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THE FUZZY LACUNARY I− CONVERGENT OF Γ2 SPACE

DEFINED BY MODULUS

(COMMUNICATED BY NAIM BRAHA)

N. SUBRAMANIAN1, P. ANBALAGAN2, AND P. THIRUNAVUKARASU3

Abstract. The aim of this paper is to introduce and study a new concept of

the fuzzy I− convergent Γ2 space defined by modulus and also some topological

properties of the resulting sequence spaces of fuzzy numbers were examined.

1. Introduction

The concept of fuzzy sets and fuzzy set operations were first introduced by Zadeh
[30], fuzzy logic has become an important area of research in various branches of
Mathematics such as metric and topological spaces, theory of functions, approxima-
tion theory etc. Subsequently several authors have discussed various aspects of the
theory and applications of fuzzy sets. The concept of fuzzyiness has been applied
in various fields such as Statistics, Cybernetics, Artificial intelligence, Operation
research, Decision making, Agriculture, Weather forecasting, Quantum physics.
Similarity relations of fuzzy orderings, fuzzy measures of fuzzy events, fuzzy math-
ematical programming etc.

The concept of ideal convergence as a generalization of statistical convergence,
and any concept involving statistical convergence plays a vital role in pure math-
ematics and also in other branches of science involving mathematics, especially in
information theory, computer science, biological science, dynamical systems, geo-
graphic information systems, population modelling, and motion planning in robot-
ics.

The notion of I− convergence initially introduced by Kostyrko et al. Later on,
it was further investigated from the sequence space point of view and linked with
the summability theory by S̆alát et al., Tripathy and Hazarika, Kumar, Hazarika
and Savas, Khan and Ebdullah, Khan et al, Khan and Tabassum, Das et al., and
many other authors.

Let (xmn) be a double sequence of real or complex numbers. Then the series
∑∞

m,n=1 xmnis called a double series. The double series
∑∞

m,n=1 xmnis said to be

convergent if and only if the double sequence (Smn)is convergent, where
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Smn =
∑m,n

i,j=1 xij(m,n = 1, 2, 3, ...) (see[1]).

We denote w2 as the class of all complex double sequences (xmn). A sequence
x = (xmn)is said to be Pringsheim’s sense double analytic if

supmn |xmn|
1/m+n

< ∞.

The vector space of all Pringsheim’s sense double analytic sequences are usually
denoted by Λ2. A sequence x = (xmn) is called Pringsheim’s sense double entire
sequence if

|xmn|
1/m+n

→ 0 as m,n → ∞.

The vector space of all Pringsheim’s sense double entire sequences are usually de-
noted by Γ2. The spaces Λ2 and Γ2 are metric space with the metric

d(x, y) = supmn

{

|xmn − ymn|
1/m+n

: m,n : 1, 2, 3, ...
}

, (1)

forallx = {xmn}andy = {ymn} inΓ
2.

Consider a double sequence x = (xij). The (m,n)th section x[m,n] of the se-

quence is defined by x[m,n] =
∑m,n

i,j=0xijδij for all m,n ∈ N,

δmn =





















0, 0, ...0, 0, ...
0, 0, ...0, 0, ...
.
.
.
0, 0, ...1, 0, ...
0, 0, ...0, 0, ...





















with 1 in the (m,n)th position and zero other wise. An FK-space(or a metric
space)X is said to have AK property if (δmn) is a Schauder basis for X . Or equiv-
alently x[m,n] → x under metric. We need the following inequality in the sequel of
the paper:

Lemma 1: For a, b ≥ 0 and 0 < p < 1, we have

(a+ b)p ≤ ap + bp

Some initial works on double sequence spaces is found in Bromwich[4]. Later
on it was investigated by Hardy[9], Moricz[17], Moricz and Rhoades[18], Basarir
and Solankan[2], Tripathy[26], Colak and Turkmenoglu[6], Turkmenoglu[28], and
many others. Tripathy and Dutta [31], introduced and investigated different types
of fuzzy real valued double sequence spaces. Generalizing the concept of ordinary
convergence for real sequences Kostyrko et al. [9] introduced the concept of ideal
convergence which is a generalization of statistical convergence, by using the ideal
I of the subsets of the set of natural numbers.

Throughout the article Λ2,Γ2 denote the spaces of Pringsheim’s double analytic
and Pringsheim’s double entire sequences respectively and Λ2I

F and Γ2I
F denote the

classes of I− analytic and I− entire fuzzy real valued double sequences respectively.
The notion of difference sequence spaces (for single sequences) was introduced

by Kizmaz [14] as follows

Z (∆) = {x = (xk) ∈ w : (∆xk) ∈ Z}
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for Z = c, c0 and ℓ∞, where ∆xk = xk − xk+1 for all k ∈ N. Here w, c, c0 and ℓ∞
denote the classes of all, convergent,null and bounded scalar valued single sequences
respectively. The above spaces are Banach spaces normed by

‖x‖ = |x1|+ supk≥1 |∆xk|

Later on the notion was further investigated by many others. We now introduce
the following difference double sequence spaces defined by

Z (∆) =
{

x = (xmn) ∈ w2 : (∆xmn) ∈ Z
}

where Z = Λ2 and Γ2. respetively. ∆xmn = (xmn − xmn+1)−(xm+1n − xm+1n+1) =
xmn − xmn+1 − xm+1n + xm+1n+1 for all m,n ∈ N. Further generalized this notion
and introduced the following notion. For m,n ≥ 1,

Z
(

∆µ
γ

)

=
{

x = (xmn :
(

∆µ
γxmn

)

∈ Z
}

for Z = Λ2 and Γ2

An Orlicz function is a function M : [0,∞) → [0,∞) which is continuous, non-
decreasing and convex with M (0) = 0, M (x) > 0, for x > 0 and M (x) → ∞ as
x → ∞. If convexity of Orlicz functionM is replaced byM (x+ y) ≤ M (x)+M (y) ,
then this function is called modulus function.

Remark 1:An Modulus function satisfies the inequality M(λx) ≤ λM(x) for all λ
with 0 < λ < 1.

In this article are introduce fuzzy I− convergent Γ2
∆ space defined by Modu-

lus function.

2. Definitions and Preliminaries

Let µ = (λmn) be a sequence of non-zero scalars. Then for a given sequence
space E, the multiplier sequence space E (µ) associated with multiplier sequence µ
is defined by

E (µ) = {x = (xmn) : (λmnxmn) ∈ E}

Let X be a non empty set. A non-void class I ⊆ 2X (power set, of X) is called
an ideal if I is additive (i.e A,B ∈ I ⇒ A

⋃

B ∈ I) and hereditary (i.e A ∈ I and
B ⊆ A ⇒ B ∈ I). A non-empty family of sets F ⊆ 2X is said to be a filter on X if
φ /∈ F ;A,B ∈ F ⇒ A

⋂

B ∈ F and A ∈ F,A ⊆ B ⇒ B ∈ F. For each ideal I there
is a filter F (I) given by F (I) = {K ⊆ N : N \K ∈ I} .
Throughout the ideals of 2N and 2N×N will be denoted by I and I2 respectively.
A fuzzy real number X is a fuzzy set on R, a mapping X : R → L (= [0, 1])
associating each real number t with its grade of membership X (t) . The α− level
set of a fuzzy real number X, 0 < α < 1 denoted by [X ]

α
is defined as [X ]

α
=

{t ∈ R : X (t) ≥ α} . A fuzzy real number X is called convex if X (t) ≥ X (s) ∧
X (r) = min (X (s) , X (r)) , where s < t < r. If there exists t0 ∈ R such that
X (t0) = 1, then the fuzzy real number X is called normal. A fuzzy real X is said
to be upper semi-continuous if for each ǫ > 0, X−1 ([0, a+ ǫ)) , for all a ∈ L is open
in the usual topology of R. The set of all upper semi continuous, normal convex
fuzzy number is denoted by L (R) .
Throughout a fuzzy real valued double sequence is denoted by (Xmn) i.e a double
infinite array of fuzzy real number Xmn for all m,n ∈ N.
Every real number r can express as a fuzzy real number r as follows:

r =

{

1, if t = r;
0, otherwise
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Let D be the set of all closed bounded intervals X =
[

XL, XR
]

. Then X ≤ Y if

and only if XL ≤ Y L and XR ≤ Y R.
Also d (X,Y ) = max

(∣

∣XL − Y L
∣

∣ ,
∣

∣XR − Y R
∣

∣

)

. Then (D, d) is a complete metric
space.
Let d : L (R)× L (R) → R be defined by

d (X,Y ) = sup0≤α≤1d ([X ]
α
, [Y ]

α
) for X,Y ∈ L (R) .

Then d defined a metric on L (R) .
By a lacunary sequence θ = (mn)rs , where

(mn)00 =





















0, 0, ...0, 0, ...
0, 0, ...0, 0, ...
.
.
.
0, 0, ...0, 0, ...
0, 0, ...0, 0, ...





















,

we shall mean an increasing sequence of non-negative integers with (mn)rs −
(mn)r−1,s−1 → ∞ as r, s → ∞. The intervals determined by θ will be denoted

by Irs =
(

(mn)r−1,s−1 , (mn)rs

]

and we let hrs = (mn)rs − (mn)r−1,s−1 . The

space of lacunary strongly entire sequences Nθ is defined as follows:

Nθ =
{

x = (xrs) :
1

hrs

∑

m∈Irs

∑

n∈Irs
|xmn − 0|

1/m+n
= 0, as r, s → ∞

}

2.1. Definition. Let A denote a four dimensional summability method that maps
the complex double sequences x into the double sequence. Ax where the mn − th
term to Ax is as follows

(Ax)k,ℓ =
∑∞

m=1

∑∞

n=1 a
mn
kℓ xmn.

In [10] Hardy presented the notion of regularity of two dimensional matrix transfor-
mations. The definition is as follows: a two dimensional matrix transformation is
said to be regular if it maps every convergent sequence into a convergent sequence
with the same limit. In addition, to the numerous theorems characterizing regular-
ity. Hardy also presented the Silvermann-Toeplitz characterization of regularity fol-
lowing this work Robison in 1926 presented a four dimensional analog of regularity
for double sequences in which he added an additional assumption of boundedness.
This assumption was made because a double sequence which is P−convergent is
not necessarily bounded along these same lines, Robison and Hamiltion presented
a Silverman-Toeplitz type multidimensional characterization of regularity in [11]
and [25]. The definition of regularity for four dimensional matrices will be stated
next, followed by the Robison-Hamilton characterization of the regularity of four
dimensional matrices.

2.2. Definition. A double sequences (Xmn) is said to be convergent in Pring-
sheim’s sense to the fuzzy real number X , if for every ǫ > 0, there exists n0 =
n0 (ǫ) , k0 = k0 (ǫ) ∈ N such that d (Xmn, X) < ǫ for all n ≥ n0, k ≥ k0.

2.3. Definition. A double sequence (Xmn) is said to be I−convergent to the fuzzy
number X0, if for all ǫ > 0, the set

{

(n, k) ∈ N2 : d (Xmn, X0) ≥ ǫ
}

∈ I. We write
I − limXmn = X0.



THE FUZZY LACUNARY I− CONVERGENT OF Γ2 SPACE DEFINED BY MODULUS 79

2.4. Definition. A double sequence EF is said to be monotone if EF contains the
canonical pre-image of all its step spaces.

2.5. Definition. A double sequence EF is said to be symmetric if
(

Xπ(m),π(n)

)

∈

EF , whenever (Xmn) ∈ EF , where π is a permutation of N ×N.

2.6. Definition. A double sequenceEF is said to be sequence algebra if (Xmn ⊗ Ymn) ∈
EF , whenever (Xmn) , (Ymn) ∈ EF .

2.7. Definition. A double sequence EF is said to be convergence free if (Ymn) ∈
EF , whenever (Xmn) ∈ EF and Xmn = 0 implies Ymn = 0.

The notion of the statistical convergence was introduced by H. Fast. Later on
it was studied by J.A.Fridy from the sequence space point of view and linked it
with the summability theory.
The notion of I-convergence is a generalization of the statistical convergence. At
the initial stage it was studied by Kostyrko, S̆alát and Wilezyński. Later on it was
studied by Šalát, Tripathy and Ziman and Demirci, Das, Kostyrko, Wilczynski,
and Malik, Mursaleen and Alotaibi, Mursaleen, Mohiuddine and Edely, Mursaleen
and Mohiuddine, Sahiner, Gurdal, Saltan and Gunawan and Kumar, V.A.Khan,
Suthep suantai and Khalid Ebadullah. Here we give some preliminaries about the
notion of I− convergence.
Let X be a non empty set. Then a family of sets I ⊆ 2X ( power set of X) is
said to be an ideal if I is additive i.e A,B ∈ I ⇒ A

⋃

B ∈ I and hereditary i.e
A ∈ I, B ⊆ A ⇒ B ∈ I.

A non-empty family of sets L (I) ⊆ 2X is said to be filter on X if and only if
Φ /∈ L (I) , for A,B ∈ L (I) we have A

⋂

B ∈ L (I) and for each A ∈ L (I) , A ⊆
B ⇒ B ∈ L (I) .

An ideal I ⊆ 2X is called non-trivial if I 6= 2X .

A non-trivial ideal I ⊆ 2X is called admissible if {{x} : x ∈ X} ⊆ I

A non-trivial ideal I is maximal if there cannot exist any non-trivial ideal J 6= I
containing I as a subset.

For each ideal I, there is a filter L (I) corresponding to I. i.e L (I) = {K ⊆ N : Kc ∈ I} ,
where Kc = N −K.

3. Double entire sequence space of fuzzy numers

This paper to introduce the following sequence spaces and examine topological
and algebraic properties of the resulting sequence spaces. Let I be an admissible
ideal of N and let p = (pmn) be a sequence of positive real numbers for all m,n ∈ N.
Let θ = (mn)rs be a lacunary sequence, f be an modulus function, µ = (λmn) be
a sequence of non-zero scalars and X = (Xmn) be a sequence of fuzzy numbers, we
define the following sequence spaces as:

Γ
2I(F )
θ,f,µ,p =

{

(r, s) ∈ N : 1
hrs

∑

m∈Irs

∑

n∈Irs

[

f
(

d
(

(λmnXmn)
1/m+n

, 0
))]pmn

≥ ǫ
}

∈
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I,

Λ
2I(F )
θ,f,µ,p =

{

(r, s) ∈ N : 1
hrs

∑

m∈Irs

∑

n∈Irs

[

f
(

d
(

(λmnXmn)
1/m+n

, 0
))]pmn

≥ K
}

∈

I,

and

Λ2F
θ,f,µ,p =

{

suprs
1

hrs

∑

m∈Irs

∑

n∈Irs

[

f
(

d
(

(λmnXmn)
1/m+n

, 0
))]pmn

< ∞
}

.

Some classes are obtained by specializing θ = (mn)rs , f, µ = (λmn) and p = (pmn) :

(i)If θ = (mn)rs = (2rs) , then we obtain

Γ
2I(F )
f,µ,p =

{

(r, s) ∈ N : 1
rs

∑r
m=1

∑s
n=1

[

f
(

d
(

(λmnXmn)
1/m+n

, 0
))]pmn

≥ ǫ
}

∈ I,

Λ
2I(F )
f,µ,p =

{

(r, s) ∈ N : 1
rs

∑r
m=1

∑s
n=1

[

f
(

d
(

(λmnXmn)
1/m+n , 0

))]pmn

≥ K
}

∈

I,

and

Λ2F
f,µ,p =

{

suprs
1
rs

∑r
m=1

∑s
n=1

[

f
(

d
(

(λmnXmn)
1/m+n

, 0
))]pmn

< ∞
}

.

(ii) If f (x) = x, then we obtain,

Γ
2I(F )
θ,µ,p =

{

(r, s) ∈ N : 1
hrs

∑

m∈Irs

∑

n∈Irs

[(

d
(

(λmnXmn)
1/m+n

, 0
))]pmn

≥ ǫ
}

∈

I,

Λ
2I(F )
θ,µ,p =

{

(r, s) ∈ N : 1
hrs

∑

m∈Irs

∑

n∈Irs

[(

d
(

(λmnXmn)
1/m+n

, 0
))]pmn

≥ K
}

∈

I,

and

Λ2F
θ,µ,p =

{

suprs
1

hrs

∑

m∈Irs

∑

n∈Irs

[(

d
(

(λmnXmn)
1/m+n

, 0
))]pmn

< ∞
}

.

(iii)If µ = (λmn) =





















1, 1, ...1, 1, ...
1, 1, ...1, 1, ...
.
.
.
1, 1, ...1, 1, ...
1, 1, ...1, 1, ...





















, then we obtain

Γ
2I(F )
θ,f,p =

{

(r, s) ∈ N : 1
hrs

∑

m∈Irs

∑

n∈Irs

[

f
(

d
(

(Xmn)
1/m+n

, 0
))]pmn

≥ ǫ
}

∈ I,

Λ
2I(F )
θ,f,p =

{

(r, s) ∈ N : 1
hrs

∑

m∈Irs

∑

n∈Irs

[

f
(

d
(

(Xmn)
1/m+n

, 0
))]pmn

≥ K
}

∈

I,
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and

Λ2F
θ,f,p =

{

suprs
1

hrs

∑

m∈Irs

∑

n∈Irs

[

f
(

d
(

(Xmn)
1/m+n

, 0
))]pmn

< ∞
}

.

(iv) If p = (pmn) =





















1, 1, ...1, 1, ...
1, 1, ...1, 1, ...
.
.
.
1, 1, ...1, 1, ...
1, 1, ...1, 1, ...





















, then we obtain

Γ
2I(F )
θ,f,µ =

{

(r, s) ∈ N : 1
hrs

∑

m∈Irs

∑

n∈Irs

[

f
(

d
(

(λmnXmn)
1/m+n , 0

))]

≥ ǫ
}

∈ I,

Λ
2I(F )
θ,f,µ =

{

(r, s) ∈ N : 1
hrs

∑

m∈Irs

∑

n∈Irs

[

f
(

d
(

(λmnXmn)
1/m+n

, 0
))]

≥ K
}

∈

I,

and

Λ2F
θ,f,µ =

{

suprs
1

hrs

∑

m∈Irs

∑

n∈Irs

[

f
(

d
(

(λmnXmn)
1/m+n , 0

))]

< ∞
}

.

4. Main Results

In this section we examine the basic topological and algebraic properties of these
spaces and obtain the inclusion relation between these spaces.

4.1. Theorem. Γ
2I(F )
θ,f,µ,p and Λ

2I(F )
θ,f,µ,p are linear spaces

Proof: It is routine verification. Therefore we omit the proof.

4.2. Theorem. The space Λ
2(F )
θ,f,µ,p is a paranormed space (not totally paranormed)

with the paranorm gµ defined by

gµ (X) = inf
{

supmn

[

f
(

d
(

(λmnXmn)
1/m+n

, 0
))]pmn

≤ 1
}

.

Proof:Clearly gµ (−X) = gµ (X) and gµ (θ) =





















0, 0, ...0, 0, ...
0, 0, ...0, 0, ...
.
.
.
0, 0, ...0, 0, ...
0, 0, ...0, 0, ...





















.

Let X = (Xmn) and Y = (Ymn) be two elements in Λ
2(F )
θ,f,µ,p. Then

A1 = inf
{

supmn

[

f
(

d
(

(λmnXmn)
1/m+n , 0

))]

≤ 1
}

and

A2 = inf
{

supmn

[

f
(

d
(

(λmnYmn)
1/m+n

, 0
))]

≤ 1
}

We obtain the following
[

f
(

d
(

(λmn (Xmn + Ymn))
1/m+n

, 0
))]

≤
[

f
(

d
(

(λmnXmn)
1/m+n

, 0
))]

+
[

f
(

d
(

(λmnYmn)
1/m+n

, 0
))]

.
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Thus we have

supmn

[

f
(

d
(

(λmn (Xmn + Ymn))
1/m+n

, 0
))]pmn

≤ 1

and

gµ (X + Y ) = inf {A1}+ inf {A2} = gµ (X) + gµ (Y ) .

Let tmn → t where tmn, t ∈ C and let gµ (Xmn −X) → 0 as m,n → ∞. To prove
that gµ (tmnXmn − tX) → 0 as m,n → ∞. By the continuity of the function f we
observe that
[

f
(

d
(

(λmn (tmnXmn − tX))
1/m+n

, 0
))]

≤
[

f
(

d
(

(λmn (tmnXmn − tXmn))
1/m+n

, 0
))]

+

[

f
(

d
(

(λmn (tXmn − tX))
1/m+n

, 0
))]

≤
[

f
(

d
(

(λmnXmn)
1/m+n

, 0
))]

+
[

f
(

d
(

(λmnYmn)
1/m+n

, 0
))]

.

From the above inequality it follows that

supmn

[

f
(

d
(

(λmn (tmnXmn − tX))
1/m+n

, 0
))]pmn

≤ 1

and consequently
gµ (tmnXmn − tX) ≤ |tmn − t| inf {A1}+ |t| inf {A2}

gµ (tmnXmn − tX) ≤ max {1, |tmn − t|} gµ (Xmn) +max {1, |t|} gµ (Xmn −X) .
(2)

Therefore the above equation (4.1) implies that gµ (Xmn) ≤ gµ (X)+gµ (Xmn +X)
for all m,n ∈ N. Hence by our assumption the right hand side of the relation (4.1)
tens to 0 as m,n → ∞. This completes the proof.

4.3. Theorem. Let f and g be modulus functions. Then the following hold:

(i) Γ
2I(F )
θ,g,µ,p ⊆ Γ

2I(F )
θ,f,µ,p, provided p = (pmn) be such that G0 = infpmn > 0.

(ii) Γ
2I(F )
θ,f,µ,p

⋂

Γ
2I(F )
θ,g,µ,p ⊆ Γ

2I(F )
θ,f+g,µ,p

Proof: (i) Let ǫ > 0 be given. Choose ǫ1 > 0 such that max
{

ǫG1 , ǫ
G0

1

}

< ǫ.

Choose 0 < δ < 1 such that 0 < t < δ implies that f (t) < ǫ1. Let X = (Xmn) be

any element in Γ
2I(F )
θ,g,µ,p. Put

Aδ =
{

(r, s) ∈ N : 1
hrs

∑

m∈Irs

∑

n∈Irs

[

g
(

d
(

(λmnXmn)
1/m+n , 0

))]pmn

≥ δG
}

∈

I.

⇒ 1
hrs

∑

m∈Irs

∑

n∈Irs

[

g
(

d
(

(λmnXmn)
1/m+n , 0

))]pmn

< δG

⇒
∑

m∈Irs

∑

n∈Irs

[

g
(

d
(

(λmnXmn)
1/m+n

, 0
))]pmn

< hrsδ
G

⇒
[

g
(

d
(

(λmnXmn)
1/m+n

, 0
))]pmn

< δG, ∀m,n ∈ Irs

⇒
[

g
(

d
(

(λmnXmn)
1/m+n

, 0
))]

< δG, ∀m,n ∈ Irs. (3)

Using the continuity of the function f from the relation (4.2) we have

f
([

g
(

d
(

(λmnXmn)
1/m+n

, 0
))])

< ǫ1, ∀m,n ∈ Irs
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Consequently we get
∑

m∈Irs

∑

n∈Irs

[

f
([

g
(

d
(

(λmnXmn)
1/m+n

, 0
))])]pmn

< hrs · max
{

ǫG1 , ǫ
G0

1

}

<

hrsǫ

⇒ 1
hrs

∑

m∈Irs

∑

n∈Irs

[

f
[

g
(

d
(

(λmnXmn)
1/m+n , 0

))]]pmn

< ǫ.

This implies that

{

(r, s) ∈ N : 1
hrs

∑

m∈Irs

∑

n∈Irs

[

f
[

g
(

d
(

(λmnXmn)
1/m+n , 0

))]]pmn

≥ ǫ
}

⊆ Aδ ∈

I.

(ii) Let X = (Xmn) ∈ Γ
2I(F )
θ,f,µ,p

⋂

Γ
2I(F )
θ,g,µ,p. Then by the following inequality the

result follows:

1
hrs

∑

m∈Irs

∑

n∈Irs

[

(f + g)
(

d
(

(λmnXmn)
1/m+n

, 0
))]pmn

≤

H 1
hrs

∑

m∈Irs

∑

n∈Irs

[

f
(

d
(

(λmnXmn)
1/m+n

, 0
))]pmn

+

H 1
hrs

∑

m∈Irs

∑

n∈Irs

[

g
(

d
(

(λmnXmn)
1/m+n , 0

))]pmn

. This completes the proof.

4.4. Theorem. Let 0 < pmn ≤ qmn and
(

qmn

pmn

)

is positive and bounded sequence,

then

Γ
2I(F )
θ,q,µ,p ⊆ Γ

2I(F )
θ,f,µ,p.

Proof: It is routine verification.. Therefore omit the proof.

4.5. Theorem. For any two sequences p = (pmn) and q = (qmn) of positive real
numbers, then the following holds:

(i) Γ
2I(F )
θ,f,µ,p

⋂

Γ
2I(F )
θ,f,µ,q 6= φ;

(ii) Λ
2I(F )
θ,f,µ,p

⋂

Λ
2I(F )
θ,f,µ,q 6= φ;

(iii) Λ2F
θ,f,µ,p

⋂

Λ2F
θ,f,µ,q 6= φ.

4.6. Lemma. A sequence space EF is solid implies EF is monotone

4.7. Lemma. If I ⊂ 2N is a maximal ideal, then for each A ⊂ N we have either
A ∈ I or N−A ∈ I

4.8. Theorem. The sequence spaces Γ
2I(F )
θ,f,µ,p and Λ

2I(F )
θ,f,µ,p are solid as well as mono-

tone
Proof: Let X = (Xmn) ∈ Γ

2I(F )
θ,f,µ,p and Y = (Ymn) be such that

d
(

Y
1/m+n
mn , 0

)

≤ d
(

X
1/m+n
mn , 0

)

for all m,n ∈ N. Then for given ǫ > 0 we have

η =
{

(r, s) ∈ N : 1
hrs

∑

m∈Irs

∑

n∈Irs

[

f
(

d
(

(λmnXmn)
1/m+n

, 0
))]

≥ ǫ
}

∈ I

Again the set η =
{

(r, s) ∈ N : 1
hrs

∑

m∈Irs

∑

n∈Irs

[

f
(

d
(

(λmnYmn)
1/m+n

, 0
))]

≥ ǫ
}

⊆

η1 ∈ I and so Y = (Ymn) Γ
2I(F )
θ,f,µ,p. Thus the space Γ

2I(F )
θ,f,µ,p is solid. From the Lemma

4.6, it follows that Γ
2I(F )
θ,f,µ,p is monotone.
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4.9. Result. If I is neither maximal nor then the space Γ
2I(F )
θ,f,µ,p is not symmetric

Proof: Let us consider a sequence X = (Xmn) of fuzzy real numbers defined by

X
1/m+n
mn (t) =











1 + t− 2t, if {t ∈ [2 (m+ n)− 1, 2 (m+ n)]} ;

1− t+ 2 (m+ n) , if {t ∈ [2 (m+ n) , 2 (m+ n) + 1]} ;

0, otherwise.

for (m,n) ⊂ I an infinite set. Then (Xmn) ∈ Γ
2I(F )
θ,f,µ,p. Let K ⊆ N be such that

K /∈ I and N−K /∈ I (the set K exists by the Lemma 4.7, as I is not maximal).
Consider the sequence Y = (Ymn) a rearrangement of the sequence (Xmn) defined
as follows:

Y
1/m+n
mn =

{

X
1/m+n
mn , ifm, n ∈ K;

0, otherwise.

Then (Ymn) /∈ Γ
2I(F )
θ,f,µ,p. Hence Γ

2I(F )
θ,f,µ,p is not symmetric.

4.10. Result. If I is neither maximal nor then the space Λ
2I(F )
θ,f,µ,p is not symmetric

Proof: Let us consider a sequence X = (Xmn) of fuzzy real numbers defined by

X
1/m+n
mn (t) =











1 + t− 3t, if {t ∈ [3 (m+ n)− 1, 3 (m+ n)]} ;

1− t+ 3 (m+ n) , if {t ∈ [3 (m+ n) , 3 (m+ n) + 1]} ;

0, otherwise.

for (m,n) ⊂ I an infinite set. Otherwise X
1/m+n
mn = 0.

Since I is not maximal, so by Lemma 4.7, there exists a subset K ∈ N such that
K /∈ I and N − K /∈ I. Let ζ : K → A and h : N − K → N − A be bijections.
Consider a sequence Y = (Ymn) a rearrangement of the sequence (Xmn) defined as
follows:

Y
1/m+n
mn =

{

X
1/m+n
ζ(mn) , ifm, n ∈ K;

X
1/m+n
h(mn) , otherwise.

Then (Ymn) /∈ Λ
2I(F )
θ,f,µ,p. Hence Λ

2I(F )
θ,f,µ,p is not symmetric.
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