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A b s t r a c t. The Kirchhoff index Kf and the Laplacian–energy–
like invariant LEL are two graph invariants defined in terms of the Lapla-
cian eigenvalues. If µ1 ≥ µ2 ≥ · · · ≥ µn−1 > µn = 0 are the Laplacian
eigenvalues of a connected n-vertex graph, then Kf = n

∑n−1
i=1 1/µi and

LEL =
∑n−1

i=1
√
µi. We examine the conditions under which Kf > LEL.

Among other results we show that Kf > LEL holds for all trees, unicyclic,
bicyclic, tricyclic, and tetracyclic connected graphs, except for a finite num-
ber of graphs. These exceptional graphs are determined.
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1. Introduction

In this paper we are concerned with simple graph, that is a graph pos-
sessing no directed, weighted, or multiple edges, and no self–loops. In ad-
dition, we assume that the graphs considered are connected. Let G be
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such a graph and let n and m be the number of its vertices and edges,
respectively. Let µ1, µ2, . . . , µn be the Laplacian eigenvalues of G, forming
its Laplacian spectrum. For details of Laplacian spectral graph theory see
[2, 10, 9]. It is important for us that if the graph G is connected, then
n − 1 of its Laplacian eigenvalues are real positive numbers, whereas one
eigenvalue is equal to zero. In what follows the Laplacian spectrum of the
graph G will be denoted by Spec(G) = {µ1, µ2, . . . , µn}, assuming that
µ1 ≥ µ2 ≥ · · · ≥ µn−1 > µn = 0 .

Two graph invariants based on Laplacian eigenvalues have been much
studied in last few years. These are the Kirchhoff index ,

Kf = Kf(G) = n
n−1∑
i=1

1

µi
(0.1)

and the Laplacian–energy–like invariant ,

LEL = LEL(G) =
n−1∑
i=1

√
µi . (0.2)

Recall that the ordinary distance between two vertices vi and vj in a
connected graph G is defined as the length (= number of edges) of a shortest
path that connects vi and vj . Klein and Randić [15] conceived the resistance
distance, defined in terms of electric resistance in a network corresponding
to the considered graph, in which the resistance between any two adjacent
nodes is 1 Ohm. The sum of resistance distances between all pairs of vertices
of a graph was conceived as a novel graph invariant [15, 1] and – in view
of the fact that electric resistances are calculated by means of the Kirchhoff
laws – named the “Kirchhoff index”. The fact that the Kirchhoff index
satisfies the relation (0.1) was independently established in [12] and [23]. Of
the numerous investigations on the Kirchhoff index we mention here only a
few most recent [4, 6, 8, 20, 21].

Another Laplacian–spectrum–based graph invariant was put conceived
by Liu and Liu [17], and defined via Eq. (0.2). Details of the theory of
LEL and an exhaustive list of references can be found in the recent surveys
[11, 16]; for some most recent works on this topic see [22, 13, 14, 19].

2. Relations between Kf and LEL for graphs with given cyclomatic number

In spite of the intense research done on both Kf and LEL, the relation
between these two closely related Laplacian–spectrum–based graph invari-
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ants has not been investigated until quite recently [5]. In [5] the following
two results have been established:

Theorem 2.1 Let G be a connected graph of order n with m edges. If
2m ≤ (n− 1)n2/3 , then LEL(G) < Kf(G).

Theorem 2.2 Let G be a connected graph of order n with m edges. Let
δ be the smallest degree of a vertex of G. If 2m ≤ (n − 2)n2/3 + δ, then
LEL(G) < Kf(G).

Theorems 2.1 and 2.2 immediately imply:

Corollary 2.3 Let G be a connected graph of order n. If Kf(G) < LEL(G),
then G must have more than 1

2(n− 1)n2/3 edges.

Corollary 2.4 Let G be a connected graph of order n. Let δ be the smallest
degree of a vertex of G. If Kf(G) < LEL(G), then G must have more than
1
2 [(n− 2)n2/3 + δ] edges.

In case when the value of δ cannot be specified, we have the following
weakened variant of Corollary 2.4:

Corollary 2.5 Let G be a connected graph of order n. If Kf(G) < LEL(G),
then G must have more than 1

2 [(n− 2)n2/3 + 1] edges.

Combining Corollaries 2.3 and 2.5, it is evident that in order that the
relation Kf(G) < LEL(G) be obeyed, the graph G must possess more than

1

2
min

{
(n− 1)n2/3 , (n− 2)n2/3 + 1

}
edges. It is easy to show that the inequality

(n− 2)n2/3 + 1 < (n− 1)n2/3

holds for all values of n , n ≥ 3.

Theorem 2.6 Let G(⌋) be the set of connected graphs with cyclomatic num-
ber c. For any fixed value of c, the number of elements of G(⌋) for which
Kf < LEL holds is finite.
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P r o o f. An n-vertex graph with cyclomatic number c has n+ c− 1 edges.
No matter how large c is, there always will exist some (finite) positive integer
n0 = n0(c), such that the inequality

n+ c− 1 <
1

2

[
(n− 2)n2/3 + 1

]
be satisfied for all values of n ≥ n0 . Therefore graphs for which Kf < LEL
must possess less than n0 vertices and, consequently, their number is finite.
2

Remark 2.7 By direct numerical testing we can verify that n0 in Theorem
2.6 is equal to 4, 6, 6, 7, 8 for cyclomatic number 0, 1, 2, 3, and 4. This
means that for c = 0, 1, 2, 3, 4, connected graphs for which the Kirchhoff index
is smaller than the Laplacian–energy–like invariant can possess at most 3,
5, 5, 6, and 7 vertices, respectively.

Remark 2.8 For the complete graph Kn we have [10, 9] Spec(Kn) = {n, n, . . . ,
n, 0}. Therefore, Kf(Kn) = n− 1 and LEL(Kn) = (n− 1)

√
n. Therefore,

Kf(Kn) < LEL(Kn) holds for all n > 1.

Corollary 2.9 [5] The only tree (i. e., a connected graph with c = 0) for
which Kf < LEL holds is K2.

Corollary 2.10 [5] The only connected unicyclic graph (i. e., graph with
c = 1) for which Kf < LEL holds is K3.

P r o o f. In Fig. 1 are depicted all unicyclic graphs with 3, 4, and 5 vertices.
Numerical calculation shows that Kf < LEL holds only for the graph H1.
2

H

H H H

H HH
1 2 3 4

5 6 7

Fig. 1. The connected unicyclic graphs with 3, 4, and 5 vertices.
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Corollary 2.11 [5] The only connected bicyclic graph (i. e., graph with
c = 2) for which Kf < LEL holds is K4 − e i. e., the graph H8 in Fig. 2.

P r o o f. In Fig. 2 are depicted all bicyclic graphs with 4 and 5 vertices.
Numerical calculation shows that Kf < LEL holds only for the graph H8.
2

H H

H H HH8 9 10 11

12 13

Fig. 2. The connected bicyclic graphs with 4 and 5 vertices.

Corollary 2.12 The only connected tricyclic graphs (i. e., graphs with c =
3) for which Kf < LEL holds are H14

∼= K4 , H16 , H17 , and H18 , depicted
in Fig. 3.

P r o o f. In Fig. 3 are shown all tricyclic graphs with 4, 5, and 6 vertices.
By numerical calculation we obtained the following results:

graph Kf LEL graph Kf LEL
H14 3.00 6.00 H28 13.88 8.61
H15 8.50 7.24 H29 13.83 8.61
H16 7.00 7.30 H30 14.52 8.55
H17 6.95 7.33 H31 15.24 8.57
H18 6.42 7.38 H32 14.50 8.63
H19 11.50 8.69 H33 12.70 8.70
H20 14.20 8.51 H34 12.55 8.68
H21 15.20 8.54 H35 11.25 8.75
H22 12.43 8.65 H36 11.34 8.74
H23 11.75 8.70 H37 12.67 8.68
H24 16.50 8.46 H38 12.00 8.72
H25 16.00 8.45 H39 13.50 8.60
H26 19.00 8.51 H40 14.50 8.63
H27 14.14 8.54
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Fig. 3. The connected tricyclic graphs with 4, 5, and 6 vertices.

In a fully analogous manner, by examining all the 154 connected tetra-
cyclic graphs with seven or fewer vertices, we arrive at:

Corollary 2.13 The only connected tetracyclic graphs (i. e., graphs with
c = 4) for which Kf < LEL holds are H41 , H42 , H43 , and H44 , depicted
in Fig. 4.

Remark 2.14 There are 2, 20, and 132 connected tetracyclic graphs with
5, 6, and 7 vertices, respectively. Among the 7-vertex species no one satisfies
the inequality Kf < LEL.

H HH H
43 4441 42

Fig. 4. The only connected tetracyclic graphs for which LEL is greater than the

Kirchhoff index.
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3. More relations between Kf and LEL

Theorem 3.15 Let G be a connected graph and e its edge, such that G− e
is also connected. If Kf(G) > LEL(G), then Kf(G− e) > LEL(G− e).

P r o o f. Let Spec(G) = {µ1, µ2, . . . , µn−1, 0} and Spec(G−e) = {µ′
1, µ

′
2, . . . ,

µ′
n−1, 0}. As well known [10, 9], the Laplacian eigenvalues of G− e interlace

the Laplacian eigenvalues of G, i. e.,

µ1 ≥ µ′
1 ≥ µ2 ≥ µ′

2 ≥ · · · ≥ µn−1 ≥ µ′
n−1 > µn = µ′

n = 0 .

These inequalities immediately imply

n−1∑
i=1

√
µi ≥

n−1∑
i=1

√
µ′
i i. e., LEL(G) ≥ LEL(G− e)

and
n−1∑
i=1

1

µi
≤

n−1∑
i=1

1

µ′
i

i. e., Kf(G) ≤ Kf(G− e) .

2

Corollary 3.16 If Kf(G) > LEL(G) and if e1, e2, . . . , et are edges of G,
such that G− e1 − e2 − · · · − et is connected, then

Kf(G− e1 − e2 − · · · − et) > LEL(G− e1 − e2 − · · · − et) .

In a fully analogous manner as Theorem 3.15, we can prove also:

Theorem 3.17 Let G+e be the graph obtained by adding a new edge to the
connected graph G. If Kf(G) < LEL(G), then Kf(G+ e) < LEL(G+ e).

Corollary 3.18 If G is a connected graph of order n with cyclomatic num-
ber c ≥ 0, such that Kf(G) < LEL(G), then we can construct a connected
graph G† of order n, with cyclomatic number c† , c < c† ≤ (n− 1)(n− 2)/2,
such that Kf(G†) < LEL(G†).

Corollary 3.19 If n ≥ 4, then Kf(Kn − e) < LEL(Kn − e) holds.

Lemma 3.20 [3] Let G be a connected graph of order n with Laplacian
spectrum Spec(G) = {µ1, µ2, . . . , µn−1, 0}. If G∗ is the graph obtained by
connecting a new vertex to all vertices of G, then Spec(G∗) = {n + 1, µ1 +
1, µ2 + 1, . . . , µn−1 + 1, 0}.
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The product of G1 and G2 is the graph G1 ×G2 whose vertex set is the
Cartesian product V (G1) × V (G2). Suppose v1, v2 ∈ V (G1) and u1, u2 ∈
V (G2). Then (v1, u1) and (v2, u2) are adjacent in G1×G2 if and only if one
of the following conditions is satisfied: (i) v1 = v2 and {u1, u2} ∈ E(G2),
or (ii) {v1, v2} ∈ E(G1) and u1 = u2 [2].

Lemma 3.21 [7, 18] Let G1 and G2 be graphs on n1 and n2 vertices, respec-
tively. Then Spec(G1 × G2) consists of all possible sums µi(G1) + µj(G2),
1 ≤ i ≤ n1 and 1 ≤ j ≤ n2.

Let Hn = Kp × K2 . Then n = 2p. In particular, H4 = C4 for n = 4.
We have LEL(C4) =

√
4 + 2

√
2 < 1 + 2 + 2 = Kf(C4) and LEL(H6) =

2
√
5 + 2

√
3 +

√
2 ≈ 9.35 < 9.4 = 2.4 + 4 + 3 = Kf(H6). But we have the

following:

Theorem 3.22 Let G be a graph of order n ≥ 8 (n is even) and let Hn be
a subgraph of G. Then LEL(G) > Kf(G) .

P r o o f. We have n = 2p. Since Spec(Kp) = {p, p, . . . , p︸ ︷︷ ︸
p−1

, 0} , from Lemma

3.21 it follows that

Spec(Hn) = {p+ 2, p+ 2, . . . , p+ 2︸ ︷︷ ︸
p−1

, p, p, . . . , p︸ ︷︷ ︸
p−1

, 2, 0}

Since H is a subgraph of G, we have µi(G) ≥ µi(H), that is,

µi(G) ≥ p+ 2 for i = 1, 2, . . . , p− 1;

µi(G) ≥ p for i = p, p+ 1, . . . , 2p− 2;

µ2p−1(G) ≥ 2 and µ2p(G) = 0 .

Thus we have

LEL(G) =
n−1∑
i=1

√
µi(G) ≥ (p− 1)

√
p+ 2 + (p− 1)

√
p+

√
2

≥ 2(p− 1)
√
p+

√
2 (3.3)

and

Kf(G) = n
n−1∑
i=1

1

µi(G)
≤ (p− 1)

2p

p+ 2
+ (p− 1)

2p

p
+

2p

2
≤ 5p− 4 . (3.4)
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From (3.3) and (3.4),

LEL(G) ≥ 3
√
6 + 3

√
4 +

√
2 ≈ 14.763 > 14

= 4 + 6 + 4 ≥ Kf(G) for p = 4

LEL(G) ≥ 4
√
7 + 4

√
5 +

√
2 ≈ 20.941 > 18.714

≈ 40

7
+ 8 + 5 ≥ Kf(G) for p = 5

LEL(G) ≥ 5
√
8 + 5

√
6 +

√
2 ≈ 27.804 > 23.5

=
15

2
+ 10 + 6 ≥ Kf(G) for p = 6 .

For p ≥ 7, one can see easily that

LEL(G) ≥ 2(p− 1)
√
p+

√
2 > 5p− 4 ≥ Kf(G) .

This completes the proof. 2

Let H ′
n be the graph of order n (n = 2p+ 1) obtained from Hn in such

a way that H ′
n = Hn ∪K1 , where Hn = Kp ×K2.

Theorem 3.23 Let G be a graph of order n ≥ 5 (n is odd) and let H ′
n be a

subgraph of G. Then LEL(G) > Kf(G) .

P r o o f. We have n = 2p+ 1. Since

Spec(Hn) = {p+ 2, p+ 2, . . . , p+ 2︸ ︷︷ ︸
p−1

, p, p, . . . , p︸ ︷︷ ︸
p−1

, 2, 0}

by Lemma 3.20,

Spec(H ′
n) = {n, p+ 3, p+ 3, . . . , p+ 3︸ ︷︷ ︸

p−1

, p+ 1, p+ 1, . . . , p+ 1︸ ︷︷ ︸
p−1

, 3, 0} .

Since H ′
n is a subgraph of G, we have µi(G) ≥ µi(H

′
n), that is,

µ1(G) ≥ n ; µi(G) ≥ p+ 3 for i = 2, 3, . . . , p ;

µi(G) ≥ p+ 1 for i = p+ 1, p+ 2, . . . , 2p− 1 ;

µ2p(G) ≥ 3 and µ2p+1(G) = 0 .
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Thus we have

LEL(G) =
n−1∑
i=1

√
µi(G)

≥
√
n+ (p− 1)

√
p+ 3 + (p− 1)

√
p+ 1 +

√
3

>
√
2p+ 1 + 4.88(p− 1) +

√
3 for p ≥ 4 .

and

Kf(G) =
n−1∑
i=1

n

µi(G)

≤ n

n
+ (p− 1)

2p+ 1

p+ 3
+ (p− 1)

2p+ 1

p+ 1
+

2p+ 1

3

≤ 14

3
p− 26

3
+

20

p+ 3
+

2

p+ 1
.

Now,

LEL(G) ≥ 2
√
5 + 2

√
3 ≈ 7.936 > 5.333 ≈ 2 +

10

3
≥ Kf(G) for p = 2

and

LEL(G) ≥
√
7 + 2

√
6 + 4 +

√
3 ≈ 13.277

> 9.166 ≈ 1 +
7

3
+

7

2
+

7

3
≥ Kf(G) for p = 3 .

For p ≥ 4, one can see easily that

LEL(G) ≥
√
2p+ 1+4.88(p−1)+

√
3 >

14

3
p− 26

3
+

20

p+ 3
+

2

p+ 1
≥ Kf(G) .

This completes the proof. 2
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