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Abstract

In this paper, we introduce a new concept of S2-pseudo almost automorphy for

stochastic processes. We apply the results obtained to investigate the existence and

uniqueness of S2-pseudo almost automorphic mild solutions to some stochastic differ-

ential equations in a real separable Hilbert space. Our main results extend some known

ones in the sense of square-mean pseudo almost automorphy or S2-almost automorphy

for stochastic processes.
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1 Introduction

The concept of almost automorphy is an important generalization of the classical

almost periodicity. It was introduced by Bochner [5, 6], for more details about this topics

we refer the reader to [14, 15, 17]. Diagana [11] introduced the concept of Stepanov-like

pseudo almost automorphy as a natural generalization of the pseudo almost automorphy

and an implement of the Stepanov-like almost automorphy due to N’Guérékata and Pankov

[18]. Zhang, Chang and N’Guérékata [24, 25, 26] proved some properties and new ergodic

theorems of Stepanov-like weighted pseudo almost automorphic functions and applied

them to some evolution equations.
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Since noise or stochastic perturbation is unavoidable in real world, it is of great

importance to consider the stochastic effects in the investigation of differential systems

[1, 19, 21, 20, 23]. Bezandry and Diagana systematically studied the fundamental prop-

erties of almost periodic stochastic processes and investigated almost periodic solutions

to different kinds of stochastic differential equations in a recent monograph [3]. Fu and

Liu [12] introduced a new concept of square-mean almost automorphic stochastic pro-

cesses, which is a natural generalization of almost automorphic functions in deterministic

cases. The notation of square-mean pseudo almost automorhy for stochastic processes

was presented by Chen and Lin [9], and was further developed by Bezandry and Diagana

[4]. The concepts and properties of the square-mean weighted pseudo almost automorphy

and the square-mean bi-almost automorphy for a stochastic process was also discussed in

[10]. Chang, Zhao and N’Guérékata [8] presented the concept of S2-almost automorphy

for stochastic processes, which is more general than square-mean almost automorphy and

can be seen as a natural generalization of Stepanov-like almost automorphic functions in

deterministic cases. For more results on topic, we refer to [7, 22, 27] and references therein.

From above mentioned works, we can see that the Stepanov-like pseudo almost au-

tomorphy is a generalization of the Stepanov-like almost automorphy and pseudo almost

automorphy in deterministic cases. Thus, a natural question is: what is it in stochastic

cases? In present paper, we first introduce a new concept of S2-pseudo almost automor-

phy for stochastic processes, which generalizes the notation of square-mean pseudo almost

automorphy [4, 9] or S2-almost automorphy for stochastic processes [8]. And then we

present some properties of such functions and apply this new concept to investigate the

existence and uniqueness of S2-pseudo almost automorphic mild solutions to the following

stochastic differential equations

dx(t) = Ax(t)dt+ f(t)dt+ g(t)dW (t), t ∈ R, (1.1)

and

dx(t) = Ax(t)dt+ f (t, x(t)) dt+ g (t, x(t)) dW (t), t ∈ R, (1.2)

whereA is the infinitesimal generator of a C0-semigroup {T (t)}t≥0 on L
2(P,H), andW (t) is

a two-sided standard one-dimensional Brownian motion defined on the filtered probability

space (Ω,F ,P,Ft), where Ft = σ{W (u)−W (v);u, v ≤ t}. Here f and g are appropriate

functions specified later.

The rest of this paper is organized as follows. In Section 2, we introduce the notion

of S2-pseudo almost automorphic processes and give some basic properties. In Section 3,

we prove the existence and uniqueness of S2-pseudo almost automorphic mild solutions to

some linear and nonlinear stochastic differential equations, respectively.
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2 Preliminaries

Throughout the paper, we assume that (H, ∥ ·∥, ⟨·, ·⟩) and (K, ∥ ·∥K, ⟨·, ·⟩K) are two real

separable Hilbert spaces. Let (Ω,F ,P) be a complete probability space. The notation

L2(P,H) stands for the space of all H-valued random variables x such that

E∥x∥2 =
∫
Ω
∥x∥2dP <∞.

For x ∈ L2(P,H), let

∥x∥2 =
(∫

Ω
∥x∥2dP

) 1
2

.

Then it is routine to check that L2(P,H) is a Hilbert space equipped with the norm ∥ · ∥2.
We let C

(
R, L2(P,H)

)
(respectively, C

(
R× L2(P,H), L2(P,H)

)
) denote the collection

of continuous stochastic processes from R into L2(P,H) (respectively, the collection of

continuous stochastic processes from R × L2(P,H) into L2(P,H)). In addition, W (t) is a

two-sided standard one-dimensional Brownian motion defined on the filtered probability

space (Ω,F ,P,Ft), where Ft = σ{W (u)−W (v);u, v ≤ t}.

Definition 2.1 ([12]) A stochastic process x : R → L2(P,H) is said to be stochastically

continuous if

lim
t→s

E∥x(t)− x(s)∥2 = 0.

Definition 2.2 ([12]) A stochastically continuous stochastic process x : R → L2(P,H) is

said to be square-mean almost automorphic if for every sequence of real numbers there

exist a subsequence {sn}n∈N and a stochastic process y : R → L2(P,H) such that

lim
n→∞

E∥x(t+ sn)− y(t)∥2 = 0 and lim
n→∞

E∥y(t− sn)− x(t)∥2 = 0

hold for each t ∈ R. The collection of all square-mean almost automorphic stochastic

processes x : R → L2(P,H) is denoted by AA
(
R;L2(P,H)

)
.

Lemma 2.1 ([12])
(
AA

(
R;L2(P,H)

)
, ∥ · ∥∞

)
is a Banach space when it is equipped with

the norm

∥x∥∞ := sup
t∈R

∥x(t)∥2 = sup
t∈R

(E∥x(t)∥2)
1
2 ,

for x ∈ AA
(
R;L2(P,H)

)
.

Let PAP0(R;L2(P,H)) be the collection of all x ∈ BC(R;L2(P,H)) such that

lim
r→∞

1

2r

∫ r

−r
E∥x(s)∥2ds = 0.
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Similarly, we define PAP0(R × L2(P,H);L2(P,H)) to be the collection of all bounded

jointly continuous stochastic processes f : R× L2(P,H) → L2(P,H) such that

lim
r→∞

1

2r

∫ r

−r
E∥f(s, x)∥2ds = 0

uniformly in x ∈ L2(P,H).

Definition 2.3 [4] A stochastic process x ∈ BC(R;L2(P,H)) is called square-mean pseu-

do almost automorphic if it can be expressed as x = y+φ, where y ∈ AA(R;L2(P,H)) and

φ ∈ PAP0(R;L2(P,H)). The collection of such functions will be denoted by PAA(R;L2(P,H)).

Definition 2.4 [4] A bounded continuous stochastic process F : R×L2(P,H) → L2(P,H))

is called square-mean pseudo almost automorphic if it can be expressed as F = G + Φ,

where G ∈ AA(R × L2(P,H);L2(P,H)) and Φ ∈ PAP0(R × L2(P,H);L2(P,H)). The

collection of such functions will be denoted by PAA(R× L2(P,H);L2(P,H)).

Lemma 2.2 [4] (PAA(R;L2(P,H)), ∥ · ∥∞) is a Banach space with the supremum norm

∥x∥∞ = sup
t∈R

(
E∥x(t)∥2

)1/2
.

Definition 2.5 ([12]) A function f : R × L2(P,H) → L2(P,H), (t, x) → f(t, x), which

is jointly continuous, is said to be square-mean almost automorphic in t ∈ R for each

x ∈ L2(P,H) if for every sequence of real numbers {s′n}n∈N, there exist a subsequence

{sn}n∈N and a stochastic process f̃ : f : R× L2(P,H) → L2(P,H) such that

lim
n→∞

E∥f(t+ sn, x)− f̃(t, x)∥2 = 0 and lim
n→∞

E∥f̃(t− sn, x)− f(t, x)∥2 = 0

for each t ∈ R and each x ∈ L2(P,H).

Definition 2.6 [2] The Bochner transform xb(t, s), t ∈ R, s ∈ [0, 1], of a stochastic process

x : R → L2(P,H) is defined by

xb(t, s) := x(t+ s).

Definition 2.7 [2] The Bochner transform f b(t, s, u), t ∈ R, s ∈ [0, 1], u ∈ L2(P,H), of a

function f : R× L2(P,H) → L2(P,H) is defined by

f b(t, s, u) := f(t+ s, u)

for each u ∈ L2(P,H).
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Definition 2.8 [2] The space BS2
(
L2(P,H)

)
of all Stepanov bounded stochastic processes

consists of all measurable stochastic processes x : R → L2(P,H) such that xb = L∞ (
R;L2(

0, 1;L2(P,H)
))
. This is a Banach space with the norm

∥x∥S2 = ∥xb∥L∞(R;L2) = sup
t∈R

(∫ 1

0
E∥x(t+ s)∥2ds

) 1
2

= sup
t∈R

(∫ t+1

t
E∥x(τ)∥2dτ

) 1
2

.

Definition 2.9 [8] A stochastic process x ∈ BS2
(
L2(P,H)

)
is called Stepanov-like al-

most automorphic (or S2-almost automorphic) if xb ∈ AA
(
R;L2

(
0, 1;L2(P,H)

))
. In

other words, a stochastic process x ∈ L2
loc

(
R;L2(P,H)

)
is said to be Stepanov-like almost

automorphic if its Bochner transform xb : R → L2
(
0, 1;L2(P,H)

)
is square-mean almost

automorphic in the sense that for every sequence of real numbers {s′n}n∈N, there exist a

subsequence {sn}n∈N and a stochastic process y ∈ L2
loc

(
R;L2(P,H)

)
such that∫ t+1

t
E∥x(s+ sn)− y(s)∥2ds→ 0 and

∫ t+1

t
E∥y(s− sn)− x(s)∥2ds→ 0

as n → ∞ pointwise on R. The collection of all such functions will be denoted by

AS2
(
R;L2(P,H)

)
.

Lemma 2.3 [8] Let (xn(t))n∈N be a sequence of S2-almost automorphic stochastic pro-

cesses such that ∫ t+1

t
E∥xn(s)− x(s)∥2ds→ 0 for each t ∈ R,

as n→ ∞, then x ∈ AS2
(
R;L2(P,H)

)
.

Lemma 2.4 [8] AS2
(
R;L2(P,H)

)
is a Banach space when it is equipped with the norm

∥ · ∥S2.

Lemma 2.5 [8] If x : R → L2(P,H) is a square-mean almost automorphic stochastic

process, then x is S2-almost automorphic, that is, AA
(
R;L2(P,H)

)
⊆ AS2

(
R;L2(P,H)

)
.

Definition 2.10 [8] A function f : R × L2(P,H) → L2(P,H), (t, x) → f(t, x) with

f(·, x) ∈ L2
loc

(
R;L2(P,H)

)
for each x ∈ L2(P,H), is said to be S2-almost automor-

phic in t ∈ R uniformly in x ∈ L2(P,H) if t → f(t, x) is S2-almost automorphic for

each x ∈ L2(P,H). That means, for every sequence of real numbers {s′n}n∈N, there ex-

ist a subsequence {sn}n∈N and a function f̃ : R × L2(P,H) → L2(P,H) with f̃(·, x) ∈
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L2
loc

(
R;L2(P,H)

)
such that∫ t+1

t
E∥f(s+ sn, x)− f̃(s, x)∥2ds→ 0 and

∫ t+1

t
E∥f̃(s− sn, x)− f(s, x)∥2ds→ 0

as n → ∞ pointwise on R and for each x ∈ L2(P,H). We denote by AS2
(
R× L2(P,H);

L2(P,H)
)
the set of all such functions.

Let us now introduce the new concept of S2-pseudo almost automorphy for stochastic

processes.

Definition 2.11 A stochastic process x ∈ BS2
(
L2(P,H)

)
is called S2-pseudo almost

automorphic if it can be expressed as x = y + φ, where y ∈ AS2
(
R;L2(P,H)

)
and

φb ∈ PAP0

(
R;L2

(
0, 1;L2(P,H)

))
. The collection of such functions will be denoted by

PAAS2(R;L2(P,H)).

We also have

Definition 2.12 A function f : R × L2(P,H) → L2(P,H), (t, x) → f(t, x) with f(·, x) ∈
L2
loc

(
R;L2(P,H)

)
for each x ∈ L2(P,H), is said to be S2-pseudo almost automorphic

in t ∈ R uniformly in x ∈ L2(P,H) if it can be expressed as f = h + φ, where h ∈
AS2

(
R× L2(P,H);L2(P,H)

)
and φb ∈ PAP0

(
R× L2(P,H);L2

(
0, 1;L2(P,H)

))
. The col-

lection of such functions will be denoted by PAAS2(R× L2(P,H);L2(P,H)).

Lemma 2.6 If ϕb(·) ∈ PAP0

(
R;L2

(
0, 1;L2(P,H)

))
, then for any h ∈ R, ϕb(· − h) ∈

PAP0

(
R;L2

(
0, 1;L2(P,H)

))
.

Proof: Since

1

2r

∫ r

−r

[∫ t+1

t
E∥ϕ(s− h)∥2ds

]
dt =

1

2r

∫ r

−r

[∫ t−h+1

t−h
E∥ϕ(s)∥2ds

]
dt

=
1

2r

∫ r−h

−r−h

[∫ t+1

t
E∥ϕ(s)∥2ds

]
dt.

If h ≥ 0,

1

2r

∫ r

−r

[∫ t+1

t
E∥ϕ(s− h)∥2ds

]
dt ≤ 2(r + h)

2r

1

2(r + h)

∫ r+h

−(r+h)

[∫ t+1

t
E∥ϕ(s)∥2ds

]
dt,

which implies ϕb(· − h) ∈ PAP0

(
R;L2

(
0, 1;L2(P,H)

))
.

And if h < 0,

1

2r

∫ r

−r

[∫ t+1

t
E∥ϕ(s− h)∥2ds

]
dt ≤ 2(r − h)

2r

1

2(r − h)

∫ r−h

−(r−h)

[∫ t+1

t
E∥ϕ(s)∥2ds

]
dt,

which also implies ϕb(· − h) ∈ PAP0

(
R;L2

(
0, 1;L2(P,H)

))
. 2

Note that L2(P,H) is a Banach space, we state the following lemmas (cf. [24, 11]).
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Lemma 2.7 [11] If f ∈ PAA(R;L2(P,H)), then f ∈ PAAS2(R;L2(P,H)). In other

words, PAA(R;L2(P,H)) ⊆ PAAS2(R;L2(P,H)).

Lemma 2.8 [11] The space PAAS2(R;L2(P,H)) equipped with the norm ∥ · ∥S2 is a Ba-

nach space.

Lemma 2.9 [11] Let F : R × L2(P,H) → L2(P,H) be a S2-pseudo almost automorphic

function. Suppose that F (t, u) is Lipschitzian in u ∈ L2(P,H) uniformly in t ∈ R, that is
there exists a constant L > 0 such that

E∥F (t, u)− F (t, v)∥2 ≤ LE∥u− v∥2

for all t ∈ R and u, v ∈ L2(P,H). If Φ ∈ PAAS2(R;L2(P,H)), then the operator Υ : R →
L2(P,H)) defined by Υ(·) := F (·,Φ(·)) belongs to PAAS2(R;L2(P,H)).

Lemma 2.10 [24] Let F : R× L2(P,H) → L2(P,H) be a S2-pseudo almost automorphic

function with F = G+H. Assume that F satisfies the following conditions:

(i) F (t, ·) is uniformly continuous on each bounded subset K ⊂ L2(P,H) uniformly for

t ∈ R, that is for all ε > 0, there exists δ > 0 such that u, v ∈ K and E∥u− v∥2 < δ imply

that E∥f(t, u)− f(t, v)∥2 < ε for all t ∈ R;
(ii) G(t, ·) is uniformly continuous on each bounded subset K ⊂ L2(P,H) uniformly

for t ∈ R;
(iii) For every bounded subset K ⊂ L2(P,H), the set {F (·, u) : u ∈ K} is bounded in

PAAS2(R;L2(P,H)).

If Φ = α + β ∈ PAAS2(R;L2(P,H)) with α ∈ AS2
(
R;L2(P,H)

)
, βb ∈ PAP0 (R;

L2
(
0, 1;L2(P,H)

))
and {α(t) : t ∈ R} is compact, then for any Φ ∈ PAAS2(R;L2(P,H)),

the operator Υ : R → L2(P,H)) defined by Υ(·) := F (·,Φ(·)) belongs to PAAS2(R;L2(P,H)).

3 Main results

In this section, we investigate the existence of S2-pseudo almost automorphic solutions

for the problems (1.1) and (1.2).

Definition 3.1 An Ft-progressively measurable stochastic process {x(t)}t∈R is called a

mild solution of the problem (1.1) on R if it satisfies the corresponding stochastic integral

equation

x(t) = T (t− a)x(a) +

∫ t

a
T (t− s)f(s)ds+

∫ t

a
T (t− s)g(s)dW (s)

for all t ≥ a and for each a ∈ R.
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Definition 3.2 An Ft-progressively measurable stochastic process {x(t)}t∈R is called a

mild solution of the problem (1.2) on R if it satisfies the corresponding stochastic integral

equation

x(t) = T (t− a)x(a) +

∫ t

a
T (t− s)f (s, x(s)) ds+

∫ t

a
T (t− s)g (s, x(s)) dW (s)

for all t ≥ a and for each a ∈ R.

We first list the following basic assumption:

(H1) The operator A is the infinitesimal generator of an exponentially stable C0-semigroup

{T (t)}t≥0 on L2(P,H); that is, there exist M > 0, δ > 0 such that ∥T (t)∥ ≤ Me−δt, for

all t ≥ 0.

Theorem 3.1 Under previous assumptions, if we assume that (H1) holds, then the prob-

lem (1.1) has a unique mild solution x ∈ PAAS2
(
R;L2(P,H)

)
.

Proof: Let us first prove uniqueness. It is conducted similarly as in the proof of [16,

Theorem 3.1]. Assume that x : R → L2(P,H) is bounded stochastic process and satisfies

the homogeneous equation

dx(t) = Ax(t)dt, t ∈ R. (3.1)

Then x(t) = T (t − s)x(s), for any t ≥ s. Thus ∥x(t)∥ ≤ MKe−δ(t−s) with ∥x(s)∥ ≤ K

for s ∈ R almost surely. Take a sequence of real numbers {sn}n∈N such that sn → −∞ as

n → ∞. For any t ∈ R fixed, one can find a subsequence {snk
}k∈N ⊂ {sn}n∈N such that

snk
< t for all k = 1, 2, · · · . By letting k → ∞, we get x(t) = 0 almost surely.

Now, if x1, x2 : R → L2(P,H) are bounded solutions to Eq. (1.1), then x = x1 − x2

is a bounded solution to Eq. (3.1). In view of the above, x = x1 − x2 = 0 almost surely,

that is, x1 = x2 almost surely.

Now let us investigate the existence. Since f, g ∈ PAAS2
(
R;L2(P,H)

)
, there exist

ρ,ϖ ∈ AS2
(
R;L2(P,H)

)
and ϕb, ψb ∈ PAP0

(
R;L2

(
0, 1;L2(P,H)

))
such that f = ρ +

ϕ, g = ϖ + ψ.

Consider for each n = 1, 2, · · · , the integrals

xn(t) =

∫ n

n−1
T (σ)ρ(t− σ)dσ, yn(t) =

∫ n

n−1
T (σ)ϖ(t− σ)dW (σ),

and

zn(t) =

∫ n

n−1
T (σ)ϕ(t− σ)dσ, wn(t) =

∫ n

n−1
T (σ)ψ(t− σ)dW (σ)

for each t ∈ R. First, by using Hölder’s inequality, we get∫ t+1

t
E∥xn(s)∥2ds =

∫ t+1

t
E

∥∥∥∥∫ n

n−1
T (σ)ρ(s− σ)dσ

∥∥∥∥2 ds
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≤
∫ t+1

t

∫ n

n−1
∥T (σ)∥2E∥ρ(s− σ)∥2dσds

≤ M2

∫ t+1

t

∫ n

n−1
e−2δσE∥ρ(s− σ)∥2dσds

≤ M2

∫ n

n−1
e−2δσ

(∫ t+1

t
E∥ρ(s− σ)∥2ds

)
dσ

≤ M2∥ρ∥2S2

∫ n

n−1
e−2δσdσ

≤ M2

2δ
∥ρ∥2S2e

−2δn(e2δ − 1).

Since M2

2δ ∥ρ∥
2
S2(e

2δ−1)
∑∞

n=1 e
−2δn <∞, we deduce from the well-known Weierstrass test

that the series
∑∞

n=1 xn(t) is convergent in the sense of the norm ∥ · ∥S2 uniformly on R.
Now let

Φ(t) :=
∞∑
n=1

xn(t) for each t ∈ R.

Observe that

Φ(t) =

∫ t

−∞
T (t− s)ρ(s)ds for each t ∈ R.

Clearly, Φ(t) ∈ C
(
R, L2(P,H)

)
.

Now, by using an estimate on Itô integral established in Ichikawa [13], we obtain that∫ t+1

t
E∥yn(s)∥2ds =

∫ t+1

t
E

∥∥∥∥∫ n

n−1
T (σ)ϖ(s− σ)dW (σ)

∥∥∥∥2 ds
≤

∫ t+1

t

∫ n

n−1
∥T (σ)∥2E∥ϖ(s− σ)∥2dσds

≤ M2

∫ t+1

t

∫ n

n−1
e−2δσE∥ϖ(s− σ)∥2dσds

≤ M2

∫ n

n−1
e−2δσ

(∫ t+1

t
E∥ϖ(s− σ)∥2ds

)
dσ

≤ M2∥ϖ∥2S2

∫ n

n−1
e−2δσdσ

≤ M2

2δ
∥ϖ∥2S2e

−2δn(e2δ − 1).

Since M2

2δ ∥ϖ∥2S2(e
2δ − 1)

∑∞
n=1 e

−2δn < ∞, we deduce from the Weierstrass test that the

series
∑∞

n=1 yn(t) is convergent in the sense of the norm ∥ · ∥S2 uniformly on R. Further-
more,

Ψ(t) :=

∫ t

−∞
T (t− s)ϖ(s)dW (s) =

∞∑
n=1

yn(t), t ∈ R,
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and clearly Ψ(t) ∈ C
(
R, L2(P,H)

)
.

Now let us show that each xn, yn ∈ AS2
(
R;L2(P,H)

)
. First, we prove that xn ∈

AS2
(
R;L2(P,H)

)
. Indeed, let {s′m}m∈N be a sequence of real numbers. Since ρ ∈ AS2(

R;L2(P,H)
)
, there exist a subsequence {sm}m∈N of {s′m}m∈N and a stochastic process

ρ̃ ∈ L2
loc

(
R;L2(P,H)

)
∫ t+1

t
E∥ρ(s+ sm)− ρ̃(s)∥2ds→ 0 and

∫ t+1

t
E∥ρ̃(s− sm)− ρ(s)∥2ds→ 0

as m→ ∞ pointwise on R. Moreover, if we let x̃n(t) =
∫ n
n−1 T (σ)ρ̃(t− σ)dσ, we have∫ t+1

t
E∥xn(s+ sm)− x̃n(s)∥2ds

=

∫ t+1

t
E

∥∥∥∥∫ n

n−1
T (σ)ρ(s+ sm − σ)dσ −

∫ n

n−1
T (σ)ρ̃(s− σ)dσ

∥∥∥∥2 ds
=

∫ t+1

t
E

∥∥∥∥∫ n

n−1
T (σ)[ρ(s+ sm − σ)− ρ̃(s− σ)]dσ

∥∥∥∥2 ds
≤

∫ t+1

t

∫ n

n−1
∥T (σ)∥2E∥ρ(s+ sm − σ)− ρ̃(s− σ)∥2dσds

≤ M2

∫ t+1

t

∫ n

n−1
e−2δσE∥ρ(s+ sm − σ)− ρ̃(s− σ)∥2dσds

≤ M2

∫ n

n−1
e−2δσ

(∫ t+1

t
E∥ρ(s+ sm − σ)− ρ̃(s− σ)∥2ds

)
dσ.

Obviously, the last inequality goes to 0 as m→ ∞ pointwise on R. Similarly we can prove

that ∫ t+1

t
E∥x̃n(s− sm)− xn(s)∥2ds→ 0

as m → ∞ pointwise on R. Thus we conclude that each xn ∈ AS2
(
R;L2(P,H)

)
and

consequently their uniform limit Φ(t) ∈ AS2
(
R;L2(P,H)

)
, by using Lemma 2.3.

Next, we show that each yn ∈ AS2
(
R;L2(P,H)

)
. Since ϖ ∈ AS2

(
R;L2(P,H)

)
,

then for every sequence of real numbers {s′m}m∈N there exists a subsequence {sm}m∈N ⊂
{s′m}m∈N and a stochastic process ϖ̃ ∈ L2

loc

(
R;L2(P,H)

)
such that∫ t+1

t
E∥ϖ(s+ sm)− ϖ̃(s)∥2ds→ 0 and

∫ t+1

t
E∥ϖ̃(s− sm)−ϖ(s)∥2ds→ 0

as m→ ∞ pointwise on R. Moreover, if we let ỹn(t) =
∫ n
n−1 T (σ)ϖ̃(t−σ)dW (σ), by using

the Ito integral, we get∫ t+1

t
E∥yn(s+ sm)− ỹn(s)∥2ds
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=

∫ t+1

t
E

∥∥∥∥∫ n

n−1
T (σ)ϖ(s+ sm − σ)dW (σ)−

∫ n

n−1
T (σ)ϖ̃(s− σ)dW (σ)

∥∥∥∥2 ds
=

∫ t+1

t
E

∥∥∥∥∫ n

n−1
T (σ)[ϖ(s+ sm − σ)− ϖ̃(s− σ)]dW (σ)

∥∥∥∥2 ds
≤

∫ t+1

t

∫ n

n−1
∥T (σ)∥2E∥ϖ(s+ sm − σ)− ϖ̃(s− σ)∥2dσds

≤ M2

∫ t+1

t

∫ n

n−1
e−2δσE∥ϖ(s+ sm − σ)− ϖ̃(s− σ)∥2dσds

≤ M2

∫ n

n−1
e−2δσ

(∫ t+1

t
E∥ϖ(s+ sm − σ)− ϖ̃(s− σ)∥2ds

)
dσ.

Obviously, the last inequality goes to 0 as m → ∞ pointwise on R. Arguing in a similar

way, we infer that ∫ t+1

t
E∥ỹn(s− sm)− yn(s)∥2ds→ 0

as m → ∞ pointwise on R. Thus we conclude that each yn ∈ AS2
(
R;L2(P,H)

)
and

consequently their uniform limit Ψ(t) ∈ AS2
(
R;L2(P,H)

)
, by using Lemma 2.3.

In the following, we intend to verify that each zbn, w
b
n ∈ PAP0

(
R;L2

(
0, 1;L2(P,H)

))
.

We first prove that zbn ∈ PAP0

(
R;L2

(
0, 1;L2(P,H)

))
. Now by the fact {T (t)}t≥0 is

exponentially stable, we have∫ t+1

t
E∥zn(s)∥2ds =

∫ t+1

t
E

∥∥∥∥∫ n

n−1
T (σ)ϕ(s− σ)dσ

∥∥∥∥2 ds
≤

∫ t+1

t

∫ n

n−1
∥T (σ)∥2E∥ϕ(s− σ)∥2dσds

≤ M2

∫ t+1

t

∫ n

n−1
e−2δσE∥ϕ(s− σ)∥2dσds

≤ M2

∫ n

n−1
e−2δσ

(∫ t+1

t
E∥ϕ(s− σ)∥2ds

)
dσ,

and hence for r > 0,

1

2r

∫ r

−r

(∫ t+1

t
E∥zn(s)∥2ds

)
dt ≤M2

∫ n

n−1
e−2δσ

[
1

2r

∫ r

−r

(∫ t+1

t
E∥ϕ(s− σ)∥2ds

)
dt

]
dσ.

It follows from Lemma 2.6 that

lim
r→∞

1

2r

∫ r

−r

(∫ t+1

t
E∥ϕ(s− σ)∥2ds

)
dt = 0

as s→ ϕb(s− σ) ∈ PAP0

(
R;L2

(
0, 1;L2(P,H)

))
.
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Applying Lebesgue dominated convergence theorem it follows that

lim
r→∞

1

2r

∫ r

−r

(∫ t+1

t
E∥zn(s)∥2ds

)
dt = 0,

and therefore zbn ∈ PAP0

(
R;L2

(
0, 1;L2(P,H)

))
.

Next, we prove that wb
n ∈ PAP0

(
R;L2

(
0, 1;L2(P,H)

))
. By the fact {T (t)}t≥0 is

exponentially stable and Itô isometry, we get∫ t+1

t
E∥wn(s)∥2ds =

∫ t+1

t
E

∥∥∥∥∫ n

n−1
T (σ)ψ(s− σ)dW (σ)

∥∥∥∥2 ds
≤

∫ t+1

t

∫ n

n−1
∥T (σ)∥2E∥ψ(s− σ)∥2dσds

≤ M2

∫ t+1

t

∫ n

n−1
e−2δσE∥ψ(s− σ)∥2dσds

≤ M2

∫ n

n−1
e−2δσ

(∫ t+1

t
E∥ψ(s− σ)∥2ds

)
dσ,

and hence for r > 0,

1

2r

∫ r

−r

(∫ t+1

t
E∥wn(s)∥2ds

)
dt ≤M2

∫ n

n−1
e−2δσ

[
1

2r

∫ r

−r

(∫ t+1

t
E∥ψ(s− σ)∥2ds

)
dt

]
dσ.

It again from Lemma 2.6 follows that

lim
r→∞

1

2r

∫ r

−r

(∫ t+1

t
E∥ψ(s− σ)∥2ds

)
dt = 0

as s→ ψb(s− σ) ∈ PAP0

(
R;L2

(
0, 1;L2(P,H)

))
.

By Lebesgue dominated convergence theorem it follows that

lim
r→∞

1

2r

∫ r

−r

(∫ t+1

t
E∥wn(s)∥2ds

)
dt = 0,

and hence wb
n ∈ PAP0

(
R;L2

(
0, 1;L2(P,H)

))
.

Arguing in the same way as previous, we can conclude from the Weierstrass test that

Z(t) :=

∫ t

−∞
T (t− s)ϕ(s)ds =

∞∑
n=1

zn(t), t ∈ R,

W(t) :=

∫ t

−∞
T (t− s)ψ(s)dW (s) =

∞∑
n=1

wn(t), t ∈ R.

Applying zbn, w
b
n ∈ PAP0

(
R;L2

(
0, 1;L2(P,H)

))
and by a similar estimation of the re-

mainder term of uniformly convergent series as [24], we can also deduce that the uniform-

ly limit Zb(t) =
∑∞

n=1 zn(t) ∈ PAP0

(
R;L2

(
0, 1;L2(P,H)

))
and Wb(t) =

∑∞
n=1wn(t) ∈
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PAP0

(
R;L2

(
0, 1;L2(P,H)

))
. Therefore, x(t) := Φ(t)+Ψ(t)+Z(t)+W(t) is a S2-pseudo

almost automorphic mild solution of Eq.(1.1).

Define

x(t) =

∫ t

−∞
T (t− s)f(s)ds+

∫ t

−∞
T (t− s)g(s)dW (s), t ∈ R.

Obviously x is a bounded solution to Eq. (1.1). Let us prove that x(t) is a mild solution

of the Eq. (1.1). Indeed, if we let x(a) =
∫ a
−∞ T (a− s)f(s)ds +

∫ a
−∞ T (a− s)g(s)dW (s),

then

T (t− a)x(a) =

∫ a

−∞
T (t− s)f(s)ds+

∫ a

−∞
T (t− s)g(s)dW (s).

But for t ≥ a,∫ t

a
T (t− s)g(s)dW (s) =

∫ t

−∞
T (t− s)g(s)dW (s)−

∫ a

−∞
T (t− s)g(s)dW (s)

= x(t)−
∫ t

−∞
T (t− s)f(s)ds+

∫ a

−∞
T (t− s)f(s)ds− T (t− a)x(a)

= x(t)− T (t− a)x(a)−
∫ t

a
T (t− s)f(s)ds.

It follows that

x(t) = T (t− a)x(a) +

∫ t

a
T (t− s)f(s)ds+

∫ t

a
T (t− s)g(s)dW (s).

In view of the above, it follows that x is the only bounded S2-pseudo almost automorphic

mild solution to the equation (1.1). The proof is now complete. 2

In order to investigate the solutions to the problem (1.2), we need the following addi-

tional assumptions:

(H2) The function f ∈ PAAS2
(
R× L2(P,H);L2(P,H)

)
∩C

(
R× L2(P,H), L2(P,H)

)
and

there exists a constant Lf > 0 such that

E∥f(t, x)− f(t, y)∥2 ≤ LfE∥x− y∥2

for all t ∈ R and each x, y ∈ L2(P,H).

(H3) The function g ∈ PAAS2
(
R× L2(P,H);L2(P,H)

)
∩C

(
R× L2(P,H), L2(P,H)

)
and

there exists a positive number Lg such that

E∥g(t, x)− g(t, y)∥2 ≤ LgE∥x− y∥2

for all t ∈ R and each x, y ∈ L2(P,H).
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Theorem 3.2 Assume the conditions (H1)-(H3) are satisfied, then the problem (1.2) ad-

mits a unique S2-pseudo almost automorphic mild solution on R provided that

L0 =

[
2

δ2
M2Lf +

M2

δ
Lg

]
< 1. (3.2)

Proof: Let Λ : PAAS2
(
R;L2(P,H)

)
→ PAAS2

(
R;L2(P,H)

)
be the operator defined by

Λx(t) =

∫ t

−∞
T (t− s)f (s, x(s)) ds+

∫ t

−∞
T (t− s)g (s, x(s)) dW (s), t ∈ R.

From previous assumptions and the properties of {T (t)}t≥0, one can easily see that Λx

is well defined and continuous. By Lemma 2.9, we infer that both F (·) = f (·, x(·)) and

G(·) = g (·, x(·)) ∈ PAAS2
(
R;L2(P,H)

)
. Then by using the proof of Theorem 3.1, we

have that Λx ∈ PAAS2
(
R;L2(P,H)

)
whenever x ∈ PAAS2

(
R;L2(P,H)

)
. Thus Λ maps

PAAS2
(
R;L2(P,H)

)
into itself.

Now we prove that Λ is a contraction mapping on PAAS2
(
R;L2(P,H)

)
. Indeed, for

each t ∈ R, x, y ∈ PAAS2
(
R;L2(P,H)

)
, we see that∫ t+1

t
E∥(Λx)(s)− (Λy)(s)∥2ds

=

∫ t+1

t
E

∥∥∥∥∫ s

−∞
T (s− σ)[f (σ, x(σ))− f (σ, y(σ))]dσ

+

∫ s

−∞
T (s− σ)[g (σ, x(σ))− g (σ, y(σ))]dW (σ)

∥∥∥∥2 ds
≤ 2

∫ t+1

t
E

∥∥∥∥∫ s

−∞
T (s− σ)[f (σ, x(σ))− f (σ, y(σ))]dσ

∥∥∥∥2 ds
+2

∫ t+1

t
E

∥∥∥∥∫ s

−∞
T (s− σ)[g (σ, x(σ))− g (σ, y(σ))]dW (σ)

∥∥∥∥2 ds
≤ 2M2

∫ t+1

t

[(∫ s

−∞
e−δ(s−σ)dσ

)(∫ s

−∞
e−δ(s−σ)E∥f (σ, x(σ))− f (σ, y(σ)) ∥2dσ

)]
ds

+2

∫ t+1

t

∫ s

−∞
∥T (s− σ)∥2E∥g (σ, x(σ))− g (σ, y(σ)) ∥2dσds

≤ 2

δ
M2

∫ t+1

t

∫ s

−∞
e−δ(s−σ)E∥f (σ, x(σ))− f (σ, y(σ)) ∥2dσds

+2M2

∫ t+1

t

∫ s

−∞
e−2δ(s−σ)E∥g (σ, x(σ))− g (σ, y(σ)) ∥2dσds

≤ 2

δ
M2Lf

∫ t+1

t

∫ s

−∞
e−δ(s−σ)E∥x(σ)− y(σ)∥2dσds

+2M2Lg

∫ t+1

t

∫ s

−∞
e−2δ(s−σ)E∥x(σ)− y(σ)∥2dσds
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≤ 2

δ
M2Lf

∫ ∞

0
e−δξ

∫ t−ξ+1

t−ξ
E∥x(s)− y(s)∥2dsdξ

+2M2Lg

∫ ∞

0
e−2δξ

∫ t−ξ+1

t−ξ
E∥x(s)− y(s)∥2dsdξ

≤
[
2

δ2
M2Lf +

M2

δ
Lg

]
∥x− y∥2S2 .

Hence

∥Λx− Λy∥S2 = sup
t∈R

(∫ t+1

t
E∥(Λx)(s)− (Λy)(s)∥2ds

) 1
2

≤
√
L0∥x− y∥S2 ,

which implies that Λ is a contraction by (3.2). So by the Banach contraction principle, we

draw a conclusion that there exists a unique fixed point x(·) for Λ in PAAS2
(
R;L2(P,H)

)
,

such that Λx = x. Moreover, using the same proof as in Theorem 3.1, we can see that

x(t) = T (t−a)x(a)+
∫ t
a T (t−s)f (s, x(s)) ds+

∫ t
a T (t−s)g (s, x(s)) dW (s) is a mild solution

of the equation (1.2) and x(·) ∈ PAAS2
(
R;L2(P,H)

)
. This finishes the proof. 2

Remark 3.1 Our main results can be applied to investigate the existence and uniqueness

of S2-pseudo almost automorphic mild solutions for the example in [9, Section 6].
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