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FRAMES FOR FRÉCHET SPACES
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A b s t r a c t. In this paper we study frame representations in projective
and inductive limits of Banach spaces. We introduce the notion of a Fréchet
pre-frame for a given Fréchet space with respect to a Fréchet sequence space.
Main results of the paper include the use of density arguments and represen-
tations in the case of projective limits of isomorphic reflexive Banach spaces.
Examples based on modulation spaces, Sobolev type spaces and Köthe type
spaces are given.
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1. Introduction

Our goal is to get frame representations in projective and inductive limits
of Banach spaces via families which are not necessarily (Schauder) bases. To
that end we employ the existing theory of Banach frames, [2, 4, 7, 11, 14, 15,
17, 26] (see Section 3 for the definition of a Banach frame). We use general
Banach sequence spaces for the analysis and provide necessary background
for a general theory of frames for Fréchet spaces, which can be found in [23].
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In Section 2 we recall basic notions and list the main properties of se-
quence spaces under consideration. Although the spaces of sequences, which
are usually used in the frame theory, are the spaces lp (1 ≤ p < ∞) and
their weighted versions, in the background of our approach lies a more gen-
eral family the so called Köthe type sequence spaces.

It is known that, in the case of a Hilbert space, the frame conditions
(2) and (3) can be extended from a dense subset. In Section 3 we prove
analogous statement for Banach spaces with minimal conditions on the cor-
responding Banach sequence space, Theorem 3.3.

In Section 4 we study Fréchet spaces defined by a family of isomorphic
Banach spaces, Theorem 4.2. Although the result is not surprising, it is
applicable to important examples of Fréchet spaces such as the Schwartz
spaces S and DL2 . Both spaces are projective limits of certain modulation
spaces which are deeply connected to the theory of Weyl-Heisenberg frames,
[8, 9, 16, 27]. We end the section with examples which illuminate applica-
tions of Theorem 4.2 and relate our results to the ones given in the above
mentioned papers.

In order to develop the concept of a Fréchet frame for a Fréchet space in
full generality, a family of sequence spaces and their projective limit should
be used. This is explained in Section 5. It is well known that sequence spaces
which are useful for the analysis of Banach spaces should contain the space
of sequences of coefficients as a complemented subspace (see [4, 11, 17]).
The analogous property holds for Fréchet spaces, see Theorem 5.3 which is
proved in [23].

2. Basic Notions and Notation

We denote by (X, ‖ · ‖X , ) a Banach space and by (X∗, ‖ · ‖X∗) its dual
space. Let X1 and X2 be Banach spaces and let G : X1 → X2. If g ∈ X∗

2

and f ∈ X1, then G∗g(f) = g(Gf).
We are interested in the reconstruction of f ∈ X via a family {gi(f)}i∈I

indexed by a countable set I, where {gi}i∈I is a suitable sequence in X∗. We
will use notation {ci} = {ci}∞i=1,

∑
xi =

∑∞
i=1 xi . . . The canonical vector

(0, . . . , 0, 1, 0, . . .), where 1 is at the i-th position, is denoted by ei. The
sequence {ei} is a Schauder basis for lp, 1 ≤ p < ∞. We denote by c the
space of all convergent sequences equipped with the sup-norm, and c0 is the
subspace of l∞ which consists of all zero-convergent sequences.

Let X1 and X2 be subspaces of X such that X1 + X2 = X and X1 ∩
X2 = {0}. The space X1 is complemented in X if there exists a continuous



Frames for Fréchet spaces 71

projection of X on X1 along X2. The space c0 is not complemented in l∞,
[21].

Recall, a complete locally convex space which has a countable fundamen-
tal system of seminorms is called a Fréchet space. A Fréchet space E with
a fundamental system (‖ · ‖k)k∈N of seminorms is said to have the property
(DN) if there is p ∈ N such that for each q ∈ N there exist n ∈ N and C > 0
such that

‖x‖2
q ≤ C‖x‖p‖x‖n, ∀x ∈ E.

Then, ‖ · ‖p is a norm. A Fréchet space E with a fundamental system
(‖.‖k)k∈N of seminorms has the property (Ω) if for each p ∈ N there exists
q ∈ N so that for every n ∈ N there exist θ ∈ (0, 1) and C > 0 with

‖y‖∗q ≤ C‖y‖∗1−θ

p ‖y‖∗θ

n , ∀y ∈ E∗,

where ‖y‖∗k := sup{|y(x)| : ‖x‖k ≤ 1}, k ∈ N.

We denote by (Θ, ||| · |||Θ) a Banach sequence space. The space Θ is
called solid if the conditions {ci} ∈ Θ and |di| ≤ |ci|, for all i ∈ N, imply
that {di} ∈ Θ and |||{di}|||Θ ≤ |||{ci}|||Θ.

A Banach sequence space is a BK-space if the coordinate functionals are
continuous or, equivalently, if the convergence implies the convergence of the
corresponding coordinates. A BK-space, which contains all the canonical
vectors ei and for which there exists a constant λ ≥ 1 such that

|||{ci}n
i=1|||Θ ≤ λ|||{ci}∞i=1|||Θ, ∀n ∈ N, ∀{ci}∞i=1 ∈ Θ (1)

({ci}n
i=1 :=

∑n
i=1 ciei), will be called λ–BK-space.

A BK-space Θ is called a CB-space if the set of the canonical vectors
{ei} forms a (Schauder) basis, which will be called the canonical basis for
the CB-space Θ. When Θ is a CB-space, we have 1 ≤ supN ‖SN‖ < ∞ (see
[18, 25]), where SN : Θ → Θ are given by SN ({ci}) =

∑N
i=1 ciei, N ∈ N.

The number supN ‖SN‖ is called the canonical basis constant. Thus every
CB-space is a λ–BK-space, where λ is the canonical basis constant. Solid
CB-spaces, in particular, `p spaces, 1 ≤ p < ∞, and c0 are examples of
1–BK-spaces. Note that a λ–BK–space need not be a CB-space – take for
example the space c or the space `∞, which are 1–BK-spaces.

If Θ is a CB-space, then the space BKΘ∗ := {{g(ei)} : g ∈ Θ∗} with the
norm |||{g(ei)}|||BKΘ∗ := ‖g‖Θ∗ is a BK-space isometrically isomorphic to
Θ∗ (see e.g. [19]). Moreover, if Θ is a reflexive CB-space, then the coefficient
functionals {Ei} associated to the canonical basis {ei} form a Schauder basis
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for Θ∗ and thus BKΘ∗ is a CB-space, since the canonical vectors {Ej(ei)}
form a Schauder basis for BKΘ∗. From now on when Θ is a CB-space, we
will always identify Θ∗ with BKΘ∗.

Let A = (ai,k)i,k∈N be a matrix with positive elements such that ai,k ≤
ai,k+1 for all i, k ∈ N, the so called Köthe matrix. For any fixed p ∈ [1,∞)
and k ∈ N we consider the Köthe type spaces

λp,k(A) := {{xi}∞i=1 : |||{xi}|||p,k :=
(∑

|xiai,k|p
)1/p

< ∞}.

We refer to [21] for a detailed exposition on Köthe type spaces. We will
consider the spaces λ2,k((ik)i∈N), k ∈ N. Their projective limit as k →∞ is
the space of rapidly decreasing sequences

s =
{
{xi} : |||{xi}|||k :=

(∑
|xii

k|2
)1/2

< ∞, ∀k ∈ N
}

,

which is a nuclear Fréchet space. A Fréchet space F is isomorphic to a
complemented subspace of s if and only if it is nuclear and has the properties
(DN) and (Ω).

3. Density theorem

Recall [4], if Θ is a BK-space, a countable family {gi}i∈I , gi ∈ X∗, is a
Θ–frame for X, if there exist constants 0 < A ≤ B < ∞ such that

{gi(f)}i∈I ∈ Θ and (2)

A‖f‖X ≤ |||{gi(f)}i∈I |||Θ ≤ B‖f‖X (3)

for all f ∈ X. The constants A and B are called Θ-frame bounds. When
(2) and at least the upper inequality in (3) are satisfied for all f ∈ X, then
{gi}i∈I is called a Θ-Bessel sequence for X with the bound B.

If Θ = `p, 1 < p < ∞, then an `p-frame is a p-frame introduced in [2]; p-
-frames in shift-invariant spaces of `p are considered in [2, 3], while p-frames
in general Banach spaces are studied in [7].

The definition of a Θ-frame is part of the definition of the notion of a
Banach frame, introduced by Gröchenig [15] and studied in [4, 6, 11, 12, 13,
14, 17]. A Banach frame for a Banach space X with respect to a BK-space
Θ is a Θ-frame {gi} for X, for which there exists a bounded linear operator
S : Θ → X such that S({gi(f)}) = f for all f ∈ X. In other words, a Θ-
frame is a Banach frame when the operator U : X → Θ, Uf = {gi(f)}, has
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a bounded left inverse S : Θ → X. The difference between Banach frames
and Θ-frames is studied in [4]. We recall the main result from [4] which will
be used later on.

Proposition 3.1. ([4, Proposition 3.4]) Let Θ be a BK-space and {gi} ∈
(X∗)N be a Θ-frame for X. Then:

(i) The family {gi} is a Banach frame for X with respect to Θ if and only
if the set {{gi(f)} : f ∈ X} is complemented in Θ,

(ii) If Θ is a CB-space, then there exists a Θ∗-Bessel sequence {fi} (fi ∈
X ⊆ X∗∗, i ∈ N) for X∗ such that

f =
∑

gi(f)fi, ∀f ∈ X, (4)

if and only if the set {{gi(f)} : f ∈ X} is complemented in Θ.

(iii) If both Θ and Θ∗ are CB-spaces, there exists a Θ∗-Bessel sequence
{fi} (fi ∈ X ⊆ X∗∗, i ∈ N) for X∗ such that

g =
∑

g(fi)gi, ∀g ∈ X∗, (5)

if and only if the set {{gi(f)} : f ∈ X} is complemented in Θ.

In each of the cases (ii) and (iii), {fi} is actually a Θ∗-frame for X∗.

A Θ∗-frame {fi} for X∗, satisfying (4) and (5), is called a dual frame of
the Θ-frame {gi}.

Remark 3.2. By the proof of the above Proposition 3.1 (iii), given in
[4], we have that a Θ∗-Bessel sequence {fi} satisfies (4) if and only if it
satisfies (5).

Our aim is to extend Proposition 3.1 to Fréchet spaces and obtain series
expansions by the use of a ”Fréchet frame” and the corresponding ”dual
frame”, see Section 5 for the definition. The first result in that direction is
Theorem 3.3.

If X is a Hilbert space and Θ = `2, and if (2) and (3) hold on a dense
subset of X then (2) and (3) hold for all f ∈ X, [5]. The same conclusion
holds when X is a Banach space and Θ = `p, p ∈ (1,∞), see [26]. Analogous
result for Banach frames can be found in [11]. Now we generalize these
results for larger class of sequence spaces Θ and for Θ-frames.

Theorem 3.3. Let (Θ, ||| · |||) be a λ–BK-space. Let W be a dense
subset of a Banach space (X, ‖ · ‖) and {gi} ∈ (X∗)N.
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(i) If (2) and the upper inequality in (3) hold for all f ∈ W , then {gi} is
a Θ-Bessel sequence for X with a bound λB.

(ii) If (2) and (3) hold for all f ∈ W , then {gi} is a Θ-frame for X with
bounds A, λB.

P r o o f. (i) Assume that {gi} satisfies (2) and the upper inequality
in (3) for all f ∈ W . First we will prove that {gi(f)} belongs to Θ for all
f ∈ X. Fix an arbitrary f ∈ X \W and assume that there exists N ∈ N
such that |||∑N

i=1 gi(f)ei||| > λB‖f‖. Denote

δ :=

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
N∑

i=1

gi(f)ei

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣− λB‖f‖ > 0.

By the density of W in X, there exists a family {fn} ∈ WN such that fn → f
when n →∞ and hence there exists N1 ∈ N such that

‖fn‖ − ‖f‖ <
δ

2λB
, ∀n > N1.

By the continuity of gi, (i = 1, 2, . . . , N), there exists N2 ∈ N such that
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
N∑

i=1

gi(f)ei |||−|||
N∑

i=1

gi(fn)ei

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣ <
δ

2
, ∀n > N2.

Now for n > max(N1, N2) one has
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
N∑

i=1

gi(fn)ei

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣ > λB‖f‖+
δ

2
≥ λB(‖fn‖ − δ

2λB
) +

δ

2
= λB‖fn‖.

By (1),

|||{gi(fn)}∞i=1||| ≥
1
λ

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
N∑

i=1

gi(fn)ei

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣ > B‖fn‖,

which contradicts to the validity of (3) for fn ∈ W . Therefore
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
N∑

i=1

gi(f)ei

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣ ≤ λB‖f‖, ∀N ∈ N.

Thus, for every N ∈ N, the operator SN : X → Θ, given by SN (f) =∑N
i=1 gi(f)ei, is bounded with ‖SN‖ ≤ λB. Moreover, SN (f) converges when
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N → ∞ for all f in the dense subset W of X. Therefore SN (f) converges
for all f ∈ X (see, e.g., [20]). Since Θ is a BK-space, limN→∞ SN (f) is
the sequence {gi(f)}∞i=1 and hence {gi(f)}∞i=1 ∈ Θ for all f ∈ X. Now the
Banach-Steinhaus theorem implies that

|||{gi(f)}∞i=1||| ≤ λB‖f‖, for all f ∈ X,

and hence {gi} is a Θ-Bessel sequence for X with bound λB.
(ii) Assume now that (2) and (3) hold for all f ∈ W . It remains only to

prove the validity of the lower Θ-frame inequality for all f ∈ X \W . Take
f ∈ X \W and a family {fn} ∈ WN such that fn → f when n → ∞. For
any n ∈ N we have

| |||{gi(fn)}∞i=1||| − |||{gi(f)}∞i=1||| | ≤ λB‖fn − f‖

and therefore
lim

n→∞ |||{gi(fn)}∞i=1||| = |||{gi(f)}∞i=1|||.

By the inequality A‖fn‖ ≤ |||{gi(fn)}∞i=1|||, which holds for all n ∈ N, when
n →∞ we get

A‖f‖ ≤ |||{gi(f)}∞i=1|||.
2

4. Isomorphic spaces

Let {Ys, | · |s}s∈N0 be a family of Banach spaces such that

{0} 6= ∩s∈N0Ys ⊂ . . . ⊂ Y2 ⊂ Y1 ⊂ Y0 (6)

| · |0 ≤ | · |1 ≤ | · |2 ≤ . . . (7)

YF := ∩s∈N0Ys is dense in Ys, for every s ∈ N0. (8)

Then YF is a Fréchet space with the sequence of norms | · |s, s ∈ N0. We
will use the above sequences for general Banach spaces, Ys = Xs with norms
‖·‖s, s ∈ N0, and for Banach sequence spaces Ys = Θs with norms ||| · |||s, s ∈
N0.

Note that if {Θs, ||| · |||s}s∈N0 is a family of CB-spaces, satisfying (6) and
(7), then finite sequences belong to ΘF and form a dense subset of Θs; thus
(8) is automatically satisfied. In this case ΘF has the canonical basis in the
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sense that every x ∈ ΘF can be written uniquely as x =
∑

xiei with the
convergence in Θs for every s ∈ N0.

For any given p ∈ [1,∞), the family {λp,s(A), ||| · |||p,s}s∈N0 defined in
Section 2 is a family of solid CB-spaces which satisfy (6)-(8).

It is well known that a (Hilbert) frame remains a frame via an isomor-
phism (see, e.g. [5, 18]). Let us show that the same holds in the more
general case of Banach frames.

Lemma 4.1. Let (Θ, ||| · |||) be a BK-space, X and Y be reflexive
Banach spaces and let the operator G be an isomorphism of X∗ onto Y ∗.
Let {gi} ∈ (X∗)N.

(i) If {gi} is a Θ-Bessel sequence (resp. Θ-frame) for X, then {Ggi} is a
Θ-Bessel sequence (resp. Θ-frame) for Y ,

(ii) If {gi} is a Banach frame for X w.r.t. Θ, then {Ggi} is a Banach
frame for Y w.r.t. Θ.

P r o o f. (i) Let {gi} be a Θ-Bessel sequence for X. By the reflexivity
of X, for all y ∈ Y we have {Ggi(y)} = {gi(G∗y)} ∈ Θ and

|||{Ggi (y)}||| = |||{gi(G∗y)}||| ≤ B‖G∗y‖X ≤ B‖G‖‖y‖Y .

Let now {gi} be a Θ-frame for X. It remains to prove that {Ggi} satisfies
the lower Θ-frame inequality. For every y∈ Y the following inequalities hold

|||{Ggi (y)}||| = |||{gi(G∗y)}||| ≥ A‖G∗y‖X ≥ A
1

‖(G∗)−1‖‖y‖Y .

(ii) We need only to prove that the operator Ũ : Y → Θ, Ũy = {Ggi(y)},
has a bounded left inverse. Since {gi} is a Banach frame for X w.r.t. Θ,
the operator U : X → Θ, Uf = {gi(f)}, has a bounded left inverse S : Θ →
X. Since Ũ = UG∗, we have (G∗)−1SŨ = Id|Y and hence the operator
(G∗)−1S : Θ → Y is a bounded left inverse of Ũ . 2

Theorem 4.2.Let {Xs}s∈N0 be a family of reflexive Banach spaces, satis-
fying (6)-(8), and assume that for every s ∈ N0 there exists an isomorphism
Gs of X0 onto Xs. Let Θ be a CB-space such that Θ∗ is also a CB-space
(in particular, reflexive CB-space). Assume that there exists s0 ∈ N0 and a
sequence {gi} ∈ (X∗

s0
)N, which is a Banach frame for Xs0 w.r.t. Θ. Then
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there exists a Banach frame {fi} ∈ (Xs0)
N for X∗

s0
w.r.t. Θ∗ such that for

every s ∈ N0 the following holds:

f =
∑

G∗−1

s G∗
s0

gi (f) GsG
−1
s0

fi, for all f ∈ Xs, (9)

g =
∑

g(GsG
−1
s0

fi) G∗−1

s G∗
s0

gi, for all g ∈ X∗
s , (10)

{G∗−1

s G∗
s0

gi} is a Banach frame for Xs w.r.t. Θ, (11)

{GsG
−1
s0

fi} is a Banach frame for X∗
s w.r.t. Θ∗. (12)

P r o o f. By Proposition 3.1 and Remark 3.2, there exists a Banach
frame {fi} for X∗

s0
w.r.t. Θ∗ such that

x =
∑

gi(x)fi, for all x ∈ Xs0 , (13)

y =
∑

y(fi)gi, for all y ∈ X∗
s0

. (14)

For any given s ∈ N0, the operator GsG
−1
s0

is an isomorphism of Xs0 onto
Xs and G∗−1

s G∗
s0

is an isomorphism of X∗
s0

onto X∗
s . Let f ∈ Xs and thus

f = GsG
−1
s0

xf for some xf ∈ Xs0 . By (13) we have

GsG
−1
s0

xf =
∑

gi(xf )GsG
−1
s0

fi =
∑

gi(Gs0G
−1
s f)GsG

−1
s0

fi

and finally
f =

∑ (
(Gs0G

−1
s )∗gi

)
(f)GsG

−1
s0

fi.

Let now g ∈ X∗
s and thus g = G∗−1

s G∗
s0

yg for some yg ∈ X∗
s0

. By (14) we
have

G∗−1

s G∗
s0

yg =
∑

yg(fi)G∗−1

s G∗
s0

gi =
∑

G∗−1

s0
G∗

sg(fi)G∗−1

s G∗
s0

gi

and therefore
g =

∑
g(GsG

−1
s0

fi) G∗−1

s G∗
s0

gi.

By Lemma 4.1 we conclude that {G∗−1

s G∗
s0

gi} is a Banach frame for Xs w.r.t.
Θ and {GsG

−1
s0

fi} is a Banach frame for X∗
s w.r.t. Θ∗. 2

In the same way as above, if there exists s0 ∈ N0 and a sequence {fi} ∈
(Xs0)

N, which is a Banach frame for X∗
s0

w.r.t. Θ, then there exists a Banach
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frame {gi} ∈ (X∗
s0

)N for Xs0 w.r.t. Θ∗ such that (9)-(12) hold for every
s ∈ N0.

Remark 4.3. Theorem 4.2 deals with families of reflexive Banach spaces
together with their corresponding dual spaces,

{0} 6= ∩s∈NXs ⊂ . . . ⊂ X2 ⊂ X1 ⊂ X0 ⊂ X∗
0 ⊂ X∗

1 ⊂ X∗
2 ⊂ . . . ∪s∈N X∗

s .

Thus, (10) gives expansions of distributions g ∈ X∗
s ⊂ sups∈NX∗

s , via dis-
tributions G∗−1

s G∗
s0

gi, {gi} ∈ (X∗
s0

)N, for some s0 ∈ N. This is different from
the usual structural theorems for distributions where the synthesis is done by
elements from ∩s∈NXs. See, for example [30], for the expansion of tempered
distributions by orthogonal polynomials. We also mention [9, 10, 24] for the
representation of tempered (ultra)-distributions by Gabor frames and Wilson
bases. More details on this remark will be given in a forthcoming paper.

4.1. Examples

As usual, S(Rn) denotes the Schwartz class of rapidly decreasing func-
tions whose dual is the space of tempered distributions, S ′(Rn). By Ff = f̂
and F−1f we denote the Fourier and the inverse Fourier transform. We use
the notation 〈·〉 = (1 + | · |2)1/2 and 〈D〉 = (1−4)1/2. The Bessel potential
space of order s ∈ R, H2

s , is the Hilbert space of all tempered distributions
f such that f = Fg, for some g which satisfies

∫
|g(ξ)|2〈ξ〉2sdξ < ∞.

We have S ⊂ H2
s ⊂ H2

s′ ⊂ S ′ for s′ < s. The Bessel potential spaces satisfy
(6)–(8), and therefore we may apply Theorem 4.2. We now generalize this
example to families of Banach spaces.

4.1.1. Modulation spaces

Modulation spaces are recognized as the most important spaces of func-
tions and distributions in time-frequency analysis [5, 8, 9, 11, 16, 27]. Frame
decompositions of modulation spaces are based on Gabor (Weyl-Heisenberg)
frames, [16]. We refer to [8, 16] for general theory of modulation spaces and
list only those features which are necessary for the present work.

Let g be any nonzero function from the Schwartz class S(Rd). The short-
-time Fourier transform of f ∈ S ′(Rd) with respect to the window g is given
by

Vgf(x, ω) =
∫

Rd
f(t) g(t− x) e−2πiωt dt. (15)
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Modulation space Mp,q
s,t = Mp,q

s,t (Rd), 1 ≤ p, q ≤ ∞, s, t ∈ R, is a Banach
space of f ∈ S ′(Rn) such that ‖f‖Mp,q

s,t
< ∞, with the norm ‖ · ‖Mp,q

s,t
defined

by (∫

Rd

(∫

Rd
|Vgf(x, ω)〈x〉t|pdx

)q/p

〈ω〉qsdω

)1/q

,

with obvious modifications when p = ∞ and/or q = ∞. We have (Mp,q
s,t )∗ =

Mp′,q′
1/s,1/t, 1 ≤ p, q ≤ ∞, s, t ∈ R, 1/p + 1/p′ = 1, 1/q + 1/q′ = 1.

Let there be given monotonically increasing sequences of positive num-
bers {sn} and {tn}, limn→∞ sn = ∞ and limn→∞ tn = ∞, and let there
be given modulation space Mp,q

s0,t0 . Then we have Mp,q
sn,tm ↪→ Mp,q

sn−1,tm and
Mp,q

sn,tm ↪→ Mp,q
sn,tm−1

. Moreover, for any given s, t, u, v ∈ R the map f 7→ 〈·〉vf
is an isomorphism between Mp,q

s,t+v and Mp,q
s,t and the map f 7→ 〈D〉uf is an

isomorphism between Mp,q
s+u,t and Mp,q

s,t , see [8, 27].
Therefore, it is easy to observe a family of modulation spaces such that

(6) - (8) holds. If {sn} is an increasing sequence such that limn→∞ sn =
∞, then S = ∩n→∞Mp,q

sn,sn
and, consequently, S ′ = ∪n→∞Mp′,q′

−sn,−sn
. In

particular, for p = q = 2, we obtain S as the projective limit of the sequence
of Hilbert spaces M2,2

sn,sn
, known also as Shubin spaces.

We have M2,2
s,0 = H2

s , and obtain the space DL2 (see [29]) as projective
limit of isomorphic (Hilbert) modulation spaces M2,2

s,0 , s ∈ R.

Both S and DL2 are Fréchet spaces which have properties (DN) and (Ω).
However, S is nuclear while DL2 is not a Montel space, and therefore it is
not nuclear. Therefore S is isomorphic to (a complemented subspace of) the
Köthe sequence space s, see Section 2.

Theorem 4.2 can be easily applied to modulation spaces. Actually, by
[15, Chapter 12], there exist Gabor frames which are frames for all modula-
tion spaces, see also [28]. The elements of the Gabor frames belong to M1,1

s,t ,
for some s, t ∈ R. On the other side, in Theorem 4.2, different modulation
spaces are characterized by different frames.

In the above examples, one can choose Hilbert modulation spaces to
obtain the Fréchet spaces S and DL2 . Let us now give an example with
isomorphic Banach spaces which are not Hilbert spaces.

4.1.2. Banach spaces which are not Hilbert spaces

Let p ∈ (1,∞), X0 := F−1(Lp),

Xs := {f ∈ S ′ | f (α) ∈ F−1(Lp), ∀α ∈ Nd
0, |α| ≤ s}, s ∈ N,
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with the norm ‖f‖Xs = (
∫
(1+ |ξ|2)ps/2|f̂(ξ)|pdξ)1/p, s ∈ N0. The derivatives

are understood in distributional sense. If we restrict to 1 < p ≤ 2, then
X0 ⊂ Lq, where q = p

p−1 . Similar constructions related to Sobolev spaces
can be found in [1, 22].

The operator Gs given by

Gsf = F−1((1 + |ξ|2)−s/2f̂(ξ)), f ∈ X0,

is an isomorphism of X0 onto Xs. If p = 2, we have Xs = H2
s , as above.

Since

Xs = {f ∈ S ′ | ((1 + |ξ|2)s/2f̂ ∈ Lp} = {f ∈ S ′ | f̂ ∈ Lp

(1+|ξ|2)s/2}

its dual is

X∗
s = {g ∈ S ′ | ((1 + |ξ|2)−s/2ĝ ∈ Lq} = {g ∈ S ′ | ĝ ∈ Lq

(1+|ξ|2)−s/2},

where q = p
p−1 , and the dual pairing is given by 〈g, f〉 =

∫
ĝ(ξ)f̂(ξ)dξ.

Therefore Xs, s ∈ N, is a reflexive Banach space.
Let {gi} ⊂ Lq

(1+|ξ|2)−s/2 be a p−frame for Lp

(1+|ξ|2)s/2 . Then {F−1gi} is a
frame for Xs with respect to `p and we can again apply Theorem 4.2.

5. Fréchet frames

We begin with the definition of a pre-frame for a Fréchet space.

Definition 5.1. Let {Xs, ‖ · ‖s}s∈N0 be a family of Banach spaces, sat-
isfying (6)-(8) and let {Θs, ||| · |||s}s∈N0 be a family of BK-spaces, satisfying
(6)-(8). A sequence {gi} ∈ (X∗

F )N is called a pre-Fréchet frame (a pre-F -
frame) for XF with respect to ΘF if for every s ∈ N0 there exist constants
0 < As ≤ Bs < ∞ such that

{gi(f)} ∈ ΘF , (16)

As‖f‖s ≤ |||{gi(f)}|||s ≤ Bs‖f‖s, (17)

for all f ∈ XF . When (16) and the upper inequality in (17) hold for all
f ∈ XF , {gi} is called a Fréchet-Bessel sequence (an F -Bessel sequence) for
XF with respect to ΘF .

If X = XF = Xs and Θ = ΘF = Θs, s ∈ N0, the above definition of
a pre-F -frame gives a Θ-frame for X. Having in mind the definition of a
Banach frame, we define a Fréchet frame as follows.
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A Fréchet frame (F -frame) for a Fréchet space XF with respect to a
Fréchet sequence space ΘF is a pre-F -frame {gi} for XF with respect to
ΘF , for which there exists a continuous linear operator S : ΘF → XF such
that S({gi(f)}) = f for all f ∈ XF . In other words, a pre-F -frame is an
F -frame when the operator U : XF → ΘF , Uf = {gi(f)}, has a continuous
left inverse S : ΘF → XF .

Let Θs = Θ, ∀s ∈ N0, be a CB-space and assume that {Xs}s∈N0 is a
family of Banach spaces, satisfying (6)-(8). If {gi} ∈ (X∗

F )N is a pre-F -frame
for XF with respect to Θ and if there is a continuous projection U from Θ
onto R(U) = {{gi(f)} : f ∈ XF }, then XF should be isomorphic to R(U),
which is a closed subspace of Θ, see Theorem 5.3 below. Therefore XF

should be (isomorphic to) a Banach space. This explains that in case when
XF is a Fréchet space which is not a Banach space a sequence of different
sequence spaces Θs, s ∈ N0, should be used.

Let {gi}i∈I ∈ (X∗
F )N be a pre-F -frame for XF with respect to ΘF . For

any given s ∈ N0 and i ∈ I, the unique continuous extension of gi on Xs will
be denoted by gs

i .

Lemma 5.2. Let {Xs, ‖·‖s}s∈N0 be a family of Banach spaces, satisfying
(6)–(8) and and let {Θs, ||| · |||s}s∈N0 be a family of λs–BK-spaces, satisfying
(6)–(8). If {gi}i∈I ∈ (X∗

F )N is an F -Bessel sequence (resp. pre-F -frame)
for XF with respect to ΘF with bounds Bs (resp. As, Bs), then for any given
s ∈ N0 the family {gs

i }i∈I is a Θs-Bessel sequence (resp. Θs-frame) for Xs

with a bound λsBs (resp. As, λsBs).

P r o o f. The result follows from Theorem 3.3, because of the density
of XF in each Xs, s ∈ N0. 2

Theorem 5.3. Let {Xs, ‖ · ‖s}s∈N0 be a family of Banach spaces, sat-
isfying (6)–(8) and let {Θs, ||| · |||s}s∈N0 be a family of CB-spaces, satisfy-
ing (6)-(8) and we assume that Θ∗

s is a CB-space for every s ∈ N0. Let
{gi}i∈I ∈ (X∗

F )N be a pre-F -frame for XF with respect to ΘF . There exists
a family {fi} ∈ (XF )N such that

(a) f =
∑

gi(f)fi, ∀f ∈ XF , and g =
∑

g(fi)gi, ∀g ∈ X∗
F ;

(b) f =
∑

gs
i (f)fi, ∀f ∈ Xs, and g =

∑
g(fi)gs

i , ∀g ∈ X∗
s , ∀s ∈ N0;

(c) for every s ∈ N0, {fi} is a Θ∗
s-frame for X∗

s .

if, and only if, there exists a continuous projection U from ΘF onto its
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subspace {{gi(f)} : f ∈ XF }.
A family {fi} ∈ (XF )N, which satisfies the conditions (a)–(c) in the

above theorem, is called a dual pre-F -frame of the given pre-F -frame {gi}.
We refer to [23] for the proof of Theorem 5.3, the existence of frames

for Fréchet spaces, and more details on frames for Fréchet spaces. In the
case of a single Banach space, Theorem 5.3 follows from Proposition 3.1 and
Remark 3.2.

Very general concept of ”localization of frames” is proposed by Gröchenig,
[17]. Families of Banach spaces are associated to a Riesz basis of a Hilbert
space. Note that our approach is different since Theorem 5.3 does not refer
to any Hilbert space.

We end with an example when the sequence spaces Θs, s ∈ N0, are
Hilbert spaces. If {gi} ∈ (X∗

F )N is a pre-F -frame for XF with respect to
ΘF , then, by Lemma 5.2, the family {gs

i } is a Θs-frame for Xs for any
s ∈ N0. Therefore the space Xs is isomorphic to a closed subspace of Θs and
thus Xs is a Hilbert space. Theorem 5.3 points toward a complementedness
condition, which is necessary and sufficient for series expansions via given
pre-F -frame and the corresponding dual pre-F -frame. In particular, when
Θs = λ2,s((is)i∈N) (see Section 2, by Theorem 5.3 we have the following.

Corollary 5.4.Let {Xs}s∈N be a family of Hilbert spaces, satisfying (6)–
(8). Let {gi} ∈ (X∗

F )N and let for every s ∈ N0 there exist constants 0 <
As ≤ Bs < ∞ such that

As‖f‖s ≤
(∑

i

|isgi(f)|2
)1/2

≤ Bs‖f‖s, ∀f ∈ XF .

Then the following statements are equivalent:
(i) There exists a family {fi} ∈ XN

F such that for every s ∈ N0 one has:

∃ 0 < Ãs ≤ B̃s < ∞ : Ãs‖g‖X∗
s
≤

(∑
|i−sg(fi)|2

)1/2 ≤ B̃s‖g‖X∗
s
, ∀g ∈ X∗

s ;

f =
∑

gi(f)fi, ∀f ∈ XF ; g =
∑

g(fi)gi, ∀g ∈ X∗
F ;

f =
∑

gs
i (f)fi, ∀f ∈ Xs; g =

∑
g(fi)gs

i , ∀g ∈ X∗
s .

(ii) The set {{gi(f)} : f ∈ XF } is nuclear and has the properties (DN)
and (Ω).
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84 S. Pilipović, Diana Stoeva, N. Teofanov

[18] C. H e i l, A Basis Theory Primer, 1997. Available online at
http://www.math.gatech.edu/˜heil/

[19] L. V. K a n t o r o v i c h, G. P. A k i l o v, Functional Analysis in Normed Spaces,
Pergamon press, 1964.

[20] L. A. L u s t e r n i k, V. J. S o b o l e v, Elements of Functional Analysis, Hindustan
Publ. Corporation, Delhi, and John Wiley & Sons, 1974.

[21] R. M e i s e, D. V o g t, Introduction to Functional Analysis, Oxford University Press,
Oxford, 1997.

[22] Y. M e y e r, Wavelets and Operators, Cambridge University Press, Cambridge, 1992.
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