The reduction of a double covering of a Mumford curve

G. Van Steen

The technique of analytic reductions is one of the main tools in the study of curves over a non-archimedean valued field. In [2] a theorem is given which describes such a reduction for an unramified abelian covering of a Mumford curve.

In this paper we prove a similar theorem for two-sheeted coverings of a Mumford curve which are possibly ramified. We aply the theorem to determine the reduction in the case that the underlying curve has genus two.

I thank M. Van Der Put for his suggestions.

Notations The fiels k is supposed to be algebraically closed and complete with respect to a non-archimedean absolute value. The residue field \bar{k} has characteristic different from 2.

1 The reduction of a double covering

We study a double covering $\phi: X \to Y$ where X and Y are non-singular projective curves defined over k. The morphism ϕ is ramified in the points of $S = \{p_1, \dots, p_n\} \subset Y$.

We assume Y to be a Mumford curve. This means that Y has a finite admissible covering $\mathcal{U} = (U_i)_{i \in I}$ such that each affinoid set U_i is isomorphic to an affinoid subset of $\mathbf{P}^1(k)$.

The covering can be chosen such that the corresponding analytic reuction $r: Y \to \bar{Y}$ has the following properties, (cf. [1]):

a) each irreducible component of \bar{Y} is a non-singular projective curve over the residue field \bar{k} with genus zero;

Received by the editors May 1993 Communicated by A. Verschoren 470 G. Van Steen

b) the only singularities of \bar{Y} are the intersection points of the irreducible components and these are ordinary double points;

c) the images $r(p_1), \dots, r(p_n)$ are all regular points.

The inverse images $V_i = \phi^{-1}(U_i)$ are affinoid subsets of X and the covering $\mathcal{V} = (V_i)_{i \in I}$ is an admissible covering of X. Let $R: X \to \bar{X}$ be the coreponding analytic reduction. The map $\phi: X \to Y$ induces an algebraic morphism $\bar{\phi}: \bar{X} \to \bar{Y}$ such that $r \circ \phi = \bar{\phi} \circ R$. We will prove the following theorem.

Theorem 1.1.

- 1) The irreducible components of \bar{X} are non-singular curves.
- 2) The only singularities of \bar{X} are the intersections of the irreducible components and these points are ordinary double points.
- 3) The map $\bar{\phi}$ is a double covering, ramified in the points of r(S) and possibly ramified in the double points of \bar{Y} .

Proof a) The affinoids of \mathcal{U} and \mathcal{V} .

An affinoid set $U \in \mathcal{U}$ can be described in the following way:

$$U = \{x \in \mathbf{P}^1(k) \mid |q| \le |x| \le 1, |x - a_k| \ge 1, |x - b_l| \ge 1; k = 1, \dots, s \text{ and } l = 1, \dots t\}$$

with $\begin{cases} q \in k^* \text{ and } |q| < 1 \\ |a_k| = 1, \quad |a_k - a_i| = 1 \\ |b_l| = |q|, \quad |b_l - b_j| = |q| \end{cases} \quad (k \neq i = 1, \dots, s)$ $(l \neq j = 1, \dots, t)$

The ring of holomorphic functions on U is then

$$A = k < x, y, z_1, z_2 > /(xy - q, \prod_{i=1}^{s} (x - a_i)z_1 - 1, \prod_{j=1}^{t} (y - \frac{q}{b_j})z_2 - 1).$$

Let $V = \phi^{-1}(U)$. The ring of holomorphic functions on V has the form $B = A[z]/(z^2 - t)$ with $t \in A$.

According to [3] t has a decomposition as:

$$t = \lambda (1 + t_0) x^{\epsilon_0} \cdot \prod_{i=1}^{s} (x - a_i)^{\epsilon_i} \cdot \prod_{j=1}^{t} (y - \frac{q}{b_j})^{\nu_j} \cdot \prod_{p_i \in U} (x - p_i)$$

with $t_0 \in A$ and $||t_0|| < 1$, $\lambda \in k^*$.

Since $r(p_1), \dots, r(p_n)$ are regular points of \bar{Y} the set $\{p_i \mid p_i \in U\}$ can be split in two parts $(p_i)_{i \in K}$ and $(p_i)_{i \in L}$

with
$$\begin{cases} |p_k| = |p_k - a_i| = 1, \ k \in K \text{ and } 1 = 1, \dots, t \\ |p_l| = |p_l - b_j| = |q|, \ l \in L \text{ and } j = 1, \dots, t. \end{cases}$$

Furthermore z is only defined up to multiplication with an element of A^* .

So we may assume that $B = A[z]/(z^2 - t)$ with $t = x^{\epsilon_0} m$. $\prod_{k \in K} (x - p_k)$. $\prod_{l \in L} (y - \frac{q}{bj})$

and
$$m = \prod_{i=1}^{s} (x - a_i)^{\epsilon_i} \cdot \prod_{j=1}^{b} (y - \frac{q}{b_j})^{\nu^j}$$
; $\epsilon_i, \nu_j = 0$ or 1.

b) The reduction of A and B.

The reduction \bar{A} of A is the localization of $\bar{k}[x,y]/(xy)$ at the element $\prod_{i=1}^{s}(x-\bar{a}_i).\prod_{j=1}^{t}(y-\frac{\bar{q}}{b_j}).$

The reduction \bar{U} of U has two components l_x and l_y corresponding to x = 0 and y = 0 respectively. Each of them is an open affine subset of $\mathbf{P}^1(k)$.

We calculate the reduction of B and V in the following cases.

1)
$$K = L = \emptyset$$

We have the same situation as is [2],pages 42-43.

We find that \bar{V} has irreducible components which are open affine subsets of non-singular curves over \bar{k} .

The intersections of the components are ordinary double points. The reduced map $\bar{\phi}: \bar{V} \to \bar{U}$ has degree two and can only be ramified in the double points of \bar{U} .

2)
$$K \neq \emptyset, \epsilon_0 \neq 0$$

Let $k_0 \in K$ and let $w = \frac{zy}{\sqrt{q}}$. We have

$$w^2 = m.(q - p_{k_0}y) \cdot \prod_{k_0 \neq k \in K} (x - p_k) \cdot \prod_{l \in L} (y - \frac{q}{p_l})$$

So B = A[z, w], divided by the ideal generated by

$$\begin{cases} zw - \sqrt{q}.m. \prod_{k \in K} (x - p_k). \prod_{l \in L} (y - \frac{q}{p_l}) \\ z^2 - x.m. \prod_{k \in K} (x - p_k). \prod_{l \in L} (y - \frac{q}{p_l}) \\ w^2 - m(q - p_{k_0}y) \cdot \prod_{k_0 \neq k \in K} (x - p_k). \prod_{l \in L} (y - \frac{q}{p_l}). \end{cases}$$

The ring that one obtains by taking residues of the coefficients has no nilpotents and hence is isomorphic to the reduction of B. So $\bar{B} = A[z, w]$, divided by the ideal generated by

$$\begin{cases} zw \\ z^{2} - x.\bar{m}. \prod_{k \in K} (x - \bar{p_{k}}). \prod_{l \in L} (y - \frac{\bar{q}}{p_{l}}) \\ w^{2} - \bar{m}.\bar{p_{k_{0}}}.y. \prod_{k_{0} \neq k \in K} . \prod_{l \in L} (y - \frac{\bar{q}}{p_{l}}). \end{cases}$$

It follows that \bar{V} has two components L_z and L_w corresponding to z=0 and w=0 respectively. Both are open affine subsets of a non-singular curve.

The components intersect in the point corresponding to z=x=0. The map $\bar{\phi}: \bar{V} \to \bar{U}$ has degree two an maps L_z onto l_x and L_w onto l_y . Furthermore $\bar{\phi}$ is ramified in the intersection point of l_x and l_y and in the reductions of the points $(p_k)_{k\in K}$ and $(p_l)_{l\in L}$.

472 G. Van Steen

3)
$$K \neq \emptyset, \epsilon_0 = 0$$

In a similar way as in (b) we find that

$$\bar{B} = \bar{A}[z]/(z^2 - \bar{m}. \prod_{k \in K} (x - \bar{p_k}). \prod_{l \in L} (y - \frac{\bar{q}}{p_l})).$$

It follows that \bar{V} has two components L_x and L_y lying above l_x and l_y respectively. The map $\bar{\phi}: \bar{V} \to \bar{U}$ is ramified in the reduction of the points $(p_k)_{k \in K}$ and $(p_l)_{l \in L}$.

4)
$$K = \emptyset, L \neq \emptyset$$

This case gives a similar result as in (b) and (c).

2 Unramified double coverings of a Mumford curve

Let $\phi: X \to Y$ and $\bar{\phi}: \bar{X} \to \bar{Y}$ be as in section 1.

The reductions \bar{Y} and \bar{X} are taken with respect to the coverings \mathcal{U} and $\mathcal{V} = \phi^{-1}(\mathcal{U})$ respectively.

We assume now that ϕ is unramified. It is clear that ϕ is an analytic covering in the sense of [2] if and only if for each $U \in \mathcal{U}$ the restriction $\phi : V = \phi^{-1}(U) \to U$ is an analytic covering. Such coverings are easy to describe.

Lemma 2.1. Let

$$U = \{x \in k \mid |q| \le |x| \le 1, |x - a_i| \ge 1, |x - b_j| \ge |q|; i = 1, \dots, s \text{ and } j = 1, \dots, t\}$$

with
$$\begin{cases} q \in k^* \text{ and } |q| < 1 \\ |a_i| = |a_i - a_k| = 1; \quad 1 \neq k = 1, \dots, s \\ |b_j| = |b_j - b_l| = |q|; \quad j \neq l = 1, \dots, t \end{cases}$$

An affinoid map $u: V \to U$ of degree two is an analytic covering if and only if V has two connected components V_1 and V_2 such that the restriction of u to V_i is an isomorphism, (i = 1, 2).

Proof Let A and B be the rings of holomorphic functions of U and V respectively.

We have
$$B = A[z]/(z^2 - x^{\epsilon_0}) \cdot \prod_{i=1}^{s} (x - a_i)^{\epsilon_i} \cdot \prod_{j=1}^{t} (\frac{q}{x} - \frac{q}{b_j})^{\nu_j}$$
 with $\epsilon_1, \dots, \epsilon_s, \nu_1, \dots, \nu_t = 0$

or 1. Let $U_1 = \{x \in U \mid |x| = 1\}$ and $U_2 = \{x \in U \mid |x| = |q|\}$. The restrictions $u : u^{-1}(U_i) \to U_i$ are also analytic coverings. There is an admissible covering \mathcal{W}_1 of U_1 such that for each $W \in \mathcal{W}_1$ the inverse image $u^{-1}(W)$ has two connected components isomorphic to W.

At least one $W \in \mathcal{W}_1$ has the form $W = U_1 - \{$ open discs with radius 1 $\}$. Let D and D' be the holomorphic function rings of W and $u^{-1}(W)$ respectively.

It follows that $D' = D[w]/(w^2 - t)$ where $t \in D^*$ is a squarefree element divisible by

$$x^{\epsilon_0} \cdot \prod_{i=1}^s (x-a_i)^{\epsilon_i}$$
. But since $u^{-1}(W)$ has two components t has to be constant and

hence $\epsilon_0, \dots, \epsilon_s = 0$. In a similar way we find that $\nu_1, \dots, \nu_t = 0$. It follows that V has two connected components as required.

Proposition 2.2. The map $\phi: X \to Y$ is an analitic covering if and only if for each irreducible component l of \bar{Y} the invers image $u^{-1}(l)$ consists of two disjoint irreducible components of X, each one isomorphic to l.

Proof Each element U of \mathcal{U} satisfies the conditions of the lemma.

The proof of the lemma also shows that for general ϕ the inverse image of an irreducible component l of \bar{Y} can have the following forms:

- a) $\bar{\phi}^{-1}(l)$ is an irreducible component L of \bar{X} and $\bar{\phi}: L \to l$ is ramified;
- b) $\bar{\phi}^{-1}(l)$ consists of two irreducible components L_1 and L_2 of \bar{X} and $\bar{\phi}: L_i \to l$ is an isomorphism.

3 Example: Mumford curves with genus 2

Let Y be a curve with genus 2. Hence Y is hyperelliptic; i.e. there exists a two-sheeted covering $\rho: Y \to \mathbf{P}^1$ which is ramified in six points f_1, \dots, f_6 .

The finite set $S = \{f_1, \dots, f_6\}$ determines an anality reduction $\overline{(\mathbf{P}^1, S)}$ of $\mathbf{P}^1(k)$, see [1]. This reduction satisfies the conditions of Theorem 1.1. So we have a reduction \bar{Y} of Y and an induced map $\bar{\phi}: \bar{Y} \to \overline{(\mathbf{P}^1, S)}$.

Considering the different possibilities for $\overline{(\mathbf{P}^1, S)}$ we find all the possibilities for \overline{Y} , see [1], page 168.

We find that Y is a Mumford curve in the following three cases:

a)

b)

474 G. Van Steen

In these pictures each line is a rational curve. The points \bar{f}_i are the reductions of f_i and $\bar{\rho}(\bar{g}_i) = \bar{f}_i$.

Each restriction $\bar{\rho}: L_i \to l_i$ is a two-sheeted covering, ramified in the points \bar{f}_j on l_i .

In case (c) the intersection of l_3 and l_4 is also a ramification point for $\bar{\rho}: L_4 \to l_4$. In case (b) The curves M_0 and M'_0 are mapped onto l_0 .

Let $\phi: X \to Y$ be a double unramified covering with X a non-singular projective curve with genus 3. The kernel of the dual morphism $\phi^*: \operatorname{Jac}(Y) \to \operatorname{Jac}(X)$ is a group of order two. The non-trivial element in this group is a divisor class of the form $D_{ij} = cl(g_i - g_j)$ with i < j. The divisor class D_{ij} determines X up to an isomorphism. So we have 15 possibilities for $\phi: X \to Y$. We proved in [4] that three of these coverings are analytic and in each of these cases X is also hyperelliptic.

Since the reduction \bar{Y} also satisfies the conditions of section 1, we have a reduction \bar{X} and an induced map $\bar{\phi}: \bar{X} \to \bar{Y}$ such as in Theorem 1.1.

It is not difficult to calculate this reduction. We give only two examples for case (a). If $D_{12} \in \text{Ker}\phi^*$ then we have

Each line is a rational curve and the restrictions $\bar{\phi}: C_i \to L_i$ and $\bar{\phi}: C'_i \to L_i$ are isomorphisms. So X is a Mumford curve and ϕ is an analytic covering. The covering ϕ is also analytic when $D_{56} \in \ker \phi^*$ or $D_{34} \in \operatorname{Ker} \phi^*$.

If D_{15}, D_{25}, D_{16} or $D_{26} \in \ker \phi^*$ then we have

The curves C_1 and C_2 are rational and the restrictions $\bar{\phi}: C_i \to L_i, i = 1, 2$ are double coverings, ramified in the intersection points of L_i with L_3 .

The curve C_3 is hyperelliptic and the restriction $\bar{\phi}: C_3 \to L_3$ is a double covering ramified in the intersection points of L_3 with L_1 and L_2 . Since C_3 is not rational, X is not a Mumford curve. In fact these are the only cases where X is not a Mumford curve.

References

- [1] Gerritzen L. and Van Der Put M.: Schottky Groups and Mumfordcurves, *Lecture Notes in Mathematics 817*, Springer Verlag, Berlin 1980.
- [2] Van Der Put M.: Etale Coverings of a Mumford Curve, Ann Inst. Fourier 33, 1 (1983), 29 52.
- [3] Fresnell J. and Van Der Put M. : Geometrie Analytique Rigide et Applications, *Birkhauser*, *Boston-Basel-Stuttgart* 1981.
- [4] Van Steen G.: Unramified Coverings of Hyperelliptic Mumford Curves, *Proc.* of the First Belgian-Spanish week on Algebra and Geometry (1988), 163-172.

G. Van Steen

University of Antwerp, R.U.C.A.

Department of mathematics and computer science

Groenenborgerlaan 171

B-2020 Antwerpen, BELGIUM