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A b s t r a c t. Thomas-Fermi type differential equation x′′ = q(t)ϕ(x) ,
where q(t) and ϕ(x) are regularly varying functions, is studied in the frame-
work of regular variation. The aim of this paper is to establish necessary
and sufficient conditions for the existence of increasing regularly varying so-
lutions of (A) as well as to acquire the precise information about the asymp-
totic behavior at infinity of these solutions.
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1. The locally conformal Kähler manifolds

The present paper is devoted to the existence and the asymptotic analysis
of increasing positive solutions of nonlinear ordinary differential equations
of the type

x′′ = α q(t)ϕ(x), α = ±1 (A)
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in the framework of regular variation. The following assumptions are always
required for (A):

(a) q : [a,∞) → (0,∞), a > 0, is a continuous function which is regularly
varying of index σ;

(b) ϕ : (0,∞) → (0,∞) is a continuous function which is regularly
varying of index γ .

We will separately consider cases:

(b-1) γ > 1 while we assume that ϕ(x)/x is eventually increasing;

(b-2) 0 < γ < 1 while we assume that ϕ(x)/x is eventually decreasing.

More specifically, q(t) and ϕ(x) are expressed as

q(t) = tσl(t), l(t) ∈ SV, ϕ(x) = xγL(x), L(x) ∈ SV . (1.1)

Here SV denotes the set of slowly varying functions introduced in 1930 by
J. Karamata by the following:

Definition 1.1. A positive measurable function L defined on [a,∞) for
some a > 0 is called slowly varying at infinity if for each λ > 0

lim
t→∞

L(λt)

L(t)
= 1.

Comprehensive treatises on regular variation are given in N. H. Bingham
et al. [3] and by E. Seneta [11].

Equation (A) is said to be superlinear if γ > 1 and sublinear if 0 < γ < 1.
It is also said to be of Thomas-Fermi type if α = 1 and of Emden-Fowler
type if α = −1.

Our purpose here is to show that effective use of theory of regular varia-
tion (in the sense of Karamata) makes it possible to provide accurate infor-
mation about the existence and asymptotic behavior of increasing regularly
varying solutions of equation (A) in the Thomas-Fermi case, i.e. when α = 1.
One can verify that all possible increasing regularly varying solutions of (A)
have one and the same index ρ determined by σ and γ and the asymptotic
behavior at infinity of any such solution is governed by a unique formula
depending only on q(t), ϕ(x) and ρ. Thus, the set of all increasing regularly
varying solutions of (A), if non-empty, is shown to have a surprisingly clear
and definite structure.
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The study of nonlinear differential equations in the framework of regular
variation was initiated by Avakumović [2] and followed by Marić and Tomić
[8, 9, 10]. See also Marić [7, Chapter 3]. These papers and some closely
related [12, 13] are concerned exclusively with decreasing positive solutions
of Thomas-Fermi type equations. No analysis from the viewpoint of regular
variation seems to have been made of increasing positive solutions of such
equations. The reason is that the original Thomas-Fermi singular boundary
problem reads

x′′(t) = t−1/2x(t)3/2, x(0) = 1, x(∞) = 0 .

Our main results are presented in Sections 3 and 4. In Section 2 we depict
an explicit picture of the structure of increasing regularly varying solutions of
equation (A) based on an existence theorem of regularly varying solutions for
linear differential equations. The construction of regularly varying solutions
of (A) with the desired asymptotic behavior is carried out in Sections 3 and
4 concerned, respectively, with the regularity indices ρ > 1 and ρ = 1. The
main tool employed in both sections is the Schauder-Tychonoff fixed point
theorem in locally convex spaces.

In 2007 V.M. Evtukhov and V.M. Kharkov in a remarkable paper [4]
studied simultaneously both Thomas-Fermi and Emden-Fowler type of equa-
tion (A) and gave sharp conditions for the existence of solutions (which may
decrease and increase) belonging to a certain class and possessing certain
asymptotic behavior. The condition imposed in [4] on function q(t) means,
due to Karamata theorem [3, Theorem 1.6.1], that it is of regular varia-
tion. The condition imposed in [4] on function ϕ(x) means, due to Lemma
3.2 and 3.3 in [7] that it is either regularly or rapidly varying. These facts
are neither used (nor mentioned) by Evtukhov and Kharkov which makes
their method of proof different from ours and the statements on solutions
somewhat weaker than ours (of course, for the Thomas-Fermi case which we
consider here).

2. Structure of regularly varying solutions

It is easy to see that if 0 < γ < 1, all positive solutions of (A) can be
extended to t = ∞, whereas if γ > 1, (A) always has a singular positive
solution which cannot be extended to t = ∞, that is, blows up at a finite
point. If γ > 1 it may happen that all positive solutions are singular. This
is the case if, for example, ϕ(x)/xγ is nondecreasing and the function q(t),
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which need not be regularly varying, satisfies

lim inf
t→∞

tγ+1q(t) > 0.

See e.g. I. T. Kiguradze and T. A. Chanturiya [6].
Let us restrict our attention to increasing regularly varying solutions

of equation (A) with regularly varying q(t). We introduce the following
notation:

R+ denotes the totality of increasing regularly varying solutions of (A),

R(ρ) denotes the set of regularly varying solutions of index ρ of (A).

It is clear that for any positive increasing solution x(t) of (A) existing
on [t0,∞), x′(t) is positive and increasing, so it tends either to ∞ or to
some positive constant as t→ ∞. In both cases, x′(t) ≥ k for some positive
constant k and for t ≥ t1 ≥ t0. Accordingly, by integration we get x(t) ≥
x(t1) + k(t− t1) which implies that x(t) → ∞ as t→ ∞. Thus, all possible
positive increasing solutions of (A) fall into the following two types:

lim
t→∞

x(t) = ∞, lim
t→∞

x(t)

t
= const > 0, (2.1)

lim
t→∞

x(t) = ∞, lim
t→∞

x(t)

t
= ∞ . (2.2)

It follows that any positive proper solution x(t) of (A) satisfies

x(t) ≥ k t for t ≥ t0 ,

for some positive constant k and accordingly

R+ =
∪

ϱ≥∞
R(ϱ) .

For a sublinear equation (A) the set R+ is always non-empty, while in the
superlinear case it may happen that R+ = ∅. Actually the structure of R+

is particularly simple as is shown in the following theorem.

Theorem 2.1Suppose that q(t) is a regularly varying function. Then,
the structure of R+, is as follows:

0 < γ < 1 =⇒ R+ = R(ρ+) for a single ρ+ ∈ [1,∞). (2.3)
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γ > 1 =⇒ R+ = R(1) ∪R(ρ+) for a single ρ+ ∈ (1,∞). (2.4)

P r o o f. Let x(t) be an RV(λ)-solution of (A). Then, it is regarded as
a solution of the linear differential equaion

x′′(t) = qx(t)x(t), qx(t) = q(t)
ϕ(x(t))

x(t)
,

and so applying a result of Howard and Marić [5] (cf. Marić [7, Theorem
1.11]) for linear equations, we have

lim
t→∞

t

∫ ∞

t
q(s)

ϕ(x(s))

x(s)
ds = λ(λ− 1). (2.5)

Now suppose that (A) has two solutions x(t) ∈ RV(λ) and y(t) ∈ RV(µ),
where λ and µ are positive constants such that λ > µ > 1. Letting x(t) =
tλξ(t), y(t) = tµη(t), ξ(t), η(t) ∈ SV, we obtain in view of (2.5)

lim
t→∞

t
∫∞
t q(s)

[
ϕ(sλξ(s))/sλξ(s)

]
ds

t
∫∞
t q(s)

[
ϕ(sµη(s))/sµη(s)

]
ds

=
λ(λ− 1)

µ(µ− 1)
. (2.6)

Using l’Hospitals’s rule, we see that the left-hand side of (2.6) equals

lim
t→∞

t(λ−µ)(γ−1)
(
ξ(t)

η(t)

)γ−1 L(tλξ(t))

L(tµη(t))
=

{
0 if 0 < γ < 1
∞ if γ > 1

(2.7)

where use is made of the fact that L(tλξ(t))/L(tµη(t)) is slowly varying (cf.
Bingham et al. [3, Proposition 1.5.7]).

It is clear that (2.6) and (2.7) are incompatible, which means that no
two different sets R(λ), R(µ), λ > µ > 1, can be contained in R+. Note
that if 0 < γ < 1 the same is true of the border case µ = 1, which means
that R+ = R(ρ+) for some ρ+ ≥ 1. However, if γ > 1, (2.6) and (2.7) are
compatible for µ = 1, which implies that R+ may consists of two elements
R(1) and R(ρ+) for some ρ+ > 1. This completes the proof. �

3. Increasing regularly varying solutions of index ρ > 1

Theorem 3.1.Equation (A) possesses a regularly varying solution of
index ρ > 1 if and only if

γ > 1 and σ < −γ − 1, or 0 < γ < 1 and σ > −γ − 1, (3.1)
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in which case the regularity index of any such solution x(t) is a unique
constant given by

ρ =
σ + 2

1− γ
, (3.2)

and the asymptotic behavior of x(t) is governed by one and the same formula

ϕ(x(t))

x(t)
∼ ρ(ρ− 1)

(
t2q(t)

)−1
, t→ ∞, (3.3)

or

x(t) ∼ ψ
[
ρ(ρ− 1)

(
t2q(t)

)−1]
, t→ ∞, (3.4)

where ψ denotes the inverse function of ϕ(x)/x defined for all sufficiently
large x > 0.

P r o o f. (The ”only if” part): Suppose that (A) has a solution x(t) ∈
RV(ρ), ρ > 1, on [t0,∞). Let x(t) = tρξ(t), ξ(t) ∈ SV. Integrating (A) on
[t0, t], we have due to (1.1)

x′(t) ∼
∫ t

t0
q(s)ϕ(x(s))ds =

∫ t

t0
sσ+ργl(s)ξ(s)γL(sρξ(s))ds, t→ ∞. (3.5)

By (2.1) and (2.2), either x′(t) → c > 0 or x′(t) → ∞ as t → ∞. However,
the former case would give x(t) ∼ ct, t→ ∞ contradicting ϱ > 1. Therefore,
x′(t) → ∞ as t → ∞ and using that l(t)ξ(t)γL(tρξ(t)) ∈ SV, (3.5) implies
that σ + ργ ≥ −1. But the possibility σ + ργ = −1 should be excluded. In
fact, if this would hold, then we would see from (3.5) that

x′(t) ∼
∫ t

t0
s−1l(s)ξ(s)γL(sρξ(s))ds ∈ SV, t→ ∞

and hence that

x(t) ∼ t

∫ t

t0
s−1l(s)ξ(s)γL(sρξ(s))ds ∈ RV(1), t→ ∞

which is impossible. Thus we must have σ + ργ > −1, in which case Kara-
mata’s integration theorem [3, Theorem 1.5.11] applied to the last integral
in (3.5) shows that

x′(t) ∼ tσ+ργ+1l(t)ξ(t)γL(tρξ(t))

σ + ργ + 1
, t→ ∞.
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Integrating the above from t0 to t and using Karamata’s theorem again, we
obtain

x(t) ∼ tσ+ργ+2l(t)ξ(t)γL(tρξ(t))

(σ + ργ + 1)(σ + ργ + 2)
, t→ ∞

or

x(t) ∼ tσ+2l(t)x(t)γL(x(t))

(σ + ργ + 1)(σ + ργ + 2)
=

t2q(t)ϕ(x(t))

(σ + ργ + 1)(σ + ργ + 2)
, t→ ∞

(3.6)
Since (σ + ργ + 1)(σ + ργ + 2) = ρ(ρ − 1), (3.6) is equivalent to (3.3),
leading to (3.4). Using the fact that the inverse ψ of the function ϕ(x)/x
is regularly varying of index 1/(γ − 1) (cf. Bigham et al. [3, Theorem
1.5.12]), we see from (3.4) that x(t) is a regularly varying function of index
ρ = (σ + 2)/(1 − γ), which, combined with the assumption ρ > 1, implies
that σ < −γ − 1 if γ > 1 and σ > −γ − 1 if 0 < γ < 1.

(The ”if” part): (A) We begin by considering the case where γ > 1.
Suppose that σ < −γ − 1. Let ρ > 1 be the constant given by (3.2). Our
task is to prove the existence of a positive solution x(t) ∈ RV(ρ) of (A) such
that x(t) ∼ X0(t), t→ ∞, where one defines X0(t) ∈ RV(ρ) by

X0(t) = ψ
[
ρ(ρ− 1)

(
t2q(t)

)−1]
, (3.7)

or
ϕ(X0(t))

X0(t)
= ρ(ρ− 1)

(
t2q(t)

)−1
. (3.8)

For this purpose we proceed as follows. Clearly X0(t) exists on [b,∞) for
some sufiiciently large b > 0 and so we first construct a solution x0(t) of (A)
on some interval [t0,∞), t0 > b, such that

x0(t) ∼ ct, t→ ∞, (3.9)

for any constant c > 0. Then by means of the substitution x(t) = x0(t)y(t)
we transform (A) into(

x0(t)
2y′(t)

)′
= x0(t)q(t)

[
ϕ
(
x0(t)y(t)

)
− ϕ(x0(t))y(t)

]
, (3.10)

and find a positive solution y0(t) of equation (3.10) existing on some interval
[T,∞), T > t0, and satisfying

y0(t) ∼ c−1Y0(t) := c−1t−1X0(t) ∈ RV(ρ− 1), t→ ∞. (3.11)
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Finally we form the product x(t) = x0(t)y0(t), which gives an RV(ρ)-solution
of (A) on [T,∞) with the desired asymptotic property x(t) ∼ X0(t), t→ ∞.

(Step 1): We first note that∫ ∞

a
q(t)ϕ(t)dt =

∫ ∞

a
tσ+γl(t)L(t)dt <∞

because σ + γ < −1 and l(t)L(t) ∈ SV. Since ϕ(t) ∈ RV(γ) satisfies

lim
t→∞

ϕ(ct)

ϕ(t)
= cγ for all c > 0, (3.12)

and the convergence is uniform with respect to c ∈ (0, 1] (cf. Bingham et
al. [3, Theorem 1.5.2]), we see that there exists t0 > b such that

ϕ(ct) ≤ 2cγϕ(t), for t ≥ t0 and all c ∈ (0, 1], . (3.13)

Let c ∈ (0, 1) be such that∫ ∞

t0
q(t)ϕ(t) dt ≤ c1−γ

4
. (3.14)

From (3.13) and (3.14) we find that∫ ∞

t0
q(t)ϕ(ct) dt ≤ c

2
.

Let us now define the integral operator

Fx(t) = ct−
∫ t

t0

∫ ∞

s
q(r)ϕ(x(r))drds, t ≥ t0,

and the set

X =
{
x(t) ∈ C[t0,∞) :

1

2
ct ≤ x(t) ≤ ct, t ≥ t0

}
.

It is a matter of routine computation to show that F is a continuous self-map
on the closed convex set X and sends it into a relatively compact subset of
C[t0,∞). Therefore, by the Schauder-Tychonoff fixed point theorem F has
a fixed point x0(t) ∈ X , which gives birth to a solution of equation (A) such
that x0(t) ∼ ct as t→ ∞.

(Step 2): We choose a constant c ∈ (0, 1) so that it satisfies in addition
to (3.14) the following inequality

2γ+1c
γ+ 1

γ
−2 ≤ 1, (3.15)
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which is possible because γ > 1. Let x0(t) be the solution of equation (A)
constructed in Step 1. Using it we want to obtain a solution y0(t) of equation
(3.10) satisfying (3.11) as a solution of the integral equation

y(t) = 1+

∫ t

T
x0(s)

−2
∫ s

T
x0(r)q(r)

[
ϕ(x0(r)y(r))−ϕ(x0(r))y(r)

]
drds, t ≥ T,

(3.16)
for some T > t0. To this end a crucial role will be played by the fact that∫ t

t0
s−2

∫ s

t0
rq(r)ϕ(rY0(r))drds ∼ Y0(t) as t→ ∞, (3.17)

which is a consequence of the following computation. Letting X0(t) = tρξ(t)
and using (3.8) and (3.11) one finds:∫ t

t0
s−2

∫ s

t0
rq(r)ϕ(rY0(r))drds =

∫ t

t0
s−2

∫ s

t0
rq(r)ϕ(X0(r))drds

=

∫ t

t0
s−2

∫ s

t0
rq(r)

ϕ(X0(r))

X0(r)
X0(r)drds

=

∫ t

t0
s−2

∫ s

t0
rq(r)

[
ρ(ρ− 1)

(
r2q(r)

)−1
]
X0(r)drds

= ρ(ρ− 1)

∫ t

t0
s−2

∫ s

t0
rρ−1ξ(r)drds

∼ (ρ− 1)

∫ t

t0
sρ−2ξ(s)ds ∼ tρ−1ξ(t) = t−1X0(t) = Y0(t), t→ ∞.

Consider the integral∫ t

t0
x0(s)

−2
∫ s

t0
x0(r)q(r)ϕ(kx0(r)Y0(r))drds,

where k > 0 is a constant. Using (3.9) and (3.12) we have that

ϕ(kx0(t)Y0(t)) ∼ ϕ(kctY0(t)) ∼ (kc)γϕ(t Y0(t)), t→ ∞ . (3.18)

By combining (3.17) and (3.18) we see that∫ t

t0
x0(s)

−2
∫ s

t0
x0(r)q(r)ϕ(kx0(r)Y0(r))drds ∼ cγ−1kγY0(t), t→ ∞,

from which it follows that there exists T > t0 depending on k such that∫ t

T
x0(s)

−2
∫ s

T
x0(r)q(r)ϕ(kx0(r)Y0(r))drds ≤ 2cγ−1kγY0(t) , t ≥ T .

(3.19)
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In what follows we make a special choice of k = 2c
− 1

γ and require addi-
tionally that T is such that

Y0(t) ≥ c
1
γ for t ≥ T. (3.20)

Define the integral operator

Gy(t) = 1 +

∫ t

T
x0(s)

−2
∫ s

T
x0(r)q(r)

[
ϕ(x0(r)y(r))− ϕ(x0(r))y(r)

]
drds,

(3.21)
for t ≥ T and let it act on the set Y consisting of continuous functions y(t)
on [T,∞) satisfying

1 ≤ y(t) ≤ 2c
− 1

γ Y0(t), t ≥ T,

and

y(t) ∼ c−1Y0(t), t→ ∞ . (3.22)

It is clear that Y is a closed convex subset of the locally convex space
C[T,∞). It can be verified that G is a continuous self-map on Y with
the porperty that G(Y) is relatively compact in C[T,∞).

(i) G(Y) ⊂ Y. Let y(t) ∈ Y . Then, since y(t) ≥ 1, t ≥ T , increasing
nature of ϕ(x)/x implies

ϕ(x0(t)y(t)) ≥ ϕ(x0(t))y(t) for t ≥ T , (3.23)

and so we have Gy(t) ≥ 1, t ≥ T . Moreover, using (3.15), (3.19) and (3.20),
we obtain

Gy(t) ≤ 1 +

∫ t

T
x0(s)

−2
∫ s

T
x0(r)q(r)ϕ

(
2c

− 1
γ x0(r)Y0(r)

)
drds

≤ 1 + 2cγ−1
(
2c

− 1
γ

)γ
Y0(t) ≤ c

− 1
γ Y0(t) + c

− 1
γ Y0(t) = 2c

− 1
γ Y0(t), t ≥ T .

As for the asymptotic behavior of Gy(t), using (1.1), (3.8) and (3.22), we
have

ϕ(t)Y0(t)

ϕ(tY0(t))
=
ϕ(t)

t
· X0(t)

ϕ(X0(t))
=

= tγ−1L(t) (ϱ(ϱ− 1))−1t2q(t) = (ϱ(ϱ− 1))−1tσ+γ+1L(t) l(t) .
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Since σ + γ + 1 < 0 and M(t) = (ϱ(ϱ − 1))−1L(t) l(t) ∈ SV, it follows that
tσ+γ+1M(t) → 0 as t→ ∞, so that

ϕ(t)Y0(t)

ϕ(tY0(t))
→ 0 as t→ ∞ .

Therefore,

ϕ(x0(t)y(t))−ϕ(x0(t))y(t)∼ϕ(ct·c−1Y0(t))−cγ−1ϕ(t)Y0(t)∼ϕ(tY0(t)) , t→ ∞ ,

and accordingly by (3.17)

Gy(t) ∼ c−1
∫ t

T
s−2

∫ s

T
rq(r)ϕ(rY0(r))drds ∼ c−1Y0(t), t→ ∞.

This shows that Gy(t) ∈ Y.

(ii) G(Y) is relatively compact. The inclusion G(Y) ⊂ Y implies that the
set G(Y) is locally uniformly bounded on [T,∞). Since for any y(t) ∈ Y

0 ≤
(
Gy
)′
(t) ≤ x0(t)

−2
∫ t

T
x0(s)q(s)ϕ

(
2c

− 1
γ x0(s)Y0(s)

)
ds, t ≥ T,

the upper bound for
(
Gy
)′
(t) is independent of y(t). It follows that G(Y)

is locally equicontinuous on [T,∞). The Arzela-Ascoli lemma then ensures
the relative compactness of G(Y).

(iii) G is continuous. Let {yn(t)} be a sequence in Y converging to
y(t) ∈ Y uniformly on compact subintervals of [T,∞). We have to prove
that Gyn(t) → Gy(t) as n → ∞ uniformly on any compact subinterval of
[T,∞). But this follows from the Lebesgue dominated convergence theorem
applied to the inequality

|Gyn(t)− Gy(t)| ≤
∫ t

T
x0(s)

−2
∫ s

T
x0(r)q(r)Fn(r)drds, t ≥ T,

where

Fn(t) = |ϕ(x0(t)yn(t))− ϕ(x0(t)y(t))|+ ϕ(x0(t))|yn(t)− y(t)|.

In fact Fn(t) → 0, n→ ∞, at every point t ∈ [T,∞) and since Fn(t) satisfies

Fn(t) ≤ 4ϕ(2X0(t)), t ≥ T,
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its upper bound is independent of n.

Thus all the hypotheses of the Schauder-Tychonoff fixed point theorem
are fulfilled, and so there exists a fixed point y0(t) ∈ Y of G, which satisfies
the integral equation (3.16):

y0(t)=1+

∫ t

T
x0(s)

−2
∫ s

T
x0(r)q(r)

[
ϕ(x0(r)y0(r))−ϕ(x0(r))y0(r)

]
drds, t ≥ T.

It is clear that y0(t) has the asymptotic behavior y0(t) ∼ c−1Y0(t) as t→ ∞.
Since x(t) = x0(t)y0(t) is a solution of equation (A) on [T,∞) such that

x(t) ∼ ct·c−1Y0(t) = X0(t), t→ ∞,

this completes the proof for the superlinear case of (A).

(B) We now turn to the case where 0 < γ < 1. Suppose that σ > −γ−1
and define ρ by (3.2). Let X0(t) be an RV(ρ)-function on [b,∞) defined by
(3.8). Note that X0(t) has the asymptotic property:∫ t

b

∫ s

b
q(r)ϕ(X0(r))drds ∼ X0(t), t→ ∞. (3.24)

In this case we are able to construct a desired solution x(t) of (A) satisfying
x(t) ∼ X0(t), t→ ∞, directly as a solution of the integral equation

x(t) = 1 +

∫ t

T

∫ s

T
q(r)ϕ(x(r))drds, t ≥ T, (3.25)

for some T > b. In fact, choose T > b so that X0(t) ≥ 1 and∫ t

T

∫ s

T
q(r)ϕ(X0(r))drds ≤ 2X0(t), for t ≥ T , (3.26)

which is possible because of (3.24), and define the integral operator

Hx(t) = 1 +

∫ t

T

∫ s

T
q(r)ϕ(x(r))drds, t ≥ T . (3.27)

Let K > 1 be a constant such that K1−γ ≥ 2γ+2 and consider the set Z
consisting of continuous functions x(t) on [T,∞) satisfying

1 ≤ x(t) ≤ 2KX0(t), t ≥ T and x(t) ∼ X0(t), t→ ∞.

Clearly, Z is closed and convex in C[T,∞).
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Since ϕ(x) ∈ RV(γ) satisfies

lim
t→∞

ϕ(2KX0(t))

ϕ(X0(t))
= (2K)γ ,

we may assume that T > b is large enough so that, in addition to (3.26),
the following inequality holds:

ϕ(2KX0(t)) ≤ 2γ+1Kγϕ(X0(t)), t ≥ T. (3.28)

Let x(t) ∈ Z. Then, using (3.24), (3.26) and (3.28), we have Hx(t) ∼ X0(t),
t→ ∞, and

1≤Hx(t)

≤1 +

∫ t

T

∫ s

T
q(r)ϕ(2KX0(r))drds ≤ 1 + 2γ+1Kγ

∫ t

T

∫ s

T
q(r)ϕ(X0(r))drds

≤1 + 2γ+2KγX0(t) ≤ 2KX0(t), t ≥ T.

This shows that Hx(t) ∈ Z, that is, H maps Z into itself. Furthermore it
can be verified without difficulty that H is a continuous map and that H(Z)
is relatively compact in C[T,∞). Therefore, by the Schauder-Tychonoff
fixed point theorem there exists a fixed point x(t) of H which satisfies the
integral equation (3.25), and hence the differential equation (A) on [T,∞).
This completes the proof of Theorem. �

We emphasize that Theorem 3.1 states that increasing solutions x(t) of
(A) are of the form

x(t) = t(σ+2)/(1−γ)ξ(t)

where slowly varying function ξ(t) satisfies the asymptotic relation

ξ(t)γ−1L
(
t(σ+2)/(1−γ)ξ(t)

)
∼ K l(t)−1, t→ ∞ , (3.29)

with constant K > 0 which could be easily computed. To find ξ(t) from
(3.29) is possible only for some restricted classes of L.

4. Increasing regularly varying solutions of index 1

Let us turn to the problem of constructing RV(1)-solutions for equation
(A), that is, members of R(1) given in Theorem 2.1. A solution x(t) ∈
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R(1) of (A) is called a trivial RV(1)-solution or a nontrivial RV(1)-solution
according as

lim
t→∞

x(t)

t
= const > 0,

or

lim
t→∞

x(t)

t
= ∞.

The totality of trivial RV(1)-solutions (respectively nontrivial RV(1)-solutions)
of (A) is denoted by tr-R(1) (respectively ntr-R(1)).

The existence of a trivial RV(1)-solution of both superlinear and sub-
linear equation (A) has been completely characterized with the following
proposition

Proposition 4.1.Equation (A) possesses a trivial RV(1)−solution if and
only if ∫ ∞

a
q(t)ϕ(t)dt <∞.

Notice that the ”if” part of this Proposition is proved in the Step 1 in the
proof of the ”if” part of Theorem 3.1., while for the proof of the ”only if”
part see book Agarwal et al. [1].

So, we need only to focus our attention on its nontrivial RV(1)-solutions.
Since the problem of finding such solutions of (A) seems to be difficult for
general ϕ(x) ∈ RV(γ), we will be content to restrict ourselves to a smaller
class of ϕ(x) ∈ RV(γ) by imposing the following additional requirement

u(t) ∈ SV∩C1 =⇒ ϕ(tu(t)) ∼ ϕ(t)u(t)γ , t→ ∞, (4.1)

which amounts to requiring that the slowly varying part L(x) of ϕ(x) satisfies

u(t) ∈ SV∩C1 =⇒ L(tu(t)) ∼ L(t), t→ ∞ . (4.2)

It is easy to check that (4.2) is satisfied by

L(t) =
N∏
k=1

(logk t)
αk , αk ∈ R,

but not by

L(t) = exp

(
N∏
k=1

(logk t)
βk

)
, βk ∈ (0, 1),

where logk t = log logk−1 t.
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Theorem 4.1 Suppose that ϕ(x) satisfies (4.1). Equation (A) possesses a
nontrivial RV(1)−solution if and only if σ = −γ − 1, and∫ ∞

α
q(t)ϕ(t)dt <∞ for γ > 1 (4.3)

∫ ∞

α
q(t)ϕ(t)dt = ∞ for 0 < γ < 1 (4.4)

in which case any such solution x(t) has the precise asymptotic behavior

x(t) ∼ t
[
(γ − 1)

∫ ∞

t
q(s)ϕ(s)ds

] 1
1−γ , t→ ∞ if γ > 1 , (4.5)

x(t) ∼ t
[
(1− γ)

∫ t

a
q(s)ϕ(s)ds

] 1
1−γ , t→ ∞ if 0 < γ < 1. (4.6)

Proof. (The ”only if” part): Suppose that (A) has a nontrivial RV(1)-
solution x(t) on [t0,∞). Let x(t) = tξ(t), ξ(t) ∈ SV. Then, since

x′(t) ∼
∫ t

t0
q(s)ϕ(x(s))ds =

∫ t

t0
sσ+γl(s)ξ(s)γL(sξ(s))ds, t→ ∞, (4.7)

and x′(t) → ∞ as t → ∞, σ must satisfy σ + γ ≥ −1. It is impossible,
however, that σ+γ > −1. In fact, if this would be the case, then integrating
(4.7) from t0 to t and applying Karamata’s integration theorem, we would
obtain

x(t) ∼ tσ+γ+2l(t)ξ(t)γL(tξ(t))

(σ + γ + 1)(σ + γ + 2)
∈ RV(σ + γ + 2), t→ ∞ ,

which is impossible because σ+ γ+2 > 1. Thus, we must have σ+ γ = −1,
i.e., σ = −γ − 1, and using the condition (4.2), (4.7) becomes

x′(t) ∼
∫ t

t0
s−1l(s)ξ(s)γL(sξ(s))ds ∼

∫ t

t0
q(s)ϕ(s)ξ(s)γds ∈ SV, t→ ∞ .

Integrating the above from t0 to t then gives

x(t) ∼ t

∫ t

t0
q(s)ϕ(s)ξ(s)γds, t→ ∞,

or

ξ(t) ∼
∫ t

t0
q(s)ϕ(s)ξ(s)γds, t→ ∞. (4.8)
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Let the integral in (4.8) be denoted by Y (t). It is easy to see that Y (t)
satisfies

Y (t)−γY ′(t) ∼ q(t)ϕ(t), t→ ∞ , (4.9)

and Y (t) → ∞, t → ∞. If γ > 1, then (4.9) can be integrated over [t,∞),
implying the validity of (4.3) and yielding the asymptotic formula

Y (t) ∼
[
(γ − 1)

∫ ∞

t
q(s)ϕ(s)ds

] 1
1−γ

, t→ ∞,

from which the formula (4.5) for x(t) follows, whereas if 0 < γ < 1, then
integration of (4.9) over [a, t] yields

Y (t) ∼
[
(1− γ)

∫ t

a
q(s)ϕ(s)ds

] 1
1−γ

, t→ ∞,

from which (4.4) and (4.6) follows immediately.

(The ”if” part): (A) Let γ > 1. Suppose that (4.3) holds. As in the proof
of the ”if” part of Theorem 3.1 one can choose a (sufficiently small) constant
c ∈ (0, 1) such that (3.14) holds, so that (A) has a solution x0(t) on [t0,∞)
such that x0(t) ∼ ct as t→ ∞. We may assume that c satisfies (3.15). The
substitution x(t) = x0(t)y(t) transforms (A) into the differential equation
(3.10). Our task is reduced to constructing a solution y1(t) of (3.10) which
is a nontrivial slowly varying function having the property y1(t) ∼ c−1Y1(t)
as t→ ∞, where Y1(t) is a nontrivial SV−function given by

Y1(t) =

[
(γ − 1)

∫ ∞

t
q(s)ϕ(s)ds

] 1
1−γ

, t ≥ t0.

Our aim is to obtain y1(t) as a solution of the integral equation (3.16) for
some suitably chosen T > t0.

Crucial to the later discussions is the following asymptotic formula for
Y1(t): ∫ t

t0
s−2

∫ s

t0
rq(r)ϕ(krY1(r))drds ∼ kγY1(t), t→ ∞, (4.10)

where k > 0 is a constant. To verify this, since ϕ(ktY1(t)) ∼ (kY1(t))
γϕ(t) as

t→ ∞ and tq(t)(kY1(t))
γϕ(t) ∈ SV, using Karamata’s integration theorem,

we see that∫ t

t0
sq(s)ϕ(ksY1(s))ds ∼ kγt2q(t)ϕ(t)Y1(t)

γ , t→ ∞,
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and hence∫ t

t0
s−2

∫ s

t0
rq(r)ϕ(krY1(r))drds ∼ kγ

∫ t

t0
q(s)ϕ(s)Y1(s)

γds

= kγ
∫ t

t0
q(s)ϕ(s)

[
(γ − 1)

∫ ∞

s
q(r)ϕ(r)dr

] γ
1−γ

ds ∼ kγY1(t), t→ ∞.

In view of the relation∫ t

t0
x0(s)

−2
∫ s

t0
x0(r)q(r)ϕ(ckrY1(r))drds ∼ cγ−1kγY1(t) , t→ ∞ ,

which is an immediate consequence of (4.10), there exists T > t0 depending
on k such that∫ t

t0
x0(s)

−2
∫ s

t0
x0(r)q(r)ϕ(ckrY1(r))drds ≤ 2cγ−1kγY1(t) for t ≥ T.

(4.11)
We may assume that T is so large that

c
− 1

γ Y1(t) ≥ 1 for t ≥ T. (4.12)

We define Y1 to be the set of continuous functions y(t) satisfying

1 ≤ y(t) ≤ 2c
− 1

γ Y1(t), t ≥ T,

and

y(t) ∼ c−1Y1(t), t→ ∞.

Clearly, Y1 is a closed convex subset of C[T,∞). It can be verified that
the integral operator G defined by (3.21) is continuous and maps Y1 into a
relatively compact subset of Y1. In fact, for y(t) ∈ Y1, since ϕ(x0(t)y(t)) ≥
ϕ(x0(t))y(t), it is clear that Gy(t) ≥ 1, t ≥ T . On the other hand, using

(3.15) and (4.11) with k = 2c
− 1

γ , we obtain∫ t

T
x0(s)

−2
∫ s

T
x0(r)q(r)ϕ(x0(r)y(r))drds ≤ 2γ+1cγ−1Y1(t) ≤ c

− 1
γ Y1(t),

and so

Gy(t) ≤ 1 + c
− 1

γ Y1(t) ≤ 2c
− 1

γ Y1(t), t ≥ T.
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Furthermore, from (4.10) for k = 1, we have

Gy(t) ∼
∫ t

T
x0(s)

−2
∫ s

T
x0(r)q(r)ϕ(x0(r)y(r))drds

∼
∫ t

T
(cs)−2

∫ s

T
crq(r)ϕ(rY1(r))drds ∼ c−1Y1(t), t→ ∞.

Therefore, it follows that Gy(t) ∈ Y1. The proof of the continuity of G and
the relative compactness of G(Y1) is essentially the same as that of Theorem
3.1. Therefore, there exists a fixed point y1(t) ∈ Y1 of G, which solves the
integral equation (3.16) and hence the differential equation (3.10). Then,
the function x(t) = x0(t)y1(t) provides a solution of (A) on [T,∞) having
the desired asymptotic behavior x(t) ∼ tY1(t) as t → ∞. This completes
the proof for the case γ > 1.

(B) Next we let 0 < γ < 1. Let X1(t) denote the function

X1(t) = t

[
(1− γ)

∫ t

a
q(s)ϕ(s)ds

] 1
1−γ

, t ≥ a.

A straightforward computation with the aid of (4.1) shows that∫ t

a

∫ s

a
q(r)ϕ(X1(r))drds ∼ X1(t) t→ ∞,

which implies that∫ t

a

∫ s

a
q(r)ϕ(kX1(r))drds ∼ kγX1(t) t→ ∞,

for any constant k > 0. Let K > 1 be a constant such that K1−γ ≥ 2γ+1

and define Z1 to be the set of continuous functions x(t) on [T,∞) satisfying

1 ≤ x(t) ≤ 2KX1(t), t ≥ T, and x(t) ∼ X1(t), t→ ∞,

where T > a is chosen so that

X1(t) ≥ 1 and

∫ t

T

∫ s

T
q(r)ϕ(2KX1(r))drds ≤ 2(2K)γX1(t), t ≥ T.

Clearly, Z1 is closed and convex in C[T,∞).
We now let the integral operator H defined by (3.27) act on the set Z1.

As in the last part of the proof of Theorem 3.1 it can be shown that H is a
self-map on Z1 and sends Z1 continuously into a relatively compact subset
of C[T,∞), so that H has a fixed point x(t) ∈ Z1 which generates a solution
of equation (A) with the asymptotic property x(t) ∼ X1(t), t → ∞. This
completes the proof of Theorem 4.1. �
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5. Concluding remarks and examples

On the basis of Theorems 2.1, 3.1 and 4.1 one can determine the structure
of increasing regularly varying solutions of (A) in terms of γ, σ and the
integrability of q(t)ϕ(t) on [a,∞), i.e. either (4.3) or (4.4).

(I) Concluding remarks for superlinear case γ > 1:

(i) If σ < −γ − 1, then by Theorem 3.1 equation (A) has increasing
regularly varying solutions of index (σ + 2)/(1 − γ). Since (4.3) holds in
this case, (A) has trivial RV(1)-solutions as well. Therefore it follows from
Theorem 2.1 that

R+ = R(1) ∪R
(
σ + 2

1− γ

)
, R(1) = tr −R(1).

(ii) If σ = −γ− 1 and (4.3) holds, then Theorem 4.1 shows that (A) has
both trivial and nontrivial RV(1)-solutions, but no RV(ρ)-solutions for any
ρ > 1. Therefore, Theorem 2.1 implies that

R+ = R(1) = tr −R(1) ∪ tr −R(1).

(iii) If σ = −γ − 1 and (4.4) holds, or if σ > −γ − 1, then there is no
increasing regularly varying solution of (A), that is, R+ = ∅.

(II) Concluding remarks for sublinear case 0 < γ < 1:

(i) If σ > −γ − 1, then by Theorem 3.1 equation (A) has increasing
regularly varying solutions of index (σ+2)/(1−γ), and Theorem 2.1 implies
that

R+ = R
(
σ + 2

1− γ

)
.

(ii) If σ = −γ − 1 and (4.4) holds, then Theorem 4.1 ensures that

R+ = R(1), R(1) = ntr −R(1).

(iii) If σ = −γ − 1 and (4.3) holds, or if σ < −γ − 1, then

R+ = R(1), R(1) = tr −R(1).

Example 5.1. Let γ be a positive constant different from 1 and consider
the differential equation

x′′(t) = q1(t)ϕ(x(t)), (5.1)
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with

ϕ(x) = xγ log(x+1) and q1(t) =
ρ(ρ− 1) log t+ 2ρ− 1

tρ(γ−1)+2(log t)γ log(tρ log t+ 1)
, (5.2)

where ρ > 1 is a constant. The function q1(t) is a regularly varying function
of index
σ = −ρ(γ − 1)− 2, which satisfies

σ < −γ − 1 if γ > 1, and σ > −γ − 1 if 0 < γ < 1.

It is easy to check that

ρ(ρ− 1)
(
t2q1(t)

)−1
=
tρ(γ−1)(log t)γ log(tρ log t+ 1)

log t+ (2ρ− 1)/ρ(ρ− 1)

∼ (tρ log t)γ−1 log(tρ log t+ 1), t→ ∞.

Therefore, from Theorem 3.1 it follows that equation (5.1)-(5.2) possesses in-
creasing regularly varying solutions x(t) of index ρ, all of which are governed
by the asymptotic formula

x(t)γ−1 log(x(t) + 1) ∼ (tρ log t)γ−1 log(tρ log t+ 1), t→ ∞,

which implies that
x(t) ∼ tρ log t, t→ ∞.

One easily check that x(t) = tρ log t is an exact solution of equation (5.1)–
(5.2).

Example 5.2. Let γ be a positive constant different from 1 and consider
the differential equation

x′′(t) = q2(t)ϕ(x(t)) , (5.3)

with

ϕ(x) = xγ log(x+ 1) and q2(t) =
1

tγ+1(log t)γ log(t log t+ 1)
. (5.4)

Note that ϕ(x) fulfills the condition (4.1). Clearly, q2(t) is a regularly varying
function of index σ = −γ − 1 and satisfies

q2(t)ϕ(t) =
tγ log(t+ 1)

tγ+1(log t)γ log(t log t+ 1)
∼ 1

t(log t)γ
, t→ ∞.
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This shows that∫ ∞

t
q2(s)ϕ(s)ds ∼

(log t)1−γ

(γ − 1)
, t→ ∞ if γ > 1

∫ t

e
q2(s)ϕ(s)ds ∼

(log t)1−γ

1− γ
, t→ ∞ if 0 < γ < 1

so that from Theorem 4.1 we conclude that equation (5.3)–(5.4) possesses
nontrivial regularly varying solutions x(t) of index 1, all of which have one
and the same asymptotic behavior

x(t) ∼ t log t, t→ ∞.

In fact equation (5.3)–(5.4) possesses an exact solution x(t) = t log t.
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