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Metric properties of a tensor norm defined by

`p{`q} spaces and some characteristics of its

associated operator ideals.

Patricia Gómez Palacio,
Juan Antonio López Molina and Maŕıa José Rivera

Abstract. The present article examines the study stated in [4] re-
garding a tensor norm defined in a Bochner Banach sequence space
`p{`q} and its associated operator ideals in the sense of Defant and
Floret [2]. In particular, we analyze the coincidence between com-
ponents of the minimal and maximal operator ideals, and we prove
some metric properties of the tensor norm and its dual.

Resumen. Este art́ıculo examina el estudio indicado en [4] en
cuanto a una norma de tensor definida en un espacio de secuencias
de Bochner Banach `p{`q} y sus ideales de operador asociados en el
sentido de Defant y Floret [2]. En particular, analizamos la coinci-
dencia entre los componentes de los ideales de operador mı́nimos y
máximos, y demostramos algunas propiedades métricas de la norma
de tensor y su duales.

1 Introduction

The equality between components of the maximal and the minimal opera-
tor ideals is a classical problem of the operator ideals theory and its solution
has always been related to the Radon-Nikodým property, and the use of some
concepts of the local theory. We use results found in [4] about the tensor norm
defined by `p{`q} spaces and the associated operator ideals.

The notation is standard. All the spaces are Banach spaces over the real
field which allow us to use known results in Banach lattices. When we want
to emphasize the space E where a norm is defined, we shall write ‖.‖E . The
canonical inclusion of a Banach space E into its bidual E′′ will be denoted by
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JE . Using FIN , we denote the class of all finite dimensional normed spaces,
and for a normed space E we define

FIN(E) := {M ⊂ E : M ∈ FIN} and COFIN(E) := {L ⊂ E : E/L ∈ FIN}

the sets of finite dimensional subspaces and finite codimensional, closed sub-
spaces with induced norm.

We suppose the reader is familiar with the theory of operator ideals and
tensor norms. The fundamental references about these matters are the books
[14] and [2] of Pietsch and Defant and Floret respectively. We set the notation
and some definitions to be used.

Given a pair of Banach spaces E and F and a tensor norm α, E ⊗α F rep-
resents the space E⊗F endowed with the α-normed topology. The completion
of E⊗α F is denoted by E⊗̂αF , and the norm of z in E⊗α F by α(z;E,F ) (or
α(z) if there is no risk of mistake). These are three tensor norms relative to α:
transposed, αt, finite hull, −→α , and cofinite hull, ←−α . They are defined by

αt(z;E,F ) := α(zt;F,E)

−→α (z) := inf{α(z;M,N) : M ∈ FIN(E), N ∈ FIN(F ), z ∈M ⊗N}
←−α (z) := sup

{
α
(
QEK ⊗QFL(z);E/K,F/L

)
: K ∈ COFIN(E), L ∈ COFIN(F )

}
where QEK : E � E/K is the canonical mapping.

A tensor norm α is called right-accessible if←−α (·;M,F ) := −→α (·;M,F ) for all
(M,F ) ∈ FIN ×NORM , left-accessible if αt is right-accessible, and accessible
if it is right- and left-accessible. α is called totally accessible if ←−α = −→α .

For 1 ≤ p ≤ ∞ the Saphar’s tensor norm gp is defined by

gp(z;E ⊗ F ) := inf

{
πp((xi))εp′((yi)) : z =

n∑
i=1

xi ⊗ yi ∈ E ⊗ F

}

where

πp((xi)) :=

( ∞∑
i=1

‖xi‖p
)1/p

εp((xi)) := sup
x′∈BE′

( ∞∑
i=1

|〈x′, xi〉|p
)1/p

for 1 ≤ p <∞, and π∞((xi)) = ε∞((xi)) = supi ‖xi‖
Concerning Banach lattices, we refer the reader to [1]. We recall the more

relevant definitions and properties for our purposes: A Banach lattice E is
order complete or Dedekind complete if every order bounded set in E has a
least upper bound in E; it is order continuous if every order convergent filter is
norm convergent. Every dual Banach sequence lattice E′ is order complete, and
the reflexive spaces are even order continuous. A linear map T between Banach
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lattices E and F is said to be positive if T (x) ≥ 0 in F for every x ∈ E, x ≥ 0. T
is called order bounded if T (A) is order bounded in F for every order bounded
set A in E.

For 1 ≤ p, q ≤ ∞ define the Bochner Banach sequence space

`p{`q} := {a = (aij)∞i,j=1 : ‖a‖p{q} := (
∞∑
i=1

(
∞∑
j=1

|aij |q)
p
q )

1
p <∞}

with the usual modifications if p or q are infinite. If 1 ≤ p, q <∞, `p{`q} is an
order continuous Banach sequence lattice. By `np{`mq }, n,m ∈ N, we denote the
sectional subspace of `p{`q} of those sequences (αij) such that αij = 0 for every
i ≥ n, j ≥ m. `np{`mq } is 1-complemented in `p{`q}. By `p′{`q′}, we denote the
dual space of `p{`q}, as usual.

According to J. Hoffman-Jörgensen’s definition, a Banach space X is of
type p for 1 < p ≤ 2, and cotype q for q ≥ 2, respectively, if there is a constant
0 ≤M <∞ such that for all finite vector set {xj}nj=1 in X,

∫ 1

0

∥∥∥∥∥∥
n∑
j=1

rj(t)xj

∥∥∥∥∥∥ dt ≤M
 n∑
j=1

‖xj‖p
1/p

respectively,

∫ 1

0

∥∥∥∥∥∥
n∑
j=1

rj(t)xj

∥∥∥∥∥∥ dt ≥M−1

 n∑
j=1

‖xj‖q
1/q

where rn(t) := sing(sin 2nπt) is a Rademacher functions sequence for all t ∈
[0, 1] and n = 0, 1, 2, 3.... In particular, for 1 ≤ p < ∞ the space Lp(µ) is of
type min(2, p) and cotype max(2, p), see [2].

Let (Ω,Σ, µ) be a measure, we denote L0(µ) the space of equivalence classes,
modulo equality µ-almost everywhere, of µ-measurable real-valued functions,
endowed with the topology of local convergence in measure. The space of all
equivalence classes of µ-measurable X-valued functions is denoted L0(µ,X). By
a Köthe function space K(µ) on (Ω,Σ, µ), we shall mean an order dense ideal
of L0(µ), which is equipped with a norm ‖.‖K(µ) that makes it a Banach lattice
(if f ∈ L0(µ) and g ∈ K(µ) |f | ≤ |g|, then f ∈ K(µ) with ‖f‖K(µ) ≤ ‖g‖K(µ)).
Likewise, K(µ,X) = {f ∈ L0(µ,X) : ‖f(.)‖X ∈ K(µ)}, endowed with the norm
‖f‖K(µ,X) = ‖‖f(.)‖X‖K(µ).
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2 Local theory and Lp,q spaces.

A standard reference on ultraproducts of Banach spaces, is [6].
Let D be a non empty index set and U a non-trivial ultrafilter in D. Given

a family {Xd, d ∈ D} of Banach spaces, (Xd)U denotes the corresponding
ultraproduct Banach space. If every Xd, d ∈ D, coincides with a fixed Banach
space X, the corresponding ultraproduct is called an ultrapower of X, and it is
denoted by (X)U . Notice that if every Xd, d ∈ D is a Banach lattice, (Xd)U has
a canonical order which makes it a Banach lattice. If we have another family
of Banach spaces {Yd, d ∈ D} and a family of operators {Td ∈ L(Xd, Yd), d ∈
D} such that supd∈D ‖Td‖ < ∞, then (Td)U ∈ L((Xd)U , (Yd)U ) denotes the
canonical ultraproduct operator.

Two strong notions of finite representability are included in the following
extension of the Lp spaces due to Lindenstrauss and Pelczyński [7]:

Definition 2.1 Let 1 ≤ p, q ≤ ∞. We say that a Banach space X is an
Lp,q space if for every F ∈ FIN(X) and every ε > 0 there is G ∈ FIN(X),
dim(G) = n, containing F such that d(G, `np{`nq }) ≤ 1 + ε.

Being an Lp,q space turns out to be very strong a condition with bad stability
properties under ultraproducts; therefore, we need a weaker condition:

Definition 2.2 Let 1 ≤ p, q ≤ ∞. We say that a Banach space X is a quasi
Lp,q space if there are a > 0 and b > 0 such that for every M ∈ FIN(X) there
are M1 ∈ FIN(X) containing M and a b-complemented subspace H ⊂ `p{`q},
such that d(M1, H) ≤ a. Moreover, if X is a Banach lattice, we say that it is a
quasi Lp,q lattice.

Of course, `p{`q} is a quasi Lp,q space. Furthermore, from the the follow-
ing definition of the uniform projection property introduced by Pelczyński and
Rosenthal [13] and theorem 9.4 [6], (`p{`q})U is a quasi Lp,q space too.

Definition 2.3 A Banach space X has the uniform projection property if there
is a number b > 0 such that for every k ∈ N there is m(k) ∈ N with the following
property: for every F ∈ FIN(X) with dimension k there is a b-complement
subspace G ∈ FIN(X) containing F with dimension dim(G) ≤ m(k).

3 Tensor norm gp{q} and its associated operator ideals.

Given a Banach space E, a sequence of sequences (xij)∞i,j=1 ⊂ E is strongly
p{q}-summing if πp{q}((xij)) : = ‖(‖xij‖)‖p{q} < ∞ and it is weakly p{q}-
summing if εp{q}((xij)) : = sup‖x′‖≤1 ‖(|〈xij , x′〉|)‖p{q} <∞.
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Let E and F be Banach spaces and 1 ≤ p, q <∞. For every z ∈ E ⊗ F , we
define

gp{q}(z) := inf{πp{q}((xij)) εp′{q′}((yij)) / z =
n∑
i=1

m∑
j=1

xij ⊗ yij}.

The functional gp{q} is a tensor norm for E ⊗ F . A suitable representation
of the elements of a completed tensor product is a basic tool in the study
of the operator ideals involved. It can be shown that z ∈ E⊗̂gp{q}F may
be represented as z =

∑∞
i=1

∑∞
j=1 xij ⊗ yij where {(xij)∞j=1, / i ∈ N} ⊂

EN, {(yij)∞j=1, / i ∈ N} ⊂ FN and πp{q}((xij)) εp′{q′}((yij)) < ∞. More-
over, gp{q}(z) = πp{q}((xij)) εp′{q′}((yij)) where the infimum is taken over all
representations of z.

There are three important associated operator ideals to gp{q}, which we
define and characterize now.

Definition 3.1 Let T ∈ L (E,F ). We say that T is p{q}-absolutely summing
if it exists a real number C > 0, such that for all sequence of sequences (xij) in
E, with εp{q} ((xij)) <∞, it satisfies that

πp{q} ((T (xij))) ≤ Cεp{q} ((xij)) . (1)

By Pp{q}(E,F ), we denote the Banach ideal of the p{q}-absolutely summing
operators T : E → F endowed with the topology of the norm Πp{q}(T ) :=
inf{C ≥ 0 : C satisfies (1)}

Theorem 3.2 Let E,F be Banach spaces, then
(
E ⊗gp{q} F

)′ = Pp′{q′} (F,E′)
isometrically.

Proof. For all T ∈ Pp′{q′} (F,E′), we define ϕT : E ⊗gp{q} F → R by

〈ϕT , z〉 =
n∑
i=1

li∑
j=1

〈xij , T (yij)〉 for every z =
n∑
i=1

li∑
j=1

xij ⊗ yij ∈ E ⊗gp{q} F,

The definition does not depend on the representation of z used and it can be
proved that ϕT ∈ (E⊗gp{q} F )′ with |〈ϕT , z〉| ≤ Πp′{q′} (T ) gp{q} (z;E,F ), and
therefore, ‖ϕT ‖ ≤ Πp′{q′} (T ).

On the other hand, for ϕ ∈
(
E ⊗gp{q} F

)′, we define Tϕ : F −→ E′ by

〈Tϕ (y) , x〉 = 〈ϕ, x⊗ y〉 ∀y ∈ F, x ∈ E.

Then, if (yij) ∈ FN such as εp′{q′}((yij)) < ∞, as BE is weakly dense in BE′′ ,
given ε > 0 and (δij) ∈ `p′{`q′} with ‖(δij)‖p′{q′} ≤ 1, for all i, j ∈ N there is
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xij ∈ E such as ‖xij‖ ≤ 1 and ‖Tϕ(yij)‖ ≤ |〈ϕ, xij ⊗ yij〉|+ εδij hence

‖(‖Tϕ (yij) ‖)‖p′{q′} ≤ sup
‖(ηij)‖p{q}≤1

|
∞∑
i=1

ηij〈ϕ, xij ⊗ yij〉|+ ε

but πp{q}((ηijxij)) = ‖(‖ηijxij‖)‖p{q} ≤ ‖(ηij)‖p{q} ≤ 1 and εp′{q′}((yij)) <∞
then

∑∞
i=1 ηijxij ⊗ yij ∈ E⊗̂gp{q}F , hence

‖(‖Tϕ (yij) ‖)‖p′{q′} ≤ sup
‖(ηij)‖p{q}≤1

‖ϕ‖gp{q}(
∞∑
i=1

ηijxij⊗yij)+ε ≤ ‖ϕ‖εp′{q′}((yij))+ε

and, as ε is arbitrary, it follows that ‖(‖Tϕ(yij‖)‖p′{q′} ≤ ‖ϕ‖εp′{q′}((yij)) and
Πp′{q′}(Tϕ) ≤ ‖ϕ‖.

Now, every representation of z ∈ E′⊗̂gp{q}F of the form

z =
∞∑
i=1

∞∑
j=1

x′ij ⊗ yij

defines a map Tz ∈ L(E,F ) such that for every x ∈ E,

Tz(x) :=
∞∑
i=1

∞∑
j=1

〈x′ij , x〉 yij .

We remark that all representations of z define the same map Tz. Let ΦEF :
E′⊗̂gp{q}F → L(E,F ) be defined by ΦEF (z) := Tz.

Definition 3.3 Let E,F be Banach spaces. An operator T : E → F is said to
be p{q}- nuclear if T = ΦEF (z), for some z ∈ E′⊗̂gp{q}F .

Np{q}(E,F ) denotes the space of the p{q}-nuclear operators T : E → F
endowed with the topology of the norm Np{q}(T ) := inf{gp{q}(z) / ΦEF (z) =
T}.

For every pair of Banach spaces E and F , (Np{q}(E,F ),Np{q}) is a com-
ponent of the minimal Banach operator ideal (Np{q},Np{q}) associated to the
tensor norm gp{q}.

We have the following characterization of p{q}-nuclear operators:

Theorem 3.4 [4] Let E and F be Banach spaces and let T be an operator in
L(E,F ). Then the following statements are equivalent:

1) T is p{q}-nuclear.
2) T factors continuously in the following way:
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`∞{`∞}

E

A

?
-

B
`p{`q}

6

F

C

-
T

where B is a diagonal multiplication operator defined by a positive sequence
((bij)) ∈ `p{`q}.

Furthermore Np{q}(T ) = inf{‖C‖‖B‖‖A‖}, taking it over all such factors.

The normed ideal of p{q}-integral operators (Ip{q}, Ip{q}) is the maximal
operator ideal associated to the tensor norm gp{q} in the sense of Defant and
Floret [2], which coincides with the maximal normed associated operator ideal
to the normed ideal of p{q}-nuclear operators in the sense of Pietsch [14]. From
[2], for every pair of Banach spaces E and F , an operator T : E → F is p{q}-
integral if and only if JFT ∈ (E ⊗g′

p{q}
F ′)′.

Given Banach spaces E,F , we define the finitely generated tensor norm g′p{q}
such that if M ∈ FIN(E) and N ∈ FIN(F ), for every z ∈M ⊗N,

g′p{q}(z;M ⊗N) := sup
{
|〈z, w〉| / gp{q}(w;M ′ ⊗N ′) ≤ 1

}
.

We remark that E′ ⊗gp{q} F ′ is an isometric subspace of (E ⊗g′
p{q}

F )′ because
gp{q} is finitely generated, see [2], 15.3.

In this case, we define Ip{q}(T ) to be the norm of JF T considered as an
element of the topological dual of the Banach space E ⊗g′

p{q}
F ′. Notice that

Ip{q}(T ) = Ip{q}(JF T ) as a consequence of F ′ be canonically complemented in
F ′′′.

An essential example of p{q}-integral operators is given in the following
theorem:

Theorem 3.5 Let 1 < p, q <∞ and let G be an abstract M -space. Then every
order bounded operator T : G→ `p{`q} is p{q}-integral with Ip{q}(T ) = ‖T‖.

Proof. As G is an abstract M -space, its dual G′ is lattice isomorphic to
L1(µ) for some measure space (Ω,Σ, µ) and hence there is an isometric order
isomorphism B : G′′ → L∞(µ) from the bidual G′′ onto L∞(µ). Noting that
T = T ′′ B−1 B JG with T ′′ B−1 : L∞(µ) → `p{`q}, it is enough to see that
every bounded operator S : L∞(µ) −→ `p{`q} is p{q}-integral. Let T be the
linear span of the set {eij , i, j ∈ N} which is dense in `p{`q}. Then, by the rep-
resentation theorem of maximal operator ideals (see 17.5 in [2]) and the density
lemma (theorem 13.4 in [2]), we only have to show that S ∈ (L∞(µ)⊗g′

p{q}
T )′.



18 P. Gómez, J.A. López & M. J. Rivera

Given z ∈ L∞(µ) ⊗g′
p{q}
T and ε > 0, let X and Y be finite dimensional

subspaces of L∞(µ) and T respectively such that z ∈ X ⊗ Y and

g′p{q}(z;X ⊗ Y ) ≤ g′p{q}(z;L∞(µ)⊗ T ) + ε. (2)

Let {gs}ms=1 be a basis for Y and let k1, k2 ∈ N be such that

gs =
k1∑
i=1

k2∑
j=1

csijeij for every 1 ≤ s ≤ m.

Then for every f ∈ X and 1 ≤ s ≤ m

〈S, f ⊗ gs〉 = 〈f, S′(gs)〉 =

〈
f,

 k1∑
i=1

k2∑
j=1

csij

S′(eij)

〉

=

〈
f ⊗

k1∑
t=1

k2∑
l=1

cstl etl,
k1∑
i=1

k2∑
j=1

S′(eij)⊗ eij

〉
.

Then if U denotes the tensor

U :=
k1∑
i=1

k2∑
j=1

S′(eij)⊗ eij ∈ L∞(µ)′ ⊗ `p{`q},

by bylinearity we get for all z ∈ X ⊗ Y 〈z, S〉 = 〈U, z〉.

Given ν > 0, for every 1 ≤ i ≤ k1 and 1 ≤ j ≤ k2 there is fij ∈
L∞(µ) such that ‖fij‖ ≤ 1 and ‖S′(eij)‖ ≤ |〈S′(eij), fij〉| + ν. Then f :=
sup1≤i≤k1 sup1≤j≤k2 fij lies in the closed unit ball of L∞(µ). On the other hand,
we know that `p{`q} is order complete. By the Riesz-Kantorovich theorem (see
theorem 1.13 in [1] for instance), the modulus |S| of the operator S exists in
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L(L∞(µ), `p{`q}). By the lattice properties of `p{`q}, we have

πp{q}((S′(eij)) =

∥∥∥∥∥∥
k1∑
i=1

k2∑
j=1

‖S′(eij)‖ eij

∥∥∥∥∥∥
p{q}

≤

∥∥∥∥∥∥
k1∑
i=1

k2∑
j=1

|〈S′(eij), fij〉| eij

∥∥∥∥∥∥
p{q}

+ ν

∥∥∥∥∥∥
k1∑
i=1

k2∑
j=1

eij

∥∥∥∥∥∥
p{q}

≤

∥∥∥∥∥∥
k1∑
i=1

k2∑
j=1

|〈S(fij), eij〉| eij

∥∥∥∥∥∥
p{q}

+ ν

∥∥∥∥∥∥
k1∑
i=1

k2∑
j=1

eij

∥∥∥∥∥∥
p{q}

≤

∥∥∥∥∥∥
k1∑
i=1

k2∑
j=1

〈|S(fij)|, eij〉

∥∥∥∥∥∥
p{q}

+ ν

∥∥∥∥∥∥
k1∑
i=1

k2∑
j=1

eij

∥∥∥∥∥∥
p{q}

≤

∥∥∥∥∥∥
k1∑
i=1

k2∑
j=1

〈|S|(|fij |), eij〉 eij

∥∥∥∥∥∥
p{q}

+ ν

∥∥∥∥∥∥
k1∑
i=1

k2∑
j=1

eij

∥∥∥∥∥∥
p{q}

≤

∥∥∥∥∥∥
k1∑
i=1

k2∑
j=1

〈|S|(|f |), eij〉 eij

∥∥∥∥∥∥
p{q}

+ ν

∥∥∥∥∥∥
k1∑
i=1

k2∑
j=1

eij

∥∥∥∥∥∥
p{q}

= ‖ |S|(|f |)‖p{q} + ν

∥∥∥∥∥∥
k1∑
i=1

k2∑
j=1

eij

∥∥∥∥∥∥
p{q}

≤ ‖ |S| ‖+ ν

∥∥∥∥∥∥
k1∑
i=1

k2∑
j=1

eij

∥∥∥∥∥∥
p{q}

.

Moreover

εp′{q′}(((eij)
k1
i=1)k2j=1) = sup

‖(βtl)‖p′{q′}≤1

∥∥∥∥∥∥
k1∑
i=1

k2∑
j=1

〈eij , (βtl)〉 eij

∥∥∥∥∥∥
p′{q′}

=

∥∥∥∥∥∥
k1∑
i=1

k2∑
j=1

βij eij

∥∥∥∥∥∥
p′{q′}

≤ 1.

Hence, denoting by IX and IY the corresponding inclusion maps into L∞(µ)
and `p{`q} respectively, we have
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|〈S, z〉| = |〈U, z〉| = |〈U, ((IX)′ ⊗ (IY )′)(z)〉|
≤ gp{q}(U ;X ⊗ Y ) g′p{q}(((IX)′ ⊗ (IY )′)(z);X ′ ⊗ Y ′)
≤ gp{q}(U ;X ⊗ Y ) g′p{q}(((IX)′ ⊗ (IY )′)(z);X ′ ⊗ Y ′)
≤ (gp{q}(U ;L∞ ⊗ `p{`q}) + ε)g′p{q}(z;L∞(µ)⊗ `p′{`q′})
≤ g′p{q}(z;L∞(µ)⊗ `p′{`q′}})

(
πp{q}((S′(eij)) εp′{q′}((eij)) + ε

)
≤ g′p{q}(z;L∞(µ)⊗ `p′{`q′}})

‖ |S| ‖+ ν

∥∥∥∥∥∥
k1∑
i=1

k2∑
j=1

eij

∥∥∥∥∥∥
p{q}

+ ε


and ν being arbitrary |〈S, z〉| ≤ g′p{q}(z;L∞(µ)⊗ `p′{`q′})(‖ |S| ‖+ ε). Finally,
by the arbitrariness of ε, we get

|〈S, z〉| ≤ g′p{q}(z;L∞(µ)⊗ `p′{`q′}) ‖ |S| ‖.

But from [1] theorem 1.10, |S|(χΩ) = sup{|S(f)|, |f | ≤ χΩ} and as `p{`q} is
order continuous

‖ |S| ‖ = ‖ |S|(χΩ)‖ = sup{‖ |S(f)| ‖, ‖f‖ ≤ 1} = ‖S‖.

Then S is p{q}−integral with Ip{q}(S) ≤ ‖S‖. As (Ip{q}, Ip{q}) is a Banach
operators ideal, ‖S‖ ≤ Ip{q}(S), hence Ip{q}(S) = ‖S‖.

Corollary 3.6 Let G be an abstract M -space with unit. Then every operator
T : G→ `np{`mq } is p{q}-integral with Ip{q}(T ) = ‖T‖.

Proof. The results follows easily from theorem 3.5 because every operator
T : G→ `np{`mq } is order bounded and `np{`mq } is order continuous.

For our next theorem, we need a very deep technical result due to Lin-
denstrauss and Tzafriri [9] which gives us a kind of ”uniform approximation” of
finite dimensional subspaces by finite dimensional sublattices in Banach lattices.

Lemma 3.7 Let ε > 0 and n ∈ N be fixed. There is a natural number h(n, ε)
such that for every Banach lattice X and every subspace F ⊂ X of dimension
dim(F ) = n there are h(n, ε) disjoints elements {zi, 1 ≤ i ≤ h(n, ε)} and an
operator A from F into the linear span G of {zi, 1 ≤ i ≤ h(n, ε)} such that for
every x ∈ F ‖A(x)− x‖ ≤ ε ‖x‖

Theorem 3.8 For 1 ≤ p, q < ∞, G an abstract M -space, and X a quasi Lp,q
space or a complemented subspace of a quasi Lp,q space. Then every operator
T : G −→ X is p{q}-integral and there is a constant K > 0 such that Ip{q}(T ) ≤
K ‖T‖.
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Proof. By the representation theorem of maximal operator ideals (see 17.5
in [2]), if JX is the inclusion map of X into X ′′, we only need to show that
JXT ∈ (G⊗g′

p{q}
X ′)′.

Given z ∈ G⊗X ′ and ε > 0, let M ⊂ G and N ⊂ X ′ be finite dimensional
subspaces, and let z =

∑n
i=1 fi ⊗ x′i be a fixed representation of z with fi ∈M

and x′i ∈ N , i = 1, 2, .., n such that

g′p{q}(z;G⊗X
′) ≤ g′p{q}(z;M ⊗N) ≤ g′p{q}(z;G⊗X

′) + ε.

By lemma 3.7, we obtain a finite dimensional sublattice M1 of G and an operator
A : M →M1 so that for every f ∈M , ‖A(f)−f‖ ≤ ε‖f‖. Then, if idG denotes
the identity map on G, we have

|〈T, z〉| =

∣∣∣∣∣
n∑
i=1

〈T (fi), x′i〉

∣∣∣∣∣ ≤
∣∣∣∣∣
n∑
i=1

〈 (idG −A)(fi), x′i〉

∣∣∣∣∣+

∣∣∣∣∣
n∑
i=1

〈T A(fi), x′i〉

∣∣∣∣∣
≤ ε‖T‖

n∑
i=1

‖fi‖ ‖x′i‖+

∣∣∣∣∣
n∑
i=1

〈T A(fi), x′i〉

∣∣∣∣∣ .
Put X1 := T (M1). By hypothesis, X is a quasi -Lp,q-space. Hence, there are

a finite dimensional subspace X2 of X, some complemented finite dimensional
subspace H of `p{`q} with projection PH : `p{`q} → H such that ‖PH‖ ≤ b
for some b > 0, and an isomorphism V : X2 −→ H such that X1 ⊂ X2 and
‖V ‖ ‖V −1‖ ≤ a for some positive real constant a. Let IX1 : X1 −→ X2 be
the inclusion map. To simplify notation, we denote R : M1 −→ H such that
R := V IX1 T. Let K2 : X ′′′ −→ X ′2 = X ′′′/X◦2 be the canonical quotient map.
Then

n∑
i=1

〈T (A(fi)), x′i〉 =
n∑
i=1

〈IX1 T (A(fi)),K2(x′i)〉

=
n∑
i=1

〈V −1 V IX1 T (A(fi)),K2(x′i)〉

=
n∑
i=1

〈R A(fi), (V −1)′K2(x′i)〉

=

〈
R,

n∑
i=1

A(fi)⊗ (V −1)′ K2(x′i)

〉

with
∑n
i=1A(fi)⊗ (V −1)′ K2(x′i) ∈M1 ⊗H ′. As `p{`q} is an Lp,q space, H is

contained in some r-dimensional subspaceW of `p{`q} such that d(W, `rp{`rq}) < 1 + ε.
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We denote IH the inclusion of H in W and by C : W → `rp{`rq} such that
‖C‖‖C−1‖ ≤ 1 + ε.

Since M1 is an abstract M -space with unit, the map C IH R : M1 →
`rp{`rq} is order bounded by corollary 3.6, hence Ip{q}(CIHR) ≤ ‖C‖‖R‖ ≤
‖C‖‖V ‖‖T‖. Then, as

R = (PH)|W C−1 C IH R,

R is again p{q}-integral with Ip{q}(R) ≤ ‖PH‖ ‖C−1‖ ‖C‖ ‖V ‖ ‖T‖ ≤ (1 +
ε) b ‖V ‖ ‖T‖. Therefore,∣∣∣∣∣

n∑
i=1

〈T (A(fi)), x′i〉

∣∣∣∣∣ =

∣∣∣∣∣
〈
R,

n∑
i=1

A(fi)⊗ (V −1)′ K2(x′i)

〉∣∣∣∣∣ ≤
≤ Ip{q}(R) gp{q}(

n∑
i=1

A(fi)⊗ (V −1)′ K2(x′i);M1 ⊗H ′) ≤

≤ (1 + ε) b ‖V ‖ ‖T‖ gp{q}
(
(A⊗ (V −1)′ K2)(z);M1 ⊗H ′

)
≤

≤ (1 + ε) b ‖V ‖ ‖T‖ ‖A‖ ‖(V −1)′‖ ‖K2‖ gp{q}(z;M ⊗N) ≤

≤ (1 + ε)2 a b ‖T‖ gp{q}(z;M ⊗N) ≤ (1 + ε)2 a b ‖T‖ (gp{q}(z;G⊗X) + ε)

and by the arbitrariness of ε > 0 we obtain

|〈T, z〉| ≤ a b ‖T‖ g′p{q} (z;G⊗X ′) .

Concerning necessary conditions for an operator to be p{q}-integral we have:

Theorem 3.9 [4] Let 1 ≤ p, q < ∞. For every pair of Banach spaces E,F if
T ∈ Ip{q}(E,F ) then JFT factors as:

L∞(µ)

E

A

?
-

B
X

6

F ′′

C

-
JFT

where X is some ultrapower (`p{`q})U1 of `p{`q} and B is a lattice homomor-
phism. Moreover Ip{q}(T ) ≥ inf ‖C‖ ‖B‖ ‖A‖ taking the infimum over all such
factorizations.
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Theorem 3.10 Let 1 ≤ p, q < ∞ and let E and F be Banach spaces. The
following statements are equivalent:

1) T ∈ Ip{q}(E,F ).
2) JFT factors continuously is:

L∞(µ)

E

A

?
-

B
X

6

F ′′

C

-
JF T

where X is a quasi Lp,q-space. Furthermore, the norm Ip{q}(T ) is equal to
inf{‖C‖‖B‖‖A‖}, taking the infimum over all such factorizations.

3) JFT factors continuously in the following way:

L∞(µ)

E

A

?
-

B
X

6

F ′′

C

-
JF T

where X is a quasi Lp,q-lattice and B is a lattice homomorphism. Further-
more Ip{q}(T ) is equal to inf{‖C‖‖B‖‖A‖}, taking the infimum over all such
factorizations.

4) It exists a σ-finite measure space (O,S, ν) and a Köthe function space
K(ν) which is complemented in a quasi Lp,q, such that JFT factors continuously
in the following way:

L∞(ν)

E

A

?
-

B
K(ν)

6

F ′′

C

-
JF T

where B is a multiplication operator for a positive function of K(ν). Further-
more, Ip{q}(T ) is equal to inf{‖C‖‖B‖‖A‖}, taking the infimum over all such
factorizations.
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Proof. For 1) ⇔ 2) and 1) ⇔ 3), we remember that (`p{`q})U is a quasi
Lp,q space, and we use theorems 3.9 and 3.8. For 1) ⇔ 4), we have to keep in
mind that `p{`q} has finite cotype; hence, every ultrapower of `p{`q} is order
continuous (Henson and Moore, [5], 4.6), and by [8] theorem 1.a.9, it may be
decomposed into an unconditional direct sum of a family of mutually disjoint
ideals {Xh, h ∈ H} having a positive weak unit. Then, from 1.b.14 in [8], as
every Xh is order isometric to a Köthe function space defined on a probability
space (Oh,Sh, νh), then (`p{`q})U is order isometric to a Köthe function space
K(ν1) on a measure space (O1,S1, ν1), hence we may replace (`p{`q})U by K(ν1)
in 2). If we denote z := B(χΩ) as z =

∑∞
i=1 yhi with yhi ∈ Xhi for every i ∈ N,

then B(L∞(µ)) is contained in the unconditional direct sum of {Xhi , i ∈ N}
which is order isometric to a Köthe function space K(ν) on a σ-finite measure
space (O,S, ν), which is 1-complemented in K(ν1).

Finally, as K(ν) is order complete, it exists g := sup‖f‖L∞(µ)
B(f) in K(ν).

Then, the operators B1 : L∞(µ) → L∞(ν) and B2 : L∞(ν) → K(ν), defined
as B1(f)(ω) := B(f)(ω)/g(ω), for all f ∈ L∞(µ), ω ∈ O with g(ω) 6= 0 and
B1(f)(ω) = 0 otherwise, and B2(h)(ω) := g(ω)h(ω) for all h ∈ L∞(ν), ω ∈ O,
satisfy B = B2B1 and B2 is a multiplication operator by a positive element
g ∈ K(ν).

4 Coincidence between p{q}-nuclear and p{q}-integral
operators.

For 1 ≤ p, q <∞, we introduce a new operator ideal, which is contained in
the ideal of the p{q}-integral operators .

Definition 4.1 Let 1 ≤ p, q < ∞. We say that T ∈ L (E,F ) is strictly
p{q}-integral if a σ-finite measure space (O,S, ν) and a Köthe function space
K(ν) exist which is complemented in some quasi Lp,q space, such that T factors
continuously in the following way:

L∞(ν)

E

A

?
-

B
K(ν)

6

F

C

-
T

where B is a multiplication operator for a positive function of K(ν).
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We denote by SIp{q}(E,F ) the set of the strictly p{q}-integral operators
between E and F which is closed subspace of Ip{q}(E,F ) and SIp{q}(T ) =
Ip{q}(T ) for every T ∈ SIp{q}(E,F ). It is clear that if F is a dual space, or it
is complemented in its bidual space, then SIp{q}(E,F ) = Ip{q}(E,F ).

Theorem 4.2 Let 1 ≤ p, q <∞, and let E and F be Banach spaces, such that
E′ satisfies the Radon-Nikodým property, then Np{q}(E,F ) = SIp{q}(E,F ).

Proof. We suppose that E′ has the Radon-Nikodým property and let T ∈
SIp{q}(E,F ).

a) We suppose that B is a multiplication operator by a function g ∈ K(ν)
with support on D, a set of finite measure. We denote νD the restriction of ν
to D.

As (χDA) : E → L∞(νD), then (χDA)′ : (L∞(νD))′ → E′ and the restric-
tion of (χDA)′ �L1(νD): L1(νD)→ E′, thus, for every x ∈ E and f ∈ L1(νD)

〈x, (χDA)′ (f)〉 = 〈χDA (x) , f〉 =
∫
D

χDA (x) fd(νD).

As E′ has the Radon-Nikodým property, applying theorem III(5) of [3], we
have that (χDA)′ has a Riesz representation; therefore, it exists a function
φ ∈ L∞(νD, E′) such that for every f ∈ L1(νD)

(χDA)′ (f) =
∫
D

fφd(νD).

Then, for every x ∈ E, we have that χDA(x)(t) = 〈φ(t), x〉, νD-almost every-
where in D, and then B(χDA)(x) =< gφ(.), x >, νD-almost everywhere in D.
We denote by gφ this last operator, and we can consider it as an element of
K(νD, E′).

Now, as the simple functions are dense in K(νD, E′), gφ can be approximated
by a sequence of simple functions (Sk)∞k=1.

We suppose Sk =
∑mk
j=1 x

′
kjχAkj , where {Aki : i = 1, ..,m} is a family of

pairwise disjoint ν-measurable sets of Ω . For each k ∈ N, we can interpret Sk
as a map Sk : E → K(ν) such that Sk(x) =

∑mk
j=1 < x′kj , x > χAkj with norm

less than or equal to the norm of Sk in K(ν,E′).
Obviously, for all k ∈ N, Sk is p{q}-nuclear because it has finite rank , but

we need to evaluate its p{q}-nuclear norm Np{q}(Sk) which coincides with its
p{q}-integral norm Ip{q}(Sk).

Let S1
k : E → L∞(ν) be defined as S1

k(x) :=
∑mk
j=1

〈x′kj ,x〉
‖x′kj‖

χAkj and S2
k :

L∞(ν) → K(ν) as S2
k(f) :=

∑mk
j=1 ‖x′kj‖fχAkj . It is easy to see that ‖S1

k‖ ≤ 1,
‖S2

k‖ ≤ ‖Sk‖K(ν,E′) and Sk = S2
k S

1
k.

As K(ν) is a complemented subspace of a quasi Lp,q, from 3.8, there is
K > 0 such that Np{q}(S2

k) = Ip{q}(S2
k) ≤ K ‖S2

k‖ ≤ K ‖Sk‖K(ν,E′), hence



26 P. Gómez, J.A. López & M. J. Rivera

Np{q}(Sk) ≤ K ‖Sk‖K(ν,E′). Then, as (Sk)∞k=1 converges in K(νD, E′), it is a
Cauchy sequence in the complete space Np{q}(E,K(νD)), so (Sk)∞k=1 converges
to gφ, i.e., gφ ∈ Np{q}(E,K(νD)). Therefore, gφ = BχDA is p{q}-nuclear and
so is T .

b) If g is any element of K(ν), it can be approximated in norm by means of
a sequence (tn)∞n=1 of simple functions with finite measure support therefore, by
a), the sequence Tn = CBtnA is a Cauchy sequence in Np{q}(E,F ) converging
to T in L(E,F ), and then T ∈ Np{q}(E,F ).

As a consequence of the former result and the factorization theorems 3.10
and 3.4, we obtain the following metric properties of gp{q} and (gp{q})

′.

Theorem 4.3 (gp{q})′ is a totally accessible tensor norm.

Proof. As (gp{q})′ is finitely generated, it is sufficient to prove that the map
F ⊗(gp{q})′ E ↪→ Pp′{q′} (E′, F ′′) is an isometry.

In fact, let z =
∑n
i=1

∑li
j=1 yij ⊗ xij ∈ F ⊗(gp{q})′ E, and let Hz ∈

Pp′{q′}(E′, F ′′) be the canonical map associated to z,

Hz (x′) =
n∑
i=1

li∑
j=1

〈xij , x′〉 yij

for all x′ ∈ E′, where Hz ∈ L (E′, F ) ⊂ L (E′, F ′′).
Applying theorem 15.5 of [2] with α = (gp{q})′, theorem 3.2, and the equality

(gp{q})′′ = gp{q}, since gp{q} is finitely generated, the inclusion

F ⊗←−−−−−
(gp{q})′

E↪→
(
F ′ ⊗gp{q} E

′)′→Pp′{q′} (E′, F ′′)

is an isometry, therefore by proposition 12.4 in [2], we obtain

Πp′{q′} (Hz) =
←−−−−
(gp{q})′ (z;F ⊗ E) ≤ (gp{q})′ (z;F ⊗ E) .

On the other hand, given N , a finite dimensional subspace of F such
that z ∈ N ⊗(gp{q})′ E, there exists V ∈ (N ⊗(gp{q})′ E)′ = Ip{q}(N,E′)
such that Ip{q}(V ) ≤ 1 and (gp{q})′(z;N ⊗ E) = 〈z, V 〉. Clearly enough
V ∈ SIp{q}(N,E′) = Ip{q}(N,E′) because E′ is a dual space, and N ′, be-
ing finite dimensional, has the Radon-Nikodým property. Therefore by theorem
4.2, V ∈ Np{q} (N,E′) and by theorem 3.4, given ε > 0, there is a factorization
of V of the form
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`∞{`∞}

N

A

?
-

B
`p{`q}

6

E′

C

-
V

such that ‖C‖‖B‖‖A‖ ≤ Np{q}(V ) + ε = Ip{q}(V ) + ε ≤ 1 + ε.
As `∞{`∞} has the extension metric property, (see proposition 1, C.3.2. in

[14]), A may be extended to a continuous map A ∈ L (F, `∞{`∞}) such that∥∥A∥∥ = ‖A‖. By theorem 3.4 again, W := CBA is in Np{q} (F,E′), so there is
a representation w =:

∑∞
i=1

∑∞
j=1 y

′
ij ⊗ x′ij ∈ F ′⊗̂gp{q}E′ of W satisfying

∞∑
i=1

πp{q}
((
y′ij
))
εp′{q′}

((
x′ij
))
≤ Np{q} (W ) + ε ≤ ‖C‖ ‖B‖

∥∥A∥∥+ ε ≤ 1 + 2ε.

Then, (gp{q})′(z;F ⊗ E) ≤ (gp{q})′(z;N ⊗ E) = 〈z, V 〉 = 〈z,W 〉 and it follows
that

(gp{q})′(z;F ⊗ E) ≤ gp{q}(w)Πp′{q′}(Hz) ≤ (1 + 2ε)Πp′{q′}(Hz)

whence (gp{q})′(z;F ⊗ E) ≤ Πp′{q′}(Hz), and the equality becomes obvious.

Corollary 4.4 gp{q} is an accesible tensor norm.

Proof. It is a direct consequence of the former theorem and proposition
15.6 of [2].�

In the following theorem, related to the approximation property, we have to
keep in mind that every p{q}-absolutely summing operator T is a p-summing
operator with the Saphar’s tensor norm gp , and therefore, it is absolutely
continuous according to Niculescu’s definition.

Theorem 4.5 Let E, F be Banach spaces such that E′ has the approxima-
tion property and E does not contain a copy of `1. Then F(E,F ) is dense in
Pp′{q′}(E,F ).

Proof. Let T ∈ Pp′{q′}(E,F ). Then, T is absolutely continuous, and by
theorem 2.2. in Niculescu [12], as E contains no isomorphic copy of `1, T is
compact. Finally, as E′ has the approximation property, by proposition 5.3 (2)
in [2], T ∈ E′⊗̂εF = F(E,F ).
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Theorem 4.6 If F has the approximation property, then E⊗̂gp{q}F , E⊗g′
p{q}

F ,
Np{q} (E,F ), Pp′{q′} (E,F ) and Ip{q} (E,F ) are reflexive if and only if E y F
are reflexive.

Proof. The necessity part is evident. For the sufficiency, suppose that E
and F are reflexive. As F is reflexive and it has the approximation property,
it does not contain a copy of `1 and by corollary 9 (p. 244) of [3] F ′ has the
approximation property. Then, applying theorems 4.5 and 3.2(

E⊗̂gp{q}F
)′

= Pp′{q′} (F,E′) = E′⊗̂g′
p{q}

F ′.

By corollary 4 (pg. 82) of [3], it follows that E′′ has the Radon-Nikodym
property and then, by theorems, 4.2 and 4.3(

E′⊗̂g′
p{q}

F ′
)′

= Ip{q} (E′, F ) = SIp{q} (E′, F ) = Np{q} (E′, F ) .

As F has the approximation property, by corollary 1, 22.2 of [2], the equality

Np{q} (E′, F ) = E⊗̂gp{q}F

follows. Then E⊗̂gp{q}F , and therefore, all the spaces, as stated in the
theorem, are reflexive.
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