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SPACELIKE FACTORABLE SURFACES IN FOUR-DIMENSIONAL

MINKOWSKI SPACE

SEZGIN BÜYÜKKÜTÜK, GÜNAY ÖZTÜRK

Abstract. In the current work, we study factorable surfaces in Minkowski

four space. We describe such surfaces in terms of their Gaussian and mean

curvature functions. We classify flat and minimal spacelike factorable surfaces
in E4

1.

1. Introduction

In E4
1, the Lorentzian inner product is defined by

〈u, v〉 = −u0v0 + u1v1 + u2v2 + u3v3

for all u, v ∈ E4
1. A surface M : F = F (s, t) : (s, t) ∈ D ( D ⊂ E2) in E4

1 is said
to be spacelike if 〈, 〉 induces a Riemannian metric on M. Therefore, we know the
following decomposition at each point p of a spacelike surface M ;

E4
1 = TpM ⊕ T⊥p M.

The Levi-Civita connections on M and E4
1 are represented by ∇ and ∇̃, respec-

tively. Let X1 and X2 be tangent vector fields and η be a normal vector field of

M . ∇̃X1
η and ∇̃X1

X2 are separated into tangential and normal components by the
Weingarten and Gauss formulas;

∇̃X1
η = −AηX1 +DX1

η,

∇̃X1
X2 = ∇X1

X2 + h(X1, X2).

Thus, these formulas introduce the second fundamental tensor h and the shape
operator Aη corresponding to η [4].

Denote H the mean curvature vector field of M , then H = 1
2 trh. Consequently,

we have H = 1
2 ((h(X1, X1) + h (X2, X2)) with respect to a local orthonormal frame

{X1, X2}.
Let M : F = F (s, t) : (s, t) ∈ D ( D ⊂ E2) be a local parametrization on a

spacelike surface in Minkowski 4−space. In accordance with 〈Fs, Fs〉 > 0, 〈Ft, Ft〉 >
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0, TpM = span {Fs, Ft} is the tangent space at any point p on M . The first
fundamental form is given by

I (s, t) = es2 + 2fst+ gt2, s, t ∈ IR (1.1)

where e = 〈Fs, Fs〉 , f = 〈Fs, Ft〉 , g = 〈Ft, Ft〉 [5]. As the surface M is spacelike,

we denote W =
√
eg − f2. We choose unit normal vector fields such that η1 is

timelike, η2 is spacelike. We use the denotations Γkij and ckij , i, j, k = 1, 2 for the
Cristoffel symbols and coefficients of the second fundamental form, respectively.
Then, the covariant derivatives can be written as linear combinations of the vector
fields Fs, Ft, η1, η2;

∇̃FsFs = Fss = Γ1
11Fs + Γ2

11Ft − c111η1 + c211η2,

∇̃FsFt = Fst = Γ1
12Fs + Γ2

12Ft − c112η1 + c212η2, (1.2)

∇̃FtFt = Ftt = Γ1
22Fs + Γ2

22Ft − c122η1 + c222η2,

where {Fs, Ft, η1, η2} is positively oriented in E4
1, (see, [6]). ckij , i, j, k = 1, 2 are

given by

c111 = 〈Fss, η1〉 , c112 = 〈Fst, η1〉 , c122 = 〈Ftt, η1〉 ,
c211 = 〈Fss, η2〉 , c212 = 〈Fst, η2〉 , c122 = 〈Ftt, η2〉 , (1.3)

(see, [6]).
The second fundamental tensor h of M defined as (see [6])

h(Fs, Fs) = −c111η1 + c211η2,

h(Fs, Ft) = −c112η1 + c212η2, (1.4)

h(Ft, Ft) = −c122η1 + c222η2.

Moreover, the second fundamental tensor can be written as

h(X1, X2) = −〈Aη1 (X1) , X2〉 η1 + 〈Aη2 (X1) , X2〉 η2. (1.5)

The k−th component of H denoted by Hk is obtained by Hk = 〈H, ηk〉 =
tr(Aηk )

2
[7].

Hence we get

Hk =
ck11g − 2ck12f + ck22e

2(eg − f2)
.

According to the normal basis, the mean curvature vector field H becomes

H = −H1η1 +H2η2.

Mean curvature function of M is the norm of the vector H.
Gaussian curvature of a surface M : F (s, t) can be calculated by using the shape

operator matrices as

K =
−det(Aη1) + det(Aη2)

W 2
=
−c111c122 + c211c

2
22 +

(
c112
)2 − (c212)2

eg − f2
.

A surface is said to be minimal (flat) if its mean curvature vector (Gaussian curva-
ture) vanishes [3].

Factorable surfaces (also known as homotethical surfaces) in Euclidean and
Minkowski 3−spaces can be parametrized locally as F (s, t) = (s, t, f(s)g(t)), where
f and g are differentiable functions [10, 11]. Some authors have considered fac-
torable surfaces in Euclidean space and in semi-Euclidean spaces [8, 9, 11, 12]. In
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[10], Van de Woestyne showed that minimal factorable surfaces in L3 are helicoids
and planes.

In [1], Yu. A. Aminov introduced the surface M in E4 given by

F (s, t) = (s, t, z(s, t), w(s, t)), (1.6)

where z and w are differentiable functions. The representation (1.6) is called a
Monge patch. Also, in [2], the authors investigated the curvature properties of
these type of surfaces.

In the present study, we consider a spacelike factorable surface in Minkowski
4-space, which can locally be written as a monge patch

F (s, t) = (s, t, f1(s)g1(t), f2(s)g2(t)),

for some differentiable functions, fi(s), gi(t), i = 1, 2. We characterize such surfaces
in terms of their Gaussian curvature and mean curvature functions.

2. Spacelike factorable surfaces in E4
1

Definition 2.1. Let M be a surface in 4-dimensional Minkowski space E4
1. If the

surface is given by an explicit form z(s, t) = f1(s)g1(t) and w(s, t) = f2(s)g2(t)
where s, t, z, w are Cartezian coordinates in E4

1 and fi, gi i ∈ {1, 2} are smooth
functions , then the surface is called a factorable surface in E4

1. Thus, the factorable
surface can be written as a monge patch

F (s, t) = (s, t, f1(s)g1(t), f2(s)g2(t)). (2.1)

Let M be a spacelike factorable surface with the parametrization (2.1). We
determine a normal frame {η1, η2} such that 〈η1, η1〉 = −1, 〈η2, η2〉 = 1, and
{Fs,Ft, η1, η2} is positively oriented frame in E4

1.
The tangent space of M is spanned by the vector fields

Fs = (1, 0, f
′

1(s)g1(t), f
′

2(s)g2(t)),

Ft = (0, 1, f1(s)g
′

1(t), f2(s)g
′

2(t)).

Thus the coefficients of the first fundamental form of the surface can be expressed
as

e = 〈Fs, Fs〉 = −1 + (f
′

1g1)2 + (f
′

2g2)2,

f = 〈Fs, Ft〉 = f ′1f1g
′
1g1 + f

′

2f2g
′

2g2, (2.2)

g = 〈Ft, Ft〉 = 1 + (f1g
′

1)2 + (f2g
′

2)2,

where 〈, 〉 is the Lorentzian inner product in E4
1. As the surface M is spacelike, then

W =
√
eg − f2.

The second partial derivatives of F (s, t) are

Fss = (0, 0, f
′′

1 (s)g1(t), f
′′

2 (s)g2(t)),

Fst = (0, 0, f
′

1(s)g
′

1(t), f
′

2(s)g
′

2(t)), (2.3)

Ftt = (0, 0, f1(s)g
′′

1 (t), f2(s)g
′′

2 (t)).
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Further, the normal space of M : F (s, t) is spanned by the orthonormal vector
fields

η1 =
1√
|A|

(f ′1(s)g1(t),−f1(s)g′1(t), 1, 0), (2.4)

η2 =
1√
|AD|

(Af ′2(s)g2(t)−Bf ′1(s)g1(t), Bf1(s)g′1(t)−Af2(s)g′2(t),−B,A),

where

A = 1−
(
f
′

1g1

)2
+
(
f1g

′

1

)2
,

B = −f ′1f ′2g1g2 + f1f2g
′

1g
′
2, (2.5)

C = 1−
(
f
′

2g2

)2
+
(
f2g

′

2

)2
,

D = AC −B2.

Since M is spacelike surface in E4
1 with respect to choosen orthonormal frame,

A and D are negative definite. Using (2.3) and (2.4), one can find the coefficient
functions of the second fundamental form as follows;

c111 =
f
′′

1 g1√
|A|

, c122 =
f1g

′′

1√
|A|

,

c112 =
f ′1g
′
1√
|A|

, c212 =
Af ′2g

′
2 −Bf ′1g′1√
|AD|

,

c211 =
Af
′′

2 g2 −Bf
′′

1 g1√
|AD|

, (2.6)

c222 =
Af2g

′′

2 −Bf1g
′′

1√
|AD|

.

Using Gram-Schmidt orthonormalization method for the spacelike vector fields Fs
and Ft, we get orthonormal tangent vectors

X1 =
Fs√
e
,

X2 =

√
e

W

(
Ft −

f

e
Fs

)
. (2.7)

By the use of (1.3), (1.4), (1.5) and (2.7) the second fundamental tensors Aηk
become

Aη1 =
1

e
√
|A|

 f ′′1 g1
f ′1g
′
1e−f

′′
1 g1f

W

f ′1g
′
1e−f

′′
1 g1g

W
f1g
′′
1 e

2−2f ′1g
′
1ef+f

′′
1 g1f

2

W 2

 ,

and

Aη2 =
1

e
√
|AD|

 λ µe−λf
W

µe−λf
W

δe2−2µef+λf2

W 2

 ,
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where

λ = Af ′′2 g2 −Bf ′′1 g1,
µ = Af ′2g

′
2 −Bf ′1g′1,

δ = Af2g
′′
2−Bf1g′′1 .

2.1. Flat factorable surfaces.

Theorem 2.2. Let M be a spacelike factorable surface in E4
1. Then the Gaussian

curvature of the surface is given by

K =

(
f ′′1 f1g

′′
1 g1 − f

′2
1 g
′2
1

)
C −

(
f ′′1 f2g1g

′′
2 + f1f

′′
2 g
′′
1 g2 − 2f ′1f

′
2g
′
1g
′
2

)
B +

(
f ′′2 f2g

′′
2 g2 − f

′2
2 g
′2
2

)
A

DW 2
.

Corollary 2.3. Let M be a spacelike factorable surface in Minkowski 4−space. If
M is given by one of the following parametrizations, then it is a flat surface:

(1) F (s, t) = (s, t, a1g1(t), a2g2(t)) ,

(2) F (s, t) = (s, t, b1f1(s), b2f2(s)) ,

(3) F (s, t) = (s, t, a1g1(t), a2f2(s)) ,

(4) F (s, t) = (s, t, b1f1(s), b2g2(t)) ,

(5) F (s, t) = (s, t, a1b1, exp(a2s+ b2) exp(a3t+ b3)) ,

(6) F (s, t) =
(
s, t, a1b1, (a2s+ b2)

1
1−λ (a3t+ b3)

λ
λ−1

)
,

(7) F (s, t) =

(
s, t, exp(a1s+ b1) exp(a2t+ b2), exp(a3s+ b3) exp(a3

ai
aj
t+ b4)

)
,

(8) F (s, t) = (s, t, f1(s) cos t, f1(s) sin t),

the function f1(s) satisfies

s = ±
∫ √

a1f21 (s) + 1

f21 (s) + 1
df1(s)

where i, j = 1, 2, i 6= j and ak, bk, k = 1, ..., 4 are real constants.

Proof. Let M be a spacelike factorable surface given with the parametrization (2.1)
in E4

1.
If f ′1(s) = 0, f ′2(s) = 0 or g′1(t) = 0, g′2(t) = 0 or f ′1(s) = 0, g′2(t) = 0 ( f ′2(s) = 0,

g′1(t) = 0) , then we obtain the cases (1), (2), (3) and (4).
If f ′1(s) = 0, g′1(t) = 0, then we have

f ′′2 f2g
′′
2 g2 − f ′22 g′22 = 0. (2.8)

Let p(s) = df2
ds and q(t) = dg2

dt . By the use of (2.8), we can write

f2(s)p(s)
dp

df2
g2(t)q(t)

dq

dg2
− (p(s)q(t))

2
= 0. (2.9)

If p(s) 6= 0, q(t) 6= 0, from (2.9), we get

f2(s)
dp

df2
g2(t)

dq

dg2
= p(s)q(t).

Then we have differential equation

f2(s) dpdf2
p(s)

=
q(t)

g2(t) dqdg2

= λ, (2.10)
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where λ is constant.
(1) If λ = 1, from (2.10) we have

f2(s) = exp(a2s+ b2), (2.11)

g2(t) = exp(a3t+ b3),

which gives the case (5).
(2) If λ 6= 1,from (2.10) we have

f2(s) = (a2s+ b2)
1

1−λ , (2.12)

g2(t) = (a3t+ b3)
λ
λ−1 ,

which gives the case (6).
Further, we assume f ′′i fig

′′
i gi− f ′2i g′2i = 0 holds for i = 1 and i = 2. Then we get

f1(s) = exp(a1s+ b1), f2(s) = exp(a3s+ b3),

g1(t) = exp(a2t+ b2), g2(t) = exp(a4t+ b4). (2.13)

Substituting these functions into B = 0 and f ′′1 f2g1g
′′
2 + f1f

′′
2 g
′′
1 g2− 2f ′1f

′
2g
′
1g
′
2 = 0,

we have a4 = a3ai
aj

, i, j = 1, 2 (i 6= j) which vanish the Gaussian curvature of the

surface. Thus, we obtain the case (7).
Also, if f1(s) = f2(s) and g1(t) = cos t, g2(t) = sin t, then by the use of the

previous theorem, for a flat surface we get

−f ′′i (s)fi(s)
(
f2i (s) + 1

)
+ (f ′i(s))

2
(
(f ′i(s))

2 − 1
)

= 0.

By the solution of this differential equation we obtain the case (8). �

2.2. Minimal factorable surfaces.

Theorem 2.4. Let M be a spacelike factorable surface in E4
1. Then the mean cur-

vature vector of the surface is given by
→
H = −

f ′′1 g1g + f1g
′′
1 e− 2f ′1g

′
1f

2
√
|A|W2

η1 +
A
(
f ′′2 g2g + f2g

′′
2 e− 2f ′2g

′
2f
)
− B

(
f ′′1 g1g + f1g

′′
1 e− 2f ′1g

′
1f
)

2
√
|AD|W2

η2.

Theorem 2.5. Let M be a spacelike factorable surface in E4
1. Then M is a minimal

surface if and only if

f ′′i gig + fig
′′
i e− 2f ′ig

′
if = 0, i = 1, 2. (2.14)

Proof. Let M be a spacelike factorable surface with the parametrization (2.1) in
E4
1. We can write the mean curvature vector as H = −H1η1 +H2η2, for a minimal

surface, H1 = 0, H2 = 0. By the use of the previous theorem, we get (2.14). The
converse statement is trivial. �

Corollary 2.6. Let M be a spacelike factorable surface in Minkowski 4−space. If
M is given by one of the following parametrizations, then it is a minimal surface:
(1) F (s, t) = (s, t, (a1s+ a2) b1, (a3s+ a4) b2),

(2) F (s, t) = (s, t, a1 (b1t+ b2) , a2 (b3t+ b4)),

(3) F (s, t) = (s, t, (a1s+ a2) b1, a3 (b3t+ b4)),

(4) F (s, t) =
(
s, t, a1b1, (s+ a2)−1−exp(b2t+b3)−1+exp(b2t+b3)

)
,

(5) F (s, t) = (s, t, a1b1, tan(a2s+ a3) (t+ b2)),
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(6) F (s, t) =
(
s, t,

−1−a21+exp(±2a1(a1s+a2))
2a1 exp(±2a1(a1s+a2)) cos t,

−1−a21+exp(±2a1(a1s+a2))
2a1 exp(±2a1(a1s+a2)) sin t

)
,

(7) F (s, t) =
(
s, t, (s+ a1)−1−exp(b1t+b2)−1+exp(b1t+b2)

, (s+ a1)−1−exp(b1t+b2)−1+exp(b1t+b2)

)
,

(8) F (s, t) = (s, t, tan(a1s+ a2) (t+ b1) , tan(a1s+ a2) (t+ b1)),

(9) F (s, t) = (s, t, a1b1, f2(s)g2(t)),

(10) F (s, t) = (s, t, f1(s)g1(t), f1(s)g1(t)),
the functions fi(s), gi(t), i = 1, 2 satisfy the equations

s =

∫
dfi(s)√

2m ln fi(s) + a1
, t =

∫
dgi(t)√

a2g4i (t)− n
2

,

or

s =

∫
dfi(s)√

a1f4i (s)− m
2

, t =

∫
dgi(t)√

2n ln gi(t) + a2
,

or

s =

∫
dfi(s)√

a1f
2(1+c)
i (s)− a2

, t =

∫
dgi(t)√

a3g
2(1−c)
i (t)− a4

,

where c,m, n, ak, bk, k = 1, .., 4 are real constants and c 6= ±1.

Proof. Let M be a spacelike factorable surface with the parametrization (2.1) in
E4
1. By the use of (2.14) with (2.2),

f
′′
i gi

(
1 + f

2
1g
′2
1 +f

2
2g
′2
2

)
+fig

′′
i

(
−1 + f

′2
1 g

2
1+f

′2
2 g

2
2

)
−2f ′ig

′
i

(
f
′
1f1g

′
1g1+f

′
2f2g

′
2g2
)
=0, (2.15)

holds for i = 1, 2. If g′1(t) = 0, g′2(t) = 0 or f ′1(s) = 0, f ′2(s) = 0, we obtain the
cases (1) and (2), respectively.

If f ′2(s) = 0, g′1(t) = 0, i, j = 1, 2, i 6= j , then

f ′′1 g1
(
1 + f21g

′2
1 +f22g

′2
2

)
= 0, (2.16)

f2g
′′
2

(
−1 + f ′21 g

2
1+f ′22 g

2
2

)
= 0. (2.17)

Since the first fundamental forms e and g are positive, then we get f ′′1 (s) = 0 and
g′′2 (t) = 0 which congruent the case (3).

If f ′1(s) = 0, g′1(t) = 0, from the equality (2.15) for i = 2, we get

f ′′2 (s)

f2(s)
− g′′2 (t)

g2(t)
+

(
f ′′2 (s)f2(s)− f ′22 (s)

)
g′22 (t) +

(
g′′2 (t)g2(t)− g′22 (t)

)
f ′22 (s) = 0. (2.18)

If f ′′2 (s) = 0 or g′′2 (t) = 0 in (2.18), we obtain the cases (4) and (5).
If f ′′2 (s)g′′2 (t) 6= 0 in (2.18), differentiating (2.18) with respect to s and t, we have(

f ′′2 (s)f2(s)− f ′22 (s)
)′

(f ′22 (s))
′ = −

(
g′′2 (t)g2(t)− g′22 (t)

)′
(g′22 (t))

′ = c. (2.19)

Thus, we can write

f ′′2 (s)f2(s)− (1 + c)f ′22 (s) = m,
g′′2 (t)g2(t)− (1− c)g′22 (t) = n.

(2.20)
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If c = 1, c = −1 and c 6= ±1, then from the solution of (2.20), we obtain the case
(9).

If f1(s) = f2(s) and g1(t) = cos t, g2(t) = sin t, then we get

f ′′i (s)
(
1 + f2i (s)

)
− fi(s)

(
1 + (f ′i(s))

2
)

= 0.

By the solution of this differential equation we obtain the case (6).
If f1(s) = f2(s), g1(t) = g2(t) in (2.15), then for i = 1 or i = 2, we find

f ′′i (s)

fi(s)
− g′′i (t)

gi(t)
+

(
f ′′i (s)fi(s)− f ′2i (s)

)
2g′2i (t) +

(
g′′i (t)gi(t)− g′2i (t)

)
2f ′2i (s) = 0. (2.21)

If f ′′i (s) = 0 or g′′i (t) = 0 in (2.21), we obtain the cases (7) and (8). Also, if
f ′′i (s)g′′i (t) 6= 0, we obtain the case (10), which completes the proof. �

Example 2.7. By selecting a1 = 1, b1 = 2, b2 = 0 for the case (7) in Corollary
2.6, we can plot the projection of this surface with mapple command:

plot3d([s, t, z + w], s = a..b, t = c..d). (2.22)

Figure 1. 3D Model of the surface given by the case (7) in Corol-
lary 2.6
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