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Add(U) of a uniserial module

PAVEL PRIHODA

Abstract. A module is called uniserial if it has totally ordered submodules in inclusion.
We describe direct summands of U(?) for a uniserial module U. It appears that any such
a summand is isomorphic to a direct sum of copies of at most two uniserial modules.
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1. Introduction

The aim of this paper is to give a classification of objects in Add(U), where U
is a uniserial module over an arbitrary associative ring. Recall that a module U is
said to be uniserial if the lattice of its submodules is a chain. Direct sums of unis-
erial modules are called serial. If a uniserial module U has local endomorphism
ring, then any object in Add(U) is isomorphic to U (1) for a suitable set I because
any uniserial module is o—small and we can use [3, Theorem 2.52]. In general,
the situation is a bit worse but still easy enough to understand. Recall that a
module K is quasi-small if for any family {M; | i € I} of modules such that K is
isomorphic to a direct summand of @;c;M; there exists a finite set I’ C I such
that K is isomorphic to a direct summand of @;c;7M;. It is possible to prove
that a uniserial module U is not quasi-small if and only if it is isomorphic to a
non-zero direct summand of V(“)7 where V' is a uniserial module not isomorphic
to U.

Before we formulate the main result of the paper, we summarize several results
of [4, Section 2] we shall use in the sequel. If U and V are uniserial modules, we say
that U, V are of the same monogeny (epigeny) class if there are monomorphisms
(epimorphisms) f:U — V and ¢:V — U. In this case we write [Uly, = [V]m
([Ule = [V]e). We can get some information about monogeny and epigeny classes
of U from the lattice of submodules of U. Let S be the set of all monomorphisms
in Endg(U) and let T be the set of all epimorphisms in Endg (U). We define Uy, =
NfesIm f and Ue = 3~ pep Ker f. Then Uy, Ue are fully invariant submodules
of U, [V]m = [Ulm if and only if V' is isomorphic to a submodule of U properly
containing Uy, or U ~ V, [V]. = [U]e if and only if V is isomorphic to U/U’,
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where U’ = 0 or U’ ¢ Ue. If U does not have local endomorphism ring, then
0 # Ue and Uy, & U. Further, a uniserial module U is not quasi-small if and only
if Upn G Ue = U and U is countably generated. If U. C U,,, then any module
of the same monogeny class as U is quasi-small. On the other hand if Uy, & Ue,
there is unique module V up to isomorphism such that [V]y, = [U]m and V is
not quasi-small. Moreover, for any u € U, there exists a submodule U’ C U, such
that U' ~ V and v € U".
Now we can formulate the main result of the paper:

Theorem 1.1. Let U be a non-zero uniserial right module over a ring R. Then
(i) if for any monomorphism f:U — U and any epimorphism g:U — U, the
homomorphism g f is not zero, then any object in Add(U) is isomorphic

to UD) for a suitable set I;

(ii) if U is quasi-small and there is a monomorphism f:U — U and an epi-
morphism g:U — U such that gf = 0, then any object of Add(U) is iso-
morphic to vd) g V(J), where I, J are suitable sets and V' is the unique
uniserial module of the same monogeny class as U that is not quasi-small;

(iii) if U is not quasi-small, then any object of Add(U) is isomorphic to U()
for a suitable set U.

2. The result

Throughout this paper we suppose that R is an associative ring with unit and
U is a uniserial right module over R such that U is a quasi-small module of
type 2. This means that there is a monomorphism f: U — U and an epimorphism
g:U — U such that neither of them is an isomorphism. If a uniserial module is
not of type 2, then it has local endomorphism ring by [3, Theorem 9.1] and our
main theorem holds for such uniserial modules as remarked above.

Before we start let us fix the following notation: Let M = A § B = ®;c1N;
be two direct sum decompositions of M. We denote m4: M — A, ng: M — B,
mi: M — N;, i € I the canonical projections and we denote t4: A — M, 1g: B —
M, t;: N; — M the canonical injections.

We start with an auxiliary lemma whose modifications are quite used in the
literature. Recall that a nonzero module is called uniform if any pair of its nonzero
submodules has a nonzero intersection. Obviously, any nonzero uniserial module
is uniform.

Lemma 2.1. Let I be a nonempty set and let {M;};c; be a family of R-modules.
Suppose that N is a uniform submodule of ®;c;M;. Then there exists a nonempty
finite set I' C I such that ;| y: N — M; is injective if and only if i € I'. Moreover,
for any i € I', N N (9, M;) = 0.

PROOF: Since N is nonzero, there exists 0 # n € N. Let I” be a finite set such
that for any i € I, m;(n) = 0 if and only if i ¢ I”. Now 0 = ();c;(N NKerm;) 2
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nR N (Njepn(Kerm; N N). Since N is uniform and I” finite, Kerm; N N = 0 for
some i € I"”. So the set I’ = {i € I" | m;|y is mono} is nonempty. O

The following lemma gives a criterion when a uniserial submodule of U (N) has
a complement. Recall that a family f;, ¢ € I of homomorphisms from M to N is
called summable, if for any m € M there is a finite set I’ C I such that f;(m) =0
for any ¢ € I\ I’. In this case the sum of this family gives a homomorphism

YierfitM — N.

Lemma 2.2. Let V' be a submodule of M = @®,;cNU;, where V' is uniserial and
U; = U for any i € N. If there is j € N such that 7;(V') = Uj;, then V is a direct
summand of M isomorphic to U. Conversely, if V is a direct summand of M
and V ~ U, then there is j € N such that 7;(V) = Uj.

PROOF: Suppose that 7;(V)) = U; for some j € N. Since V' is uniform, we can
use Lemma 2.1 to find ¢ € N such that f = m;|y is a monomorphism. If we put
V; = f(V) and if g;: V; — Uy, is a homomorphism given by 7,0 f~1 for any k € N,
we see that {gx}ren can be considered as a summable family of homomorphism
from V; to M and V =Im ), g We know that g; is an epimorphism. If g;
is an isomorphism, then ;[y is an isomorphism and thus M = V @ (Sy£;Ug)-
If V; = U;, then 7y is an isomorphism and M = V @ (©gx;Uy). Thus we can
suppose V; # U;, i # j and g; : V; — Uj; is a non-monic epimorphism. Now, let
V' =TIm; + tj, where ¢;,15 : U — M are the canonical injections. Then it is easy
tosee Va V' @ (®ki,;Ux) = M. Since m;|y:V — U is a monomorphism and
mjly:V — U is an epimorphism, V' ~ U by [3, Lemma 9.2(i)].

Now suppose V is a direct summand of M isomorphic to U. For any n €
N consider decomposition M =V & X = @ U; ® Yy, where YV, = @©;5,U;.
One of the homomorphisms 7y 171ty , ..., Ty inTnty, Ty Ly, Ty, Lty has to be an
epimorphism because otherwise their sum cannot be an epimorphism. If it is
one of the 7y ;w1 we are done because 7;(V) = U;, otherwise for any n €
N, my iy, my, 1y is an epimorphism. But then V is a union of kernels of these
epimorphisms, therefore Ve = V. This also gives that V is a countable union of
proper submodules and hence countably generated. As V ~ U, V;;,, & V and V is
not quasi-small. This contradicts our assumption that U is quasi-small. O

If we want to prove that a uniserial module V is isomorphic to a direct summand
of a module A, it is enough to find f, f:V — A and g,¢: A — V such that gf
is a monomorphism and ¢’f’ is an epimorphism according to [2, Proposition 2.4]
and [3, Theorem 9.1]. The following lemma says that if A is a non-zero direct
summand of UW) | it is enough to find the epimorphisms.

Lemma 2.3. Let Uj, i € I, be a family of uniform modules. If A® B = ®;c;U;
and A # 0, then there are i,j € I such that gf is a monomorphism, where
[ =mat; and g = mj|A.
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PrOOF: Consider the homomorphisms m4¢;, ¢ € I. If none of them is a monomor-
phism, then BNU; is non-zero for all ¢ € I. Since in this case ®;c yBNU; is essential
in ®;c;U;, we have a contradiction to A # 0. Let ¢ € I be any index for which
T Al; is a monomorphism. Then V = 7 4(U;) is uniform and hence there is j € T
such that 7|y, is a monomorphism by Lemma 2.1. Therefore for f = m4¢; and
g = Tj| 4 the composition gf is a monomorphism. O

Lemma 2.4. Let A® B = @®;cNU;, where U; = U for any i € N. If for any
1,7 €N 7Tj7TA(UZ') #* Uj, then B ~ @;cNU;.

PROOF: From our assumption, for any ¢ € N we have mwg(U;) = U; and
mjmp(U;) # Uj whenever i # j.

Set Uj = mp(U1) and observe that U] ® By = B for suitable module B; by
Lemma 2.2. Note that, for any j > 1, 7;(U]) # U;.

Suppose that we have constructed U7, ..., U}, such that B =U|&---& U, & By,
for some By, C B, m;(U{ @ --- @ U}) # Uj for any j > k and ng(U1 & --- @ Uy,) =
Ui&---@Uj. Put U]'H_1 = 7B, (Ug+1) (projection is with respect to decomposition
DienlUi = AG U] @ --- ® Uy, ® By,). Now we have 71 (U ;) = Up1, therefore
Ul/€+1 is a direct summand of Bj, and we have U{ e P U,/f P Ul/c—i-l @ B4 for
some By 1 C By. From the induction argument we have that U] @ --- @ U,/H_1 =
(U1 &+ ® Ugy1) and thus m; (U] @ - & U,/H_l) # Uj for any j > k+ 1. After
all B = ®;enU/, where m;(U]) = U;. Since ;(U}) = U;, U ~ U} according to
Lemma 2.2. (]

Corollary 2.5. Let U be a uniserial module. Let A® B = UW). Then either A
contains a direct summand isomorphic to U or B ~ U (@),

PRrROOF: If A = 0 we are done. Suppose A # 0. From Lemma 2.3 we have existence
of homomorphisms f : U — A and g: A — U such that gf is a monomorphism.
If there are no homomorphisms f:U — A and ¢’: A — U such that ¢'f’ is
an epimorphism, we have B ~ U (w) according to Lemma 2.4 and Lemma 2.2.
Otherwise we have U isomorphic to a direct summand of A. O

Observation 2.6. Let V, V' be uniserial modules of type 2 having the same
epigeny class. Then f(V) C V! for any homomorphism f:V — V.

PROOF: Let v € V. be such that f(v) ¢ V/. This is impossible if f is an
epimorphism by [4, Lemma 2.3(iv)]. But there is an epimorphism g: V' — V' such
that g(v) = 0 since [V]e = [V']e. Then h = f + g is an epimorphism such that
h(v) ¢ V!, a contradiction to [4, Lemma 2.3(iv)]. O

The next proposition gives an answer to [3, Problem 13] for the remaining case
(i.e. there is no superdecomposable direct summand of X Dif Xisa quasi-small
uniserial module of type 2).
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Proposition 2.7. Let A be a non-zero direct summand of U (@), Then A contains
a non-zero uniserial direct summand. Moreover, if A does not contain a direct
summand isomorphic to U, then there exists a non-quasi-small module V of the
same monogeny class as U and A is a direct sum of modules isomorphic to V.

PRrROOF: Let A @ B = ®;cnU;, where A # 0 and U; = U for any ¢ € N. We can
suppose ;74 (U;) # U; for any 4,j € N, otherwise A contains a direct summand
isomorphic to U by Lemma 2.2.

Let us analyze the proof of Lemma 2.4 a bit. We keep the notation from the
proof of Lemma 2.4. For any u € ®;en(Uj)e, mp(u) C ®en(U})e according to Ob-

servation 2.6. From the construction 7g(U;) C Uy &---@ U] and mppmp(U;) = UJ.

Thus since [U;]e = [U/]e and WU{WB|UZ~ is an epimorphism, we have w75 (u) ¢
(U!)e for any u € U; \ Ue. Now let a =aj + -+ ag € A, and a; € U;. Suppose
that a ¢ ®;en(U;)e. Let | be the greatest index 1 <[ < k such that a; ¢ (Up)e.
Then mg(ay+- - +ai-1) €Uy & &U_y, myymp(apr +- - +ag) € (U])e, and
7TUl/7rB(al) ¢ (U])e. Thus mg(a) # 0, a contradiction. From this fact we see that
A C ®ien(Uj)e. But since A # 0, Lemma 2.3 gives ¢, j € N such that mjiam4¢;
is a monomorphism. Therefore 7;(A) C (Uj)e contains an isomorphic copy of U
and Uy, & U, follows.

If Up, & Ue and there are no homomorphisms f : U — Aand g : A — U
such that g o f is an epimorphism, then for any i € N we have 7;(A) # ;74 (U;)
whenever (Uj)m & mj(A) because mjm4(U;) ~ U in this case. Therefore m;(A)
is countably generated whenever (Uj;)m & m;(A). Since Uy, & Ue, any countably
generated submodule of U, is contained in a submodule of U, that is not quasi-
small and that properly contains Uy, (if U, is countably generated it is not quasi-
small, otherwise we can adapt the proof of [4, Lemma 2.9]). Any such module
is isomorphic to V' (the unique module of the same monogeny class as U that
is not quasi-small). It follows that for any ¢ € N there exists W; ~ V such that
7i(A) C W C (Uy)e. Therefore A can be considered as a direct summand of V().
By [4, Theorem 3.12], A is isomorphic to a direct sum of copies of V. O

The next proposition can be seen as an analogy to the result “uniformly big
projective modules are free” which was proved by Bass in [1]. In fact, we just
adapted his proof to our setting. Let us recall the notions we shall need in the
proof of the proposition. A module M is called small if for any family of modules
M;, i € I and any homomorphism f: M — @;crM;, there is a finite set I’ C [
such that f(M) C @®;cprM;. A module is called o-small, if it is a union of a
countable chain of its small submodules. As noted above, any uniserial module is
o-small.

Proposition 2.8. Let M = A® B = ®;cNU;, where for any i € N U; = U.
Suppose for any n € N there exists a direct summand of A isomorphic to U™.
Then A is isomorphic to U (W),
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PROOF: Let V be a proper submodule of U such that there is a non-monic epimor-
phism g:V — U. By induction we construct submodules U1, U}, ..., A, Ag, ...
of A and we find j1, jo,- - - € N such that for any ¢ € N the following are satisfied:

(i) for any k > i, U} C A;,
(il) 4 @ (;<iU)) = 4,
(iii) ﬂ-ji(Ui/) = Uji’
(iv) for every k > i is m;,(Ax) # U;
(v) UZ.’ ~ U for any ¢ € N.

According to the assumption A contains a uniserial direct summand U{ iso-
morphic to U. By Lemma 2.2 there exists j; such that 7, (U7) = Uj,. If mj, |y,
is an isomorphism, we set Aj = AN @px;, Up. Otherwise there is i3 # j1 such
that 7ri1|U{ is a monomorphism. Let h:V — U;; @® Uj; be given by the sum of
ti;g and an inclusion of V into Uj,. Then A® B = U] @ Imh ® (B4, j, U;)- Set
Ar = AN (Imh @ (Dix4,,5,Us))- In both cases (ii), (iii), (iv) and (v) are satisfied
fori=1.

7

Now suppose that ji,...,Jjk, U{,...,U}, Ay have been defined such that con-
ditions (i)—(v) are satisfied when restricted to constructed objects. From (ii), A =
EB?ZIUZ-’ @ Aj. According to our assumption A; contains a direct summand U ]'C 41
isomorphic to U (recall that any uniserial module cancels from direct sums by [3,
Corollary 4.6]). Therefore there is j;11 such that ij+1(U]/€+1) = Uj,,,- In the
same way as above we find X such that A@ B = XEBU,’H_1 and 7j, (X)) # Uj, -
Then we put Ay 1 = A NX. Then conditions (i)-(v) are satisfied by the objects
we have defined.

For the modules U, ]/C defined in the construction we have indices g, ji € N such
that m;, | Ul is a monomorphism and 7, | Ul is an epimorphism. We know that jp,
are pairwise different. We can suppose that, for any k <1 € N, 4y, jp. < i;,j; if we
remove some of U}s since indices i), can be chosen such that the set {i;, | k € N}
is infinite as it follows from considerations about Goldie dimension.

For any k£ € N such that iy, # ji, let V;, be a projection of Ul/c to U;, ®© Uj, and
Vj, be a complement of V;, in U;, @ Uj,. For any i € N\ {iy, ji, | iy, # ji, k € N}
set V; = U;. Then A® B = ®enV;. Let 7: M — V;,15:V; — M be canonical
projections and injections with respect to this decomposition. Observe that for
any ke N wgk | Ul is an isomorphism. Therefore there are fy ;: V;, — V; such that
for any k£ € N homomorphism f, ;, is an isomorphism, {f;};en is a summable
family of homomorphisms from V;, to M and U,; =Im} ey iy

We are going to define a sequence k1 < ko < --- € N such that @leNUllﬂ is a
direct summand of M. Since any uniserial module is o-small, there are modules
Viq € Vj, such that Vi ; is small for any k,I € N and V;, = (J;ey Vi, for any
keN.

First put k&1 = 1. Observe that M = U]/€1 @ (®42i, Vi). Suppose ki, ..., kn have
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been defined such that if I’ = N\ {ig,,..., i, }, then M = @jleI/cj & (B Vi)
Clearly, module N = @;L:lvkjm is small. Therefore there is k¥’ such that N C
69?:1[]1/%- © (Pi<k’ icrVi). Now, let k,, 11 be an integer greater that k' such that

M = @?illU,;j ® (Dierr Vi), where I" = I'\ {iy, ., }. (Any j > max(k', kn) such
that fkl,i]‘ is neither a monomorphism nor an epimorphism for any 1 <[ < n can
be chosen for ky41.)

By our construction, M = @jeNUilgj & (PierVi), where I = N\ {ig,, iy, ...}
Of course, @,enU ,/fj C A and thus A contains a direct summand isomorphic to

U, To finish the proof we use the Eilenberg’s trick as usually: Recall that
XpUW ~ U@ whenever X is a direct summand of U®). Therefore if A® A’ ~
U@ and UW) @ A” ~ A, then A ~ U®), O

Corollary 2.9. Let W be a uniserial module. If A @® B ~ W(“’), then either
A~WW or B~ W),

ProoF: If W is not of type 2, we use [3, Corollary 2.54]. If W is not quasi-small,
we use [4, Theorem 3.12]. If W is quasi-small and of type 2, we use Proposition 2.8,
Corollary 2.5 and the fact that uniserial modules cancel from direct sums (see [3,
Corollary 4.6]). O

PROOF OF THEOREM 1.1: Any direct summand of UD can be decomposed as
a direct sum of direct summands of U®) by [3, Corollary 2.49]. Therefore it is
possible to suppose I countable. Uniserial modules with local endomorphism ring
satisfy the hypothesis of (i) and the theorem holds for such modules as explained
above. Also the case (iii) was already proved in [4, Theorem 3.12] So it remains
to prove the theorem for quasi-small uniserial modules of type 2.

Let A® B = @;cNU;, where U; = U for any ¢ € N. It is enough to see that A is
a direct sum of uniserial modules since any non-zero uniserial direct summand has
the same monogeny class as U by [3, Proposition 9.6] and thus the uniserial direct
summand can be isomorphic only to U or, in case (ii), to V. We can suppose that
A does not have finite Goldie dimension otherwise we use Proposition 2.7 to see
that A is serial. If A contains a direct summand isomorphic to U* for arbitrary
k € N, then A ~ Uw) by Proposition 2.8. In the other case there exist k € N and
A’ C A such that A ~ U* @ A’ and A’ contains no direct summand isomorphic
to U.

(i) In this case A’ = 0 by Proposition 2.7. (ii) A’ is isomorphic to a direct sum
of copies of V' by Proposition 2.7. O

Remark 2.10. The reader could observe that we proved that summands of U ()
having infinite Goldie dimension in case (ii) can be only modules isomorphic to
U@ or UF @ V@ k € Nyg. This reflects the main result of [5] that imply that
for cardinals &, A, &', A’ the modules UR oV and U)o V) are isomorphic
if and only if k = x’ and kK + X\ = &’ + X.
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