the set of all standard random variables  Z
X

D a b( , ) ,

a
A

b
B

, , is obtained provided the (standard) franchise deductible transform  

E f ZZ ( )   is defined by  )()()( zIzzf dZZ   with  , d
D

. Note the 

scale invariant property  E f XX ( ) =E f ZZ ( ) . In the special case  A=0, respectively  a
in the standardized scale, the maximum franchise deductible transform has been determined by 
Heijnen and Goovaerts(1989). The general case is much more complex.

A detailed analysis shows that the relevant di- and triatomic random variables are those 
displayed in Table 5.5. Subsequent use is made of the simplifying notations :

(5.1)
( ) ( ), ( ), ( ),

, .

x x x a b

x x

1
2

2 21 1
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Table 5.5 :  triatomic random variables and their feasible domains

   feasible domain    feasible support
   (1a) d a d, ( ) xx ,

   (1b) b d a, xx ,

   (1c) d b d*, ( ) xx ,

   (2) d a dd ,

   (3) d b dd ,

   (4) d a aa,

   (5) d b bb ,

   (6) b d a bda ,,

A detailed case by case construction of  QP-majorants q x f xZ( ) ( )   on  [a,b]  is presented. It 
is recommended that the reader draws for himself a geometrical figure of each situation, which 
is of great help in this analytical method.

Case 1 :  22 1,1, xx

A QP-majorant   q(x)  through the point (u v u, )  must have the properties  q(u)=0,  q'(u)=0,  
q v v( ) ( ) , q v'( )   (u,v  double zeros of q x f xZ( ) ( )). The unique solution is

(5.2) q x
x u

v u
u v( )

( )

( )
,

2

2
2 .

Since  v u   one sees that  u x v x, . Clearly   q x f xZ( ) ( )   on  [a,b]. The only 

restriction is bdxdaxx ,,, , which leads to the feasible domain given in Table 5.5.

Case 2 : dd , , d a

A QP-majorant  q(x), which  satisfies the conditions q d q d( ) , ' ( )0 0, q d d( ) ( ) , is

(5.3) q x
d x d

d d
( )

( )( )

( )

2

2
.

To be a QP-majorant  q(x)  must lie above the line  l ( ) ( )x x   on  [d,b], hence  q'(d) ,
which implies the restriction ( )d .

Case 3 : dd , , d b

The degenerate quadratic polynomial  q(x)=l ( ) ( )x x   goes through  (d,d*). Under the 
restriction a   one has further  q(x) 0  on  [a,d], hence q x R xZ( ) ( )   on  [a,b].
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Case 4 : aa, , d a

Set  u=a, v a . A QP-majorant  q(x)  through  (u,v)  satisfies  q(u)=0, q v v( ) ( ) ,
q v' ( ) , and the second zero  z  of  q(x)  lies in the interval a, . The unique solution is

(5.4) q x c x v x v v c
u

v u
( ) ( ) ( ) ( ),

( )

( )
2

2
.

The additional condition  q(z)=0  yields the relation

(5.5) ( )z
uz v

u z v

2

2
.

This increasing function lies for  az ,   between the two bounds a .

Case 5 : bb , , d b

Setting  u b, v=b, a QP-majorant  q(x)  through  (u,v)  satisfies the conditions  q(u)=0, 
q'(u)=0, q v v( ) ( ) , and the second point of intersection  z  of  q(x)  with the line 
l ( ) ( )x x   lies in the interval ,b . The unique solution is

(5.6) q x c x u c
v

v u
( ) ( ) ,

( )

( )
2

2
.

Solving q z z( ) ( )  implies the monotone relation

(5.7) ( )z
vz u

v z u

2

2
,

from which one obtains the restriciton  .

Case 6 : bda ,, , b d a

A QP-majorant  q(x)  through  (a,d,b)  satisfies the conditions  q(a)=0, q d d( ) ( ) ,
q b b( ) ( ) , and the second zero  z  of  q(x)  lies in the interval ,b . One finds

(5.8)

q x c x a x z c
b

b a b z

d

d a d z

z
d b

a

( ) ( )( ),
( )

( )( )

( )

( )( )
,

( )( )

( )
.

Under the constraint  d a  one has  z b  if and only if  a .

The above construction of QP-majorants is summarized in Table 5.6. The only missing 
case occurs for  d b d, ( ). But in this situation  d d , hence  ( )d d . But in the 
non-standardized scale  D d( ) 0, and   f XX ( ) does not define a feasible reinsurance 
payment because the usual constraint  0 f X XX ( )   is not satisfied. Table 5.7 summarizes 
the special case a  discussed by Heijnen and Goovaerts(1989).
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Table 5.6 : maximum franchise deductible transform for standard random variables on a b,

   conditions    maximum    extremal support
   (1) d a :

   (1a) ( )d 21 d

d
dd ,

   (1b) ( )d 1
2 x xx ,

   (1c) 21 b

b
bb ,

   (2) b d a :

   (2a) a ad

dab

ab

bad

db

))(1())(1(
bda ,,

   (2b) a 21

1
)(

a

a
a aa,

   (2c) 1
2 x xx ,

   (2d) 21 b

b
bb ,

   (3) d b :
   (3a) a ( ) dd ,

   (3b) a 21

1
)(

a

a
a aa,

   (3c) ( )d 1
2 x xx ,

   (3d) ( )d    random function is not feasible

Table 5.7 :  special case a

conditions maximum extremal support

d a

d

d1 2 dd ,

d a aa,

5.4. The disappearing deductible transform.

For  X D A B( , ; , )   the disappearing deductible transform  E f XX ( )   is defined 
by the piecewise linear function  

(5.9) f x r x d r x d r
d

d d
d dX ( ) ( ) ( )( ) , , .1 2

2

2 1
1 21 1 0
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In the standardized scale, this takes the form

(5.10) ))(1()()( MzrLzrzfZ

0, ,

( ), ,

( ), ,

z L

r z L L z M

z z M

where one sets

(5.11) L
d

M
d

rL r M1 2 1 0, , ( ) .

Up to the factor  , this transform function looks formally like a "two-layers stop-loss 
transform" with however  r 1  fixed (see Section 5.5). This fact implies the statements :

(i) In the interval  [M,b]  the line segment  r x L( )  lies above the segment ( )x .
(ii) In the interval  [a,M]  the line segment  r x L( )  lies under the segment ( )x .

Using these geometric properties, a look at the QP-majorants of the "franchise deductible" and 
"stop-loss" transforms show that the maximum expected value is attained as follows :

(i) If  M a   the best upper bounds are taken from the "stop-loss" Table 5.1 by 
changing  b  into  M,  d  into  L, and multiplying the stop-loss maxima with  r.

(ii) If  M a   take the values of the "franchise deductible" in Table 5.6 changing  d  to  M.

The result, summarized in Table 5.1, generalizes that of Heijnen and Goovaerts(1989) 
obtained for the special case  a.

Table 5.8 :  maximum disappearing deductible transform for standard random variables

   conditions    maximum                     extremal support
   (1) M a :
   (1a) L r

a

aL
a

21

1
)( aa,

   (1b) L M( ) 1
2 x rL LL xx ,

   (1c) ( )M L M r
M

LM
21 MM ,

   (2) b M a :

   (2a) a aM
Mab

ab
baM

Mb
))(1())(1(

bMa ,,

   (2b) a 21

1
)(

a

a
a aa,

   (2c) 1
2 x xx ,

   (2d) 21 b

b
bb ,

   (3) M b :
   (3a) a ( ) MM ,
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   (3b) a 21

1
)(

a

a
a aa,

   (3c) ( )M 1
2 x xx ,

   (3d) ( )M    random function is not feasible

5.5. The two-layers stop-loss transform.

A two-layers stop-loss transform is defined by the piecewise linear convex function

(5.12) f x r x L r x M r a L M b( ) ( ) ( )( ) , , .1 0 1

It suffices to solve the standard optimization problem over  D(a,b). The interval  I=[a,b]  is 
partitioned into the pieces  I a L I L M I M b0 1 2, , , , , . The piecewise linear segments 
are described by f x x ri i i( ) , , , ,0 1 20 1 0 1 20, ,rL d , where  
d=rL+(1-r)M  is interpreted as the "maximum deductible" of the corresponding two-layers 
stop-loss contract.

In a first part, the minimum two-layers stop-loss transform is determined. According to 
Corollary 3.1, it suffices to construct  L-minorants for some  X Df fi,

3 , i=0,1,2, and  QP-

minorants for triatomic random variables of the type (T4).

L-minorants :

The diatomic random variable  X= LL ,   belongs to  Df f, 0

3   provided  L a . By Proposition 

3.1, in this domain of definition, the minimum is necessarily  E f X f( ) ( )0 0 0. Similarly 

X= LL, ,  MM , belong to  Df f, 1

3   if  M L 0  and the minimum equals  

E f X f rL( ) ( )1 0 . Finally in  Df f, 3

3   one considers  X= MM , , which is feasible 

provided  M b  and leads to the minimum value  E f X f d( ) ( )2 0 . These results are 
reported in Table 5.11.

QP-minorants :

It remains to determine the minimum in the following regions :

(1) 0 L a
(2) 0 M L
(3) b M 0

One has to construct  QP-minorants for triatomic random variables of the type (T4), which are
listed in Table 5.9. Their feasible domains suggest to subdivide regions (1), (3) into 2 
subregions and region (2) into 4 subregions. This subdivision with the corresponding feasible 
triatomic random variables is found in Table 5.10.
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Table 5.9 :  triatomic random variables of type (T4)

   feasible support    feasible domain

bLaX ,,1 b L a
bMaX ,,2 b M a
bMLX ,,3 L b M L

MLaX ,,4 L a M L

Table 5.10 :  triatomic random variables in the subregions

   subregion    type (T4)
   (1.1) 0 L a M a, X X1 2,

   (1.2) 0 L a M a, X X1 4,

   (2.1) L b M a M L, , X X3 4,

   (2.2) b L M a0, X X1 4,

   (2.3) L b M a, 0 X X2 3,

   (2.4) b L M a0 0, X X1 2,

   (3.1) b L b M0 0, X X1 2,

   (3.2) L b b M, 0 X X2 3,

Applying the  QP-method it is required to construct quadratic polynomials 
q x f x ii ( ) ( ), , , , ,1 2 3 4   such that the zeros of  Q q x f xi

i
( ) ( ) ( )  are the atoms of  Xi .

Drawing for help pictures of the situation for  i=1,2,3,4, which is left to the reader, one gets 
through elementary calculations the following formulas :

q x
x a x L b d

b a b L1 ( )
( )( )( )

( )( )

q x c x a x z c
b d

b a b z

M d

M a M z
z

d b a M b d

d a2 ( ) ( )( ),
( )

( )( )

( )

( )( )
,

( ) ( )

q x e x L x y e
b d

b L b y

M d

M L M y
z

d b L M b d

d L3 ( ) ( )( ),
( )

( )( )

( )

( )( )
,

( ) ( )

q x
x a x L M d

M a M L4 ( )
( )( )( )

( )( )

By application of Theorem 3.1 it is possible to determine when the  q xi ( ) 's  are   QP-
admissible. However, in this relatively simple situation, the graphs of the  q xi ( ) 's  show that 
the following equivalent criteria hold :

q x f x q M f M M d d1 1( ) ( ) ( ) ( ) ,
q x f x q L f L d2 2 0( ) ( ) ( ) ( ) ,
q x f x q a f a d3 3 0( ) ( ) ( ) ( ) ,
q x f x q b f b b d d4 4( ) ( ) ( ) ( ) ,
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where  
bM aL

b M a L( )
  has been setted. Use these criteria for each subregion in Table 

5.10 to get the remaining minimum values as displayed in Table 5.11. 

In a second part, let us show that the maximum two-layers stop-loss transform can only 
be obtained numerically through algorithmic evaluation. Applying Theorem 2.1 one 
determines first the possible types of triatomic random variables for which the maximum may 
be attained.

Proposition 5.1.  Triatomic random variables  X Df q,
3 , for which there may exist a  QP-

majorant, are necessarily of the following types :

(D1)

bMxMLxxxx

bMxLaxxxx

MLxLaxxxx

MMMM

dddd

LLLL

,,,,,

,,,,,

,,,,,

(D2) bbaa ,,,

(T1) wvu ,,   such that u L r M L a: ( ) , v L r M L: ( ) ,
w M r M L b: ( )( )1 , and u w w v u0,

(T2) aa wva ,,   such that

bMadaLrad
r

aw

MLadaLraLr
r

av

a

a

,))(()(
1

2
:

,))(()(
1

2
:

and a w w v aa a a0,
bvu bb ,,   such that

MLdbMbrMbr
r

bv

LadbMbrdb
r

bu

b

b

,))()(1())(1(
2

:

,))()(1(
2

:

and u b b v ub b b0,

(T3) bva ba ,, ,   such that v
a r b M b r L a

r b M r L a
L Ma b, :

( )( ) ( )

( )( ) ( )
,

1

1
,

and b v aa b,
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Table 5.11 :  minimum two-layers stop-loss transform

   conditions    minimum    extremal support

L a    0 LL ,

M L 0 rL MMLL ,,,

M b d MM ,

d
bM aL

b M a L( )
:

0

0

L a

b L b M,

1 aL

b L b a
b d

( )( )
( )

bLa ,,

L b M L

1 Ly

M L M y
M d

y
d b L M b d

d L

( )( )
( )

( ) ( ) bML ,,

d
bM aL

b M a L( )
:

0

0 0

0

L a M a

L M a

b M

,

,

1 az

b a b z
b d

z
d b a M b d

d a

( )( )
( )

( ) ( ) bMa ,,

0 L a M a

a M L

, 1 aL

M a M L
M d

( )( )
( )

MLa ,,

Proof of Proposition 5.1.   Leading to a minimum, the type (T4) can be eliminated. Type (D1) 
is immediately settled observing that  d L d d d M01 02 12, , . For the type (D2) the 
cases where  L, M  are rand points are included as limiting cases of the type (D1) and thus 
omitted. Type (T1) is clear. For (T2) three cases must be distinguished. If w I0   then 
necessarily  w=a  because  w L d, . The case  w I1  is impossible because one should have  
w L M, . If  w I2   then  w=b  because  w d M, . Similarly type (T3) may be possible in 
three ways. If  ( , )v w I xI0 1  then  v=a, w=L  because  v d w M, . If ( , )v w I xI0 2   then  
v=a, w=b  because  v L w M, . If ( , )v w I xI1 2   then  v=M, w=b  because  v L w d, .
However, the two types  uLabMu ,,,,,   can be eliminated. Indeed drawing a graph in these 
situations shows that no QP-majorant can be constructed. The additional constraints on the 
atoms follow from Lemma I.4.2.  

The precise conditions under which the triatomic random variables of Proposition 5.1 
allow the construction of a QP-majorant follow from Theorem 3.1 and are displayed in Table 
5.12. It suffices to choose appropriately  ( , , )u v w I xI xIi j k   such that  Theorem 3.1 applies. 

Details are left to the reader. Drawing pictures shows that the double-sided interval constraints 
are in fact one-sided constraints. 
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Table 5.12 :  maximizing QP-admissible triatomic random variables

   support    value of    values of ,    conditions

LL xx , 012 ( , )x xL L    none

2
2 0

012c xL( )

0

0  and 2 b

dd xx , 021 ( , )x xd d    none 0

MM xx , 120 ( , )x xM M    none

0
0 1

122c xM( )

0

0  and 0 a

aa, 201 ( , )a a

102 ( , )a a

0

2

d
d a

d a

( )

   none

2
2 1

102c a( )

M a a, ,0 0

L a M, 0

L a M b, ,0 2

bb , 021 ( , )b b

120 ( , )b b

2

2

d
d b

b d

( )

   none

0
0 1

122c b( )

b L b, ,0 2

L b M, 0

L b M a, ,0 0

wvu ,,    none    none    none

aa wva ,,    none 0

2

d
d w

d a
a( )

0 a

bvu bb ,,    none 2

2

M
M v

b M
b( )

2 b

bva ba ,, ,    none 0

2

L
v L

L a
a b( ),

2

2

M
M v

b M
a b( ),

0 a   and 2 b

A numerical algorithm to evaluate the maximizing random variable is as follows :

Step 1 : Give in the standardized scale the values
a L M b r a b ab, ( , ), ,0 1 0 1

Step 2 : Find the finite set of triatomic random variables, which satisfy the conditons of 
Proposition 5.1
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Step 3 : For the finite set of triatomic random variables found in step 2, check the QP-
admissible conditions of Table 5.12. If a QP-admissible condition is fulfilled, 
the corresponding triatomic random variable is maximal.

Step 4 : Transform the result back to the non-standardized scale

6. Extremal expected values for symmetric random variables.

We have seen that the majorant/minorant quadratic polynomial method is a main tool 
to derive best bounds for expected values  E f X( )   over the set of all random variables by 
known range, mean and variance. In case  f(x)  is a piecewise linear function, a general 
algorithm to determine these extremal expected values has been formulated in Sections 2 and 
3 and applied in Sections 4 and 5. In view of the following simple result, the same method 
remains valid if the random variables are additionally symmetric around the mean.

Lemma 6.1.  Let  D A D A AS S( ): ( , ; , )   be the set of all symmetric random variables 

defined on the interval  A A,   with known mean    and variance  2 . Suppose there exists 

a symmetric quadratic polynomial  q x ax c( ) 2   such that

(6.1) AAxxfxfxq ,,)()()()( 2
1 ,

and a finite atomic random variable  X X*
*( )  such that

(6.2) ),1))()()(Pr((,1))()()(Pr( **
2
1***

2
1* XfXfXqXfXfXq

then one has ).)()(min(,)()(max *
)(

*

)(
XqEXfEXqEXfE

ADXADX SS

Proof.  Since  E f X E f X( ) ( )   for  X D AS ( ) , this follows by majorization 

(minorization) using that )()()( 2
1 XfXfEXfE .

As illustration the detailed optimization for a basic case is provided. Therefore the rest 
of the Section is devoted to the construction of the extremal stop-loss transforms for  
symmetric random variables. As seen in Section I.6, it suffices to consider the case of standard 
symmetric random variables defined on  a a, , where for the existence of such random 
variables we assume that  a 1.

Theorem 6.1.  The maximum stop-loss transform for standard symmetric random variables 
with range a a, , a 1, is determined in Table 6.1.
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Table 6.1 :  maximum stop-loss transform for standard symmetric random variables

case condition maximum * ( )d extremal symmetric
support

(1) a d a1
2

22

1

a

da
d aa ,0,

(2) 1
2

1
2a d

d
d

1

8 dd 2,0,2

(3) 1
2

1
2d

1

2
1( )d

1,1

(4) 1
2

1
2d a

1

8d dd 2,0,2

(5) 1
2 a d a 22

1

a

da
aa ,0,

Proof.  Since  X D a aS ( , ; , )0 1   is symmetric, the stop-loss transform satisfies the relation 
( ) ( )d d d . Therefore it suffices to consider the cases for which  d 0. In each case 

one constructs a symmetric quadratic polynomial majorant  q(x)  such that

aaxdxdxxfxq ,,)()()()( 2
1 ,

and where equality is attained at the atoms of the extremal symmetric support. According to 
our algorithm for piecewise linear functions, the interval  I a a,   has to be partitioned into 
the three pieces I a d I d d I d a0 1 2, , , , , , such that on each piece  f(x)  coincides 

with the linear function 2,1,0),( ixi , defined by respectively  

)()(,0)(),()( 2
1

212
1

0 dxxxdxx . A case by case construction follows.

Case (3) : 0 1
2d

One constructs q x f x( ) ( )  as in the following figure :

a u= 1 d 0    d v=1   a
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According to Theorem 2.1, type (D1), a diatomic random variable  ,,,, 20
* IvIuvuX

can be extremal only if  ( , ) ( , ) ( , )u v d d d d02 02
2

02 02
21 1 1 1 . The corresponding 

uniquely defined symmetric quadratic polynomial majorant is given by

q x x d( )
1

4

1

4

1

2
2 .

The conditions of Theorem 3.1 are fulfilled, (C1) because  2
1
2 0

1
2 , and (C2) 

because the discriminant of  Q x q x x1 1( ) ( ) ( )l , which equals  1
2

1
4d , is always  0. The 

maximum stop-loss transform equals
* *( ) ( ) ( )d E q X d

1

2
1 .

Case (4) : 1
2

1
2d a

One starts with the following figure :

a u= 2d d v=0    d w=2d   a

A triatomic extremum wvuX ,,*   of type (T1) is only possible provided

u d d d d I a d

v d d d I d d

w d d d d I d a

01 02 12 0

12 01 02 1

02 12 01 2

2

0

2

, ,

, ,

, .

According to Lemma I.4.2 , the support  dd 2,0,2   defines a feasible triatomic random 
variable exactly when  1 2d a , which is the defining condition in the present case (4). 
Observing that the condition (C1) for the type (T1) in Theorem 3.1 is fulfilled, one obtains the 
symmetric quadratic polynomial majorant

q x
x

d
( )

2

8
,

which leads to the maximum stop-loss transform
* *( ) ( )d E q X

d

1

8
.

Case (5) : 1
2 a d a

The following figure displays a symmetric quadratic polynomial majorant  q(x) :
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         v= a d u=0      d       w=a

A triatomic extremum  wvuX ,,*   of type (T3) with  v a I w a I0 2,   and  u I1 a

double zero of )()()( 11 xxqxQ   is only possible if  u v w1
2 0( )   because

1
)()(

)()(

)(

)(

10

12

10

12

vv

ww

v

w
.

One obtains without difficulty that

2
22

1
)( x

a

da
xq .

The condition (C1) for type (T3) in Theorem 3.1 is fulfilled. First of all, one has  Q x1 0( )

on  I1. Furthermore the second zero of  Q x0 ( )   equals  0

da

a d
  and does not belong to  

I a d
o

0 ( , ) , hence  Q x0 0( )   on  I 0. Similarly the second zero of  Q x2 ( )  equals  

2

ad

a d
  and does not belong to  I d a

o

2 ( , ) , hence  Q x2 0( )   on  I 2. One concludes by 

noting that

2
**

2

1
)()(

a

da
XqEd .

The limiting case as a   is of special interest.

Table 6.2 :  maximum stop-loss transform for standard symmetric random variables with 
range    ( , )

case condition maximum * ( )d extremal symmetric
support

(1) d 1
2

d
d

1

8 dd 2,0,2

(2) 1
2

1
2d

1

2
1( )d

1,1

(3) d 1
2

1

8d dd 2,0,2

Furthermore, by appropriate transformations of variables, one recovers, in somewhat different 
presentation, the result by Goovaerts et al.(1984), p. 297, case  C35. In particular our 

construction is an alternative to the method proposed by these authors on pp. 300-301, which 
has the advantage to be the application of a unified general algorithm.
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Theorem 6.2.  The maximum stop-loss transform for symmetric random variables with range  
A B, , symmetry center  C A B1

2 ( ), and known variance  2   such that 
0 1

2E B A( )   is determined in Table 6.3.

Table 6.3 :  maximum stop-loss transform for symmetric random variables with range  A B,

case condition maximum * ( )D extremal symmetric
support

(1) A D A E1
2

2
22

1
)(

E

AD
DC

ECCEC ,,

(2) A E D C1
2

1
2

( )
( )

C D
C D

2

8 )(2,),(2 DCCCDCC

(3) C D C1
2

1
2

1

2
( )C D

2
1

2
1 ,CC

(4) C D B E1
2

1
2

2

8( )D C )(2,),(2 CDCCCDC

(5) B E D B1
2

2
22

1

E

DB
ECCEC ,,

Proof.  Let  X  be a random variable, which satisfies the stated properties. Then the random 

variable  Z
X C

  is standard symmetric with range  
EE

, . It follows that Table 6.3 

follows from Table 6.1 by use of the transformations

d
D C

a
E

atom z atom x C z, , ,

as well as the formula
CD

D ZX )( .

The construction of the best lower bound is equally simple. However, note that it has 
not been discussed in Goovaerts et al.(1984).

Theorem 6.3.  The minimum stop-loss transform for standard symmetric random variables 
with range a a, , a 1, is determined in Table 6.4.
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Table 6.4 :  minimum stop-loss transform for standard symmetric random variables

case condition minimum * ( )d extremal symmetric
support

(1) a d 1 d dd ,0,

(2) 1 0d da

d
d

21

2

1
adda ,,,

(3) 0 1d da

d 21

2

1
adda ,,,

(4) 1 d a 0 dd ,0,

Proof.  By symmetry, it suffices to consider the case  d 0. In each situation, one constructs a 
symmetric quadratic polynomial minorant

aaxdxdxxfxq ,,)()()()( 2
1 ,

where equality is attained at the atoms of the minimal random variable  X*   with the displayed 
extremal symmetric support.

Case (3) : 0 1d

There exists a unique symmetric quadratic polynomial such that q a q a a d( ) ( ) ( )1
2 ,

q d q d( ) ( ) 0  as in the following figure :

a d 0    d   a

It is given by  
da

dx
xq

22

2

1
)( . A calculation shows that

Q x q x x
x d x a

a d
x I a d0 0 0

1

2
0( ) ( ) ( )

( )( )

( )
,l ,

Q x q x x I d d1 10( ) ( ) , ,

Q x q x x
x d x a

a d
x I d a2 2 2

1

2
0( ) ( ) ( )

( )( )

( )
,l .
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Therefore one has  q x f x( ) ( )  on  I a a, . A look at the probabilities of the symmetric 

random variable  X*   with support  adda ,,,   shows that it is feasible exactly when  

d 2 1. The minimal stop-loss transform equals

da

d
XqEd

2

**

1

2

1
)()( .

Case (4) : 1 d a

The symmetric random variable  X*   with support  dd ,0,   is feasible and  q x( ) 0  is a 

minorant of  f(x)  such that Pr( ( ) ( ))* *q X f X 1. This implies that * ( )d 0.

Similarly to Table 6.3, it is not difficult to obtain the minimal stop-loss transform for 
symmetric random variables with range  A B, , symmetry center  C A B1

2 ( ) , and variance
2   such that 0 1

2E B A( ) .

Table 6.5 :  minimum stop-loss transform for symmetric random variables with range  A B,

case condition minimum * ( )d extremal symmetric
support

(1) A D C C D DCCD 2,,

(2) C D C DB

DC
DC

22 )(

2

1
BDCDA ,2,,

(3) C D C DB

DC 22 )(

2

1
BDDCA ,,2,

(4) 1 d a 0 DCDC ,,2

7. Notes.

In view of the historical and primordial importance in Probability and Statistics of 
Chebyshev's inequality, it can fairly be said that the origin of the majorant/minorant 
polynomial method goes back to Chebyshev, Markov and Possé. It has been first formulated as 
general principle by Isii(1960) and Karlin(1960) as mentioned by Karlin and Studden(1966). 
In the last monograph it appears as the main Theorem 2.1 in Chapter XII. More recent and 
theoretical views of the majorant/minorant method include Whittle(1992), Chapter 12.4.

Concerning the piecewise linear assumption made for the development of our general 
algorithm, it may be an additional motivation to note that in Financial Economics piecewise 
linear sharing rules can be solutions of certain equilibrium models of risk exchange, as shown 
in Hürlimann(1987), Proposition 1. Furthermore, the technique of bounding random functions 
by piecewise linear functions has certainly be applied in many fields (an example is Huang et 
al.(1977)).
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The inequalities of Chebyshev type and their various generalizations and analogues 
have generated a vast and still active research field in Applied Probability and Statistics. Well-
known surveys are Godwin(1955), Savage(1961), and recommended is Karlin and 
Studden(1966), Chapters XII to XIV, for a readable account. A recent source of abundant 
material is further found in Johnson and Kotz(1982/88). For a univariate event, which is the 
finite union of any subintervals of the real numbers, Godwin suggests it would be useful to 
have inequalities in terms of any number of moments, and states that Markov solved this 
problem, whose solution seems however to be lost. Since the indicator function of such an 
event is piecewise linear, it is in principle possible to retrieve this solution (at least by fixed 
mean and variance) through application of our general algorithm with perhaps the aid of a 
computer. Selberg did a first step in this direction. Our simple proof of Selberg's inequality in 
Section 4 may be viewed as a modern up-date, which turns out to be more comprehensive than 
the exposé by Karlin and Studden(1966), Example XII.3.1, p. 475-79. It is also worthwile to 
mention that other kinds of probabilistic inequalities may be reduced to inequalities of 
Chebyshev type. This assertion holds for the Bonferroni inequalities, which have been studied 
under this aspect by Samuels and Studden(1989), and Sibuya(1991). Sections 2, 3 and 5 are 
taken from Hürlimann(1996c/96d) with some minor changes.

Readers more specifically interested in Actuarial Science and Finance should note that 
there exists already a considerable amount of literature devoted to reinsurance contracts of 
stop-loss type and other financial derivatives. The excess-of-loss or stop-loss contract is long 
known to be an "optimal" reinsurance structure under divers conditions, as shown among 
others by Borch(1960), Kahn(1961), Arrow(1963/74), Ohlin(1969), Pesonen(1983), 
Hesselager(1993), Wang(1995) (see also any recent book on Risk Theory). Since in the real-
world gross stop-loss premiums are usually heavily loaded and unlimited covers are often not 
available, the limited stop-loss contract is sometimes considered as alternative. Such a contract 
may be useful in the situation one wants to design reinsurance structures compatible with 
solvability conditions (e.g. Hürlimann(1993b/95a)). In case of unimodal distributions the 
corresponding optimization has been treated in Heijnen and Goovaerts(1987), and 
Heijnen(1990). A two-layers stop-loss contract has been shown "optimal" for any stop-loss 
order preserving criterion among the restricted set of reinsurance contracts generated by the n-
layers stop-loss contracts with fixed expected reinsurance net costs (e.g. Van 
Heerwaarden(1991), p. 121, Kaas et al.(1994), Example VIII.3.1, p. 86-87). It appears also as 
optimal reinsurance structure in the theory developed by Hesselager(1993). It belongs to the 
class of perfectly hedged all-finance derivative contracts introduced by the author(1994/95b). 
As most stop-loss like treaty it may serve as valuable substitute in situations a stop-loss 
contract is not available, undesirable or does not make sense (for this last point see 
Hürlimann(1993b), Section 4, "Remarque"). For readers interested in mathematical genesis, it 
may be instructive to mention that our general algorithmic approach to "best bounds for 
expected values for piecewise linear random functions" has been made possible through a 
detailed study of the extremal problems for the two-layers stop-loss transform. The inequality 
of Bowers(1969) has inspired a lot of actuarial work, among which the earliest papers to be 
mentioned are by Gagliardi and Straub(1974) (see also Bühlmann(1974)), Gerber and 
Jones(1976), and Verbeek(1977). A short presentation of Verbeek's inequality is given by 
Kaas et al.(1994), Example X.1.1. Bivariate extensions of the inequality of Bowers are derived 
in Chapter V.

In other contexts, "best bounds for expected values" have been studied by many 
researchers including authors like Hoeffding(1955), Harris(1962), Stoyan(1973), etc. Similar 
extremal moment problems, which have not been touched upon in the present work, will 
require "non-linear methods". One may mention specializations to unimodal distributions by 
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Mallows(1956/63) and Heijnen and Goovaerts(1989). The latter authors apply the well-known 
Khintchine transform as simplifying tool. Inequalities of Chebyshev type involving conditional 
expected values have been discussed in particular by Mallows and Richter(1969). The 
derivation of best bounds, which take into account statistical estimation of the mean and 
variance parameters or other statistical inference methods, seems quite complex and has been 
illustrated among others by Guttman(1948) and more recently by Saw, Yang and Mo(1984) 
and Konijn(1987).

The similar problem of the maximization of variance values  Var f X( )   by known 
range, mean and variance has not been touched upon in the present monograph. Certainly there 
exist a lot of literature dealing with this. A recent representative paper containing important 
references is Johnson(1993). The special stop-loss function has been dealt with by De Vylder 
and Goovaerts(1983), Kremer(1990), Birkel(1994) and Schmitter(1995). A unified approach 
to some results is contained in Hürlimann(1997a/b).
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CHAPTER III

BEST BOUNDS FOR EXPECTED VALUES BY GIVEN RANGE 

AND KNOWN MOMENTS OF HIGHER ORDER

1. Introduction.

The construction of quadratic polynomial majorants and minorants for piecewise linear 
functions has been systematically discussed in Chapter II. A higher order theory has to include 
precise statements for polynomial majorants of arbitrary degree. Systematic results about the 
degree three and four are especially useful because many contemporary real-world stochastic 
phenomena, including the fields of Insurance and Finance, depend upon the coefficients of 
skewness and kurtosis of the corresponding distribution functions, which describe the 
phenomena of interest.

The most prominent example consists of the Chebyshev-Markov inequalities, which 
provide bounds on a distribution function when a finite number of its first moments are given. 
Our emphasis is on explicit analytical and numerical results for moments up to order four. In 
this important situation, an improved original presentation of these inequalities is presented in 
Section 4, which may be viewed as a modern elementary constructive account of the original 
Chebyshev-Markov inequalities.

The Chebyshev problem has generated a vast area of attractive research problems, 
known under the name "inequalities of Chebyshev type". From our point of view the recent 
actuarial research about bounds for stop-loss premiums in case of known moments up to the 
fourth order belong also to this area. An improved presentation of the relatively complex 
maximal stop-loss transforms is found in Section 5. Both the content of Sections 4 and 5 is a 
prerequisite for a full understanding of the new developments made in Chapter IV.

As a  preliminary work, in Sections 2 and 3, it is shown how to construct polynomial 
majorants for the Heaviside indicator function  )(, xI t , which is  1  if  x t  and  0  

otherwise, and for the stop-loss function  (x-d)+,  d  the deductible. Both belong to the class of 
piecewise linear functions  f(x)  on an interval  I= a b, , a b . For these simple but 
most important prototypes, one can decompose  I  into two disjoint adjacent pieces such that  
I I I1 2 , and the function of interest is a linear function  xxxf iii )()(   on each 

piece  Ii, i=1,2. If  q(x)  is a polynomial of degree  n 2, then  q(x)-f(x)  is a piecewise 
polynomial function of degree  n, which is denoted by  Q(x)  and which coincides on  Ii  with 
the polynomial  )()()( xxqxQ ii   of degree  n. For the construction of polynomial 

majorants  q(x) f(x) on  I, one can restrict the attention to finite atomic random variables  X  
with support  Ibxxxax rr 110 ,,...,,   such that  Pr ( ( ) ( ))q X f X 1 (e.g. Karlin and 

Studden(1966), Theorem XII.2.1). By convention if  a=   then  x0=a  is removed from the 
support and if  b=   then  xr+1=b is removed. In general, the fact that  x0=a  or/and  xr+1=b
does no belong to the support of  X  is technically achieved by setting the corresponding 
probabilities equal to zero. If an atom of  X, say  xk, is an interior point of some  Ii, then it 
must be a double zero of  Qi(x). Indeed  )()( xxq i   for  x I i   can only be fulfilled if the 

line  )(xi   is tangent to  q(x)  at xk, that is  )()(' '
kik xxq . This simple observation allows 



                                              Werner Hürlimann                                                      78

one to derive finite exhaustive lists of all polynomials of a given degree, which can be used to 
construct polynomial majorants (see Tables 2.1 and 3.1) and minorants (see Remarks 2.1 and 
3.1). A second step in the construction of best bounds for expected values consists in a 
detailed analysis of the algebraic moment problem for finite atomic random variables with 
support  bxxxax rr 110 ,,...,, , whose mathematical background has been introduced in 

Chapter I. The most useful results are based on the explicit analytical structure of di- and 
triatomic random variables by given range and known moments up to order four as presented 
in Section I.5.

2. Polynomial majorants and minorants for the Heaviside indicator function.

The indicator function is denoted by  f(x)= )(, xI t   as defined in the introductory 

Section 1. We decompose the interval  I= a b,   into the pieces  I a t1 , ,  I t b2 , , such 

that 1)()( 1 xxf   on I1  and 0)()( 2 xxf   on I2. For a fixed rm ,...,1   the atom
x tm   belongs always to the support of a maximizing finite atomic random variable  X. We 
show that a polynomial majorant of fixed degree for  )(, xI t   is always among the finite 

many possibilities listed in Table 2.1 below.

Proposition 2.1.  Let  bxxtxxax rrm 110 ,,...,,...,, ,  x xr s  for  r<s, rm ,...,1 , be 

the ordered support of a random variable  X  defined on  I, and let  q(x)  be a polynomial 
majorant such that  Pr ( ( ) ( ))q X f X 1  and  q(x) f(x)  on  I. Then  q(x)  is a polynomial 
uniquely determined by the conditions in Table 2.1.

Table 2.1 :  polynomial majorants for the Heaviside indicator function

case support with 
x tm

Q x jj i( ) , ,0 1 2 Q x jj i
' ( ) , ,0 1 2 deg q(x)

(1) bxxa r ,,...,, 1 i=0,...,r+1 i 0, m, r+1 2r

(2) rxxa ,...,, 1 i=0,...,r i 0, m 2r-1

(3) bxx r ,,...,1 i=1,...,r+1 i m, r+1 2r-1

(4) rxx ,...,1 i=1,...,r i m 2r-2

Proof.  We restrict our attention to the derivation of case(1). The other cases are shown by the 
same method and omitted for this reason. One must show the existence of a unique polynomial  
q(x)  of degree  n=2r  as in Figure 2.1.

Figure 2.1 :  polynomial majorant  q(x) )(, xI t , x a b,

   y= )(, xI t
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x a0 x1 xm 1 x tm xm 1    ... x r x br 1     x

Consider the unique polynomial  q(x)  of degree  n=2r  such that

)( ixq
1 0

0 1 1

, ,...,

, ,...,

i m

i m r
q x i m ri' ( ) , , ,0 0 1

By definition of  Qj(x), j=1,2, the conditions of Table 2.1 under case (1) are fulfilled. By the 
theorem of Rolle, the derivaqtive  q'(x)  vanishes at least once on each of the  r  subintervals 
( , ), , .x x i r i mi i 1 0 It follows that there are exactly  (r-1)+r=n-1  zeros of  q'(x)  on  I. 
Furthermore one has  q'(x) 0  on   ( , )x xm m 1 . More precisely one has  q'(x)<0  on  
( , )x xm m 1   because  q x q xm m( ) ( )1 01 . It follows that  q(x)  is local minimal at all  
x i m ri , , ,0 1, and local maximal between each consecutive minima, as well as in the 
intervals ( , )a x1   and ( , )x br . These properties imply the inequality  q(x) )(, xI t .

Remark 2.1.  To construct a polynomial minorant of fixed degree  for  )(, xI t , it suffices to 

construct a polynomial majorant for  1 )(, xI t . Such a polynomial will a fortiori be a 

polynomial majorant for the indicator function

,tI
0

1

, ,

, ,

x t

x t

which has been modified in  x=t. The symmetry of the construction shows that the possible 
polynomial majorants for  ,tI   are exactly located at the same supports as those for 

)(, xI t . In this situation Table 2.1 applies with the difference that the polynomials  Qj(x)

are replaced by  Q x q x1 ( ) ( )   on I1  and Q x q x2 1( ) ( )   on I2.

3. Polynomial majorants and minorants for the stop-loss function.

         In this Section one sets  f x x d( ) ( ) ,  d a b( , )   the deductible,  I a d1 , ,
I d b2 , . Then the stop-loss function  f(x)  may be viewed as the piecewise linear function 

defined by  0)()( 1 xxf   on  I1,  dxxxf )()( 2   on  I2. By convention  

rm ,...,1   is fixed such that  x d xm m 1. A polynomial majorant of fixed degree for  f(x)  

belongs always to one of the finitely many types listed in Table 3.1 below. The notations q(x;
,d)  and  Qj(x; ,d)  mean that these functions depend upon the parameter vector 
=( ,..., )x x r0 1   and  the deductible d.
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Proposition 3.1.  Let  bxxxax rr 110 ,,...,, ,  x xr s  for  r<s,  x d xm m 1, be the 

ordered support of a random variable  X  defined on  I, and let  q(x)  be a polynomial majorant 
such that  Pr ( ( ) ( ))q X f X 1  and  q(x) f(x)  on  I. Then  q(x)  is a polynomial uniquely 
determined by the conditions in Table 3.1.

Proof.  There are essentially two typical cases for which a proof is required, say (1a) and (1b). 
The other cases are shown by the same method and omitted for this reason.

Case (1a) :

One shows the existence of a unique polynomial  q(x)  of degree  n=2r  as in Figure 3.1.

Table 3.1 :  polynomial majorants for the stop-loss function

case support
x d xm m 1

Q x

j
j i( ) ,

,

0

1 2

Q x

j
j i
' ( ) ,

,

0

1 2

deg
q(x)

condition on
deductible  d

(1a) bxxa r ,,...,, 1 i = 0,...,r+1 i = 1,...,r 1 2r Q xr2
' ( ; ,d)=0

(1b) bxxa r ,,...,, 1 i = 0,...,r+1 i = 1,...,r 2r+1 Q y1 ( ; ,d)=0, ay ,

(1c) bxxa r ,,...,, 1 i = 0,...,r+1 i = 1,...,r 2r+1 Q z2 ( ; ,d)=0, ,bz

(2a) bxx r ,,...,1 i = 1,...,r+1 i = 1,...,r 2r Q z2 ( ; ,d)=0, ,bz

(2b) bxx r ,,...,1 i = 1,...,r+1 i = 2,...,r 2r 1 Q x1 1
' ( ; ,d)=0,

(3a) rxxa ,...,, 1 i = 0,...,r i = 1,...,r 2r Q y1( ; ,d)=0, ay ,

(3b) rxxa ,...,, 1 i = 0,...,r i = 1,...,r 1 2r 1 Q xr2
' ( ; ,d)=0

(4a) rxx ,...,1 i = 1,...,r i = 1,...,r 1 2r 2 Q xr2
' ( ; ,d)=0

(4b) rxx ,...,1 i = 1,...,r i = 1,...,r 2r-1 Q y1( ; ,d)=0, ay ,

(4c) rxx ,...,1 i = 1,...,r i = 1,...,r 2r-1 Q z2 ( ; ,d)=0, ,bz

Figure 3.1 :  polynomial majorant  q x x d( ) ( ) , x a b, , case (1a)

y x d( )

x a0 x1    ... xm            d xm 1  ... x r x br 1                     x
Consider the unique polynomial  q(x)  of degree  n=2r  such that

)( ixq
0 0

1 1

, ,...,

, ,...,

i m

x d i m ri

)(' ixq
0 1

1 1 1

, ,...,

, ,...,

i m

i m r
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By definition of  Qj(x), j=1,2, the conditions of Table 3.1 under case (1a) are fulfilled. In order 
that  q x x d( ) ( ) , the line  dxx)(2   must be tangent of  q(x)  at the remaining atom  

x xr , that is  q x r' ( ) 1  or  Q x r2
' ( ; ,d)=0. This condition is an implicit equation for the 

deductible  d  and restricts its range of variation (for precise statements a further analysis is 
required, as will be seen in Section 5). The theorem of Rolle implies the following facts :
(i) Q x q x1

' ( ) ' ( )   vanishes at least once on each of the  m  subintervals  ( , )x xi i 1 ,
i m1,..., .

(ii) Q x q x2 1' ( ) ' ( )   vanishes at least once on each of the  r-m  subintervals  ( , )x xi i 1 ,
i m r1,..., .

(iii) Q x1 0' ( )   on dxm ,   and Q x2 0' ( )   on 1, mxd . More precisely one has

Q x1 0' ( )   on dxm ,   since Q x Q x x dm m m1 1 1 10( ) ( ) , and Q x2 0' ( )   on

1, mxd   since Q x d x Q xm m m2 2 10( ) ( ) .

In particular there are exactly  n-1  zeros of  q'(x)  on  I. It follows that  Q x1 ( )  is local 
minimal at all  x i mi , ,...,1 , and local maximal between each consecutive minima, as well as 
in the interval  ( , )a x1 . Similarly  Q x2 ( )  is local minimal at all  x i m ri , ,...,1 , and local 
maximal between each consecutive minima, as well as in the interval  ( , )x br . These 
properties imply that  Q x1 0( )   on  I1  and  Q x2 0( )   on  I 2, which together means that 
q x x d( ) ( )   on I I I1 2 .

Case (1b) :

One shows the existence of a unique polynomial  q(x)  of degree  n=2r+1  as in Figure 3.2, 
where  y  is a further zero of  q(x)  in  a, .

Figure 3.2 :  polynomial majorant  q x x d( ) ( ) , x a b, , case (1b)

y x d( )

   y x a0 x1 ... x m     d x m 1  ... x r x br 1                  x
Consider the unique polynomial  q(x)  of degree  n=2r+1  such that

)( ixq
0 0

1 1

, ,...,

, ,...,

i m

x d i m ri

, )(' ixq
0 1

1 1

, ,...,

, ,...,

i m

i m r

By definition of  Qj(x), j=1,2, the conditions of Table 3.1 under case (1b) are fulfilled. In order 
that  q(x)  is a polynomial of odd degree, there must exist a further zero  y  of  q(x)  in 

a, , which yields the implicit equation  Q y1 ( ; ,d)=0  for the deductible  d (precise 

statements are analyzed later in Section 5). The rest of the proof similarly to case (1a).  
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Remark 3.1.  The construction of polynomial minorants for the stop-loss function is much 
easier. In fact a finite atomic random variable, which maximizes the probability distribution 
function also minimizes the stop-loss transform. A proof of this result is given by Kaas and 
Goovaerts(1986b), Theorem 1. Therefore, for polynomial minorants, Table 2.1 applies.

4. The Chebyshev-Markov bounds by given range and known moments to order four.

Based on Table 2.1 and Remark 2.1, it is possible to present an elementary proof of the 
Chebyshev-Markov inequalities for a distribution function defined over an arbitrary interval  
I= a b, , a b . For this it suffices to analyze in details the possible supports in 
Table 2.1, which must all be solutions of the moment problem for the interval  a b, . Using 
the analytical-algebraic structure of the sets of di- and triatomic random variables, as presented 
in Section I.5, the bounds up to moments of the fourth order are obtained very simply. Even 
more, they are made explicit, a feature which will be required and exploited in Chapter V.

Theorem 4.1.  Let  F(x)  be any standardized distribution function on  a b,   such that  a<0<b,

1+ab 0. Then there exist extremal distributions  )()()( xFxFxF u   on  a b, , and finite 

atomic random variables at which the bounds are attained, as given in Table 4.1.

Table 4.1 : Chebyshev-Markov extremal standard distributions for the range  a,b

condition )(xF F xu ( ) extremal support

a x b 0
1

1 2x xx,

b x a

1 bx

b a x a( )( )
1

1 ax

b a b x( )( ) bxa ,,

a x b
x

x

2

21 1 xx,

Proof.  By Table 2.1 and Remark 2.1, quadratic polynomial majorants and minorants for the 
Heaviside indicator function are obtained either for ordered diatomic supports  xx, , xx,

(case (4)) or for a triatomic support  bxa ,,   (case (1)). With Proposition I.5.1, one has 

necessarily  x a b,   if  xx,   is the extremal support, and  x a b,   if  xx ,   is the 

extremal support. Similarly the triatomic support  bxa ,,   is only feasible if  x b a, . The 

construction of the quadratic majorants for  )(, XI x   and the quadratic minorant for  

)(, XI x   implies immediately the displayed extremal values, which are equal to the expected 

values of  )(1 , XIE x   and  )(, XIE x   taken at the corresponding atomic extremal 

random variables.

Since they are important in practical work, the results for the limiting intervals 
( , ) and ,a   are stated in the separate Tables 4.1' and 4.1''.

Remark 4.1.  The second case in Table 4.1'' must be viewed as a limiting case. There exists a 
sequence of extremal supports  bxa ,,   converging to the limiting random variable denoted  
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,, xa   as  b . Only this interpretation guarantees that the variance of  ,, xa   is one. 

Intuitively, the atom    is endowed with an infinitesimal probability  p( )3   with the limiting 
property  p ax( )3 1 . A rigorous proof of the Cantelli inequalities, in the theoretical sense 
of Mathematical Analysis, has been given by Royden(1953).

Table 4.1' : Chebyshev inequalities for a standard distribution on  ( , )

condition )(xF F xu ( ) extremal support

x 0 0
1

1 2x xx,

x 0
x

x

2

21 1 xx,

Table 4.1'' : Cantelli inequalities for a standard distribution on ,a

condition )(xF F xu ( ) extremal support

a x 0 0
1

1 2x xx,

0 x a

x

x a( ) 1 ,, xa

x a
x

x

2

21 1 xx ,

Theorem 4.2.  Let  F(x)  be any standard distribution function on  a b,   with known 

skewness    such that  a<0<b,  1+ab 0,  a a b b . Then the extremal distributions  
)()()( xFxFxF u   are given and attained as in Table 4.2.

Table 4.2 :  Chebyshev-Markov inequalities for a standard distribution on  a b,   by 
known skewness

condition )(xF F xu ( ) extremal support

a x c 0 px
( )3 bbxx ),,(,

c x a b( , ) pa
( )3 1 3p a x( , )

( ) ),(,, xaxa

( , )a b x c p x b( , )
( )3 1 3pb

( ) bxbx ,),,(

c x b 1 3px
( ) 1 xxaa ),,(,

Proof.  By Lemma 2.1, Remark 2.1, and Proposition III.5.2, which characterizes triatomic 
standard random variables by known skewness, cubic polynomial majorants and minorants for 
the Heaviside indicator function can only be obtained at ordered triatomic supports of the four 
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forms ),(,, xaxa , xxaa ),,(, , bbxx ),,(, , bxbx ,),,( . The values of  x, for which 
these forms define feasible extremal triatomic random variables, are determined as follows. If  

),(,, xaxa   is the extremal support, then one has necessarily  ( , ) ,a x c b ,
x a a x c c( , ( , )) , . Since ( , )a x   is strictly increasing in  x, the inequality  ( , )a x b
implies further that  x a a x a b( , ( , )) ( , ) . But one has  ( , )a b c, hence 
x c a b, ( , ) . It is immediate that  xxaa ),,(,   is feasible if  x c b, , and that 

bbxx ),,(,   is feasible if  x a c, . If  bxbx ,),,(   is the extremal support, then one has   
( , ) ,x b a c ,  x x b b c c( ( , ), ) , . The inequality  a x b( , )   implies further that  
( , ) ( ( , ), )a b x b b x. But one has  c a b( , ), hence  x a b c( , ), . By the 

polynomial majorant/minorant method, one obtains  )(1)( , XIExF x   and 

)()( , XIExF xu , where expectation is taken at the extremal random variables. 

One observes that for the limiting interval  ( , ) , one recovers Table 4.1', which 
means that there is no improvement over the Chebyshev inequalities by additional knowledge 
of the skewness parameter. For the one-sided infinite interval  ,a   the obtained limiting 
result is stated in Table 4.2''.

Table 4.2'' :  Chebyshev-Markov inequalities for a standard distribution on  ,a
           by known skewness

condition )(xF F xu ( ) extremal support

a x c 0
1

1 2x xx,

c x a pa
( )3 1 3p a x( , )

( ) ),(,, xaxa

a x c
x

x

2

21 1 xx,

x c 1 3px
( ) 1 xxaa ),,(,

Theorem 4.3.  Let  F(x)  be any standard distribution function on  a b,   with known 

skewness , kurtosis 2 3, such that the following moment inequalities  a<0<b, 1+ab 0,

a a b b , and  ))((
1

10 2 bbaa
ab

ab
  are fulfilled. Then the 

extremal distributions )()()( xFxFxF u   are given and attained as in Table 4.3.

Table 4.3 :  Chebyshev-Markov inequalities for a standard distribution on  a b,   by 
known skewness and kurtosis

condition )(xF F xu ( ) extremal support

a x b* 0 px
( )3 ** ),,(, xxxx
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b x a a* *( , ) p x ba
( ) ( , )4 p x b p a ba x

( ) ( )( , ) ( , )4 4 bbaxxa ),,;(,,

( , ) ( , )* *a a x b b 1 3 3p px x

( ) ( )
* 1 3p

x*
( ) ** ,),,( xxxx

( , )* *b b x a 1 4 4p a b p a xx b
( ) ( )( , ) ( , ) 1 4p a xb

( ) ( , ) bxbaxa ,),,;(,

a x b* 1 3px
( ) 1 xxxx ),,(, **

Proof.  By Lemma 2.1, Remark 2.1, and Theorem I.5.3 and I.5.4, one observes that biquadratic
polynomial majorants and minorants for the Heaviside indicator function can only be obtained 
at ordered tri-, respectively four- atomic supports of the five forms  ** ),,(, xxxx ,

** ,),,( xxxx , xxxx ),,(, ** (case (4) of Table 2.1), respectively  bbaxxa ),,;(,, ,

bxbaxa ,),,;(, (case (1) of Table 2.1). The values of  x, for which these forms define 
feasible tri-, respectively four-atomic extremal random variables, are determined as follows. 
From Theorem I.5.3, it is immediate that **),,(, xxxx   is only feasible if x a b, * . Since  
* is an involution,  xxxx ),,(, **   is only feasible if  x a b* , . In case ** ,),,( xxxx   is 

feasible, one has ( , ) ,* *x x a b . Moreover one has ( , )* * *x x x   and  

x x x x( ( , ), )* * . Since    is strictly increasing in  x, it follows from a x x b( , )* *

that ( , ) ( ( , ), ( , ) ) ( ( , ), ) ( , )* * * * * * *a a x x x x x x x x b b   as desired. By 

Theorem I.5.4, the support  bbaxxa ),,;(,,   is feasible only if x b a a* *, ( , ) . Since  

( ; , )x a b is strictly increasing in  x, and  ( ; , ) ( , )* *b a b b b ( ( , ); , )* *a a a b a , it 

follows that bxbaxa ,),,;(,   is feasible provided x b b a( , ),* * . Finally the polynomial 

majorant/minorant method implies that )(1)( , XIExF x   and  )()( , XIExF xu ,

where expectation is taken at the corresponding atomic extremal random variables.  

The bounds obtained for limiting intervals are stated in the Tables 4.3' and 4.3''.

Table 4.3' :  Chebyshev-Markov inequalities for a standard distribution on  ( , )
          by known skewness and kurtosis

condition )(xF F xu ( ) extremal support

x c 0 px
( )3 ** ),,(, xxxx

c x c 1 3 3p px x

( ) ( )
* 1 3p

x*
( ) ** ,),,( xxxx

x c 1 3px
( ) 1 xxxx ),,(, **
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Table 4.3'' :  Chebyshev-Markov inequalities for a standardized distribution on
,a   by known skewness and kurtosis

condition )(xF F xu ( ) extremal support

a x c 0 px
( )3 ** ),,(, xxxx

c x a a( , )* pa
( )3 p pa x

( ) ( )3 3 ),,(,, xaxa

( , )*a a x c 1 3 3p px x

( ) ( )
* 1 3p

x*
( ) ** ,),,( xxxx

c x a* 1 3px
( ) 1 ),,(,, xaxa

x a* 1 3px
( ) 1 xxxx ),,(, **

Proof of Tables 4.3' and 4.3''.  Table 4.3' is derived along the same line as Table 4.3 with the 
difference that the only possible biquadratic polynomial majorants and minorants for the 
Heaviside indicator function are obtained at the ordered triatomic supports  ** ),,(, xxxx ,

** ,),,( xxxx , xxxx ),,(, ** . Table 4.3'' is obtained as limiting case of Table 4.3 as  

b . In particular, one applies formula (5.8) in Theorem I.5.3 to show that  lim *

b
b c  and  

lim ( ; , ) ( , )
b

x a b a x . Furthermore, the limiting random variables  ),,(,, xaxa   and  

),,(,, xaxa   must be interpreted similarly to Remark 4.1 in order that the kurtosis 

constraint is fulfilled.

Remark 4.2.  It is well-known (e.g. Kaas and Goovaerts(1986a)) that the above results can be 
used to bound any probability integrals of the type

x

a

x XIXgExdFxg )()()()( , ,

where  g(x)  is a non-negative real function defined on  a b, . The upper bound is found by 
evaluation of this expectation at the maximizing atomic random variables. Similarly the lower 
bound is obtained from the expectation )()()( , XIXgEXgE x .

5. The maximal stop-loss transforms by given range and known moments to order four.

We will derive the following structure for the maximal stop-loss transform on a given 

interval  a b, , a b . There exists a finite partition  a b d di i
i

m

, ,1
1

U   with 

d a d bm0 , , such that in each subinterval one finds a monotone increasing function 
d x d di i i( ) ,1 , the parameter  x  varying in some interval  x xi i1 , , which we will name a 

deductible function. Then the maximal stop-loss transform on  d di i1 ,   is attained at a finite 

atomic extremal random variable  X xi ( )   with support  )(),...,( 10 xxxx iri   and probabilities 

)(),...,( 10 xpxp iri , x x xi i1 , , and is given implicitely by the formula
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(5.1) * ( ( )) ( ) ( ( ) ( )) , , , ,..., .d x p x x x d x x x x i mi ij ij i
j

r

i i
0

1

1 1

Based on Table 3.1, it is possible to derive and present the results in the specified unified 
manner. As a novel striking fact, we observe that all deductible functions below can be written 
as weighted averages.

Theorem 5.1.  The maximal stop-loss transform of a standard random variable on  a b,   is
determined in Table 5.1, where the monotone increasing deductible functions are "weighted 
averages of extremal atoms" given by the formulas

d x
a x a a a a

a x a a1 ( )
( ) ( )

( ) ( )
, d x x x2

1

2
( ) ( ), d x

b b b x b b

b b x b3 ( )
( ) ( )

( ) ( )
.

Table 5.1 :  maximal stop-loss transform on a b,

case range of
parameter

range of
deductible

* ( ( ))d xi extremal
support

(1) x a a d x a a1
1
2( ) ( ) p a d xa

( ) ( ( ))2
1 aa,

(2) a x b 1
2 2

1
2( ) ( ) ( )a a d x b b p x d x xx

( ) ( ( )) ( )2
2

1
2 xx,

(3) x b 1
2 3( ) ( )b b d x b p b d xb

( ) ( ( ))2
3 bb ,

Proof.  By Table 3.1 quadratic polynomial majorants  q X X d( ) ( ) ,  d  the deductible of 
the stop-loss function, can only be obtained at diatomic supports of the forms  aa,   (case 

(3a), xx,   (case (4a))  or  bb ,   (case (2a)).

Case (1) :  extremal support aa,
The unique quadratic polynomial q X q X a a d( ) ( ; , , ) such that q a q a a d( ) , ( ) ,0
q a' ( ) 1, is given by

q X
d a X a

a a
X d( )

( )( )

( )
( )

2

2
.

Solving the condition Q x a a d q x a a d x a1 0( ; , , ) ( ; , , ) , , one finds for the deductible

d
a ax

a a x
x a

2

2
, ,

which implies without difficulty the desired results.
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Case (2) :  extremal support  xx,

By Theorem I.5.3 the ordered diatomic support  xx,   is feasible exactly when  x a b, .

The unique quadratic polynomial  q X q X x x d( ) ( ; , , )   such that q x q x( ) ' ( ) ,0
q x x d( ) , is given by

q X
x d X x

x x
( )

( )( )

( )

2

2
.

Solving the condition Q x x x d q x2 1 0' ( ; , , ) ' ( ) , one finds

d x x a x b
1

2
( ), ,

from which all statements follow.

Case (3) :  extremal support bb ,

The unique quadratic polynomial  q X q X b b d( ) ( ; , , )   such that q b q b( ) ' ( ) ,0
q b b d( ) , is given by

q X
b d X b

b b
( )

( )( )

( )

2

2
.

Solving the condition Q x b b d q x x d x b2 0( ; , , ) ( ) ( ) , , one finds

d
bx b

x b b
x b

2

2
, ,

and the stated results are immediately checked.  

In many applications one is especially interested in the limiting ranges  ,a   and 

( , ) . For the range  ,a   the case (3) is inapplicable and one obtains the same formulas 
as in the cases (1) and (2) above, with the difference that  a x 0  in case (2). For the range  
( , )   both cases (1) and (3) are inapplicable and  x 0  in case (2). Since the 

function d x x
1

2
( )  may be inversed such that  x d d1 2 , one gets after calculation

* ( )( ) ( ) ( ), ( , )d p x d d d dx
2 21

2
1 ,

a formula first derived by Bowers(1969).

Theorem 5.2.  The maximal stop-loss transform of a standard random variable on  a b,   by 

known skewness   is determined in Table 5.2.
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Table 5.2 :  maximal stop-loss transform of a standard random variable on  a b,   by 

        known skewness

case range of 
parameter

* ( ( ))d xi extremal support

(1) x a d x p d x aa1
3

1( ) ( ( ) )( ) bbaa ),,(,

(2) a x c d x p d x xx2
3

2( ) ( ( ) )( ) bbxx ),,(,

(3) x b p c d xc
( ) ( ( ))2

3 cc,

(4) x a p c d xc
( ) ( ( ))2

4 cc,

(5) c x b p x d xx
( ) ( ( ))3

5 xxaa ),,(,

(6) x b p b d xb
( ) ( ( ))3

6 bbaa ),,(,

The monotone increasing deductible functions are "weighted averages" and given by the 
following formulas :

d x
b a a x x a b a x

b a a x b a x
a b1

2

2
( )

( )( ) ( ) ( )( )

( )( ) ( ) ( )( )
, ( , ) ,

d x
b x x x b b b

b x x b b2

2

2
( )

( ) ( ( , ) )

( ) ( ( , ) )
,

d x
x c c c c x

x c c c3

2

2
( )

( ) ( )

( ) ( )
,

d x
c c x c x c

c c c x4

2

2
( )

( ) ( )

( ) ( )

d x
x a x a x a x

x a x x a5

2

2
( )

( ( , )) ( )

( ( , )) ( )

d x
b a x x b b a b x

b a x x b a b
a b6

2

2
( )

( )( ) ( ) ( )( )

( )( ) ( ) ( )( )
, ( , ).

Proof.  The only standard diatomic random variable with known skewness has support  cc, .
From Table 3.1 it follows that cubic polynomial majorants  q X X d( ) ( )   can only be 
constructed for the displayed di- and triatomic extremal supports. Our application of the cubic 
polynomial majorant method consists in a partial generalization of the general quadratic 
polynomial majorant algorithm presented in Chapter II. Non defined notations and 
conventions are taken from that part. The letters  u, v, w  denote three ordered real numbers,  

iII   is a partition of  I= a b, , and  f(x)  is a piecewise linear function on  I  such that  

)()( xxf i   on  Ii  with  xx iii )( . We assume that  i j  if  i j, and the point 

of intersection of two non-parallel lines  )(xi   and  )(xj   is denoted by  
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d dij ji
i j

j i

. The piecewise cubic function  Q(x)=q(x) f(x)  coincides on  Ii  with the 

cubic polynomial )()()( xxqxQ ii . We use the backward functional operator  

)()()( xxx ijij . In the present proof we set

ijjiji dddxxxbdIdaI ,)(,0)(,,,, . Relevant are two main symmetric 

cases, where in each case three types may occur as described below.

Case (I) : u I v I w I bi j j, , ( , )

Since a cubic polynomial is uniquely determined by four conditions, there exists a unique  q(x)  
such that

Q ui ( ) 0  (u  is a simple zero),
Q v Q vj j( ) ( )' 0  (v  is a double zero),

Q wj ( ) 0  (w  is a simple zero).

It is given by

))(()(),(
)()(

)()(
)()(

2

2

ijijijjij duux
uwuv

wxvx
uxq .

To obtain it, set it equal to a cubic form

)()()()()()()( 2223 xvxucwxvxucxq jijij ,

and show that

,
)(

)(
)(

2
2

uv

u
uc ij

ij   from the fact that Q wj ( ) 0,

c u
c u

w uij
ij3
2

( )
( )

( )
,   from the fact that Q ui ( ) 0.

Type (1)  :  u, w  rand points of I Ii j,   as in the following figure :

z u d ij     v        w

There exists a second zero  uz ,   of  Q xi ( ) . The condition  )()( zzq i   is equivalent 

with the formulas
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d
z v z w u v u w u z

z v z w v u w u

z v u w u v uz

z v w u v u z

w u v u z v z u w u v z v

w u v u v z w u v z

ij

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )( )

( ) ( )( )

( )( ) ( ) ( )( )

( )( ) ( ) ( )( )
.

2 2

2 2

2 2

2

2

2

2

The third equality is a weighted average rearrangement of the second one. The latter 
expression is obtained from the first one by expanding the first term in the numerator as

( ) ( ) ( ) ( ) ( ) ( )z v z w u z v z u u z v u w u2 2 2 ,

and the second term in the denominator as

( ) ( ) ( ) ( )( ) ( )v u w u v z z u v u z w u2 2 2 .

Setting  u=a,  v a b( , ) ,  w=b,  axz , , one obtains the expression for the 
deductible function  d x1 ( ) , which is shown to be monotone increasing for  x a. The 
maximal value * ( ( ))d x1   is immediate.

Type (2)  : u  double zero of Q xi ( ) , w=b  rand point of I j  as in the following figure:

u d ij     v        w=b

The condition Q ui
' ( ) 0  implies the formulas

d
u v w u

v w u

w u u v u w

w u v uij

( ) ( ) ( )

( ) ( )

2

2 3

2

2

2

.

Setting  u=x,  v x b( , ) ,  w=b, one obtains  d x2 ( ) . From the characterization theorem for 
triatomic distributions, it follows that the extremal support is feasible only if  x a c, .

Type (3)  :  u  double zero of Q xi ( ) , w b( , )   as in the following figure :

u d ij v b       w
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As for the type (2) one obtains the value

d
w u u v u w

w u v uij

2

2

( ) ( )

( ) ( )
.

The formula for d x3 ( )   follows by setting  u=c,  v c , w x b( , ) .

Case (II) : u a I v I w Ii i j( , ) , ,

All formulas below can be obtained from case (I) by symmetry. It suffices to exchange  u  and 
w,  i  and  j  and replace  b  by  a. For completeness the main steps are repeated. First, there 
exists a unique cubic polynomial  q(x)  such that  Q ui ( ) 0, Q v Q vi i( ) ( )' 0 , Q wj ( ) 0.

It is given by

)(
)()(

)()(
)()(

2

2

x
uwvw

uxvx
wxq iij .

Type (4)  :  w  double zero of Q xj ( ), u a( , )   as in the following figure :

u a v d ij      w         b

From the condition Q wj
' ( ) 0, or by symmetry with type (3), one obtains

d
w u w w v u

w u w vij

2

2

( ) ( )

( ) ( )
.

The deductible function  d x4 ( )   follows by setting  u x a( , ) ,  v=c, w c.

Type (5)  :  w  double zero of Q xj ( ), u=a  rand point of I i as in the following figure:

u=a v d ij     w        b
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The same formula for  d ij   as in type (4) holds. Setting  u=a,  v a x( , ) ,  w=x, one obtains  

d x5 ( ), which is symmetric to  d x2 ( ) . The extremal support is feasible only if  x c b, .

Type (6)  :  u, w  rand points of I Ii j,   as in the following figure :

u v d ij     w        z

This is symmetric to type (1). The second zero  ,wz   of  Q xj ( )  leads to the weighted 

average formula

d
w u w v z z v w w u z v v

w u w v z v w u z vij

( )( ) ( ) ( )( )

( )( ) ( ) ( )( )
.

2

2

Setting  u=a, v a b( , ) ,  w=b, ,bxz , one obtains d x6 ( ) .

Let us look at the limiting ranges. If  b   then the cases (3) and (6) in Table 5.2 are 
inapplicable. Using that lim ( , )

b
x b x   one obtains the following quite tractable result.

Table 5.2'' :  maximal stop-loss transform of a standard random variable on  ,a

           by known skewness  

case range of 
parameter

range of 
deductible

* ( ( ))d xi extremal support

(1) x a a a a, ( )1
2 p a d xa

( ) ( ( ))2
1 aa,

(2) a x c 1
2

1
2( ), ( )a a c c p x d x xx

( ) ( ( )) ( )2
2

1
2 xx,

(3) x a 1
2 3( ), ( )c c d a p c d xc

( ) ( ( ))2
3 cc,

(4) x c ),()( 43 cdad p x d xx
( ) ( ( ))3

4 xxaa ),,(,

The monotone increasing deductible functions take the weighted average forms :

d x
a x a a a a

a x a a1 ( )
( ) ( )

( ) ( )
, d x x x2

1

2
( ) ( ), d x

c c x c x c

c c c x3

2

2
( )

( ) ( )

( ) ( )
,
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d x
x a x a x a x

x a x x a4

2

2
( )

( ( , )) ( )

( ( , )) ( )
.

Let further  a   in Table 5.2''. Then the cases (1) and (3) are inapplicable. Since 
( , )a x x, one sees that  d x d x4 2( ) ( )  and  * *( ( )) ( ( )) ( )d x d x x4 2

1
2 . One 

recovers the best upper bound by Bowers(1969). As for the Chebyshev-Markov inequality 
over  ( , ) , one observes that the additional knowledge of the skewness does not improve 
the best upper bound for standard random variables on  ( , ) .

Theorem 5.3.  The maximal stop-loss transform of a standard random variable on  a b, by 

known skewness   and kurtosis 2 3  is determined in Table 5.3.

The monotone increasing deductible functions are defined by the following "weighted 
averages" :

d x
a x a x a a a x a a a a

a x a x a a a x
a a1

2 2

2 2

2

2 2
( )

( ) ( ) ( ) ( )

( ) ( )
, ( , )

* * * *

* *

*

)(),(

)(2)(),(

2

1
)( **

***

2 xxxxx

xxxxxxxx
xd

d x
b b x b b b b b b b x b b b

b b x b b b b x b b3

2

2 2
( )

( )( )( ( , )) ( ( , ) )( )

( )( ) ( ( , ) )( )

* * * * * * * *

* * * * *

),(,
)()(2)()(2)()(

)())(()())(()()(
)( *

*2***2

**2*****2

4 bb
bxbbbbbx

bbxbbbbbbbx
xd

),;(,
)()(2)()()(2)(

)()(2)()()(2)(
)(

22

22

5 bax
xaxbxxba

axaxbbxxxba
xd

),(,
)()(2)()(2)()(

)())(()())(()()(
)( *

*2***2

**2*****2

6 aa
axaaaaax

aaxaaaaaaax
xd

d x
a a a x a a a a a a a a x a

a a a x a a a a a x7

2

2 2
( )

( )( )( ( , ) ) ( ( , ))( )

( )( ) ( ( , ))( )

* * * * * * * *

* * * * *

)),(()(

),()),((2),()(

2

1
)( ***

*****

8 xxxxx

xxxxxxxxxx
xd

d x
a x a a a a a x a a x a

a x a a x a a x
a a9

2 2

2 2

2

2 2
( )

( ) ( ) ( ) ( )

( ) ( )
, ( , )

* * * * *

* * *

*

Table 5.3 :  maximum stop-loss transform on a b, by known skewness and kurtosis

case range of 
parameter

* ( ( ))d xi extremal support

(1) x a p a a d x p a d x
a a a( , )

( ) * ( ) *
* *( ( , ) ( )) ( ( ))3

1
3

1
**),,(, aaaa

(2) a x b* p x x d x p x d x
x x x( , )

( ) * ( ) *
* *( ( , ) ( )) ( ( ))3

2
3

2
** ),,(, xxxx
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(3) x b p b b d x p b d x
b b b( , )

( ) * ( )
* ( ( , ) ( )) ( ( ))3

3
3

3 bbbb ),,(, **

(4) x a p b b d x p b d x
b b b( , )

( ) * ( )
* ( ( , ) ( )) ( ( ))3

4
3

4 bbbb ),,(, **

(5) b x a a* *( , ) p d x p b d xb
( ) ( )( ( )) ( ( ))4

5
4

5

bxa ,,, ,
( ; , ),

( , )

x a b

a b

(6) x b p a d x
a*
( ) *( ( ))3

6
**),,(, aaaa

(7) x a p a d x
a*
( ) *( ( ))3

7
**),,(, aaaa

(8) a x b* p x d x
x*
( ) *( ( ))3

8
** ),,(, xxxx

(9) x b p b d xb
( ) ( ( ))3

9 bbbb ),,(, **

Proof.  From Table 3.1 it follows that biquadratic polynomial majorants  q X X d( ) ( )
can only be constructed for the displayed extremal supports. We proceed along the same line 
as in the proof of Theorem 5.2. There are four main cases, of which two can be obtained by 
symmetry.

Case (I) : u I i   double zero of Q xi ( ) , v w I j, double zeros of Q xj ( )

Since a biquadratic polynomial is uniquely determined by five conditions, there exists a unique 
q(x)  with the required conditions, namely

)()()(
)()(

)(
)( 22

22
xwxvx

uwuv

u
xq j

ji

Type (1) : uz ,   is a further zero of Q xi ( )   as in the following figure :

z u d ij   v     w

The condition )()( zzq i   implies the following formulas
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d
z v z w u v u w u z

z v z w v u w u

w z v u z u v u w z u w u w

w z v u z v u w u z

ij

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
,

2 2 2 2

2 2 2 2

2 2

2 2

2

2 2

of which the second equality is a weighted average rearrangement. Setting  u=a,  v a a( , )* ,
w a* ,  axz , , one obtains the deductible function  d x1 ( ) , which is shown to be 

monotone increasing for  x a. The value of  * ( ( ))d x1   is immediate.

Type (2) :  u  is a double zero of Q xi ( )   as in the following figure :

a u d ij v w     b

Solving the condition Q ui
' ( ) 0  one obtains

)(2)(2

)(2))((

2

3)(

2

1 2

uwuv

uuwwuuv

uwv

uwvuvw
dij

Setting  u=x,  v x x( , )* ,  w x*, one gets  d x2 ( ) . The characterization theorem for 

triatomic random variables shows that the extremal support is feasible provided  x a b, * .

Case (II) : u I i   double zero of Q xi ( ) , v I j double zero of Q xj ( ), w I j double

       zero of Q xj ( )

The unique  q(x)  with the required conditions takes the form

)())(()())(()())(()( 2223224 xuxvcvxuxvcvxuxwcxq iijijij ,

where the coefficients are given by

22
2

)(

))((

)(

)(
)(

uv

dv

uv

v
vc ijijij

ij ,  from the condition Q vj ( ) 0,

33
3

)(

)2)((

)(

)(2))((
)(

uv

vud

uv

vuv
vc ijijijij

ij ,  from Q vj
' ( ) 0,
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,
)(

)32(2)()(

)()(

)())(())(()(
)(

2

2

22

2322
4

uw

duvwuwvu

vwuw

vwuwvcuwvcw
vc

ijij

ijijij
ij

from the condition Q wj ( ) 0. The last equality follows by calculation using the identities

( ) ( ) ( ) ( ) ( )v u w u w u v w v w v u3 2 22 3 2 3 ,

w v u v w u w u v v u w v w u

w v u w v u v w v

w v u v w u

( ) ( ) ( ) ( )( )( )

( ) ( ) (( ) )

( ) (( ) ).

3 2 2

3 2 2

2 2

2 3

2

2

Type (3) : ,wz   is a further zero of Q xj ( )  as in the following figure :

u d ij v       w       z

Solving the condition )()( zzq j   one finds

,
)2)(())((2

)()()())()((

)(2)2)(32(

))(()2(2)(

)()(23)()()(32

)()()(2)()()(2)(

2

22

32222

3222222

uwzuvuzuw

uuwuuzuvvuuzuw

uwuwzuvw

uwvuuwzuwvu

uvuzzuvuwvzuzuvw

zuvuzzvuvuwvzuzuwvu
dij

from which the expression for  d x3 ( )   follows by setting  u b*,  v b b( , )* ,  w=b, 
,bxz .
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Type (4) : az ,   is a further zero of Q xi ( )   as in the following figure :

z a u d ij   v       w

Solving the condition )()( zzq i   one obtains

,
)()(2)()(2)()(

)())(()())(()()(

23)()(32

)(2)()(2)(

22

22

22

2222

uvzvuwuwuvzv

vuvvuzvuwvuuwuuvzv

zuvuwzvuvw

zvuvuwzvuwvu
dij

from which d x4 ( )   follows by setting  u b*, v b b( , )* ,  w=b, axz , .

Type (5) :  z=a  is a further zero of Q xi ( )   as in the figure of type (4)

Setting  z=a,  u=x,  v x a b( ; , ) ,  w=b  in the formula of type (4), one obtains  d x5 ( ). From 

Theorem I.5.4 one knows that the extremal support is feasible provided  ),(, ** aabx .

Case (III) : u I i   simple zero of Q xi ( ) , v I i double zero of Q xi ( ) , w I j

        double zero of Q xj ( )

By exchanging  u  and  w  as well as  i  and  j, and  a  and  b, this case is seen to be symmetric 
to case (II). Since  d dij ji   one obtains by symmetry the unique  q(x)  with the required 

conditions as
)())(()())(()())(()( 2223224 xwxvcvxwxvcwxvxucxq jijijij ,

with the coefficients

c v
d v

w vij
j i ij2

2
( )

( )( )

( )
,

c v
d v w

w vij
j i ij3

3

2
( )

( )( )

( )
,

c v
w v w u w v u d

w uij

j i ij4

2

2

2 3 2
( )

( ) ( ) ( )

( )
.
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Type (6) : ,bz   is a further zero of Q xj ( )  as in the following figure :

u v d ij w       b       z

By symmetry to type (4) the condition  )()( zzq j   yields

d
z v w v w w u v w w u z v v w w v v

z v w v w u w u z v w vij

( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2

2 22 2
,

from which d x6 ( )   follows by setting  u=a,  v a a( , )* , w a*, ,bxz .

Type (7) : az ,   is a further zero of Q xi ( )   as in the following figure :

z u v d ij   w       b

By symmetry to type (3) the condition  )()( zzq i   yields

d
w u w z v w w v w z w w u w

w u w z w v w u zij

( )( )( ) ( ) ( ) ( )

( )( ) ( )( )2 2
,

from which d x7 ( )   follows by setting  u=a,  v a a( , )* , w a*, axz , .
Case (IV) : u v I i, double zeros of Q xi ( ) , w I j   simple zero of Q xj ( )

By exchanging  u  and  w  as well as  i  and  j, and  a  and  b, this case is seen to be symmetric 
to case (I). The unique  q(x)  with the required conditions is

)()()(
)()(

)(
)( 22

22
xvxux

vwuw

w
xq i

ij .
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Type (8) :  w  is a double zero of Q xj ( )  as in the following figure :

u v d ij      w

By symmetry to type (2), the condition  Q wj
' ( ) 0  yields

d
w v u w w u w

w v w uij

( )( ) ( )

( ) ( )

2

2 2
,

from which  d x8 ( )   follows by setting  u=x,  v x x( , )* ,  w x*. The extremal support is 

feasible provided x a b, * .

Type (9) : ,wz   is a further zero of Q xj ( )  as in the following figure :

u v d ij w               z

By symmetry to type (1) the condition  )()( zzq j   yields the formula

,
)2()()2()(

)()()()2()(
22

22

uwzvwvzwuz

uuwwuzvwwvzwuz
dij

from which d x9 ( )   follows by setting  u b*, v b b( , )* ,  w=b, ,bxz .

It is instructive and useful to state the maximal stop-loss transforms for the limiting 
ranges  ,a   and   ( , ) . The formulas simplify considerably, especially in the case  
( , ) , and are thus quite tractable in applications.

Proof of Table 5.3'.  The same method as in the proof of Table 5.3 applies. The proof 
simplifies considerably due to the fact that the only feasible extremal support is  

** ),,(, xxxx , where two cases can occur according to whether  ( , )*x x d   or not. 
Applicable are thus only the types (2) and (8) in Table 5.3. Case (2) applies with the 
parameter range  c,   and an equivalent formula for  * ( ( ))d x   obtained from the fact 
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that  p x p x x p xx x x x

( )

( , )

( ) * ( ) *
* *( , )3 3 3 0. In case (8) one changes  x  to  x*. By the involution 

property, the new parameter range is then  ,c .

Table 5.3' :  maximum stop-loss transform on ( , ) by known skewness and kurtosis

case range of 
parameter

range of
deductible

* ( ( ))d x extremal support

(1) x c d x( ) 1
2 d x p d x xx( ) ( ( ) )( )3 ** ),,(, xxxx

(2) x c d x( ) 1
2 p x d xx

( ) ( ( ))3 xxxx ),,(, **

The monotone increasing deductible function is defined by the weighted average

d x
x x x x x x x x

x x x x x
( )

( , ) ( ) ( )

( , ) ( )

* * *

* *

2

2 2
.

Table 5.3'' :  maximum stop-loss transform on ,a by known skewness and 
           Kurtosis

case range of parameter * ( ( ))d xi extremal support

(1) x a p a a d x p a d x
a a a( , )

( ) * ( ) *
* *( ( , ) ( )) ( ( ))3

1
3

1
** ),,(, aaaa

(2) a x c p x x d x p x d x
x x x( , )

( ) * ( ) *
* *( ( , ) ( )) ( ( ))3

2
3

2
** ),,(, xxxx

(3) x a p c d xc
( ) ( ( ))3

3 ,,cc

(4) c x a a( , )* p a x d xa x( , )
( ) ( ( , ) ( ))3

4 ),,(,, xaxa

(5) x a p a d x
a*
( ) *( ( ))3

5
** ),,(, aaaa

(6) a x c p x d x
x*
( ) *( ( ))3

6
** ),,(, xxxx

The monotone increasing deductible functions are defined by the following "weighted 
averages" :

),(,
2)(2)(

)()()(2)(
)( *

*22*

***22*

1 aa
xaaaxaxa

aaaaxaaaxaxa
xd
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)(),(

)(2)(),(

2

1
)(

**

***

2 xxxxx

xxxxxxxx
xd

)(2)(

)(2)(
)(3 xccc

cxcxcc
xd

d x
a x a a x a x x a

a x a a x x4

2

2
( )

( ( , ) ) ( , ) ( ( , ) )

( ( , ) ) ( ( , ) )

d x
a a a x a a a a a a a a x a

a a a x a a a a a x5

2

2 2
( )

( )( )( ( , ) ) ( ( , ))( )

( )( ) ( ( , ))( )

* * * * * * * *

* * * * *

)),(()(

),()),((2),()(

2

1
)(

***

*****

6 xxxxx

xxxxxxxxxx
xd

Proof of Table 5.3''.  We let  b   in Table 5.3. The cases (3), (6) and (9) are inapplicable. 
The cases (1) and (7) apply without change. With the aid of formula (5.8) in Theorem I.5.3 , 
one shows that  lim *

x
x c,  lim ( , )*

x
x x c . Therefore in case (2) the parameter range  

a b, *   must be replaced by  a c, . In case (4) the extremal support  bbbb ),,(, **   must be 

replaced by the limiting triatomic support  ,,cc . Using that  lim ( ; , ) ( , )
b

x a b a x , the 

extremal support  bxa ,,,   in case (5) must be replaced by the limiting support   

),,(,, xaxa . Again the limiting random variables have to satisfy the kurtosis constraint 

(see proof of Table 4.3'').  

6. Extremal stop-loss transforms for symmetric random variables by known kurtosis.

As seen in Section I.6, it suffices to restrict ourselve to the case of standard symmetric 
random variables with range a a a, , ,1 and kurtosis 2 3. Furthermore the stop-loss 
transform of a symmetric random variable satisfies the relation  ( ) ( )d d d , hence 
only the case of a non-negative deductible  d 0  has to be discussed.

Theorem 6.1.  The maximal stop-loss transform for standard symmetric random variables 
with range a a a, , ,1 and kurtosis 2 3  is determined in Table 6.1.

Examples 6.1.

The different dependence upon kurtosis by varying deductible is illustrated through 
straightforward calculation.

(i) If  a=3, =3, one obtains from case (1) in Table 6.1 that

465.0
31312

3720

2

1
)0(* .
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If  a=3, =6, one obtains similarly

354.0
2512

3350

6

1
)0(

2
3

2
3

* .

It is a bit surprising that for the higher kurtosis  6  the maximal stop-loss transform value is 
closer to the stop-loss transform value  1 2 0 399/ .   of a standard normal. However it is 
known from other risk-theoretical situations that the stop-loss transform at this deductible is 
often well approximated by  1 2/ (e.g. Benktander(1977), Hürlimann(1996a)).

(ii) From case (4) one gets immediately that  * *( ) , ( )1
2

3
4

1

4

1

8
. If =3

one has  * ( ) .3
4 3

1

8 3
0 072   while if  

27

4
  one has  * ( ) .3

4 3
1

6 3
0 096. For 

the same deductible, one obtains a higher maximal stop-loss transform by higher kurtosis. This 
is opposite to the behaviour observed in situation (i).

Table 6.1 :  maximal stop-loss transform for standard symmetric random variables by
        known kurtosis

case condition deductible d xi ( ) maximum * ( ( ))d xi extremal support

(1)
0

2

2 2
x

aa a a

a a

s s

s

( )

( ) x
1 2

4
2 2

4

2 2

2

xa

a
a a aa

a a a

s

s

s s

s s

( ) ( )

( )

aaaa ss ,,,

(2) 0 2x a s( ) a x a x

a x

( )

( )

2

2 2

( )

( )

a x x

a x

2

2

2

4 ax

xa

,,0

,,

(3) x a x x

x

( )

( )

2

2 2

d x3

2

( ) ,0,

(4) 1
2

3
4x x 1

2

x ,0,

(5) x a ( )x x

x

s 2 23

4

( ) ( )

( ( ) )

x x

x x x

s s

s

4 2

2 2

2

8
xxxx ss ,,,

(6) x a

))(2(

)(

)(

1

222

422

s

s

aax

axa

ax
ax

)(

))((2

)(2)(

6

22

24

xda

aa

aa
s

ss aaaa ss ,,,
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Proof of Theorem 6.1.  In each case one constructs a symmetric biquadratic polynomial 
majorant  q(x)  such that

q x x d x d x a a( ) ( ) ( ) , , ,

and where equality is attained at the atoms of the displayed extremal support. The possible 
types of extremal supports are taken from Theorem I.6.1. The maximal stop-loss transform is 
then given by

*

( ; )
( ) max ( ) ( ) ( ) ,d E X d X d E q X

X D aS

1
2

1
2

1
2

as seen in Lemma II.6.1. Proofs of the several cases in Table 6.1 are now given.

Case (1) :

Setting  u a v as ,   one constructs  q(x)  such that  q u q u u d( ) ( ) ,
q u q u' ( ) ' ( ) 1, q v q v v d( ) ( )   as in the following figure :

v u d d          u        v

It is appropriate to consider the biquadratic form

CuxBuxAxq )()()( 22222 , with first derivative BuxAxxq )(22)(' 22 .

The required conditions imply that the coefficients are equal to

C u d B
u

A
u u v

, ,
( )

1

2

1

2 2
.

Through calculation one obtains

224222
2

)(2)2(2)(
)(2

1
)( vuduuvvuxuvux

vuu
xq .

Since  q'(0)=0,  q
u v u

u u v
' ' ( )

( )

( )
0

2
0

2 2

2
, the polynomial  q(x)  is local minimal at  x=0. A 

necessary condition for  q x( ) 0  on the interval  d d,   is thus  q( )0 0. This implies the 
condition
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0
2

2 2
d

uv v u

u v

( )

( )
.

Case (2) :

Set u u x x x a v as( ) , , ( ) ,0 2   and construct  q(x)  such that

q u q u u d( ) ( ) , q u q u' ( ) ' ( ) 1, q v q v v d( ) ( ) ,  q q( ) ' ( )0 0 0  as in 
the following figure :

v u d   0 d          u        v

From case (1) one obtains that  q(x)  must be of the form

224222
2

)(2)2(2)(
)(2

1
)( vuduuvvuxuvux

vuu
xq .

The additional constraint  q'(0)=0  is fulfilled, while  q(0)=0  implies that the deductible 
function equals

d d x
u x v v u x

u x v
( )

( ) ( ( ))

( ( ) )

2

2 2
.

Cases (3) and (4) :

Set  u v0,   and construct  q(x) such that  q q( ) ' ( )0 0 0,  q v q v v d( ) ( ) ,
q v q v' ( ) ' ( ) 1  as in the following figure (valid for case (3)) :

z a v d d         v a      z

Construct  q(x)  of the form

q x A x v B x v C( ) ( ) ( )2 2 2 2 2 , with first derivative BvxAxxq )(22)(' 22 .
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The required conditions imply that the coefficients are equal to

C v d B
v

A
d v

v
, ,

1

2

2

2 4
.

Inserting these coefficients one finds the polynomial

22
4

2

)43()2(
2

)( vdvxvd
v
x

xq .

If  2 0d v   one has  q x( )   as  x . In this situation there exists  z a  such that 
q z q z z d( ) ( ) , hence

d d z
vz z v

z v
z a( )

( )

( )
, .

2

2 2

This settles case (3). If  2 0d v   one must have  q x( ) 0  for all  x. This condition implies 
that the discriminant of the quadratic polynomial set in curly bracket in the expression of  q(x), 
which equals  4 2 4 3( )( )d v d v , must be non-positive. It follows that in this situation 
1
2

3
4v d v,  which settles case (4).

Case (5) :

Set u u x x v v x x x as( ) , ( ) , , ,  and construct  q(x)  such that

q u q u u d( ) ( ) ,  q u q u' ( ) ' ( ) 0,  q v q v v d( ) ( ) ,  q v q v'( ) ' ( ) 1  as 
in the following figure :

a v   d u   0    u d        v        a

It is immediate that

q x
x u

v v u
( )

( )

( )

2 2 2

2 24

satisfies the conditions  q u q u u d( ) ( ) ,  q u q u'( ) ' ( ) 0, q v q v' ( ) ' ( ) 1.
The remaining condition   q v q v v d( ) ( )   implies that

d
u v

v

2 23

4
.
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Case (6) :

Setting  u a v as ,   one constructs  q(x)  such that  q u q u u d( ) ( ) ,
q u q u' ( ) ' ( ) 0, q v q v v d( ) ( ) ,    as in the following figure :

z v d u   0    u d        v        z

A biquadratic polynomial, which satisfies the given conditions, is given by

q x
x u v d

v u
( )

( ) ( )2 2 2

2 2
.

Since  q x( )   as  x   and  v  is not a double zero of  q x x d( ) ( ) , there exists a 
z a  such that  q z q z z d( ) ( ) . Solving this condition yields after an elementary but 
labourious calculation the deductible function

d d z
z v u vz v z u

v z z v u
z a( )

( )

( )( )
, .

2 2 2 2 2 4

2 2 2

2

2

Theorem 6.2.  The minimal stop-loss transform for standard symmetric random variables with 
range a a a, , ,1 and kurtosis 2 3  is determined in Table 6.2.

Table 6.2 :  minimal stop-loss transform for standard symmetric random variables by
        known kurtosis

case condition minimum * ( )x extremal support

(1) 0 x as
sxx

x21

2

1
2

2

1
,,,,

x

x
xxxxx sss

(2) a xs
xa

x

a

2

22

1 axxa ,,0,,

(3) x a 0
1

,,,,
2

2

x

x
xxxxx sss



                                              Werner Hürlimann                                                      108

Proof.  We proceed as for Table 6.1 and construct in each case a symmetric biquadratic 
polynomial minorant  q x x d x d x a a( ) ( ) ( ) , , ,  for which equality is 
attained at the atoms of the displayed extremal support.

Case (1) :

Setting  v d u d as s, ,0   one constructs  q(x)  such that  q u q u( ) ( ) 0,

q v q v v d( ) ( ) , q v q v'( ) ' ( ) 1  as in the following figure :

a v u u          v        a

Consider the biquadratic form

q x A x v B x v C( ) ( ) ( )2 2 2 2 2 , with first derivative BvxAxxq )(22)(' 22 .

The required conditions imply that the coefficients are equal to

C v d B
v

A
v u v

, ,
( )

1

2

1

2 2
,

and  q(x)  is a minorant. The minimum stop-loss transform equals

s

s

d

dd

d

ddd

d

d

ddd

ddd

d

d
d

d

d

d
ddpd s

2

22

2

3
2

2

22

222

22

2

2

22

22
)4(

*

1

2

1

1

)1(

2

1

1

1

)1()(

)1(

2

1

1)1(1

)1(

2

1
)()(

Case (2) :

Set v a u d a s, , ,   and construct  q(x)  such that

q u q u( ) ( ) 0, q v q v v d( ) ( ) , q q( ) ' ( )0 0 0  as in the following figure :  
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v u   0 u        v

Consider the biquadratic form

q x A x u B x u C( ) ( ) ( )2 2 2 2 2 , with first derivative BuxAxxq )(22)(' 22 .

The required conditions imply that the coefficients are equal to

C B
u

u u v
A

u u v
0

12

2 2
,

( )
,

( )
,

and  q(x)  is a minorant. The minimum stop-loss transform equals

.
2

1

)(2

1
)()(

2

2222

2
)5(

* da

d

a
da

daa

d
dapd d

Case (3) :

The symmetric random variable with support  addddd ss ,,,,, , is feasible and  

q x( ) 0  is clearly a minorant, hence  * ( ) .d 0

7. Notes.

The historical origin of the Chebyshev-Markov inequalities dates back to 
Chebyshev(1874), who has first formulated this famous problem and has proposed also a 
solution without proof, however. Proofs were later given by Markov(1884), Possé(1886) and 
Stieltjes(1883/1894/95). Twentieth century developments include among others
Uspensky(1937), Shohat and Tamarkin(1943), Royden(1953), Krein(1951), Karlin and 
Studden(1966) and Krein and Nudelman(1977). A short account is also found in 
Whittle(1971), p.110-118. It seems that the Chebyshev-Markov inequalities have been stated 
in full generality for the first time by Zelen(1954). Explicit analytical results for moments up 
to order four have been given in particular by Zelen(1954), Simpson and Welch(1960), and 
Kaas and Goovaerts(1986a). Our method, which uses the complete algebraic-analytical 
structure of the lower dimensional sets of finite atomic random variables derived in Chapter I, 
improves in this point the mentioned previous works. For an introduction into the vast subject 
entitled "inequalities of Chebyshev type", the reader is recommended Karlin and 
Studden(1966), chap. XII to XIV.
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The determination of the maximal stop-loss transforms by given moments up to the 
order four is based on Jansen et al.(1986), which has been the completion of the work started 
by Bowers(1969), DeVylder and Goovaerts(1982), and Mack(1984/85). Our improvements 
concern mainly the analytical unified presentation. In particular the formulas are made more 
explicit with the introduction of tractable "deductible functions".


