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Abstract

We consider the possibility of characterizing Buchsbaum and some spe-
cial generalized Cohen-Macaulay rings by systems of parameters having cer-
tain properties of regular sequences. As an application, we give a bound
on Castelnuovo-Mumford regularity of so-called (k, d)-Buchsbaum graded K-
algebras.

1 Introduction

Let A be a noetherian local ring (resp. K-algebra) of dimA = d and m the max-
imal (resp. homogeneous maximal ) ideal of A. A is called a generalized Cohen-
Macaulay (abbr. C-M) ring if all local cohomology modules H i

m(A), i < d, are of

finite length [19]. The class of generalized C-M rings are rather large. The most
important subclass among them form Buchsbaum rings [20]. In order to have a uni-
fied approach in studying Buchsbaum, quasi-Buchsbaum, and other generalized C-M
rings, the notion of (k, r)-Buchsbaum rings was recently introduced, where k ≥ 0 and

1 ≤ r ≤ d are some integers (see [6, 10, 14, 15]). With this new notion we have a
refined classification of generalized C-M rings. Buchsbaum rings are exactly (1, d)-
Buchsbaum rings.

Our remarks are related to the possibility of characterizing Buchsbaum rings

by systems of parameters (abbr. s.o.p.’s) having certain generalized properties of
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regular sequences. We shall do it in a more general context by considering also
(k, d)-Buchsbaum rings.

In Section 2 we will give a characterization of Buchsbaum rings with H i
m(A) = 0

for i 6= depthA, dimA by the help of only one s.o.p.. This is related to a problem

posed by J. Stückrad and W. Vogel [20, p. 87]. Such a ring is important because
it is related to the C-M property of Rees algebras of certain powers of parameter
ideals of A [2].

A relative regular sequence (abbr. r.r.s.) [5], or equivalently, a d-sequence [12]
is a kind of (I, J)-r.r.s.’s of A, where J ⊆ I are ideals of A (see Definition 3.2).
Buchsbaum rings can be good characterized by d-sequences [12], whereas there exists
a local ring which is not a Buchsbaum ring, although every s.o.p. x1, ..., xd of A is a

r.r.s. with respect to the ideal (x1, ..., xd)A in the sense of [5]. Such an example will
be given in Section 3. In this example every s.o.p. of A is also a so-called sequence
of linear type [3]. Some properties of sequences of linear type will be also given.

In the last section 4 we study Castelnuovo-Mumford regularity [4, 10, 21] of
a (k, d)-Buchsbaum K-algebra A. Using the property that some s.o.p. of A is an
(A, mp)-r.r.s. for some well-defined p, we can give a bound on Castelnuovo-Mumford

regularity of A in terms of reduction exponent of m and k, d, which extends a result
of [23] in the case of Buchsbaum rings.

This paper was written while the second author was visiting the University of
Ferrara by a grant of CNR. He would like to thank both institutions.

2 Buschbaum rings with H i
m(A) = 0 for i 6= depthA, dimA

In general, Buchsbaum rings are hardly characterized using only one fixed s.o.p.
(see [20], Problem on p. 87). In a special situation, when H i

m(A) = 0 for i 6=
depthA, dimA, Proposition I.2.12 of [20] gives such a characterization. Such rings

deserve our attention because of the following result of M. Brodmann, which gener-
alizes a result of S. Goto and Y. Shimoda:

Proposition([2], Proposition 6.1) Assume that (A, m) is a local ring of dimension
d ≥ 1 and depthA ≥ r > 0. The following conditions are equivalent:

(i) A is a Buchsbaum ring and Hi
m(A) = 0, i 6= r, d.

(ii) For every parameter ideal q of A the Rees algebra R(qr; A) is C-M (recall
that R(I, A) = ⊕n≥0I

n).

The above mentioned result of [20] depends still on the knowledge of local coho-
mology of A. Here we shall give a characterization free of local cohomology. Let us

recall some definitions.

Let x1, ..., xn be a sequence of elements of a commutative ring R. Throughout
this paper we will use the notations:

q
0

= 0; q = (x1, ..., xn)R, and

q
i
= (x1, ..., xi)R for i = 1, ..., n− 1.

Let (A, m) be a local ring. Let M be a noetherian A-module of dimension d and
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a an ideal of A. A sequence x1, ..., xn ∈ m is said to be an a-weak M-sequence if

q
i−1

M : xi ⊆ q
i−1

M : a for : i = 1, ..., n.

If x1, ..., xd is a s.o.p. of M , we put

I(x1, ..., xd; M) = I(q; M) = `(M/qM) − e(q; M),

the difference between the length of M/qM and the multiplicity of M relative to q.
A s.o.p. x1, ..., xd of M is called a standard s.o.p. of M if

I(x2
1, ..., x

2
d; M) = I(x1, ..., xd; M).

This notion was introduced by M. Brodmann and N. V. Trung. For properties
of standard s.o.p.’s see [22]. We quote here from that paper only Proposition 3.1
needed later.

Lemma 2.0 Assume that a is an ideal with `(M/aM) < ∞. If every s.o.p. of M
contained in a is an a-weak M-sequence then it is also a standard s.o.p. of M .

Definition 2.1 ([19], 3.3; [22], Theorem 2.1) M is called a generalized C-M module

if one of the following equivalent conditions holds:
(i) `(Hi

m(M)) <∞ for i < d.
(ii) There exists a positive integer k such that every s.o.p. of M is an mk-weak
M-sequence.

(iii) There exists a standard s.o.p. of M .

A is called a generalized C-M ring if it is a generalized C-M module as a module

over itself.

Definition 2.2 ([6], [10]) Let k be any non-negative integer and 1 ≤ r ≤ d. M is
called a (k, r)-Buchsbaum module if for every s.o.p. x1, ..., xd of M we have

mkHi
m(M/q

j
M) = 0,

for all non-negative integers i, j with j ≤ r − 1 and i + j < d.
Similarly, we define the notion of (k, r)-Buchsbaum rings. (k, 1)-Buchsbaum

modules are also called k-Buchsbaum modules.

Remark 2.3. (0, r)-, (1, d)- and 1-Buchsbaum modules are exactly the Cohen-
Macaulay, Buchsbaum and quasi-Buchsbaum modules, respectively (see [20]). Every
generalized C-M module is a (k, r)-Buchsbaum module for some k and r, 1 ≤ r ≤ d.

Moreover, it is easy to show that M is (k, d)-Buchsbaum if and only if every s.o.p.
of M is an mk- weak M-sequence (cf. Definition 2.1(ii)). Hence, by Lemma 2.0,
every s.o.p. of M contained in mk is a standard s.o.p. of M .

The following lemma is easy and well-known:

Lemma 2.4 Suppose that M is a generalized C-M module. Let x be a parameter
element of M . Then 0M : x ⊆ H0

m(M). In particular, if depthM = r then every
sub-s.o.p. x1, ..., xr of M forms a regular M-sequence.
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From now on let A be a local ring of dimension d. One can characterize k-
Buchsbaum rings by one fixed s.o.p. (see [20], Proposition I.2.1 and Proposition 13

in the appendix). Here we give another one.

Lemma 2.5 A is a k-Buchsbaum ring if and only if there exists a s.o.p. of A which

is a standard s.o.p. of A as well as an mk-weak sequence.

Proof. Let a = mk. To prove (⇒) let us take any s.o.p. x1, ..., xd of A contained
in a2. This s.o.p. is an a-weak sequence by [20], Proposition 13. Moreover, by that

proposition and by Lemma 2.0 it follows that x1, ..., xd is also a standard s.o.p..

(⇐): Let x1, ..., xd be a standard s.o.p. of A which is also an a-weak sequence. We
consider the following exact sequence:

(1) 0→ (0 : xi)A/q
i−1
→ A/q

i−1
→ A/(q

i−1
: xi)→ 0,

and

(2) 0→ A/(q
i−1

: xi)
·xi−→ A/q

i−1
→ A/q

i
→ 0,

where 1 ≤ i ≤ d. Note that x1, ..., xd is a standard s.o.p. of A if and only if

qHi
m(A/q

j
) = 0 for all non-negative integers i, j with i + j < d ([22], Theorem 2.5).

Hence xi, ..., xd is a standard s.o.p. of A/q
i−1

. Therefore

(3) H0
m(A/q

i−1
) = (0 : xi)A/q

i−1
,

and this module is of finite length. From (1) we then get

Hj
m(A/q

i−1
) ∼= Hj

m(A/(q
i−1

: xi)) for j ≥ 1.

Since xiH
j
m(A/q

i−1
) = 0 for j ≤ d− i, we get from the above isomorphisms and the

exact sequence (2) epimorphisms:

Hj−1
m (A/q

i
)→ Hj

m(A/q
i−1

)→ 0,

for 1 ≤ j ≤ d− i. The composition

H0
m(A/q

i−1
)→ H1

m(A/q
i−2

)→ · · · → H i−1
m (A),

yields an epimorphism

H0
m(A/q

i−1
)→ Hi−1

m (A), for 1 ≤ i ≤ d.

Since x1, ..., xd is an a-weak sequence, from (3) we then get aH i−1
m (A) = 0 for i ≤ d,

i. e. A is a k-Buchsbaum ring.

Example 2.6 ([7], Example 1.10). Let R = K[[x1, ..., xd, y1, ..., yd]], d ≥ 3. Put
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a = (x1, ..., xd)R ∩ (y1, ..., yd)R,

q = (x2
1, x2, ..., xd, y

2
1, y2, ..., yd)R,

Fi = xi + yi, i = 1, ..., d,

and

A = R/((a ∩ q) + F n
1 R) with n ≥ 3.

Then dimA = d−1, A is not a Buchsbaum ring and the images F̄2, ..., F̄d of F2, ..., Fd
in A satisfy the condition (ii) of Lemma 2.5 with k = 1. Hence, by that lemma, A
is a quasi-Buchsbaum ring. Note that F̄2, ..., F̄d ∈ m\m2.

Proposition 2.7 The following conditions are equivalent:

1) A is a (k, d)-Buchsbaum ring with H i
m(A) = 0 for i 6= r, d (0 ≤ r ≤ d).

2) There exists a s.o.p. x1, ..., xd of A which satisfies

i) x1, ..., xd is a standard s.o.p. of A,

ii) x1, ..., xd is an mk-weak sequence,

iii) x1, ..., xr is a regular sequence, and

iv) If r < d, then I(x1, ..., xd; A) =
(
d−1
r

)
`((q

r
: xr+1)/qr).

3) There exists a s.o.p. of A contained in mk which satisfies the above conditions
ii), iii) and iv).

Proof. Note that if x1, ..., xd is a standard s.o.p. of A and if depthA ≥ i for some
0 ≤ i < d, then A is a generalized C-M ring with

`(Hi
m(A)) = `(H0

m(A/q
i
)) = `((q

i
: xi+1/qi),

(by [22], Proposition 2.9), and

I(x1, ..., xd; A) =
d−1∑
j=0

(
d− 1

j

)
`(Hj

m(A)).

Hence 1)⇒ 3) is immediate from Remark 2.3 and Lemma 2.4.

3) ⇒ 2): If x1, ..., xd satisfies (3), then by [20], Proposition 13, every s.o.p. of A
contained in m2k is an mk-weak sequence. Hence, by Lemma 2.0, x1, ..., xd is also a

standard s.o.p. of A.

2) ⇒ 1): Condition (iii) gives depthA ≥ r. Hence, from the above remark we get
that Hi

m(A) = 0 for i 6= r, d. By Lemma 2.5, A is a k-Buchsbaum ring. Therefore,

by [11] Corollary 2.4, A must be a (k, d)-Buchsbaum ring (the fact that a quasi-
Buchsbaum ring with H i

m(A) = 0 for i 6= r, d must be a Buchsbaum ring is well
known).

Remark 2.8. From Theorem 3.1 of [18] one can get some another characterizations
of Buchsbaum rings with Hi

m(A) = 0 for i 6= 1, d by one fixed s.o.p. of A.
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3 Sequence of linear type

Let A be a commutative ring, I an ideal of A, SA(I) the symmetric algebra of I , and
RA(I) the Rees algebra of I . Then I is called an ideal of linear type if the canonical

surjection SA(I) → RA(I) is an isomorphism [9]. In order to employ an inductive
method in studying ideals of linear type, D. L. Costa has introduced:

Definition 3.1 x1, ..., xn is called a sequence of linear type if all ideals q
i
, i = 1, ..., n,

are ideals of linear type.

Definition 3.2 (cf. [5]) Let A be a commutative ring, M an A-module and N2 ⊆ N1

submodules of M . A sequence x1, ..., xn is said to be a relative regular sequence
(abbr. r.r.s.) of M with respect to (N1, N2), or shortly (N1, N2)-r.r.s., if

(q
i−1

N1 : xi) ∩N2 ⊆ q
i−1

M, i = 1, ..., n.

If N1 = N2 = N , it is also called an N -r.r.s. of M .

This definition includes various generalizations of regular sequences. If we set
N1 = M, N2 = (x1, ..., xn)M then an (N1, N2)-r.r.s. is exactly a r.r.s. introduced

by the first named author in [5], or equivalently, a d-sequence introduced by C.
Huneke [12], [13]. For a graded ring A = ⊕n≥0An with m = ⊕n≥1An, P. Bouchard
has considered (N1, N2)-r.r.s.’s with N1 = N2 = mk for some k > 0 [1]. Weakly
regular sequences considered by M. Herrmann et al. [8], [17] are (N1, N2)-r.r.s.’s in

the graded case with N1 = A and N2 = mk for some k. In each case, a suitable
choice of N1 and N2 turns out to be a good tool in studying various quetions of
commutative algebra (see also the next section for an application). The following

result of [3], Theorem 3 extends a result of C. Huneke and G. Valla.

Lemma 3.3 Let x1, ..., xn be a sequence of elements in a commutative ring A. If
x1, ..., xn is a qt-r.r.s. of qt−1, i. e. if

(∗) (q
i−1

qt : xi) ∩ qt = q
i−1

qt−1,

for all t ≥ 1, then x1, ..., xn is a sequence of linear type. In particular, a d-sequence
is a sequence of linear type.

From this lemma, we get the following diagram (see [9], 6.1 and [13], Lemma
2.3):

d-sequence (or r.r.s.)
m

(q
i−1

qt : xi) ∩ qt = q
i−1

qt−1 for all t ≥ 0

⇓
(q
i−1

qt : xi) ∩ qt = q
i−1

qt−1 for all t ≥ 1

⇓
sequence of linear type
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Inspired with the fact that Buchsbaum rings can be characterized by various
generalizations of regular sequences (see [20], Proposition I.1.17), and from the above

diagram it is raised for us a quesion : Can we characterize Buchsbaum rings by
sequences of linear type and by s.o.p. satisfying (*), respectively? We shall give a
counter-example to it. We need the following auxiliary result which is the converse
of Lemma 3.3 in a particular case.

Proposition 3.4 Assume that A is a domain or a generalized C-M local ring. In
the last case, we assume that x, y be two parameter elements of A. Then x, y is a
sequence of linear type if and only if it satisfies the condition (*) for all t ≥ 1.

Proof. By Lemma 3.3 one has only to prove the implication (⇒).
(1) To prove (0 : x) ∩ (x, y)A = 0.

One has only to consider the case (A, m) is a generalized C-M local ring and
x, y ∈ m are parameter elements of A. Let u ∈ (0 : x) ∩ (x, y)A. By Lemma 2.4,

0 : x ⊆ H0
m(A). Hence, there exists a positive integer n such that ynu = 0. Then

we get

u ∈ (0 : x) ∩ (x, y)A ∩ (0 : yn)

= (0 : x) ∩ yA ∩ (0 : yn) (by [3], Lemma 2)

= 0 (by [3], Lemma 4).

(2) To prove (x(x, y)tA : y) ∩ (x, y)tA = x(x, y)t−1A, t ≥ 1.
Let u ∈ (x(x, y)tA : y) ∩ (x, y)tA. We may assume that u = yta for some a ∈ A.

Then a ∈ x(x, y)tA : yt+1 = xA : y (by [3], Theorem 4). Hence ya ∈ xA, so
u = yt−1(ya) ∈ x(x, y)t−1A, as required.

Example 3.5 This example shows that Proposition 3.4 is not true without any
assumption on A. Let A = K[[X, Y, Z]]/(X) ∩ (Y, Z) = K[[X, Y, Z]]/(XY, XZ) =
K[[x, y, z]]. Since x + z is a non-zero divisor, using Lemma 3.3 one can show that

x + z, y is a sequence of linear type. On the other hand, y is a d-sequence because
0 : y = 0 : y2 = xA. Hence y, x + z is also a sequence of linear type. But

(0 : y) ∩ (y, x + z)A = xA ∩ (y, x + z)A 3 x(x + z) = x2 6= 0.

That means, y, x + z does not satisfy (*) even for t = 1. Otherwords, y, x + z is not
a r.r.s. w.r.t. (y, x + z)A in the sense of Definition 3.2.

Example 3.6 There exists a local ring A which is not Buchsbaum, but every s.o.p.
of A satisfies the condition (*) for all t ≥ 1, and hence, by Lemma 3.3, is also
a sequence of linear type. Indeed, let A = K[[s2, s5, st, t]]. It is easy to see that
A is a two-dimensional generalized C-M, but not Buchsbaum local domain with

m = (s2, s5, st, t)A. We will show that A has the above property.

Proof. A has the following property: s2H1
m(A) 6= 0 (so A is even not a quasi-

Buchsbaum ring) and nH1
m(A) = 0, where n = (s4, s5, st, t)A (see [8], Example
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42.8). From this and H0
m(A) = 0 it is easily seen that every s.o.p. of A contained

in n is an n-weak sequence. Hence every s.o.p. of A contained in n is a d-sequence

([22], Proposition 3.1).
Now let x, y be a s.o.p. of A. If both x, y are contained in n, from the above

observation and from Lemma 3.3, x, y is a sequence of linear type. Let x /∈ n.
Then one can write x = s2a + s5b + stc + td, for some a ∈ K and b, c, d ∈ A.

Since (x, y)A = (x, y − xu)A for an arbitrary element u ∈ A, we may assume that
y = s5b′ + stc′ + td′ for some b′, c′, d′ ∈ A, i. e. y ∈ n. From the exact sequence

0→ H0
m(A/xA)→ H1

m(A)
·x−→ H1

m(A),

nH1
m(A) = 0, we see that 0Ā : y = 0Ā : y2, where Ā = A/xA. By [12], Proposition

1.7, (0Ā : y) ∩ yĀ = 0Ā, or equivalently, (xA : y) ∩ (x, y)A = xA. Since x is a non

zero-divisor, x, y is a r.r.s. (d-sequence). Hence (x, y)A is also an ideal of linear type
in the case x /∈ n. By Proposition 3.4, the s.o.p. x,y satisfies the condition (*) for
all t ≥ 1, as required.

Finally, we want to give a remark about a question of D. L. Costa in [3], p. 261:

For any sequence a1, ..., an of linear type and any integer s ≥ 2 is as1, ..., a
s
n also a

sequence of linear type? In the mentioned paper, a positive answer was given for
n ≤ 2. The following simple example shows that in general this is not true already
for n = 3.

Example 3.7 Let a, b be any regular sequence in a commutative ring A with
1/2 ∈ A. Then a, b, a + b and a2, b2 are sequences of linear type. Using the relation

(a2, b2)(a2, b2, ab)A : (ab)2 = A 6= (a2, b2)A : ab = (a, b)A,

we deduce from [3], Theorem 4 that the ideal (a2, b2, (a+ b)2)A = (a2, b2, ab)A is not
of linear type. Hence, a2, b2, (a + b)2 is not a sequence of linear type.

4 Castelnuovo-Mumford regularity

In this section we will consider K-algebra, i. e. noetherian graded rings A =
⊕n≥0An, where A0 = K is an infinite field, and A is generated over K by A1. Let
m = ⊕n>0An be the unique homogeneous maximal ideal of A. Analogy to Section

2, one can define the notion of generalized C-M rings, etc. for the graded case. We
define Castelnuovo-Mumford regularity regA of A by

regA = inf{n ∈ Z; [H i
m(A)]j = 0 for all i, j such that i + j > n}.

The significance of this notion stems from the fact that regA governs the complexity
of computing the syzygies and other invariants of A [4]. For further informations,
especially for Castelnuovo-Mumford regularity of generalized C-M K-algebras, see

[10], [11], and [21].
To get the main theorem of this section, let us recall the notion of minimal

reductions of an ideal [16]. If I, J are ideals of A, Then J is called a reduction of
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I if J ⊆ I and Ir+1 = JIr for at least one non-negative integer r. If J is minimal
with respect to being a reduction, then it is called a minimal reduction. Since K

is infinite, any homogeneous ideal of A has a minimal reduction. The reduction
exponent r(I) of I is just the least non-negative integer n such that there exists a
minmal reduction J with In+1 = JIn. There are some relations between r(m) and
regA in [23]. The following theorem extends [23], Corollary 3.5 which states that

regA = r(m) if A is a Buchsbaum ring.

Theorem 4.1 Assume that A is a (k, d)-Buchsbaum K-algebra, where d = dimA
and k ≥ 1. Then

r(m) ≤ regA ≤ r(m) + d(k − 1).

Proof. The first inequality was proven in [23], Proposition 3.2. We shall prove
the second one. Let r = r(m) and J be any minimal reduction of m such that
mr+1 = Jmr. It is well-known that J is generated by d linear forms x1, ..., xd. Let
p = r + d(k − 1) + 1. Then we have

mp = (x1, ..., xd)
d(k−1)+1mr

= (x
d(k−1)+1
1 , x

d(k−1)
1 x2, ..., x

d(k−1)+1
d )mr

⊆ (xk1, ..., x
k
d)A.

Let 1 ≤ i ≤ d be any integer. Put Ā = A/q
i−1

(recall that q
i−1

= (x1, ..., xi−1)A).

By Definition 2.2, Ā is a (k, d − i + 1)-Buchsbaum A-module. Hence, by Remark
2.3, xki , ..., x

k
d is a standard s.o.p. of Ā. By [22], Corollary 2.3 we have

H0
m(Ā) ∩mpĀ = H0

m(Ā) ∩ (xki , ..., x
d
k)Ā = 0Ā.

Note that, by Lemma 2.4, 0Ā : xi = H0
m(Ā). Therefore

(q
i−1

: xi) ∩mp ⊆ q
i−1

, i = 1, ..., d.

That means, x1, ..., xd form an (A, mp)-r.r.s. (see Definition 3.2). Note that a
sequence is an (A, mp)-r.r.s. if and only if it is a t-regular sequence for all t ≥ p in
the sense of [23]. Hence, if we denote by

a(x) = inf{n; x = x1, ..., xd is : an : (A, mn)− r.r.s.},

then by [23], Corollary 3.3 and Proposition 2.2 we have

regA + 1 = max{r + 1, a(x)}.

Obviously, a(x) ≤ p and r + 1 ≤ p. So regA ≤ p− 1, as required.

Note that in Theorem 4.1 we need no assumption that A is to be a domain (cf.
[21] and [10]). Unfortunately, in general we do not know how large is r(m). On the
other hand, if r(m) is small then we can have a good bound on regA. For example,
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if A is a Buchsbaum ring of maximal embedding dimension, then r(m) = 1, hence
regA = 1.

As we have remarked, (A, mk)-r.r.s.’s for some k are just weakly regular se-
quences in [8], or t-regular sequences for all t ≥ k in [23]. Because of the impor-
tance of (A, mk)-r.r.s.’s, we shall give them a characterization by Koszul homology
Hp(x; A), where x denotes the sequence x1, ..., xn. In the following proposition A is

not necessary a K-algebra.

Proposition 4.2 Let A = ⊕i≥0Ai be a graded ring generated by A1 over A0. Let
m = ⊕i≥1Ai and x1, ..., xn be homogeneous elements of A such that deg x1 ≤ · · · ≤
deg xn. Assume that x = x1, ..., xn is an (A, mk)-r.r.s. for some k ≥ 0. Then

mkHp(x; A) = 0 for p > 0.

Proof. Let
K.(x; A) : Kp+1

dp+1−→ Kp
dp−→ Kp−1 → · · · ,

denote the Koszul complex generated by x over A. It is enough to show that

Ker dp ∩mkKp(x; A) ⊆ Im dp+1 for all p > 0.

Moreover, we will show by induction on n that for every a ∈ Ker dp ∩mkKp(x; A)
there exists an element a′ ∈ mk−deg xnKp+1 such that a = dp+1(a

′) (we set mt = A if
t ≤ 0).

If n = 1, one has only to consider the case p = 1. Since

Ker d1 ∩mkK1(x1; A) ⊆ (0 : x1) ∩mk = 0,

the above assertion is trivial in this case.
Let n > 1. We denote by (Lp, ep) the Koszul complex generated by x1, ..., xn−1

over A. It is well-known that we can consider Kp as the direct sum Lp−1 ⊕ Lp and

dp((u, v)) = (ep−1(u), (−1)p−1xnu + ep(v)),

for u ∈ Lp−1, v ∈ Lp. Hence, if (u, v) ∈ Ker dp ∩mkKp(x; A) we have

u ∈ Ker ep−1 ∩mkLp−1, and (1)

v ∈ mkLp and (−1)p−1xnu + ep(v) = 0. (2)

If p ≥ 2 then (1) and the induction hypothesis imply that u = ep(u
′) for some u′ ∈

mk−deg xn−1Lp. If p = 1 this also holds. Indeed, in this case e1(v) ∈ (x1, ..., xn−1)A =
Im e1. From the equality of (2) and from (1) we get by Definition 3.2 that

u ∈ ((x1, ..., xn−1)A : xn) ∩mk ⊆ (x1, ..., xn−1)A.

Writting u = x1u1+...+xn−1un−1, where ui = 0 or ui is a homogeneous element with
deg ui ≥ k − deg xi ≥ k − deg xn−1, we obtain u = e1(u

′) with u′ ∈ mk−deg xn−1L1.

The existence of u′ is proven. Now we have for all p ≥ 1:

(∗∗) ep((−1)p−1xnu
′ + v) = (−1)p−1xnu + ep(v) = 0.
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On the other hand, since deg xn ≥ deg xn−1,

xnu
′ ∈ mdeg xnmk−deg xn−1Lp ⊆ mkLp.

Hence we get from (**) and (2)

(−1)p−1xnu
′ + v ∈ Ker ep ∩mkLp.

By the induction hypothesis, there exists an element v′ ∈ mt−deg xn−1Lp+1 such that

(−1)p−1xnu
′ + v = ep+1(v

′). Thus (u, v) = dp+1((u
′, v′)) and

(u′, v′) ∈ mt−deg xn−1Kp+1 ⊆ mt−deg xnKp+1,

as required.

Remark. The following result suggests our Proposition 4.2. Let N2 ⊆ N1 be
submodules of M such that (x1, ..., xn)M ⊆ N2. Let N2 : M = {a ∈ A; aM ⊆ N2}.
Assume that x1, ..., xn is an (N1, N2)-r.r.s. of M . Then

(N2 : M)Hp(x1, ..., xn; M) = 0 : for all p > 0.

This can be easily deduced from [5] and an exact sequence of Koszul homology
derived from the exact sequence

0→ N2 →M →M/N2 → 0,

(cf. also [9], 6.1.2). If (x1, ..., xn)M 6⊆ N2 we cannot find in references any similar

result.
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