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1. Introduction

The first attempt of investigating functional differential equations with
deviating argument in the framework of regular variation in the sense of
Karamata was made by the present authors in the paper [4] in which a
sharp condition was presented for differential equations of the type

x′′(t) = q(t)x(g(t)) (A)

to possess slowly varying solutions.
The purpose of this paper is to study the existence of regularly varying

solutions (of nonzero regularity indices) of (A).
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For readers convenience we recall that a measurable function L : [0,∞) →
(0,∞) is said to be slowly varying if it satisfies

lim
t→∞

L(λt)
L(t)

= 1 for any λ > 0.

Furthermore, the function
f(t) = tρL(t)

is said to be regularly varying of regularity index ρ ∈ R. The totality of
these functions is denoted by RV (ρ) and in particular RV (0) (or SV ) stands
for the totality of slowly varying functions.

In the paper, among many basic properties of slowly varying functions,
we emphasize the representation theorem which asserts that L(t) ∈ SV if
and only if it is expressed in the form

L(t) = c(t) exp





t∫

t0

ε(s)
s

ds



 , t ≥ t0, (1.1)

for some t0 > 0 and some measurable functions c(t) and ε(t) such that

lim
t→∞ c(t) = c0 ∈ (0,∞) and lim

t→∞ ε(t) = 0.

If especially c(t) = c0 then L(t) is called normalized.
The most comprehensive text on the theory and numerous applications

of regularly (slowly) varying functions is [1]. In particular, applications to
the asymptotics of solutions to some classes of differential equations are
presented in [5].

Here and hereafter it is assumed that the functions q(t) and g(t) are
positive and continuous on [0,∞), that g(t) is an increasing function such
that g(t) < t and lim

t→∞ g(t) = ∞ and that q(t) is integrable over (0,∞).
We prove

Theorem A. Let c > 0 and denote by λi, i = 0, 1, λ0 < λ1, the two
roots of the quadratic equation

λ2 − λ− c = 0. (1.2)

Suppose that

lim
t→∞

g(t)
t

= 1; (1.3)
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then equation (A) has two regularly varying solutions xi(t) of indices λi, i.e.
possessing the form

xi(t) = tλiLi(t)

where Li(t) are some normalized slowly varying functions, if and only if

Q(t) := t

∞∫

t

q(s)ds− c → 0, as t →∞. (1.4)

The proof will be given in section 3. It heavily depends on a similar
result for the equation without deviating argument

x′′(t) = q(t)x(t) (B)

([5], Theorem 1.11). In section 2 we partially frame it as Lemma 2.1 and
prove it using the procedure from [3]. The later is modified here in such a
way that the explicit expression obtained for the regularly varying solution
of (B) can be directly applicable to the construction of the desired solution
of equation (A) by means of the fixed point technique.

In order to point out some possible applications of the existence Theorem
A we prove in section 3 the following result which is in fact a corollary of a
known one to be quoted below.

Theorem B. Let conditions of Theorem A hold with

g(t)
t

= 1 + O

(
1
t

)
as t →∞ (1.5)

instead of (1.3).
If

∞∫

a

t

∣∣∣∣q(t)−
c

t2

∣∣∣∣ dt < ∞ (1.6)

then there exist two solutions xi(t), i = 0, 1 of equation (A) such that

xi(t) ∼ tλi as t →∞.
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2. A Lemma

We prove

Lemma 2.1. Let c > 0 and λi be as in Theorem A, then there exist two
regularly varying solutions xi(t), i = 0, 1, 2 of (B) possessing the form

xi(t) = exp





t∫

T

λi −Q(s) + vi(s)
s

ds



 , t ≥ T (2.1)

where vi(t) are solutions of the integral equations

v0(t) = t1−2λ0

∞∫

t

s2(λ0−1){[v(s)−Q(s)]2 − 2λ0Q(s)}ds, t ≥ T. (2.2− 0)

v1(t) = t1−2λ1

t∫

T

s2(λ1−1){2λ1Q(s)− [v(s)−Q(s)]2}ds, (2.2− 1)

respectively, if and only if (1.4) holds.

P r o o f of Lemma 2.1.
The ”only if” part is proved in [2]. We will present here the detailed

proof of the ”if” part for the case i = 0, and then point out the alterations
needed for the case i = 1. To simplify the notation the subscripts 0, 1 in the
functions vi and xi will be omitted throughout the proof.

Since by (1.4), Q(t) → 0 as t → ∞, for a given 0 < m < 1 one can
choose T > 0 such that |Q(t)| ≤ m2 for t ≥ T and

2(2 + |λ0|)
1 + 2|λ0| m ≤ 1. (2.3)

Define the set

V := {v ∈ C0[T,∞) : |v(t)| ≤ m, t ≥ T}, (2.4)

where C0[T,∞) denotes the set of all continuous functions on [T,∞) that
tend to 0 as t →∞. It is obvious that C0[T,∞) is a Banach space with the
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norm ‖v‖0 = sup
s≥T

|v(t)| and that V is a closed subset of C0[T,∞). Consider

the integral operator F defined by

Fv(t) = t1−2λ0

∞∫

t

s2(λ0−1){[v(s)−Q(s)]2 − 2λ0Q(s)}ds, t ≥ T. (2.5)

If v ∈ V , then

|Fv(t)| ≤ (2(2 + |λ0|)
1 + 2|λ0| m ·m ≤ m, t ≥ T,

so that Fv ∈ V , and if v, w ∈ V , then

|Fv(t)−Fw(t)| ≤ t1−2λ0

∞∫

t

s2(λ0−1){[|v(s)|+ |w(s)|+ 2m2]|v(s)− w(s)|}ds

≤ 4m

1 + 2|λ0|‖v − w‖0, t ≥ T,

which implies that

‖Fv −Fw‖0 ≤ 4m

1 + 2|λ0|‖v − w‖0.

In view of (2.3) this shows that F is a contraction mapping on V . Therefore,
there exists a unique v ∈ V such that v = Fv, which is equivalent to the
integral equation (2.2).

Using this function v(t) we construct the function (2.1). We claim that
this function x(t) becomes a regularly varying solution of index λ0 of equa-
tion (B). That x(t) is a regularly varying function of index λ0 follows from
the fact that λ0 −Q(t) + v(t) → λ0 as t →∞. To show that x(t) is a solu-
tion of (B) it suffices to verify that the function u(t) = (λ0 −Q(t) + v(t))/t
satisfies the Riccati equation u′(t) + u(t)2 − q(t) = 0 on [T,∞) associated
with (B). But this is almost trivial, since the Riccati equation in question
can be rewritten in the form

(t2λ0−1v(t))′ + t2(λ0−1){[v(t)−Q(t)]2 − 2λ0Q(t)} = 0, t ≥ T,

which can readily be seen to be the one that follows from differentiation of
the integral equation (2.2) for v(t). This completes the proof for the case
i = 0.
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The proof of the case i = 1 mimics the preceeding one, making use of
the operator

Gv(t) = t1−2λ1

t∫

T

s2(λ1−1){2λ1Q(s)− [v(s)−Q(s)]2}ds,

instead of Fv(t) defined by (2.5). Also the constant 0 < m < 1 should
satisfy

2(λ1 + 2)
2λ1 − 1

m ≤ 1 (2.6)

instead of (2.3).

3. Proofs

3.1. P r o o f of Theorem A.

Here again, we present a detailed proof for the case i = 0 and then point
out the alterations needed for the case i = 1. Also the subscripts 0, 1, in the
functions vi, xi will be omitted.

Sufficiency. Let τ = g(T ) for some T > 0. We define Ξ to be the set
consisting of those functions ξ ∈ C[τ,∞) ∩ C1[T,∞) such that

ξ(t) = 1, τ ≤ t ≤ T (3.1)

and for t ≥ T have the representation

ξ(t) = exp





t∫

T

λ0 + δξ(s)
s

ds



 (3.2)

for some continuous functions δξ(t) satisfying for all ξ ∈ Ξ

lim
t→∞ δξ(t) = 0 (3.3)

and
−R(t)−m ≤ δξ(t) ≤ −λ0, t ≥ T. (3.4)

Here we put
R(t) = 2Q(t) + c (3.5)

which is positive for sufficiently large t due to (1.4). The number 0 < m < 1
will be conveniently chosen.
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In view of (3.2) and (3.3) all the members of Ξ are decreasing regularly
varying functions of index λ0 < 0, i.e. Ξ ⊂ RV (λ0). Obviously, Ξ can be
regarded as a subset of the locally convex space C1[T,∞) endowed with
the topology of uniform convergence of functions and their derivatives on
compact subintervals of [T,∞). Moreover Ξ is a closed convex subset of
C1[T,∞): Let {ξn} be a sequence of elements of Ξ converging to ξ0 in
C1[T,∞). Use is made of the representation (3.2) for ξn:

ξn(t) = exp





t∫

T

λ0 + δn(s)
s

ds



 , t ≥ T, (3.6)

(where, to simplify, δn(s) stands for δξn(s)).
From (3.6) we have

t
ξ′n(t)
ξn(t)

= λ0 + δn(t), t ≥ T, n = 1, 2, . . . . (3.7)

Letting n → ∞ and noting that ξn(t) → ξ0(t) and ξ′n(t) → ξ′0(t) as n → ∞
uniformly on compact subintervals of [T,∞), we see that ξ0(t) satisfies

t
ξ′0(t)
ξ0(t)

= λ0 + δ0(t), t ≥ T, (3.8)

for some continuous function δ0(t) = lim
n→∞ δn(t) with the property that

R(t)−m ≤ δ0(t) ≤ −λ0, lim
t→∞ δ0(t) = 0. (3.9)

This implies that ξ0(t) is expressed in the form

ξ0(t) = exp





t∫

T

λ0 + δ0(s)
s

ds



 , t ≥ T, (3.10)

with δ0(t) satisfying (3.9). This guarantees that ξ0 is a member of Ξ, showing
that Ξ is closed in C1[T,∞).

To prove the convexity of Ξ we proceed as follows. Let ξn, n = 1, . . . , N ,
be any elements of Ξ and let cn, n = 1, . . . , N , be any positive constants such

that
N∑

n=1
cn = 1. Put η =

N∑
n=1

cnξn. Using the representations (3.8)-(3.9), we

obtain

t
η′(t)
η(t)

= λ0 + ∆(t), (3.11)
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where ∆(t) is given by

∆(t) =
N∑

n=1

cnδn(t)ξn(t)/
N∑

n=1

cnξn(t).

As easily verified, ∆(t) satisfies

−R(t)−m ≤ ∆(t) ≤ −λ0 and lim
t→∞∆(t) = 0. (3.12)

From (3.11) it follows that η(t) has the representation

η(t) = exp





t∫

T

λ0 + ∆(s)
s

ds



 , t ≥ T,

with ∆(t) satisfying (3.12). This means that η ∈ Ξ, implying that Ξ is a
convex subset of C1[T,∞).

In the sequel some properties of functions ξ are needed. To derive these
an auxiliary function is of a crucial importance.

Define for some a > 0 and m > 0

Λ(t) = exp





t∫

a

λ0 −R(s)−m

s
ds



 .

Then, since Λ(t) is decreasing and g(t) < t, one has

1 ≤ Λ(g(t))
Λ(t)

= exp





t∫

g(t)

−λ0 + R(s) + m

s
ds





. (3.13)

But 0 < R(t) + m − λ0 ≤ k for some k > 0 and sufficiently large t, so
that in view of (1.3), there follows for t →∞

t∫

g(t)

R(s) + m− λ0

s
ds ≤ k log

t

g(t)
→ 0.

Thus, due to (3.13)

lim
t→∞

Λ(g(t))
Λ(t)

= 1 (3.14)
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which implies that there exists T > 0 such that for t ≥ T

1 ≤ Λ(g(t))
Λ(t)

≤ 2. (3.15)

Two preceeding formulas lead to

lim
t→∞

ξ(g(t))
ξ(t)

= 1 and 1 ≤ ξ(g(t))
ξ(t)

≤ 2 (3.16)

for all ξ ∈ Ξ and t ≥ T . (Observe here that T is independent of ξ).
Indeed by the definition of the function ξ one has

1 ≤ ξ(g(t))
ξ(t) = exp

{
t∫

g(t)

−λ0−δ(s)
s ds

}

≤ exp

{
t∫

g(t)

−λ0+R(s)+m
s ds

}
= Λ(g(t))

Λ(t) ,

(3.17)

and (3.16) follows by (3.14), (3.15).
Now, for any ξ ∈ Ξ put for t ≥ T

qξ(t) = q(t)
ξ(g(t))
ξ(t)

, (3.18)

and

Qξ(t) = t

∞∫

t

qξ(s)ds− c. (3.19)

Because of (3.17) we have for all ξ and for t ≥ T , q(t) ≤ qξ(t) ≤ qΛ(t) which
due to (3.17) implies

Q(t) ≤ Qξ(t) ≤ QΛ(t). (3.20)

Observe that condition (1.4) combined with (3.14) gives that for t →∞,
QΛ(t) → 0 and so Qξ(t) → 0 for all ξ ∈ Ξ. Consequently, there exist
0 < m < 1 and T = T (m) such that for t ≥ T and all ξ ∈ Ξ

−m2 ≤ Q(t) ≤ Qξ(t) ≤ QΛ(t) ≤ m2

implying that

|Q(t)| ≤ m2, |QΛ(t)| ≤ m2, |Qξ(t)| ≤ m2. (3.21)
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Now we choose m such that for t ≥ T

2(2 + |λ0|)m
1 + 2|λ0| ≤ 1. (3.22)

Let us consider the family of ordinary differential equations

x′′(t) = qξ(t)x(t), ξ ∈ Ξ. (3.23)

Because of (3.21) and (3.22), we are able to apply Lemma 2.1 to each
member of the family (3.23), concluding that each equation of the family
possesses a regularly varying solution of index λ0 having the form

xξ(t) = exp





t∫

T

λ0 −Qξ(s) + vξ(s)
s

ds



 , (3.24)

where vξ(t) denote the function satisfying the integral equation

vξ(t) = t1−2λ0

∞∫

t

s2(λ0−1){[vξ(s)−Qξ(s)]2 − 2λ0Qξ(s)}ds, (3.25)

Formulas (3.24) and (3.25) hold for t ≥ T , where T is determined in
(3.21) and (3.22). Unless otherwise stated the same is true for the formulas
that follow and the adjective will be omitted.

Let τ = g(T ) and denote by Φ the mapping which associates to each
ξ ∈ Ξ the function Φξ(t) defined by

Φξ(t) = 1 for τ ≤ t ≤ T, Φξ(t) = xξ(t), t ≥ T. (3.26)

We claim that Φ is a self-map on Ξ and sends Ξ into a relatively compact
subset of C1[τ,∞).

i) Φ maps Ξ into itself: Let ξ ∈ Ξ. Rewrite (3.24) as

xξ(t) = exp





t∫

T

λ0 + δξ(s)
s

ds



 with δξ(t) = −Qξ(t) + vξ(t).

It is clear that lim
t→∞ δξ(t) = 0. Since xξ(t) is a decreasing solution of (3.23),

being convex and tending to zero, one has δξ(t) ≤ −λ0 for t ≥ T . On the
other hand, from (3.20) and since |vξ(t)| ≤ m, it follows that

δξ(t) ≥ −Qξ(t)−m ≥ −QΛ(t)−m ≥ −R(t)−m,
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where R(t) is defined by (3.5). This shows that Φξ ∈ Ξ.
ii) Φ(Ξ) is relatively compact in C1[T,∞): This is an immediate con-

sequence of the Arzela-Ascoli lemma applied to the following inequalities
holding for all ξ ∈ Ξ and t ≥ T :

1 ≥ Φξ(t) ≥ exp





t∫

T

λ0 −R(s)−m

s
ds



 ,

0 ≥ (Φξ)′(t) ≥ Φξ(t) · λ0 + δξ(t)
t

≥ λ0 −R(t)−m

t

and
(Φξ)′′(t) = qξ(t)Φξ(t) ≤ qΛ(t).

iii) Φ is a continuous mapping: Let {ξn} be a sequence in Ξ converging
to η ∈ Ξ in C1[T,∞). It should be proved that {Φξn} converges to Φη in
C1[T,∞), that is,

Φξn(t) → Φη(t) and (Φξn)′(t) → (Φη)′(t) as n →∞, (3.27)

uniformly on compact subintervals of [T,∞). Using (3.24), we have for t ≥ T

|Φξn(t)− Φη(t)| ≤
t∫

T

s−1{|Qξn(s)−Qη(s)|+ |vξn(s)− vη(s)|}ds,

and

|(Φξn)′(t)− (Φη)′(t)| ≤ |Φξn(t)− Φη(t)|t−1{|λ0 −Qξn(t) + vξn(t)|}+

+|Φη(t)|t−1{|Qξn(t)−Qη(t)|+ |vξn(t)− vη(t)|}

≤ |Φξn(t)− Φη(t)|t−1{|λ0|+ 2m}

+t−1{|Qξn(t)−Qη(t)|+ |vξn(t)− vη(t)|},

and so to establish the desired convergence (3.27) it suffices to show that
the two sequences

1
t
|Qξn(t)−Qη(t)| and

1
t
|vξn(t)− vη(t)| (3.28)
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converge to zero as n →∞ on any compact subinterval of [T,∞). The first
sequence in (3.28) is easier to deal with, since we have by (3.19)

1
t
|Qξn(t)−Qη(t)| ≤

∞∫

t

q(s)
∣∣∣∣
ξn(g(s))

ξ(s)
− η(g(s))

η(s)

∣∣∣∣ ds, t ≥ T, (3.29)

which converges to zero as desired by means of the Lebesgue dominated
convergence theorem. Turning to the second sequence in (3.28), in order to
evaluate |vξn(t)− vη(t)| with the help of (3.25), we first observe that

|{[vξn(t)−Qξn(t)]2 − 2λ0Qξn(t)} − {[vη(t)−Qη(t)]2 − 2λ0Qη(t)}|

≤ [vξn(t) + vη(t) + Qξn(t) + Qη(t)][|vξn(t)− vη(t)|+ |Qξn(t)−Qη(t)|] +

+2|λ0||Qξn(t)−Qη(t)|

≤ 4m|vξn(t)− vη(t)|+ (4m + 2|λ0|)|Qξn(t)−Qη(t)|.

Using the above inequality, we obtain

|vξn(t)− vη(t)| ≤ t1−2λ0

∞∫

t

θ|vξn(s)− vη(s)|+ ρ|Qξn(s)−Qη(s)|
s2(1−λ0)

ds, (3.30)

where θ = 4m < 1 and ρ = 4m + 2|λ0| < 1 + 2|λ0|.
Putting

wn(t) =
∞∫

t

s2(λ0−1){|vξn(s)− vη(s)|}ds. (3.31)

(3.30) can be transformed into the following differential inequality for wn(t):

(tθwn(t))′ ≥ − ρ

t1−θ

∞∫

t

s2(λ0−1){|Qξn(s)−Qη(s)|}ds. (3.32)

We note by (3.31) that tθwn(t) → 0 as t →∞. Integrating (3.32) from t to
∞ then yields

wn(t) ≤ ρ

θtθ

∞∫

t

s2(λ0−1){|Qξn(s)−Qη(s)|}ds, (3.33)
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Combining (3.33) with (3.30), we finally obtain the inequality

1
t
|vξn(t)− vη(t)| ≤ ρ

tθ+2λ0

∞∫

t

s2(λ0−1)+θ{|Qξn(s)−Qη(s)|}ds +

+
ρ

t2λ0

∞∫

t

s2(λ0−1){|Qξn(s)−Qη(s)|}ds

≤ ρ

tθ

∞∫

t

sθ−2{|Qξn(s)−Qη(s)|}ds + ρ

∞∫

t

s−2{|Qξn(s)−Qη(s)|}ds,

from which it readily follows that |vξn(t)−vη(t)|/t → 0 as n →∞ uniformly
on compact subintervals of [T,∞). Thus the mapping Φ defined by (3.26)
is continuous in the topology of C1[T,∞).

Therefore, applying the Schauder-Tychonoff fixed point theorem to Φ,
we conclude that there exists a ξ ∈ Ξ such that ξ = Φξ, which clearly means
that ξ(t) is a regularly varying function of index λ0 and satisfies the ordinary
differential equation

ξ′′(t) = qξ(t)ξ(t),

which, in view of (3.18), reduces to the functional differential equation

ξ′′(t) = q(t)ξ(g(t)).

This establishes the existence of a desired regularly varying solution for the
equation (A), and the proof is completed for the root λ0.

To prove the case i = 1, we again put τ = g(T ) and define Ξ to be the
set of those functions ξ ∈ C[τ,∞) ∩ C1[T,∞) which this time satisfy

ξ(t) = 1, τ ≤ t ≤ T, (3.34)

and

ξ(t) = exp





t∫

T

λ1 + δξ(s)
s

ds



 , t ≥ T, (3.35)

for some continuous functions δξ(t) such that for all ξ ∈ Ξ.

lim
t→∞ δξ(t) = 0 (3.36)
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and
0 ≤ δξ(t) ≤ λ1, t ≥ T. (3.37)

Notice that all the members of Ξ are nondecreasing regularly varying func-
tions of index λ1 > 0, i.e., Ξ ⊂ RV (λ1) and that Ξ can be regarded as a sub-
set of locally convex space C1[T,∞) endowed with the topology of uniform
convergence of functions and their first derivatives on compact subintervals
of [T,∞). Moreover, exactly as in the case i = 0 one shows that Ξ is a closed
convex subset of C1[T,∞).

The auxillary function here replacing Λ from the case i = 0, is

ρ(t) =
(

t

a

)2λ1

, t > a, (3.38)

satisfying by (1.3),

ρ(g(t))
ρ(t)

=
(

g(t)
t

)2λ1

→ 1 as t →∞. (3.39)

From (3.35) and (3.39) one readily derives that for every ξ ∈ Ξ one has

ξ(g(t))
ξ(t)

→ 1, as t →∞ (3.40)

and
ρ(g(t))
ρ(t)

≤ ξ(g(t))
ξ(t)

, t ≥ T. (3.41)

Now we define for each ξ ∈ Ξ and for ρ given by (3.38)

qξ(t) = q(t)
ξ(g(t))
ξ(t)

, Qξ(t) = t

∞∫

t

qξ(s)ds− c, (3.42)

qρ(t) = q(t)
ρ(g(t))
ρ(t)

, Qρ(t) = t

∞∫

t

qρ(s)ds− c. (3.43)

Due to (3.41) and since ξ(t) is increasing, one has for t ≥ T

Qρ(t) ≤ Qξ(t) ≤ Q(t)

and also, because of (1.4) and (3.40) (implying Qρ(t) → 0, as t → ∞) that
for all ξ ∈ Ξ and t ≥ T

|Qξ(t)| ≤ m2. (3.44)
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Once more, let us consider the family of linear ordinary differential equa-
tions

x′′ = qξ(t)x, ξ ∈ Ξ. (3.45)

Because of (3.44) we are able to apply Lemma 2.1 to (3.45), concluding that
each of its members possesses an RV (λ1)-solution xξ(t) expressed in the
form

xξ(t) = exp





t∫

T

λ1 −Qξ(s) + vξ(s)
s

ds



 , t ≥ T, (3.46)

where vξ(t) satisfies the integrasl equation

vξ(t) = t1−2λ1

t∫

T

s2(λ1−1){2λ1Qξ(s)− (vξ(s)−Qξ(s))2}ds, (3.47)

and
|vξ(t)| ≤ m for t ≥ T.

Let Ψ denote the mapping which associate to each ξ ∈ Ξ the function
Ψξ defined by

Ψξ(t) = 1 for τ ≤ t ≤ T, Ψξ(t) = xξ(t) for t ≥ T, (3.48)

where xξ(t) is given by (3.46) and (3.47). It is now a matter of routine to
repeat the procedure used in the case of λ0 to establish the conditions on Ψ
needed for the Schauder-Tychonoff theorem which guarantees the existence
of a ξ ∈ Ξ such that ξ = Ψξ, which according to (3.46) and (3.48) means that
ξ(t) is a regularly varying solution of index λ1 satisfying (3.45) and so, in
view of (3.42), the equation (A). This completes the proof of the sufficiency
part of Theorem A.

Necessity. (for both cases i = 0, 1). Assume x(t) = tλiLi(t) where Li are
some normalized SV functions (hence positive by definition).

Put

qx(t) = q(t)
x(g(t))
x(t)

and write equation (A) as

(
x′(t)
x(t)

)′
+

(
tx′(t)
x(t)

)2 1
t2

= qx(t),
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integrate over (t,∞), multiply throughout by t to obtain

−tx′(t)
x(t)

+
∞∫

t

(
sx′(s)
x(s)

)2 ds

s2
= t

∞∫

t

qx(s)ds.

A direct calculation, using (1.1) with c(t) = c0, gives

tx′(t)
x(t)

→ λi as t →∞

so that

λ2
i − λi = lim

t→∞ t

∞∫

t

qx(s)ds

which gives

lim
t→∞ t

∞∫

t

qx(s)ds = c,

since λi satisfies (1.2).
This, however, implies (1.4) since x(g(t))

x(t) → 1 as t → ∞ due to the
representation (2.1) in which Q(s) and vi(s) tend to zero, and using (1.3).

P r o o f of Theorem B.

Write equation (A) as

x′′(t) = qx(t)x(t)

where x(t) is positive. Such solutions exist in virtue of Theorem A. Now
apply Theorem 2.7 in [5] asserting that there exist solutions xi(t) such that

xi(t) ∼ tλi as t →∞

if

I :=
∞∫

a

t|qx(t)− c

t2
|dt < ∞.

But, because of (1.5) and (2.1)

t

∣∣∣∣qx(t)− c

t2

∣∣∣∣ ≤ t

∣∣∣∣q(t)−
c

t2

∣∣∣∣ + kq(t),
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for some k > 0, so that I converges due to (1.6) and the integrability con-
dition on q(t).

Example 3.1. Consider the retarded differential equation

x′′(t) =
(

c

t2
+

d

t2ϕ(t)

)
x(t− ψ(t)), (3.49)

where c and d are positive constants, and ϕ(t) is a continuous slowly vary-
ing function on [0,∞) such that lim

t→∞ϕ(t) = ∞, and ψ(t) is a continuous

regularly varying function of index µ < 1 defined on [0,∞).
Since ψ(t)/t decreases to 0 as t → ∞, g(t) = t − ψ(t) is eventually

increasing and satisfies lim
t→∞

g(t)
t = 1. On the other hand, by the Karamata

theorem for integrals (see [5, Proposition 1]), we have

∞∫

t

ds

s2ϕ(s)
ds ∼ 1

tϕ(t)
as t →∞,

which implies that q(t) = c
t2

+ d
t2ϕ(t)

satisfies lim
t→∞ t

∞∫
t

q(s)ds = c. Therefore,

from Theorem A we see that equation (3.49) possesses regularly varying
solutions of indices λi.

Example 3.2. Let g(t) be a retarded argument satisfying (1.3) and
consider the functional differential equation

x′′(t) =
2 log t + 3

g(t)2 log g(t)
x(g(t)). (3.50)

Since g(t) ∼ t, again by Karamata theorem one has

t

∞∫

t

q(s)ds ∼ 2 log t + 3
log t

, as t →∞,

so that t
∞∫
t

q(s)ds → 2 as t → ∞. The quadratic equation λ2 − λ − 2 = 0

has a positive root λ1 = 2. Therefore, Theorem A ensures the existence of
an RV (2)-solution of equation (2.38). One such solution is x(t) = t2 log t.
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4. The special case c = 0

In the preceding section we have established the existence of regularly
varying solutions under the assumption that the constant c is positive. What
will happen if c is zero? In that case the quadratic equation (1.2) has the
roots λ0 = 0 and λ1 = 1.

When λ0 = 0, it is shown in [4] that equation (A) has slowly varying
solutions both for the retarded case (g(t) < t) and for the advanced one
(g(t) > t) under the conditions g(t) that are much more general then (1.3).

The purpose of this section is to show that, when λ1 = 1, the existence of
RV(1) solutions can be established for quite and extensive class of retarded
functional differential equations of the form (A). Namely, we will prove the
following

Theorem 4.1. Equation (A) possesses an RV(1)-solution, i.e., of the
form x(t) = tL(t), where L(t) is some normalized slowly varying solution
for every retarded argument g(t) satisfying

g(t) < t, g(t) →∞, as t →∞ (4.1)

if

Q(t) := t

∞∫

t

q(s)ds → 0, as t →∞. (4.2)

P r o o f of Theorem 4.1. Let m ∈ (0, 1/4) be any fixed constant and
choose T > max{a, 1} so that g(T ) ≥ a and

Q(t) ≤ m2, t ≥ T. (4.3)

By [5, Theorem 1.1] the linear ordinary differential equation

x′′ = q(t)x (4.4)

possesses an RV(1)-solution X(t) having the expression

X(t) =
16
15

T exp
{∫ t

T

1−Q(s) + v(s)
s

ds

}
, (4.5)

where v(t) is a solution of the integral equation

v(t) =
1
t

∫ t

T

{
2Q(s)− (Q(s)− v(s))2

}
ds. (4.6)
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Relations (4.5), (4.6) and the following ones are valid for t ≥ T . Hence the
adjective will mostly be omitted. It should be noticed that X(t) satisfies
the inequality

t ≤ X(t) ≤ 16
15

T exp
{∫ t

T

1 + v∗(s)
s

ds

}
, (4.7)

where v∗(t) solves the integral equation

v∗(t) =
1
t

∫ t

T
2Q(s) {v∗(s) + 1} ds. (4.8)

Since X ′(t) is increasing and

X(T ) =
16
15

T > T, X ′(T ) =
16
15

(1−Q(T )) > 1,

we have X(t) > t for t ≥ T , which is the left inequality in (4.7). The proof
of the right inequality proceeds as follows. First note that the solution v∗(t)
of (4.8) is a fixed point of the integral operator

G∗v(t) =
1
t

∫ t

T
2Q(s) {v(s) + 1} ds, t ≥ T,

which, as easily seen, is a contraction mapping on the set

V ∗ = {v ∈ C0[T,∞) : 0 ≤ v(t) ≤ m, t ≥ T} .

Consequently, v∗(t) is obtained as the limit of the sequence {v∗n(t)}:
v∗n(t) = G∗v∗n−1(t), n = 1, 2, · · · , v∗0(t) = 0.

This fact enables us to compare v∗(t) with the solution v(t) of (4.6), which
is constructed as the limit of the sequence {vn(t)}:

vn(t) = Gvn−1(t), n = 1, 2, · · · , v0(t) = 0.

In fact, it can be shown by an inductive argument that vn(t) ≤ v∗n(t) for all
n and t ≥ T . This implies that v(t) ≤ v∗(t) for t ≥ T , and hence the right
inequality in (4.7).

We denote by Ξ the set of all continuous nondecreasing functions on
[g(T ),∞) that satisfy ξ(t) = 1 for g(T ) ≤ t ≤ T and

t ≤ ξ(t) ≤ 16
15

T exp
{∫ t

T

1 + v∗(s)
s

ds

}
, t ≥ T. (4.9)
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Clearly, Ξ is a closed convex subset of the locally convex space C[g(T ),∞)
with the topology of uniform convergence on compact subintervals of [g(T ),∞).
For any ξ ∈ Ξ define

qξ(t) = q(t)
ξ(g(t))
ξ(t)

, Qξ(t) = t

∫ ∞

t
qξ(s)ds. (4.10)

Since ξ(t) is nondecreasing and g(t) < t, we have ξ(g(t))/ξ(t) ≤ 1, and hence

qξ(t) ≤ q(t), Qξ(t) ≤ Q(t), t ≥ T, (4.11)

which implies that

Qξ(t) ≤ m2, t ≥ T, for all ξ ∈ Ξ. (4.12)

Let us consider the infinite family of linear ordinary differential equations

x′′ = qξ(t)x, ξ ∈ Ξ. (4.13)

Because of (4.12) each of the equations (4.13) has an RV(1)-solution

Xξ(t) =
16
15

T exp
{∫ t

T

1−Qξ(s) + vξ(s)
s

ds

}
, (4.14)

where vξ(t) satisfies

vξ(t) =
1
t

∫ t

T

{
2Qξ(s)− (vξ(s)−Qξ(s))2

}
ds. (4.15)

Let Ψ : Ξ → C[g(T ),∞) be the mapping which assigns to each ξ ∈ Ξ
the function Ψξ defined by

Ψξ(t) = 1 for g(T ) ≤ t ≤ T, Ψξ(t) = Xξ(t) for t ≥ T. (4.16)

Much as before, we will show that Ψ is continuous and maps Ξ into a
relatively compact subset of Ξ.

(i) If ξ ∈ Ξ then, proceeding exactly as in deriving (4.7), we see that

t ≤ Xξ(t) ≤ 16
15

T exp
{∫ t

T

1 + v∗(s)
s

ds

}
, (4.17)

wihch gurantees that Ψξ ∈ Ξ.
(ii) Since Ψ(Ξ) ⊂ Ξ, Ψ(Ξ) is locally uniformly bounded on [g(T ),∞).

For any ξ ∈ Ξ we have for t ≥ T

0 ≤ (Ψξ)′(t) = Xξ(t)
1−Qξ(t) + vξ(t)

t
≤ 16

15
{1+v∗(t)} exp

{∫ t

T

1 + v∗(s)
s

ds

}
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which implies that Ψ(Ξ) is locally equi-continuous on [g(T ),∞). The relative
compactness of Ψ(Ξ) then follows from the Arzela-Ascoli theorem.

(iii) Let {ξn} be a sequence in Ξ converging to ξ as n → ∞. This
means that the sequence of functions {ξn(t)} converges to ξ(t) uniformly
on any compact subinterval of [g(T ),∞). It suffices to verify that {Ψξn(t)}
converges to Ψξ(t) on compact subintervals of [T,∞). Using (4.14) and
(4.16), we have

|Ψξn(t)−Ψξ(t)| = |Xξn(t)−Xξ(t)|

≤ 16
15

T

∣∣∣∣exp
{∫ t

T

1−Qξn(s) + vξn(s)
s

ds

}
− exp

{∫ t

T

1−Qξ(s) + vξ(s)
s

ds

}∣∣∣∣

≤ 16
15T exp

{∫ t
T s−1[1 + v∗(s)]ds

} ∫ t
T s−1(|vξn(s)− vξ(s)|+ |Qξn(s)−Qξ(s)|)ds,

and so we need only to prove that

1
t
|vξn(t)− vξ(t)| → 0 and

1
t
|Qξn(t)−Qξ(t)| → 0 as n →∞ (4.18)

uniformly on any compact subinterval of [T,∞). The desired convergence
of the second sequence in (4.18) follows immediately from the Lebesgue
dominated convergence theorem applied to the inequality

1
t
|Qξn(t)−Qξ(t)| ≤

∫ ∞

t
q(s)

∣∣∣∣
ξn(g(s))
ξn(s)

− ξ(g(s))
ξ(s)

∣∣∣∣ ds.

To deal with the first sequence in (4.18), we first use (4.6) to obtatin

|vξn(t)− vξ(t)| ≤ θ

t

∫ t

T
|Qξn(s)−Qξ(s)|ds +

σ

t

∫ t

T
|vξn(s)− vξ(s)|ds, (4.19)

where θ = 2(m2 + m) ≤ 5/8 and σ = 2(m2 + m + 1) ≤ 21/8. Putting

z(t) =
∫ t

T
|vξn(s)− vξ(s)|ds, (4.20)

we transform (4.19) into
(

z(t)
tθ

)′
≤ σ

tθ+1

∫ t

T
|Qξn(s)−Qξ(s)|ds,

from which, after integration on [T, t], it follows that

z(t) ≤ σ

θ
tθ

∫ t

T
s−θ(|Qξn(s)−Qξ(s)|)ds. (4.21)
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Combining (4.21) with (4.19) yields

1
t
|vξn(t)− vξ(t)| ≤ σ

t2

∫ t

T
|Qξn(s)−Qξ(s)|ds +

σ

t2−θ

∫ t

T
|Qξn(s)−Qξ(s)|ds

≤ 2σ

t

∫ t

T
|Qξn(s)−Qξ(s)|ds, t ≥ T,

(4.22)
which clearly ensures the uniform convergence of the first sequence (4.18).

Thus we are able to apply the Schauder-Tychonoff fixed point theorem
to conclude that there exists ξ ∈ Ξ such that ξ = Ψξ, that is, ξ(t) = Xξ(t)
for t ≥ T . This shows that ξ(t) satisfies

ξ′′(t) = qξ(t)ξ(t) or equivalently ξ′′(t) = q(t)ξ(g(t)) on [T,∞),

establishing the existence of an RV(1)-solution for equation (A). This com-
pletes the proof.

Example 4.1. Consider the retarded differential equation

x′′(t) =
λ

t2 log(µt)
x(g(t)), t ≥ e, (4.23)

where λ and µ are positive constants. The function q(t) = λ
t2 log(µt)

satisfies
(4.2), and so by Theorem 4.1 there exists an RV(1)-solution of (4.23) for
any retarded argument g(t). If in particular g(t) = µt and 1

λ = µ with
0 < µ < 1, one such solution is x(t) = t log t.

Example 4.2. Theorem 4.1 does not apply to the retarded equation

x′′(t) =
1

θt1+θ log t
x(tθ), t ≥ e, (4.24)

where 0 < θ < 1, since the function q(t) = 1
θt1+θ log t

does not satisfy (4.2).
Yet equation (4.24) has an RV(1)-solution x(t) = t log t.

This example shows that for the rather general class of functions g(t)
satisfying (4.1), condition (4.2) is not a necessary one for the existence of
an RV (1) solution. However, there holds

Theorem 4.2. If in addition to (4.1), g(t) satisfies

lim sup
t→∞

t

g(t)
< ∞. (4.25)
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Then, equation (A) possesses an RV(1)- solution i.e. of the form x(t) =
tL(t) where L(t) is some normalized SV function if and only if (4.2) is
satisfied.

P r o o f of Theorem 4.2. We need only to prove the “only if”part
of the theorem. Let x(t) be an RV(1)-solution of (A). By (1.1), x(t) has the
representation

x(t) = ct exp
{∫ t

T

δ(s)
s

ds

}
, t ≥ T, (4.26)

for some T > a, some constant c > 0 and some continuous function δ(t) ≥ 0
such that δ(t) → 0, as t →∞.

Write equation (A) as

x′′ = qx(t)x(t)

where

qx(t) = q(t)
x(g(t))
x(t)

or q(t) = qx(t)
x(t)

x(g(t))
.

Then again by [5. Theorem 1.1]

t

∞∫

t

qx(s)ds → 0, as t →∞. (4.27)

By (4.26) and (4.27) for some k, m > 0 and any ε > 0

0 <
x(t)

x(g(t))
=

t

g(t)
exp




t∫

g(t)

δ(s)
s

ds




≤ m exp ε log
t

g(t)
< k,

whence q(t) ≤ kqx(t) and condition (4.2) follows.

Remark 4.1. Recently T. Tanigawa proved in [6] a result for the half-
linear retarded functional differential equation which (among other things)
contains our Theorem 4.2 but not its sufficency part in the full generality of
our Theorem 4.1.
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