
Bulletin T.CXXII de l’Académie Serbe des Sciences et des Arts - 2001
Classe des Sciences mathématiques et naturelles
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A b s t r a c t. A tree is said to be starlike if exactly one of its vertices has
degree greater than two. We show that almost all starlike trees are hyperbolic,
and determine all exceptions. If k is the maximal vertex degree of a starlike
tree and λ1 is its largest eigenvalue, then

√
k ≤ λ1 < k/

√
k − 1 . A new way

to characterize integral starlike trees is put forward.
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1. Introduction

A tree in which exactly one vertex has degree greater than two is said to
be starlike [10]. In some recent works various spectral properties of starlike
trees were studied [1, 3, 4, 6]. Among other results, it is shown that no two
starlike trees are cospectral [4].

Let Pn denote the path on n vertices. By S(n1, n2, . . . , nk) we denote
the starlike tree which has a vertex v1 of degree k ≥ 3 and which has the
property

S(n1, n2, . . . , nk)− v1 = Pn1 ∪ Pn2 ∪ · · · ∪ Pnk
. (1)
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This tree has n1 + n2 + · · · + nk + 1 vertices. Clearly, the parameters
n1, n2, . . . , nk determine the starlike tree up to isomorphism. In what fol-
lows, it will be assumed that n1 ≥ n2 ≥ · · · ≥ nk ≥ 1 .

We say that the starlike tree S(n1, n2, . . . , nk) has k branches, the lengths
of which are n1, n2, . . . , nk , respectively.

Let G be a simple graph of order n . The spectrum of G consists of
the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn of its (0,1)-adjacency matrix A . The
characteristic polynomial of the adjacency matrix, det(λI − A) , is called
the characteristic polynomial of the graph G and is denoted by φ(G,λ) or
simply by φ(G) [2].

If G is a graph and v is its arbitrary vertex, then [2, 8]

φ(G) = λφ(G− v)−
∑
u

φ(G− u− v)− 2
∑

C

φ(G− C)

with the first summation on the right–hand side going over vertices u adja-
cent to the vertex v and the second summation over all cycles C embracing
the vertex v . Applying this recurrence relation to starlike trees we obtain

φ(S(n1, n2, . . . , nk)) = λ
k∏

i=1

φ(Pni)−
k∑

i=1


φ(Pni−1)

∏

j∈Vi

φ(Pnj )


 (2)

where Vi = {1, 2, . . . , k} \ {i} .

2. Characterization of Hyperbolic Starlike Trees

Let Γ be a Coxeter group and G the corresponding Coxeter graph. The
Coxeter graph G is said to be hyperbolic if the group Γ is realizable as a
reflection group in a hyperbolic space. Maxwell [5] demonstrated that G is
hyperbolic if and only if it has an eigenvalue greater than 2 and all other
eigenvalues are less than 2.

It happens that, with a few exceptions, all starlike trees are hyperbolic.
In order to show this we need:

Lemma 1. At most one eigenvalue of a starlike tree is greater than two.

P r o o f. All the eigenvalues of the path graphs are less than two.
Consequently, in view of (1), all the eigenvalues of S(n1, n2, . . . , nk) − v1
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are less than two. Therefore, by the interlacing theorem (see [2, p. 19]),
S(n1, n2, . . . , nk) may possess at most one eigenvalue greater than two. 2

Theorem 1. All starlike trees, except S(n−3, 1, 1) for n ≥ 4 , S(5, 2, 1) ,
S(4, 2, 1) , S(3, 3, 1) , S(3, 2, 1) , S(2, 2, 2) , S(2, 2, 1) and S(1, 1, 1, 1) are hy-
perbolic.

The exceptional graphs specified in Theorem 1 are depicted in Fig. 1.
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Fig. 1 The only starlike trees which are not hyperbolic,
i.e., which do not have the property λ1 > 2 > λ2.

P r o o f. Theorem 1 is a proper consequence of a result by Smith [9]
(see also [2, p. 78–79] which characterizes all graphs with λ1 ≤ 2 . What
only needs to be done is to select among them those which are starlike trees.
In view of Lemma 1, all other starlike trees must be hyperbolic. 2
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3. Bounds for the Largest Eigenvalue of a Starlike Tree

Theorem 2. If λ1 is the largest eigenvalue of the starlike tree S(n1, n2,
. . . , nk) , then

√
k ≤ λ1 < k/

√
k − 1 holds for any positive integers n1 ≥

n2 ≥ · · · ≥ nk ≥ 1 .

P r o o f. The lower bound is elementary because the star on k + 1
vertices is a subgraph of any starlike tree S(n1, n2, . . . , nk) . The largest
eigenvalue of this star is

√
k .

In order to deduce the upper bound for λ1 consider first the case when
n1 = n2 = · · · = nk = n and write S(k · n) instead of S(n, n, . . . , n) . Then
Eq. (2) reduces to

φ(S(k · n)) = φ(Pn)k−1 [λφ(Pn)− (k − 1)φ(Pn−1)] .

The largest eigenvalue S(k · n) is a root of the equation

λφ(Pn) = (k − 1)φ(Pn−1) . (3)

By substituting λ = 2 cos θ , the relation (3) becomes 2 cos θ sin(n +
1)θ/ sin θ = (k − 1) sinn θ/ sin θ . By setting t1/2 = eiθ we arrive at

tn+2 − (k − 1) tn+1 + (k − 1) t− 1
t− 1

= 0 (4)

that is
tn+1 − (k − 2) tn − · · · − (k − 2) t + 1 = 0 . (5)

If ti and t−1
i for i = 1, 2, . . . , bn+1

2 c are the roots of the Eq. (5) then
λ∗i = ±

[
t
1/2
i + t

−1/2
i

]
are the roots of Eq. (3).

Denote by Qn+1(t) the polynomial in relation (5). Then for any n > 1
we have that Qn+1(k − 2) < 0 and Qn+1(k − 1) > 0 . Hence Qn+1(t) has a
zero t∗ in the interval (k − 2, k − 1) . Since d λ(t)/dt = d (t1/2 + t−1/2)/dt =
1
2

[
1/
√

t− 1/(t
√

t)
]

> 0 for any t > (k−2) , it follows that λ(t∗) > λ(k−2) =

(k−1)/
√

k − 2 ≥ 2 . In view of Lemma 1 this implies that λ(t∗) is the largest
eigenvalue of the graph S(k · n) . Since λ1 = λ(t∗) < λ(k − 1) = k/

√
k − 1

we obtain that the statement is true for any graph S(k · n) .
The proof is now completed by setting n = n1 and by taking into ac-

count that λ1(S(n1, n2, . . . , nk)) ≤ λ1(S(k · n)) because S(n1, n2, . . . , nk) is
a subgraph of S(k · n) . 2

Corollary 2.1. For any integer k > 1 ,

lim
n→∞λ1(S(k · n)) =

k√
k − 1

.
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P r o o f. The case when k = 2 is trivial so its proof is omitted. If k > 2 ,
then according to (4) it is sufficient to show that

lim
n→∞

[
tn+2 − (k − 1) tn+1 + (k − 1) t− 1

]
= −∞

in the point k−1− 1
10m for any fixed positive integer m . This can be verified

directly. Therefore, since Qn+1(k− 1− 1
10m ) < 0 for sufficiently large values

of n , we conclude that Qn+1(t) has a zero in the interval (k−1− 1
10m , k−1) .

2

Corollary 2.2. For any positive integer k and for n = 1 the spectrum
of S(k · n) reads: {

0 (k − 1 times) ; ±
√

k
}

for n = 2 and k ≥ 1 ,
{
± 1 (k − 1 times) ; 0 ; ±

√
k + 1

}

for n = 3 and k ≥ 1 ,


±

√
2 (k − 1 times) ; 0 (k − 1 times) ; ±

√
(k + 2)±√

(k − 2)2 + 4 k

2





for n = 4 and k ≥ 1 ,




√
3±√5

2
(k − 1 times) ; 0 ; ±

√
(k + 3)±√

(k − 1)2 + 4
2



 .

4. Characterization of Integral Starlike Trees

The following result was earlier communicated by Watanabe and Schwenk
[10]. The proof presented here is different and somewhat shorter. A graph
is said to be integral if all its eigenvalues are integers.

Theorem 3. A starlike tree S(n1, n2, . . . , nk) is integral if and only if
either ni = 1 for all i and

√
k is an integer, or ni = 2 for all i and

√
k + 1

is an integer.

P r o o f. The fact that the above specified starlike trees are integral is
verified directly from Corollary 2.2. What is less easy to envisage is that
there are no other integral starlike trees.
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First let S(n1, n2, . . . , nk) be a starlike tree with 1 ≤ ni ≤ 2 for i =
1, 2, . . . , k , such that S(n1, n2, . . . , nk) is neither S(k · 1) nor S(k · 2) . Then
from Theorem 2 we obtain that k < [λ1(S(n1, n2, . . . , nk))]2 < k +1 , imply-
ing that S(n1, n2, . . . , nk) is not integral.

Consider next the case when n1 ≥ 4 . Since Pn1 is a subgraph of
S(n1, n2, . . . , nk) it follows that S(n1, n2, . . . , nk) has at least one eigenvalue
in the interval[
2 cos 3π

n1+1 , 2 cos 4π
n1+1

]
. Consequently, this tree cannot be integral.

What remains is to examine starlike trees for which n1 = 3 . Assume
that there is an integral starlike tree S = S(3, n2, . . . , nk) . Using Corollary

2.2 we find that k < [λ1(S)]2 ≤ (k+2)+
√

(k−2)2+4 k

2 < k + 2 , wherefrom it
follows λ1(S) =

√
k + 1 (because λ1 is assumed to be an integer) .

It is not difficult to see that it cannot be n2 = 3 . Indeed, the spectrum
of S(3, 3, n3, . . . , nk) contains all the eigenvalues of P3 among which is

√
2 .

Therefore we may assume that n2 ≤ 2.
Further, λ1(S(2, n2, . . . , nk)) < λ1(S) = λ1(S(k · 2)) =

√
k + 1 . The

left–hand side inequality follows because S(2, n2, . . . , nk) is a subgraph of
S(3, n2, . . . , nk) .

Because λ1(S(2, n2, . . . , nk)) < λ1(S(k ·2)) the tree S(2, n2, . . . , nk) must
be a proper subgraph of S(k · 2) , and therefore nk = 1 .

In order to simplify the notation we denote here S(3, n2, . . . , nk) as S(3, p·
2, q · 1) , where p and q stand for the number of branches of length two and
one, respectively.

According to (2), having in mind that p = (k−1)−q , by straightforward
calculation we obtain

φ(S(3, p · 2, q · 1)) = λφ(P1)q−1 φ(P2)p−1 ·R6(λ)

where
R6(λ) = λ6 − (k + 3)λ4 + (2 k + q + 2)λ2 − (2 q + 1) .

If p ≥ 1 then from the latter relation follows R6(
√

k + 1) = 0 , wherefrom
we conclude that q (k−1)−1 = 0 , i. e., q = 1

k−1 < 1 . This is a contradiction
since it must be q ≥ 1 . If, however, p = 0 then the characteristic polynomial
of S(3, p · 2, q · 1) reduces to

φ(S(3, (k − 1) · 1)) = λφ(P1)k−2 ·R4(λ)

where
R4(λ) = λ4 − (k + 2)λ2 + (2 k − 1) .



Some spectral properties of starlike trees 105

Since R4(
√

k + 1) = k−2 ≥ 1 we conclude that φ(S(3, n2, . . . , nk) ,
√

k + 1) 6=
0 , i. e., that

√
k + 1 is not an eigenvalue of S(3, n2, . . . , nk) , a contradiction.

2
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