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A b s t r a c t. We apply semigroups of growth order r > 0 in the
study of Shilov parabolic systems, and improve results obtained by the use
of C-regularized semigroups. In the final part of paper, we consider some
concrete examples and directly compute matrix exponentials with a view to
strengthening the estimates obtained by abstract methods.
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1. Introduction and Preliminaries

The main purpose of the present paper is to apply (analytic) semigroups
of growth order r > 0 in the study of Shilov parabolic systems of abstract
differential equations. In the case of L2-type spaces, the pioneering results in
this direction were obtained by S. G. Krein [19, Chapter 1, §8], T. Ushijima
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[29, Section 10] and J. Wiener, L. Debnath [33]. It is also worth noting
that H. Sunouchi [27] analyzed Shilov parabolic systems within the frame
of (0, A)-semigroups ([24]). Concerning the applications of C-regularized
semigroups to systems of abstract differential equations, the references [5]-
[6], [14] and [36]-[38] are crucially important. In this paper, we refine results
on the well-posedness of abstract Shilov parabolic systems obtained by Q.
Zheng, Y. Li [36] and Q. Zheng [38]. In order to do that, we use the theory
of C-regularized semigroups as an auxiliary tool.

Henceforth (X, || · ||) denotes a non-trivial complex Banach space and
L(X) denotes the Banach algebra of all linear continuous mappings from
X into X. The range of a closed, linear operator B acting on X is denoted
by R(B), and by K is denoted an absolute positive constant appearing in
our estimations and formulae. In the sequel, we basically follow the notation
given in [5]. Given γ ∈ (0, π] and s ∈ R, set Σγ := {z ∈ C : z ̸= 0, | arg(z)| <
γ} and ⌊s⌋ := inf{k ∈ Z : s ≤ k}.

We need the following definitions.

Definition 1.1. ([4]) Let r > 0. An operator family (T (t))t>0 in L(X)
is said to be a semigroup of growth order r > 0 iff the following conditions
hold:

(i) T (t+ s) = T (t)T (s), t, s > 0,

(ii) for every x ∈ X, the mapping t 7→ T (t)x, t > 0 is continuous,

(iii) ||trT (t)|| = O(1), t → 0+,

(iv) T (t)x = 0 for all t > 0 implies x = 0, and

(v) X0 =
∪

t>0R(T (t)) is dense in X.

The infinitesimal generator of (T (t))t>0 is defined by

G =
{
(x, y) ∈ X ×X : lim

t→0+

T (t)x− x

t
= y

}
.

The infinitesimal generator G of (T (t))t>0 is a closable linear operator and
its closure G is called the complete infinitesimal generator, in short c.i.g., of
(T (t))t>0.

Definition 1.2. ([28]) Let (T (t))t>0 be a semigroup of growth order
r > 0, let γ ∈ (0, π2 ] and let (T (t))t>0 possess an analytic extension to
the sector Σγ , denoted by the same symbol. Suppose, further, that there
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exists ω ∈ R such that, for every δ ∈ (0, γ), there exists Mδ > 0 satisfying
||zrT (z)|| ≤ Mδe

ωℜz, z ∈ Σδ. Then the operator family (T (t))t∈Σγ is called
an analytic semigroup of growth order r.

We refer the reader to [22] and [32] for the notions of a C-regularized
semigroup (cosine function) and its subgenerator (integral generator).

Definition 1.3. ([18]) Let (S(t))t∈[0,τ) be a (local) C-regularized semi-
group having A as a subgenerator and let the mapping t 7→ S(t), t ∈ (0, τ)
be infinitely differentiable in the uniform operator topology. Then it is said
that (S(t))t∈[0,τ) is ρ-hypoanalytic, 1 ≤ ρ < ∞, iff for every compact set
L ⊆ (0, τ) there exists hL > 0 such that

sup
t∈L, l∈N0

∥∥∥hlL dl

dtl
S(t)

l!ρ

∥∥∥ < ∞.

Let n ∈ N and let iAj , 1 ≤ j ≤ n be commuting generators of bounded

C0-groups on X. Put |A|2 :=
n∑

j=1
A2

j and

(1 + |A|2)−r := (1 + |x|2)−r(A), r > 0, (1)

where the right hand side of (1) is defined by means of the functional calculus
for commuting generators of bounded C0-groups (cf. [2] and [12, Section XII]
for further information).

Let P (x) = [pij(x)]m×m, x ∈ Rn be an m × m polynomial matrix and
let λj(x), 1 ≤ j ≤ m be the eigenvalues of P (x), x ∈ Rn; see [36] for
the definition of a closable operator P (A). Set k := 1 + ⌊n2 ⌋, Λ(P (x)) :=
sup1≤j≤mℜλj(x), x ∈ Rn, N := max(dg(pij(x))) and assume that r ∈
(0, N ]. Then it is said that P (x) is Shilov r-parabolic [12] iff there exist
ω > 0 and ω′ ∈ R such that Λ(P (x)) ≤ −ω|x|r + ω′, x ∈ Rn; in the case
r = N, it is also said that P (x) is Petrovskii parabolic. Define π1(r) :=

min
1≤j≤m, |x|=r

|λj(x)|, r > 0, π2(r) := max
1≤j≤m, |x|=r

|λj(x)|, r > 0 and S(P ) :=

{λj(x) : x ∈ Rn, 1 ≤ j ≤ m}. Let P (x) be Shilov r-parabolic for some
r ∈ (0, N ]. By a corollary of Seidenberg-Tarski theorem (cf. [13] and [29,
Lemma 10.2]), we know that there exist real numbers a1, a2, α1 and α2

such that π1(r) = a1r
α1(1 + o(1)) as r → ∞ and π2(r) = a2r

α2(1 + o(1)) as
r → ∞. Obviously, r ≤ α1 ≤ α2 ≤ N and, by the proof of [29, Proposition
10.4], there exist α > 0 and β ∈ R such that {λ ∈ C : ℜλ ≥ −α|ℑλ|r/α2 +
β} ∩ S(P ) = ∅.
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2. Shilov Parabolic Systems

We start this section with the following theorem. Notice that the proof
of this theorem strongly depends on the estimate (4), which can be trivially
shown only in the case m = 1.

Theorem 2.1. Let P (x) be Shilov r-parabolic for some r ∈ (0, N). Put

κ :=
(N−r)(m−1+n

2
)

r .

(a) Then the operator P (A) is the c.i.g. of a semigroup (T0(t))t>0 of
growth order κ which additionally satisfies that the mapping t 7→ T0(t),
t > 0 is infinitely differentiable in the uniform operator topology and
that:∥∥∥ dl

dtl
T0(t)

∥∥∥ ≤ K l+1(1 + t)m−1+n
2 eωtl!N/r(1 + t−κ−Nl

r ), t > 0, l ∈ N0,

(2)
where ω ≡ supx∈Rn Λ(P (x)).

(b) Suppose that there exist α ∈ (0, π2 ] and ω ∈ R such that σ(P (x)) ⊆
ω + (C \ Σπ

2
+α), x ∈ Rn. Then the operator P (A) is the c.i.g. of an

analytic semigroup (T0(t))t∈Σα of growth order κ.

P r o o f. By the well known result of A. Friedman [11, p. 171] and the
definition of Shilov parabolic systems, it follows that for each ω0 < ω there
exists ω′ > 0 such that:

∥etP (x)∥ ≤ K(1 + t+ t|x|N )m−1et(−ω′|x|r+ω0), t ≥ 0, x ∈ Rn. (3)

Using (3), [36, (3.2), p. 190] and the product rule, we have that there exists
ω′′ > 0 such that, for every t ≥ 0, x ∈ Rn, s ∈ R, l ∈ N0 and α ∈ Nn

0 :∥∥∥Dα
x (P (x)letP (x)(1 + |x|2)s)

∥∥∥ ≤ K l+1(1 + t)|α|+m−1

×(1 + |x|)(N−r−1)|α|+(N−r)(m−1)+2s+Nlet(−ω′′|x|r+ω).
(4)

This simply implies that, for every s ∈ R, t > 0, l ∈ N0 and p ∈ N,
P (x)letP (x)(1 + |x|2)s ∈ BCp(Rn). Using [5, Proposition 12.3], we get that,
for every s ∈ R, t > 0 and p ∈ N, etP (x)(1 + |x|2)s ∈ A ≡ {f ∈ C0(Rn) :
Ff ∈ L1(Rn)}, where F denotes the Fourier transform. Set Tr′(t) :=
(etP (x)(1+ |x|2)−r′)(A), t > 0, r′ ≥ 0 and notice that [9, Lemma 2.3(c)] im-
plies that, for every r′ > 0, Tr′(0) := (1 + |A|2)−r′ ∈ L(X). Put T0(0) := I.
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By [5, (12.2)], it follows that Tr′(t + s)(1 + |A|2)−r′ = Tr′(t)Tr′(s), t ≥
0, s ≥ 0, r′ > 0, Tr′(t)(1 + |A|2)−s = Tr′+s(t), t ≥ 0, s > 0, r′ ≥ 0 and
T0(t + s) = T0(t)T0(s), t ≥ 0, s ≥ 0. Keeping in mind (4), one can simply
prove that the mapping t 7→ Tr′(t), t > 0 is infinitely differentiable in the
uniform operator topology for all r′ ≥ 0, and that

dl

dtl
Tr′(t) = (P (x)letP (x)(1 + |x|2)−r′)(A), t > 0, r′ ≥ 0, l ∈ N0. (5)

Let ϵ > 0 and s > n/2 be fixed. Then Stirling’s formula, (4) and the
inequality

ξσe−tξr ≤ (
σ

tr
)σ/r, t > 0, ξ > 0, σ > 0, (6)

taken together imply that, for every t > 0, l ∈ N0, x ∈ Rn, r′ ≥ 0, and for
every α ∈ Nn

0 with |α| ≤ k :∥∥∥Dα
x (P (x)letP (x)(1 + |x|2)−r′)

∥∥∥
≤ K l+1(1 + t)m−1+|α|(1 + |x|)(N−r)|α|+(N−r)(m−1)+Nl−2r′

et(−ω′′|x|r+ω)(1 + |x|)−|α|

≤ K l+1(1 + t)m−1+|α|l!N/retω(1 + t−
(N−r)(m−1)+Nl−2r′

r )

(1 + t−
N−r

r )|α|(1 + |x|)(ϵ−1)|α|,

withK being independent of t, x, ϵ and r′. The preceding estimate combined
with [9, Theorem 2.7(2)] yields that:∥∥∥(P (x)letP (x)(1 + |x|2)−r′− ϵ

2
s)(A)

∥∥∥ ≤ K l+1(1 + t)m−1+n
2 etωl!N/r

(
1 + t−

(N−r)(m−1+n
2 )+Nl−2r′

r

)
,

(7)

provided t > 0, l ∈ N0 and r′ ≥ 0. Invoking the concrete representation of
Dα

xe
tP (x) and an elementary argumentation, we infer that limϵ→0+(P (x)letP (x)

(1+ |x|2)−r′− ϵ
2
s) = P (x)letP (x)(1+ |x|2)−r′ in Hk(Rn) (t > 0, l ∈ N0, r

′ ≥ 0),
which implies by Bernstein’s lemma [9, Lemma 2.3(d)] and (7) that:∥∥∥(P (x)letP (x)(1 + |x|2)−r′)(A)

∥∥∥ ≤ K l+1(1 + t)m−1+n
2 etωl!N/r

(
1 + t−

(N−r)(m−1+n
2 )+Nl−2r′

r

)
.

(8)
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Hence, (T0(t))t>0 is a semigroup of growth order κ. Thanks to (5) and (8),
we have that for every t > 0, l ∈ N0 and r′ ≥ 0 :

∥∥∥ dl

dtl
Tr′(t)

∥∥∥ ≤ K l+1(1 + t)m−1+n
2 etωl!N/r

(
1 + t−

(N−r)(m−1+n
2 )+Nl−2r′

r

)
, (9)

and that (2) holds. Since Tr′(t)(1 + |A|2)−s = Tr′+s(t), t ≥ 0, s > 0
and (Tr′(t))t≥0 is a global exponentially bounded (1 + |A|2)−r′-regularized
semigroup generated by P (A) for all r′ > 1

2(N − r)(m − 1 + n
2 ) (cf. [36,

Theorem 3.1]), we immediately obtain that the c.i.g. G of (T0(t))t>0 is
contained in P (A). To prove that P (A) ⊆ G, one can use [36, Lemma
1.1(a)] and the inclusions D(P (A)|Em) ⊆ (1 + |A|2)−r′(D(P (A))) ⊆ D(G),
where E ≡ {ϕ(A)x : ϕ ∈ S, x ∈ X} and S denotes the Schwartz space of
rapidly decreasing functions on Rn. This completes the proof of (a). The
proof of (b) follows from (a) and the arguments given in the proof of [38,
Theorem 1.1]. �

Remark 2.2.

(a) Let r′ ≥ 0. Then the proof of Theorem 2.1 implies that L(X) ⊇
(Tr′(t))t>0 satisfies:

(a1) Tr′(t+ s)(1 + |A|2)−r′ = Tr′(t)Tr′(s), t, s > 0,

(a2) for every x ∈ E, the mapping t 7→ Tr′(t)x, t > 0 is continuous,

(a3) Tr′(t)x = 0 for all t > 0 implies x = 0,

(a4) X0,r′ =
∪

t>0R(Tr′(t)) is dense in X, and

(a5) ∥t
(N−r)(m−1+n

2 )−2r′

r Tr′(t)∥ = O(1), t ∈ (0, 1].

The properties (a1)-(a5) betoken that (Tr′(t))t>0 is a (1 + |A|2)−r′-

regularized semigroup of growth order
(N−r)(m−1+n

2
)−2r′

r , provided r′ ∈
(0, 12(N − r)(m− 1 + n

2 )); the results established in this paper do not
represent the real basis for further theoretical research of C-regularized
semigroups of growth order ξ > 0. In our concrete situation, we have
additionally that the mapping t 7→ Tr′(t), t > 0 is infinitely differen-
tiable in the uniform operator topology.

(b) By the proof of Theorem 2.1, the inequality

∥∥∥ dl

dtl
Tr′(t)

∥∥∥ ≤ K l+1(1 + t)m−1+n
2 eωt, t > 0, l ∈ N0,
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holds provided (N − r)(m − 1) + Nl − 2r′ ≤ −(N − r)k, and the
inequality

∥∥∥ dl

dtl
Tr′(t)

∥∥∥ ≤

 K l+1l!N/rt−
(N−r)(m−1+n

2 )+Nl−2r′

r , t ∈ (0, 1], l ∈ N0,

K l+1l!N/r(1 + t)m−1+n
2 eωt, t > 1, l ∈ N0,

holds provided (N − r)(m− 1) +Nl − 2r′ ∈ (−(N − r)k, 0).

(c) Let l ∈ N. Then, for every r′ > 1
2(N−r)(m−1+ n

2 ), the estimate (9), in
regard to the decay rate of derivatives of (Tr′(t))t>0 in a neighborhood
of zero, sharpens the corresponding one given in the formulation of
[36, Theorem 3.1(a)].

(d) Now we will explain how one can improve ρ-hypoanalyticity of C-
regularized semigroups constructed in [36, Theorem 3.1(a)], provided
that X = L2(Rn). By [29, Proposition 10.5] (cf. also [29, Remark 2,
p. 124] and [36, Lemma 1.2]), we easily infer that there exist numbers
ξ > 0, a, b, c > 0 and ϖ ∈ R such that:

∥∥∥ dl

dtl
(tξT0(t))

∥∥∥ ≤ abll!
α2
r eϖtt−

α2
r
(l+c), l ∈ N0, t > 0. (10)

By the product rule, it follows, that for every compact set L ⊆ (0,∞),

there exists hL > 0 such that sup
t∈L, l∈N0

∥
hl
L

dl

dtl
T0(t)

l!
α2
r

∥ < ∞. It could be

of interest to know whether the estimate (10) holds in the case of a
general space X.

Now we pay our attention to the numerical range of P (x), defined by
n.r.(P (x)) := {(P (x)y, y) : y ∈ Rn, ||y|| = 1}, x ∈ Rn, where (·, ·) denotes
the inner product in Cn and ||y|| ≡ (y, y)1/2. Set Λ̃(P (x)) := sup{ℜz : z ∈
n.r.(P (x))}, x ∈ Rn.

Theorem 2.3. Let r ∈ (0, N), ω′ > 0 and ω′′ > 0. Put κn.r. :=
n(N−r)

2r .

(a) Suppose

Λ̃(P (x)) ≤ −ω′|x|r + ω′′, x ∈ Rn. (11)

Then the operator P (A) is the c.i.g. of a semigroup (T0(t))t>0 of
growth order κn.r. which additionally satisfies that the mapping t 7→



26 M. Kostić

T0(t), t > 0 is infinitely differentiable in the uniform operator topology
and that:∥∥∥ dl

dtl
T0(t)

∥∥∥ ≤ K l+1(1 + t)
n
2 eωtl!N/r(1 + t−

(N−r)n2 +Nl

r ), t > 0, l ∈ N0,

(12)
where ω ≡ supx∈Rn Λ̃(P (x)).

(b) Let α ∈ (0, π2 ], ω ∈ R, n.r.(P (x)) ⊆ ω + (C \ Σπ
2
+α), x ∈ Rn and let

P (x) be Shilov r-parabolic. Then the operator P (A) is the c.i.g. of an
analytic semigroup (T0(t))t∈Σα of growth order nN

2r .

(c) Let α ∈ (0, π2 ], ω ∈ R, n.r.(P (x)) ⊆ ω+(C\Σπ
2
+α), x ∈ Rn and let (11)

hold. Then the operator P (A) is the c.i.g. of an analytic semigroup
(T0(t))t∈Σα of growth order κn.r..

P r o o f. Suppose that (11) holds. Then the Lumer-Phillips theo-
rem implies that there exist ω1 > 0 and L ≥ 1 such that ||etP (x)|| ≤
Ke−2ω1t|x|reωt, t ≥ 0, |x| ≥ L and ||etP (x)|| ≤ Keωt, t ≥ 0, |x| ≤ L.
Making use of this fact, we obtain inductively from [15, (8.10)] that there
exists a ∈ (0, 2ω1) such that, for every t ≥ 0, x ∈ Rn, r′ ≥ 0, l ∈ N0, and for
every multi-index α ∈ Nn

0 such that |α| ≤ k :

∥Dα
xe

tP (x)∥ ≤ Keωt(1+ t)|α|(1+ |x|)(N−r)|α|e−at|x|r(1+ |x|)−|α|, t > 0. (13)

By (13) and the product rule, we reveal that, for every t ≥ 0, x ∈ Rn, r′ ≥ 0,
l ∈ N0, and for every α ∈ Nn

0 such that |α| ≤ k :∥∥∥Dα
x (P (x)letP (x)(1 + |x|2)−r′)

∥∥∥
≤ K l+1eωt(1 + t)|α|(1 + |x|)(N−r)|α|+Nl−2r′e−at|x|r(1 + |x|)−|α|, t > 0.

(14)
In the case t > 0, Stirling’s formula combined with (6) implies that the later
does not exceed

K l+1eωt(1 + t)|α|l!N/r(1 + t−
Nl−2r′

r )(1 + t−
N−r

r )|α|(1 + |x|)−|α|, t > 0.

By the proof of Theorem 2.1, one yields that:∥∥∥(P (x)letP (x)(1 + |x|2)−r′)(A)
∥∥∥

≤ K l+1eωt(1 + t)
n
2 l!N/r(1 + t−

Nl−2r′
r )(1 + t−

(N−r)n
2r ), t > 0, r′ ≥ 0, l ∈ N0.

(15)
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The estimate (12) becomes apparent now, and the remnant of proof follows
from the proofs of Theorem 2.1 and [38, Theorem 1.3]. �

Remark 2.4.

(a) The decay rate of derivatives of (Tr′(t))t≥0 in a neighborhood of zero
(cf. (15)) improves the corresponding one given in the formulation
of [36, Theorem 3.2]. Further on, observe that the (1 + |A|2)−r′-
regularized semigroup (Tr′(t))t≥0 constructed in the proof of [36, The-
orem 3.1], resp. [36, Theorem 3.2], is norm continuous provided r′ >
1
2(N−r)(m−1+n

2 ), resp. r
′ > 1

4n(N−r).Now we will prove that, in the
situation in which the assumptions of [36, Theorem 3.1] are fulfilled,
the operator P (A) generates an exponentially bounded (1 + |A|2)−r′-
regularized semigroup (Tr′(t))t≥0 for r′ = 1

2(N − r)(m − 1 + n
2 ). By

Remark 2.2(a), the only non-trivial thing that should be explained is
the strong continuity of (Tr′(t))t≥0 at t = 0. Using the denseness of
E in X, and the boundedness of ||Tr′(t)|| for 0 ≤ t ≤ 1, it suffices to
show that the mapping t 7→ Tr′(t)x⃗, t ≥ 0 is continuous at t = 0 for
every fixed x⃗ ∈ Em. Let L ≥ 1 be sufficiently large. Then∥∥∥etP (x) − I

∥∥∥ ≤ t∥P (x)∥
∞∑
n=0

tn||P (x)||n

(n+ 1)!

≤ t∥P (x)∥
∞∑
n=0

tn(K(1 + L)N )n

(n+ 1)!
, t ≥ 0, |x| ≤ L.

(16)

Given x ∈ Rn, denote by H(λ1(x), · · ·, λm(x)) the convex hull of the
set {λ1(x), · · ·, λm(x)}. Then, for every z ∈ H(λ1(x), · · ·, λm(x)), there
exist non-negative scalars α1, · · ·, αm such that α1 + · · ·+αm = 1 and
z = α1λ1(x) + · · ·+ αmλm(x), which implies that there exists ω′′′ > 0
with ℜz ≤ −ω′′′|x|r + ω ≤ −|ω|, |x| ≥ L, z ∈ H(λ1(x), · · ·, λm(x)). By
[11, Theorem 2, p. 169], we obtain that for every t ≥ 0 and |x| ≥ L,∥∥∥etP (x) − I

∥∥∥ ≤ t∥P (x)∥
∥∥∥ ∞∑
n=0

tnP (x)n

(n+ 1)!

∥∥∥
≤ Kt(1 + |x|)mN sup

z∈H(λ1(x),···,λm(x))
[|ft(z)|+ · · ·+ |f (m−1)

t (z)|],
(17)

where ft(z) ≡
∑∞

n=0(t
nzn)/(n + 1)!, t ≥ 0, z ∈ C. It is clear that

|ft(z)| = | etz−1
tz | ≤ t|z|etℜz, t > 0, z ∈ C\{0}. This yields the existence

of a number σ > 0 such that |ft(z)|+···+|f (m−1)
t (z)| ≤ K(1+t)σetℜz ≤
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K(1 + t)σe−|ω|t, t > 0, |x| ≥ L, z ∈ H(λ1(x), · · ·, λm(x)). In view of
(17), the above implies:∥∥∥etP (x) − I

∥∥∥ ≤ Kt(1 + |x|)mN (1 + t)σe−|ω|t, t ≥ 0, |x| ≥ L. (18)

On the other hand, the concrete representation of Dα
xe

tP (x) for 0 <
|α| ≤ k combined with the estimate (3) indicates that there exists
σ1 > 0 such that:∥∥∥Dα

x (e
tP (x)−I)

∥∥∥ ≤ Kt(1+t)σ1(1+|x|)σ1eωt, t ≥ 0, x ∈ Rn, 0 < |α| ≤ k.

(19)
Now the claimed assertion follows from (16), (18)-(19) and Bern-
stein’s lemma. Notice finally that, in the situation of [36, Theo-
rem 3.2], the operator P (A) generates an exponentially bounded (1 +
|A|2)−r′-regularized semigroup (Tr′(t))t≥0 for r′ = 1

4n(N − r), and
that the above assertions can be simply reformulated for exponentially
bounded, analytic (1 + |A|2)−r′-regularized semigroups.

(b) Suppose 1 < p < ∞, X = Lp(Rn) and set nX := n|12 − 1
p |. Then the

growth order of (T0(t))t>0 and the final estimates for the derivatives of
(Tr′(t))t>0 (r′ ≥ 0), in Theorem 2.1 and Theorem 2.3, can be slightly
refined (cf. [9, p. 134], [14, p. 375] and [36, p. 193]):

Theorem 2.1 and its proof: One can replace κ, resp. the term n
2 ,

appearing in (9), with (N−r)(m−1+nX)
r , resp. nX .

Theorem 2.3 and its proof: In the definitions of κn.r. and the growth
order of the semigroup appearing in the formulation of (b) of this
theorem, one can replace the term n

2 with nX . The same comment can
be applied to the derivatives of (Tr′(t))t>0 (r′ ≥ 0).

(c) The definition of an (analytic) semigroup of growth order r > 0 has
been recently reconsidered in [26] and [18] by removing the density
assumptions. Having this notion in mind, one can prove (cf. [21]), with
some obvious technical modifications, that the assertions of Theorem
2.1 and Theorem 2.3 remain true in the case X = Cb(Rn) or X =
L∞(Rn).

(d) Suppose that P (x) is Shilov r-parabolic for some r ∈ (0, N), and
denote by Ω(T0) the continuity set of the semigroup (T0(t))t>0 given
in Theorem 2.1, resp. Theorem 2.3; that is Ω(T0) := {x⃗ ∈ Xm :
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limt→0+ T0(t)x⃗ = x⃗}. Then Ω(T0) contains R((1 + |A|2)−r′) for all
r′ ≥ 1

2(N − r)(m − 1 + n
2 ), resp. r′ ≥ 1

4n(N − r), and the abstract
Cauchy problem

(ACP ) :


u⃗ ∈ C([0,∞) : Xm) ∩ C∞((0,∞) : Xm),
d
dt u⃗(t) = P (A)u⃗(t), t > 0,

u⃗(0) = x⃗,

has a unique solution for all x⃗ ∈ Ω(T0), improving the corresponding
result of Q. Zheng and Y. Li (cf. [36, Lemma 1.2(b)]). As Remark
2.7(c) shows, R((1 + |A|2)−r′) can be strictly contained in Ω(T0).

(e) Semigroups of growth order r > 0 can be also applied in the analysis
of time-dependent Shilov parabolic systems ([20], [36]). Suppose that
T, P (·, ·), T∆ and T∆ possess the same meaning as in [36, Section
4]. Then a two-parameter operator family (W (t, s))(t,s)∈T∆

is called
an evolution system of growth order r > 0 iff the following holds:

(e1) W (t, r)W (r, s) = W (t, s), 0 ≤ s ≤ r ≤ t ≤ T,

(e2) W (t, t) = I, 0 ≤ t ≤ T,

(e3) the mapping (t, s) 7→ W (t, s)x, (t, s) ∈ T∆ is continuous for every
fixed x ∈ X, and

(e4) ||(t− s)rW (t, s)|| = O(1), (t, s) ∈ T∆.

Let Λ(P (t, x)) (resp. Λ̃(P (t, x))) ≤ −δ|x|r + ω, t ∈ [0, T ], x ∈ Rn,
for some δ > 0 and ω ∈ R. Using the proofs of [36, Theorem 4.1-
Theorem 4.3], Theorem 2.1 and Theorem 2.3, we are in a position to
conclude that there exists a unique evolution system of growth order
κ (resp. κn.r.) satisfying the conditions (a) and (b) of [36, Theorem
4.1]. In such a way, we improve results on the well-posedness of the
abstract Cauchy problem [36, (4.4), p. 197]; the growth order of
evolution system can be additionally refined in the case of Lp type
spaces (1 < p < ∞).

Now we will consider some concrete examples of polynomial operator
matrices. The one-dimensional equation describing sound propagation in a
viscous gas ([5], [12]) has the form

utt = 2utxx + uxx (20)
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and after the usual matrix reduction becomes

d

dt
u⃗(t) = P (D)u⃗(t), t ≥ 0,

where D ≡ −i d
dx and P (x) ≡

[
0 1

−x2 −2x2

]
. Hence, P (x) is Petrovskii

correct (cf. [6] and [14] for the notion). In the subsequent theorem, we
consider the C-wellposedness of the equation (20); the obtained results are
better compared with those clarified in [17, Example 1.2.9(vi)].

Theorem 2.5. Let r > 1
2 . Then the operator P (A) generates an ex-

ponentially bounded, analytic (1 + |A|2)−r-regularized semigroup (Tr(t))t≥0

of angle π
2 . Furthermore, the semigroup (Tr(t))t∈Σπ

2
can be extended to Σπ

2
,

||Tr(t)|| ≤ K(1 + |t|)
3
2 e

1
2
t sin(| arg(t)|), t ∈ Σπ

2
\ {0} and the following holds:

(a) The mapping t 7→ Tr(t), t ∈ Σπ
2
is continuous.

(b) (Tr(it))t∈R is an exponentially bounded, norm continuous (1+ |A|2)−r-
regularized group generated by iP (A).

Proof. We exploit the following elementary fact: Suppose a, b, c, d ∈

C, α, β are the eigenvalues of

[
a b
c d

]
, α ̸= β and n ∈ N. Then

[
a b
c d

]n
=

1

α− β

[
(α− d)αn − (β − d)βn b(αn − βn)

c(αn − βn) (α− a)αn − (β − a)βn

]
.

Let
√
· be taken as the principle branch. Put α(x) := −x2+

√
x4 − x2, x ∈ R,

β(x) := −x2 −
√
x4 − x2, x ∈ R and κ(x) := 2x3−x√

x4−x2
, x ∈ R \ {−1, 0, 1}.

Fix, for a moment, γ ∈ [−π/2, π/2]. Noticing that eiγα(x), eiγβ(x) are the
eigenvalues of eiγP (x), x ∈ R, we easily infer that:

ete
iγP (x) =

1

2
√
x4 − x2

[ A11(t, x, γ) A12(t, x, γ)
A21(t, x, γ) A22(t, x, γ)

]
, t ≥ 0, x ∈ R\{−1, 0, 1},

where:

A11(t, x, γ) = −β(x)ete
iγα(x)+α(x)ete

iγβ(x), A12(t, x, γ) = ete
iγα(x)−ete

iγβ(x),

A21(t, x, γ) = −x2A12(t, x, γ) and A22(t, x, γ) = α(x)ete
iγα(x)−β(x)ete

iγβ(x).
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Clearly, Re(eiγ(−x2±
√
x4 − x2)) ≤ 0 provided x ∈ (−∞,−1] ∪ [1,∞), and

Re(eiγ(−x2±
√
x4 − x2)) ≤ −x2 cos γ+ |x|

√
1− x2 sin γ ≤ 1

2 sin |γ| provided
x ∈ (−1, 1). Applying the Darboux inequality, one gets:

|eteiγα(x) − ete
iγβ(x)|

≤ 2|
√
x4 − x2|t max

ξ∈[eiγα(x),eiγβ(x)]
etReξ

≤ 2|
√
x4 − x2|te

1
2
t sin |γ|, t ≥ 0, x ∈ R.

(21)

One obtains similarly that the following estimate holds:

|eteiγα(x) + ete
iγβ(x)| ≤ 2(1 + e

1
2
t sin |γ|), t ≥ 0, x ∈ R. (22)

Using (21)-(22), it follows that:

∥eteiγP (x)∥ ≤ K(1 + t)e
1
2
t sin |γ|, t ≥ 0, x ∈ R. (23)

Taking into account (23) and the Wilcox identity d
dxe

tP (x) =
∫ t
0 e

(t−s)P (x)

d
dxP (x)esP (x)ds, t ≥ 0, x ∈ R, we get that:

∥∥∥ d

dx
ete

iγP (x)
∥∥∥ ≤ K(1 + t)2(1 + |x|)e

1
2
t sin |γ|, t ≥ 0, x ∈ R. (24)

By (23)-(24) and [9, Theorem 2.7(2)], one gets that, for every t ≥ 0 and
i, j ∈ {1, 2}, the mapping x 7→ (1 + x2)−rAij(t, x, γ)/2

√
x4 − x2, x ∈ R

belongs to the space A and that:∥∥∥((1+ x2)−rAij(t, x, γ)/2
√
x4 − x2

)
(A)

∥∥∥ ≤ K(1+ t)
3
2 e

1
2
t sin |γ|, t ≥ 0. (25)

Set, for every t ≥ 0, Tr,γ(t) := (ete
iγP (x)(1+ x2)−r)(A). Then Tr,γ(t+ s)(1+

|A|2)−r = Tr,γ(t)Tr,γ(s), t, s ≥ 0, Tr,γ(0) = (1 + |A|2)−r and Tr,γ(t)(1 +
|A|2)−s = Tr+s,γ(t), s > 0, t ≥ 0. Then the proof of [38, Theorem
1.2] combined with the above equalities and [17, Corollary 2.4.11] indi-
cates that, for a sufficiently large s > 0, (Tr,γ(t)(1 + |A|2)−s)t≥0 is an
exponentially bounded (1 + |A|2)−r−s-regularized semigroup generated by
eiγP (A) (γ ∈ (−π/2, π/2)). With (25) in view, we obtain that, for ev-
ery γ ∈ (−π/2, π/2), (Tr,γ(t))t≥0 is an exponentially bounded, norm con-
tinuous (1 + |A|2)−r-regularized semigroup generated by eiγP (A). An ap-
plication of [16, Theorem 2.3] gives that P (A) is the integral generator
of an exponentially bounded, analytic (1 + |A|2)−r-regularized semigroup
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(Tr(t) ≡ (etP (x)(1 + x2)−r)(A))t∈Σπ
2
. By the foregoing, (Tr(t))t∈Σπ

2
can be

extended to Σπ
2
and ||Tr(t)|| ≤ K(1 + |t|)

3
2 e

1
2
t sin(| arg(t)|), t ∈ Σπ

2
\ {0}. As-

sume t, s ∈ Σπ
2
and ts ̸= 0. Denote by F−1 the inverse Fourier transform.

Then [5, (12.2)] implies that there exists M > 0 such that:∥∥∥Tr(t)− Tr(s)
∥∥∥ ≤

M
∑

1≤i,j≤2

∥∥∥F−1
( 1√

x4 − x2
(Aij(|t|, x, arg(t))−Aij(|s|, x, arg(s)))(1 + x2)−r

)∥∥∥
L1(R)

,

which immediately implies (a) by [35, Lemma 5.2, p. 20]. The proof of (b)
is simple and therefore omitted. �

Before proceeding further, we would like to observe that the linearized
Fitz-Hugh-Nagumo equations (cf. [31, p. 39]), which describe the propa-
gation of nerve impulse, can be also treated with C-regularized semigroups

since the corresponding matrix P (x) ≡
[
−x2 + a −1

b 0

]
(a, b ∈ C, x ∈ R)

is Petrovskii correct. The isothermal motion of a one-dimensional body with
small viscosity and capillarity ([3], [10], [38]) is described, in the simplest
situation, by the system:

ut = 2auxx + bvx − cvxxx,
vt = ux,
u(0) = u0, v(0) = v0,

where a, b, c > 0. The associated polynomial matrix

P (x) =

[
−2ax2 ibx+ icx3

ix 0

]
is Shilov 2-parabolic. It is well known ([10]) that P (D) does not generate a
strongly continuous semigroup in L1(R)× L1(R). Set

ete
iγP (x) :=

[
B11(t, x, γ) B12(t, x, γ)
B21(t, x, γ) B22(t, x, γ)

]
, γ ∈ (0,

π

2
], t ≥ 0, x ∈ R,

and, for every x ∈ R \ {0,±
√

b
a2−c

}, α(x) := −ax2 +
√
(a2 − c)x4 − bx2,

β(x) := −ax2 −
√
(a2 − c)x4 − bx2 and χ(x) := 4x3(a2−c)−2bx

α(x)−β(x) . Then[
B11(t, x, γ) B12(t, x, γ)
B21(t, x, γ) B22(t, x, γ)

]
=

1

α(x)− β(x)

[
A11(t, x, γ) A12(t, x, γ)
A21(t, x, γ) A22(t, x, γ)

]
,
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where, for every t ≥ 0, γ ∈ (0, π2 ] and x ∈ R \ {0,±
√

b
a2−c

} :

A11(t, x, γ) = α(x)ete
iγα(x) + (α(x) + 2ax2)ete

iγβ(x),

A12(t, x, γ) = (ibx+ icx3)(ete
iγα(x) − ete

iγβ(x)),

A21(t, x, γ) = ix(ete
iγα(x) − ete

iγβ(x)) and

A22(t, x, γ) = (α(x) + 2ax2)(ete
iγα(x) + ete

iγβ(x)).

In the case a2 ̸= c, the following theorem improves the results of Q.
Zheng, Y. Li [36] and Q. Zheng [37]-[38].

Theorem 2.6.

(a) Let a2 − c < 0 and r′ > 1
2 . Then P (A) is the integral generator of an

analytic (1 + |A|2)−r′-regularized semigroup (Tr′(t))t≥0 of angle θ :=
arctan a√

c−a2
and there exists a function p : (−θ, θ) → (0,∞) such

that:

∥Tr′(z)∥ ≤ K(1 + |z|)
3
2 ep(arg(z)) sin(| arg(z)|)|z|, z ∈ Σθ.

Furthermore, the mapping z 7→ Tr′(z), z ∈ Σθ0 is continuous for every
θ0 ∈ (0, θ).

(b) Let a2 − c > 0 and r′ > 1
2 . Then P (A) generates an analytic (1 +

|A|2)−r′-regularized semigroup (Tr′(t))t≥0 of angle π
2 , and the following

holds:

∥Tr′(z)∥ ≤ K(1 + |z|)
3
2 e

√
b sin(| arg(z)|)|z|, z ∈ Σπ

2
.

Furthermore, the mapping z 7→ Tr′(z), z ∈ Σθ0 is continuous for every
θ0 ∈ (0, π2 ).

(c) Let a2 − c > 0 and r′ > 3
4 . Then P (A) generates an exponentially

bounded, norm continuous (1 + |A|2)−r′-regularized cosine function
(Cr′(t))t≥0.

P r o o f. Notice that, for every t ≥ 0, x ∈ R \ {0,±
√

b
a2−c

} and
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γ ∈ (−π, π] :

2
d

dx
B11(t, x, γ)

=
1
2(α(x)− β(x))(−2ax+ χ(x))− α(x)χ(x)

(a2 − c)x4 − bx2
ete

iγα(x)

+
2α(x)

α(x)− β(x)
teiγ(−2ax+ χ(x))ete

iγα(x)

+
1
2(α(x)− β(x))(2ax+ χ(x))− (α(x) + 2ax2)χ(x)

(a2 − c)x4 − bx2
ete

iγβ(x)

−2α(x) + 4ax2

α(x)− β(x)
teiγ(2ax+ χ(x))ete

iγβ(x),

2
d

dx
B12(t, x, γ)

=
1
2(ib+ 3icx2)(α(x)− β(x))− (ibx+ icx3)χ(x)

(a2 − c)x4 − bx2
(ete

iγα(x) − ete
iγβ(x))

+
2(ibx+ icx3)

α(x)− β(x)
teiγ [(−2ax+ χ(x))ete

iγα(x) + (2ax+ χ(x))ete
iγβ(x)],

2
d

dx
B21(t, x, γ)

=
1
2 i(α(x)− β(x))− ixχ(x)

(a2 − c)x4 − bx2
(ete

iγα(x) − ete
iγβ(x))

+
2ixteiγ

α(x)− β(x)
[(−2ax+ χ(x))ete

iγα(x) + (2ax+ χ(x))ete
iγβ(x)]

and

2
d

dx
B22(t, x, γ) = 2

d

dx
B11(t, x, γ) + 2a

4x(α(x)− β(x))− x2χ(x)

(a2 − c)x4 − bx2
.

We first consider the case a2−c < 0. If γ ∈ (−θ, θ), then there exist p(γ) > 0
and q(γ) > 0 such that:

max(ℜ(eiγα(x)),ℜ(eiγβ(x)))

≤ −ax2 cos γ + b|x|
√
b− (a2 − c) sin |γ| ≤ −q(γ)x2 + p(γ) sin |γ|.
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By (3), we obtain that, for every t ≥ 0 and x ∈ R :∥∥∥eteiγP (x)
∥∥∥ ≤ K(1+t+t|x|3)e−tq(γ)x2+p(γ)t sin |γ| ≤ K(1+t)(1+|x|)etp(γ) sin |γ|.

(26)
Let L ≥ 1 be sufficiently large. Then the inequality max(|txe−tq(γ)x2 |,
|tx2e−tq(γ)x2 |) ≤ K, t ≥ 0, |x| ≥ L and the concrete representation of
d
dxe

zP (x), z ∈ C imply that:

∥∥∥ d

dx
ete

iγP (x)
∥∥∥ ≤ K, t ≥ 0, |x| ≥ L. (27)

By (26), we easily infer that:∥∥∥ d

dx
ete

iγP (x)
∥∥∥ ≤ K(1 + t)2etp(γ) sin |γ|, t ≥ 0, |x| ≤ L. (28)

Using (26)-(28) and the product rule, it follows that:∥∥∥ d

dx
(ete

iγP (x)(1 + x2)−r′)
∥∥∥ ≤ K(1 + t)2ep(γ)t sin |γ|(1 + |x|)−2r′ , t ≥ 0, x ∈ R.

Now one can apply [9, Theorem 2.7(2)] in order to see that:∥∥∥(eteiγP (x)(1 + x2)−r′)(A)
∥∥∥ ≤ K(1 + t)

3
2 ep(γ)t sin |γ|, t ≥ 0. (29)

Put Tr′,γ(t) := (ete
iγP (x)(1 + x2)−r′)(A), t ≥ 0, γ ∈ (−θ, θ) and Tr′(z) :=

(ezP (x)(1+x2)−r′)(A), z ∈ Σθ. By (29) and the proof of [38, Theorem 1.1],
one gets that, for every γ ∈ (−θ, θ), (Tr′,γ(t))t≥0 is a global (1 + |A|2)−r′-

regularized semigroup generated by eiγP (A). By [16, Theorem 2.3], we have
that P (A) generates an analytic (1+ |A|2)−r′-regularized semigroup of angle
θ. The inequality stated in (a) is a consequence of (29), while the continuity
of mapping z 7→ Tr′(z), z ∈ Σθ0 (θ0 ∈ (0, θ)) follows from the estimate∥∥∥Tr′(t1e

iγ1)− Tr′(t2e
iγ2)

∥∥∥
≤ K

∑
1≤i,j≤2

∥∥∥F−1
(
(Bij(t1, x, γ1)−Bij(t2, x, γ2))(1 + x2)−r′

)∥∥∥
L1(R)

,

for any t1, t2 ≥ 0, |γ1|, |γ2| ≤ θ0, and the proof of [35, Lemma 1.2]. In
order to prove (b), one can use a similar argumentation and the estimate
max(ℜ(eiγα(x)),ℜ(eiγβ(x))) ≤ (

√
a2 − c − a)x2 cos γ + b√

a2−c
sin |γ|, γ ∈
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(−π
2 ,

π
2 ), which holds in the case a2 > c. To prove (c), set f(t, x) :=∑∞

n=0
t2nP (x)n

(2n)! , t ≥ 0, x ∈ R. Then

f(t, x) =
1

α(x)− β(x)

[
C11(t, x) C12(t, x)
C21(t, x) C22(t, x)

]
,

where, for any t ≥ 0 and x ∈ R \ {0,±
√

b
a2−c

} :

C11(t, x) = α(x) cosh(t
√
α(x)) + (α(x) + 2ax2) cosh(t

√
β(x)),

C12(t, x) = (ibx+ icx3)(cosh(t
√
α(x))− cosh(t

√
β(x))),

C21(t, x) = ix(cosh(t
√
α(x))− cosh(t

√
β(x))) and

C22(t, x) = (α(x) + 2ax2)(cosh(t
√
α(x)) + cosh(t

√
β(x))).

Then max(| cosh(t
√
α(x))|, | cosh(t

√
β(x))|) ≤ 1, t ≥ 0, |x| ≥ L. Using this

estimate, the product rule as well as the representation formulae for f(t, x)
and d

dxf(t, x), it follows that there exist two exponentially bounded posi-

tive functions f0(t) and f1(t) such that ||f(t, x)(1 + x2)−r′ || ≤ Kf0(t)(1 +
|x|)1−2r′ , t ≥ 0, x ∈ R and || d

dx(f(t, x)(1 + x2)−r′)|| ≤ K(f0(t) + f1(t))(1 +

|x|)1−2r′ , t ≥ 0, x ∈ R. Define Cr′(t) := (f(t, x)(1+x2)−r′)(A), t ≥ 0. Then
it is obvious that (Cr′(t))t≥0 is an exponentially bounded, norm continuous
(1 + |A|2)−r′-regularized cosine function generated by P (A). �

Remark 2.7.

(a) It is not clear how one can prove the assertion of Theorem 2.6 in the
case a2 = c. The main problem is that, for every fixed t ≥ 0 and γ ∈
[0, π2 ], the function x 7→ | d

dxB12(t, x, γ)|, x ∈ R is no longer bounded as

|x| → ∞. Nevertheless, the operator P (A) generates an exponentially
bounded, analytic (1+ |A|2)−3/4-regularized semigroup (T3/4(t))t≥0 of
angle π

2 ; as before, one can additionally refine the results obtained in
Theorem 2.5-Theorem 2.6, provided that X = Lp(R) (1 < p < ∞).

(b) With the exception of the continuity of mapping z 7→ Tr′(z), z ∈
Σθ0 , the assertions of Theorem 2.6(a)-(b) continue to hold in the case
r′ = 1

2 (cf. [17, Example 1.2.9(vii.1)-(vii.2)] and Remark 2.4(a)).
Furthermore, Theorem 2.6(c) is a proper extension of the result stated
in [17, Example 1.2.9(vii.3)].
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(c) Let a2 = c, r′ = 1
2 and r′′ = 3

4 . Then lim
t→0+

(B12(t, x, 0))(A)g = 0

and lim
t→0+

(B22(t, x, 0))(A)g = g for all g ∈ R((1 + |A|2)−r′′). Keep-

ing in mind the proof of Theorem 2.6, we get that ||(B11(t, x, 0)(1 +

x2)−
1
2 )(A)|| ≤ K(1 + t)

3
2 and ||(B21(t, x, 0)(1 + x2)−

1
2 )(A)|| ≤ K(1 +

t)
3
2 , t ≥ 0, x ∈ R. By the denseness of E in X, the above implies

lim
t→0+

(B11(t, x, 0))(A)f = f for all f ∈ R((1 + |A|2)−r′). On the other

hand, the representation formulae for B21(t, x, 0) and d
dxB21(t, x, 0),

as well as the proofs of Theorem 2.1 and Theorem 2.6, taken together
imply lim

t→0+
||(B21(t, x, 0))(A)|| = 0. Hence, R((1 + |A|2)−r′) × R((1 +

|A|2)−r′′) ⊆ Ω(T0).
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