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On the controllability of a two-cell CNN

Teodoro Lara and Edgar Rosales

Abstract. In this paper we study and characterize the control-
lability of a constant 2-cells CNN (Cellular Neural Network) with
feedback resembling a symmetric or antisymmetric matrix and input
with all entries set to zero except its first element . We characterize
and give a precise description of the control in each case. This prob-
lem has been attacked already in order to study complete stability
and in the seek of chaotic attractor; but this time the controllability
is addressed.

Resumen. En este trabajo se estudia y caracteriza la capacidad
de control de una red celular neural, (CNN por sus siglas en inglés)
constante de 2 células con retroalimentación parecida a una matriz
simétrica o antisimétrica y de entradas todas cero, excepto por el
primer elemento. Caracterizamos y damos una descripción precisa
del control en cada caso. Este problema se ha atacado con el fin de
estudiar la estabilidad completa y en la busca de atractores caóticos;
pero esta vez consideramos la capacidad de control.

0 Introduction

Since its introduction by Chua and Yang in 1988 ([6], [7]), the cellular Neural
Network model (linear, nonlinear and delayed) referred as CNN, has been shown
to have a host of desirable properties long sought after by the neural network
community. CNNs are cellular, analog, programmable and multidimensional
processing arrays with distributed logic and memory. The processing elements
are locally connected. The extension of the CNN paradigm is the CNN universal
machine in which distributed and global memories and logic functions support
the execution of complex analogical algorithms. The key feature of the CNN
architecture is its high operation speed ([18]). Several variations of he original
CNN have been proposed and used for black and white image processing tasks,
like edge detections, noise removal, horizontal and vertical line filtering and
many many others ([5], [9], [10], [13], [16]).

Chaotic CNN has been used for image segmentation ([17]). Another appli-
cation can be found in [18] where CNN is used in bubble debris classification
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problem to distinguish debris particles from air bubbles. This is not an easy task
due to the coarse resolution of the images and to requirements for an extremely
low false alarm for misclassified bubbles at a very high processing speed.

In its simplest form, a CNN is either a linear or planar array of locally inter-
connected processors, in which each processor has a transfer of signal functions
which is piece-wise linear function mapping the internal state of each given pro-
cessor to the output of that processor. Letting x represent the internal state
of a processor in such an array, the standard signal function (from [7] onward),
takes the form

f(x) =
1

2
(|x+ 1|+ |x− 1|). (1)

In the most general case f is sigmoid function, that is, differentiable, bounded
and f ′(x) > 0, for any x ∈ R.

In the context of a simple CNN model, locally connected means the processor
is connected to its nearest neighbors. For instance, in the linear array, processors
are connected to a single line such that each processor which is not at either
end of the line being connected to two other processors, which are its nearest
neighbors.

Controllability of CNN for the linear case (f as in (1)) has been studied by
imposing different boundary conditions; for instance, periodic boundary condi-
tions in [12] (constant input) and [3] (periodic input); von Neumann boundary
conditions in [2] (constant input) and [4] (periodic input).

In this paper we address the controllability of a modified version of the
two-cell CNN given by

x′1 = −x1 + py1 + sy2 + bu

x′2 = −x2 + ry1 + py2 (2)

with the output function y = g(x) and g being a sigmoid function. For this
type of problem Zou and Nossek discovered a chaotic attractor ([19], [20], [21])
with u = b sin( 2πt

T ) and r = −s. In [15] bifurcation and chaos are studied in a
general problem (2) with output function (1) and

p > 1, p− 1 < r, p− 1 < −s. (3)

In its more general form the equation for the CNN model (array of M × N
Cells) is given as

ẋ = −x+AG(x) +Bu

whereA andB are n×nmatrices, n = MN , x ∈ Rn, G(x) = col(g(x1), g(x2) · · · , g(xn)),
x = col(x1, x2, · · · , xn) and g a sigmoid function.
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1 Controllability

In this section we set the problem in a more convenient way and prove the
results on controllability. We begin with the following

Definition 1.1 ([11], [14]) A control system

ż = f(z, u),

with f(z, u) ∈ C1 in Rn×Rm is said to be controllable in [t0, t1] if for each pair
of points z0 and z1 both in Rn there exists a bounded measurable controller u(t)
on [t0, t1] (with values in Rm) such that the corresponding response z(t) steers
z(t0) = z0 to z(t1) = z1.

We consider, as said before, g sigmoid function, g(0) = 0, and rewrite it as
g(x) = g′(0) + o(|x|) (x ∈ R) as x→ 0, and (2) now looks like

x = Ax+Bu+ o(||x||), (4)

but now
x = col(x1, x2), u = col(u1, u2), B = ( b ) 000

and

A = (− ) 1 + g′(0)pg′(0)sg′(0)r − 1 + g′(0)p,

The following result from [11] will be used in order to guarantee the control-
lability of (4) in the interval [t0, t1]

Theorem 1.2 A system like (4) is controllable en [t0, t1] if and only if matrix

W (t0, t1) =

∫ t1

t0

[F (t1, t)B(t)][F (t1, t)B(t)]T dt

is non singular. Where F (t1, t) is the transition matrix of the system.

We may notice that in our case (autonomous case) the above matrix is F (t1, t) =
exp(A(t1 − t)) for all t1, t reals.

Our main result now runs as follows

Theorem 1.3 The matrix W (t0, t1), with A and B given as in (4), is invertible
for all t0, t1 ∈ R, t0 < t1.

Proof. The eigenvalues of A are λ = −1 + g′(0)p + g′(0)
√
−sr i and λ̄ =

−1 + g′(0)p − g′(0)
√
−sr i with corresponding eigenvector

( √
−sr
r i
1

)
, in-

deed

( √
−sr
r i
1

)
=

(
0
1

)
+

( √
−sr
r
0

)
i. Now we define the matrix P =
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( √
−sr
r 0
0 1

)
, therefore P−1 =

( r√
−sr 0

0 1

)
. But then

P−1AP =

(
−1 + g′(0)p −g′(0)

√
−sr

g′(0)
√
−sr −1 + g′(0)p

)
.

Let us set −1 + g′(0)p = H y g′(0)
√
−sr = K and define a new matrix given by

M =

(
H −K
K H

)
.

In this context matrix A looks like A = PMP−1, eAt = PeMtP−1, and

eAt = PeHt

 cos(K t) − sin(K t)

sin(K t) cos(K t)

P−1;

that is,

eAt =

 eHt cos (K t) −
√
−sr
r eHt sin (K t)

−
√
−sr
s eHt sin (K t) eHt cos (Kt)

 ,

matrix F (t1, t) now becomes eH(t1−t) cos (K (t1 − t)) −
√
−sr
r eH(t1−t) sin (K (t1 − t))

−
√
−sr
s eH(t1−t) sin (K (t1 − t)) eH(t1−t) cos (K(t1 − t))

 .

Consequently [F (t1, t)B(t)][F (t1, t)B(t)]T is e2H(t1−t) (cos (K(t1 − t)))2 b2 e2H(t1−t) cos(K(t1−t))b2 sin(K(t1−t))r√
−sr

e2H(t1−t) cos(K(t1−t))b2 sin(K(t1−t))r√
−sr

e2H(t1−t)rb2(−1+(cos(K(t1−t)))2)
s

 .

We calculate
∫ t1
t0

[F (t1, t)B(t)][F (t1, t)B(t)]T dt and obtain

W (t0, t1) =

(
a11 a12
a21 a22

)
,

with

a11 = b2

4H(H2+K2)

[
eα(H2 cosβ +HK sinβ +H2 +K2)− 2H2 −K2

]
a12 = a21 = − b2

√
−sr

4s(H2+K2) [eα(H sinβ −K cosβ) +K]

a22 = b2r
4sH(H2+K2)

[
eα(H2 cosβ +HK sinβ −H2 −K2) +K2

]
,
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here α = 2H(t1 − t0) and β = 2K(t1 − t0).

On the other hand

det(W (t0, t1)) = − b4reα

16sH2(H2 +K2)

[
−2H2 + 2H2 cosβ +K2e−α +K2eα − 2K2

]
and det(W (t0, t1)) = 0 if and only if −2H2+2H2 cosβ+K2e−α+K2eα−2K2 =
0 if and only if H2 cosβ + K2 coshα = H2 + K2 and this last equality takes
place if and only if α = β = 0 which is impossible to happen; in conclusion, for
our system det(W (t0, t1)) 6= 0 and W (t0, t1) is non singular matrix.

Corollary 1.4 System (4) is controllable in [t0, t1], t0 < t1.

2 The Control

Here we find the optimal control that we know already exists because of previ-
ous section, for this purpose the Pontryagin Maximum Principle and Filippov
Theorem will be used ([1], [8], [14]). We rewrite system (4) in a more convenient
way in order to use the mentioned results, first of all we set b = 1 (or b = −1)
since b is a fix constant, and set the controls as the interval [−1, 1] also

f(X,u) = AX+B (u ) 0, A = (− ) 1+g′(0)pg′(0)sg′(0)r−1+g′(0)p, B = ( 1 ) 000, X = (x )1 x2.

Notice that f is defined on R2×[−1, 1] , linear, and the set of controls is compact.
The control-dependent Hamiltonian function of Pontryagin Maximum Principle
is now (ξ = (ξ1, ξ2))

hu(ξ,X) = (ξ1, ξ2) ( ( )− 1 + g′(0)p)x1 + g′(0)sx2 + ug′(0)rx1 + (−1 + g′(0)p)x2

or

hu(ξ,X) = (−1+g′(0)p)x1ξ1+g′(0)sx2ξ1+uξ1+g′(0)rx1ξ2+(−1+g′(0)p)x2ξ2

and the corresponding Hamiltonian system has the form{
Ẋ = ∂hu

∂ξ

ξ̇ = −∂hu

∂X .

In coordinates this system splits into two independent subsystems{
ẋ1 = (−1 + g′(0)p)x1 + g′(0)sx2 + u
ẋ2 = g′(0)rx1 + (−1 + g′(0)p)x2,

{
ξ̇1 = −(−1 + g′(0)p)ξ1 − g′(0)rξ2
ξ̇2 = −g′(0)sξ1 − (−1 + g′(0)p)ξ2.
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By Pontryagin Maximum Principle, if a control ũ(·) is time optimal, then the
Hamiltonian system has a nontrivial solution (ξ(t), X(t)), ξ(t) 6= 0 such that

hũ((ξ(t), X(t))) = max
|u|≤1

hu((ξ(t), X(t))),

but notice that

max
|u|≤1

hu((ξ(t), X(t))) = (−1+g′(0)p)x1ξ1+g′(0)sx2ξ1+g′(0)rx1ξ2+(−1+g′(0)p)x2ξ2+ | ξ1 |,

if ξ1(t) 6= 0, then
ũ = sgnξ1.

In order to determine ξ1 we look at the system{
ξ̇1 = −(−1 + g′(0)p)ξ1 − g′(0)rξ2
ξ̇2 = −g′(0)sξ1 − (−1 + g′(0)p)ξ2

which can be written as

ξ̇ = −AT ξ

where A is given as before, and T means transposed. But then this system can
be solved and ξ1 is uniquely determined, so is ũ and of course (4) as well for
this ũ.

Example 2.1 Let g be the sigmoid function given as g(x) = arctan(x), with
x ∈ [−1, 1]. Then g′(0) = 1 and

A = (− ) 1 + psr − 1 + p, −AT = ( 1 )− p− r − s1− p.

Therefore the foregoing equation can be solved for ξ1 and ξ2, actually

ξ1 = exp[(1− p)t][C1 cos(
√
−rs)t+ C2 sin(

√
−rs)t]

where C1 and C2 are constants, which means that ũ can be explicitly determined
once C1 and C2 are chosen.
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