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Abstract

In this paper, we introduce a new concept of S?-pseudo almost automorphy for
stochastic processes. We apply the results obtained to investigate the existence and
uniqueness of S2-pseudo almost automorphic mild solutions to some stochastic differ-
ential equations in a real separable Hilbert space. Our main results extend some known
ones in the sense of square-mean pseudo almost automorphy or S2-almost automorphy
for stochastic processes.
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1 Introduction

The concept of almost automorphy is an important generalization of the classical
almost periodicity. It was introduced by Bochner [5, 6], for more details about this topics
we refer the reader to [14, 15, 17]. Diagana [11] introduced the concept of Stepanov-like
pseudo almost automorphy as a natural generalization of the pseudo almost automorphy
and an implement of the Stepanov-like almost automorphy due to N’Guérékata and Pankov
[18]. Zhang, Chang and N’Guérékata [24, 25, 26] proved some properties and new ergodic
theorems of Stepanov-like weighted pseudo almost automorphic functions and applied

them to some evolution equations.
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Since noise or stochastic perturbation is unavoidable in real world, it is of great
importance to consider the stochastic effects in the investigation of differential systems
[1, 19, 21, 20, 23]. Bezandry and Diagana systematically studied the fundamental prop-
erties of almost periodic stochastic processes and investigated almost periodic solutions
to different kinds of stochastic differential equations in a recent monograph [3]. Fu and
Liu [12] introduced a new concept of square-mean almost automorphic stochastic pro-
cesses, which is a natural generalization of almost automorphic functions in deterministic
cases. The notation of square-mean pseudo almost automorhy for stochastic processes
was presented by Chen and Lin [9], and was further developed by Bezandry and Diagana
[4]. The concepts and properties of the square-mean weighted pseudo almost automorphy
and the square-mean bi-almost automorphy for a stochastic process was also discussed in
[10]. Chang, Zhao and N’Guérékata [8] presented the concept of S2-almost automorphy
for stochastic processes, which is more general than square-mean almost automorphy and
can be seen as a natural generalization of Stepanov-like almost automorphic functions in
deterministic cases. For more results on topic, we refer to [7, 22, 27] and references therein.

From above mentioned works, we can see that the Stepanov-like pseudo almost au-
tomorphy is a generalization of the Stepanov-like almost automorphy and pseudo almost
automorphy in deterministic cases. Thus, a natural question is: what is it in stochastic
cases? In present paper, we first introduce a new concept of S2-pseudo almost automor-
phy for stochastic processes, which generalizes the notation of square-mean pseudo almost
automorphy [4, 9] or S2-almost automorphy for stochastic processes [8]. And then we
present some properties of such functions and apply this new concept to investigate the
existence and uniqueness of S?-pseudo almost automorphic mild solutions to the following

stochastic differential equations
dx(t) = Az(t)dt + f(t)dt + g(t)dW (t), t € R, (1.1)

and
dz(t) = Az(t)dt + f (t,z(t))dt + g (t,x(t)) dW (t), t € R, (1.2)

where A is the infinitesimal generator of a Co-semigroup {T(¢)}¢>0 on L?(PP, H), and W (t) is
a two-sided standard one-dimensional Brownian motion defined on the filtered probability
space (Q,.7,P, %), where .7, = o{W(u) — W(v);u,v < t}. Here f and g are appropriate
functions specified later.

The rest of this paper is organized as follows. In Section 2, we introduce the notion
of S%-pseudo almost automorphic processes and give some basic properties. In Section 3,
we prove the existence and uniqueness of S?-pseudo almost automorphic mild solutions to

some linear and nonlinear stochastic differential equations, respectively.
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2 Preliminaries

Throughout the paper, we assume that (H, |- ||, (,-)) and (K, | - ||k, (-, )x) are two real
separable Hilbert spaces. Let (§2,.#,P) be a complete probability space. The notation
L?(P,H) stands for the space of all H-valued random variables 2 such that

Eljz|? = / |2|2dP < oo,
0

;
el = ( / de) .
Q

Then it is routine to check that L?(P,H) is a Hilbert space equipped with the norm || - ||
We let C (R, L*(P,H)) (respectively, C (R x L*(P,H), L*(P,H))) denote the collection
of continuous stochastic processes from R into L?(P,H) (respectively, the collection of
continuous stochastic processes from R x L?(P,H) into L?(P,H)). In addition, W (#) is a
two-sided standard one-dimensional Brownian motion defined on the filtered probability
space (2, .#,P,.%;), where % = o{W (u) — W(v);u,v < t}.

For x € L*(P,H), let

Definition 2.1 (/12]) A stochastic process x : R — L?*(P,H) is said to be stochastically
continuous if

. _ 2 _

lim Bla(t) — a(s)] = 0.

Definition 2.2 ([12]) A stochastically continuous stochastic process x : R — L*(P,H) is
said to be square-mean almost automorphic if for every sequence of real numbers there

exist a subsequence {5, nen and a stochastic process y : R — L?(P,H) such that
lim Elz(t+s,) —y@®)||* =0 and lim E|y(t —s,) —z@t)|* =0

hold for each t € R. The collection of all square-mean almost automorphic stochastic

processes x : R — L*(P,H) is denoted by AA (R; L*(P,H)).

Lemma 2.1 (/12]) (AA (R; L*(P,H)), || - |ls) is @ Banach space when it is equipped with

the norm

1
][0 := sup [l2(8)]|2 = sup(Elz(t)]*)2,
teR teR
forx e AA (R; L?(P, ]HI))

Let PAPy(R; L?(P,H)) be the collection of all x € BC(R; L?(IP, H)) such that

1 T
lim / El|z(s)|2ds = 0.

r—o0 21



4 Y. -K. Chang, Z. -X. Cheng, and G. M. N'Guérékata

Similarly, we define PAPy(R x L*(P,H); L?(P,H)) to be the collection of all bounded
jointly continuous stochastic processes f : R x L?(P,H) — L?(P,H) such that

lim / El|f(s,2)[2ds = 0
uniformly in z € L*(P, H).

Definition 2.3 [4] A stochastic process * € BC(R; L*(P,H)) is called square-mean pseu-
do almost automorphic if it can be expressed as x = y+ @, where y € AA(R; L>(P,H)) and
¢ € PAPy(R; L3(P,H)). The collection of such functions will be denoted by PAA(R; L*(P, H)).

Definition 2.4 [{] A bounded continuous stochastic process F : Rx L?(P,H) — L*(P,H))
is called square-mean pseudo almost automorphic if it can be expressed as F = G + @,
where G € AA(R x L?(P,H); L>(P,H)) and ® € PAPy(R x L*(P,H); L*(P,H)). The
collection of such functions will be denoted by PAA(R x L*(P,H); L*(P, H)).

Lemma 2.2 [{] (PAA(R; L*(P,H)),|| - |lso) is a Banach space with the supremum norm
1/2
z[loo = sup (Ellz(£)])""
teR
Definition 2.5 ([12]) A function f : R x L*(P,H) — L*(P,H), (t,z) — f(t,x), which
is jointly continuous, is said to be square-mean almost automorphic in t € R for each

x € L*(P,H) if for every sequence of real numbers {s! }nen, there exist a subsequence
{$n}tnen and a stochastic process f : f : R x L%(P,H) — L%(P,H) such that
lim B[ f(t+ sn,2) = f(t,2)|P =0 and lim B|f(t - sn,z) — f(t,2)]* =0
n—oo

n—oo

for each t € R and each x € L*(P,H).

Definition 2.6 [2/ The Bochner transform xz°(t,s),t € R,s € [0, 1], of a stochastic process
z:R— L2(P,H) is defined by
2(t,s) = x(t + ).

Definition 2.7 [2] The Bochner transform fb(t,s,u),t € R,s € [0,1],u € L*(P,H), of a
function f: R x L?(P,H) — L*(P,H) is defined by

fot,s,u) = f(t+ s,u)

for each u € L*(P, H).
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Definition 2.8 /2] The space BS? (LZ(IP’, ]HI)) of all Stepanov bounded stochastic processes
consists of all measurable stochastic processes x : R — L*(P,H) such that 2® = L™ (R; L?
(07 1; L2(P,H))). This is a Banach space with the norm

1
1 2
Izl g2 = lla®[l ooy = sup </0 Ellx(t+8)ll2d8>

teR

t+1 3
= sup< EH.’L‘(T)H2dT>
teR \J¢
Definition 2.9 /8] A stochastic process & € BS? (L*(P,H)) is called Stepanov-like al-
most automorphic (or S*-almost automorphic) if x* € AA (]R; L? (O,l;LQ(]P’,H))). In
other words, a stochastic process x € L?OC (R; LZ(P,H)) is said to be Stepanov-like almost
automorphic if its Bochner transform xz : R — L? (0, 1; L2(P, H)) 18 square-mean almost
automorphic in the sense that for every sequence of real numbers {s] }nen, there exist a

subsequence {sp}nen and a stochastic process y € L} (R; L*(P,H)) such that

loc

t+1 t+1
/ Ellz(s + sn) — y(s)||*ds — 0 and / Elly(s — sn) — z(s)|*ds — 0
t t

as n — oo pointwise on R. The collection of all such functions will be denoted by
AS? (R; L*(P, H)).

Lemma 2.3 [8] Let (1,(t))nen be a sequence of S*-almost automorphic stochastic pro-

cesses such that

t+1
E|zn(s) — z(s)||’ds — 0 for each t€R,
t

as n — oo, then x € AS? (]R; L?(P, ]H[))

Lemma 2.4 [§] AS? (R; L3(P, ]HI)) 1s a Banach space when it is equipped with the norm

- lls2-

Lemma 2.5 [8] If v : R — L*(P,H) is a square-mean almost automorphic stochastic
process, then = is S-almost automorphic, that is, AA (R; L3(P, H)) C AS? (R; LQ(IP’,H)).

Definition 2.10 /8] A function f : R x L?(P,H) — L*(P,H), (t,z) — f(t,x) with
f(,z) € LY, (R;L*(P,H)) for each x € L*(P,H), is said to be S*-almost automor-
phic in t € R uniformly in x € L*(P,H) if t — f(t,x) is S%-almost automorphic for
each x € L*(P,H). That means, for every sequence of real numbers {s) }nen, there ex-

ist a subsequence {sp}tnen and a function f : R x L2(P,H) — L*(P,H) with f(-,z) €
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L2

loc

(R; L*(P,H)) such that

t+1 " t+1 ~
E||f(s+8n,x)—f(s,:v)H?ds—)O and E||f(s—sn,x)—f(s,m)||2ds—>0
t t

as n — 0o pointwise on R and for each v € L*(P,H). We denote by AS? (R x L*(P,H);
L*(P,H)) the set of all such functions.

Let us now introduce the new concept of S2-pseudo almost automorphy for stochastic

processes.

Definition 2.11 A stochastic process © € BS? (LQ(IP’, H)) is called S*-pseudo almost
automorphic if it can be expressed as x = y + p, where y € AS? (R; L2(IP’,H)) and
¢ € PAPR, (R; L? (0, 1; L*(P, H))) The collection of such functions will be denoted by
PAAS?(R; L*(P, H)).

We also have

Definition 2.12 A function f : R x L*(P,H) — L?(P,H), (t,z) — f(t,z) with f(-,x) €
L%, (]R; LQ(P,H)) for each x € L*(P,H), is said to be S*-pseudo almost automorphic
in t € R uniformly in x € L*(P,H) if it can be expressed as f = h + o, where h €
AS% (R x L*(P,H); L*(P,H)) and ¢* € PAPy (R x L*(P,H); L? (0,1; L*(P,H))). The col-

lection of such functions will be denoted by PAAS?(R x L*(P,H); L*(P, H)).

Lemma 2.6 If ¢°(:) € PAP, (R;L?(0,1; L*(P,H))), then for any h € R, ¢°(- — h) €
PAP, (R; L2 (0,1; L*(P, H))).

Proof: Since

t+1 1 t h+1
= [ Bets - mieas| e~ [ Ello(s)|ds]

1 r— t-i-l 5
- = E ds| dt
S I
If h >0,
1 r t+1 2(T+h) 1 r+h t+1
— E — h)|]2ds| dt < E 2ds| dt
i [ et mipas < 2R R [ [ Bl s an
which implies ¢°(- — h) € PAPRy (R; L? (0,1; L*(P, H))).
And if h < 0,
1 r t+1 2(7, o h) 1 r—h t+1
— E — h)|%ds| dt < E 2ds| dt
i L et mpas] ae < 2Rt [ [ Bt Pas)

which also implies ¢°(- — h) € PAPy (R; L? (0,1; L*(P,H))). O
Note that L?(IP,H) is a Banach space, we state the following lemmas (cf. [24, 11]).
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Lemma 2.7 [11] If f € PAA(R; L*(P,H)), then f € PAAS?(R;L?(P,H)). In other
words, PAA(R; L?(P,H)) C PAAS?(R; L?(P, H)).

Lemma 2.8 [11] The space PAAS?(R; L*(P,H)) equipped with the norm || - |g2 is a Ba-

nach space.

Lemma 2.9 [11] Let F : R x L?(P,H) — L?(P,H) be a S%-pseudo almost automorphic
function. Suppose that F(t,u) is Lipschitzian in u € L*(P,H) uniformly in t € R, that is

there exists a constant L > 0 such that
E||F(t,u) — F(t,v)||* < LE|lu —v|/?

for allt € R and u,v € L?>(P,H). If ® € PAAS?*(R; L?*(P,H)), then the operator T : R —
L?(P,H)) defined by Y(-) := F(-,®(-)) belongs to PAAS?*(R; L*(P, H)).

Lemma 2.10 [2/] Let F : R x L?(P,H) — L?*(P,H) be a S?-pseudo almost automorphic
function with F' = G + H. Assume that F satisfies the following conditions:

(i) F(t,-) is uniformly continuous on each bounded subset K C L*(P,H) uniformly for
t € R, that is for all € > 0, there exists § > 0 such that u,v € K and El|ju—v||* < & imply
that E||f(t,u) — f(t,v)||*> < & for all t € R;

(i) G(t,-) is uniformly continuous on each bounded subset K C L?(P,H) uniformly
fort e R;

(iii) For every bounded subset K C L*(P,H), the set {F(-,u):u € K} is bounded in
PAAS?(R; L2(P,H)).
If ® = o+ B € PAAS*(R; L*(P,H)) with o € AS? (R;L*(P,H)), 8* € PAPy(R;
L2(0,1; L2(P,H))) and {a(t) : t € R} is compact, then for any ® € PAAS?(R; L*(P,H)),
the operator Y : R — L2(P,H)) defined by Y(-) := F(-,®(-)) belongs to PAAS?*(R; L*(P, H)).

3 Main results

In this section, we investigate the existence of S2-pseudo almost automorphic solutions
for the problems (1.1) and (1.2).

Definition 3.1 An %;-progressively measurable stochastic process {x(t)}icr is called a
mild solution of the problem (1.1) on R if it satisfies the corresponding stochastic integral

equation

xz(t) =Tt —a)x(a) + / T(t—s)f(s)ds+ / T(t—s)g(s)dW(s)

for all t > a and for each a € R.
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Definition 3.2 An .Z;-progressively measurable stochastic process {x(t)}icr is called a
mild solution of the problem (1.2) on R if it satisfies the corresponding stochastic integral

equation

z(t) =Tt —a)x(a) + / T(t—s)f (s,z(s))ds + / T(t—s)g(s,z(s)) dW(s)
for all t > a and for each a € R.

We first list the following basic assumption:
(H1) The operator A is the infinitesimal generator of an exponentially stable Cy-semigroup
{T(t)}+>0 on L?(P,H); that is, there exist M > 0, § > 0 such that ||T'(t)|| < Me™%, for
allt > 0.

Theorem 3.1 Under previous assumptions, if we assume that (H1) holds, then the prob-
lem (1.1) has a unique mild solution v € PAAS? (R; L*(P, H)).

Proof: Let us first prove uniqueness. It is conducted similarly as in the proof of [16,
Theorem 3.1]. Assume that = : R — L?*(P,H) is bounded stochastic process and satisfies
the homogeneous equation

dx(t) = Az(t)dt, teR. (3.1)

Then z(t) = T(t — s)x(s), for any t > s. Thus |z(t)|] < MKe %t with |lz(s)| < K
for s € R almost surely. Take a sequence of real numbers {s;, },en such that s, — —oo as
n — oo. For any t € R fixed, one can find a subsequence {sy, }ren C {sn}nen such that
sp, <tforall k=1,2,---. By letting k — oo, we get z(t) = 0 almost surely.

Now, if 21,29 : R — L?(IP,H) are bounded solutions to Eq. (1.1), then z = x1 — x2
is a bounded solution to Eq. (3.1). In view of the above, x = 21 — x9 = 0 almost surely,
that is, 1 = x2 almost surely.

Now let us investigate the existence. Since f,g € PAAS? (]R; LQ(P,H)), there exist
p,w € AS? (R;L*(P,H)) and ¢°,¢)* € PAP, (R; L? (0,1; L*(P,H))) such that f = p +
0, g=w + 1.

Consider for each n = 1,2, -, the integrals

n

st = [ T@plt =)o, )= [ T(@)m(t - o)W (o),

n—1

and
n

an(t) = / " D0Vt — o)do, wh(t) = / T(0)(t — o)dW (o)

-1 n—1
for each t € R. First, by using Holder’s inequality, we get

t+1 t+1 2
Bleas)Pds = | E\
t t

ds

/n : T(0)p(s — o)do
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IN

t+1 n ) )

/t / TP Elp(s = ) Pdads
t+1 n

M2 / / =29 Bl|p(s — o) 2dods
t n—1
n t+1

M? / 6250( E|lp(s — a)||2ds> do
n—1 t

n
T e
n—1

M?% o
< 27HpHsze

IN

IN

IN

—26n (625 o 1)

Since Ag—; [ralie® (€% —1) 3", e72" < oo, we deduce from the well-known Weierstrass test

that the series > 2 | @, (t) is convergent in the sense of the norm || - ||g2 uniformly on R.
Now let

d(t) := Z xn(t)  for each te€R.
n=1

Observe that .
O(t) = / T(t—s)p(s)ds  for each teR.
—0o0
Clearly, ®(t) € C (R, L*(P, H)).
Now, by using an estimate on Ito integral established in Ichikawa [13], we obtain that

2

t+1 t+1
Ellyn(s)|2ds = / E ds
t

/ : (o) (s — o)dW (o)

t

t+1 n
< / / IT(0)|2Ellw(s — o)|dods
t n—1

t+1 n
< M2/ / e Y E|w(s — o)|*dods
t n—1
n t+1
< M2/ e~ 20 </ E|w(s— O')”2d$> do
n—1 t
n
< MWl [ oo
n—1
M2 o osm 25
< ﬁHstze (e —1).

Since %Hw[%z(e% — 1) e72" < 00, we deduce from the Weierstrass test that the
series Y 2 | yn(t) is convergent in the sense of the norm || - | g2 uniformly on R. Further-
more,

W(t) = / T(t - $)m(s)AW(s) = > palt), tER,
n=1

—00
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and clearly ¥(t) € C (R, L*(P, H)).

Now let us show that each z,,y, € AS? (R; LQ(IP’,H)). First, we prove that x, €
AS? (R; L*(P,H)). Indeed, let {s],}men be a sequence of real numbers. Since p € AS?
(R; L*(P,H)), there exist a subsequence {sp }men of {s], }men and a stochastic process
pe 12, (R; LX(P, H))

loc

t+1 t+1
Ellp(s + sm) — p(s)[2ds = 0 and | E|p(s — sm) — p(s)[2ds — 0
t

as m — oo pointwise on R. Moreover, if we let Z,,(t) = [ | T(0)p(t — o )do, we have

t+1
/ E||xn(s 4 8m) — Tn(s)|/*ds
t
t+1
:/ E‘
t
t+1
:/ E
t

t+1 n
< / / NT@IPElp(s + 50 = o) = s = o) dods
t —

2
ds

n

/nn1 T(o)p(s+ sy —o)do — / T(0)p(s — o)do

n—1

2
ds

/ T(0)[os + $m — 0) — (s — 0)|do

t+1 pn
< M2/ / 16_25“E||p(s+sm —0) —pls —0)||*dods
t n—

n t+1
< MQ/ e~ 200 < E|lp(s+ s$m — 0) —ﬁ(s—a)\|2ds> do.
n—1 t

Obviously, the last inequality goes to 0 as m — oo pointwise on R. Similarly we can prove
that
t+1
E||Zn(s — 8m) — xn(s)||?ds — 0
t

as m — oo pointwise on R. Thus we conclude that each z,, € AS?(R; L*(P,H)) and
consequently their uniform limit ®(t) € AS? (R; L*(P,H)), by using Lemma 2.3.

Next, we show that each y, € AS? (]R; L?(P, ]HI)) Since w € AS? (R; L3(P, ]HI)),
then for every sequence of real numbers {s/, }ncn there exists a subsequence {s;, }men C
{8}, }men and a stochastic process @ € L} (R; L*(P, H)) such that

t+1 t+1
/ E|lw(s + sm) — @(s)||?ds — 0 and / E|@(s — sm) — w(s)||?ds — 0
t t

as m — oo pointwise on R. Moreover, if we let g,(t) = [ | T(o)@(t —o)dW (o), by using
the Ito integral, we get

t+1
/ Ellgn(s + 5m) — Gn(s)|2ds
t
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t+1
t

t+1
t

t+1 n
< / / |T(0)|PE||@ (s + $m — 0) — @(s — 0)||*dods
t n—1

2
ds

n

/” T(o)w(s+ sm —0)dW (o) — / T(o)w(s —o)dW(o)
n—1

n—1

2
ds

/ : T(0)[w (s + sm — o) — (s — 0))dW (0

t+1 pn
< M2/ / e "2 E|w(s + sm — 0) — @(s — 0)||*dods
t n—1
n t+1
< M2/ e~ %0 ( E|w(s+ sm —0) —w(s — 0)|]2ds> do.
n—1 t

Obviously, the last inequality goes to 0 as m — oo pointwise on R. Arguing in a similar

way, we infer that
t+1
E||gn(s = sm) = yn(s)[?ds — 0
t

as m — oo pointwise on R. Thus we conclude that each y, € AS? (]R; L?(P, H)) and
consequently their uniform limit ¥(¢) € AS? (R; L*(P,H)), by using Lemma 2.3.

In the following, we intend to verify that each 2%, w? € PAP, (R; L? (0, 1; L*(P, H)))
We first prove that z% € PAPy (R;L?(0,1; L*(P,H))). Now by the fact {T(t)}>0 is

exponentially stable, we have

2

t+1 t+1
Bl|zn(s)|2ds = / E ds
t

/ " T(e)o(s — o)do

t

n—1
t+1 n ) )
< / / NT@IPE]o(s = ) dods

t+1 pn
<[ [ e slos - o)dods
t n—1

n t+1
M2/ e~ %0 </ Ell¢(s — U)H2ds> do,
n—1 t
and hence for r > 0,

1 r t+1 n 1 T t+1
o < EHzn(s)Hst> dt < M2/ o2 [/ ( Ellé(s U)H2d8> dt] do.
T J—r t n—1 2r —r t

It follows from Lemma 2.6 that

1 T t+1
lim / ( EHgb(s—a)||2ds> dt =0
t

T

IN

as s = ¢’(s — o) € PAP, (]R; L? (O, 1; L2(P, H)))
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Applying Lebesgue dominated convergence theorem it follows that

] 1 r t+1 )
tim o [ ([ EletolPas) i =o.

T

and therefore 28 € PAP, (R; L? ((), 1; L2(P, ]HI)))
Next, we prove that w? € PAP, (R; L? (O, 1;L2(IP’,]HI))). By the fact {T'(t)}:>0 is

n

exponentially stable and It6 isometry, we get
t+1 t+1 n

Bloas)ds = [ B|| [ T@)is - a)aw (o)

t n—1
t+1 n )
|| m@IPEss - o) Pdsas
t+1 n
M? / / e P R|y(s — o)||>dods
t n—1

n t+1
M2/ ¢~200 ( Bl (s — a)H?ds) do,
n—1 t

2
ds

t

IN

IN

IN

and hence for r > 0,
1 r t+1 n 1 T t+1
1 ( E|]wn(s)H2ds> it < M2/ o200 {/ < Ell(s — U)H2d3> dt} do.
2r —r t n—1 2r —r t
It again from Lemma 2.6 follows that

1 r t+1
lim / ( Ell(s J)H2d8> dt = 0
—-r t
as s = Y’(s — o) € PARy (R; L? (0,1; L*(P, H))).
By Lebesgue dominated convergence theorem it follows that

1 r t+1

lim / ( E||wn(s)||2ds> dt =0,
—-r t

and hence w® € PAP, (]R; L? (O, 1; L2(P, ]HI)))

Arguing in the same way as previous, we can conclude from the Weierstrass test that

L) = / T(t—5)p(s)ds = 3 zlt), tER,
n=1

—00

W(t) = / T(t— s)¢(s)dW(s) = Y wn(t), tER.
n=1

—0o0

n

Applying 28, wl € PAP, (R; L? (O7 1; L2(P, ]HI))) and by a similar estimation of the re-
mainder term of uniformly convergent series as [24], we can also deduce that the uniform-
ly limit Z°(t) = 300 | z0(t) € PAPy (R; L? (0,1; L2(P,H))) and Wo(t) = 300w, (t) €
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PAPy (R; L? (0,1; L*(P,H))). Therefore, (t) := ®(t) + ¥(t) + Z(t) + W(t) is a S*-pseudo
almost automorphic mild solution of Eq.(1.1).
Define

() = / T(t— 5)f(s)ds + / T(t — 8)g(s)dW (s), ¢ €R.

—00 — 00

Obviously z is a bounded solution to Eq. (1.1). Let us prove that x(t) is a mild solution
of the Eq. (1.1). Indeed, if we let z:(a) = [* _T(a—s)f(s)ds+ [*_ T(a—s)g(s)dW(s),
then

T(t—a)x(a) = /fl T(t—s)f(s)ds + /a T(t—s)g(s)dW (s).

—00 —00

But for t > a,

[ re-99@aws) = [ 1e-seeave) - [ 1 - e

— alt) - / T(t — 5)f(s)ds + / T(t— 8)f(s)ds — T(t — a)a(a)

= z(t) - Tt —a)x(a) — / T(t—s)f(s)ds.

It follows that
z(t) =Tt —a)x(a) + / T(t—s)f(s)ds+ / T(t—s)g(s)dW(s).

In view of the above, it follows that z is the only bounded S?-pseudo almost automorphic
mild solution to the equation (1.1). The proof is now complete. O

In order to investigate the solutions to the problem (1.2), we need the following addi-
tional assumptions:
(H2) The function f € PAAS? (R x L*(P,H); L*(P,H)) N C (R x L*(P,H), L*(P,H)) and
there exists a constant Ly > 0 such that

Bl f(t.x) = f(t.y)|* < LyEla — y|?

for all t € R and each z,y € L*(P, H).
(H3) The function g € PAAS? (R x L2(P,H); L2(P,H)) N C (R x L2(P, H), L*(P,H)) and

there exists a positive number L, such that
Elg(t,z) — g(t,y)|* < LeBllz — y|*

for all ¢ € R and each z,y € L%(P, H).
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Theorem 3.2 Assume the conditions (H1)-(H3) are satisfied, then the problem (1.2) ad-
mits a unique S%-pseudo almost automorphic mild solution on R provided that

2 M?

Lo = [MQL P —

5 5 Lg} < 1. (3.2)

Proof: Let A : PAAS? (R; L3(P, H)) — PAAS? (R; L3(P, ]HI)) be the operator defined by

t

Ax(t) = / T(t—s)f (s,z(s))ds —l—/ T(t—s)g(s,x(s))dW(s), teR.

From previous assumptions and the properties of {T'(t)}+>0, one can easily see that Az
is well defined and continuous. By Lemma 2.9, we infer that both F(-) = f(-,z(:)) and
G(-) = g(-,z(-)) € PAAS? (R; L*(P,H)). Then by using the proof of Theorem 3.1, we
have that Az € PAAS? (R; L3(P, ]HI)) whenever x € PAAS? (R; L?(P, ]HI)) Thus A maps
PAAS? (R; L*(P,H)) into itself.

Now we prove that A is a contraction mapping on PAAS? (]R; L?(P, H)) Indeed, for
eacht € R, z,y € PAAS? (R; L?(P, ]HI)), we see that

t+1
E|[(Az)(s) — (Ay)(s)[*ds

- [ “E || 1= ot (ato) - £ (0:9(a)ldo

s 2
+ [ TGl (at) - g @ ue)aw (o) ds

—0o0

2
ds

IN

2 [ e |[[ 16l .sto)) - 1 (0.t

2

= p H | 1= olatea(o)) ~ g orato)aw o) ds

M2 /1t " [< /_ ; 6_5(5_”)d0'> ( /_ OO e E| f (0, 2(0)) — f (0,9(0) ||2da>] ds
t+1 S
2 /t / i

92 t+1 s
[ [ B o) - £t [Pdods

IN

T(s = 0)|*Ellg (0,2(0)) — g (0, y(0)) |[*dods

IN

t+1 ps
v [ [ e (0,0(0)) — g (0,5(0) [Pdods
t —00

IN

2 t+1 S
5M2Lf / / eI B2 (0) — y(o)||>dods
t —0o0

t+1 s
+2M’L, / / =260 Blla(o) — y(o) | 2dods
t —00
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2) t—&+1
< aeny [T [ Bla(e) (o)
t_
t—&+1
+2M2L/0 6255/5 Ella(s) — y(s)|2dsde
tf
2 M?
= [(gzMszJr(;Lg] Iz — yl| %
Hence

t+1

Az~ Ayl =sup ( Ell(Az)(s) - <Ay><s>H?ds)2 < VIolz — ylls.

t
which implies that A is a contraction by (3.2). So by the Banach contraction principle, we
draw a conclusion that there exists a unique fixed point z(-) for A in PAAS? (R; L*(P, H)),
such that Ax = x. Moreover, using the same proof as in Theorem 3.1, we can see that
x(t) = T(t—a)ac(a)—%f;e T(t—s)f (s,z(s)) ds+f;’ T(t—s)g (s, z(s)) dW(s) is a mild solution
of the equation (1.2) and z(:) € PAAS? (R; L*(P,H)). This finishes the proof. O

Remark 3.1 Our main results can be applied to investigate the existence and uniqueness

of S%-pseudo almost automorphic mild solutions for the example in [9, Section 6].
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