Add(U) of a uniserial module

Pavel Příhoda

Abstract. A module is called uniserial if it has totally ordered submodules in inclusion. We describe direct summands of $U^{(I)}$ for a uniserial module U. It appears that any such a summand is isomorphic to a direct sum of copies of at most two uniserial modules.

Keywords: serial modules, direct sum decomposition Classification: 16D70, 16D70, 16D70

1. Introduction

The aim of this paper is to give a classification of objects in $\operatorname{Add}(U)$, where U is a uniserial module over an arbitrary associative ring. Recall that a module U is said to be *uniserial* if the lattice of its submodules is a chain. Direct sums of uniserial modules are called *serial*. If a uniserial module U has local endomorphism ring, then any object in $\operatorname{Add}(U)$ is isomorphic to $U^{(I)}$ for a suitable set I because any uniserial module is σ -small and we can use [3, Theorem 2.52]. In general, the situation is a bit worse but still easy enough to understand. Recall that a module K is quasi-small if for any family $\{M_i \mid i \in I\}$ of modules such that K is isomorphic to a direct summand of $\bigoplus_{i \in I} M_i$ there exists a finite set $I' \subseteq I$ such that K is isomorphic to a direct summand of $\bigoplus_{i \in I'} M_i$. It is possible to prove that a uniserial module U is not quasi-small if and only if it is isomorphic to a non-zero direct summand of $V^{(\omega)}$, where V is a uniserial module not isomorphic to U.

Before we formulate the main result of the paper, we summarize several results of [4, Section 2] we shall use in the sequel. If U and V are uniserial modules, we say that U, V are of the same monogeny (epigeny) class if there are monomorphisms (epimorphisms) $f: U \to V$ and $g: V \to U$. In this case we write $[U]_m = [V]_m$ $([U]_e = [V]_e)$. We can get some information about monogeny and epigeny classes of U from the lattice of submodules of U. Let S be the set of all monomorphisms in $\operatorname{End}_R(U)$ and let T be the set of all epimorphisms in $\operatorname{End}_R(U)$. We define $U_m = \bigcap_{f \in S} \operatorname{Im} f$ and $U_e = \sum_{f \in T} \operatorname{Ker} f$. Then U_m , U_e are fully invariant submodules of U, $[V]_m = [U]_m$ if and only if V is isomorphic to a submodule of U properly containing U_m or $U \simeq V$, $[V]_e = [U]_e$ if and only if V is isomorphic to U/U',

Supported by grant GAUK 448/2004/B-MAT.

where U' = 0 or $U' \subsetneq U_e$. If U does not have local endomorphism ring, then $0 \neq U_e$ and $U_m \subsetneq U$. Further, a uniserial module U is not quasi-small if and only if $U_m \subsetneq U_e = U$ and U is countably generated. If $U_e \subseteq U_m$, then any module of the same monogeny class as U is quasi-small. On the other hand if $U_m \subsetneq U_e$, there is unique module V up to isomorphism such that $[V]_m = [U]_m$ and V is not quasi-small. Moreover, for any $u \in U_e$ there exists a submodule $U' \subseteq U_e$ such that $U' \simeq V$ and $u \in U'$.

Now we can formulate the main result of the paper:

Theorem 1.1. Let U be a non-zero uniserial right module over a ring R. Then

- (i) if for any monomorphism f: U → U and any epimorphism g: U → U, the homomorphism gf is not zero, then any object in Add(U) is isomorphic to U^(I) for a suitable set I;
- (ii) if U is quasi-small and there is a monomorphism $f: U \to U$ and an epimorphism $g: U \to U$ such that gf = 0, then any object of Add(U) is isomorphic to $U^{(I)} \oplus V^{(J)}$, where I, J are suitable sets and V is the unique uniserial module of the same monogeny class as U that is not quasi-small;
- (iii) if U is not quasi-small, then any object of Add(U) is isomorphic to $U^{(I)}$ for a suitable set U.

2. The result

Throughout this paper we suppose that R is an associative ring with unit and U is a uniserial right module over R such that U is a quasi-small module of type 2. This means that there is a monomorphism $f: U \to U$ and an epimorphism $g: U \to U$ such that neither of them is an isomorphism. If a uniserial module is not of type 2, then it has local endomorphism ring by [3, Theorem 9.1] and our main theorem holds for such uniserial modules as remarked above.

Before we start let us fix the following notation: Let $M = A \oplus B = \bigoplus_{i \in I} N_i$ be two direct sum decompositions of M. We denote $\pi_A: M \to A, \pi_B: M \to B,$ $\pi_i: M \to N_i, i \in I$ the canonical projections and we denote $\iota_A: A \to M, \iota_B: B \to M, \iota_i: N_i \to M$ the canonical injections.

We start with an auxiliary lemma whose modifications are quite used in the literature. Recall that a nonzero module is called *uniform* if any pair of its nonzero submodules has a nonzero intersection. Obviously, any nonzero uniserial module is uniform.

Lemma 2.1. Let I be a nonempty set and let $\{M_i\}_{i \in I}$ be a family of R-modules. Suppose that N is a uniform submodule of $\bigoplus_{i \in I} M_i$. Then there exists a nonempty finite set $I' \subseteq I$ such that $\pi_i|_N \colon N \to M_i$ is injective if and only if $i \in I'$. Moreover, for any $i \in I'$, $N \cap (\bigoplus_{i \neq i} M_i) = 0$.

PROOF: Since N is nonzero, there exists $0 \neq n \in N$. Let I'' be a finite set such that for any $i \in I$, $\pi_i(n) = 0$ if and only if $i \notin I''$. Now $0 = \bigcap_{i \in I} (N \cap \operatorname{Ker} \pi_i) \supseteq$

 $nR \cap \bigcap_{i \in I''} (\operatorname{Ker} \pi_i \cap N)$. Since N is uniform and I'' finite, $\operatorname{Ker} \pi_i \cap N = 0$ for some $i \in I''$. So the set $I' = \{i \in I'' \mid \pi_i \mid N \text{ is mono}\}$ is nonempty. \Box

The following lemma gives a criterion when a uniserial submodule of $U^{(\mathbb{N})}$ has a complement. Recall that a family f_i , $i \in I$ of homomorphisms from M to N is called *summable*, if for any $m \in M$ there is a finite set $I' \subseteq I$ such that $f_i(m) = 0$ for any $i \in I \setminus I'$. In this case the sum of this family gives a homomorphism $\sum_{i \in I} f_i : M \to N$.

Lemma 2.2. Let V be a submodule of $M = \bigoplus_{i \in \mathbb{N}} U_i$, where V is uniserial and $U_i = U$ for any $i \in \mathbb{N}$. If there is $j \in \mathbb{N}$ such that $\pi_j(V) = U_j$, then V is a direct summand of M isomorphic to U. Conversely, if V is a direct summand of M and $V \simeq U$, then there is $j \in \mathbb{N}$ such that $\pi_j(V) = U_j$.

PROOF: Suppose that $\pi_j(V) = U_j$ for some $j \in \mathbb{N}$. Since V is uniform, we can use Lemma 2.1 to find $i \in \mathbb{N}$ such that $f = \pi_i|_V$ is a monomorphism. If we put $V_i = f(V)$ and if $g_k: V_i \to U_k$ is a homomorphism given by $\pi_k \circ f^{-1}$ for any $k \in \mathbb{N}$, we see that $\{g_k\}_{k\in\mathbb{N}}$ can be considered as a summable family of homomorphism from V_i to M and $V = \operatorname{Im} \sum_{k\in\mathbb{N}} g_k$. We know that g_j is an epimorphism. If g_j is an isomorphism, then $\pi_j|_V$ is an isomorphism and thus $M = V \oplus (\bigoplus_{k\neq j} U_k)$. If $V_i = U_i$, then $\pi_i|_V$ is an isomorphism and $M = V \oplus (\bigoplus_{k\neq i} U_k)$. Thus we can suppose $V_i \neq U_i$, $i \neq j$ and $g_j: V_i \to U_j$ is a non-monic epimorphism. Now, let $V' = \operatorname{Im} \iota_i + \iota_j$, where $\iota_i, \iota_j: U \to M$ are the canonical injections. Then it is easy to see $V \oplus V' \oplus (\bigoplus_{k\neq i,j} U_k) = M$. Since $\pi_i|_V: V \to U$ is a monomorphism and $\pi_j|_V: V \to U$ is an epimorphism, $V \simeq U$ by [3, Lemma 9.2(i)].

Now suppose V is a direct summand of M isomorphic to U. For any $n \in \mathbb{N}$ consider decomposition $M = V \oplus X = \bigoplus_{i=1}^{n} U_i \oplus Y_n$, where $Y_n = \bigoplus_{i>n} U_i$. One of the homomorphisms $\pi_V \iota_1 \pi_1 \iota_V, \ldots, \pi_V \iota_n \pi_n \iota_V, \pi_V \iota_{Y_n} \pi_{Y_n} \iota_V$ has to be an epimorphism because otherwise their sum cannot be an epimorphism. If it is one of the $\pi_V \iota_i \pi_i \iota_V$ we are done because $\pi_i(V) = U_i$, otherwise for any $n \in \mathbb{N}$, $\pi_V \iota_{Y_n} \pi_{Y_n} \iota_V$ is an epimorphism. But then V is a union of kernels of these epimorphisms, therefore $V_e = V$. This also gives that V is a countable union of proper submodules and hence countably generated. As $V \simeq U$, $V_m \subsetneq V$ and V is not quasi-small. This contradicts our assumption that U is quasi-small. \Box

If we want to prove that a uniserial module V is isomorphic to a direct summand of a module A, it is enough to find $f, f': V \to A$ and $g, g': A \to V$ such that gfis a monomorphism and g'f' is an epimorphism according to [2, Proposition 2.4] and [3, Theorem 9.1]. The following lemma says that if A is a non-zero direct summand of $U^{(\omega)}$, it is enough to find the epimorphisms.

Lemma 2.3. Let U_i , $i \in I$, be a family of uniform modules. If $A \oplus B = \bigoplus_{i \in I} U_i$ and $A \neq 0$, then there are $i, j \in I$ such that gf is a monomorphism, where $f = \pi_A \iota_i$ and $g = \pi_j | A$. PROOF: Consider the homomorphisms $\pi_A \iota_i$, $i \in I$. If none of them is a monomorphism, then $B \cap U_i$ is non-zero for all $i \in I$. Since in this case $\bigoplus_{i \in I} B \cap U_i$ is essential in $\bigoplus_{i \in I} U_i$, we have a contradiction to $A \neq 0$. Let $i \in I$ be any index for which $\pi_A \iota_i$ is a monomorphism. Then $V = \pi_A(U_i)$ is uniform and hence there is $j \in I$ such that $\pi_j|_V$ is a monomorphism by Lemma 2.1. Therefore for $f = \pi_A \iota_i$ and $g = \pi_i|_A$ the composition gf is a monomorphism. \Box

Lemma 2.4. Let $A \oplus B = \bigoplus_{i \in \mathbb{N}} U_i$, where $U_i = U$ for any $i \in \mathbb{N}$. If for any $i, j \in \mathbb{N}$ $\pi_j \pi_A(U_i) \neq U_j$, then $B \simeq \bigoplus_{i \in \mathbb{N}} U_i$.

PROOF: From our assumption, for any $i \in \mathbb{N}$ we have $\pi_i \pi_B(U_i) = U_i$ and $\pi_j \pi_B(U_i) \neq U_j$ whenever $i \neq j$.

Set $U'_1 = \pi_B(U_1)$ and observe that $U'_1 \oplus B_1 = B$ for suitable module B_1 by Lemma 2.2. Note that, for any j > 1, $\pi_j(U'_1) \neq U_j$.

Suppose that we have constructed U'_1, \ldots, U'_k such that $B = U'_1 \oplus \cdots \oplus U'_k \oplus B_k$ for some $B_k \subseteq B$, $\pi_j(U'_1 \oplus \cdots \oplus U'_k) \neq U_j$ for any j > k and $\pi_B(U_1 \oplus \cdots \oplus U_k) = U'_1 \oplus \cdots \oplus U'_k$. Put $U'_{k+1} = \pi_{B_k}(U_{k+1})$ (projection is with respect to decomposition $\oplus_{i \in \mathbb{N}} U_i = A \oplus U'_1 \oplus \cdots \oplus U'_k \oplus B_k$). Now we have $\pi_{k+1}(U'_{k+1}) = U_{k+1}$, therefore U'_{k+1} is a direct summand of B_k and we have $U'_1 \oplus \cdots \oplus U'_k \oplus U'_{k+1} \oplus B_{k+1}$ for some $B_{k+1} \subseteq B_k$. From the induction argument we have that $U'_1 \oplus \cdots \oplus U'_{k+1} = \pi_B(U_1 \oplus \cdots \oplus U_{k+1})$ and thus $\pi_j(U'_1 \oplus \cdots \oplus U'_{k+1}) \neq U_j$ for any j > k+1. After all $B = \oplus_{i \in \mathbb{N}} U'_i$, where $\pi_i(U'_i) = U_i$. Since $\pi_i(U'_i) = U_i$, $U \simeq U'_i$ according to Lemma 2.2.

Corollary 2.5. Let U be a uniserial module. Let $A \oplus B = U^{(\omega)}$. Then either A contains a direct summand isomorphic to U or $B \simeq U^{(\omega)}$.

PROOF: If A = 0 we are done. Suppose $A \neq 0$. From Lemma 2.3 we have existence of homomorphisms $f: U \to A$ and $g: A \to U$ such that gf is a monomorphism. If there are no homomorphisms $f': U \to A$ and $g': A \to U$ such that g'f' is an epimorphism, we have $B \simeq U^{(\omega)}$ according to Lemma 2.4 and Lemma 2.2. Otherwise we have U isomorphic to a direct summand of A.

Observation 2.6. Let V, V' be uniserial modules of type 2 having the same epigeny class. Then $f(V_e) \subseteq V'_e$ for any homomorphism $f: V \to V'$.

PROOF: Let $v \in V_e$ be such that $f(v) \notin V'_e$. This is impossible if f is an epimorphism by [4, Lemma 2.3(iv)]. But there is an epimorphism $g: V \to V'$ such that g(v) = 0 since $[V]_e = [V']_e$. Then h = f + g is an epimorphism such that $h(v) \notin V'_e$, a contradiction to [4, Lemma 2.3(iv)].

The next proposition gives an answer to [3, Problem 13] for the remaining case (i.e. there is no superdecomposable direct summand of $X^{(I)}$ if X is a quasi-small uniserial module of type 2).

Proposition 2.7. Let A be a non-zero direct summand of $U^{(\omega)}$. Then A contains a non-zero uniserial direct summand. Moreover, if A does not contain a direct summand isomorphic to U, then there exists a non-quasi-small module V of the same monogeny class as U and A is a direct sum of modules isomorphic to V.

PROOF: Let $A \oplus B = \bigoplus_{i \in \mathbb{N}} U_i$, where $A \neq 0$ and $U_i = U$ for any $i \in \mathbb{N}$. We can suppose $\pi_j \pi_A(U_i) \neq U_j$ for any $i, j \in \mathbb{N}$, otherwise A contains a direct summand isomorphic to U by Lemma 2.2.

Let us analyze the proof of Lemma 2.4 a bit. We keep the notation from the proof of Lemma 2.4. For any $u \in \bigoplus_{i \in \mathbb{N}} (U_i)_e$, $\pi_B(u) \subseteq \bigoplus_{i \in \mathbb{N}} (U'_i)_e$ according to Observation 2.6. From the construction $\pi_B(U_i) \subseteq U'_1 \oplus \cdots \oplus U'_i$ and $\pi_{U'_i} \pi_B(U_i) = U'_i$. Thus since $[U_i]_e = [U'_i]_e$ and $\pi_{U'_i} \pi_B|_{U_i}$ is an epimorphism, we have $\pi_{U'_i} \pi_B(u) \notin (U'_i)_e$ for any $u \in U_i \setminus U_e$. Now let $a = a_1 + \cdots + a_k \in A$, and $a_i \in U_i$. Suppose that $a \notin \bigoplus_{i \in \mathbb{N}} (U_i)_e$. Let l be the greatest index $1 \leq l \leq k$ such that $a_l \notin (U_l)_e$. Then $\pi_B(a_1 + \cdots + a_{l-1}) \in U'_1 \oplus \cdots \oplus U'_{l-1}, \pi_{U'_l} \pi_B(a_{l+1} + \cdots + a_k) \in (U'_l)_e$, and $\pi_{U'_l} \pi_B(a_l) \notin (U'_l)_e$. But since $A \neq 0$, Lemma 2.3 gives $i, j \in \mathbb{N}$ such that $\pi_j \iota_A \pi_A \iota_i$ is a monomorphism. Therefore $\pi_j(A) \subseteq (U_j)_e$ contains an isomorphic copy of U and $U_m \subsetneq U_e$ follows.

If $U_m \subsetneq U_e$ and there are no homomorphisms $f: U \to A$ and $g: A \to U$ such that $g \circ f$ is an epimorphism, then for any $i \in \mathbb{N}$ we have $\pi_j(A) \neq \pi_j \pi_A(U_i)$ whenever $(U_j)_m \subsetneq \pi_j(A)$ because $\pi_j \pi_A(U_i) \simeq U$ in this case. Therefore $\pi_j(A)$ is countably generated whenever $(U_j)_m \subsetneq \pi_j(A)$. Since $U_m \subsetneq U_e$, any countably generated submodule of U_e is contained in a submodule of U_e that is not quasismall and that properly contains U_m (if U_e is countably generated it is not quasismall, otherwise we can adapt the proof of [4, Lemma 2.9]). Any such module is isomorphic to V (the unique module of the same monogeny class as U that is not quasi-small). It follows that for any $i \in \mathbb{N}$ there exists $W_i \simeq V$ such that $\pi_i(A) \subseteq W_i \subseteq (U_i)_e$. Therefore A can be considered as a direct summand of $V^{(\omega)}$. By [4, Theorem 3.12], A is isomorphic to a direct sum of copies of V.

The next proposition can be seen as an analogy to the result "uniformly big projective modules are free" which was proved by Bass in [1]. In fact, we just adapted his proof to our setting. Let us recall the notions we shall need in the proof of the proposition. A module M is called *small* if for any family of modules $M_i, i \in I$ and any homomorphism $f: M \to \bigoplus_{i \in I} M_i$, there is a finite set $I' \subseteq I$ such that $f(M) \subseteq \bigoplus_{i \in I'} M_i$. A module is called σ -small, if it is a union of a countable chain of its small submodules. As noted above, any uniserial module is σ -small.

Proposition 2.8. Let $M = A \oplus B = \bigoplus_{i \in \mathbb{N}} U_i$, where for any $i \in \mathbb{N}$ $U_i = U$. Suppose for any $n \in \mathbb{N}$ there exists a direct summand of A isomorphic to U^n . Then A is isomorphic to $U^{(\omega)}$. PROOF: Let V be a proper submodule of U such that there is a non-monic epimorphism $g: V \to U$. By induction we construct submodules $U'_1, U'_2, \ldots, A_1, A_2, \ldots$ of A and we find $j_1, j_2, \cdots \in \mathbb{N}$ such that for any $i \in \mathbb{N}$ the following are satisfied:

- (i) for any k > i, $U'_k \subseteq A_i$, (ii) $A_i \oplus (\oplus_{j \le i} U'_j) = A$, (iii) $\pi_{j_i}(U'_i) = U_{j_i}$, (iv) for every $k \ge i$ is $\pi_{j_i}(A_k) \ne U_{j_i}$,
- (v) $U'_i \simeq U$ for any $i \in \mathbb{N}$.

According to the assumption A contains a uniserial direct summand U'_1 isomorphic to U. By Lemma 2.2 there exists j_1 such that $\pi_{j_1}(U'_1) = U_{j_1}$. If $\pi_{j_1}|_{U_1}$ is an isomorphism, we set $A_1 = A \cap \bigoplus_{k \neq j_1} U_k$. Otherwise there is $i_1 \neq j_1$ such that $\pi_{i_1}|U'_1$ is a monomorphism. Let $h: V \to U_{i_1} \oplus U_{j_1}$ be given by the sum of $\iota_{i_1}g$ and an inclusion of V into U_{j_1} . Then $A \oplus B = U'_1 \oplus \operatorname{Im} h \oplus (\bigoplus_{i \neq i_1, j_1} U_i)$. Set $A_1 = A \cap (\operatorname{Im} h \oplus (\bigoplus_{i \neq i_1, j_1} U_i))$. In both cases (ii), (iii), (iv) and (v) are satisfied for i = 1.

Now suppose that $j_1, \ldots, j_k, U'_1, \ldots, U'_k, A_k$ have been defined such that conditions (i)–(v) are satisfied when restricted to constructed objects. From (ii), $A = \bigoplus_{i=1}^k U'_i \oplus A_k$. According to our assumption A_k contains a direct summand U'_{k+1} isomorphic to U (recall that any uniserial module cancels from direct sums by [3, Corollary 4.6]). Therefore there is j_{k+1} such that $\pi_{j_{k+1}}(U'_{k+1}) = U_{j_{k+1}}$. In the same way as above we find X such that $A \oplus B = X \oplus U'_{k+1}$ and $\pi_{j_{k+1}}(X) \neq U_{j_{k+1}}$. Then we put $A_{k+1} = A_k \cap X$. Then conditions (i)–(v) are satisfied by the objects we have defined.

For the modules U'_k defined in the construction we have indices $i_k, j_k \in \mathbb{N}$ such that $\pi_{i_k}|_{U'_k}$ is a monomorphism and $\pi_{j_k}|_{U'_k}$ is an epimorphism. We know that j_k are pairwise different. We can suppose that, for any $k < l \in \mathbb{N}$, $i_k, j_k < i_l, j_l$ if we remove some of U'_n s since indices i_k can be chosen such that the set $\{i_k \mid k \in \mathbb{N}\}$ is infinite as it follows from considerations about Goldie dimension.

For any $k \in \mathbb{N}$ such that $i_k \neq j_k$ let V_{i_k} be a projection of U'_k to $U_{i_k} \oplus U_{j_k}$ and V_{j_k} be a complement of V_{i_k} in $U_{i_k} \oplus U_{j_k}$. For any $i \in \mathbb{N} \setminus \{i_k, j_k \mid i_k \neq j_k, k \in \mathbb{N}\}$ set $V_i = U_i$. Then $A \oplus B = \bigoplus_{i \in \mathbb{N}} V_i$. Let $\pi'_i \colon M \to V_i, \iota'_i \colon V_i \to M$ be canonical projections and injections with respect to this decomposition. Observe that for any $k \in \mathbb{N} \pi'_{i_k}|_{U'_k}$ is an isomorphism. Therefore there are $f_{k,l} \colon V_{i_k} \to V_l$ such that for any $k \in \mathbb{N}$ homomorphism f_{k,i_k} is an isomorphism, $\{f_{k,l}\}_{l \in \mathbb{N}}$ is a summable family of homomorphisms from V_{i_k} to M and $U'_k = \operatorname{Im} \sum_{l \in \mathbb{N}} f_{k,l}$.

We are going to define a sequence $k_1 < k_2 < \cdots \in \mathbb{N}$ such that $\bigoplus_{l \in \mathbb{N}} U'_{k_l}$ is a direct summand of M. Since any uniserial module is σ -small, there are modules $V_{k,l} \subseteq V_{i_k}$ such that $V_{k,l}$ is small for any $k, l \in \mathbb{N}$ and $V_{i_k} = \bigcup_{l \in \mathbb{N}} V_{k,l}$ for any $k \in \mathbb{N}$.

First put $k_1 = 1$. Observe that $M = U'_{k_1} \oplus (\bigoplus_{i \neq i_1} V_i)$. Suppose k_1, \ldots, k_n have

been defined such that if $I' = \mathbb{N} \setminus \{i_{k_1}, \ldots, i_{k_n}\}$, then $M = \bigoplus_{j=1}^n U'_{k_j} \oplus (\bigoplus_{i \in I'} V_i)$. Clearly, module $N = \bigoplus_{j=1}^n V_{k_j,n}$ is small. Therefore there is k' such that $N \subseteq \bigoplus_{j=1}^n U'_{k_j} \oplus (\bigoplus_{i < k', i \in I'} V_i)$. Now, let k_{n+1} be an integer greater that k' such that $M = \bigoplus_{j=1}^{n+1} U'_{k_j} \oplus (\bigoplus_{i \in I''} V_i)$, where $I'' = I' \setminus \{i_{k_{n+1}}\}$. (Any $j > \max(k', k_n)$ such that f_{k_l, i_j} is neither a monomorphism nor an epimorphism for any $1 \leq l \leq n$ can be chosen for k_{n+1} .)

By our construction, $M = \bigoplus_{j \in \mathbb{N}} U'_{k_j} \oplus (\bigoplus_{i \in I} V_i)$, where $I = \mathbb{N} \setminus \{i_{k_1}, i_{k_2}, \ldots\}$. Of course, $\bigoplus_{j \in \mathbb{N}} U'_{k_j} \subseteq A$ and thus A contains a direct summand isomorphic to $U^{(\omega)}$. To finish the proof we use the Eilenberg's trick as usually: Recall that $X \oplus U^{(\omega)} \simeq U^{(\omega)}$ whenever X is a direct summand of $U^{(\omega)}$. Therefore if $A \oplus A' \simeq U^{(\omega)}$ and $U^{(\omega)} \oplus A'' \simeq A$, then $A \simeq U^{(\omega)}$.

Corollary 2.9. Let W be a uniserial module. If $A \oplus B \simeq W^{(\omega)}$, then either $A \simeq W^{(\omega)}$ or $B \simeq W^{(\omega)}$.

PROOF: If W is not of type 2, we use [3, Corollary 2.54]. If W is not quasi-small, we use [4, Theorem 3.12]. If W is quasi-small and of type 2, we use Proposition 2.8, Corollary 2.5 and the fact that uniserial modules cancel from direct sums (see [3, Corollary 4.6]).

PROOF OF THEOREM 1.1: Any direct summand of $U^{(I)}$ can be decomposed as a direct sum of direct summands of $U^{(\omega)}$ by [3, Corollary 2.49]. Therefore it is possible to suppose *I* countable. Uniserial modules with local endomorphism ring satisfy the hypothesis of (i) and the theorem holds for such modules as explained above. Also the case (iii) was already proved in [4, Theorem 3.12] So it remains to prove the theorem for quasi-small uniserial modules of type 2.

Let $A \oplus B = \bigoplus_{i \in \mathbb{N}} U_i$, where $U_i = U$ for any $i \in \mathbb{N}$. It is enough to see that A is a direct sum of uniserial modules since any non-zero uniserial direct summand has the same monogeny class as U by [3, Proposition 9.6] and thus the uniserial direct summand can be isomorphic only to U or, in case (ii), to V. We can suppose that A does not have finite Goldie dimension otherwise we use Proposition 2.7 to see that A is serial. If A contains a direct summand isomorphic to U^k for arbitrary $k \in \mathbb{N}$, then $A \simeq U^{(\omega)}$ by Proposition 2.8. In the other case there exist $k \in \mathbb{N}$ and $A' \subseteq A$ such that $A \simeq U^k \oplus A'$ and A' contains no direct summand isomorphic to U.

(i) In this case A' = 0 by Proposition 2.7. (ii) A' is isomorphic to a direct sum of copies of V by Proposition 2.7.

Remark 2.10. The reader could observe that we proved that summands of $U^{(\omega)}$ having infinite Goldie dimension in case (ii) can be only modules isomorphic to $U^{(\omega)}$ or $U^k \oplus V^{(\omega)}$, $k \in \mathbb{N}_0$. This reflects the main result of [5] that imply that for cardinals $\kappa, \lambda, \kappa', \lambda'$ the modules $U^{(\kappa)} \oplus V^{(\lambda)}$ and $U^{(\kappa')} \oplus V^{(\lambda')}$ are isomorphic if and only if $\kappa = \kappa'$ and $\kappa + \lambda = \kappa' + \lambda'$.

P. Příhoda

References

- [1] Bass H., Big projective modules are free, Illinois J. Math. 7 (1963), 24-31.
- [2] Dung N.V., Facchini A., Direct sum decompositions of serial modules, J. Pure Appl. Algebra 133 (1998), 93–106.
- [3] Facchini A., Module Theory; Endomorphism Rings and Direct Sum Decompositions in Some Classes of Modules, Birkhäuser, Basel, 1998.
- [4] Příhoda P., On uniserial modules that are not quasi-small, J. Algebra, to appear.
- [5] Příhoda P., A version of the weak Krull-Schmidt theorem for infinite families of uniserial modules, Comm. Algebra, to appear.

CHARLES UNIVERSITY, FACULTY OF MATHEMATICS AND PHYSICS, DEPARTMENT OF ALGEBRA, SOKOLOVSKÁ 83, 186 75 PRAGUE 8, CZECH REPUBLIC

E-mail: paya@matfyz.cz

(Received June 10, 2005, revised April 3, 2006)