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A b s t r a c t. This paper introduces and discusses various notions
of regularity of solutions to partial differential equations in Colombeau al-
gebras. The aim is to suggest a number of approaches that allow to extend
the regularity theory to nonlinear equations. A relation with the notion of
delta waves is observed.
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1. Introduction

Consider a partial differential equation P (u) = f where P is a linear or
nonlinear partial differential operator. This paper addresses regularity of
solutions in the Colombeau algebra G(Ω) of generalized functions on open
subsets Ω ⊂ R

n. That is, assuming that u ∈ G(Ω) is a solution, we ask how
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the regularity or lack of regularity in the driving term f affects the regularity
of the solution u; in the case of hyperbolic equations, we are also interested
in the influence of the regularity of the initial data.

As opposed to regularity theory for solutions in the space of distributions
D′(Ω), the algebra of smooth functions C∞(Ω) is not a suitable category
for measuring regularity for Colombeau solutions. This is simply due to
the fact that the ring of constants in G(Ω) contains non-classical numbers
(not belonging to C), so that a homogeneous, linear equation P (u) = 0
always has non-classical, constant solutions. With the introduction of the
subalgebra G∞(Ω) of G(Ω) in [21] it has been noticed early on that the key to
regularity theory in the Colombeau setting lies in the asymptotic behavior
of the nets of smooth functions representing the elements of G(Ω). For
linear equations, even with coefficients belonging to the Colombeau algebra
G(Ω), a large bulk of regularity results using G∞(Ω) has been developed in
the past decade. These results include conditions on G∞-hypoellipticity of
linear operators, microlocalization of the notion of G∞-regularity (the G∞-
wave front set), propagation of G∞-regularity along bicharacteristic curves, a
calculus of pseudodifferential operators with Colombeau symbols and, more
recently, generalized Fourier integral operators [2, 4, 5, 6, 7, 8, 11, 12, 13,
14, 15, 16, 17, 19, 22, 24].

However, though G∞(Ω) is an algebra - hence invariant under polyno-
mial mappings -, it is not invariant under arbitrary nonlinear mappings. In
fact, given u ∈ G∞(Ω), the superposition F (u) generally no longer belongs
to G∞(Ω) even when F is a trigonometric function. Thus the G∞-category
is not suitable for a general regularity theory for nonlinear equations. It ap-
pears that a tighter control over the asymptotic behavior of the representing
nets is required to construct a nonlinear regularity theory. Promising can-
didates for such a theory are the Colombeau-Zygmund spaces of [13], the
spaces of generalized functions of limited growth of [4, 5], notions of subsheaf
regularity introduced in [18] in the context of (C, E ,P)-algebras, and the no-
tions related to slow scale nets, introduced in [16] and applied to regularity
theory for semilinear wave equations in [22].

One may state safely that nonlinear regularity theory in the Colombeau
setting is in a stage of exploration. It is the aim of this paper to discuss and
introduce a number of candidates for this purpose and to show in various
instances how they allow to deduce global regularity statements as well as
preliminary results about propagation of singularities. As will be explained
in the respective sections, essential tests for suitability are: hypoellipticity
for linear constant coefficient operators; propagation of regularity into the
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interior of the light cone of the linear wave equation; global preservation of
regularity of the initial data for semilinear wave equations; propagation of
regularity across singularity bearing characteristic curves for the semilinear
wave equation in one space dimension.

The plan of the paper is as follows. In Section 2, the notions of Colombeau
theory will be recalled that are needed later. Section 3 is devoted to the
discussion of subalgebras of G(Ω) which appear as possible candidates for
measuring regularity in the nonlinear case. These subalgebras will be scruti-
nized with respect to their suitability for an investigation of hypoellipticity
for linear constant coefficient operators as well as propagation of singulari-
ties for the linear wave equation in Section 4. Section 5 tests the subalgebras
in the situation of semilinear wave equations in one space dimension. The
question of global regularity will be addressed and a result on propagation
of singularities is presented, which employs arguments from the theory of
delta waves.

2. Notation

The theory of generalized functions of Colombeau [1] has been presented
in numerous papers and monographs by now, so we will just collect some
basic notions which we need without further explanation. For details we
refer to [9].

Let Ω be an open subset of R
n. The basic objects of the theory as we use

it here are families (uε)ε∈(0,1] of smooth functions uε ∈ C∞(Ω) for 0 < ε ≤ 1.
The following subalgebras are singled out:

Moderate families, denoted by EM(Ω), are defined by the property

∀K � Ω∀α ∈ N
n
0 ∃p ≥ 0 : sup

x∈K
|∂αuε(x)| = O(ε−p) as ε→ 0. (1)

Null families, denoted by N (Ω), are defined by the property

∀K � Ω∀α ∈ N
n
0 ∀q ≥ 0 : sup

x∈K
|∂αuε(x)| = O(εq) as ε→ 0. (2)

The null families form a differential ideal in the collection of moderate fam-
ilies. The Colombeau algebra is the factor algebra

G(Ω) = EM(Ω)/N (Ω).

The Colombeau algebra on a closed half space R
n × [0,∞) is constructed in

a similar way. The restriction of an element u ∈ G(Rn × [0,∞)) to the line
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{t = 0} is defined on representatives by u|{t=0} = class of (uε(·, 0))ε∈(0,1].
Similarly, restrictions of the elements of G(Ω) to open subsets of Ω are
defined on representatives, and Ω → G(Ω) is a sheaf of differential algebras
on R

n. The space of compactly supported distributions is imbedded in G(Ω)
by convolution

ι : E ′(Ω) → G(Ω), ι(w) = class of (w ∗ (ϕε)|Ω)ε∈(0,1], (3)

where
ϕε(x) = ε−nϕ (x/ε) (4)

is obtained by scaling a fixed test function ϕ ∈ S(Rn) of integral one with
all moments vanishing. By the sheaf property, this can be extended in
a unique way to an imbedding of the space of distributions D′(Ω). This
imbedding renders C∞(Ω) a faithful subalgebra. In fact, given f ∈ C∞(Ω),
one can define a corresponding element of G(Ω) by the constant imbedding
σ(f) = class of (fε)ε∈(0,1] with fε ≡ f for all ε. Then ι(f) = σ(f) in G(Ω).

If u ∈ G(Ω) and F is a smooth function which is of at most polynomial
growth at infinity, together with all its derivatives, the superposition F (u)
is a well-defined element of G(Ω).

Families (rε)ε∈(0,1] of complex numbers such that |rε| = O(ε−p) as ε→ 0
for some p ≥ 0 are called moderate, those for which |rε| = O(εq) for every
q ≥ 0 are termed negligible. The ring C̃ of Colombeau generalized numbers
is obtained by factoring moderate families of complex numbers with respect
to negligible families. When Ω is connected, C̃ coincides with the ring of
constants in the differential algebra G(Ω).

Regularity theory for linear equations has been based on the subalge-
bra G∞(Ω) of regular generalized functions in G(Ω). It is defined by those
elements which have a representative satisfying

∀K � Ω∃p ≥ 0∀α ∈ N
n
0 : sup

x∈K
|∂αuε(x)| = O(ε−p) as ε→ 0. (5)

Observe the change of quantifiers with respect to formula (1); locally, all
derivatives of a regular generalized function have the same order of growth
in ε > 0.

3. Measuring regularity

We begin by introducing further subalgebras of G(Ω) that will be potentially
useful in the study of regularity in the nonlinear case; Ω is an open subset
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of R
n throughout. Following the general concepts of construction developed

in [4, 5], we start with a set of sequences R of nonnegative reals.

Definition 1. An element u ∈ G(Ω) is called of asymptotic R-type,
if for some representative and every K � Ω there is a sequence (N�)�≥0

belonging to R such that for all α ∈ N
n
0 , ‖∂αuε‖L∞(K) = O(ε−N|α|) as ε→ 0.

The corresponding subspace of G(Ω) will be denoted by GR(Ω).

Under certain stability conditions on the set R of sequences detailed in [4, 5],
GR(Ω) forms a sheaf of differential subalgebras of G(Ω). This is immediately
checked in the following cases which we shall employ in the sequel.

Example 2. (a) When R = {0}, we obtain the differential subalgebra
G0(Ω) represented by families (uε)ε∈(0,1] all whose derivatives remain locally
uniformly bounded as ε→ 0.

(b) When R consists of the set of bounded sequences, the resulting dif-
ferential subalgebra is G∞(Ω).

(c) When R = {(N�)�≥0 : lim sup�→∞N�/� < ∞}, we obtain a differen-
tial subalgebra denoted by GL(Ω). The representatives of its elements have
the following property: for every K � Ω there are a, b ≥ 0 such that for all
α ∈ N

n
0 , ‖∂αuε‖L∞(K) = O(ε−a|α|−b) as ε→ 0.

The use of the algebra G0(Ω) for regularity purposes was proposed by [3].
Algebras of type (c) were introduced in [4]; a similar space (with a fixed) has
also been considered by [28]. The following inclusion relations are obvious:

G0(Ω) ⊂ G∞(Ω) ⊂ GL(Ω) ⊂ G(Ω).

Using the arguments of [10, Thm. 1.2.6] one can show that for any se-
quence (N�)�≥0 of real numbers there is an element (uε)ε∈(0,1] ∈ EM(R) such
that ∂�uε(0) = ε−N� for all � ∈ N0. Therefore, GL(R) is a proper subalgebra
of G(R), and the other inclusions are proper as well. Following the notion of
subsheaf regularity introduced in [18], we shall also consider the following
subspace of G(Ω).

Definition 3. L1
G(Ω) is the space of the elements of G(Ω) with a repre-

sentative (uε)ε∈(0,1] such that limε→0 uε exists in L1
loc(Ω).

As subalgebras of G(Ω), all spaces from Ex. 2 are invariant under polynomial
maps. Additional invariance properties of these algebras as well as the space
L1
G(Ω) under superposition by nonlinear maps are collected in the following

result.
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Proposition 4. (a) F (G0(Ω)) ⊂ G0(Ω) for every smooth function F .
(b) F (GL(Ω)) ⊂ GL(Ω) for every smooth function F which is bounded,

together with all its derivatives.
(c) F (L1

G(Ω)) ⊂ L1
G(Ω) for every smooth function F all whose derivatives

grow at most polynomially at infinity and which is Lipschitz continuous with
a global Lipschitz constant.

P r o o f. Take a representative (uε)ε∈(0,1] of an element u of one of the
algebras under consideration. Apply the chain rule to F (uε). In case (a), it
is clear that all derivatives will remain bounded on compact sets for whatever
smooth function F . To prove (b), assume that on some compact subset K
of R

n, ‖∂αuε‖L∞(K) = O(ε−a|α|−b) as ε→ 0. If F is bounded together with
all derivatives, it is quite obvious that ‖∂αF (uε)‖L∞(K) = O(ε−(a+b)|α|) as
ε → 0, so F (u) belongs to GL(Ω). In case (c), the polynomial bounds
guarantee that F (u) is a well-defined element of G(Ω). If uε converges to an
element w ∈ L1(K) on some compact set K, the estimate |F (uε)−F (w)| ≤
LipF|uε − w| shows that F (uε) converges to F (w), as desired. �

The kind of regularity that is encapsulated in the subspaces above is
described by the following assertions.

Proposition 5. (a) L1
G(Ω) ∩ D′(Ω) = L1

loc(Ω).
(b) G0(Ω) ∩ D′(Ω) = G∞(Ω) ∩ D′(Ω) = C∞(Ω).

P r o o f. Let w ∈ D′(Ω). Using the fact that the imbedding ι is a sheaf
morphism, it suffices to assume that w is compactly supported. According
to (3), ι(w) is given by convolution with a mollifier ϕε as in (4). Assertion
(a) is now obvious. As for (b), it is well-known (see [21, Thm. 5.2]) that
G∞(Ω)∩D′(Ω) = C∞(Ω); this is all the more so true of its subalgebra G0(Ω).

�

We note that D′(Ω) ⊂ GL(Ω) so that this space carries a kind of regu-
larity, if any, which cannot be expressed by means of subspaces of the space
of distributions.

4. Linear equations

This section serves to test the notions introduced in Section 3 in the case of
linear partial differential operators with (classical) constant coefficients. We
begin by investigating local regularity. A linear partial differential operator

P (∂) =
∑

|α|≤m

aα∂
α (6)
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with coefficients aα ∈ C is called hypoelliptic in the classical sense if for
every open subset Ω of R

n the following regularity property holds:

w ∈ D′(Ω)
P (∂)w ∈ C∞(Ω)

}
⇒ w ∈ C∞(Ω).

Let Ω → A(Ω) be a subsheaf (of complex vector spaces) of the sheaf Ω →
G(Ω). A linear partial differential operator (6) is called A-hypoelliptic (in
the sense of Colombeau algebras), if for every open set Ω ⊂ R

n,

u ∈ G(Ω)
P (∂)u ∈ A(Ω)

}
⇒ u ∈ A(Ω).

Remark 6. No linear partial operator of order m > 0 is C∞-hypoelliptic
(in the sense of Colombeau algebras). Indeed, let ξ ∈ C

n be a zero of P (iξ)
and c ∈ C̃\C be a generalized constant. Then the family uε(x) = cε exp(ixξ)
defines an element u ∈ G(Ω) which does not belong to C∞(Ω) and solves the
homogeneous equation P (∂)u = 0 in G(Ω). The same example shows that
no such operator is G0-hypoelliptic either.

The first part of the following result was already proved in [21]. The proof
is briefly displayed below in order to shed light on what can or cannot be
done with the other algebras from Section 3.

Proposition 7. (a) A linear partial differential operator (6) is hypoel-
liptic in the classical sense if and only if it is G∞-hypoelliptic.

(b) Every linear partial differential operator (6) which is hypoelliptic in
the classical sense is also GL-hypoelliptic.

P r o o f. (a) Let P (∂) be hypoelliptic in the classical sense, u ∈ G(Ω) and
P (∂)u = f ∈ G∞(Ω). The operator P (∂) has a fundamental solution Q
whose C∞-singular support consists of the origin. Let χ be a smooth cut-
off function with support in a small neighborhood of the origin. Further,
take a relatively compact open subset ω ⊂ Ω and let ψ be a smooth cut-off
function with compact support L in Ω which is identically equal to one in a
neighborhood of ω. Then

ψu = Q ∗ P (∂)(ψu) = Q ∗ (ψf) + (Q− χQ) ∗ g + (χQ) ∗ g (7)

where g ∈ G(Ω) vanishes on ω and has its (compact) support contained in L.
Convolution with the fixed distribution Q is a continuous map from DL(Ω)
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into C∞(Ω). Therefore, if K is any compact subset of Ω, there is � and
C > 0 such that

sup
x∈K

|∂αQ ∗ (ψfε)(x)| ≤ C sup
|β|≤�

sup
x∈L

|∂α+β(ψfε)(x)| (8)

holds for all α ∈ N
n
0 . This shows that Q ∗ (ψf) belongs to G∞(Ω), because

ψf does. Next, we use the fact that Q− χQ is a smooth function and that
∂α(Q − χQ) maps CL(Ω) into C(Ω) continuously via convolution, for every
α ∈ N

n
0 . This observation yields the inequality

sup
x∈K

|∂α((Q− χQ) ∗ gε)(x)| ≤ Cα sup
x∈L

|gε(x)|, (9)

so all derivatives of (Q−χQ) ∗ gε inherit the asymptotic growth of gε itself,
so (Q−χQ)∗g belongs to G∞(Ω) as well. Finally, the term (χQ)∗g possibly
carries singularities, but it vanishes in an open subset ω′ of ω which is only
slightly smaller than ω, depending on the diameter of the support of χ. Thus
ψu is G∞-regular on ω′. As the choice of ω and χ is free, this proves the
G∞-regularity of u on Ω.

Conversely, assume that P (∂) is G∞-hypoelliptic and let w ∈ D′(Ω) be
a distributional solution of P (∂)w = h with h ∈ C∞(Ω). Then P (∂)ι(w) =
ι(P (∂)w) = ι(h), because the imbedding ι commutes with linear constant
coefficient operators. Thus ι(w) ∈ G∞(Ω), implying w ∈ C∞(Ω) as noted in
Prop. 5.

(b) We proceed as in (a). If f ∈ GL(Ω) then ‖∂αfε‖L∞(L) = O(ε−a|α|−b)
for some a, b ≥ 0 and all α ∈ N

n
0 . Also, gε = O(ε−p) for some p ≥ 0.

Therefore, inequalities (8) and (9) show that ‖∂α(ψuε)‖L∞(ω′) = O(ε−a|α|−b′)
with b′ = max(�+ b, p). �

The second test for the notions under scrutiny is (global) propagation of
singularities for the linear wave equation. Consider the Cauchy problem for
the wave equation in n space dimensions

∂2
t u(x, t) −

∑n
j=1 ∂

2
xj
u(x, t) = 0, x ∈ R

n, t > 0,
u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), x ∈ R

n.
(10)

Denote by Γ = {(x, t) : t ≥ 0, |x| = t} the forward light-cone issuing from the
origin. For distributional solutions - e.g., solutions u ∈ C∞([0,∞) : D′(Rn))
- the following result on propagation of singularities from the initial data is
well-known. Assume that u0, u1 belong to C∞(Rn \ {0}). Then the singular
support of the solution is contained in Γ, that is, u ∈ C∞(Rn \ Γ). Thus
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regularity of the initial data outside the origin not only entails regularity
outside the light-cone (which is clear from finite propagation speed), but
is transported inside the light-cone. Again, this transport of C∞-regularity
does not hold for Colombeau solutions:

Example 8. Consider the wave equation (10) in one space dimension
(n = 1) with initial data u(·, 0) = 0, ∂tu(·, 0) = ι(δ)2, the square of the Dirac
measure in G(R). By d’Alembert’s formula, the solution u ∈ G(R × [0,∞))
has the constant value 1

2

∫ ∞
−∞ ι(δ)2(x)dx inside the light-cone, which is a

generalized constant in C̃ \ C.

Proposition 9. Let u ∈ G(Rn × [0,∞)) be a solution to the liner wave
equation (10) with initial data u0, u1 ∈ G(Rn).

(a) If u0, u1 ∈ G∞(Rn \ {0}) then u ∈ G∞((Rn × [0,∞)) \ Γ).
(b) If u0, u1 ∈ GL(Rn \ {0}) then u ∈ GL((Rn × [0,∞)) \ Γ).

P r o o f. The proof relies on the fact that the Cauchy problem (10) admits a
fundamental solution with singular support equal to Γ and vanishing outside
Γ. Cut-off arguments similar to those employed in the proof of Prop. 7 yield
the result (details in the G∞-case have been elaborated in [21]). �

Example 8 shows that an assertion analogous to Prop. 9 does not hold
for G0-regularity.

5. Regularity results for semilinear waves

In this section, we shall put the notions introduced in Section 3 to test in
a simple model problem, namely the initial value problem for a semilinear
wave equation in one space dimension,

∂2
t u(x, t) − ∂2

xu(x, t) = F (u(x, t)), x ∈ R, t > 0,
u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), x ∈ R.

(11)

We assume here that the function u → F (u) is smooth with all derivatives
of at most polynomial growth as |u| → ∞, and that it satisfies a global
Lipschitz estimate, i.e., has a globally bounded derivative. Existence and
uniqueness of a solution in the Colombeau algebra on the upper half plane
can be inferred from various much more general theorems on hyperbolic
equations. The result relevant for our purpose is the following; one simple
proof can be found in [22]:
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Remark 10 Assume that the function F is as described above. Let
u0, u1 ∈ G(R). Then problem (11) has a unique solution u ∈ G(R × [0,∞)).
One of the representatives of the solution u is the family (uε)ε∈(0,1] of classical
smooth solutions with initial data given by representatives of u0 and u1.

The question of global regularity asks whether a certain regularity of the
initial data on R is preserved in the solution on R × [0,∞). Such a global
result is true of C∞-regularity, as follows from the fact that ι(f) = σ(f)
for smooth functions f . Thus if u0 and u1 are elements of C∞(R) ⊂ G(R),
the solution u ∈ G(R × [0,∞)) belongs to C∞(R × [0,∞)) as well, because
the classical C∞-solution is one of its representatives. Before turning to
answering the same question for the other algebras presented in Section 3,
we need to recall estimates for classical solutions to the non-homogeneous
linear wave equation. Thus let z be a continuous function that solves of the
linear wave equation

∂2
t z(x, t) − ∂2

xz(x, t) = h(x, t), x ∈ R, t > 0,
z(x, 0) = z0(x), ∂tz(x, 0) = z1(x), x ∈ R

(12)

in the sense of distributions. Let K0 = [−κ, κ] be a compact interval. For
0 ≤ t ≤ κ, the trapezoidal region Kt is defined by

Kt = {(x, s) ∈ R × [0,∞) : 0 ≤ s ≤ t, |x| ≤ κ− s}. (13)

The following estimate is easily deduced (0 ≤ t ≤ T ≤ κ):

‖z‖L∞(KT ) ≤ ‖z0‖L∞(K0) + T‖Iz1‖L∞(K0) + T

∫ T

0
‖h‖L∞(Kt)dt, (14)

where
Iz1(x) =

∫ x

0
z1(y)dy.

The same estimate holds with L1 in place of L∞.

Proposition 11. Assume that the function F is smooth, globally Lip-
schitz, and all its derivatives are polynomially bounded. Let u ∈ G(R × [0,∞))
be the solution to the semilinear wave equation (11) with initial data u0, u1 ∈
G(R). Then:

(a) If u0, u1 ∈ G0(R), then u ∈ G0(R × [0,∞)).
(b) If u0, u1 ∈ G∞(R) and F is linear, then u ∈ G∞(R × [0,∞)).
(c) If u0, u1 ∈ GL(R) and F as well as all its derivatives are bounded,

then u ∈ GL(R × [0,∞)).
(d) If u0, u1 ∈ L1

G(R), then u ∈ L1
G(R × [0,∞)).
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P r o o f. Let KT be a region as described above; let (uε)ε∈(0,1] be the
representative of the solution described in Remark 10. Then uε and its first
and second derivatives with respect to x satisfy(

∂2
t − ∂2

x

)
uε = F ′(θε)uε + F (0), (|θε| ≤ |uε|)(

∂2
t − ∂2

x

)
∂xuε = F ′(uε)∂xuε,(

∂2
t − ∂2

x

)
∂2

xuε = F ′(uε)∂2
xuε + F ′′(uε)(∂xuε)2,

while the first derivative with respect to t satisfies(
∂2

t − ∂2
x

)
∂tuε = F ′(uε)∂tuε.

The initial data for the derivatives are

∂xuε(·, 0) = ∂xu0ε, ∂t∂xuε(·, 0) = ∂xu1ε,
∂2

xuε(·, 0) = ∂2
xu0ε, ∂t∂

2
xuε(·, 0) = ∂2

xu1ε,
∂tuε(·, 0) = u1ε, ∂t∂tuε(·, 0) = ∂2

xu0ε + F (u0ε),

respectively. Using (14) and Gronwall’s inequality, one can estimate the
L∞-norm of uε and its derivatives on KT in terms of the L∞-norms of the
initial data as well as the derivatives of lower order. This yields the estimates
required to prove (a). Case (c) follows by the same argument, applied with
additional care for the t-derivatives: the loss of one order of derivative in
the second slot for the initial data is made up for by the antiderivative I
appearing in estimate (13). Point (b) is a result on propagation of G∞-
regularity for solutions to linear hyperbolic equations which can be proved
similar to Prop. 9, while (d) is just a reformulation of continuous dependence
of L1

loc-solutions of semilinear wave equations with Lipschitz nonlinearity on
the initial data. �

We now address propagation of singularities for the semilinear wave equa-
tion. Thus we study initial data that are regular outside the origin. Fol-
lowing the classical theory of propagation of jump discontinuities one may
hope to prove that, in the one-dimensional case, the solution will be regular
(in the appropriate sense) inside the light-cone Γ. That this behavior occurs
in the C∞-category for the semilinear wave equation in one space dimen-
sion was shown by [27]; it does not hold in higher space dimensions or for
higher order operators [25], for which anomalous singularities may occur.
The question we ask is whether this transport of regularity into the interior
of the light-cone happens in the categories introduced in Section 3. In fact,
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this question remains open here. What we will be able to prove is transport
of regularity under conditions which resemble the situation leading to delta
waves. The existence of delta waves for semilinear hyperbolic equations has
been discovered in [20, 23, 26]: the weak limits of regularized solutions have
been found to split in a sum of two terms, a singular term satisfying a lin-
ear equation and a regular term satisfying a nonlinear equation. A similar
phenomenon will now be described pertaining to regularity for Colombeau
solutions.

We consider the semilinear wave equation (11) with a nonlinear function
F as described at the beginning of this section. We take initial data of the
form

ui = ri + si ∈ G(R), i = 0, 1

where
ri ∈ L1

G(R) and supp(si) = {0}, i = 0, 1.

Define the generalized complex number M ∈ C̃ as the class of

Mε =
1
2

∫ ∞

−∞
s1ε(x)dx

where (s1ε)ε∈(0,1] is a representative of s1. We shall write M ≈ m if Mε

converges to a complex number m ∈ C and |M | ≈ ∞ if |Mε| → ∞ as ε→ 0.

Proposition 12. Assume that the function F is smooth, globally Lip-
schitz, and all its derivatives are polynomially bounded. Let u ∈ G(R × [0,∞))
be the solution to the semilinear wave equation (11) with initial data u0, u1

as described above. If either
(a) F is globally bounded and M ≈ m for some m ∈ C, or
(b) F is globally bounded, lim|y|→∞ F (y) exists and |M | ≈ ∞,
then u ∈ G∞((R × [0,∞)) \ Γ) + L1

G(R × [0,∞)).

P r o o f. Denote by 1Σ the characteristic function of the solid light-
cone Σ = {(x, t) : t ≥ 0, |x| ≤ t}. Let (riε)ε∈(0,1], (siε)ε∈(0,1], i = 0, 1, be
representatives of the initial data, where we may assume that supp(siε) ⊂
[−η, η] with η as small as we wish. Let uε, vε ∈ C∞(R × [0,∞)), wε ∈
L1

loc(R × [0,∞)) be the solutions to(
∂2

t − ∂2
x

)
uε = F (uε), uε(·, 0) = u0ε, ∂tuε(·, 0) = u1ε,(

∂2
t − ∂2

x

)
vε = 0, vε(·, 0) = s0ε, ∂tvε(·, 0) = s1ε,(

∂2
t − ∂2

x

)
wε = F (Mε1Σ + wε), wε(·, 0) = r0ε, ∂twε(·, 0) = r1ε.
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Then(
∂2

t − ∂2
x

)
(uε − vε − wε)

= F (uε) − F (vε + wε) + F (vε + wε) − F (Mε1Σ + wε)

with zero initial data. The difference of the first two terms on the right
hand side can be estimated by the L∞-norm of F ′ times |uε−vε−wε|, while
the difference of the last two terms vanishes off an η-neighborhood of the
light-cone Γ, because vε(x, t) = Mε for |x| < t − η. Taking a trapezoidal
region KT as in (13), the boundedness of F , inequality (14) and Gronwall’s
lemma give an estimate of the form

‖uε − vε − wε‖L1(KT ) ≤ Cη (15)

for some constant C > 0 and all ε ∈ (0, 1]. In the case (a), let w ∈
L1

loc(R × [0,∞)) be the solution to(
∂2

t − ∂2
x

)
w = F (m1Σ + w), w(·, 0) = r0, ∂tw(·, 0) = r1

where ri is the limit in L1
loc(R) of riε as ε→ 0, i = 0, 1. Now(

∂2
t − ∂2

x

)
(wε − w)

= F (Mε1Σ + wε) − F (Mε1Σ + w) + F (Mε1Σ + w) − F (m1Σ + w)

with initial data given by riε − ri, i = 0, 1. The difference of the first two
terms on the right hand side is bounded by the L∞-norm of F ′ times |wε−w|.
By assumption, the difference of the last two terms converges to zero almost
everywhere. Using inequality (14) with L1-norms in place of the L∞-norms
and Gronwall’s lemma as above shows that

‖wε − w‖L1(KT ) → 0 as ε→ 0. (16)

In case (b), defining w ∈ L1
loc(R × [0,∞)) as the solution to(

∂2
t − ∂2

x

)
w = L1Σ, w(·, 0) = r0, ∂tw(·, 0) = r1,

the same argument as above leads to the convergence result (16) in this case
as well. Combining (15) which holds for arbitrarily chosen η > 0 with (16)
shows that uε−vε converges to w in L1(KT ) as ε→ 0. By Prop. 9, vε enjoys
the G∞-estimate (5) off the light cone Γ. Thus uε = vε + (uε − vε) defines
an element of G∞((R × [0,∞)) \ Γ) + L1

G(R × [0,∞)). �
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Remark 13. The hypotheses on the generalized constant M in Prop. 12
are satisfied when the term s1 in the initial data is a polynomial in the Dirac
measure and its derivatives. In fact, when s1 = ∂αι(δ), we have M ≈ 1

2 for
α = 0 and M ≈ 0 for α > 0. When s1 = π(ι(δ)) for some polynomial
function π, only the cases M ≈ m for some m ∈ C or |M | ≈ ∞ can occur.

Prop. 12 shows that regularity of the type G∞ + L1
G is propagated into

the region inside the light-cone. It is clear that it can be generalized in
various ways: for example, the support of the singular part s0, s1 of the
data could consist of a discrete set rather than just a point, other norms in
place of the L1-norm in L1

G could be used to define spaces measuring the
regularity. However, it should be noted that continuous dependence of the
regularized solutions on the data in terms of this norm enters into the ar-
gument, and such a property depends decisively on the particular equation,
the space dimension and the nonlinearity F . Prop. 12 exploits such spe-
cial properties and thus falls short of providing a prototypical description of
nonlinear propagation of regularity for Colombeau solutions, which remains
a challenging open question.
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G. Hörmann, M. Kunzinger, M. Oberguggenberger (Eds.). Nonlinear Theories of
Generalized Functions, Proceedings of the workshop at the Erwin Schrödinger Insti-
tute for Mathematical Physics, Vienna 1997. Chapman & Hall/CRC, Boca Raton
1999, 175–186.

[19] M. N e d e l j k o v, S. P i l i p o v i ć, D. S c a r p a l é z o s, The Linear Theory of
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