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EXACT CONTROLLABILITY OF SEMILINEAR
SYSTEMS WITH IMPULSES

(COMMUNICATED BY CLAUDIO CUEVAS)

ZHI-QING ZHU, QING-WEN LIN

Abstract. The purpose of this paper is to investigate the controllability of
the impulsive semilinear system

�
x′(t) = A(t)x(t) + f(t, x(t)) + B(t)u(t), t ≥ t0, t 6= tk,

x(t+k ) = x(t−k ) + Ik(x(t−k )), k = 1, 2, 3, . . . .

By making use of Schaefer’s fixed point theorem we obtain some results under
which the system is completely controllable. Two examples are also given to
illustrate the importance of our results.

1. Introduction

Since many dynamic processes in nature can encounter the abrupt changes at
certain moments, there have been quite a number of literatures to study the differ-
ential systems with impulses, see, e.g., [1, 3, 4, 5, 6, 9] and the references therein.
Specially, Nieto et al. [5] considered the controllability of the impulsive system

{
x′(t) + λx(t) = f(t, x(t)) + u(t), t ≥ t0 and t 6= tk,
x(t+k ) = x(t−k ) + Ik(x(t−k )), k = 1, 2, 3, . . .

under the assumptions that

|f(t, x)| ≤ a0 + b0|x|α0

and
|Ik(x)| ≤ ak + bk|x|αk ,

where λ is an n × n real matrix, aj , bj and αj are constants for j ∈ {0, k}. We
observe that the derived results in [5] are valid only for αk ∈ (0, 1). Now a problem
emerges that whether we can weaken the restriction. To answer this question, we
let

t0 < t1 < t2 < . . . and tk →∞ as k →∞
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and consider a more general impulsive control system
{

x′(t) = A(t)x(t) + f(t, x(t)) + B(t)u(t), t ≥ t0 and t 6= tk,
x(t+k ) = x(t−k ) + Ik(x(t−k )), k = 1, 2, 3, . . . ,

(1.1)

where u(·) is a continuous input function, A(·) and B(·) are, respectively, continuous
n × n and n ×m functions defined on [t0,∞), f(·, ·) ∈ C([t0,∞) × Rn,Rn), Ik ∈
C (Rn,Rn) and

x(tk) = x(t+k ) = lim
t→t+k

x(t) , x(t−k ) = lim
t→t−k

x(t).

Set t0 < ζ ≤ ∞ and J = [t0, ζ) \ {tk : k = 1, 2, 3, ...}. Let

PC[t0, ζ)
=

{
x : [t0, ζ) → Rn : x ∈ C(J), x(t−k ) and x(t+k ) exist and x(tk) = x(t+k )

}
.

Specially, for any given τ ∈ (t0, ζ), let J ′ = [t0, τ ] \ {tk : k = 1, 2, 3, ...}. Then,
the space

PC[t0, τ ]
=

{
x : [t0, τ ] → Rn : x ∈ C(J ′), x(t−k ) and x(t+k ) exist and x(tk) = x(t+k )

}

with the norm
||x|| = sup

t∈[t0,τ ]

|x(t)|

is a Banach space, where the norm |x| for x = (x(1), x(2), ..., x(n))T ∈ Rn is defined
by |x| = |x(1)|+|x(2)|+. . .+|x(n)|. In the sequel, the norm of n×n matrix U = (uij)
will be defined by

|U | = max
j

∑

i

|uij |.

As usual, for any given u(·) ∈ C([t0,∞),Rm), by a solution of (1.1) we mean that
there exists a number ζ with t0 < ζ ≤ ∞ and a function x ∈ PC[t0, ζ) such that x
is differentiable on [t0, ζ) \ {tk : k = 1, 2, 3, ...} and renders (1.1) into identity.

Referring to [7, 8], the system (1) is said to be controllable if, for a preassigned
time τ > t0 and the states x0, x1 ∈ Rn, there exists a control u ∈ C([t0, τ ],Rm) such
that the solution x(t) of (1), with initial condition x(t0) = x0, exists on [t0, τ ] and
satisfies x(τ) = x1. If the system is controllable for any τ > t0 and any x0, x1 ∈ Rn,
it will be called completely controllable.

2. Preliminaries

Let E be an identity matrix and Φ(t, t0) a principal matrix solution of the linear
system

x′(t) = A(t)x(t), t ≥ t0,

i.e.,
Φ′(t, t0) = A(t)Φ(t, t0), Φ(t0, t0) = E, t ≥ t0

and
Φ(t, t1)Φ(t1, t0) = Φ(t, t0).
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Then (1) with initial value x(t0) = x0 is equivalent to the following system

x(t) = Φ(t, t0)x0 + Φ(t, t0)
∫ t

t0

Φ−1(s, t0) [f(s, x(s)) + B(s)u(s)] ds

+
∑

k: tk∈(t0,t)

Φ(t, tk)Ik(x(t−k )), t ≥ t0. (2.1)

To enter our discussions, we give a blanket assumption as follows.

(A1) Suppose that ai ∈ C([t0,∞), [0,∞)), constants b
(k)
i ≥ 0, α > 0 and αk > 0

for i = 1, 2 and k = 1, 2, 3, ..., such that

|f(t, x)| ≤ a1(t) + a2(t)|x|α (2.2)

and
|Ik(x)| ≤ b

(k)
1 + b

(k)
2 |x|αk . (2.3)

(A2) Let P and Q be constants such that
{ |Φ(t, s)| ≤ P for all t, s ∈ [t0, τ ],∫ τ

t0
ai(s)ds ≤ Q for i = 1, 2,

(2.4)

where τ > t0 is some finite number.

We remark that when α in assumption (A1) equals 1, the solution x(t) of (1.1)
with respect to any continuous input function u and any initial condition x(t0) = x0

is well defined on [t0,∞). See [12, Theorem 2.17] for the details. In general, we
have the following result.

Lemma 2.1. Under the condition (2.2) with α ∈ (0, 1], the solution x(t) of (1.1)
with respect to the control u and the initial condition x(t0) = x0 is well defined on
[t0,∞).

Proof. Suppose to the contrary that the solution x(t) of (1.1) is defined on
[t0, ζ), here ζ is finite. Let

b =
∑

k: tk∈(t0,ζ)

∣∣Φ(t, tk)Ik(x(t−k ))
∣∣ , t ∈ [t0, ζ). (2.5)

For simplicity, we set ∫ ζ

t0

|B(s)u(s)|ds ≤ Q,

where Q is the same as the assumption (A2) for τ = ζ. Now, with the aid of
(2.1)–(2.2) and (2.4)–(2.5) we have

|x(t)| ≤ P |x0|+ 2PQ + P

∫ t

t0

a2(s)|x(s)|αds + b

= R + P

∫ t

t0

a2(s)|x(s)|αds, t ∈ [t0, ζ), (2.6)

where R = P |x0| + 2PQ + b and the relation Φ(t, t0)Φ−1(s, t0) = Φ(t, s) has been
imposed. If we set

β(t) = R + P

∫ t

t0

a2(s)|x(s)|αds, t ∈ [t0, ζ), (2.7)
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then, from (2.6) it follows that

β′(t) = Pa2(t)|x(t)|α ≤ Pa2(t)βα(t), t ∈ [t0, ζ), (2.8)

which, together with (2.4), produces
∫ β(t)

β(t0)

1
vα

dv ≤ P

∫ t

t0

a2(s)ds ≤ PQ, t ∈ [t0, ζ). (2.9)

In addition, by the assumption that [t0, ζ) is the maximum existence interval of
x(t), we have

lim
t→ζ−

|x(t)| = ∞ (2.10)

and hence (2.6) implies that

lim
t→ζ−

β(t) = ∞, (2.11)

here we refer the reader to [12, Corollary 2.16] for (2.10). Now invoking (2.11) we
see that (2.9) results in a contradiction and this completes our proof.

In the light of Lemma 2.1, for any given τ > t0, the solution x(t) of (1.1)
corresponding to the control u(t) and the initial condition x(t0) = x0 is well defined
on [t0, τ ]. Next we let the n× n matrix function W be defined by

W (t) =
∫ t

t0

Φ−1(s, t0)B(s)BT (s)Φ−1(s, t0)T ds, t > t0, (2.12)

where T denotes the transpose of matrices and Φ−1(s, t0)T =
[
Φ−1(s, t0)

]T . Let us
also assume that W (t) is invertible for all t > t0. Then, referring to [11, Chapter 3]
we learn that, for any x0, x1 ∈ Rn and any τ > t0, the following linear time-varying
system

x′(t) = A(t)x(t) + B(t)u(t) (2.13)

is completely controllable.
Our aim in the remainder of this paper is to consider whether the system (1.1)

can inherit the controllability property when (2.13) is controllable, or, to consider
whether the system (1.1) can possess the controllability although the linear system
(2.13) is not controllable. To this end, we need the following standard conclusion[2,
5].

Lemma 2.2. ( Schaefer) Let X be a Banach space and Ψ : X → X be a continuous
compact map. If the set

Ω = {x ∈ X : x = λΨ(x) for some λ ∈ (0, 1)}
is bounded, then Ψ(x) has a fixed point.

For any two matrices Ak(t) = (a(k)
ij (t))n×n, k = 1, 2, by A1(t) ≥ 0 for t ≥ t0

we mean that a
(1)
ij (t) ≥ 0 for all i, j and t ≥ t0. By A1(t) ≥ A2(t) we mean that

A1(t) − A2(t) ≥ 0. The matrix A1(t) is said to be nondecreasing in t if all the
entries a

(1)
ij (t) of A1 are nondecreasing in t.
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3. Main Results

In this section we begin to consider the controllability of (1.1). The main idea
is to transform the controllability problem to the existence of a fixed point. We
observe that this approach has been invoked by many authors, such as [2, 5, 6, 8].

Theorem 3.1. Suppose that the matrix W (τ) defined as in (2.12) is invertible and
that the conditions (2.2)–(2.4) are fulfilled, where τ > t0 is a preassigned time.
Then the system (1.1) is controllable follows from one of the following conditions

(i) α < 1, max
k
{αk} = 1 and 2P

τ∑
k=1

b
(k)
2 < 1. Moreover , Φ(t, t0), Φ−1(τ, t0),

W (t) and W−1(τ) are nonnegative matrics for t ∈ [t0, τ ], and Φ(t, t0) and W (t)
are nondecreasing in t;

(ii) α = 1, max
k
{αk} < 1 and P

∫ τ

t0
a2(s)ds < 1;

(iii) α < 1 and all the impulse functions Ik are bounded, that is , b
(k)
2 in (2.3)

are all equal to zero;
(iv) max

k
{α, αk} < 1.

Proof. For fixed x0, x1 ∈ Rn, let the two operators ϕ1 : PC[t0, τ ] × C[t0, τ ] →
PC[t0, τ ] and ϕ2 : PC[t0, τ ] → C[t0, τ ] be defined, respectively, by

[ϕ1(x, u)](t) = Φ(t, t0)x0 + Φ(t, t0)
∫ t

t0

Φ−1(s, t0) [f(s, x(s)) + B(s)u(s)] ds

+
∑

k: tk∈(t0,t)

Φ(t, tk)Ik(x(t−k )), (3.1)

(ϕ2x)(t)

= BT (t)Φ−1(t, t0)T W−1(τ)
(

Φ−1(τ, t0)x1 − x0 −
∫ τ

t0

Φ−1(s, t0)f(s, x(s))ds

)

−BT (t)Φ−1(t, t0)T W−1(τ)Φ−1(τ, t0)
∑

k: tk∈(t0,τ)

Φ(τ, tk)Ik(x(t−k )). (3.2)

Then, it is easy to see that ϕ2 is continuous on PC[t0, τ ]. Next, let us consider the
operator Ψ defined by

Ψ = ϕ1(·, ϕ2(·)) : PC[t0, τ ] → PC[t0, τ ].

Then Ψ is continuous via the continuity of ϕ2. Next we show that Ψ is compact.
Let U ⊂ PC[t0, τ ] be any bounded set. Then there exists a constant M such that

∑

k: tk∈(t0,τ)

|Φ(t, tk)Ik(x(t−k ))| ≤ M for all x ∈ U and all t ∈ [t0, τ ]. (3.3)



162 Z.Q. ZHU, Q.W. LIN

Further, for any x ∈ U and any two σ1, σ2 ∈ [t0, τ ] with σ2 ≥ σ1, it follows that

|(Ψx)(σ1)− (Ψx)(σ2)|
≤ |Φ(σ2, t0)− Φ(σ1, t0)| |x0|+

∑

k: tk∈[σ1,σ2)

∣∣Φ(σ2, σ1)Φ(σ1, tk)Ik(x(t−k ))
∣∣

+ |Φ(σ2, σ1)− E|
∑

k: tk∈(t0,σ1)

∣∣Φ(σ1, tk)Ik(x(t−k ))
∣∣

+ |Φ(σ2, t0)− Φ(σ1, t0)|
∫ τ

t0

∣∣Φ−1(s, t0) [f(s, x(s)) + B(s)(ϕ2x)(s)]
∣∣ ds

+ |Φ(σ1, t0)|
∫ σ2

σ1

∣∣Φ−1(s, t0) [f(s, x(s)) + B(s)(ϕ2x)(s)]
∣∣ ds. (3.4)

Now for any given ε > 0 we take δ > 0 so that, when |σ1 − σ2| < δ,

|Φ(σ2, σ1)| < ε, |Φ(σ2, t0)− Φ(σ1, t0)| < ε and |Φ(σ2, σ1)− E| < ε.

On the other hands, since [t0, τ ] is a finite interval, for simpleness we may set that

|Φ(σ1, t0)| ≤ M, Φ−1(s, t0)[f(s, x(s)) + B(s)(ϕ2x)(s)] ≤ M for all s, σ1 ∈ [t0, τ ]

as well as

∫ τ

t0

∣∣Φ−1(s, t0) [f(s, x(s)) + B(s)(ϕ2x)(s)]
∣∣ ds ≤ M,

where x ∈ U . Hence, from (3.3)–(3.4) it follows that

|(Ψx)(σ1)− (Ψx)(σ2)| < |x0|ε + 3Mε + M2|σ1 − σ2|

and this implies that Ψ(U) is equi-continuous. Consequently, the Arzela-Ascoli
theorem [10] implies that Ψ is a compact operator.

Now we suppose that x ∈ PC[t0, τ ] such that

x = λΨ(x) for some λ ∈ (0, 1). (3.5)

(i) For the first case, without loss of generality we suppose that αk = 1 for all k.
In this case we set

b = P

τ∑

k=1

b
(k)
2 .
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By the assumptions for Φ and W , from (3.1)–(3.2) and assumption (A2) it follows
that

|[ϕ1(x, ϕ2x)](t)|
≤ P |x0|+ P

∫ τ

t0

a1(s)ds + P

∫ τ

t0

a2(s)||x||αds + P
∑

k: tk∈(t0,τ)

b
(k)
1 + b||x||+

∣∣∣∣Φ(t, t0)
∫ t

t0

Φ−1(s, t0)B(s)BT (s)Φ−1(s, t0)T dsW−1(τ) ×

Φ−1(τ, t0)
∣∣ ∑

k: tk∈(t0,τ)

∣∣Φ(τ, tk)Ik(x(t−k ))
∣∣

≤ M0 + PQ||x||α + b||x||+ ∣∣Φ(τ, t0)W (τ)W−1(τ)Φ−1(τ, t0)
∣∣×

 ∑

k: tk∈(t0,τ)

b
(k)
1 |Φ(τ, tk)|+

∑

k: tk∈(t0,τ)

|Φ(τ, tk)| b(k)
2 ||x||




≤ M1 + PQ||x||α + 2b||x|| for t ∈ [t0, τ ], (3.6)

where we have used the relation Φ(t, t0)Φ−1(s, t0) = Φ(t, s) and the inequalities of
matrices, and

M0 = P |x0|+ PQ + P
∑

k: tk∈(t0,τ)

b
(k)
1 , M1 = M0 +

∑

k: tk∈(t0,τ)

b
(k)
1 |Φ(τ, tk)| .

Now we turn to consider (3.5). By (3.6) we have

||x|| = ||λΨ(x)|| ≤ ||ϕ1(x, ϕ2x)|| ≤ M1 + PQ||x||α + 2b||x||,
which produces

(1− 2b)||x|| ≤ M1 + PQ||x||α. (3.7)
Note that the hypothesis 1− 2b > 0, we consider the function F defined by

F (s) = (1− 2b)s−M2sα −M1, s ≥ 0.

Then, there exists a unique s∗ > 0 such that

F (s∗) = 0 and F (s) ≤ 0 for s ∈ [0, s∗],

which, together with (3.7), infers that ||x|| ≤ s∗ for all x satisfying (3.7). Subse-
quently, the set Ω in Lemma 2.2 is bounded.

(ii) For this case, similarly to (3.6) we have

|[ϕ1(x, ϕ2x)](t)| ≤ M1 + P

∫ τ

t0

a2(s)ds||x||+ 2
∑

k: tk∈(t0,τ)

|Φ(τ, tk)| b(k)
2 ||x||αk (3.8)

Suppose that γ = max
k
{αk} and ||x|| ≥ 1. Then, by (3.8) we have

||x|| = ||λΨ(x)|| ≤ ||ϕ1(x, ϕ2x)|| ≤ M1 + 2b||x||λ + P

∫ τ

t0

a2(s)ds||x||, (3.9)

where b is the same meaning as the case 1. Since P
∫ τ

t0
a2(s)ds < 1 and γ ∈ (0, 1),

it is easy to see that (3.9) produces the set Ω in Lemma 2.2 is bounded.
(iii) For the third case, note that (2.4), we may set

∑

k: tk∈(t0,t)

|Φ(t, tk)Ik(x)| ≤ b for all x ∈ Rn and all t ∈ [t0, τ ].
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In this case, by (3.2) it follows that

|(Bϕ2x)(t)| ≤ m1 + m2||x||α for t ∈ [t0, τ ], (3.10)

where mi are positive constants. Then, from (3.1) and (3.10) we have

||x|| = ||λΨ(x)||
≤ ||[ϕ1(x, ϕ2x)]||
≤ P |x0|+ PQ + PQ||x||α + P (τ − t0)m1 + Pm2(τ − t0)||x||α + b.

Similarly to the arguments above, the set Ω in Lemma 2.2 is also bounded.
(iv) For the fourth case, there exist three positive constants mi such that it

follows from (3.2) that

|(Bϕ2x)(t)| ≤ m1 + m2||x||α + +m3

∑

k: tk∈[t0,τ ]

||x||αk , t ∈ [t0, τ ]. (3.11)

Now from (3.1)–(3.2) and (3.11) we have

|ϕ1(x, ϕ2x)(t)|
≤ P |x0|+ PQ + PQ||x||α + P

∑

k: tk∈(t0,τ)

b
(k)
1 + P

∑

k: tk∈[t0,τ)

b
(k)
2 ||x||αk

+P (τ − t0)m1 + Pm2(τ − t0)||x||α + Pm3(τ − t0)
∑

k: tk∈[t0,τ)

||x||αk

and then, there exist constants Mi such that

||x|| = ||λΨ(x)||
≤ ||[ϕ1(x, ϕ2x)]||
≤ M1 + M2||x||α + M3

∑

k: tk∈[t0,τ ]

||x||αk . (3.12)

Since max
k
{α, αk} < 1, by the way similar to the first case we can readily show

that x satisfying (3.12) have a same bound. Therefore the set Ω in Lemma 2.2 is
bounded again.

In a word, by Lemma 2.2 we see that there exists an x∗ ∈ PC[t0, τ ] such that
x∗(t) = (Ψx∗)(t) = ϕ1(x∗, ϕ2(x∗))(t) for all t ∈ [t0, τ ]. Hence, when the input
function is set by

u(t)

= BT (t)Φ−1(t, t0)T W−1(τ)
(

Φ−1(τ, t0)x1 − x0 −
∫ τ

0

Φ−1(s, t0)f(s, x∗(s))ds

)

−BT (t)Φ−1(t, t0)T W−1(τ)Φ−1(τ, t0)
∑

k: tk∈(t0,τ)

Φ(τ, tk)Ik(x∗(t−k )),

x∗(t) = ϕ1(x∗, u)(t) is a solution of (1.1) with the initial condition x(t0) = x0,
which exists on [t0, τ ] and satisfies that x∗(τ) = x1. The proof is complete.

Note that Lemma 2.1 shows that the solution of (1.1) with respect to any input
control u and any initial condition x(t0) = x0 exists on [t0,∞). Hence, the time
τ in Theorem 3.1 can be arbitrary. Note further that the states x0 and x1 in the
proof of Theorem 3.1 are also arbitrary. Therefore the following result is clear and
the proof will be skipped.
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Theorem 3.2. Suppose that the matrix function W defined as in (2.12) is invertible
for all t > t0. Suppose further that the conditions (2.2)–(2.3) are fulfilled and

|Φ(t, s)| ≤ P for t ≥ s ≥ t0. (3.13)

Then the system (1.1) is completely controllable follows from one of the following
conditions

(i) α < 1, max
k
{αk} = 1 and 2P

∞∑
k=1

b
(k)
2 < 1. Moreover ,Φ(t, t0), Φ−1(t, t0),

W (t) and W−1(t) are nonnegative matrics for t ≥ t0, and Φ(t, t0) and W (t)
are nondecreasing in t;

(ii) α = 1, max
k
{αk} < 1 and P

∫∞
t0

a2(s)ds < 1;

(iii) α < 1 and all the impulse functions Ik are bounded, that is , b
(k)
2 in (2.3)

are all equal to zero;
(iv) max

k
{α, αk} < 1.

Note that the definition of operator ϕ2 in (3.2) depends on the matrix function
W . We now consider a special case, that is, B(t) in (1.1) satisfies that B(t)BT (t) ≡
E (an identity matrix). In this case we can avoid to impose the function W for
the definition of operator ϕ2, and the controllability criteria are simpler than the
results above.

Theorem 3.3. Suppose that the conditions (2.2)–(2.4) are fulfilled for a preas-
signed time τ > t0 and B(t)BT (t) ≡ E. Then the system (1.1) is controllable
follows from one of the following conditions

(i) α < 1, max
k
{αk} = 1 and 2P

τ∑
k=1

b
(k)
2 < 1;

(ii) α = 1, max
k
{αk} < 1 and P

∫ τ

t0
a2(s)ds < 1;

(iii) α < 1 and all the impulse functions Ik are bounded, that is , b
(k)
2 in (2.3)

are all equal to zero;
(iv) max

k
{α, αk} < 1.

Proof. For fixed x0, x1 ∈ Rn, let the operator ϕ1 : PC[t0, τ ] × C[t0, τ ] →
PC[t0, τ ] be defined as in (3.1) and ϕ2 : PC[t0, τ ] → C[t0, τ ] be defined by

(ϕ2x)(t)

=
1

τ − t0
BT (t)Φ(t, t0)

(
Φ−1(τ, t0)x1 − x0 −

∫ τ

t0

Φ−1(s, t0)f(s, x(s))ds

)

− 1
τ − t0

BT (t)Φ(t, τ)
∑

k: tk∈(t0,τ)

Φ(τ, tk)Ik(x(t−k )). (3.14)

The rest of the proof is similar to those in the proof of Theorem 3.1 and we skip it.
The proof is complete.

Similarly to the Theorem 3.2 we have our last result as follows.

Theorem 3.4. Suppose that B(t)BT (t) ≡ E and the conditions (2.2)–(2.3) are
fulfilled. Also, suppose that

|Φ(t, s)| ≤ P for t ≥ s ≥ t0. (3.15)
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Then the system (1.1) is completely controllable follows from one of the following
conditions

(i) α < 1, max
k
{αk} = 1 and 2P

∞∑
k=1

b
(k)
2 < 1;

(ii) α = 1, max
k
{αk} < 1 and P

∫∞
t0

a2(s)ds < 1;

(iii) α < 1 and all the impulse functions Ik are bounded, that is , b
(k)
2 in (2.3)

are all equal to zero;
(iv) max

k
{α, αk} < 1.

Next we give two examples to end this section.

Example 3.5. Suppose in (1.1) that t0 = 0,

A(t) =
[ −1 0

0 −t

]
and B(t) ≡

[
0 1 0
0 0 1

]
.

Then (2.13) is completely controllable [11, Chapter 3 ]. Now by a straightforward
computing we obtain that

Φ(t, 0) =
(

e−t 0
0 e−t2/2

)
, W (t) =

( ∫ t

0
e2sds 0
0

∫ t

0
es2

ds

)
.

Suppose further that f(t, x) satisfies the condition (2.2) and the impulse functions
are defined by

Ik(x) =
x

4k
for x ∈ R2 (3.16)

where α ∈ (0, 1). Then the conditions in Theorem 3.2 are verified. Hence, system
(1.1) is completely controllable.

Example 3.6. Let

A(t) =
[ −1 0

0 0

]
and B(t) ≡

[
0
1

]

and consider the system
x′ = Ax + Bu. (3.17)

Then (3.17) is not completely controllable[8, 11]. In this case we have

Φ(t, s) =
(

e−(t−s) 0
0 1

)

and hence |Φ(t, s)| ≤ 1 for all t ≥ s ≥ 0. Now we introduce the impulsive functions
as (3.16). Then, for any given τ > 0, if there exists a impulsive moment t1 ∈ (0, τ),
then Theorem 3.4 implies that the system (3.17) with impulse (3.16) is completely
controllable.

4. Conclusion

We remark that our discussions are based on the assumption

|f(t, x)| ≤ a1(t) + a2(t)|x|α,

where α ∈ (0, 1]. Now a natural problem is whether we can consider the same
problems as above under condition α > 1. This will be discussed elsewhere.

Acknowledgment:The authors are very thankful to the reviewer for his valu-
able suggestions.
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