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SDP Approach for Solving LQ Control Problem

Subject to Implicit System

Muhafzan

Abstract. This paper deals with the linear quadratic (LQ) con-
trol problem subject to implicit systems for which the semidefinite
programming (SDP) approach is used to solve it. We propose a
new sufficient condition in terms of SDP for existence of the op-
timal state-control pair of the considered problem. The numerical
examples are given to illustrate the results.

Resumen. Este art́ıculo trata sobre el problema de control lineal
cuadrático (LQ) sujeto a sistemas impĺıcitos, los cuales se resuelven
usando el método de programación semidefinida (SDP). Proponemos
una nueva condición suficiente en términos de SDP para la existencia
de un par estado-control óptimo del problema considerado. Se dan
ejemplos numéricos para ilustrar los resultados.

1 Introduction

The LQ (linear quadratic) control problem subject to implicit systems is one
of the most important classes of optimal control problems, in both theory and
application. In general, it is a problem to find a controller that minimizes the
linear quadratic objective function governing by the implicit systems, either
continuous or discrete.

It is well known that the implicit systems have attracted the attention of
many researcher in the past years due to the fact that in some cases, the implicit
systems describe better the behavior of physical systems than that of standard
systems. They can preserve the structure of physical systems and can include
non dynamic constraint and impulsive element. This kind of systems have many
important applications, e.g., in biological phenomena, in economics as Leontif
dynamic model, in electrical and in mechanical model, see [4, 12]. Therefore,
it is fair to say that implicit systems give a more complete class of dynam-
ical models than conventional state-space systems. Likewise, the LQ control
problem subject to the implicit systems has a great potential for the system
modelling.
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A great number of results on solving LQ control problem subject to implicit
systems have been appeared in literatures, see [3, 5, 7, 8, 10]. However, almost all
of these results consider the assumption of the regularity of the implicit system
and the positive definiteness of control weighting matrix in the quadratic cost
functional. To the best of the author’s knowledge, not much work has been done
with the nonregular implicit system as a constraint and the control weighting
matrix in the quadratic cost being positive semidefinite. In this last case, i.e.,
the quadratic cost being positive semidefinite, the existing LQ problem theories
always involve the impulse distributions, see [5, 10]. Thus it does not provide any
answer to a basic question such as when does the LQ control problem subject
to implicit system possess an optimal solution in the form of a conventional
control, in particular, one that does not involve impulse distribution. However,
this issue has discussed in [7], in which they transform the LQ control problem
subject to implicit system into a standard LQ control problem in which both
are equivalent. Nonetheless, they still remains an open problem, that is, the
new standard LQ control problem may be singular and this is not answered yet
in [7].

In this paper, we reconsider the problem in [7], and in particular, the open
problem, i.e. the singular version of the new standard LQ control problem, is
solved. Here, we do not assume that the implicit systems is regular, thus our
work is more general than some previous results, see [3, 5, 8, 10]. The method
in [7] is still maintained to transform the original problem into the equivalent
singular LQ control problem.

In addition, the semidefinite programming (SDP) approach is used to solving
this singular LQ problem. A new sufficient condition in terms of SDP for
existence of the optimal state-control pair of such problem is proposed. It is
well-known that SDP has been one of the most exciting and active research areas
in optimization recently. This tremendous activity is spurred by the discovery of
important applications in various areas, mainly, in control theory; see [2, 11, 13].

This paper is organized as follows. Section 2 considers brief account of the
problem statement. Section 3 presents the process of transformation from the
original LQ control problem into an equivalent LQ problem. In Section 4, main
result to solve the LQ control problem subject to implicit systems is presented.
Numerical examples are given to illustrate the results in Section 5. Section 6
concludes the paper.

Notation. Throughout this paper, the superscript “T” stands for the trans-
pose, ∅ denotes the empty set, In is the identity matrix of n-dimension, Rn

denotes the n-dimensional Euclidean space, Rm×n is the set of all m×n real ma-
trices, C+

p [R
n] denotes the n-dimensional piecewise continuous functions space

with domain in [0,∞], Sp+ denotes set of all p-dimensional symmetric positive
semidefinite matrices, and C denotes set of complex number.
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2 Problem Statement

Let us consider the following continuous time implicit system

Eẋ(t) = Ax(t) +Bu(t), t ≥ 0, Ex(0) = x0

y = Cx(t) +Du(t),
(2.1)

where x(t) ∈ R
n denotes the state vector, u(t) ∈ R

r denotes the control (input)
vector and y(t) ∈ R

q denotes the output vector. The matrices E,A ∈ R
n×n,

B ∈ R
n×r, C ∈ R

q×n, D ∈ R
q×r are constant, with rankE ≡ p < n. This system

is denoted by (E,A,B,C,D). The system (E,A,B,C,D) is said to be regular
if det(sE − A) 6= 0 for almost all s ∈ C. Otherwise, it is called nonregular if
det(sE − A) = 0 for each s ∈ C or if E,A ∈ R

m×n with m 6= n. In particular,
when m 6= n, it is called a rectangular implicit system [6].

It is well known that the solution of (2.1) exists and unique if it is regular.
Otherwise, it is possible to have many solutions, or no solution at all.

Next, for a given admissible initial state x0 ∈ R
n, we consider the following

associated objective function (cost functional):

J(u(.), x0) =

∞
∫

0

yT (t)y(t)dt. (2.2)

In general, the problem of determining the stabilizing feedback control u(t) ∈ R
r

which minimizes the cost functional (2.2) and satisfies the dynamic system (2.1)
for an admissible initial state x0 ∈ R

n, is often called as LQ control problem
subject to implicit system. If DTD is positive semidefinite, it is called a singular
LQ control problem subject to implicit system. We denote, for simplicity, this
LQ control problem as Ω. Next, we define the set of admissible control-state
pairs of problem Ω by:

Aad ≡ {(u(.), x(.)) | u(.) ∈ C
+
p [R

r] and x(.) ∈ C
+
p [R

n]

satisfy(2.1) and J(u(.), x0) < ∞} .

The optimization problem under consideration is to find the pair (u∗, x∗) ∈ Aad

for a given admissible initial condition x0 ∈ R
n, such that

J(u∗, x0) = minimize
(u(.),x(.))∈Aad

J(u(.), x0), (2.3)

under the assumption that (2.1) is solvable, impulse controllable and DTD is
positive semidefinite.

Definition 1 [7] Two systems (E,A,B,C,D) and (Ē, Ā, B̄, C̄,D) are termed
restricted system equivalent (r.s.e.), denoted by (E,A,B,C,D) ∼ (Ē, Ā, B̄, C̄,D),
if there exists nonsingular matrices M,N ∈ R

n×n such that their associated sys-
tem matrices are related by MEN = Ē, MAN = Ā,MB = B̄ and CN = C̄.
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Remark 1 The operations of r.s.e. correspond to the constant nonsingular
transformations of (2.1) itself and of the basis in the space of internal variables
x. The behavior of x in the original system may thus be simply recovered from
the behavior of any system r.s.e. to it. These operations therefore constitute an
eminently safe set of transformations that are unlikely to destroy any important
properties of the system. Furthermore, such operations suffice to display the
detailed structure of the original system.

Definition 2 [7] Two optimal control problems are said to be equivalent if there
exist a bijection between the two sets of admissible control - state pairs of the
problems, and the quadratic cost value of any image is equal to that of corre-
sponding preimage.

Obviously, definition 2 conforms to the reflexivity, symmetry, and transitiv-
ity of an equivalent relation, thus the two equivalent optimal control problems
will have the same solvability, uniqueness of solution and optimal cost. Thus
solving one can be replaced by solving the other.

3 Transformation into an Equivalent LQ problem

Let us utilize the Singular Value Decomposition(SVD) theorem [9] for the matrix
E. Since rankE = p < n, there exists the nonsingular matrices M,N ∈ R

n×n

such that

MEN =

(

Ip 0
0 0

)

.

It follows that we have

MAN =

(

A11 A12

A21 A22

)

,MB =

(

B1

B2

)

, CN =
(

C1 C2

)

,

and

N−1x =

(

x1

x2

)

,

where A11∈ R
p×p, A12 ∈ R

p×(n−p), A21∈ R
(n−p)×p, A22∈ R

(n−p)×(n−p), B1∈
R

p×r, B2∈ R
(n−p)×r, C1 ∈ R

q×p, C2 ∈ R
q×(n−p), x1∈ R

p and x2∈ R
n−p.

Therefore, for a given admissible initial state x0 ∈ R
n, the system (2.1) is r.s.e.

to the system

ẋ1(t) = A11x1(t) +A12x2(t) +B1u(t), x1(0) = x10

0 = A21x1(t) +A22x2(t) +B2u(t) (3.1)

y(t) = C1x1(t) + C2x2(t) +Du(t)

where x10 =
(

Ip 0
)

Mx0.
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Theorem 1 [7] The implicit system (2.1) is impulse controllable if and only if
the matrix

(

A22 B2

)

has full row rank.

Using the expression (3.1), the objective function (2.2) can be changed into

J1(u(.), x10) =

∞
∫

0





x1(t)
x2(t)
u(t)





T 



CT
1 C1 CT

1 C2 CT
1 D

CT
2 C1 CT

2 C2 CT
2 D

DTC1 DTC2 DTD









x1(t)
x2(t)
u(t)



 dt.

Likewise, we have the new LQ control problem which minimizes the objective
function J1(u(.), x10) subject to the dynamic system (3.1), and denote this LQ
control problem as Ω1. Further, we define the set of admissible control-state
pairs of the problem Ω1 by

A
1
ad ≡ {(u(.), (x1(.), x2(.))) | u(.) ∈ C

+
p [R

r], x1(.) ∈ C
+
p [R

p]

and x2(.) ∈ C+
p [Rn−p] satisfy(3.1) and J1(u(.), x10) < ∞} .

By virtue of definition 2, it is easily seen that the LQ control problem Ω1 is
equivalent to Ω.

Furthermore, under assumption that the implicit system (2.1) is impulse
controllable implies that rank

(

A22 B2

)

= n− p. Hence, the solution of the
second equation of (3.1) can be stated as

(

x2(t)
u(t)

)

= −Â+A21x1(t) +Wv(t), (3.2)

for some v(t) ∈ R
r and for some full column rank matrix W ∈ R

(n−p+r)×r with
W ∈ ker

(

A22 B2

)

, and

Â+ =
(

A22 B2

)T
[

(

A22 B2

) (

A22 B2

)
T
]−1

is the generalized inverse of the matrix
(

A22 B2

)

.

Using expression (3.2), we can further create the following transformation







x1(t)
−−−−−

x2(t)
u(t)






=

(

Ip 0

−Â+A21 W

)(

x1(t)
v(t)

)

. (3.3)

By substituting (3.3) into Ω1, we obtain a new LQ control problem as follows:

minimize
(v,x1)

J2(v(.), x10)

subject to ẋ1(t) = Āx1(t) + B̄v(t), x1(0) = x10)
y(t) = C̄x1(t) + D̄v(t)

(3.4)
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where

J2(v(.), x10) =

∞
∫

0

(

x1(t)
v(t)

)T (

Q11 Q12

QT
12 Q22

)(

x1(t)
v(t)

)

dt (3.5)

Ā = A11 −
(

A12 B1

)

Â+A21,

B̄ =
(

A12 B1

)

W,

C̄ = C1 −
(

C2 D
)

Â+A21,

D̄ =
(

C2 D
)

W,

Q11 = C̄T C̄, Q12 = C̄T D̄ and Q22 = D̄T D̄,

and denote this LQ control problem as Ω2. Further, we define the set of admis-
sible control-state pairs of problem Ω2 by

A
2
ad ≡ {(v(.), x1(.)) | v(.) ∈ C

+
p [R

r] and x1(.) ∈ C
+
p [R

p]

satisfy(3.4) and J2(v(.), x10) < ∞} .

It is obvious that the system (3.4) is a standard state space system with the
state x1, the control v and the output y, so Ω2 is a standard LQ control problem.

It is easy to show that the transformation defined by (3.3) is a bijection from
A

2
ad to A

1
ad, and thus the problem Ω2 is equivalent to the problem Ω1. It follows

that Ω2 is equivalent to the problem Ω as well. Therefore, in order to solve the
problem Ω, it suffices to consider the problem Ω2 only.

4 Solving the LQ Control Problem

It is well known that the solution of Ω2 hinges on the behavior of input weighting
matrix Q22 in the cost functional (3.5), whether it is positive definite or positive
semidefinite.

In the case where Q22 is positive definite, one can use the classical theory
of LQ control that asserts that Ω has a unique optimal control-state pair if the
pair (Q11 − Q12Q

−1
22 Q

T
12, Ā − B̄Q−1

22 Q
T
12) is detectable and the pair (Ā, B̄) is

asymptotically stabilizable [1]. In this case, the optimal control v∗ is given by

v∗ = −Lx∗

1 (4.1)

where the state x∗

1 is the solution of differential equation

ẋ1(t) = (Ā− B̄L)x1(t), x1(0) = x10 (4.2)

with L = Q−1
22 (Q

T
12 + B̄TP ) and P is the unique positive semidefinite solution

of the following algebraic Riccati equation:

ĀTP + PĀ+Q11 − (PB̄ +Q12)Q
−1
22 (PB̄ +Q12)

T = 0, (4.3)
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where every eigenvalue λ of Ā − B̄L satisfies Reλ < 0. Thus, in this case the
optimal control-state pair of the problem Ω is given by

(

x∗

u∗

)

=

(

N 0
0 Ir

)







Ip
Λ1 −W1Q

−1
22 (P

∗B̄ +Q12)
T

−−−−−−−−−−−−−−−−−−−−−

Λ2 −W2Q
−1
22 (P

∗B̄ +Q12)
T






x∗

1 (4.4)

where
(

Λ1

Λ2

)

≡ −ÂA21,

(

W1

W2

)

≡ W,

with Λ1 ∈ R
(n−p)×p, Λ2 ∈ R

r×p, W1 ∈ R
(n−p)×r, W2 ∈ R

r×r.

On the other hand, when the matrix Q22 is positive semidefinite (Q22 ≥ 0),
the algebraic Riccati equation (4.3) seems to be meaningless, and therefore this
result can no longer be used to handle the singular LQ control problem Ω.

A natural extension is to generalize the algebraic Riccati equation (4.3) by
replacing the matrix Q22 with the matrix Q+

22, such that the equation (4.3) is
replaced by

F(P ) ≡ ĀTP + PĀ+Q11 − (PB̄ +Q12)Q
+
22(PB̄ +Q12)

T = 0 (4.5)

where Q+
22 stands for the generalized inverse of Q22. Corresponding to this

generalized algebraic Riccati equation, let us consider an affine transformation
of the matrix P as follows:

L(P ) ≡

(

Q22 (PB̄ +Q12)
T

PB̄ +Q12 Q11 + ĀTP + PĀ

)

,

where L : Sp+ → R
(p+r)×(p+r). By using the extended Schur’s Lemma [11], we

have the following lemma which shows that F(P ) ≥ 0 and L(P ) ≥ 0 are closely
related.

Lemma 1 L(P ) ≥ 0 if and only if F(P ) ≥ 0 and (Ir−Q22Q
+
22)(PB̄+Q12)

T =
0.

Now, let us consider the following primal SDP:

maximize 〈Ip, P 〉

subject to P ∈ P
(P)

where
P ≡

{

P ∈ S
p
+ | L(P ) ≥ 0

}

is the set of feasible solution of primal SDP problem (P). It is easy to show
that P is a convex set, and it may be empty which in particular implies that
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there is no solution to the primal SDP. Moreover, it is easy to show that the
objective function of the problem (P) is convex. Since the objective function
and P satisfy the convexity properties then the above primal SDP is a convex
optimization problem.

Corresponding to the above primal SDP, we have the following dual problem:

minimize 〈Q22, Zb〉+ 2
〈

QT
12, Zu

〉

+ 〈Q11, Zp〉

subject to ZT
u B̄

T + B̄Zu + ZpĀ
T + ĀZp + Ip = 0

Z ≡

[

Zb Zu

ZT
u Zp

]

≥ 0.

(D)

where Z denotes the dual variable associated with the primal constraint L(P ) ≥
0 with Zb, Zu and Zp being a block partitioning of Z of appropriate dimensions.

Remark 2 Semidefinite programming are known to be special forms of conic
optimization problems, for which there exists a well-developed duality theory,
see, e. g.,[2], [11], [13] for the exhaustive theory of SDP. Key points of the
theory can be highlighted as follows.

1. The weak duality always holds, i.e., any feasible solution to the primal prob-
lem always possesses an objective value that is greater than the dual objective
value of any dual feasible solution. contrast, the strong duality needs not always
hold.

2. A sufficient condition for the strong duality is that there exist a pair of
complementary optimal solution, i.e., both the primal and dual SDP problems
have attainable optimal solutions, and that these solutions are complementary
to each other. This means that the optimal solution P ∗ and the dual optimal
solution Z∗ both exists and satisfy L(P ∗)Z∗ = 0.

3. If both (P) and (D) satisfy the strict feasibility, namely, there exists primal
and dual feasible solution P0 and Z0 such that L(P0) > 0 and Z0 > 0, then the
complementary solutions exist.

In the following we present the condition for stability of the singular LQ
control problem Ω2.

Theorem 2 The singular LQ control problem Ω2 has a stabilizing feedback con-
trol if and only if the dual problem (D) is strictly feasible.

Proof. (⇒) First assume that the system (3.4) is stabilizable by some feedback
control v(t) = Lx1(t). Then all the eigenvalues of the matrix Ā + B̄L have
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negative real parts. Consequently, using the Lyapunov’s theorem [2], there
exists positive definite matrix Y such that

(Ā+ B̄L)Y + Y (Ā+ B̄L)T = −Ip.

By setting Zp = Y and Zu = LZp, then this relation can be rewritten as

ZT
u B̄

T + B̄Zu + ZpĀ
T + ĀZp + Ip = 0.

Now choose
Zb = ǫIr + Zu(Zp)

−1ZT
u .

Then by Schur’s lemma, Z is strictly feasible to (D).
(⇐) If the dual problem (D) is strictly feasible, then Zp > 0 by Schur’s lemma.
Putting

L = Zu(Zp)
−1,

then Z satisfying the equality constraint of (D) yields

(Ā+ B̄L)Zp + Zp(Ā+ B̄L)T = −Ip.

By constructing a quadratic Lyapunov function xT
1 Zpx1, it is easily verified

that the system in (3.4) is stabilizable.

Theorem 3 If (P) and (D) satisfy the complementary slackness condition,
then the optimal solution of (P) satisfies the generalized algebraic Riccati equa-
tion F(P ) = 0.

Proof. Let P ∗ and Z∗ denote the optimal solution of (P) and (D), respectively.
Since P ∗ is optimal then it is also feasible and satisfies L(P ∗) ≥ 0. By lemma
1, we have

(Ir −Q22Q
+
22)(P

∗B̄ +Q12)
T = 0.

Thus, the following decomposition is true:

L(P ∗) =

(

Ir 0
(P ∗B̄ +Q12)Q

+
22 Ip

)(

Q22 0
0 F(P ∗)

)(

Ir Q+
22(P

∗B̄ +Q12)
T

0 Ip

)

.

From the relation L(P ∗)Z∗ = 0, we have

L(P ∗)Z∗ =

(

L11 L12

L21 L22

)

=

(

0 0
0 0

)

,

where

L11 = Q22(Z
∗

b +Q+
22(P

∗B̄ +Q12)
T (Z∗

u)
T )

L12 = Q22(Z
∗

u +Q+
22(P

∗B̄ +Q12)
TZ∗

p )

L21 = F(P ∗)(Z∗

u)
T

L22 = F(P ∗)Z∗

p .
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Therefore
F(P ∗)(Z∗

u)
T = 0 and F(P ∗)Z∗

p = 0,

and hence
Z∗

uF(P ∗) = 0 and Z∗

pF(P ∗) = 0.

Since Z∗ is dual feasible then it also satisfies

ZT
u B̄

T + B̄Zu + ZpĀ
T + ĀZp + Ip = 0.

Multiplying F(P ∗) on both sides of the above equation, i.e.,

F(P ∗)(ZT
u B̄

T + B̄Zu + ZpĀ
T + ĀZp + Ip)F(P ∗),

yields F(P ∗)2 = 0, and implies F(P ∗) = 0.
Now, let us consider the subset Pbound of P as follows:

Pbound ≡
{

P ∈ S
p
+ | L(P ) ≥ 0 and F(P ) = 0

}

.

Note that Pbound may be empty, which in particular implies that there is no
solution to the generalized algebraic Riccati equation (4.5).

In the following, we present our main results, where the LQ control problem
is explicitly constructed in terms of the solution to the primal and dual SDP.

Theorem 4 If Pbound 6= ∅ and

v∗(t) = −Q+
22(P

∗B̄ +Q12)
Tx1(t) (4.6)

is a stabilizing control for some P ∗ ∈ Pbound, where x1(t) satisfies the differ-
ential equation

ẋ1(t) = (Ā− B̄2Q
+
22(P

∗B̄ +Q12)
T )x1(t), x1(0) = x10,

then (P) and (D) satisfy the complementary slackness property . Moreover,
v∗(t) is optimal control for LQ control problem Ω2.

Proof. Let P ∗ ∈ Pbound and L = −Q+
22(P

∗B̄ + Q12)
T . Since the control

v∗(t) = Lx1(t) is stabilizing, then Lyapunov equation

(Ā+ B̄L)Y + Y (Ā+ B̄L)T + Ip = 0

has a positive definite solution, let it be Y ∗ > 0. Let

Z∗

p = Y ∗, Z∗

u = LY ∗, Z∗

b = LY ∗LT .

By this construction, we can easily verify that
(

Z∗

b Z∗

u

(Z∗

u)
T Z∗

p

)

=

(

Ir L

0 Ip

)(

0 0
0 Z∗

p

)(

Ir 0
LT Ip

)

≥ 0,
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and
Ip + (Z∗

u)
T B̄T + B̄Z∗

u + Z∗

p Ā
T + ĀZ∗

p = 0.

Therefore,

Z∗ =

(

Z∗

b Z∗

u

(Z∗

u)
T Z∗

p

)

is a feasible solution of (D). Since L(P ) ≥ 0, by lemma 1, we have

(Ir −Q22Q
+
22)(PB̄ +Q12)

T = 0.

It follows that the following identity

L(P ) =

(

Ir 0
(PB̄ +Q12)Q

+
22 Ip

)(

Q22 0
0 F(P )

)

×

(

Ir Q+
22(PB̄ +Q12)

T

0 Ip

)

is valid. Moreover, we can verify that

L(P ∗)Z∗ =

(

Ir 0
−LT Ip

)(

Q22 0
0 F(P ∗)

)

×

(

Ir −L

0 Ip

)(

Z∗

b Z∗

u

(Z∗

u)
T Z∗

p

)

=

(

Ir 0
−LT Ip

)(

Q22(Z
∗

b − L(Z∗

u)
T ) Q22(Z

∗

u − LZ∗

p )
F(P ∗)(Z∗

u)
T F(P ∗)Z∗

p

)

=

(

0 0
0 0

)

,

that is the problem (P) and (D) satisfy the complementary slackness property
. Now, we prove that

v∗(t) = −Q+
22(P

∗B̄ +Q12)
Tx1(t)

is the optimal control for LQ problem Ω2. Firstly, consider any P ∈ P and any
admissible stabilizing control v(.) ∈ C

+
p [R

r]. We have,

d

dt
(xT

1 (t)Px1(t)) = (Āx1(t) + B̄v(t))TPx1(t) + xT
1 (t)P (Āx1(t) + B̄v(t))

= xT
1 (t)(Ā

TP + PĀ)x1(t) + 2vT (t)B̄TPx1(t).

Integrating over [0,∞) and making use of the fact that

lim
t→0

xT
1 (t)Px1(t) = ∞,
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we have

0 = xT
10Px10 +

∫

∞

0

[

xT
1 (t)

(

ĀTP + PA
)

x1(t) + 2vT (t)B̄TPx1(t)
]

dt.

Therefore,

J2(v(.), x10) =

∞
∫

0

[

xT
1 (t)Q11x1(t) + 2vT (t)QT

12x1(t) + vT (t)Q22v(t)
]

dt

= xT
10Px10 +

∫

∞

0

[

xT
1 (t)

(

ĀTP + PA+Q11

)

x1(t) +

2vT (t)
(

PB̄ +Q12

)T
x1(t) + vT (t)Q22v(t)

]

dt

= xT
10Px10 +

∞
∫

0

[

(

v(t) +Q+
22

(

PB̄ +Q12

)T
x1(t)

)T

Q22 ×

(

v(t) +Q+
22

(

PB̄ +Q12

)T
x1(t)

)

+ xT
1 (t)F(P )x1(t)

]

dt.

Since P ∈ P, we have F(P ) ≥ 0. This means that

J2(v(.), x10) ≥ xT
10Px10, (4.7)

for each P ∈ P and each admissible stabilizing control v(.) ∈ C
+
p [R

r]. On the
other hand, under the feedback control

v∗(t) = −Q+
22(P

∗B̄ +Q12)
Tx1(t),
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and if we take into account P ∗ ∈ Pbound then we have

0 ≤ J2(v
∗(.), x10)

=

∞
∫

0

[xT
1 (t)Q11x1(t) + 2v∗

T

(t)QT
12x1(t) + v∗

T

(t)Q22v
∗(t)] dt

= lim
t→∞

∫ t

0

[xT
1 (τ)Q11x1(τ) + 2v∗

T

(τ)QT
12x1(τ) + v∗

T

(τ)Q22v
∗(τ)]dτ

= lim
t→∞

{ xT
10P

∗x10 − xT
1 (t)P

∗x1(t) +

∫ t

0

[xT
1 (τ)(Ā

TP ∗ + P ∗A+Q11)x1(τ) +

2v∗
T

(τ)(P ∗B̄ +Q12)
Tx1(τ) + v∗

T

(τ)Q22v
∗(τ)] dτ}

≤ xT
10P

∗x10 + lim
t→∞

t
∫

0

[(v∗(τ) +Q+
22(P

∗B̄ +Q12)
Tx1(τ))

T

Q22 ×

(v∗(τ) +Q+
22(P

∗B̄ +Q12)
Tx1(τ)) + xT

1 (τ)F(P ∗)x1(τ)]dτ

= xT
10P

∗x10.

It follows that
J2(v

∗(.), x10) ≤ xT
10P

∗x10. (4.8)

The facts (4.7) and (4.8) lead us to conclude that the LQ control problem Ω2

has an attainable optimal feedback control which is given by (4.6) with the cost
is xT

10P
∗x10.

The significance of theorem 4 is that, one can solve LQ control problem for
standard state space system by simply solving a corresponding SDP problem.
Consequently, since there exists the equivalent relationship between the LQ con-
trol problem subject to implicit system and the standard LQ control problem,
one can also solve the LQ control problem subject to implicit system via such
corresponding SDP approach.

By reconsidering the transformation (3.3), it follows that




x∗

1

x∗

2

u∗



 =

(

Ip 0

−Â+A21 W

)(

Ip
−Q+

22(P
∗B̄ +Q12)

T

)

x∗

1

=





Ip 0
Λ1 W1

Λ2 W2





(

Ip
−Q+

22(P
∗B̄ +Q12)

T

)

x∗

1

=





Ip
Λ1 −W1Q

+
22(P

∗B̄ +Q12)
T

Λ2 −W2Q
+
22(P

∗B̄ +Q12)
T



x∗

1.
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Ultimately, the optimal control-state pair ( u∗, x∗) of Ω is given by

x∗ = N

(

Ip
Λ1 −W1Q

+
22(P

∗B̄ +Q12)
T

)

x∗

1,

u∗ =
(

Λ2 −W2Q
+
22(P

∗B̄ +Q12)
T
)

x∗

1

We end this section by presenting the sufficient condition for the existence
of the optimal control of the LQ control problem subject to implicit system.

Corollary 1 Assume that the implicit system (2.1) is impulse controllable and
the LQ control problem Ω is equivalent to Ω2 where matrix Q22 is positive
semidefinite. If Pbound 6= ∅ and

v∗(t) = −Q+
22(P

∗B̄ +Q12)
Tx1(t)

is a stabilizing control for some P ∗ ∈ Pbound, where x1(t) satisfies the differ-
ential equation

ẋ1(t) = (Ā− B̄2Q
+
22(P

∗B̄ +Q12)
T )x1(t), x1(0) = x10,

then
u∗(t) =

(

Λ2 −W2Q
+
22(P

∗B̄ +Q12)
T
)

x1(t)

is optimal control for LQ control problem Ω.

5 Numerical Examples

Example 1 The following is an example of the LQ control problem subject to
the nonregular descriptor system, where the matrices E, A, B, C and D are
as follows:

E =









1 0 0 0
−1 −1 0 0
0 0 0 0
0 0 0 0









, A =









−1 0 1 0
1 2 −1 0
0 1 0 0
0 1 0 1









, B =









0 0
0 0
1 0
1 0









,

C =

(

0 1 0 0
0 0 0 0

)

, D =

(

1 1
1 1

)

,

with the initial state is x0 =
(

1 1 0 0
)T

.

By taking the matrices M = I4 and

N =









1 0 0 0
−1 −1 0 0
0 0 1 0
0 0 0 1









,
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it is easy to check that the matrix
(

A22 B2

)

has full row rank, thus the non-

regular implicit system is impulse controllable. By choosingW ∈ ker
(

A22 B2

)

,
for example,

W =









3 4
0 0
0 0
0 1









,

the problem Ω can be equivalently changed into the following standard LQ
control problem:

minimize
(v,x1)

∞
∫

0

(

x1(t)
v(t)

)T (

Q11 Q12

QT
12 Q22

)(

x1(t)
v(t)

)

dt

subject to ẋ1(t) =

(

−1 0
−1 −2

)

x1(t) +

(

3 4
−3 −4

)

v(t),

y(t) =

(

0 0
1 1

)

x2 +

(

0 1
0 1

)

v(t)

with initial condition x1(0) =

(

1
1

)

, where x1, v ∈ R
2,

Q11 =

(

1 1
1 1

)

, Q12 =

(

0 1
0 1

)

, Q22 =

(

0 0
0 2

)

.

To identify a positive semidefinite feasible solution P ∗ to the primal SDP that
satisfies the generalized Riccati equation F(P ∗) = 0, we first consider the con-
straint

(I2 −Q22Q
+
22)(P

∗B̄ +Q12)
T = 0

as stipulated by lemma 2, i.e.
[(

1 0
0 1

)

−

(

0 0
0 2

)(

0 0
0 0.5

)]

×

[(

p q

q r

)(

3 4
−3 −4

)

+

(

0 1
0 1

)]T

=

(

−p+ q −q + r

0 0

)

.

This gives rise

P ∗ =

(

p p

p p

)

for some p. By substituting P ∗ into the generalized algebraic Riccati equation
(4.5), we have

(

−4p+ 0.5 −4p+ 0.5
−4p+ 0.5 −4p+ 0.5

)

=

(

0 0
0 0

)

,
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and solving p, gives to p = 0.125. It follows that

Ā− B̄Q+
22(P

∗B̄ +Q12)
T =

(

−3 −2
1 0

)

,

which has eigenvalues of −2 and −1, and these are stable. Hence the control

v∗(t) = −Q+
22(P

∗B̄ +Q12)
Tx∗

1(t),

where x∗

1(t) is the solution of the following differential equation

ẋ1(t) =

(

−3 −2
1 0

)

x1(t), x1(0) =

(

1
1

)

,

is stabilizing. It is easy to verify that

x∗

1(t) =

(

4e−2t − 3e−t

−2e−2t + 3e−t

)

.

Thus, according to the theorem 5, the control v∗(t) must be optimal to the LQ
control problem Ω2. Thereby, according to the corollary 6, the optimal state-
control are as follows:

x∗(t) =









4e−2t − 3e−t

−2e−2t

−4e−2t

0









, u∗(t) =

(

2e−2t

−e−2t

)

.

with the optimal cost Jopt = 0.5. The trajectories for the optimal state-control
of Ω are given in the figures 1.a and 1.b below.
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Example 2 The following is an example of the LQ control problem subject to
the regular implicit system, where the matrices E and B are the same as in
example 1, with

A =









−1 0 1 0
1 2 −1 0
0 −2 0 −1

−1 2 0 0









, C =

(

0 0 0 0
1 0 0 0

)

, D =

(

0 0
1 1

)

,

and the initial state x0 =
(

2 1 0 0
)T

.

By taking the matrices M and N as in example 1, it is easy to check that
the matrix

(

A22 B2

)

has full row rank, thus the regular implicit system is

impulse controllable. By choosing W ∈ ker
(

A22 B2

)

, for example,

W =









3 1
0 0
0 0
1 2









,

the problem Ω can be equivalently changed into the following standard LQ
control problem:

minimize
(v,x1)

∞
∫

0

(

x1(t)
v(t)

)T (

Q11 Q12

QT
12 Q22

)(

x1(t)
v(t)

)

dt

subject to ẋ1(t) =

(

−1 0
−1 −2

)

x1(t) +

(

3 1
−3 −1

)

v(t)

y(t) =

(

0 0
4 2

)

x2 +

(

0 0
1 2

)

v(t)

with initial condition x1(0) =

(

2
1

)

, where x1, v ∈ R
2,

Q11 =

(

16 8
8 4

)

, Q12 =

(

4 8
2 4

)

, Q22 =

(

1 2
2 4

)

.

To identify a positive semidefinite feasible solution P ∗ to the primal SDP that
satisfies the generalized Riccati equation F(P ∗) = 0, we first consider the con-
straint

(I2 −Q22Q
+
22)(P

∗B̄ +Q12)
T = 0

as stipulated by lemma 2, so that we have
(

2p− 2q 2p− 2q
−p+ q −q + r

)

=

(

0 0
0 0

)

.
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This is satisfied only by p = q = r, i.e.,

P ∗ =

(

p p

p p

)

.

In fact, this matrix P ∗ satisfies the generalized algebraic Riccati equation (4.5).
It follows that

Ā− B̄Q+
22(P

∗B̄ +Q12)
T =

(

−5 −2
3 0

)

,

which has eigenvalues of −3 and −2, and these are stable. Hence the control

v∗(t) = −Q+
22(P

∗B̄ +Q12)
Tx∗

1(t),

where x∗

1(t) is the solution of the following differential equation

ẋ1(t) =

(

−5 −2
3 0

)

x1(t), x1(0) =

(

2
1

)

,

is stabilizing. It is easy to verify that

x∗

1(t) =

(

8e−3t − 6e−2t

−8e−3t + 9e−2t

)

.

Thus, according to the theorem 5, the control v∗(t) must be optimal to the LQ
control problem Ω2. Thereby, according to the corollary 6, the optimal state-
control of the LQ control problem Ω are as follows:

x∗(t) =









8e−3t − 6e−2t

−3e−2t

−16e−3t + 6e−2t

8e−3t + 6e−2t









,

u∗(t) =

(

8e−3t

−16e−3t + 6e−2t

)

,

with the optimal cost Jopt = 0.Moreover, the optimal control can be synthesized
as

u∗ =

(

7 4
3 0

)

x∗

1 +

(

1 0
3 1

)

x∗

2.

The trajectories for the optimal state-control are given below.
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6 Conclusion

We have solved the LQ control problem subject to implicit system using the
SDP approach. We have also proposed a new sufficient condition in terms of a
semidefinite programming (SDP) for existence of the optimal state-control pair
of the considered problem. The results show that the optimal control-state pair
is free of the impulse distribution, i.e. it is smooth functions.
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