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Abstract

In the present paper, we introduce and study topological properties
of θ-derived, θ-border, θ-frontier and θ-exterior of a set using the con-
cept of θ-open sets and study also other properties of the well known
notions of θ-closure and θ-interior.
Key words and phrases: θ-open, θ-closure, θ-interior, θ-border, θ-
frontier, θ-exterior.

Resumen

En el presente ert́ıculo se introducen y estudian las propiedades to-
pológicas del θ-derivedo, θ-borde, θ-frontera y θ-exterior de un conjunto
usando el concepto de conjunto θ-abierto y estudiando también otras
propiedades de las nociones bien conocidas de θ-clausura y θ-interior.
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1 Introduction

The notions of θ-open subsets, θ-closed subsets and θ-closure where introduced
by Veličko [14] for the purpose of studying the important class of H-closed
spaces in terms of arbitrary fiberbases. Dickman and Porter [2], [3], Joseph [9]
and Long and Herrington [11] continued the work of Veličko . Recently Noiri
and Jafari [12] and Jafari [6] have also obtained several new and interesting
results related to these sets. For these sets, we introduce the notions of θ-
derived, θ-border, θ-frontier and θ-exterior of a set and show that some of their
properties are analogous to those for open sets. Also, we give some additional
properties of θ-closure and θ-interior of a set due to Veličko [14]. In what
follows (X, τ) (or X) denotes topological spaces. We denote the interior and
the closure of a subset A of X by Int(A) and Cl(A), respectively. A point
x ∈ X is called a θ-adherent point of A [14], if A ∩ Cl(V ) 6= ∅ for every
open set V containing x. The set of all θ-adherent points of A is called the
θ-closure of A and is denoted by Clθ(A). A subset A of X is called θ-closed
if A = Clθ(A). Dontchev and Maki [[4], Lemma 3.9] have shown that if A
and B are subsets of a space (X, τ), then Clθ(A∪B) = Clθ(A)∪Clθ(B) and
Clθ(A ∩ B) = Clθ(A) ∩ Clθ(B). Note also that the θ-closure of a given set
need not be a θ-closed set. But it is always closed. Dickman and Porter [2]
proved that a compact subspace of a Hausdorff space is θ-closed. Moreover,
they showed that a θ-closed subspace of a Hausdorff space is closed. Janković
[7] proved that a space (X, τ) is Hausdorff if and only if every compact set is
θ-closed. The complement of a θ-closed set is called a θ-open set. The family
of all θ-open sets forms a topology on X and is denoted by τθ. This topology
is coarser than τ and it is well-known that a space (X, τ) is regular if and
only if τ = τθ. It is also obvious that a set A is θ-closed in (X, τ) if and only
if it is closed in (X, τθ).

Recall that a point x ∈ X is called the δ-cluster point of A ⊆ X if A ∩
Int(Cl(U)) 6= ∅ for every open set U of X containing x. The set of all δ-
cluster points of A is called the δ-closure of A, denoted by Clδ(A). A subset
A ⊆ X is called δ-closed if A = Clδ(A). The complement of a δ-closed set is
called δ-open. It is worth to be noticed that the family of all δ-open subsets of
(X, τ) is a topology on X which is denoted by τδ. The space (X, τδ) is called
sometimes the semi-regularization of (X, τ). As a consequence of definitions,
we have τθ ⊆ τδ ⊆ τ , also A ⊆ Cl(A) ⊆ Clδ(A) ⊆ Clθ(A) ⊆ Āθ, where Āθ

denotes the closure of A with respect to (X, τθ) (see [1]).
A subset A of a space X is called preopen (resp. semi-open, α-open) if

A ⊂ Int(Cl(A)) (resp. A ⊂ Cl(Int(A)), A ⊂ Int(Cl(Int(A)))). The com-
plement of a semi-open (resp. α-open) set is said to be semi-closed (resp.
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α-closed). The intersection of all semi-closed (resp. α-closed) sets contain-
ing A is called the semi-closure (resp. α-closure) of A and is denoted by
sCl(A) (resp. αCl(A)). Recall also that a space (X, τ) is called extremally
disconnected if the closure of each open set is open. Ganster et al. [[5],
Lemma 0.3] have shown that For A ⊂ X, we have A ⊆ sCl(A) ⊆ Clθ(A) and
also if (X, τ) is extremally disconnected and A is a semi-open set in X, then
sCl(A) = Cl(A) = Clθ(A). Moreover, it is well-known that if a set is preopen,
then the concepts of α-closure, δ-closure, closure and θ-closure coincide. In
[13], M. Steiner has obtained some results concerning some characterizations
of some generalizations of T1 spaces by utilizing θ-open and δ-open sets. Also,
quite recently Cao et al. [1] obtained, among others, some substantial results
concerning the θ-closure operator and the related notions. In general, we do
not know much about θ-open sets and dealing with them are very difficult.

2 Properties of θ-open Sets

Definition 1. Let A be a subset of a space X. A point x ∈ X is said to be
θ-limit point of A if for each θ-open set U containing x , U ∩ (A\{x}) 6= ∅.
The set of all θ-limit points of A is called the θ-derived set of A and is denoted
by Dθ(A).

Theorem 2.1. For subsets A,B of a space X, the following statements hold:
(1) D(A) ⊂ Dθ(A) where D(A) is the derived set of A.
(2) If A ⊂ B, then Dθ(A) ⊂ Dθ(B).
(3) Dθ(A) ∪Dθ(B) = Dθ(A ∪B) and Dθ(A ∩B) ⊂ Dθ(A) ∩Dθ(B).
(4) Dθ(Dθ(A))\A ⊂ Dθ(A).
(5) Dθ(A ∪Dθ(A)) ⊂ A ∪Dθ(A).

Proof. (1) It suffices to observe that every θ-open set is open.
(3) Dθ(A ∪ B) = Dθ(A) ∪Dθ(B) is a modification of the standard proof for
D, where open sets are replaced by θ-open sets.
(4) If x ∈ Dθ(Dθ(A))\A and U is a θ-open set containing x, then U ∩
(Dθ(A)\{x}) 6= ∅. Let y ∈ U ∩ (Dθ(A)\{x}). Then since y ∈ Dθ(A) and
y ∈ U , U ∩ (A\{y}) 6= ∅. Let z ∈ U ∩ (A\{y}). Then z 6= x for z ∈ A and
x /∈ A. Hence U ∩ (A\{x}) 6= ∅. Therefore x ∈ Dθ(A).
(5) Let x ∈ Dθ(A∪Dθ(A)). If x ∈ A, the result is obvious. So let x ∈ Dθ(A∪
Dθ(A))\A, then for θ-open set U containing x, U ∩ (A ∪ Dθ(A)\{x}) 6= ∅.
Thus U ∩ (A\{x}) 6= ∅ or U ∩ (Dθ(A)\{x}) 6= ∅. Now it follows similarly
from (4) that U ∩ (A\{x}) 6= ∅. Hence x ∈ Dθ(A). Therefore, in any case
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Dθ(A ∪Dθ(A)) ⊂ A ∪Dθ(A).

In general the equality of (1) and (3) does not hold.

Example 2.2. (i) Let X = I × 2 has the product topology, where I =< 0, 1 >
has the Euclidean topology and 2 = {0, 1} has the Serpiński topology with
the singleton {0} open. Then A ⊂ X is θ-closed (θ-open, respectively) if and
only if A = B × 2, where B ⊂ I is closed (open, respectively).

Observe that if A ⊂ X is θ-closed, then Clθ(A) = A. Let B = πI(A) ⊂ I.
Obviously, A ⊂ B × 2. Let (x, y) ∈ B × 2. Then x ∈ B, so there is some
(x′, y′) ∈ A, such that πI(x′, y′) = x. Hence x′ = x, so (x, y′) ∈ A. Let H be
a closed neighborhood of (x, y). Then H contains both of the points (x, 0),
(x, 1) and so H contains (x, y′) as well. It follows that H ∩ A 6= ∅ and then,
(x, y) ∈ Clθ(A) = A. Hence, A = B× 2. Let z ∈ I\B. Then (z, 0) /∈ A. Since
A is θ-closed, there exist ε > 0 such that (< z − ε, z + ε > ×2)∩A = ∅. Then
< z − ε, z + ε > ∩B = ∅, which means that B is closed.
Let A = I × {1}. Then Dθ(A) = X but D(A) = A. Hence Dθ(A) 6⊂ D(A).

(ii) A counterexample illustrating that Dθ(A ∩ B) 6= Dθ(A) ∩ Dθ(B) in
general can be easily found in regular spaces (e.g. in R), for which open and
θ-open sets (and hence D and Dθ) coincide.

Example 2.3. Let (Z,K) be the digital n-space –the digital line or the so called
Khalimsky line. This is the set of the integers, Z, equipped with the topology
K, generated by :
GK = {{2n− 1, 2n, 2n + 1} : n ∈ Z}. Then [4]: If A = {x}
(i) Clθ(A) 6= Cl(A) if x is even.
(ii) Clθ(A) = Cl(A) if x is odd.

Theorem 2.4. A ∪Dθ(A) ⊂ Clθ(A) .

Proof. Since Dθ(A) ⊂ Clθ(A), A ∪Dθ(A) ⊂ Clθ(A).

Corollary 2.5. If A is a θ-closed subset, then it contains the set of its θ-limit
points.

Definition 2. A point x ∈ X is said to be a θ-interior point of A if there
exists an open set U containing x such that U ⊂ Cl(U) ⊂ A. The set of all
θ-interior points of A is said to be the θ-interior of A [9] and is denoted by
Intθ(A).

It is obvious that an open set U in X is θ-open if Intθ(U) = U [[11],
Definition 1].
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Theorem 2.6. For subsets A,B of a space X, the following statements are
true:
(1) Intθ(A) is the union of all open sets of X whose closures are contained
in A.
(2) A is θ-open if and only if A = Intθ(A).
(3) Intθ(Intθ(A)) ⊂ Intθ(A).
(4) X\Intθ(A) = Clθ(X\A).
(5) X\Clθ(A) = Intθ(X\A).
(6) A ⊂ B, then Intθ(A) ⊂ Intθ(B).
(7) Intθ(A) ∪ Intθ(B) ⊂ Intθ(A ∪B).
(8) Intθ(A) ∩ Intθ(B) = Intθ(A ∩B).

Proof. (5) X\Intθ(A) = ∩{F ∈ X | A ⊂ Int(F ), (Fclosed)} = Clθ(X\A).

Definition 3. bθ(A) = A\Intθ(A) is said to be the θ-border of A.

Theorem 2.7. For a subset A of a space X, the following statements hold:
(1) b(A) ⊂ bθ(A) where b(A) denotes the border of A.
(2) A = Intθ(A) ∪ bθ(A).
(3) Intθ(A) ∩ bθ(A) = ∅.
(4) A is a θ-open set if and only if bθ(A) = ∅.
(5) Intθ(bθ(A)) = ∅.
(7) bθ(bθ(A)) = bθ(A)
(8) bθ(A) = A ∩ Clθ(X\A).

Proof. (5) If x ∈ Intθ(bp(A)), then x ∈ bθ(A). On the other hand, since
bθ(A) ⊂ A, x ∈ Intθ(bp(A)) ⊂ Intθ(A). Hence x ∈ Intθ(A) ∩ bθ(A) which
contradicts (3). Thus Intθ(bp(A)) = ∅.
(8) bθ(A) = A\Intθ(A) = A\(X\Clθ(X\A) = A ∩ Clθ(X\A).

Example 2.8. Let X = {a, b, c} with τ = {∅, {a}, {b}, {a, b}, X}. Then it can
be easily verified that for A = {b},
we obtain bθ(A) 6⊂ b(A) , i.e., in general equality of Theorem 2.7(1) does not
hold.

Definition 4. Frθ(A) = Clθ(A)\Intθ(A) is said to be the θ-frontier [6] of A.

Theorem 2.9. For a subset A of a space X, the following statements hold:
(1) Fr(A) ⊂ Frθ(A) where Fr(A) denotes the frontier of A.
(2) Clθ(A) = Intθ(A) ∪ Frθ(A).
(3) Intθ(A) ∩ Frθ(A) = ∅.
(4) bθ(A) ⊂ Frθ(A).
(5) Frθ(A) = Clθ(A) ∩ Clθ(X\A).
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(6) Frθ(A) = Frθ(X\A).
(7) Frθ(A) is closed.
(8) Intθ(A) = A\Frθ(A).

Proof. (2) Intθ(A) ∪ Frθ(A) = Intθ(A) ∪ (Clθ(A)\Intθ(A)) = Clθ(A).
(3) Intθ(A) ∩ Frθ(A) = Intθ(A) ∩ (Clθ(A)\Intθ(A)) = ∅.
(5) Frθ(A) = Clθ(A)\Intθ(A) = Clθ(A) ∩ Clθ(X\A).
(8) A\Frθ(A) = A\(Clθ(A)\Intθ(A)) = Intθ(A).

In general, the equalities in (1) and (4) of the Theorem 2.9 do not hold as
it is shown by the following example.

Example 2.10. Consider the topological space (X, τ) given in Example 2.8. If
A = {b}. Then Frθ(A) = {b, c} 6⊂ {c} = Fr(A) and also Frθ(A) = {b, c} 6⊂
{b} = bθ(A).

Remark 2.11. Let A and if B subsets of X. Then A ⊂ B does not imply that
either Frθ(B) ⊂ Frθ(A) or Frθ(A) ⊂ Frθ(B). The reader can be verify this
readily.

Definition 5. Extθ(A) = Intθ(X\A) is said to be be a θ-exterior of A.

Theorem 2.12. For a subset A of a space X, the following statements hold:
(1) Extθ(A) ⊂ Ext(A) where Ext(A) denotes the exterior of A.
(2) Extθ(A) is open.
(3) Extθ(A) = Intθ(X\A) = X\Clθ(A).
(4) Extθ(Extθ(A)) = Intθ(Clθ(A)).
(5) If A ⊂ B, then Extθ(A) ⊃ Extθ(B).
(6) Extθ(A ∪B) = Extθ(A) ∪ Extθ(B).
(7) Extθ(A ∩B) ⊃ Extθ(A) ∩ Extθ(B).
(8) Extθ(X) = ∅.
(9) Extθ(∅) = X.
(10) Extθ(X\Extθ(A)) ⊂ Extθ(A).
(11) Intθ(A) ⊂ Extθ(Extθ(A)).
(12) X = Intθ(A) ∪ Extθ(A) ∪ Frθ(A).

Proof. (4) Extθ(Extθ(A)) = Extθ(X\Clθ(A)) = Intθ(X\(X\Clθ(A))) =
Intθ(Clθ(A)).
(10) Extθ(X\Extθ(A)) = Extθ(X\Intθ(X\A)) = Intθ(X\(X\Intθ(X\A)))
= Intθ(Intθ(X\A)) ⊂ Intθ(X\A) = Extθ(A).
(11) Intθ(A) ⊂.Intθ(Clθ(A)) = Intθ(X\Intθ(X\A))) = Intθ(X\Extθ(A)) =
Extθ(Extθ(A)).
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3 Aplications of θ-open Sets

Definition 6. Let X be a topological space. A set A ⊂ X is said to be θ-
saturated if for every x ∈ A it follows Clθ({x}) ⊂ A. The set of all θ-saturated
sets in X we denote by Bθ(X).

Theorem 3.1. Let X be a topological space. Then Bθ(X) is a complete
Boolean set algebra.

Proof. We will prove that all the unions and complements of elements of
Bθ(X) are members of Bθ(X). Obviously, only the proof regarding the com-
plements is not trivial. Let A ∈ Bθ(X) and suppose that Clθ({x}) 6⊂ X\A for
some x ∈ X\A. Then there exists y ∈ A such that y ∈ Clθ({x}). It follows
that x, y have no disjoint neighbourhoods. Then x ∈ Clθ({y}). But this is
a contradiction, because by the definition of Bθ(X) we have Clθ({y}) ⊂ A.
Hence, Clθ({x}) ⊂ X\A for every x ∈ X\A, which implies X\A ∈ Bθ(X).

Corollary 3.2. Bθ(X) contains every union and every intersection of θ-
closed and θ-open sets in X.

A filter base Φ in X has a θ-cluster point x ∈ X if x ∈ ∩{Clθ(F ) | F ∈ Φ}.
The filter base Φ θ-converges to its θ-limit x if for every closed neighbourhood
H of x there is F ∈ Φ such that F ⊂ H. A net f(B,≥) has a θ-cluster point
(a θ-limit) x ∈ X if x is a θ-cluster point (a θ-limit) of the derived filter base
{f(α) | α ≥ β | β ∈ B}.

Recall that a topological space X is said to be (countably) θ-regular [5],
[7] if every (countable) filter base in X with a θ-cluster point has a cluster
point. Obviously, a space X is θ-regular if and only if every θ-convergent net
in X has a cluster point.

Theorem 3.3. Let X be a θ-regular topological space. Then every element
of Bθ(X) is θ-regular.

Proof. Let f(B,≥) be a net in Y ∈ Bθ(X), which θ-converges to y ∈ Y in
the topology of Y . Then f(B,≥) θ-converges to y in X and hence, f(B,≥)
has a cluster point x ∈ X. One can easily check that x, y have no disjoint
neighbourhoods in X, which implies that x ∈ Clθ({y}) and hence x ∈ Y .
Then every θ-convergent net in Y has a cluster point in Y , which implies that
Y is θ-regular.

Recall that a subspace of a topological space is θFσ if it is a union of
countably many θ-closed sets. A subspace of a topological space called θGδ if
it is an intersection of countably many θ-open sets.
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Example 3.4. There is a compact topological space X containing an Fσ-
subspace Y which even is not countably θ-regular.

Proof. Let Y = {2, 3, . . .}, Ux = {n · x|n = 1, 2, . . .} for every x ∈ Y . The
family S = {Ux : x ∈ Y } defines a topology (as its base) on Y . Since Ux∩Uy 6=
∅ for every x, y ∈ Y , every open non-empty set U ⊂ Y has ClY U = Y . It
follows that the net id(P,≥), where P is the set of all prime numbers with
their natural order ≥, is clearly θ-convergent, but with no cluster point in Y .
It follows that Y is not countably θ-regular. Let X = {1} ∪ Y and take on
X the topology of Alexandroff’s compactification of Y . To see that Y is an
Fσ-subspace of X, let Kx = Y \⋃

y>x Uy for every x ∈ Y . Every Kx is closed,
finite, and hence compact in topology of Y . It follows that Kx is closed in X.
Since x ∈ Kx, Y =

⋃∞
x=2 Kx.

Corollary 3.5. In contrast to Fσ-subspaces, every θFσ-subspace of a θ-regular
space is θ-regular.

Corollary 3.6. Every θGδ-subspace of a θ-regular space is θ-regular.
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