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On the Approximation Numbers

of Large Toeplitz Matrices

A. B

�

ottcher

�

Received: January 14, 1997

Communicated by Alfred K. Louis

Abstract. The kth approximation number s

(p)

k

(A

n

) of a complex n� n

matrix A

n

is de�ned as the distance of A

n

to the n� n matrices of rank at

most n � k. The distance is measured in the matrix norm associated with

the l

p

norm (1 < p < 1) on C

n

. In the case p = 2, the approximation

numbers coincide with the singular values.

We establish several properties of s

(p)

k

(A

n

) provided A

n

is the n� n trunca-

tion of an in�nite Toeplitz matrixA and n is large. As n!1, the behavior

of s

(p)

k

(A

n

) depends heavily on the Fredholm properties (and, in particular,

on the index) of A on l

p

.

This paper is also an introduction to the topic. It contains a concise history

of the problem and alternative proofs of the theorem by G. Heinig and F.

Hellinger as well as of the scalar-valued version of some recent results by S.

Roch and B. Silbermann concerning block Toeplitz matrices on l

2

.

1991 Mathematics Subject Classi�cation: Primary 47B35; Secondary 15A09,

15A18, 15A60, 47A75, 47A58, 47N50, 65F35

1. Introduction

Throughout this paper we tacitly identify a complex n� n matrix with the operator

it induces on C

n

. For 1 < p <1, we denote by C

n

p

the space C

n

with the l

p

norm,

kxk

p

:=

�

jx

1

j

p

+ : : :+ jx

n

j

p

�

1=p

;

and given a complex n� n matrix A

n

, we put

kA

n

k

p

:= sup

x 6=0

�

kA

n

xk

p

=kxk

p

�

: (1)

�

Research supported by the Alfried Krupp F�orderpreis f�ur junge Hochschullehrer of the Krupp

Foundation
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We let B(C

n

p

) stand for the Banach algebra of all complex n � n matrices with the

norm (1). For j 2 f0; 1; : : : ; ng, let F

(n)

j

be the collection of all complex n� n matrices

of rank at most j, i.e., let

F

(n)

j

:=

n

F 2 B(C

n

p

) : dimImF � j

o

:

The kth approximation number (k 2 f0; 1; : : : ; ng) of A

n

2 B(C

n

p

) is de�ned as

s

(p)

k

(A

n

) := dist (A

n

;F

(n)

n�k

) := min

n

kA

n

� F

n

k

p

: F

n

2 F

(n)

n�k

o

: (2)

(note that F

(n)

j

is a closed subset of B(C

n

p

)). Clearly,

0 = s

(p)

0

(A

n

) � s

(p)

1

(A

n

) � : : : � s

(p)

n

(A

n

) = kA

n

k

p

:

It is easy to show (see Proposition 9.2) that

s

(p)

1

(A

n

) =

�

1=kA

�1

n

k

p

if A

n

is invertible;

0 if A

n

is not invertible:

(3)

Notice also that in the case p = 2 the approximation numbers s

(2)

1

(A

n

); : : : ; s

(2)

n

(A

n

)

are just the singular values of A

n

, i.e., the eigenvalues of (A

�

n

A

n

)

1=2

.

Let T be the complex unit circle and let a 2 L

1

:= L

1

(T). The n� n Toeplitz

matrix T

n

(a) generated by a is the matrix

T

n

(a) := (a

j�k

)

n

j;k=1

(4)

where a

l

(l 2 Z) is the lth Fourier coe�cient of a,

a

l

:=

1

2�

2�

Z

0

a(e

i�

)e

�il�

d�:

This paper is devoted to the limiting behavior of the numbers s

(p)

k

(T

n

(a)) as n goes

to in�nity.

Of course, the study of properties of T

n

(a) as n!1 leads to the consideration

of the in�nite Toeplitz matrix

T (a) := (a

j�k

)

1

j;k=1

:

The latter matrix induces a bounded operator on l

2

:= l

2

(N) if (and only if) a 2 L

1

.

Acting with T (a) on l

p

:= l

p

(N) is connected with a multiplier problem in case p 6= 2.

We let M

p

stand for the set of all a 2 L

1

for which T (a) generates a bounded operator

on l

p

. The norm of this operator is denoted by kT (a)k

p

. The function a is usually

referred to as the symbol of T (a) and T

n

(a).

In this paper, we prove the following results.

Theorem 1.1. If a 2M

p

then for each k,

s

(p)

n�k

�

T

n

(a)

�

! kT (a)k

p

as n!1:

Documenta Mathematica 2 (1997) 1{29



Approximation Numbers of Toeplitz Matrices 3

Theorem 1.2. If a 2M

p

and T (a) is not normally solvable on l

p

then for each k,

s

(p)

k

�

T

n

(a)

�

! 0 as n!1

Let M

h2i

:= L

1

. For p 6= 2, we de�ne M

hpi

as the set of all functions a 2 L

1

which belong to M

~p

for all ~p in some open neighborhood of p (which may depend on

a). A well known result by Stechkin says that a 2 M

p

for all p 2 (1;1) whenever

a 2 L

1

and the total variation V

1

(a) of a is �nite and that in this case

kT (a)k

p

� C

p

�

kak

1

+ V

1

(a)

�

(5)

with some constant C

p

< 1 (see, e.g., [5, Section 2.5(f)] for a proof). We denote by

PC the closed subalgebra of L

1

constituted by all piecewise continuous functions.

Thus, a 2 PC if and only if a 2 L

1

and the one-sided limits

a(t � 0) := lim

"!0�0

a(e

i(�+")

)

exist for every t = e

i�

2 T. By virtue of (5), the intersection PC \M

hpi

contains all

piecewise continuous functions of �nite total variation.

Throughout what follows we de�ne q 2 (1;1) by 1=p+ 1=q = 1 and we put

[p; q] :=

h

minfp; qg;maxfp; qg

i

:

One can show that if a 2 M

p

, then a 2 M

r

for all r 2 [p; q] (see, e.g., [5, Section

2.5(c)]).

Here is the main result of this paper.

Theorem 1.3. Let a be a function in PC \M

hpi

and suppose T (a) is Fredholm of

the same index �k (2 Z) on l

r

for all r 2 [p; q]. Then

lim

n!1

s

(p)

jkj

�

T

n

(a)

�

= 0 and lim inf

n!1

s

(p)

jkj+1

�

T

n

(a)

�

> 0:

For p = 2, Theorems 1.2 and 1.3 are special cases of results by Roch and Silber-

mann [20], [21]. Since a Toeplitz operator on l

2

with a piecewise continuous symbol

is either Fredholm (of some index) or not normally solvable, Theorems 1.2 and 1.3

completely identify the approximation numbers (= singular values) which go to zero

in the case p = 2.

Now suppose p 6= 2. If a 2 C \M

hpi

, then T (a) is again either Fredholm or

not normally solvable, and hence Theorems 1.2 and 1.3 are all we need to see which

approximation numbers converge to zero. In the case where a 2 PC \M

hpi

we have

three mutually excluding possibilities (see Section 3):

(i) T (a) is Fredholm of the same index �k on l

r

for all r 2 [p; q];

(ii) T (a) is not normally solvable on l

p

or not normally solvable on l

q

;

Documenta Mathematica 2 (1997) 1{29



4 A. B
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(iii) T (a) is normally solvable on l

p

and l

q

but not normally solvable on l

r

for some

r 2 (p; q) := [p; q] n fp; qg.

In the case (i) we can apply Theorem 1.3. Since

s

(p)

k

�

T

n

(a)

�

= s

(q)

k

�

T

n

(a)

�

(6)

(see (35)), Theorem 1.2 disposes of the case (ii). I have not been able to settle the

case (iii). My conjecture is as follows.

Conjecture 1.4. In the case (iii) we have

s

(p)

k

�

T

n

(a)

�

! 0 as n!1

for every �xed k.

The paper is organized as follows. Section 2 is an attempt at presenting a short

history of the topic. In Section 3 we assemble some results on Toeplitz operators

on l

p

which are needed to prove the three theorems stated above. Their proofs are

given in Sections 4 to 6. The intention of Sections 7 and 8 is to illustrate how

some simple constructions show a very easy way to understand the nature of the

Heinig/Hellinger and Roch/Silbermann results. Notice, however, that the approach

of Sections 7 and 8 cannot replace the methods of these authors. They developed some

sort of high technology which enabled them to tackle the block case and more general

approximation methods, while in these two sections it is merely demonstrated that in

the scalar case (almost) all problems can be solved with the help of a few crowbars

(Theorems 7.1, 7.2, 7.4). Nevertheless, beginners will perhaps appreciate reading

Sections 7 and 8 before turning to the papers [13] and [25], [20].

2. Brief history

The history of the lowest approximation number s

(p)

1

(T

n

(a)) is the history of the �nite

section method for Toeplitz operators: by virtue of (3), we have

s

(p)

1

�

T

n

(a)

�

! 0() kT

�1

n

(a)k

p

!1:

We denote by �

k

(l

p

) the collection of all Fredholm operators of index k on l

p

. The

equivalence

lim sup

n!1

kT

�1

n

(a)k

p

<1() T (a) 2 �

0

(l

p

) (7)

was proved by Gohberg and Feldman [7] in two cases: if a 2 C\M

hpi

(where C stands

for the continuous functions on T) or if p = 2 and a 2 PC. For a 2 PC \M

hpi

, the

equivalence

lim sup

n!1

kT

�1

n

(a)k

p

<1() T (a) 2 �

0

(l

r

) for all r 2 [p; q] (8)

Documenta Mathematica 2 (1997) 1{29



Approximation Numbers of Toeplitz Matrices 5

holds. This was shown by Verbitsky and Krupnik [30] in the case where a has a single

jump, by Silbermann and the author [3] for symbols with �nitely many jumps, and

�nally by Silbermann [23] for symbols with a countable number of jumps. In the work

of many authors, including Ambartsumyan, Devinatz, Shinbrot, Widom, Silbermann,

it was pointed out that (7) is also true if

p = 2 and a 2 (C +H

1

) [ (C + H

1

) [ PQC

(see [4], [5]). Also notice that the implication \=)" of (8) is valid for every a 2M

p

.

Treil [26] proved that there exist symbols a 2 M

h2i

= L

1

such that T (a) 2 �

0

(l

2

)

but kT

�1

n

(a)k

2

is not uniformly bounded; concrete symbols with this property can be

found in the recent article [2, Section 7.7].

The Toeplitz matrices

T

n

('




) =

�

1

j � k + 


�

n

j;k=1

(
 62 Z)

are the elementary building blocks of general Toeplitz matrices with piecewise contin-

uous symbols and have therefore been studied for some decades. The symbol is given

by

'




(e

i�

) =

�

sin�


e

i�


e

�i
�

; � 2 [0; 2�):

This is a function in PC with a single jump at e

i�

= 1. Tyrtyshnikov [27] focussed

attention on the singular values of T

n

('




). He showed that

s

(2)

1

�

T

n

('




)

�

= O(1=n

j
j�1=2

) if 
 2 R and j
j > 1=2

and that there are constants c

1

; c

2

2 (0;1) such that

c

1

= logn � s

(2)

1

�

T

n

('

1=2

)

�

� c

2

= logn:

Curiously, the case j
j < 1=2 was left as an open problem in [27], although from the

standard theory of Toeplitz operators with piecewise continuous symbols it is well

known that

T ('




) 2 �

0

(l

2

)() jRe
j < 1=2

(see, e.g., [7, Theorem IV.2.1] or [5, Proposition 6.24]), which together with (7) (for

p = 2 and a 2 PC) implies that

lim inf

n!1

s

(2)

1

�

T

n

('




)

�

= 0 if jRe 
j � 1=2 (9)

and

lim inf

n!1

s

(2)

1

�

T

n

('




)

�

> 0 if jRe 
j < 1=2

(see [20]). A simple and well known argument (see the end of Section 3) shows that

in (9) the liminf can actually be replaced by lim.

Also notice that it was already in the seventies when Verbitsky and Krupnik [30]

proved that

lim

n!1

s

(p)

1

�

T

n

('




)

�

= 0 () jRe
j � minf1=p; 1=qg

Documenta Mathematica 2 (1997) 1{29
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(full proofs are also in [4, Proposition 3.11] and [5, Theorem 7.37; in part (iii) of

that theorem there is a misprint: the �1=p < Re � < 1=q must be replaced by

�1=q < Re� < 1=p]).

As far as I know, collective phenomena of s

(p)

1

(T

n

(a)); : : : ; s

(p)

n

(T

n

(a)) have been

studied only for p = 2, and throughout the rest of this section we abbreviate

s

(2)

k

(T

n

(a)) to s

k

(T

n

(a)).

In 1920, Szeg�o showed that if a 2 L

1

is real-valued and F is continuous on R,

then

1

n

n

X

k=1

F

�

s

k

(T

n

(a))

�

!

1

2�

2�

Z

0

F

�

ja(e

i�

)j

�

d�: (10)

In the eighties, Parter [15] and Avram [1] extended this result to arbitrary (complex-

valued) symbols a 2 L

1

. Formula (10) implies that

n

s

k

(T

n

(a))

o

n

k=1

and

n

ja(e

2�ik=n

)j

o

n

k=1

(11)

are equally distributed (see [9] and [29]).

Research into the asymptotic distribution of the singular values of Toeplitz ma-

trices was strongly motivated by a phenomenon discovered by C. Moler in the middle

of the eighties. Moler observed that almost all singular values of T

n

('

1=2

) are concen-

trated in [�� "; �] where " is very small. Formula (10) provides a way to understand

this phenomenon: letting F = 1 on [0; �� 2"] and F = 0 on [�� "; �] and taking into

account that j'

1=2

j = 1, one gets

1

n

n

X

k=1

F

�

s

k

(T

n

('

1=2

))

�

!

1

2�

2�

Z

0

F (1) d� = F (1) = 0;

which shows that the percentage of the singular values of T

n

('

1=2

) which are located

in [0; �� 2"] goes to zero as n increases to in�nity.

Widom [32] was the �rst to establish a second order result on the asymptotics of

singular values. Under the assumption that

a 2 L

1

and

X

n2Z

jnj ja

n

j

2

<1

and that F 2 C

3

(R), he showed that

n

X

k=1

F

�

s

2

k

(T

n

(a))

�

=

n

2�

2�

Z

0

F

�

ja(e

i�

)j

2

�

d� +E

F

(a) + o(1)

with some constant E

F

(a), and he gave an expression for E

F

(a). He also introduced

two limiting sets of the sets

�(T

n

(a)) :=

n

s

1

(T

n

(a)); : : : ; s

n

(T

n

(a))

o

;

Documenta Mathematica 2 (1997) 1{29



Approximation Numbers of Toeplitz Matrices 7

which, following the terminology of [19], are de�ned by

�

part

�

�(T

n

(a))

�

:= f� 2 R : � is partial limit of some sequence

f�

n

g with �

n

2 �(T

n

(a))g;

�

unif

�

�(T

n

(a))

�

:= f� 2 R : � is the limit of some sequence

f�

n

g with �

n

2 �(T

n

(a))g:

It turned out that for large classes of symbols a we have

�

part

�

�(T

n

(a))

�

= �

unif

�

�(T

n

(a))

�

= sp

�

T (a)T (a)

�

1=2

(12)

where spA := f� 2 C : A � �I is not invertibleg denotes the spectrum of A (on

l

2

) and a is de�ned by a(e

i�

) := a(e

i�

). Note that T (a) is nothing but the adjoint

T

�

(a) of T (a). Widom [32] proved (12) under the hypothesis that a 2 PC or that a

is locally self-adjoint, while Silbermann [24] derived (12) for locally normal symbols.

Notice that symbols in PC or even in PQC are locally normal.

In the nineties, Tyrtyshnikov [28], [29] succeeded in proving that the sets (11) are

equally distributed under the sole assumption that a 2 L

2

:= L

2

(T). His approach

is based on the observation that if kA

n

� B

n

k

F

= o(n), where k � k

F

stands for

the Frobenius (or Hilbert-Schmidt) norm, then A

n

and B

n

have equally distributed

singular values. The result mentioned can be shown by taking A

n

= T

n

(a) and

choosing appropriate circulants for B

n

.

The development received a new impetus from Heinig and Hellinger's 1994 paper

[13]. They considered normally solvable Toeplitz operators on l

2

and studied the

problem whether the Moore-Penrose inverses of T

+

n

(a) of T

n

(a) converge strongly on

l

2

to the Moore-Penrose inverse T

+

(a) of T (a). Recall that the Moore-Penrose inverse

of a normally solvable Hilbert space operator A is the (uniquely determined) operator

A

+

satisfying

AA

+

A = A; A

+

AA

+

= A

+

; (A

+

A)

�

= A

+

A; (AA

+

)

�

= AA

+

:

If a 2 C, then T (a) is normally solvable on l

2

if and only if a(t) 6= 0 for all t 2 T.

When writing T

+

n

(a)! T

+

(a), we actually mean that T

+

n

(a)P

n

! T

+

(a), where P

n

is the projection de�ned by

P

n

: fx

1

; x

2

; x

3

; : : :g 7! fx

1

; x

2

; : : : ; x

n

; 0; 0; : : :g: (13)

It is not di�cult to verify that T

+

n

(a) ! T

+

(a) strongly on l

2

if and only if T (a) is

normally solvable and

lim sup

n!1

kT

+

n

(a)k

2

<1: (14)

Heinig and Hellinger investigated normally solvable Toeplitz operators T (a) with

symbols in the Wiener algebra W ,

a 2W () kak

W

:=

X

n2Z

ja

n

j <1;

and they showed that then (14) is satis�ed if and only if there is an n

0

� 1 such that

Ker T (a) � ImP

n

0

and Ker T (a) � ImP

n

0

; (15)

Documenta Mathematica 2 (1997) 1{29



8 A. B

�

ottcher

where KerA := fx 2 l

2

: Ax = 0g and ImA := fAx : x 2 l

2

g. (This formulation of

the Heinig-Hellinger result is due to Silbermann [25].) Conditions (15) are obviously

met if T (a) is invertible, in which case even kT

�1

n

(a)k

2

is uniformly bounded. The

really interesting case is the one in which T (a) is not invertible, and in that case (15)

and thus (14) are highly instable. For example, if a is a rational function (without

poles on T) and � 2 spT (a), then

lim sup

n!1

kT

+

n

(a� �)k

2

<1 (16)

can only hold if � belongs to spT

n

(a) for all su�ciently large n. Consequently, (16)

implies that � lies in �

unif

(sp T

n

(a)), and the latter set is extremely \thin": it is

contained in a �nite union of analytic arcs (see [22] and [6]).

What has Moore-Penrose invertibility to do with singular values ? The answer

is as follows: if A

n

2 B(C

n

2

) and s

k

(A

n

) is the smallest nonzero singular value of A

n

,

then

kA

+

n

k

2

= 1=s

k

(A

n

):

Thus, (14) holds exactly if there exists a d > 0 such that

�(T

n

(a)) � f0g [ [d;1) (17)

for all su�ciently large n.

Now Silbermann enters the scene. He replaced the Heinig-Hellinger problem by

another one. Namely, given T (a), is there a sequence fB

n

g of operators B

n

2 B(C

n

2

)

with the following properties: there exists a bounded operator B on l

2

such that

B

n

! B and B

�

n

! B

�

strongly on l

2

and

kT

n

(a)B

n

T

n

(a) � T

n

(a)k

2

! 0; kB

n

T

n

(a)B

n

�B

n

k

2

! 0;

k(B

n

T

n

(a))

�

�B

n

T

n

(a)k

2

! 0; k(T

n

(a)B

n

)

�

� T

n

(a)B

n

k

2

! 0 ?

Such a sequence fB

n

g is referred to as an asymptotic Moore-Penrose inverse of T (a).

In view of the (instable) conditions (15), the following result by Silbermann [25] is

surprising: if a 2 PC and T (a) is normally solvable, then T (a) always has an asymp-

totic Moore-Penrose inverse. And what is the concern of this result with singular

values ? One can easily show T (a) has an asymptotic Moore-Penrose inverse if and

only if there is a sequence c

n

! 0 and a number d > 0 such that

�(T

n

(a)) � [0; c

n

] [ [d;1): (18)

One says that �(T

n

(a)) has the splitting property if (18) holds with c

n

! 0 and d > 0.

Thus, Silbermann's result implies that if a 2 PC and T (a) is normally solvable on l

2

,

then �(T

n

(a)) has the splitting property.

Only recently, Roch and Silbermann [20], [21] were able to prove even much

more. The sets �(T

n

(a)) are said to have the k-splitting property, where k � 0 is an

integer, if (18) is true for some sequence c

n

! 0 and some d > 0 and, in addition,

exactly k singular values lie in [0; c

n

] and n � k singular values are located in [d;1)
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(here multiplicities are taken into account). Equivalently, �(T

n

(a)) has the k-splitting

property if and only if

lim

n!1

s

k

(T

n

(a)) = 0 and lim inf

n!1

s

k+1

(T

n

(a)) > 0: (19)

A normally solvable Toeplitz operator T (a) on l

2

with a symbol a 2 PC is

automatically Fredholm and therefore has some index k 2 Z. Roch and Silbermann

[20], [21] discovered that then �(T

n

(a)) has the jkj-splitting property. In other words,

if a 2 PC and T (a) 2 �

k

(l

2

) then (19) holds with k replaced by jkj. Notice that this

Theorem 1.3 for p = 2.

In fact, it was the Roch and Silbermann papers [20], [21] which stimulated me

to do some thinking about singular values. It was the feeling that the jkj-splitting

property must have its root in the possibility of \ignoring jkj dimensions" which led

me to the observation that none of the works cited in this section makes use of the fact

that s

k

(A

n

) may alternatively be de�ned by (2), i.e. that singular values may also be

viewed as approximation numbers. I then realized that some basic phenomena of [20]

and [21] can be very easily understood by having recourse to (2) and that, moreover,

using (2) is a good way to pass from l

2

and C

�

-algebras to l

p

and Banach algebras.

3. Toeplitz operators on l

p

We henceforth always assume that 1 < p <1 and 1=p+ 1=q = 1.

Let M

p

and M

hpi

be as in Section 1. The set M

p

can be shown to be a Banach

algebra with pointwise algebraic operations and the norm kak

M

p

:= kT (a)k

p

. It is

also well known that

M

p

= M

q

� M

2

= L

1

and

kak

M

p

= kak

M

q

� kak

M

2

= kak

1

(20)

(see, e.g., [5, Section 2.5]). We remark that working with M

hpi

instead of M

p

is caused

by the need of somehow reversing the estimate in (20). Suppose, for instance, p > 2

and a 2 M

hpi

. Then a 2 M

p+"

for some " > 0, and the Riesz-Thorin interpolation

theorem gives

kak

M

p

� kak




M

2

kak

1�


p+"

= kak




1

kak

1�


M

p+"

(21)

with some 
 2 (0; 1) depending only on p and ". The kak

M

p+"

on the right of (21) may

in turn be estimated by C

p

(kak

1

+ V

1

(a)) (recall Stechkin's inequality (5)) provided

a has bounded total variation.

A bounded linear operator A on l

p

is said to be normally solvable if its range,

ImA, is a closed subset of l

p

. The operator A is called Fredholm if it is normally

solvable and the spaces

KerA := fx 2 l

p

: Ax = 0g and CokerA := l

p

=ImA

have �nite dimensions. In that case the index IndA is de�ned as

IndA := dimKerA � dimCokerA:
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We denote by �(l

p

) the collection of all Fredholm operators on l

p

and by �

k

(l

p

) the

operators in �(l

p

) whose index is k. The following four theorems are well known.

Comments are at the end of this section.

Theorem 3.1. Let a 2M

p

.

(a) If a does not vanish identically, then the kernel of T (a) on l

p

or the kernel of T (a)

on l

q

is trivial.

(b) The operator T (a) is invertible on l

p

if and only if T (a) 2 �

0

(l

p

).

Of course, part (b) is a simple consequence of part (a).

Theorem 3.2. Let a 2 C \M

hpi

. Then T (a) is normally solvable on l

p

if and only

if a(t) 6= 0 for all t 2 T. In that case T (a) 2 �(l

p

) and

IndT (a) = �wind a;

where winda is the winding number of a about the origin.

Now let a 2 PC; t 2 T, and suppose a(t � 0) 6= a(t + 0). We denote by

A

p

(a(t � 0); a(t+ 0))

the circular arc at the points of which the line segment [a(t�0); a(t+0)] is seen at the

angle maxf2�=p; 2�=qg and which lies on the right of the straight line passing �rst

a(t � 0) and then a(t + 0) if 1 < p < 2 and on the left of this line if 2 < p <1. For

p = 2, A

p

(a(t�0); a(t+0)) is nothing but the line segment [a(t�0); a(t+0)] itself. Let

a

#

p

denote the closed, continuous, and naturally oriented curve which results from the

(essential) range R(a) of a by �lling in the arcs A

p

(a(t � 0); a(t+ 0)) for each jump.

In case this curve does not pass through the origin, we let winda

#

p

be its winding

number.

Theorem 3.3. Let a 2 PC \M

hpi

. Then T (a) is normally solvable on l

p

if and only

if 0 62 a

#

p

. In that case T (a) 2 �(l

p

) and

IndT (a) = �wind a

#

p

:

For a 2 PC and t 2 T, put

O

p

�

a(t � 0); a(t+ 0)

�

:=

[

r2[p;q]

A

r

�

a(t � 0); a(t+ 0)

�

: (22)

If a(t� 0) 6= a(t+ 0) and p 6= 2, then O

p

(a(t� 0); a(t+ 0)) is a certain lentiform set.

Also for a 2 PC, let

a

#

[p;q]

:=

[

r2[p;q]

a

#

r

:
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Thus, a

#

[p;q]

results from R(a) by �lling in the sets (22) between the endpoints of the

jumps. If 0 62 a

#

[p;q]

, then necessarily 0 62 a

#

2

and we de�ne winda

#

[p;q]

as wind a

#

2

in

this case.

From Theorem 3.3 we deduce that the conditions (i) to (iii) of Section 1 are

equivalent to the following:

(i') 0 62 a

#

[p;q]

and wind a

#

[p;q]

= k;

(ii') 0 2 a

#

p

[ a

#

q

;

(iii') 0 2 a

#

[p;q]

n (a

#

p

[ a

#

q

).

For a 2 M

p

, let T

n

(a) 2 B(C

n

p

) be the operator given by the matrix (4). One

says that the sequence fT

n

(a)g := fT

n

(a)g

1

n=1

is stable if

lim sup

n!1

kT

�1

n

(a)k

p

<1:

Here we follow the practice of putting

kT

�1

n

(a)k

p

=1 if T

n

(a) is not invertible.

In other words, fT

n

(a)g is stable if and only if T

n

(a) is invertible for all n � n

0

and

there exists a constant M < 1 such that kT

�1

n

(a)k

p

� M for all n � n

0

. From (3)

we infer that

fT

n

(a)g is stable () lim inf

n!1

s

(p)

1

(T

n

(a)) > 0:

Theorem 3.4. (a) If a 2 C \M

hpi

then

fT

n

(a)g is stable () 0 62 a(T) and winda = 0:

(b) If a 2 PC \M

hpi

then

fT

n

(a)g is stable () 0 62 a

#

[p;q]

and winda

#

[p;q]

= 0:

As already said, these theorems are well known. Theorem 3.1 is due to Coburn

(p = 2) and Duduchava (p 6= 2), Theorem 3.2 is Gohberg and Feldman's, Theorem

3.3 is the result of many authors in the case p = 2 and was established by Duduchava

for p 6= 2, Theorem 3.4 goes back to Gohberg and Feldman for a 2 C \M

hpi

(general

p) and a 2 PC (p = 2), and it was obtained in the work of Verbitsky, Krupnik,

Silbermann, and the author for a 2 PC \M

hpi

and p 6= 2. Precise historical remarks

and full proofs are in [5].

Part (a) of Theorem 3.4 is clearly a special case of part (b). In fact, Theo-

rem 3.4(b) may also be stated as follows: fT

n

(a)g contains a stable subsequence
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fT

n

j

(a)g (n

j

! 1) if and only if 0 62 a

#

[p;q]

and wind a

#

[p;q]

= 0. Hence, we arrive at

the conclusion that if a 2 PC \M

hpi

, then

s

(p)

1

(T

n

(a))! 0

() fT

n

(a)g is stable

() 0 2 a

#

[p;q]

or

�

0 62 a

#

[p;q]

and winda

#

[p;q]

6= 0

�

:

At this point the question of whether the lowest approximation number of T

n

(a) goes

to zero or not is completely disposed of for symbols a 2 PC \M

hpi

.

4. Proof of Theorem 1.1.

Contrary to what we want, let us assume that there is a c < kT (a)k

p

such

that s

(p)

n�k

(T

n

(a)) � c for all n in some in�nite set N . Since s

(p)

n�k

(T

n

(a)) =

dist (T

n

(a);F

(n)

k

), we can �nd F

n

2 F

(n)

k

(n 2 N ) so that kT

n

(a) � F

n

k

p

� c. For

x = (x

1

; : : : ; x

n

) and y = (y

1

; : : : ; y

n

), we de�ne

(x; y) := x

1

y

1

+ : : :+ x

n

y

n

: (23)

By [16, Lemma B.4.11], there exist e

(n)

j

2 C

n

p

; f

(n)

j

2 C

n

p

; 


(n)

j

2 C such that

F

n

x =

k

X

j=1




(n)

j

�

x; f

(n)

j

�

e

(n)

j

(x 2 C

n

p

);

ke

(n)

j

k

p

= 1; kf

(n)

j

k

q

= 1, and

j


(n)

j

j � kF

n

k

p

� kT

n

(a)k

p

+ kF

n

� T

n

(a)k

p

� kT (a)k

p

+ c (24)

for all j 2 f1; : : : ; kg.

Fix x 2 C

n

p

; y 2 C

n

q

and suppose kxk

p

= 1; kyk

q

= 1. We then have

�

�

�

�

T

n

(a)x; y

�

�

k

X

j=1




(n)

j

�

x; f

(n)

j

��

e

(n)

j

; y

�

�

�

�

� kT

n

(a)� F

n

k

p

� c: (25)

Clearly, (T

n

(a)x; y)! (T (a)x; y). From (24) and the Bolzano-Weierstrass theorem we

infer that the sequence f(


(n)

1

; : : : ; 


(n)

k

)g

n2N

has a converging subsequence. Without

loss of generality suppose the sequence itself converges, i.e.

�




(n)

1

; : : : ; 


(n)

k

�

! (


1

; : : : ; 


k

) 2 C

k

as n 2 N goes to in�nity. The vectors e

(n)

j

and f

(n)

j

all belong to the unit sphere

of l

p

and l

q

, respectively. Hence, by the Banach-Alaoglu theorem (see, e.g., [18,

Theorem IV.21]), fe

(n)

j

g

n2N

and ff

(n)

j

g

n2N

have subsequences converging in the

weak �-topology. Again we may without loss of generality assume that

e

(n)

j

! e

j

2 l

p

; f

(n)

j

! f

j

2 l

q
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in the weak �-topology as n 2 N goes to in�nity.

From (25) we now obtain that if x 2 l

p

and y 2 l

q

have �nite support and

kxk

p

= 1; kyk

q

= 1, then

�

�

�

�

T (a)x; y)

�

�

k

X

j=1




j

(x; f

j

)(e

j

; y)

�

�

�

� c:

This implies that

kT (a) � Fk

p

� c (26)

where F is the �nite-rank operator given by

Fx :=

k

X

j=1




j

(x; f

j

)e

j

(x 2 l

p

): (27)

Let kT (a)k

(ess)

denote the essential norm of T (a) on l

p

, i.e. the distance of T (a) to

the compact operators on l

p

. By (26) and (27),

kT (a)k

(ess)

p

� kT (a)� Fk

p

� c < kT (a)k

p

:

However, one always has kT (a)k

(ess)

p

= kT (a)k

p

(see, e.g., [5, Proposition 4.4(d)]).

This contradiction completes the proof.

5. Proof of Theorem 1.2.

We will employ the following two results.

Theorem 5.1. Let A be a bounded linear operator on l

p

.

(a) The operator A is normally solvable on l

p

if and only if

k

A

:= sup

x2l

p

; kxk

p

=1

dist (x;KerA) <1:

(b) If M is a closed subspace of l

p

and dim(l

p

=M ) < 1, then the normal solv-

ability of AjM : M ! l

p

is equivalent to the normal solvability of A : l

p

! l

p

.

A proof is in [8, pp. 159{160].

Theorem 5.2. IfM is a k-dimensional subspace of C

n

p

, then there exists a projection

� : C

n

p

! C

n

p

such that Im� = M and k�k

p

� k.

This is a special case of [16, Lemma B.4.9].

Theorem 1.2 is trivial in case a vanishes identically. So suppose a 2M

p

nf0g and

T (a) is not normally solvable on l

p

. Then the adjoint operator T (a) is not normally

solvable on l

q

. By Theorem 3.1(a), KerT (a) = f0g on l

p

or Ker T (a) = f0g on l

q

.
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Since s

(p)

k

(T

n

(a)) = s

(q)

k

(T

n

(a)), we may a priori assume that Ker T (a) = f0g on l

p

.

Abbreviate T (a) and T

n

(a) to A and A

n

, respectively.

De�ne P

n

on l

p

by (13) and let

V := l

p

! l

p

; fx

1

; x

2

; x

3

; : : :g 7! f0; x

1

; x

2

; x

3

; : : :g:

As AjImV

n

: ImV

n

! l

p

has the same matrix as AV

n

: l

p

! l

p

, we deduce from

Theorem 5.1(b) that there is no n � 0 such that AV

n

is normally solvable. Note that

Ker (AV

n

) = f0g for all n � 0.

Let l

p

(n

1

; n

2

] denote the sequences fx

j

g

1

j=1

2 l

p

which are supported in (n

1

; n

2

],

i.e., for which x

j

= 0 whenever j � n

1

or j > n

2

.

Lemma 5.3. There are 0 = N

0

< N

1

< N

2

< : : : and z

j

2 l

p

(N

j�1

; N

j

] (j � 1) such

that

kz

j

k

p

= 1 and kAz

j

k

p

! 0 as j !1:

Proof. By Theorem 5.1(a), there is a y

1

2 l

p

such that ky

1

k

p

= 2 and kAy

1

k <

1=2. If N

1

is large enough, then kP

N

1

y

1

k

p

� 1 and kAP

N

1

y

1

k

p

< 1. Letting z

1

:=

P

N

1

y

1

=kP

N

1

y

1

k

p

we get

z

1

2 l

p

(0; N

1

]; kz

1

k

p

= 1; kAz

1

k

p

< 1:

Applying Theorem 5.1(a) to the operator AV

N

1

, we see that there is an y

2

2 l

p

such that ky

2

k

p

= 2 and kAV

N

1

y

2

k

p

< 1=4. For su�ciently large N

2

> N

1

we have

kP

N

2

V

N

1

y

2

k

p

� 1 and kAP

N

2

V

N

1

y

2

k

p

< 1=2. Setting

z

2

:= P

N

2

V

N

1

y

2

=kP

N

2

V

N

1

y

2

k

p

;

we therefore obtain

z

2

2 l

p

(N

1

; N

2

]; kz

2

k

p

= 1; kAz

2

k

p

< 1=2:

Continuing in this way we �nd z

j

satisfying

z

j

2 l

p

(N

j�1

; N

j

]; kz

j

k

p

= 1; kAz

j

k

p

< 1=j:

Contrary to the assertion of Theorem 1.2, let us assume that there exist k � 1

and d > 0 such that s

(p)

k

(A

n

) � d for in�nitely many n. We may without loss of

generality assume that

s

(p)

k

(A

n

) � d for all n � n

0

: (28)

Let " > 0 be any number such that

2"k

2

< d: (29)

Choose z

j

as in Lemma 5.3. Obviously, there are su�ciently large j and N such that

kP

N

z

l

k

p

� 1=2; kAP

N

z

l

k

p

< " for l 2 fj + 1; : : : ; j + kg: (30)
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Approximation Numbers of Toeplitz Matrices 15

Since P

N

z

l

2 l

p

(N

l�1; l

], it is clear that P

N

z

j+1

; : : : ; P

N

z

j+k

are linearly indepen-

dent. Now let n � N . By Theorem 5.2, there is a projection �

n

of C

n

p

onto

spanfP

N

z

j+1

; : : : ; P

N

z

j+k

g for which k�

n

k

p

� k. Let I

n

stand for the identity oper-

ator on C

n

p

. The space Im (I

n

� �

n

) = Ker �

n

has the dimension n � k and hence,

I

n

� �

n

2 F

(n)

n�k

. Every x 2 C

n

p

can be uniquely written in the form

x = 


1

P

N

z

j+1

+ : : :+ 


k

P

N

z

j+k

+ w with w 2 Ker �

n

:

Thus,

kA

n

x� A

n

(I

n

��

n

)xk

p

= kA

n

�

n

xk

p

= k


1

A

n

(P

N

z

j+1

) + : : :+ 


k

A

n

(P

N

z

j+k

)k

p

� j


1

j"+ : : :+ j


k

j"; (31)

the estimate resulting from (30). Taking into account that the sequences P

N

z

l

have

pairwise disjoint supports, we obtain from (30) that

k�

n

xk

p

p

= k


1

P

N

z

j+1

+ : : :+ 


k

P

N

z

j+k

k

p

p

= j


1

j

p

kP

N

z

j+1

k

p

p

+ : : :+ j


k

j

p

kP

N

z

j+k

k

p

p

� (1=2)

p

�

j


1

j

p

+ : : :+ j


k

j

p

�

� (1=2)

p

max

1�m�k

j


m

j

p

: (32)

Combining (31) and (32) we get

kA

n

x�A

n

(I

n

� �

n

)xk

p

� "k max

1�m�k

j


m

j � 2"kk�

n

xk

p

� 2"k

2

kxk

p

;

whence s

(p)

k

(A

n

) = dist (A

n

;F

(n)

n�k

) � kA

n

�A

n

(I ��

n

)k

p

� 2"k

2

: By virtue of (29),

this contradicts (28) and completes the proof.

6. Proof of Theorem 1.3.

The Hankel operator on l

p

induced by a function a 2M

p

is given by the matrix

H(a) = (a

j+k�1

)

1

j;k=1

:

For a 2M

p

, de�ne ~a 2M

p

by ~a(e

i�

) := a(e

�i�

). Clearly,

H(~a) = (a

�j�k+1

)

1

j;k=1

:

It is well known and easily seen that

T (ab) = T (a)T (b) +H(a)H(

~

b) (33)

for every a; b 2M

p

. A �nite section analogue of formula (33) reads

T

n

(ab) = T

n

(a)T

n

(b) + P

n

H(a)H(

~

b)P

n

+ W

n

H(~a)H(b)W

n

; (34)

where P

n

is as in (13) and W

n

is de�ned by

W

n

: fx

1

; x

2

; x

3

; : : :g 7! fx

n

; x

n�1

; : : : ; x

1

; 0; 0; : : :g:
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The identity (34) �rst appeared in Widom's paper [31], a proof is also in [4, Proposi-

tion 3.6] and [5, Proposition 7.7].

We remark that T

n

(~a) is the transposed matrix of T

n

(a) and that the identity

T

n

(~a) = W

n

T

n

(a)W

n

holds. In particular, we have

s

(q)

k

(T

n

(a)) = min

n

kT

n

(a) � F

n�k

k

q

: F

n�k

2 F

(n)

n�k

o

= min

n

kT

n

(~a) �G

n�k

k

p

: G

n�k

2 F

(n)

n�k

o

= min

n

kW

n

(T

n

(~a) �G

n�k

)W

n

k

p

: G

n�k

2 F

(n)

n�k

o

= min

n

kT

n

(a) �H

n�k

k

p

: H

n�k

2 F

(n)

n�k

o

= s

(p)

k

(T

n

(a)) (35)

(note also that W

n

is an invertible isometry on C

n

p

).

To prove Theorem 1.3, we need the following two (well known) lemmas.

Lemma 6.1. If A;B;C 2 B(C

n

p

) then

s

(p)

k

(ABC) � kAk

p

s

(p)

k

(B)kCk

p

for all k:

This follows easily from the de�nition of s

(p)

k

.

Lemma 6.2. If b 2M

p

and fT

n

(b)g is stable on l

p

, then T (b) is invertible on l

p

and

T

�1

n

(b) (:= T

�1

n

(b)P

n

) converges strongly on l

p

to T

�1

(b).

This is obvious from the estimates

kT

�1

n

(b)P

n

y � T

�1

(b)yk

p

� kT

�1

n

(b)k

p

kP

n

y � T

n

(b)P

n

T

�1

(b)yk

p

+ kP

n

T

�1

(b)y � T

�1

(b)yk

p

;

kxk

p

� lim inf

n!1

kT

�1

n

(b)k

p

kT (b)xk

p

; k�k

q

� lim inf

n!1

kT

�1

n

(

~

b)k

q

kT (

~

b)�k

q

:

We now establish two propositions which easily imply Theorem 1.3.

De�ne �

k

by �

k

(e

i�

) = e

ik�

. Using Theorem 3.1(b) and formula (33) one can

readily see that if a 2 M

p

, then T (a) 2 �

�k

(l

p

) if and only if a = b�

k

and T (b) is

invertible on l

p

.

Propostion 6.3. If b 2M

p

and fT

n

(b)g is stable on l

p

then for every k 2 Z,

lim inf

n!1

s

(p)

jkj+1

�

T

n

(b�

k

)

�

> 0:

Proof. We can assume that k � 0, since otherwise we may pass to adjoints. Because

kT

n

(�

�k

)k

p

= 1, we obtain from Lemma 6.1 that

s

(p)

k+1

�

T

n

(b�

k

)

�

= s

(p)

k+1

�

T

n

(b�

k

)

�

kT

n

(�

�k

)k

p

� s

(p)

k+1

�

T

n

(b�

k

)T

n

(�

�k

)

�

= s

(p)

k+1

�

T

n

(b)� P

n

H(b�

k

)H(�

k

)P

n

�

;
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the latter equality resulting from (34) and the identities H(~�

�k

) = H(�

k

) and

H(�

�k

) = 0. As dimImH(�

k

) = k, we get that F

k

:= P

n

H(b�

k

)H(�

k

)P

n

2 F

(n)

k

;

whence

s

(p)

k+1

�

T

n

(b)� F

k

�

= inf

n

kT

n

(b)� F

k

� G

n�k�1

k

p

: G

n�k�1

2 F

(n)

n�k�1

o

� inf

n

kT

n

(b)�H

n�1

k

p

: H

n�1

2 F

(n)

n�1

o

= s

(p)

1

(T

n

(b)):

Since fT

n

(b)g is stable, we infer from (3) that

lim inf

n!1

s

(p)

k+1

(T

n

(b�

k

)) � lim inf

n!1

s

(p)

1

(T

n

(b)) > 0:

Proposition 6.4. If b 2M

p

and fT

n

(b)g is stable on l

p

then for every k 2 Z,

lim

n!1

s

(p)

jkj

(T

n

(b�

k

)) = 0:

Proof. Again we may without loss of generality assume that k � 0. Using (34) and

Lemma 6.1 we get

s

(p)

k

(T

n

(b�

k

)) = s

(p)

k

�

T

n

(�

k

)T

n

(b) + P

n

H(�

k

)H(

~

b)P

n

�

� kT

n

(b)k

p

s

(p)

k

�

T

n

(�

k

) + P

n

H(�

k

)H(

~

b)P

n

T

�1

n

(b)

�

:

Put A

n

:= T

n

(�

k

) + P

n

H(�

k

)H(

~

b)P

n

T

�1

n

(b). We have

A

n

=

�

� C

n

I

n�k

0

�

=

�

� 0

I

n�k

0

�

+

�

0 C

n

0 0

�

=: B

n

+ D

n

;

the blocks being of size k� (n� k); k� k; (n� k)� (n� k); (n� k)� k, respectively.

Clearly, B

n

has rank n � k and thus B

n

2 F

(n)

n�k

. It follows that

s

(p)

k

(A

n

) = s

(p)

k

(A

n

� B

n

) = s

(p)

k

(D

n

) � kD

n

k

p

= kC

n

k

p

;

and we are left with showing that kC

n

k

p

! 0.

Let b

n

(n 2 Z) be the Fourier coe�cients of b, let e

j

2 l

p

be the sequence whose

only nonzero entry is a unit at the jth position, and recall the notation (23). We have

C

n

= (c

(n)

jl

)

k

j;l=1

, and it is easily seen that c

(n)

jl

equals (b

�k+j�1

; : : : ; b

�k+j�n

) times

the (n� k + l)th column of T

�1

n

(b):

c

(n)

jl

= (b

�k+j�1

: : : b

�k+j�n

)T

�1

n

(b)P

n

e

n�k+l

=

�

P

n

f

jk

; T

�1

n

(b)P

n

e

n�k+l

�

where

f

jk

:=

n

b

�k+j�1

; b

�k+j�2

; b

�k+j�3

; : : :

o

= T (�

�k+j�1

)T (

~

b)e

1

2 l

q

:

Consequently,

c

(n)

jl

=

�

T

�1

n

(

~

b)P

n

f

jk

; e

n�k+l

�

=

�

T

�1

(

~

b)f

jk

; e

n�k+l

�

+

�

T

�1

n

(

~

b)P

n

f

jk

� T

�1

(

~

b)f

jk

; e

n�k+l

�

: (36)
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The �rst term on the right of (36) obviously converges to zero as n!1. The second

term of (36) is at most

kT

�1

n

(

~

b)P

n

f

jk

� T

�1

(

~

b)f

jk

k

q

(37)

(note that ke

n�k+l

k

p

= 1). Our assumptions imply that fT

n

(

~

b)g is stable on l

q

. We

so deduce from Lemma 6.2 that (37) tends to zero as n!1.

Thus, each entry of the k�k matrix C

n

approaches zero as n!1. This implies

that kC

n

k

p

! 0.

Now let a be as in Theorem 1.3. Since T (a) 2 �

�k

(l

r

) for all r 2 [p; q], we have

a = b�

k

where T (b) 2 �

0

(l

r

) for all r 2 [p; q]. From Theorems 3.3 and 3.4(b) we

conclude that fT

n

(b)g is stable on l

p

. The assertions of Theorem 1.3 therefore follows

from Propositions 6.3 and 6.4.

We remark that Propositions 6.3 and 6.4 actually yield more than Theorem 1.3.

Namely, let �

0

p

denote the collection of all symbols b 2M

p

for which fT

n

(b)g is stable

on l

p

and let �

p

be the set of all symbols a 2 M

p

such that a�

�k

2 �

0

p

for some

k 2 Z. Notice that

�

p

= �

q

�

[

r2[p;q]

�

r

and

G(C + H

1

) [G(C +H

1

) [G(PQC) � �

2

6= L

1

;

where G(B) stands for the invertible elements of a unital Banach algebra B. The

following corollary is immediate from Propositions 6.3 and 6.4.

Corollary 6.5. If a 2 �

p

and T (a) 2 �

k

(l

p

) then

�

(p)

(T

n

(a)) :=

n

s

(p)

1

(T

n

(a)); : : : ; s

(p)

n

(T

n

(a))

o

has the jkj-splitting property.

We also note that the proof of Proposition 6.4 gives estimates for the speed of

convergence of s

(p)

jkj

(T

n

(b�

k

)) to zero. For example, if

P

n2Z

jnj

�

jb

n

j < 1 (� > 0);

then the �nite section method is applicable to T (b) on the space l

2;�

of all sequences

x = fx

n

g

1

n=1

such that

kxk

2;�

:=

�

1

X

n=1

n

2�

jx

n

j

2

�

1=2

<1

whenever T (b) is invertible (see [17, pp. 106{107] or [5, Theorem 7.25]). Since

ke

n�k�l

k

2;��

= (n� k + l)

��

= O(n

��

);

the proof of Proposition 6.4 implies the following result.

Corollary 6.6. If

P

n2Z

jnj

�

ja

n

j <1 for some � > 0 and T (a) 2 �

k

(l

p

) then

s

(p)

jkj

(T

n

(a)) = O(n

��

) as n!1:
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7. Remarks on the Hilbert space case

Some aspects of the asymptotic behavior of the approximation numbers (= singular

values) of matrices in B(C

n

2

) can be very easily understood by having recourse to the

following well known fact (the \singular value decomposition").

Theorem 7.1. If A

n

2 B(C

n

2

) then there exist unitary matrices U

n

; V

n

2 B(C

n

2

) such

that A

n

= U

n

S

n

V

n

where

S

n

= diag

�

s

1

(A

n

); : : : ; s

n

(A

n

)

�

:

Here and throughout this section we abbreviate s

(2)

k

(A

n

) to s

k

(A

n

).

To illustrate the usefulness of Theorem 7.1, we give another proof of Theorem

1.2 for p = 2. We still need the following result.

Theorem 7.2. A bounded linear Hilbert space operator A is normally solvable if and

only if there is a d > 0 such that

sp (A

�

A) � f0g [ [d;1):

For a proof see [10], [11], [20].

Theorem 7.3. Let a 2 L

1

and suppose T (a) is not normally solvable on l

2

. Then

s

k

(T

n

(a))! 0 as n!1 for each k � 1.

Proof. Assume there is a k � 1 such that s

k

(T

n

(a)) does not converge to zero. Let

k

0

be the smallest k with this property. Then there are n

1

< n

2

< : : : and d > 0 such

that

s

k

0

(T

n

j

(a)) � d and s

k

(T

n

j

(a))! 0 for k < k

0

: (38)

To simplify notation, let us assume that n

j

= j for all j.

Write T

n

(a) = U

n

S

n

V

n

as in Theorem 7.1. If � 62 f0g[ [d

2

;1), then (38) implies

that S

2

n

� �I

n

is invertible for all su�ciently large n, say for n � n

0

, and that

k(S

2

n

� �I

n

)

�1

k

2

� M (�)

with some M (�) <1 independent of n. Because

T

�

n

(a)T

n

(a)� �I

n

= V

�

n

(S

2

n

� �I

n

)V

n

;

it follows that T

�

n

(a)T

n

(a) � �I

n

is invertible for n � n

0

and that

k(T

�

n

(a)T

n

(a) � �I

n

)

�1

k

2

� M (�):
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Consequently, for every x 2 l

2

we have

k(T

�

(a)T (a)� �I)xk

2

�

�

1=M (�)

�

kxk

2

;

which implies that T

�

(a)T (a) � �I is invertible. Thus,

sp

�

T

�

(a)T (a)

�

� f0g [ [d

2

;1);

and Theorem 7.2 shows that T (a) must be normally solvable.

Things are more transparent by invoking a few (harmless) C

�

-algebras. Let S

denote the C

�

-algebra of all sequences fA

n

g := fA

n

g

1

n=1

of operators A

n

2 B(C

n

2

)

such that

kfA

n

gk := sup

n�1

kA

n

k

2

<1;

and let S

c

be the C

�

-algebra of all fA

n

g 2 S for which there exists a bounded linear

operator A on l

2

such that A

n

! A and A

�

n

! A

�

strongly. Finally, let C stand for

the sequences fA

n

g 2 S for which kA

n

k

2

! 0. Clearly, C is a closed two-sided ideal

in both S and S

c

.

Obviously, a sequence fA

n

g 2 S is stable if and only if fA

n

g+ C is invertible in

S=C. Following [25] and [20], we call a sequence fA

n

g 2 S a Moore-Penrose sequence

if there exists a sequence fB

n

g 2 S such that

fA

n

B

n

A

n

� A

n

g 2 C; fB

n

A

n

B

n

�B

n

g 2 C; (39)

n

(B

n

A

n

)

�

� B

n

A

n

o

2 C;

n

(A

n

B

n

)

�

�A

n

B

n

o

2 C: (40)

An element a of a unital C

�

-algebra A is said to be Moore-Penrose invertible if there

is an element a

+

2 A such that

aa

+

a = a; a

+

aa

+

= a

+

; (a

+

a)

�

= a

+

a; (aa

+

)

�

= aa

+

:

Thus, fA

n

g 2 S is a Moore-Penrose sequence if and only if fA

n

g+C is Moore-Penrose

invertible in S=C.

The following result is again from [10], [11], [20].

Theorem 7.4. Let A be a unital C

�

-algebra. An element a 2 A is Moore-Penrose

invertible in A if and only if there is a d > 0 such that sp (a

�

a) � f0g [ [d;1).

The next theorem is Roch and Silbermann's [20]. The proof given here is di�erent

from theirs.

Theorem 7.5. A sequence fA

n

g 2 S is a Moore-Penrose sequence if and only if

�(A

n

) =

n

s

1

(A

n

); : : : ; s

n

(A

n

)

o

has the splitting property.
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Proof. Write A

n

= U

n

S

n

V

n

as in Theorem 7.1. We have

kA

n

B

n

A

n

� A

n

k

2

! 0

() kU

n

S

n

V

n

B

n

U

n

S

n

V

n

� U

n

S

n

V

n

k

2

! 0

() kS

n

(V

n

B

n

U

n

)S

n

� S

n

k

2

! 0;

and since analogous equivalences hold for the remaining three sequences in (39) and

(40), we arrive at the conclusion that fA

n

g is a Moore-Penrose sequence if and only

if fS

n

g+ C is Moore-Penrose invertible in S=C. By Theorem 7.4, this is equivalent to

the condition

sp

S=C

�

fS

2

n

g+ C

�

� f0g [ [d

2

;1) for some d > 0: (41)

Let D � S denote the sequences fA

n

g constituted by diagonal matrices A

n

. From

the elementary theory of C

�

-algebras we get

sp

S=C

�

fS

2

n

g+ C

�

= sp

D=(D\C)

�

fS

2

n

g+D \ C

�

: (42)

Consider the in�nite diagonal matrix

diag (S

2

1

; S

2

2

; : : :) = diag (%

1

; %

2

; %

3

; : : :)

(here S

m

2 B(C

m

2

) and %

m

2 C). Obviously, the spectrum on the right of (42)

coincides with the set Pf%

m

g of the partial limits of the sequence f%

m

g. Consequently,

(41) holds if and only if

Pf%

m

g � f0g [ [d

2

;1) for some d > 0;

which is easily seen to be equivalent to the splitting property of �(A

n

).

Also as in [20], we call a sequence fA

n

g 2 S an exact Moore-Penrose sequence if

fA

+

n

g belongs to S; here A

+

n

2 B(C

n

2

) is the Moore-Penrose inverse of A

n

.

Proposition 7.6. Let fA

n

g be a sequence in S

c

and let A be the strong limit of A

n

.

Then the following are equivalent:

(i) A

+

n

is strongly convergent;

(ii) A is normally solvable and A

+

n

! A

+

strongly;

(iii) A is normally solvable and fA

n

g is an exact Moore-Penrose sequence.

The simple proof is omitted.

The following theorem was by means of di�erent methods established in [20].

Theorem 7.7. A sequence fA

n

g 2 S is an exact Moore-Penrose sequence if and only

if there is a d > 0 such that

�(A

n

) � f0g [ [d;1) for all n � 1: (43)
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Proof. As in the proof of Theorem 7.5 we see that fA

n

g is an exact Moore-Penrose

sequence if and only if fS

n

g enjoys this property. Write

diag (S

1

; S

2

; : : :) = diag (�

1

; �

2

; �

3

; : : :)

(where again S

m

2 B(C

m

2

) and �

n

2 C) and de�ne f : [0;1)! [0;1) by

f(x) :=

�

x

�1

if x > 0

0 if x = 0:

Since

diag (S

+

1

; S

+

2

; : : :) = diag

�

f(�

1

); f(�

2

); f(�

3

); : : :

�

;

we conclude that fS

+

n

g 2 S if and only if ff(�

m

)g is a bounded sequence, which is

equivalent to (43).

Now let A

n

= T

n

(a) with a 2 L

1

. If fT

n

(a)g is a Moore-Penrose sequence, then

T (a) must obviously be normally solvable. Thus, from Theorem 3.3 (for p = 2) and

Theorem 1.3 (for p = 2) we deduce that if a 2 PC, then fT

n

(a)g is a Moore-Penrose

sequence if and only if T (a) is Fredholm.

The following result, which is also taken from [20], characterizes the exact Moore-

Penrose sequences constituted by the truncations of an in�nite Toeplitz matrix. Our

proof is again di�erent from the one of [20].

Theorem 7.8. Let a 2 PC. Then fT

n

(a)g is an exact Moore-Penrose sequence if

and only if T (a) is Fredholm and

dimKer T

n

(a) = jIndT (a)j (44)

for all su�ciently large n.

Proof. If fT

n

(a)g is an exact Moore-Penrose sequence, then T (a) is normally solvable

and thus Fredholm. Let T (a) 2 �

k

(l

2

). Then

s

jkj

(T

n

(a))! 0 and s

jkj+1

(T

n

(a)) � d > 0

by virtue of Theorem 1.3 (for p = 2). Since

dist

�

T

n

(a); F

(n)

n�jkj�1

�

> 0;

we see that

rankT

n

(a) � n� jkj: (45)

From Theorem 7.7 we deduce that fT

n

(a)g is an exact Moore-Penrose sequence if and

only if s

jkj

(T

n

(a)) = 0 for all n � n

0

. Because

s

jkj

(T

n

(a)) = dist

�

T

n

(a); F

(n)

n�jkj

�
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and F

(n)

n�jkj

is a closed subset of B(C

n

2

), we have s

jkj

(T

n

(a)) = 0 if and only if

rankT

n

(a) � n� jkj: (46)

Combining (45) and (46) we obtain that fT

n

(a)g is an exact Moore-Penrose sequence

if and only if T (a) 2 �

k

(l

2

) for some k 2 Z and

dimKer T

n

(a) = n� rankT

n

(a) = jkj

for all n � n

0

.

8. The Heing-Hellinger theorem

Of course, condition (44) is di�cult to check. In this section we give a new proof of

the Heinig-Hellinger theorem, which provides a criterion (in terms of only the symbol

a) for (44) to hold.

If a 2 PC and T (a) is Fredholm of index zero and thus invertible, then the

sequence fT

n

(a)g is stable (Theorems 3.3 and 3.4 for p = 2). In this case �(T

n

(a)) �

[d;1) and dimKer T

n

(a) = 0 for all su�ciently large n and hence each of Theorems

7.7 and 7.8 yields that fT

n

(a)g is an exact Moore-Penrose sequence; however, we

have T

+

n

(a) = T

�1

n

(a) for all su�ciently large n and therefore consideration of Moore-

Penrose inverses is not at all necessary in this situation.

The really interesting case is the one in which T (a) is Fredholm of nonzero index.

The rest of this section is devoted to the proof of the following result.

Theorem 8.1 (Heinig and Hellinger). Let a 2 PC. Suppose T (a) is Fredholm

on l

2

and IndT (a) 6= 0. If IndT (a) < 0, then the following are equivalent:

(i) dimKer T

n

(a) = jIndT (a)j for all su�ciently large n;

(ii) Ker T (~a) � ImP

n

0

for some n

0

� 1;

(iii) the Fourier coe�cients (a

�1

)

�m

are zero for all su�ciently large m.

If IndT (a) > 0, then the following are equivalent:

(i') dimKer T

n

(a) = IndT (a) for all su�ciently large n;

(ii') Ker T (a) � ImP

n

0

for some n

0

� 1;

(iii') (a

�1

)

m

= 0 for all su�ciently large m.

For the sake of de�niteness, let us assume that IndT (a) = �k < 0. The proofs

of the implications (iii) ) (ii) ) (i) are easy.

Proof of the implication (iii)) (ii). Let x 2 Ker T (~a). Then, by (33),

T (~a

�1

)T (~a) = I �H(~a

�1

)H(a);
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which shows that x = H(~a

�1

)H(a)x, and since H(~a

�1

) has only a �nite number of

nonzero rows, it follows that x

m

= 0 for all su�ciently large m.

Proof of the implication (ii)) (i). If n is large enough then s

k+1

(T

n

(~a)) � d > 0

by Theorem 1.3 (or Proposition 6.3), whence rankT

n

(~a) > n� k + 1 and thus,

dimKer T

n

(~a) < k + 1: (47)

If x 2 Ker T (~a) � ImP

n

0

and n � n

0

, then T

n

(~a)P

n

x = P

n

T (~a)x = 0, which implies

that

dimKer T

n

(~a) � dimKer T (~a) = k (48)

(recall Theorem 3.1(a) for the last equality). Clearly, equality (i) follows from (47)

and (48).

The proof of the implication (i)) (iii) is less trivial and is based on the following

deep theorem. Recall that �

n

is de�ned by �

n

(t) = t

n

for t 2 T.

Theorem 8.2 (Heinig). Let a 2 L

1

and let k > 0 be an integer. Then

dimKer T

n

(a) = k for all su�ciently large n

if and only if a or ~a is of the form �

p+k

(r + h) where h is a function in H

1

, r is a

rational function in L

1

, r has exactly p poles in the open unit disk D (multiplicities

taken into account), r has no pole at the origin, and r(0) + h(0) 6= 0.

A proof is in [12, Satz 6.2 and formula (8.4)]. Also see [14, Theorem 8.6].

Proof of the implication (i) ) (iii). Let �

p+k

(r + h) be the representation of a

or ~a ensured by Theorem 8.2 and put b := �

p+k

(r + h). Denote by �

1

; : : : ; �

p

and

�

1

; : : : ; �

q

the poles of r inside and outside T, respectively. For t 2 T,

r(t) =

u

+

(t)

(t� �

1

) : : : (t� �

p

)(t� �

1

) : : : (t � �

q

)

=

t

�p

v

+

(t)

(1� �

1

=t) : : : (1� �

p

=t)(1� t=�

1

) : : : (1� t=�

q

)

with polynomials u

+

; v

+

2 H

1

. Clearly,

s

+

(t) := (1� t=�

1

)

�1

: : : (1� t=�

q

)

�1

2 H

1

:

Letting

c

+

(t) := t

k

v

+

(t)s

+

(t) + t

p+k

(1� �

1

=t) : : : (1� �

p

=t)h(t);

we get

b(t) = (1 � �

1

=t)

�1

: : : (1� �

p

=t)

�1

c

+

(t):

The function c

+

lies in H

1

and has a zero of order at least k at the origin. Obviously,

(1 � �

1

=t)

�1

: : : (1� �

p

=t)

�1

is a function which together with its inverse belongs to

Documenta Mathematica 2 (1997) 1{29



Approximation Numbers of Toeplitz Matrices 25

H

1

. If c

+

would have in�nitely many zeros in D, then T (c

+

) and thus T (b) were not

Fredholm (see, e.g., [5, Theorem 2.64]). Hence, c

+

has only a �nite number � � k of

zeros in D. It follows that IndT (c

+

) = �� (again see, e.g., [5, Theorem 2.64]) and

therefore IndT (b) = IndT (c

+

) = ��: If b = a, then � must equal k. Consequently,

c

+

(z) = z

k

'

+

(z) with '

+

and '

�1

+

in H

1

. This implies that

a

�1

(t) = t

�k

(1� �

1

=t) : : : (1� �

p

=t)'

�1

+

(t)

has only �nitely many nonzero Fourier coe�cients with negative index. If b would be

equal to ~a, it would result that IndT (~a) is negative, which is impossible due to the

equality IndT (~a) = �IndT (a).

Corollary 8.3. If a 2 PC n C then fT

n

(a)g is an exact Moore-Penrose sequence

on l

2

if and only if fT

n

(a)g is stable on l

2

.

Proof. The \if part" is trivial. To prove the \only if" portion, suppose fT

n

(a)g

is an exact Moore-Penrose sequence. Then T (a) is Fredholm by Theorem 7.8. If

T (a) has index zero, then fT

n

(a)g is stable. If IndT (a) 6= 0, then Theorem 7.8 and

the implication (i) ) (iii) of Theorem 8.1 tell us that a

�1

is a polynomial times a

function in H

1

or H

1

. As functions in H

1

or H

1

cannot have jumps, this case is

impossible.

We remark that Heinig and Hellinger [13] proved the equivalence (i) , (iii) of

Theorem 8.2 for symbols in the Wiener algebra W . Corollary 8.3 was known to

Silbermann and led him to the introduction of condition (ii). In the case of block

Toeplitz matrices, (iii) and (ii) are no longer equivalent; Silbermann proved that then

the validity of (15) for some n

0

� 1 implies that

fT

n

(a)g is an exact Moore-Penrose sequence, (49)

and he conjectures that (49) is even equivalent to (15) for some n

0

� 1 (see [25]).

The proofs of [13] and [25] di�er from the proof given above.

9. l

p

versus l

2

As shown in the previous section, many l

2

results can be derived with the help of

Theorem 7.1, which reduces problems for fA

n

g to questions about the in�nite diagonal

operator

diag

�

s

(2)

1

(A

1

); s

(2)

1

(A

2

); s

(2)

2

(A

2

); s

(2)

1

(A

3

); s

(2)

2

(A

3

); s

(2)

3

(A

3

); : : :

�

:

It would therefore be very nice to have an analogous result for l

p

. For example, one

could ask the following: given A

n

2 B(C

n

p

), are there invertible isometries U

n

; V

n

2

B(C

n

p

) and a diagonal matrix S

n

2 B(C

n

p

) such that A

n

= U

n

S

n

V

n

? If the answer

were \yes", we had

�

(p)

(A

n

) = �

(p)

(S

n

);
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and Theorem 11.11.3 of [16] would tell us that �

(p)

(S

n

) is the collection of the moduli

of the diagonal elements of S

n

.

However, the answer to the above question is \no". The reason is the dramatic

loss of symmetry when passing from l

2

to l

p

. Looking at the (real) unit spheres

S

(p)

1

:=

n

(x; y) 2 R

2

: jxj

p

+ jyj

p

= 1

o

;

we see that S

(2)

1

has the symmetry group O(2), while the symmetry group of S

(p)

1

(p 6= 2) is the dieder group D

4

, which contains only 8 elements. Equivalently, the

invertible isometries in B(C

2

2

) are the 2� 2 unitary matrices, whereas a matrix U

2

2

B(C

2

p

) (p 6= 2) is an invertible isometry if and only if

U

2

=

�

� 0

0 �

�

or U

2

=

�

0 �

� 0

�

with (�; �) 2 T

2

:

Thus, a matrix A

2

2 B(C

2

p

) (p 6= 2) is of the form A

2

= U

2

S

2

V

2

with invertible

isometries U

2

; V

2

and a diagonal matrix S

2

if and only if

A

2

=

�

a 0

0 b

�

or A

2

=

�

0 a

b 0

�

with (a; b) 2 C

2

:

I even suspect that relaxing the above question will not be successful.

Conjecture 9.1. Fix p 6= 2 and let 1=p+ 1=q = 1. There is no number M 2 (1;1)

with the following property: given any sequence fA

n

g of matrices A

n

2 B(C

n

p

) such

that sup kA

n

k

p

< 1 and sup kA

n

k

q

< 1, there are invertible matrices U

n

; V

n

2

B(C

n

p

) and diagonal matrices S

n

2 B(C

n

p

) such that A

n

= U

n

S

n

V

n

and

kU

n

k

p

� M; kU

�1

n

k

p

�M; kV

n

k

p

� M; kV

�1

n

k

p

�M

for all n.

Finally, for the reader's convenience, we add a proof of (3).

Proposition 9.2. If A 2 B(C

n

p

), then s

(p)

1

(A) = 1=kA

�1

k

p

if A is invertible and

s

(p)

1

(A) = 0 if A is not invertible.

Proof. Suppose A is not invertible. Then KerA 6= f0g. Let Z be any direct comple-

ment of KerA in C

n

p

and let P : C

n

p

! Z be the projection onto Z parallel to KerA.

Clearly, P 2 F

(n)

n�1

and thus F := AP 2 F

(n)

n�1

. If x 2 C

n

, then x = x

0

+ x

1

with

x

0

2 KerA and x

1

= Px 2 Z. Therefore

(A� F )x = Ax�APx = A(x

0

+ Px)�APx = 0;

which implies that A� F = 0 and hence dist (A;F

(n)

n�1

) = 0.

Now suppose A is invertible. We then have

kA

�1

k

p

= sup

x 6=0

kA

�1

xk

p

kxk

p

= sup

z 6=0

kzk

p

kAzk

p

=

�

inf

z 6=0

kAzk

p

kzk

p

�

�1

;
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whence

1=kA

�1

k

p

= inf

z 6=0

kAzk

p

kzk

p

= min

kzk

p

=1

kAzk

p

=: kAe

0

k

p

(50)

with some e

0

2 C

n

p

of norm 1. Put span fe

0

g = f�e

0

: � 2 Cg and let X be any

direct complement of span fe

0

g in C

n

p

. The functional

' : span fe

0

g ! C; �e

0

7! �

clearly has the norm 1. By the Hahn-Banach theorem, there is a functional � : C

n

p

!

C such that �(�e

0

) = � and k�k = 1. De�ne F 2 B(C

n

p

) by Fx := Ax � �(x)Ae

0

.

Since

F (�e

0

) = �Ae

0

� �Ae

0

= 0;

we see that F 2 F

(n)

n�1

. Because

kAx� Fxk

p

= k�(x)Ae

0

k

p

= j�(x)j kAe

0

k

p

� kxk

p

kAe

0

k

p

;

it results that kA � Fk

p

� kAe

0

k

p

. From (50) we therefore deduce that s

(p)

1

(A) �

1=kA

�1

k

p

.

To prove that s

(p)

1

(A) � 1=kA

�1

k

p

, let G be any matrix in F

(n)

n�1

. If kI�A

�1

Gk

p

were less than 1, then A

�1

G and thus G were invertible, which is impossible. Thus

kI �A

�1

Gk

p

� 1. We therefore have

1 � kI � A

�1

Gk

p

= kA

�1

(A� G)k

p

� kA

�1

k

p

kA� Gk

p

;

which implies that 1=kA

�1

k

p

� kA�Gk

p

. As G 2 F

(n)

n�1

was arbitrary, it follows that

1=kA

�1

k

p

� s

(p)

1

(A).
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Abstract. Let f be a modular form of even weight on �

0

(N ) with asso-

ciated motiveM

f

. Let K be a quadratic imaginary �eld satisfying certain

standard conditions. We improve a result of Nekov�a�r and prove that if a

rational prime p is outside a �nite set of primes depending only on the form

f , and if the image of the Heegner cycle associated with K in the p-adic

intermediate Jacobian of M

f

is not divisible by p, then the p-part of the

Tate-

�

Safarevi�c group of M

f

over K is trivial. An important ingredient

of this work is an analysis of the behavior of \Kolyvagin test classes" at

primes dividing the level N . In addition, certain complications, due to the

possibility of f having a Galois conjugate self-twist, have to be dealt with.

1991 Mathematics Subject Classi�cation: 11G18, 11F66, 11R34, 14C15.

1 Introduction

Let f be a new form of even weight 2r for the group �

0

(N ), letM

f

be the r-th Tate

twist of the motive associated to f by Jannsen [Jan88b] and Scholl [Sch90]. For all

but a �nite number of primes p there is a canonical choice of free Z

p

-lattice T

p

(M

f

)

with a continuous action of Gal(

�

Q=Q) such that T

p

(M

f

)
Q is the p-adic realization

of M

f

. In [Nek92], Nekov�a�r showed that under certain assumption one could apply

the Kolyvagin method of Euler systems to M

f

and obtained, among other things,

the following result:

Theorem 1.1. Let K be a quadratic imaginary �eld of discriminant D in which all

primes dividing N split, and let p be a prime not dividing 2N . Let T

p

(M

f

) be the

p-adic realization ofM

f

and let P (1) be the image in H

1

(K;T

p

(M

f

)) of the Heegner

cycle associated with K under the p-adic Abel-Jacobi map. If P (1) is not torsion,

then the p-part of the Tate-

�

Safarevi�c group of M

f

over K,X

p

(M

f

=K), is �nite.

1
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We remark that in [Nek92] there is a stronger condition on p for the theorem to

hold which is removed in a remark on the last paragraph of [Nek95].

The purpose of this note is to give the following re�nement of the above result:

Theorem 1.2. There is a �nite set of primes 	(f), depending only on f , such that

for a prime p not in 	(f) the following holds: for K as in theorem 1.1, if P (1) is

not torsion, then p

2I

p

X

p

(M

f

=K) = 0, where I

p

is the smallest non-negative integer

such that the reduction of P (1) to H

1

(K;T

p

(M

f

)=p

I

p

+1

) is not 0. In particular, if

I

p

= 0, then X

p

(M

f

=K) is trivial

Remark 1.3. 1. The Tate-

�

Safarevi�c group discussed here is not exactly the same as

the one that appears in [Nek92]. The main di�erence is in the local conditions

at the primes of bad reduction. Nekov�a�r makes no conditions at these primes,

which is whyX comes out too big. The local condition that we use is the one

de�ned by Bloch and Kato. The analysis of this local condition is one of the

main ingredient of this work.

2. The �nite set 	(f) contains the primes dividing 2N and primes with an excep-

tional image of Gal(

�

Q=Q) in Aut(T

p

(M

f

)) (see de�nition 6.1).

It is our hope that the methods used here allow a complete analysis of the struc-

ture ofX

p

(M

f

=K) in terms of various Kolyvagin classes following [Kol91, McC91].

Notice however that some di�culties are already visible in the fact that the power of

p annihilatingX is 2I

p

whereas in the elliptic curves case one gets annihilation by

p

I

p

. This di�culty is caused by the more complicated structure of the image of the

Galois representation associated to M

f

(see remark 6.5).

A natural problem raised by theorem 1.2 is to bound the numbers I

p

. In par-

ticular, one would hope that I

p

= 0 for all but a �nite number of p's. This would

show the �niteness ofX(M

f

=K) except for possible in�nite contribution at primes

dividing 2N . It is useful to compare the situation to the case where the weight of f is

2, where the triviality ofX

p

(M

f

=K) for almost all p has been previously established

in [KL90]. In that case, the class P (1) correspond to a point on the Jacobian of a

modular curve, and I

p

= 0 for almost all p whenever P (1) is of in�nite order. This

last result uses essentially the injectivity of the Abel-Jacobi map (up to torsion) and

the Mordell-Weil theorem, neither of which is known for greater than 1 codimension

cycles. One possible way of getting some control over the indices I

p

could be to use the

results of Nekov�a�r on the p-adic heights of Heegner cycles: According to [Nek95, corol-

lary to theorem A] one has the equality h(P (1); P (1)) = 


f
K;p

L

0

p

(f 
 K; r) where

h( ; ) is the p-adic height pairing de�ned by Nekov�a�r and Perrin-Riou, L

p

(f 
K) is a

p-adic L-function of f over K de�ned by Nekov�a�r and 


f
K;p

is some p-adic period.

The p-adic height of elements of H

1

f

(K;T ) has a bounded denominator (it is integral

for universal norms from a Z

p

extension) and so the estimation of I

p

is reduced to

giving estimates on the p-divisibility of L

0

p

(f 
K; r).

Another problem is to handle primes dividing 2N . The di�culty here is that

we do not understand yet the image of the Abel-Jacobi map with Q

p

coe�cients for

varieties over an extension of Q

p

and with bad reduction. Recently there has been

some progress on that problem [Lan96] but the results do not yet cover the cases we

need.

Here is a short description of the contents. After a few preliminary remarks and

de�nitions in section 2 we will recall in section 3 some of the main points of [Nek92].
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For brevity this will be far from a full account. We merely attempt to indicate the main

changes that need to be made and explain where the local conditions at the bad primes

come into play. These conditions are then discussed in sections 4 and 5. We then

give the proof of the main theorem in section 6. It would have been nice to skip this

section or make it shorter and refer instead to the corresponding sections in [Nek92].

However, it turns out that to get the result we want under weaker conditions than

the ones stated there (see the remark in loc. cit. page 121), the proof has to be

modi�ed somewhat. I have therefore chosen to give the full details of the proof. In

the appendix we give a proof of a Hochschild-Serre spectral sequence for continuous

group cohomology which is used in section 5.

As the reader will notice, this work is closely related to [Nek92]. Familiarity with

that paper is helpful for reading this one but not necessary, as one may choose to

trust the results quoted from there.

I would like to thank Wayne Raskind, Don Blasius, Haruzo Hida, Dinakar Ra-

makrishnan and Jan Nekov�a�r for helpful discussions and remarks. I would also like

to thank Farshid Hajir for encouraging me to write down my ideas on this subject.

Finally, I would like to thank the referee for some useful corrections and remarks.

2 preliminaries

For this work, a motive is e�ectively equivalent to its set of realizations. We only need

the p-adic realizations for the di�erent p's and a brief mention of the Betti realization.

Thus, a motive M has a Betti realization which is a Q-vector space V

Q

and p-adic

realizations which are continuous representations of Gal(

�

Q=Q) on V

p

= V

Q


Q

p

for the

di�erent p's. By choosing a suitable Z-lattice T

Z

in V

Q

we have in each V

p

an invariant

Z

p

-lattice T

p

= T

Z


Z

p

. The p-part of the Tate-

�

Safarevi�c group of M depends on

the choice of T

p

but statements about the p-part for all but a �nite number of p are

clearly independent of the choice of T

Z

. In the cases we will be considering there

is a standard choice (a Tate twist of a piece of the �etale cohomology of a suitable

Kuga-Sato variety, see [Nek92, x3]) and the theorem will be proved for this choice.

To be more precise:

T

p


Q

p

�

=

�

f;p


Q

p

(r); (2.1)

where �

f;p

is the standard p-adic representation associated to f .

To de�ne the p-part of X, we start with the free Z

p

-module of �nite rank,

T = T

p

(M), on which Gal(

�

Q=Q) acts continuously. Let V = T 
 Q

p

and A = V=T ,

so that there is a short exact sequence:

0 �! T

i

�! V

pr

�! A �! 0:

Let ` be a prime, possibly 1. Let F be a �nite extension of Q

`

and let

�

F be an

algebraic closure of F . In [BK90, (3.7.1)] Bloch and Kato de�ne the �nite part H

1

f

of
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the �rst Galois cohomology of F with values in V , T or A as follows:

H

1

f

(F; V ) := KerH

1

(F; V )

res

��! H

1

(F

ur

; V ) when ` 6= p;

H

1

f

(F; V ) := KerH

1

(F; V )! H

1

(F; V 
 B

cris

) when ` = p;

H

1

f

(F; T ) := i

�1

H

1

f

(F; V );

H

1

f

(F;A) := ImH

1

f

(F; V ) ,! H

1

(F; V )

pr

�! H

1

(F;A);

where F

ur

is the maximal unrami�ed extension of F . The ring B

cris

is de�ned by

Fontaine. We will not need to use the de�nition directly in the case ` = p.

Let now K be a number �eld. When B is a Gal(

�

Q=K)-module we have restriction

maps for each place v of K: H

1

(K;B) ! H

1

(K

v

; B). When x 2 H

1

(K;B) we will

denote its restriction to H

1

(K

v

; B) by x

v

. The p-part of the Selmer group ofM over

K is now de�ned as

Sel

p

(M=K) := KerH

1

(K;A) �!

Y

v

H

1

(K

v

; A)=H

1

f

(K

v

; A);

where the product is over all places v of K. We also de�ne

H

1

f

(K;V ) := KerH

1

(K;V ) �!

Y

v

H

1

(K

v

; V )=H

1

f

(K

v

; V ):

The p-part of the Tate-

�

Safarevi�c group of M over K is the quotient of Sel

p

(M=K)

by the image of H

1

f

(K;V ). Nekov�a�r de�nes the same group as the quotient of the

Selmer group by the image of an appropriate Abel-Jacobi map. It follows easily from

his result that in the case of interest here his de�nition coincides with the one we are

using.

Let A

p

k be the p

k

-torsion subgroup ofA and let red

p

k : T ! A

p

k be the reduction

mod p

k

. We will use the same notation for the reduction map A

p

n

! A

p

k which is

given by multiplication by p

n�k

when n > k and we notice that all reduction maps

commute with each other. We will abuse the notation further to denote by red

p

k the

maps induced by the reduction on Galois cohomology groups.

To simplify the notation slightly, we assume the following:

Assumption 2.1. There is a Galois invariant bilinear pairing T � T ! Z

p

(1) such

that the induced pairings on T=p

k

�

=

A

p

k are non-degenerate for all k.

This condition is satis�ed in the case we are considering by [Nek92, proposition

3.1]. It is mostly made at this point so that we do not have to consider both T and

its Kummer dual. We have the following well known results:

Proposition 2.2. The pairing above induces local Tate pairings, for each place v of

K:

H

1

(K

v

; T )�H

1

(K

v

; A)! H

1

(K

v

;Q

p

=Z

p

(1))

�

=

Q

p

=Z

p

;

H

1

(K

v

; A

p

k)�H

1

(K

v

; A

p

k)! H

1

(K

v

;Z=p

k

(1))

�

=

Z=p

k

;

which are both perfect and will be denoted by h ; i

v

(for the torsion coe�cients case

see [Mil86, Chap. I, Cor. 2.3]). The following properties hold:
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1. [BK90, Proposition 3.8] The pairing h ; i

v

makes H

1

f

(K

v

; T ) and H

1

f

(K

v

; A)

exact annihilators of each other (this is true even in the case pjv).

2. If x and y belong to H

1

(K;A

p

k
) then

X

v

hx

v

; y

v

i

v

= 0;

where the sum is over all places v of K but is in fact a �nite sum.

We remark that it is possible to neglect the in�nite places in all the discussions if

we assume that p 6= 2 or if K is totally imaginary. Both conditions will in fact hold.

Definition 2.3. Let F be a local �eld. We de�ne H

1

f

(F;A

p

k) to be the preimage in

H

1

(F;A

p

k) of H

1

f

(F;A). We de�ne H

1

f

�

(F;A

p

k) to be the annihilator of H

1

f

(F;A

p

k)

in H

1

(F;A

p

k) under local Tate duality. We will call the classes in H

1

f

�

(F;A

p

k) the

dual �nite classes. We de�ne the singular part of the cohomology as

H

1

sin

(F;A

p

k) = H

1

(F;A

p

k)=H

1

f

�

(F;A

p

k)

(this de�nition is due to Mazur). If x 2 H

1

(F;A

p

k) we denote by x

sin

its projection

on the singular part. When K is a number �eld we let

Sel(K;A

p

k) := KerH

1

(K;A

p

k) �!

Y

v

H

1

(K

v

; A

p

k)=H

1

f

(K

v

; A

p

k):

Lemma 2.4. The group H

1

f

�

(F;A

p

k) is the image of H

1

f

(F; T ) under the canonical

map H

1

(F; T )! H

1

(F;A

p

k). There is a perfect pairing, induced by h ; i

v

:

h ; i

v

: H

1

f

(F;A

p

k)�H

1

sin

(F;A

p

k)!Z=p

k

Proof. This is a formal consequence of the preceding de�nition and proposition 2.2.

For a Gal(

�

F=F )-module B and

�

F � K � F we denote B

Gal(

�

F=K)

by B(K). If

B

0

is a subset of B we denote by F (B) the �xed �eld of the subgroup of Gal(

�

F=F )

�xing B

0

.

3 Method of proof

The Kolyvagin method, as applied to M

f

by Nekov�a�r, works as follows: Let f have

q-expansion f =

P

a

n

q

n

. Let E be the �eld generated over Q by the a

i

. It is known

that E is a totally real �nite extension of Q. Let O

E

be the ring of integers of E. As

explained in [Nek92, Proposition 3.1], the invariant lattice T

p

(M

f

) can be taken to

be a free rank 2 module over O

E


Z

p

=

Q

O

E

p

, where the product is over all primes

p of E dividing p. To prove the result about X it is su�cient to choose one such

prime p and consider only the direct summand of T

p

(M

f

) corresponding to p. This

summand will be denoted T

f;p

. For the rest of this section we �x T = T

f;p

and let as

usual V = T 
Q

p

and A = V=T .
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As the Tate-

�

Safarevi�c group is (obvious with the above de�nition) p-torsion, we

wish to show that its part killed by p

k

is killed by the �xed power p

2I

p

for each k.

We look at the short exact sequence

0 �! A

p

k �! A

p

k

�! A �! 0

and the induced sequence on cohomology

0 �! A(K)=p

k

�! H

1

(K;A

p

k) �! H

1

(K;A)

p

k �! 0

The conditions we will impose on the prime p imply, as we will see in part 2 of

proposition 6.3, that A(K) = 0, and hence H

1

(K;A)

p

k

�

=

H

1

(K;A

p

k). It follows that

the preimage in H

1

(K;A

p

k) of Sel

p

(T=K) is Sel(K;A

p

k). Since P (1) 2 H

1

f

(K;V ) it

will be enough to show that Sel(K;A

p

k)=(O

E

p

=p

k

)P (1) is killed by p

2I

p

.

Choose once and for all a complex conjugation � 2 Gal(

�

Q=Q). Let S(k) be the

set of primes ` satisfying:

� ` - NDp;

� ` is inert in K;

� p

k

divides a

`

and ` + 1;

� ` + 1� a

`

are not divisible by p

k+1

.

Remark 3.1. The �rst 3 conditions are equivalent to Frob(`) and � being conjugates

in Gal(K(A

p

k )=Q). The last condition can be arranged for in�nitely many `'s (see

proposition 6.10).

Let n be a product of distinct primes ` 2 S(k). Nekov�a�r associates with n a coho-

mology class y

n

2 H

1

(K

n

; T ), where K

n

is the ring class �eld of K of conductor n.

The classes y

n

are de�ned as the images of certain CM cycles under the Abel-Jacobi

map ofM

f

. When n = m` the relation

cor

K

n

;K

m

(y

n

) = a

`

y

m

holds, as well as some local congruence condition which we will not discuss here.

Let G

n

:= Gal(K

n

=K

1

). Then G

n

=

Q

`jn

G

`

. For each prime ` 2 S(k) we

associate the element D

`

2Z[G

`

] which is given by

D

`

=

`

X

i=1

i�

i

; G

`

= h�i;

and let D

n

=

Q

`jn

D

`

2 Z[G

n

]. One now notices, following Kolyvagin, that

D

n

(red

p

k y

n

) 2 H

1

(K

n

; A

p

k) is G

n

-invariant. By [Nek92, Proposition 6.3]

p

M

A

p

k (K

n

) = 0; (3.1)

with some constant M independent of n and k. An application of the in
ation restric-

tion sequence shows that there is a canonically de�ned class z

n

2 H

1

(K

1

; A

p

k�2M )

such that

res

K

1

;K

n

z

n

= D

n

(red

p

k�2M y

n

):
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Indeed, one has the commutative diagram with exact in
ation restriction rows:

H

1

(K

1

; A

p

k
)

res

K

1

;K

n

������! H

1

(K

n

; A

p

k
)

G

n

����! H

2

(G

n

; A

p

k
(K

n

))

red

p

k�M

?

?

y

red

p

k�M

?

?

y

red

p

k�M

?

?

y

H

1

(K

1

; A

p

k�M )

res

K

1

;K

n

������! H

1

(K

n

; A

p

k�M )

G

n

����! H

2

(G

n

; A

p

k�M (K

n

))

and the rightmost vertical map is 0 by (3.1) because the reduction map kills p

M

torsion. It follows that

red

p

k�M y

n

2 Im

�

res

K

1

;K

n

: H

1

(K

1

; A

p

k�M )! H

1

(K

n

; A

p

k�M )

�

:

We get the canonical class z

n

by further reduction as in [Nek92, x7]. Finally, de�ne

P (n) := cor

K

1

;K

z

n

:

Note the important di�erence between Nekov�a�r's de�nition of the same classes and

ours: in Nekov�a�r's de�nition res

K

1

;K

n

z

n

= p

M

D

n

(red

p

k�M y

n

). To simplify the nota-

tion, we may notice that the de�nition is entirely independent of the value of M . To

de�ne classes in the cohomology of A

p

r

we need to start with n whose prime divisors

satisfy certain congruences depending on r and M and we may freely assume that we

have chosen the n correctly whatever the congruences are. It will be convenient to

make the change of variable k = k�2M here. Note that P (1) can be considered mod

p

k

for any k and its de�nition is independent of M .

Proposition 3.2. The classes P (n) enjoy certain fundamental properties:

1. P (n) belongs to the (�1)

par(n)

"

L

-eigenspace of the complex conjugation � acting

on H

1

(K;A

p

k), where par(n) is the parity of the number of prime factors in n

and "

L

is the negative of the sign of the functional equation of L(f; s).

2. For a place v of K such that v - Nn, P (n) 2 H

1

f

�

(K

v

; A

p

k).

3. If n = m�` and � is the unique prime of K above `, then there is an isomorphism

between H

1

f

(K

�

; A

p

k) and H

1

sin

(K

�

; A

p

k) which takes P (m)

�

to P (n)

�;sin

. In

particular, if P (m)

�

6= 0, then P (n)

�;sin

6= 0.

Proof. This is [Nek92, Proposition 10.2] with a couple of modi�cations. First of all

we remark that there is a miss-print in [Nek92] and the eigenvalue of � on P (n) is

indeed (�1)

par(n)

"

L

as can be seen from the proof. To get the second statement when

v - p we note that if such a v is a prime of good reduction one has H

1

f

�

(K

v

; A

p

k
) =

H

1

f

(K

v

; A

p

k) = H

1

ur

(K

v

; A

p

k) (see lemma 4.4) and that the auxiliary power of p that

appear in [Nek92] is not needed here because of the change in the de�nition of P (n)

alluded to above. The case vjp follows from [Nek92, Lemma 11.1]. Here, two remarks

are in place: First of all, Nekov�a�r uses the comparison theorem of Faltings for open

varieties [Fal89]. As is well known, this result is not universally accepted. However,

in the last 2 years Nekov�a�r himself [Nek96] and Nizio l [Niz97, Theorem 3.2] have

supplied alternative proofs that the image of the Abel-Jacobi map lies inside H

f

in

the case of good reduction. The second remark is that this is all we need because our

assumption p - 2N imply that vjp is a place of good reduction.
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One of the main points of this work is to analyze the dual �nite conditions

at primes of bad reduction and to show that by further reduction (i.e. by possibly

increasing M ) one may assume that the classes P (n) are dual �nite at these primes

(see corollary 5.2).

4 Finite and dual finite conditions at `

Let F be a �nite extension of Q

`

(` 6= p) and let T be a free Z

p

-module of �nite rank

with a continuous action of G = Gal(

�

F=F ). Again let V = T 
Q

p

and A = V=T . Let

I = Gal(

�

F=F

ur

) be the inertial group. We assume the following condition is satis�ed

(as is in the case at hand, see [Nek92, proposition 3.1]):

Condition 4.1. There is a Galois invariant, non-degenerate bilinear pairing V �V !

Q

p

(1) and V

I

(�1) has no nontrivial �xed vector with respect to any power of Frobenius

(true if V

I

has no part of weight �2).

Proposition 4.2. Under the above condition there exists a constant M such that for

any �nite unrami�ed extension L=F we have

1. p

M

H

1

(L

ur

; T )

Gal(L

ur

=L)

= 0;

2. H

1

f

(L; V ) = H

1

(L; V );

3. V (L) = 0.

Proof. The second statement immediately follows from the �rst. For the �rst state-

ment we begin by noticing that I is independent of L. By making a �nite rami�ed

extension we may assume that the action of I factors through the p-primary part of its

tame quotient. It then follows that H

1

(I; T )

�

=

T

I

(�1) as Gal(L

ur

=L)-modules. The

condition now implies that T

I

(�1) is a direct sum of a torsion group and a Z

p

-free

module on which Frobenius has no invariants. Finally, the third statement follows

since by duality one gets that 1 is not an eigenvalue of any power of Frobenius on

V

I

.

Remark 4.3. If T is the Tate module of an elliptic curve with split semi-stable re-

duction, then the constant M is essentially the p-adic valuation of the number of

components of the special �ber of E.

It follows from part 2 of proposition 4.2 that for any �nite unrami�ed extension

L=F we have H

1

f

(L; T ) = H

1

(L; T ), and therefore by lemma 2.4 we get

H

1

f

�

(L;A

p

k) = ImH

1

(L; T )

red

��! H

1

(L;A

p

k):

Lemma 4.4. If the G-module T is unrami�ed, then for any L as above

H

1

f

�

(L;A

p

k
) = H

1

f

(L;A

p

k
) = H

1

ur

(L;A

p

k
) := KerH

1

(L;A

p

k
)! H

1

(L

ur

; A

p

k
):

Proof. It is enough to show the second equality as the condition of being unrami�ed

is self dual. It is clear that any class in H

1

f

(L;A

p

k
) is unrami�ed. Conversely, a class

in H

1

ur

(L;A

p

k ) is in
ated from H

1

(L

ur

=L;A

p

k). Since Gal(L

ur

=L)

�

=

^

Z, H

1

is just

coinvariants. It follows that the reduction map H

1

(L

ur

=L; T ) ! H

1

(L

ur

=L;A

p

k
) is

surjective.
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5 The local condition under restriction

Keeping the assumption of the previous section, suppose now that L=F is a �nite

unrami�ed extension with Galois group �. The short exact sequence 0 �! T

p

k

�!

T

red

p

k

���! A

p

k �! 0 gives rise to the following commutative diagram with exact rows:

0 ����! H

1

(F; T )=p

k

red

p

k

����! H

1

(F;A

p

k) ����! H

2

(F; T )

p

k ����! 0

res

F;L

?

?

y

res

F;L

?

?

y

res

F;L

?

?

y

0 ����!

�

H

1

(L; T )=p

k

�

�

red

p

k

����! H

1

(L;A

p

k)

�

����! H

2

(L; T )

�

p

k

(5.1)

Given x 2 H

1

(F;A

p

k) such that res

F;L

x is in H

1

f

�

(L;A

p

k ), we would like to know

how far is x from being in H

1

f

�

(F;A

p

k). In view of (5.1) the obstruction is given by

KerH

2

(F; T )

p

k

res

F;L

����! H

2

(L; T )

�

p

k

: (5.2)

Proposition 5.1. The kernel (5.2) is annihilated by a constant p

M

independent of

k and L.

Proof. Since � is �nite, there is a Hochschild-Serre spectral sequence

E

i;j

2

= H

i

(�;H

j

(L; T ))) H

i+j

(F; T ):

Note that the cohomology here is the continuous cohomology. The Hochschild-Serre

spectral sequence does not exist in general for continuous cohomology. A proof that

it does exits in our case is found in the appendix. For i+ j = 2 the spectral sequence

converges to a �ltration F

0

� F

1

� F

2

� 0 on H

2

(F; T ) with

F

1

= KerH

2

(F; T )

res

F;L

����! H

2

(L; T )

�

;

F

1

=F

2

�

=

E

1;1

1

= E

1;1

3

= Ker

�

H

1

(�;H

1

(L; T ))! H

3

(�; T (L))

�

= H

1

(�;H

1

(L; T ));

F

2

�

=

E

2;0

1

� E

2;0

2

= H

2

(�; T (L)) = 0;

since T (L) = 0 by part 3 of proposition 4.2. Therefore,

Ker

�

H

2

(F; T )

p

k

res

F;L

����! H

2

(L; T )

�

p

k

�

�

=

H

1

(�;H

1

(L; T ))

p

k :

Applying the in
ation restriction sequence to Gal(L

ur

=L) /Gal(

�

L=L) and T we �nd

0 �! H

1

(L

ur

=L; T (L

ur

)) �! H

1

(L; T ) �! H

1

(L

ur

; T )

Gal(L

ur

=L)

�! 0:

The right exactness is a consequence of the fact that Gal(L

ur

=L)

�

=

^

Zhas co-

homological dimension 1. Applying the Hochschild-Serre spectral sequence to

Gal(L

ur

=L) / Gal(L

ur

=F ) and T (L

ur

) we �nd that H

1

(�;H

1

(L

ur

=L; T (L

ur

))) in-

jects into H

2

(L

ur

=F; T (L

ur

)) and is therefore 0 since Gal(L

ur

=F )

�

=

^

Z. Therefore,

H

1

(�;H

1

(L; T )) ,! H

1

(�;H

1

(L

ur

; T )

Gal(L

ur

=L)

) and the result follows from propo-

sition 4.2
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Corollary 5.2. Let p

M

be the constant given by proposition 5.1. Then, if x 2

H

1

(F;A

p

k+M
) and res

F;L

x 2 H

1

f

�

(L;A

p

k+M
), then red

p

k
x 2 H

1

f

�

(F;A

p

k
).

Proof. The commuting diagram with exact rows

0 ����! T

p

k+M

����! T

red

p

k+M

�����! A

p

k+M ����! 0

p

M

?

?

y

=

?

?

y

red

p

k

?

?

y

0 ����! T

p

k

����! T

red

p

k

����! A

p

k
����! 0

gives rise to

H

1

(F; T )

red

p

k+M

�����! H

1

(F;A

p

k+M ) ����! H

2

(F; T )

p

k+M

=

?

?

y

red

p

k

?

?

y

p

M

?

?

y

H

1

(F; T )

red

p

k

����! H

1

(F;A

p

k) ����! H

2

(F; T )

p

k

The corollary now follows by a diagram chase on this last diagram as well as on (5.1)

with k replaced by k + M .

6 Proof of theorem 1.2

In this section we give the proof of the main theorem using a variant of the Kolyvagin

argument following mostly [Gro91]. By proposition 3.2 and corollary 5.2 we may

assume that the class P (n) is dual �nite at all primes which do not divide n. Recall

that this involves �xing some large integer M , constructing the classes modulo p

k+M

and then reducing them mod p

k

.

We will concentrate on the case where f has no CM. The CM case can be handled

similarly (see the remark in [Nek92] page 121). Recall that E is the �eld generated by

the Fourier coe�cients of the form f . We �rst exclude primes p which are rami�ed in

E. If p is not excluded, let p be a prime of E above p and recall that we are considering

T = T

f;p

which is a rank 2 free O

E

p

-module with an action of Gal(

�

Q=Q). Let again

�

f;p

be the p-adic representation associated with f . Consider the p component of

�

f;p

which is a representation of Gal(

�

Q=Q) on a 2-dimensional E

p

vector space V

�

f

;p

.

According to a result of Ribet [Rib85, theorem 3.1] if p is outside a �nite set of

primes then there is a sub�eld E

0

of E

p

such that in an appropriate basis the image

of Gal(

�

Q=Q) in Aut(V

�

f

;p

)

�

=

GL

2

(E

p

) contains

fg 2 GL

2

(O

E

0

); det g 2 ((Z

�

p

)

2r�1

)g

(in fact, the result of Ribet is stronger and treats the image of Galois in all the

completions of E above p simultaneously), and therefore contains in particular

fg 2 GL

2

(Z

p

); det g 2 ((Z

�

p

)

2r�1

)g: (6.1)

We exclude all other primes and the prime 2. This concludes our exclusions which we

may sum up in:

Documenta Mathematica 2 (1997) 31{46



Finiteness of X 41

Definition 6.1. The set 	(f) of excluded primes for theorem 1.2 is the set contain-

ing the primes dividing 2N , primes that ramify in E = Q(a

i

) and primes where the

image of Gal(

�

Q=Q) in Aut(V

�

f

;p

) does not contains (6.1) (in some basis).

We consider non excluded primes from now onward.

Lemma 6.2. Let

~

G

p

be the image of Gal(

�

Q=Q) in Aut(T )

�

=

GL

2

(O

E

p

) (p not ex-

cluded). Then,

~

G

p

contains a subgroup conjugate to GL

2

(Z

p

).

Proof. By (2.1), T 
 E

p

is just the r-th Tate twist of V

�

f

;p

. From that and Ribet's

theorem it follows easily that after �xing an appropriate basis for T every matrix

A 2 GL

2

(O

E

p

) has a scalar multiple in

~

G

p

. Since SL

2

(O

E

p

) is the commutator

subgroup of GL

2

(O

E

p

), it follows that SL

2

(O

E

p

) �

~

G

p

. The lemma follows because

for almost all `, Frob(`) has determinant `

�1

and because

~

G

p

is closed.

Let F = O

E

p

=p

k

. Let G

p

k

�

=

Gal(Q(A

p

k)=Q) be the image of Gal(

�

Q=Q) in

Aut(A

p

k)

�

=

GL

2

(F). Then, G

p

k contains a group G

0

p

k

conjugate to SL

2

(Z=p

k

).

Proposition 6.3. Let L = K(A

p

k ).

1. When k = 1, A

p

is an irreducible F[Gal(L=K)]-module.

2. H

i

(Gal(L=K); A

p

k) = 0 for all i � 0.

3. There is a natural pairing [ ; ] : H

1

(K;A

p

k) � Gal(

�

Q=L) ! A

p

k inducing an

isomorphism of F-modules H

1

(K;A

p

k)

�

=

Hom

Gal(L=K)

(Gal(

�

Q=L); A

p

k).

4. The F-module A

p

k is the direct sum of its �1 eigenspaces with respect to the

generator � of Gal(K=Q), each free of rank 1.

Proof. Since SL

2

(F

p

) has no nontrivial Z=2 quotients when p > 2 and Gal(L=K) is

of index at most 2 in G

p

, it follows that Gal(L=K) contains G

0

p

and therefore that

A

p

is an irreducible F[Gal(L=K)]-module. It also follows that Gal(L=K), consid-

ered as embedded in Aut(A

p

k), contains the central Subgroup of order 2 generated

by �1. Since p 6= 2, H

i

(�1; A

p

k ) = 0 for all i � 0 and the second assertion fol-

lows from the Hochschild-Serre spectral sequence H

i

(Gal(L=K)=�1;H

j

(�1; A

p

k)))

H

i+j

(Gal(L=K); A

p

k). An in
ation restriction sequence now implies that

H

1

(K;A

p

k)

�

=

H

1

(L;A

p

k)

Gal(L=K)

�

=

Hom

Gal(L=K)

(Gal(

�

Q=L); A

p

k)

hence the third assertion. Finally, part 4 follows because the determinant of � on T

is �1.

Let S be a �nitely generated F-submodule of H

1

(K;A

p

k). We consider the

elements of S as elements of Hom

Gal(L=K)

(Gal(

�

Q=L); A

p

k) and let L

S

be the �eld

�xed by the common kernel of these elements. The following lemma is immediate:

Lemma 6.4. The pairing [ ; ] induces a pairing

[ ; ]

S

: S � Gal(L

S

=L)! A

p

k ;
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which in turn induces an injection

Gal(L

S

=L) ,! Hom

F

(S;A

p

k) as Gal(L=K)-modules. (6.2)

This injection has the property that

x 2 S and [x;Gal(L

S

=L)]

S

= 0 =) x = 0:

In addition, this pairing induces an injection

S ,! Hom

Gal(L=K)

(Gal(L

S

=L); A

p

k ) as F-modules

Remark 6.5. Unlike the situation for elliptic curves [Gro91, proposition 9.3] we can

not in general expect the injection (6.2) to be an isomorphism. For instance, if G

p

k

is contained in GL

2

(Z=p

k

), then there might exist a homomorphism � : Gal(

�

Q=L)!

A

p

k whose image is contained in (Z=p

k

)

2

. If we take S to be the F-span of �, then

Gal(L

S

=L)

�

=

(Z=p

k

)

2

and is not in general an F-module whereas Hom

F

(S;A

p

k ) is.

The failure of (6.2) to be an isomorphism forces some changes in the �nal arguments.

Our chosen complex conjugation � acts on all the groups above. We will denote

by G

�

the �1-eigenspace of � acting on an abelian group G.

Lemma 6.6. Let C � Hom

F

(S;A

p

k ) be a Gal(L=K)-submodule with the property that

x 2 S and [x;C]

S

= 0 imply x = 0. Let 0 6= s 2 S and let a 2 Hom

F

(S;A

p

k)

+

. Let

C

0

= a+ C

+

; C

00

= fc 2 C

0

; [s; c]

S

6= 0g:

Then, C

0

and C

00

have the same property as C with respect to eigenvectors of � in S,

that is, if x 2 S

�

and [x;C

0

]

S

= 0 or [x;C

00

]

S

= 0, then x = 0.

Proof. Suppose �rst that [x;C

+

]

S

= 0. Then F � [x;C]

S

is an F[Gal(L=K)]-submodule

of A

p

k which is contained in the proper submodule A

�

p

k

. Considering p-torsion and

using part 1 of proposition 6.3 one �nds that F � [x;C]

S

is trivial. It follows in

particular that [s; C

+

]

S

is non trivial and since p � 3 it contains at least 3 elements.

From that it follows that for any c 2 C

+

one may always �nd c

1

; c

2

2 C

+

such that

c = (a+ c

1

)� (a+ c

2

) and [s; a+ c

i

]

S

6= 0 for i = 1; 2. The lemma follows easily.

Lemma 6.7. Let ` be a prime in S(M+k). Then, ` is inert in K. Let � be the unique

prime of K above `. Then, for any choice of Frob(�) in a decomposition group of �,

Frob(�) acts trivially on A

p

k and therefore � splits completely in L.

Proof. Both assertions follow from remark 3.1. In Gal(K=Q), Frob(`) = � hence ` is

inert in K. It now follows that Frob(�) is conjugate to �

2

and is therefore the identity

on A

p

k .

Let ` and � be as in the previous lemma, let �

0

be a prime of L

S

above � and let

Frob(�

0

) 2 Gal(L

S

=L) be the associated Frobenius substitution. It is easy to see that

the formula

�

�

0

(x) := [x;Frob(�

0

)]

S

de�nes an element of Hom

F

(S;A

p

k
) which depends only on ` up to conjugation on

A

p

k by some element of Gal(L=K). Using lemma 6.7 one has:
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Lemma 6.8. There is a Gal(K=Q)-equivariant isomorphism

H

1

f

(K

�

; A

p

k)

�

=

H

1

(K

ur

�

=K

�

; A

p

k)

�

=

A

p

k ; (6.3)

where the last step is evaluation at the Frobenius. If x 2 H

1

(K;A

p

k) and x

�

2

H

1

f

(K

�

; A

p

k) then, up to conjugation as before, the image of x

�

under this isomor-

phism is �

�

0

(x).

Lemma 6.9. Let � be as above.

1. The pairing h ; i

�

de�ned in lemma 2.4 induces nondegenerate pairings:

h ; i

�

�

: H

1

f

(K

�

; A

p

k)

�

�H

1

sin

(K

�

; A

p

k)

�

!Z=p

k

:

2. Both H

1

f

(K

�

; A

p

k
) and H

1

sin

(K

�

; A

p

k
) are direct sums of their �1 eigenspaces

with respect to � . All eigenspaces are free of rank 1 over F.

Proof. The �rst assertion follows since h ; i

�

is Gal(L=K) equivariant. The second

assertion follows for H

1

f

(K

�

; A

p

k) by lemma 6.8 and part 4 of proposition 6.3 and the

same now follows for H

1

sin

(K

�

; A

p

k)

�

by the �rst assertion.

Proposition 6.10. Let x; y 2 S and suppose that y 6= 0. Then there exists some

` 2 S(M + k) such that y

�

6= 0. If for almost all ` 2 S(M + k) with y

�

6= 0 we have

x

�

= 0, then x = 0.

Proof. Let L

M

= K(A

p

M+k+1 ). Let C be the image of Gal(

�

Q=L

M

) in Gal(L

S

=L).

We �rst claim that when considered in Hom

F

(S;A

p

k), C satis�es the assumption

of lemma 6.6. To show that, we �rst notice that the same argument used to

prove that H

i

(Gal(L=K); A

p

k) = 0 for all i � 0 in proposition 6.3 shows that

H

i

(Gal(L

M

=K); A

p

k) = 0 for all such i. An in
ation restriction sequence now shows

that

Hom

Gal(L=K)

(Gal(L

M

=L); A

p

k) = H

1

(Gal(L

M

=L); A

p

k)

Gal(L=K)

= 0:

This implies that if x 2 S satis�es [x;C]

S

= 0, then in fact [x;Gal(L

S

=L)]

S

= 0 and

the claim follows from lemma 6.4.

By lemma 6.2 the image of Gal(

�

Q=K) in Aut(A

p

M+k+1 )

�

=

GL

2

(O

E

p

=p

M+k+1

)

contains an element of the form a � I such that a 2 1 + p

M+k

(Z=p)

�

. One checks that

this element de�nes �

0

2 Gal(L

M

=L

M�1

) with the property that if Frob(`) contains

��

0

, then ` 2 S(M + k).

Now let L

0

= L

M

\ L

S

. Then C = Gal(L

S

=L

0

). Consider � 2 C

+

. Since C has

odd order we can �nd � 2 C such that � = �

�

�. Let � � �

0

2 Gal(L

M

� L

S

=K) be the

element whose restriction to Gal(L

M

=K) is �

0

and whose restriction to Gal(L

S

=L

0

)

is �. By

�

Cebotarev's density theorem, we may �nd in�nitely many primes ` whose

Frobenius conjugacy class in Gal(L

M

� L

S

=Q) contains � � � � �

0

. Every such ` is in

S(M + k). In addition, after projecting to Gal(L

S

=L

0

) we �nd Frob(�) = (��)

2

=

�

�

� � = �. Thus, we are able to generate a full coset of C in Gal(L

S

=L) with these

Frob(�). By lemma 6.8 we are also able to generate all elements � of this coset for

which [y; �]

S

= 0 with fFrob(�); y

�

6= 0g. The proposition therefore follows from

lemma 6.6.
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Lemma 6.11. Suppose x 2 Sel(K;A

p

k) and n is a product of primes in S(M + k).

1.

X

`jn

hx

�

; P (n)

�;sin

i

�

= 0.

2. If x and P (n) are in the same eigenspace for � , p

k�I�1

P (n)

�;sin

6= 0 and we

have hFx

�

; P (n)

�;sin

i

�

= 0, then p

I

x

�

= 0.

Proof. 1. This follows from proposition 2.2, lemma 2.4 and the fact that the classes

P (n) are dual �nite at primes not dividing n.

2. Consider �rst the case k = 1 and I = 0. The conditions then imply that Fx

�

is a

proper subspace of an eigenspace of � on H

1

f

(K

�

; A

p

) which is 1-dimensional over F

by lemma 6.9 and it follows that Fx

�

= 0. If k is arbitrary but I = 0 then P (n)

�;sin

has a non trivial image in p-cotorsion hence by the previous case Fx

�

has trivial p-

torsion but this can only happen if x

�

= 0. Finally, if I 6= 0 the conditions imply

that P (n)

�;sin

= p

I

0

P

0

with I

0

� I and P

0

has a non trivial image in p-cotorsion.

Since hFp

I

0

x

�

; P

0

i

�

= 0 we get from the previous case p

I

0

x

�

= 0.

The proof of theorem 1.2 may now be completed as follows: Let I = I

p

and

let J = I + 1. We assume that k > I and we want to prove that p

2I

kills

Sel(K;A

p

k)=FP (1). Our assumption is that red

p

J P (1) 6= 0 in H

1

(K;A

p

J ). On

H

1

(K;A

p

k), multiplication by p

k�J

factors as the composition of red

p

J with the

map H

1

(K;A

p

J )! H

1

(K;A

p

k) induced by the inclusion in the short exact sequence

0 ! A

p

J ! A

p

k ! A

p

k�J ! 0. Since A

p

k�J (K) = 0, this induced map is injec-

tive and we conclude that p

k�J

P (1) 6= 0. Let x 2 Sel(K;A

p

k). Suppose �rst that

x is in the opposite eigenspace to P (1), hence in the same eigenspace as P (`) for

` 2 S(M +k) by proposition 3.2. Let S be the F-submodule of H

1

(K;A

p

k) generated

by x and P (1). Suppose ` 2 S(M +k) is such that (p

k�J

P (1))

�

6= 0. Then, by part 3

of proposition 3.2, p

k�J

P (`)

�;sin

6= 0 and from that and lemma 6.11 it follows that

p

I

x

�

= 0. Proposition 6.10 therefore implies that p

I

x = 0.

Suppose now that x is in the same eigenspace as P (1) and we claim that p

2I

x

has to be a multiple of P (1). By proposition 6.10 we may �nd ` 2 S(M + k) such

that (p

k�J

P (1))

�

6= 0. As before, this implies that p

k�J

P (`)

�;sin

6= 0 and hence

that p

k�J

P (`) 6= 0. Let S be generated by x, P (1) and P (`). Since p

k�J

P (1)

�

6= 0

and both P (1)

�

and x

�

are in the free rank 1 F-module H

1

f

(K

�

; A

p

k)

�

, it is easy

to see that we may �nd a combination x

0

= �P (1) + p

I

x 2 S, with � 2 F, such

that x

0

�

= 0. Consider now ` 6= `

1

2 S(M + k) such that p

k�J

P (`)

�

1

6= 0. Then

p

k�J

P (``

1

)

�

1

;sin

6= 0, again by part 3 of proposition 3.2. Let x

00

2 Fx

0

. Then

hx

00

�

; P (``

1

)

�;sin

i

�

+ hx

00

�

1

; P (``

1

)

�

1

;sin

i

�

1

= 0:

Since x

00

�

= 0 we �nd hx

00

�

1

; P (``

1

)

�

1

;sin

i

�

1

= 0. Lemma 6.11 implies that p

I

x

0

�

1

= 0.

From proposition 6.10 we get p

I

x

0

= 0 and so p

2I

x = ��p

I

P (1).
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A The Hochschild-Serre spectral sequence in continuous cohomology

Here we prove the following result:

Proposition A.1. Let G be a pro�nite group, M a continuous module of G which

is the inverse limit of discrete G-modules M

n

; n 2 N, and H a normal subgroup of

G with a �nite quotient group � = G=H. Then there is a Hochschild-Serre spectral

sequence

E

i;j

2

= H

i

(�;H

j

(H;M ))) H

i+j

(G;M ); (A.1)

where the cohomology of M is the continuous cohomology, i.e., the one computed with

respect to continuous cochains as in [Tat76].

Proof. The spectral sequence will be derived from the Grothendieck spectral sequence

for the composition of the functors U : A ! B and V : B ! C de�ned as follows:

� A is the category of inverse systems (M

n

)

n2N

of discrete G-modules;

� B is the category of �-modules and C of abelian groups;

� U is the functor which takes an inverse system of G-modules (M

n

) to lim

 

M

H

n

;

� V is the � invariants functor.

In this case, U�V is the functor which takes (M

n

) to lim

 

M

G

n

, because taking invariants

commutes with taking limits. The i-th right derived functor of (M

n

)! lim

 

M

G

n

was

shown by Jannsen [Jan88a] to be the continuous cohomology H

i

(G; lim

 

M

n

) and the

same holds with G replaced by H. The only thing left to check is that U takes A

injectives to V acyclics, or even to injectives. For this fact, a proof can be given

along the lines of the proof of the usual Hochschild-Serre spectral sequence (see for

example [HS76, p.303]). One only needs to give a left adjoint

�

U to U which preserves

monomorphisms and this is easily done: for a �-module N , let

�

U (N ) be the constant

inverse system of N considered as a G-module. Now it is very easy to check that

Hom

A

(

�

U (N ); (M

n

)) = Hom

B

(N; lim

 

M

H

n

)

and so the proof is complete.
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Abstract. In this paper we extend the �niteness result on the p-primary

torsion subgroup in the Chow group of zero cycles on the selfproduct of a

semistable elliptic curve obtained in joint work with S. Saito to primes p

dividing the conductor. On the way we show the �niteness of the Selmer

group associated to the symmetric square of the elliptic curve for those

primes. The proof uses p-adic techniques, in particular the Fontaine-Jannsen

conjecture proven by Kato and Tsuji.

1991 Mathematics Subject Classi�cation: Primary 14H52; Secondary 19E15,

14F30.

Key words and phrases: torsion zero cycles, semistable elliptic curve, mul-

tiplicative reduction primes, Selmer group of the symmetric square, Hyodo-

Kato cohomology.

Introduction.

In this note we extend the main �niteness result on p-primary torsion zero-cycles

on the selfproduct of a semistable elliptic curve in [L-S] to primes p � 3 where E

has (bad) multiplicative reduction, at least under a certain standard assumption. In

the course of the proof we will also derive the �niteness of the Selmer group of the

symmetric square Sym

2

H

1

(E)(1) for these primes. However, this latter result has

already been proven, under the additional condition that the Galois representation

%

p

: Gal(Q=Q) �! Aut(E

p

)

is absolutely irreducible (here E

p

= E

p

(Q) is the subgroup of p-torsion elements of

E), in a much more general context by Wiles in his main paper ([W] Theorem 3.1)

for Selmer groups associated to deformation theories.

To state the Theorems, let E be a semistable elliptic curve over Q with conductor

N and let X = E�

Q

E be its self-product. Consider the Chow group CH

0

(X) of
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zero-cycles on X modulo rational equivalence and let CH

0

(X)fpg be | for a �xed

prime p | its p-primary torsion subgroup. For a prime p dividing N consider the

following hypothesis:

H 1) The Gersten-Conjecture holds for the Quillen-(Milnor)-sheaf K

2

on a regular

model X of X over ZZ

p

.

Then we have

Theorem A: Let E be a semistable elliptic curve and p � 3 a prime such that p j N ,

i.e., E has (bad) multiplicative reduction at p. Assume that the condition H 1) is

satis�ed. Then CH

0

(X)fpg is a �nite group.

Let A = H

2

(X;Q

p

=ZZ

p

(2)) be the Q

p

=ZZ

p

-realization of the motive H

2

(X)(2) with

its Gal(Q=Q)-action. Then we have

Theorem B: Let E be a semistable elliptic curve over Q and p � 3 a prime such

that p j N . Then the Selmer group S(Q; A) is �nite.

Remarks:

| In [L-S] we showed the �niteness of CH

0

(X)fpg for primes p such that p 6 j 6 and E

has good reduction at p. We also proved that CH

0

(X)fpg is zero for almost all p.

Therefore Theorem A extends this result to bad primes and provides a further step

towards a proof that the full torsion subgroup CH

0

(X)

tors

is �nite. In order to

�nd a �rst example where this is true it remains to consider the 2- and 3-primary

torsion in CH

0

(X).

| The Selmer group S(Q; A) coincides with S(Q; Sym

2

H

1

(E;Q

p

=ZZ

p

(1))) that was

studied by [Fl], because S(Q;Q

p

=ZZ

p

(1)) is zero. In [Fl] Flach proved the �nite-

ness of S(Q; A) for primes p � 5 such that E has good reduction at p and the

representation %

p

is surjective. We were able to remove the latter hypothesis

by using a rank-argument of Bloch-Kato and reproved Flach's �niteness result

for primes p such that p 6 j 6N (compare [L-S]). In the proof of Theorem B we

combine the criterium of Bloch-Kato with Kolyvagin's argument that was used

in Flach's paper. Flach's additional condition on the surjectivity of %

p

can be

avoided by applying a certain lemma, due to J. Nekov�a�r, that bounds the order

of H

1

(Gal(Q(E

p

n

)=Q); (Sym

2

H

1

(E;ZZ=p

n

(1)))(�1)) independently of n.

The paper is organized as follows:

In the �rst paragraph we reduce the proof of Theorem A to two Lemmas I and II.

Lemma I was already proven in ([L-S], Lemma A). Lemma II is similar to ([L-S],

Lemma B), but the statement is di�erent. The di�erence is caused by the particular

semistable situation. In the second paragraph we derive Lemma II and Theorem B

from a key proposition that bounds the possible corank (at most 1 !) of the cokernel

of the map de�ning the Selmer group. Finally this proposition is proven in the last

paragraph. The methods of the proof are similar to those developed in [L-S]. At the
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point where the crystalline conjecture was used in the good reduction case, we now

use the Fontaine-Jannsen conjecture (proven by Kato/Tsuji for p � 3) that relates the

log-crystalline cohomology to the p-adic �etale cohomology. The role of the syntomic

cohomology in the context of Schneider's p-adic points conjecture is now replaced

by a semistable analog relating log-syntomic cohomology to H

1

g

(Q

p

;H

2

(X;Q

p

(2)))

(compare [L]). When we apply this argument we will also need the computation, due

to Hyodo and used by Tsuji, on a �ltration on the sheaf of p-adic vanishing cycles in

terms of modi�ed logarithmic Hodge-Witt sheaves.

This paper was written during a visit at the University of Cambridge. I want to thank

J. Coates and J. Nekov�a�r for their invitation and J. Nekov�a�r for many discussions and

the permission to include his proof of Lemma (2.5) in this paper. Finally I thank S.

Saito for encouraging me to look at the remaining semistable reduction case of our

main �niteness result in [L-S] and I consider this work as having been done very much

in the spirit of our joint paper and a continuation of it.

x1

We �rst �x some notations.

For an Abelian group M let M

div

be the maximal divisible subgroup of M and Mfpg

its p-primary torsion subgroup. For a scheme Z over a �eld k let Z = Z �

k

k where

k is an algebraic closure of k. Denote by G

k

= Gal(k=k) the absolute Galois group

of k. We will consider the Zariski sheaf K

2

associated to the presheaf U ! K

2

(U ) of

Quillen (-Milnor) K-groups on Z and let H

j

Zar

(Z;K

2

) be its Zariski cohomology. Let

E be a semistable elliptic curve over Q with conductor N , � : X

0

(N )! E a modular

parametrization of E, X = E�

Q

E. Let T;A; V be the following G = G

Q

-modules:

T = H

2

(X;ZZ

p

(2)) ; A = H

2

(X;Q

p

=ZZ

p

(2)) ; V = H

2

(X;Q

p

(2)) :

Note that as Abelian groups T

�

=

ZZ

6

p

, A

�

=

Q

p

=ZZ

6

p

, because the integral cohomology

of an Abelian variety is torsion-free and the second Betti number of X b

2

is 6.

Let K be the function �eld of X. For a prime p let

NH

3

(X;Q

p

=ZZ

p

(2)) := ker(H

3

(X;Q

p

=ZZ

p

(2))! H

3

(K;Q

p

=ZZ

p

(2)))

and

K

N

H

3

(X;Q

p

=ZZ

p

(2)) := ker(NH

3

(X;Q

p

=ZZ

p

(2))! H

3

(X;Q

p

=ZZ

p

(2)))

By results of Bloch and Merkurjev-Suslin ([Bl], x5 and [M-S] we have the following

exact sequence

(1� 1) 0! H

1

(X;K

2

) 
Q

p

=ZZ

p

! NH

3

(X;Q

p

=ZZ

p

(2))! CH

0

(X)fpg ! 0

Since H

1

(X;K

2

) 
Q

p

=ZZ

p

= 0 we get an exact sequence

0 �! H

1

(X;K

2

) 
Q

p

=ZZ

p

�! K

N

H

3

(X;Q

p

=ZZ

p

(2))(1� 2)

�! ker(CH

0

(X)fpg �! CH

0

(X)fpg

G

) �! 0
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Since X is identi�ed with its Albanese variety, the map CH

0

(X)

tors

�!

CH

0

(X)

G

tors

is the Albanese map and therefore (CH

0

(X)fpg)

G

�

=

X(Q)fpg is �nite.

Consider the Hochschild-Serre spectral sequence

E

a;b

2

= H

a

(Q;H

b

(X;Q

p

=ZZ

p

(2)) =) H

a+b

(X;Q

p

=ZZ

p

(2)) :

Then we have

Lemma I: Let the assumptions be as above. Then the composite map

E

2;1

2

�! H

3

(X;Q

p

=ZZ

p

(2)) �! H

3

(K;Q

p

=ZZ

p

(2))

is injective.

This is shown in ([L-S], Lemma (A)) without any assumption on the prime p.

Corollary (1.3) The composite map

' : K

N

H

3

(X;Q

p

=ZZ

p

(2)) �! H

1

(G

Q

; A)

that is obtained by the Hochschild-Serre spectral sequence is injective.

The Corollary will play an important role in the proof of

Lemma II: Under the above assumptions let p � 3 be a prime such that p j N and

assume that the condition H 1) in the introduction is satis�ed. Then we have

H

1

(X;K

2

)
 Q

p

=ZZ

p

= K

N

H

3

(X;Q

p

=ZZ

p

(2))

div

:

Remark:

Lemma II was proven for primes p 6 j 6N in ([L-S, Lemma (B)) because in this case

K

N

H

3

(X;Q

p

=ZZ

p

(2))

div

coincides with H

1

(Q; A)

div

. This is not stated there explic-

itly but follows from the proof of Lemma (B) in [L-S].

Now we deduce Theorem A from Lemma II.

The exact sequence (1-1) also holds for a smooth proper model X of X over ZZ

h

1

Np

i

.

So CH

0

(X )fpg is a subquotient of H

3

(X ;Q

p

=ZZ

p

(2)) and one knows that the latter

group is co-�nitely generated. Therefore CH

0

(X )fpg is co-�nitely generated as ZZ

p

-

module. Since the kernel of the canonical map

CH

0

(X )fpg �! CH

0

(X)fpg

is a torsion group by the main result in [Mi], the localization sequence in the Zariski

K-cohomology over X yields a surjection

CH

0

(X )fpg !! CH

0

(X)fpg :
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So we also know that CH

0

(X)fpg is co-�nitely generated.

On the other hand, by (1-2), the �niteness ofCH

0

(X)fpg

G

and Lemma II we conclude

that the maximal divisible subgroup of CH

0

(X)fpg is zero. Therefore CH

0

(X)fpg is

a �nite group.

To complete the proof of Theorem A it remains to show Lemma II.

x2

For each prime ` let

H

1

e

(Q

`

; V ) � H

1

f

(Q

`

; V ) � H

1

g

(Q

`

; V ) � H

1

(Q

`

; V )

be de�ned as in ([BK], 3.7)). Let

H

1

f

(Q

`

; T ) � H

1

g

(Q

`

; T ) � H

1

(Q

`

; T )

be the inverse image of H

1

f

(Q

`

; V ) and H

1

g

(Q

`

; V ). Put

H

1

f

(Q

`

; A) := H

1

f

(Q

`

; T )
Q

p

=ZZ

p

� H

1

(Q

`

; A)

and

H

1

g

(Q

`

; A) := H

1

g

(Q

`

; T )
Q

p

=ZZ

p

� H

1

(Q

`

; A)

Write ^

`

= H

1

(Q

`

; T )=H

1

f

(Q

`

; T ). Then we have

^

`


Q

p

=ZZ

p

= H

1

(Q

`

; A)

div

=H

1

f

(Q

`

; A)

Consider as in ([L-S], x3) the composite map

 : H

1

(X;K

2

)
 Q

p

=ZZ

p

�! K

N

H

3

(X;Q

p

=ZZ

p

(2))

div

�

0

�! �

`

^

`


 Q

p

=ZZ

p

where �

0

is the restriction of the map

� : H

1

(Q; A) �! �

all `

H

1

(Q

`

; A)

H

1

f

(Q

`

; A)

the kernel of which de�nes the Selmer group S(Q ; A).

In analogy to ([L-S], Lemma 3.1) we will prove the following

Documenta Mathematica 2 (1997) 47{59



52 Andreas Langer

Proposition (2.1): Let the notations be as in x1. Let p � 3 a prime, such that E

has multiplicative reduction at p. Assume that condition (H 1) holds. Then we have

coker = H

1

(Q

p

; A)

div

=H

1

g

(Q

p

; A)a)

Im = Im�

0

b)

We will give the proof of Proposition 2.1 in the next section.

In the following we will compute the coranks of H

1

(Q

p

; A)

div

=H

1

g

(Q

p

; A) and

H

1

g

(Q

p

; A)=H

1

f

(Q

p

; A). Let




p

= H

1

g

(Q

p

; V )=H

1

f

(Q

p

; V ) and �

p

= H

1

(Q

p

; V )=H

1

g

(Q

p

; V )

as in ([L-S], x4). It is well known that X

Q

p

= E�E

Q

p

has a regular proper model X

over ZZ

p

with semistable reduction. Let X

p

be its closed �ber. By local Tate-Duality

([B-K], x3.8), 


p

is the Q

p

-dual of H

1

f

(Q

p

; V (�1))=H

1

e

(Q

p

; V (�1)) and this quotient

is | by the computations in [B-K], 3.8 | isomorphic to (B

crys


 V (�1))

G

Q

p

=1� f ,

which is by Kato's and Tsuji's proof of the Fontaine-Jannsen-Conjecture ([Ka], x6),

([Tsu]) isomorphic to (D

2

)

N=0

=1� f), where

D

2

= H

2

log crys

((X

p

;M

1

)=W (IF

p

);W (L); O

crys

)
 Q

p

denotes the log-crystalline cohomology introduced by Hyodo-Kato [H-K], N = 0 de-

notes the kernel under the action of the monodromy operator N , and f acts as p

�1

',

where ' is the Frobenius acting on D

2

. Therefore we have by Poincar�e duality for

Hyodo-Kato cohomology that 


p

is isomorphic to (cokerN : D

2

! D

2

)

'=p

. Since

the functor D

st

(�) = (B

st


 �)

G

Q

p

commutes with tensor products and a Tate-elliptic

curve has ordinary semistable reduction in the sense of ([Il], De�nition 1.4) we have

a Hodge-Witt-decomposition ([Il], Proposition 1.5)

D

2

= �

i+j=2

H

i

(X

p

;Ww

j

) 
Q

p

:

Here H

i

(X

p

;Ww

j

) is the cohomology of the modi�ed Hodge-Witt-sheaves.

From the action of the Frobenius ' on D

2

it is clear that (D

2

)

'=p

is contained

in H

1

(X

p

;Ww

1

)

Q

p

. By ([Mo], x6) we know that the monodromy �ltration and the

weight �ltration on D

2

coincide. Using the formula N' = p'N we have that

N (H

0

(X

p

;Ww

2

)) � H

1

(X

p

;Ww

1

)

and the map

N

2

: H

0

(X

p

;Ww

2

) �! H

2

(X

p

;Ww

0

)

is an isomorphism. Since dimH

i

(X

p

;Ww

j

)

Q

p

= dimH

i

(X

Q

p




j

) by ([Il], Corollaire

2.6), we see that

dim(cokerN : D

2

! D

2

)

'=p

= dim(D

2

)

N=0

'=p

� 3 :

On the other hand the B

St

-comparison-isomorphism provides an injection

Pic(X) 
 Q

p

,! H

2

(X;Q

p

(1))

G

Q

p

,! (D

2

)

N=0

'=p

:

Since Pic(X) has rank 3 we have
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Lemma (2.2):

dim


p

= dim(D

2

)

N=0

'=p

= 3 :

By the same methods and the proof of ([L-S], Lemma 4.4) we get

Lemma (2.3):

dim�

p

= 1 :

From Lemma (2.2) and ([L-S], Lemma 4.1) we get

Lemma (2.4): The image of the composite map

(Pic(X) 
Q

�

) 
Q

p

=ZZ

p

�! H

1

(X;K

2

) 
Q

p

=ZZ

p

 

p

�! ^

p


 Q

p

=ZZ

p

is

H

1

g

(Q

p

; A)=H

1

f

(Q

p

; A) :

Now we will give the proof of Theorem B and we distinguish between two cases.

Case I:

The map �

0

p

, i.e. the p-component of �

0

is surjective.

This case is actually obstructed by the Gersten-conjecture as we will see in the proof

of Proposition (2.1). Since we do not assume (H 1) in Theorem B we also consider

this case. Using the surjectivity-property of  

`

, i.e. the `-component of  , for ` 6= p

that follows from Prop. 2.1, and where the condition (H 1) is not needed, we see that

coker� has ZZ

p

-corank 0. Now apply the modi�ed version of ([B-K], Lemma 5.16)

that is given in ([L-S], Lemma (3.3)): All the assumptions there are also satis�ed for

our choice of p:

| V is a de Rham representation of Gal(Q

p

=Q

p

) by Falting's proof of the de Rham

conjecture.

| For the characteristic polynomial P

`

(V; t) we have P

`

(V; 1) 6= 0. For ` 6= p the

proof is the same as in ([L-S], x3). For ` = p, we have Crys(V )

f=1

= (D

2

)

N=0

'=p

2

.

By the same methods as in the proof of Lemma (2.2) we have (D

2

)

N=0

'=p

2

= 0.

By the same arguments as in the proof of ([L-S], Theorem 3.2) we get the formula

corank(ker�) = corank(coker�) = 0. Therefore S(Q; A) = ker� is �nite.

Case II:

Im�

0

p

= H

1

g

(Q

p

; A)=H

1

f

(Q

p

; A)

By Lemmas (2.3) and (2.4) this is the only remaining case to consider.

Let T

0

= Sym

2

H

1

(E;ZZ

p

(1)). By Lemma (2.2) and Lemma (2.4) we have

H

1

g

(Q

p

; T

0

)=H

1

f

(Q

p

; T

0

) = 0. Let c(`) for ` 6 j N be the elements in H

1

(X;K

2

) that

Documenta Mathematica 2 (1997) 47{59



54 Andreas Langer

were constructed by Mildenhall and Flach. In the notation of ([Fl], Prop. (1.1)) we

therefore have res

r=p

c(`) 2 H

1

f

(Q

p

; T

0

). We get this property with little e�ort whereas

in [Fl] this was one of the harder parts in the whole paper. It is now easy to check

that all the other required properties on the elements c(`) in ([Fl], Prop. (1.1)) are

also satis�ed for our choice of p. Thus we apply Kolyvagin's argument in ([Fl], Prop.

(1.1)). At the point where Flach needs the surjectivity of the Galois representation

%

p

in order to derive the �niteness of S(Q; A(�1)), we use the following Lemma, due

to Nekov�a�r, that �nishes, after applying Poitou-Tate Duality, the proof of Theorem

B.

Lemma (2.5): Let Q(E

p

n

)=Q be the Galois extension obtained by adjoining the co-

ordinates of all p

n

-torsion points on E and let T

0

be as above. Then there exists a

c > 0, such that the exponent of H

1

(Gal(Q(E

p

n

)=Q); T

0

(�1)=p

n

) divides p

c

for all

n � 0.

Remark: Flach uses the vanishing of this cohomology group that follows from his

additional assumption on the surjectivity of %

p

.

Proof: Put G := Im(Gal(Q=Q) ! Aut

ZZ

p

(T

p

(E))). Since E is without complex

multiplication over Q, G is of �nite index in Aut

ZZ

p

(T

p

(E)) = GL

2

(ZZ

p

). Put G

n

:=

ker(G ! GL

2

(ZZ=p

n

); T

0

:= Sym

2

(T

p

(E)),

~

G := Im(G ! Aut

ZZ

p

(T

0

)) = G=Z \ G,

where Z = center of GL

2

(ZZ

p

) =

��

� 0

0 �

�

; � 2 ZZ

�

p

�

.

Consider the following diagram with horizontal and vertical exact sequences:

(note that G=G

n

�

=

Gal(Q(E

p

n

)=Q).

0

#

H

1

(G; T

0

(�1)) 
 ZZ=p

n

#

0! H

1

(G=G

n

; T

0

(�1)=p

n

)

inf

�! H

1

(G; T

0

(�1)=p

n

)

res

�!H

1

(G

n

; T

0

(�1)=p

n

)

G=G

n

#

H

2

(G; T

0

(�1))

p

n

It is clear that H

i

(G; T

0

(�1)) = H

i

cont

(G; T

0

(�1)) = H

i

naive

(G; T

0

(�1)) are ZZ

p

-

modules of �nite type. Therefore H

2

(G; T

0

(�1))

p

1

is �nite. We have an exact

sequence

0! H

1

(

~

G; T

0

(�1))

inf

�! H

1

(G; T

0

(�1))

res

�!H

1

(Z \G; T

0

(�1))

G=Z\G

=

Hom

cont

(Z \G; (T

0

(�1))

G=Z\G

)
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But (T

0

(�1))

G=Z\G

is zero (E has no CM). Thus H

1

(

~

G; T

0

(�1)) = H

1

(G; T

0

(�1)).

By result of Lazard there is an injection

H

1

(

~

G; T

0

(�1)) 
Q ,! H

1

(Lie(

~

G); T

0

(�1)
 Q)

= H

1

(sl(2); T

0

(�1) 
Q)

and H

1

vanishes for semisimple Lie-algebras (and every representation). So

H

1

(G; T

0

(�1)) is �nite and Lemma 2.5 follows.

Finally it is easy to see that Corollary (1.3), Proposition (2.1) b) and Theorem B imply

Lemma II and as a consequence also Theorem A. It remains to show Proposition (2.1).

This will be accomplished in the next paragraph.

x3

The surjectivity of the map

 

0

= �

` 6=p

 

`

: H

1

(X;K

2

) 
Q

p

=ZZ

p

�! �

` 6=p

H

1

(Q

`

; A)

div

=H

1

f

(Q

`

; A)

follows from ([L-S], Lemmas (4.1), (4.3), (4.4) and (4.5)). On the other hand the

composite map

Pic(X) 
 p

ZZ

) 
Q

p

=ZZ

p

! H

1

(X;K

2

)
 Q

p

=ZZ

p

 

p

! H

1

g

(Q

p

; A)=H

1

f

(Q

p

; A)

is surjective by Lemma (2.2), whereas the image of (Pic(X) 
 p

ZZ

) 
 Q

p

=ZZ

p

under

the map  

0

is zero. To �nish the proof of Proposition (2.1) we therefore have to show

that the image of �

0

p

, the p-component of �

0

is contained in H

1

g

(Q

p

; A)=H

1

f

(Q

p

; A).

By the theory of Bloch-Ogus and the work of Merkurjev-Suslin [M-S] we have an

isomorphism

H

1

(X;K

2

=p

n

)

�

=

NH

3

et

(X;ZZ=p

n

(2)) :

Let X be a proper regular semistable model of X

Q

p

over ZZ

p

, i : X

p

! X and

j : X

Q

p

,! X the inclusions of the closed and generic �ber.

Let H

3

et

(X ; �

�2

Rj

�

ZZ=p

n

(2)) be the cohomology of the truncated complex of p-adic

vanishing cycles. Then we have

Lemma (3.1): Assume that the Gersten-Conjecture holds for the Zariski sheaf K

2

on

the regular scheme X . Then we have the inclusion

H

1

(X

Q

p

;K

2

=p

n

) � H

3

et

(X ; �

�2

Rj

�

ZZ=p

n

(2)) :

Proof:

This follows from the proof of ([L-S], Lemma (5.4)).
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Lemma (3.2): H

3

(X

Q

p

;Q

p

(2))

G

Q

p

= 0.

Proof:

Using the K�unneth formula and the fact that H

2

(E;Q

p

(1))

�

=

Q

p

(the Brauer

group of a curve over an algebraically closed �eld is zero), it su�ces to show that

H

1

(E;Q

p

(1))

G

Q

p

= 0. This follows from ([J], Theorem 5a).

Using Lemma (3.2) and the Hochschild-Serre spectral sequence we get a canonical

map

� : lim

 �

n

H

1

(X

Q

p

;K

2

=p

n

) 
Q

p

�! H

1

(Q

p

; V ) :

When we deal with a variety over a local �eld, all cohomology groups under

consideration are (co-)�nitely generated. The map �

0

p

certainly factors through

lim

�!

n

H

1

(X

Q

p

;K

2

=p

n

)

div

. The assertion that lim

�!

n

H

1

(X

Q

p

;K

2

=p

n

)

div

is contained in

H

1

g

(Q

p

; A) is therefore equivalent to the assertion that the image of � is contained in

H

1

g

(Q

p

; V ). In view of Lemma (3.1) we see that Proposition (2.1) follows from the

following

Lemma (3.3): Under the condition H1) we have: Im� � H

1

g

(Q

p

; V ).

To prove Lemma (3.3) it su�ces to show that the image of the map

H

3

(X ; �

�2

Rj

�

Q

p

(2)) �! H

1

(Q

p

; V )

is contained in H

1

g

(Q

p

; V ).

Let s

log

n

(2) be the log-syntomic complex in D

et

(X ) constructed by Kato ([Ka], x6)

and Tsuji [Tsu] together with a canonical map

s

log

n

(2) �! �

�2

i

�

i

�

Rj

�

ZZ=p

n

(2) :

This gives rise to a composite map

� : H

3

et

(X ; s

log

Q

p

(2)) �! H

1

(Q

p

; V ) :

Since (D

2

)

N=0

'=p

2

= (D

3

)

N=0

'=p

2

= 0 (D

i

denotes the i-th log-crystalline cohomology of

X

p

) we may apply the main result in [L] on a semistable analogue of Schneider's

p-adic points conjecture to get
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Lemma (3.4) Im� = H

1

g

(Q

p

; V ).

Tsuji has proven that there is a canonical isomorphism between the cohomology

H

2

(i

�

s

log

n

(2)) and the sheaf M

2

n

= i

�

R

2

j

�

ZZ=p

n

(2) of p-adic vanishing cycles ([Tsu],

Theorem 3.2). His proof relies on a �ltration Fil

�

on M

2

n

that was de�ned by Hyodo

([H], (1.4)) and is induced by a symbol map on Milnor K-Theory. Hyodo has shown

([H], Theorem (1.6)) that the highest graded quotient gr

0

M

2

n

sits in an extension

(change of notation: Y := X

p

, the closed �ber of X )

0 �!W

n

w

1

Y;log

�! gr

0

M

2

n

�!W

n

w

2

Y;log

�! 0

where W

n

w

i

Y;log

are the modi�ed logarithmic Hodge-Witt-sheaves ([H] (1.5)). On

the other hand Hyodo and Kato ([H-K] Prop. 1.5) constructed an exact sequence of

Hodge-Witt-sheaves

0 �!W

n

w

1

Y

�!W

n

~w

2

Y

�!W

n

w

2

Y

�! 0

and used the connecting homomorphism on the level of cohomology to de�ne the

monodromy operator on log-crystalline cohomology. It follows from the work of Tsuji

([Tsu], x2.4) that there is a commutative diagram

0 ! W

n

w

1

Y;log

! gr

0

M

2

n

! W

n

w

2

Y;log

! 0

?

y

?

y

?

y

0 ! W

n

w

1

Y

! W

n

~w

2

Y

! W

n

w

2

Y

! 0

such that the upper exact sequence is obtained by taking the kernel of 1 � F act-

ing on the lower exact sequence, where F is the Frobenius. From the Hodge-Witt-

decomposition of H

r

(Y;Ww

�

) ([Il], Proposition (1.5)) it is easy to derive a Hodge-

Witt-decomposition for H

r

(Y;W ~w

�

Y

)

H

r

(Y;W ~w

�

Y

) =

M

i+j=r

H

i

(Y;W ~w

j

Y

) :

From the action of the Frobenius ' on H

r

(Y;W ~w

�

Y

) we get

H

3

(Y;W ~w

�

Y

)

'=p

2 = H

1

(Y;W ~w

2

Y

)

F=1

:

On the other hand it is shown in the proof of the semistable analogue of the p-adic

points conjecture on log-syntomic cohomology [L], (2.6), Prop. (2.9), Prop. (2.13) that

there is a surjection

H

3

et

(X ; s

log

Q

p

(2))!! (H

3

(Y;W ~w

�

Y

)

Q

p

)

'=p

2
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and the above arguments yield a commutative diagram

H

3

(X ; s

log

Q

p

(2))

?

y

&

H

3

et

(X ; �

�2

Rj

�

Q

p

(2)) ! H

1

(Y; gr

0

M

2

Q

p

) ! (H

3

(Y;W ~w

�

Y

)

Q

p

)

'=p

2

?

y

?

y

H

1

(Q

p

; V ) �! H

1

(Q

p

; B

crys


 V )

It follows from ([L], (2.10)) that the composite

(H

3

(Y;W ~w

�

Y

)

Q

p

)

'=p

2
�! H

1

(Q

p

; B

crys


 V ) �! H

1

(Q

p

; B

st


 V )

is the zero map. Using the fact that H

1

st

= H

1

g

(unpublished result of Hyodo, see also

Nekov�a�r ([Ne](1.24)) we conclude that the image of the map

H

3

et

(X ; �

�2

Rj

�

Q

p

(2)) �! H

1

(Q

p

; V )

is H

1

g

(Q

p

; V ) in view of Lemma (3.4). This �nishes the proof of Lemma (3.3) and

Proposition (2.1).
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Abstract.

A Hopf-bifurcation scenario with symmetries is studied. Here, apart from

the well known branches of periodic solutions, other bifurcation phenomena

have to occur as it is shown in the second part of the paper using topological

arguments. In this �rst part of the paper we prove analytically that invariant

tori with quasiperiodic motion bifurcate. The main methods used are orbit

space reduction and singular perturbation theory.

1991 Mathematics Subject Classi�cation: 58F14, 34C20, 57S15

Contents

1 Introduction 62

2 Representation of the group O(3) � S

1

on V

2

� iV

2

64

3 Restriction to Fix(Z

2

; 1) 69

3.1 Poincare-series, invariants, and equivariants . . . . . . . . . . . . . . . 69

3.2 Orbit space reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3 Lattice of isotropy subgroups . . . . . . . . . . . . . . . . . . . . . . . 76

3.4 Critical points of the reduced vector �eld . . . . . . . . . . . . . . . . 81

3.5 Stability of the critical points of the reduced vector �eld . . . . . . . . 91

3.6 Fifth order terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.7 Singular perturbation theory . . . . . . . . . . . . . . . . . . . . . . . 99

3.8 Invariant tori . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.9 Stability of the invariant tori . . . . . . . . . . . . . . . . . . . . . . . 109

Documenta Mathematica 2 (1997) 61{113



62 Christian Leis

1 Introduction

An interesting problem in the theory of ordinary di�erential equations is the gen-

eralization of the two dimensional Hopf-bifurcation to higher dimensional systems

with symmetry. In this connection, [GoSt] and [GoStSch] investigated problems on

a vector space X that can be decomposed into a direct sum of absolutely irreducible

representations of the group O(3) of the formX = V

l

� iV

l

. Here V

l

denotes the space

of homogeneous harmonic polynomials P : R

3

! R of degree l. This is the simplest

case where purely imaginary eigenvalues (of high multiplicity) in the bifurcation

point are possible. Using Lie-group theory, the authors showed the existence of

branches of periodic solutions with certain symmetries. Here in addition to the

spatial O(3)-symmetry a temporal S

1

-symmetry occurs. This symmetry corresponds

to a time shift along the periodic solutions. In order to obtain their results, the

authors made a Lyapunov-Schmidt-reduction on the space of periodic functions.

The reduced system then has O(3) � S

1

-symmetry and solutions correspond to

periodic solutions of the original system with spatial-temporal symmetry. Under

certain transversality assumptions, periodic solutions with symmetry

�

H � O(3)� S

1

bifurcate if Dim Fix(

�

H) = 2 for the induced representation of the group O(3)� S

1

on

the space X (cf. [GoSt] resp. [GoStSch]). [Fi] has shown that it is su�cient that

�

H

is a maximal subgroup for periodic solutions with symmetry

�

H to bifurcate. Using

these methods, only the existence of periodic solutions can be investigated. Via

normal form theory (cf. [EletAl]) one gets O(3) � S

1

-equivariant polynomial vector

�elds up to every �nite order for our systems. This additional S

1

-symmetry is due to

the fact that the normal form commutes with the one parameter group e

L

T

t

which

is generated by the linearization L in the bifurcation point. For a Hopf-bifurcation

L has purely imaginary eigenvalues (of high multiplicity) and the group generated is

a rotation. [IoRo], [HaRoSt] and [MoRoSt] did analytic calculations for the normal

form up to �fth order in the case l = 2. They gave conditions for the stability of

the �ve branches of periodic solutions predicted by [GoSt] resp. [GoStSch] in terms

of coe�cients of the normal form. Quasiperiodic solutions found by [IoRo] in the

normal form up to third order can not be con�rmed in this paper. We shall show a

mechanism for quasiperiodic solutions to bifurcate in the �fth order.

Investigating the normal form due to [IoRo], one �nds a region in parameter space

where two of the branches of periodic solutions bifurcating supercritically are stable

simultaneously. Using topological methods, [Le] showed that we have the following

alternative in this region in parameter space: Either besides the known branches of

periodic solutions other invariant objects bifurcate or recurrent structure between

the di�erent invariant sets (e.g. between the di�erent group orbits of periodic

solutions and the trivial solution) exists. Actually the results of these topological

investigations were the starting point of analytical e�orts to �nd other solutions (or

recurrent structure) in this paper. In order to get our results, we shall proceed as

follows.

First the representation of the group � = O(3) � S

1

on the ten dimensional space

X = V

2

� iV

2

is introduced. The lattice of isotropy subgroups of this representation

is given according to [MoRoSt] and the results of [IoRo] are quoted. The smallest

invariant subspace containing both solutions that are stable simultaneously has

isotropy � = (Z

2

; 1).
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Then our considerations are being restricted to this six dimensional subspace.

The normaliser of � is N(�) = O(2) � S

1

� �. This is the biggest subgroup of �

leaving Fix(�) invariant as a subspace. Now we shall look at the representation of

N(�)

�

on Fix(�).

Dealing with di�erential equations with symmetries, one has to deal with group

orbits of solutions because a solution x(t) gives rise to solutions 
 x(t) with 
 2 �.

This redundancy, induced by the action of the group, will be removed by identifying

points that lie on a group orbit. I.e. one studies the orbit space that is homeomorphic

to the image of the Hilbert-map � : Fix(�) ! R

k

: z ! �

i

(z) (cf. [La2] and [Bi]).

Here k denotes the minimal number of generators of the ring of

N(�)

�

invariant poly-

nomials P : Fix(�) ! R and �

i

; i = 1; : : : ; k, is such a system of generators. Thus

the original di�erential equation is reduced to a di�erential equation on �

�

Fix(�)

�

of

the form _� = g(�); � = (�

1

; : : : ; �

k

). In order to perform this reduction for a given

equation, one, �rst of all, has to know the number of independent invariants and

equivariants for a given representation. Then one, actually, has to calculate them.

Statements on the number of independent invariants and equivariants and possible

relations between them are given by the Poincaré-series. These are formal power

series

P

1

i=0

a

i

t

i

in t. Here a

i

denotes the dimension of the vector space of homoge-

neous invariant polynomials of degree i resp. the dimension of the vector space of

homogeneous equivariant mappings of degree i. These series can be determined just

by knowledge of the representation of the group on the space.

The lattice of isotropy subgroups of the representation of

N(�)

�

on Fix(�) and the

image of the Hilbert-map are determined. This is a strati�ed space which consists of

manifolds (strata). Each stratum consists of images of points of some isotropy type

of the representation of

N(�)

�

on Fix(�). Thus it is �ow invariant with respect to the

reduced vector �eld on �

�

Fix(�)

�

.

Afterwards we shall carry out the orbit space reduction for the normal form up to

third order. The critical points of the reduced vector �eld in �

�

Fix(�)

�

are deter-

mined. As expected by inspection of the lattice of isotropy subgroups of � on V

2

� iV

2

,

we shall �nd images of periodic solutions of isotropy (O(2); 1), (D

4

;Z

2

),

^

SO(2)

2

, and

(T;Z

3

). Moreover there exists some stratum F in �

�

Fix(�)

�

. Connected via a curve

g of �xed points the �xed points having isotropy (O(2); 1) resp. (D

4

;Z

2

) in the orig-

inal system lie on F . The preimage of F consists of points having isotropy (Z

2

; 1)

in the restricted system. Perturbations that respect the symmetry will, therefore,

respect this stratum. The curve g is stable for the reduced vector �eld restricted to

F . Small perturbations of the original vector �eld in �fth order of magnitude " will,

therefore, preserve a curve. By use of singular perturbation theory (cf. [Fe]), one gets

a resulting drift on the curve. This explains the observation made by [IoRo] that the

stability of the �xed points of isotropy (O(2); 1) resp. (D

2

;Z

2

) is determined in the

�fth order.

Dependent on the relative choice of the coe�cients of the third order normal form

in the region of parameter space in question, there is a point on the curve g where

the linear stability of the curve in the direction of the principle stratum changes.

Linearization of the reduced vector �eld in this point yields a nontrivial two dimen-

sional Jordan-block to the eigenvalue zero. The second dimension results from the
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linearization along the curve. Finally the �ow on the two dimensional center manifold

in this point is determined for small ". The persistence of the curve g for small ",

knowledge of the direction of the drift, the change of stability in the direction of the

principle stratum, and the existence of a nontrivial two dimensional Jordan-block to

the eigenvalue zero are su�cient to prove for small " the bifurcation of a �xed point

of the reduced equation in the direction of the principle stratum using the implicit

function theorem. Fixed points of the reduced system on the stratum F correspond to

periodic solutions, �xed points in the principle stratum correspond to quasiperiodic

solutions in the original system.

2 Representation of the group O(3) � S

1

on V

2

� iV

2

We investigate systems of ODE's of the form

_x = f

�

�; x

�

in the ten dimensional space

X = V

2

� iV

2

:

Let V

2

be the �ve dimensional space of homogeneous harmonic polynomials

p : R

3

! R

of degree two. We have

V

2

=




2x

2

3

� (x

2

1

+ x

2

2

); x

1

x

3

; x

2

x

3

; x

2

1

� x

2

2

; x

1

x

2

�

:

Let us introduce the following coordinates (z; z),

z = (z

�2

; z

�1

; z

0

; z

1

; z

2

); z

m

2 C ; m = �2; : : : ; 2;

in the space X:

x 2 X , x =

2

X

m=�2

z

m

Y

m

:

Here

Y

0

=

q

5

16�

�

2x

2

3

� (x

2

1

+ x

2

2

)

�

;

Y

�1

=

q

15

8�

(x

1

x

3

� ix

2

x

3

) ;

Y

�2

=

q

15

32�

�

(x

2

1

� x

2

2

)� i2x

1

x

2

�

denote spherical harmonics. Moreover let

f : R�X ! X

be a smooth map that commutes with the following representation of the compact

Lie-group

� = O(3)� S

1
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on the space X.

The group

O(3) = SO(3)�Z

c

2

with

Z

c

2

= f�Idg

acts via the natural representation absolutely irreducible on V

2

. For p 2 V

2

and 
 2 �

we have


 p(�) = p(


�1

�) for 
 2 SO(3);

�Id p(�) = p(�):

This representation is a special case of the representation of the group O(3) on the

space V

l

, l � 1. For l even the subgroupZ

c

2

acts trivially in the natural representation.

On the space X the group O(3) acts diagonally. For the general representation theory

of O(3) we refer to [StiFä] and [GoStSch].

The group S

1

acts as a rotation in the coordinates

� z = e

i�

z;

� z = e

�i�

z

with � 2 S

1

.

So we have

f(�; 
 x) = 
 f(�; x); 8
 2 �:

In their paper concerning Hopf-bifurcation with O(3)-Symmetry [GoSt] and [GoStSch]

look at systems of the form

_x = f(�; x)

with

x 2 X = V

l

� iV

l

and

f : R�X ! X

a smooth mapping. This direct sum of two absolutely irreducible representations of

the group O(3) is the simplest case allowing imaginary eigenvalues, however of high

multiplicity, in the bifurcation point. Let us assume:

� f is equivariant with respect to the diagonal representation of O(3) on X.

� f(�; 0) � 0.

� (Df)

�;0

has a pair of complex conjugate eigenvalues �(�)� i�(�) with �(0) = 0,

_�(0) 6= 0, and �(0) = ! of multiplicity (2l+1) = Dim(V

l

) with smooth functions

� and �.
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The authors now look at subgroups

�

H � �:

Here the group S

1

� � acts as a time shift on the periodic solutions. Therefore

subgroups

�

H consist of spatial and temporal symmetries. For subgroups

�

H with

DimFix(

�

H) = 2

with respect to the representation of the group � on V

l

� iV

l

, the authors prove the

existence of exactly one branch of periodic solutions with small amplitude of period

near

2�

!

and the group of symmetries

�

H. In order to do this, the authors make a

Lyapunov-Schmidt-reduction on the space of periodic functions. The reduced system

has the full O(3) � S

1

-symmetry and solutions correspond to periodic solutions with

spatial-temporal symmetries in the original system.

For l = 2 [IoRo] applied normal form theory (cf. [EletAl]) to these systems. Up

to every �nite order they got O(3) � S

1

-equivariant systems of the form described

above. This additional S

1

-symmetry up to every �nite order is due to the fact that

the normal form of f commutes with the one-parameter group e

(Df)

T

0;0

t

. Due to our

conditions on the eigenvalues, this is just a complex rotation.

The following calculations are done using the normal form up to �fth order due to

[IoRo]. The normal form up to �fth order is very lengthy and shall not be given here.

The parts important for our calculations shall be cited when necessary.

Let G be a compact Lie-group acting on a space X. The most general form of a

G-equivariant polynomial mapping g : X ! X is

g(x) =

n

X

i=1

p

i

(x) e

i

(x):

Here

p

i

: X ! R

denote G-invariant polynomials and

e

i

: X ! X

G-equivariant, polynomial mappings.

In order to determine the most general G-equivariant, polynomial mapping up to a

�xed order, one, �rst of all, has to know the number of independend invariants and

equivariants and possible relations between them. On this occasion the Poincaré-

series described in the next chapter are useful. The next problem is to �nd the

polynomials. In the case of the group O(3), using raising and lowering operators (cf.

[Sa],[Mi]), one can check whether a speci�c polynomial is invariant or not. The raising

and lowering operators are in close relationship to the in�nitesimal generators of the

Lie-algebra of the group. So the problem is to construct and check all possible poly-

nomials resp. polynomial mappings. Dealing with high order polynomials and large

dimensions of the problem, this is a very di�cult task that is only accessible via sym-

bolic algebra. At least, using the Poincaré-series, one knows when everything is found.
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The lattice of isotropy subgroups of the representation of the group � on V

2

� iV

2

has

been determined by [MoRoSt].

(O(2); 1) (D

4

;Z

2

) (T;Z

3

)

^

SO(2)

2

^

SO(2)

1

(D

2

; 1) (Z

4

;Z

2

) (Z

2

;Z

2

) (Z

3

;Z

3

)

SO(3)� S

1

(Z

2

; 1)

1

Figure 1: Lattice of isotropy subgroups of � on V

2

� iV

2

.

The subgroups

�

H � � are given as twisted subgroups

�

H =

�

H;�(H)

�

with H � SO(3) and �(H) � S

1

. In this connection

� : H ! S

1

is a group homomorphism. Every isotropy subgroup

�

H  � can be written in this

form (cf. [GoStSch]). In the case of the isotropy subgroups

^

SO(2)

1

resp.

^

SO(2)

2

we

have H = SO(2) � SO(3) and �(H) = S

1

with �(�) = � resp. �(�) = �

2

.

In [MoRoSt] the authors investigate Hamiltonian systems of the form

_v = J DH(v)

with v 2 R

10

= V

2

� iV

2

,

J =

�

0 �I

5

I

5

0

�

;

and O(3) � S

1

invariant Hamiltonian H : R

10

! R. This leads to restrictions on the

coe�cients of the normal form of the vector �eld. Like [IoRo] for the general vec-

tor �eld, [MoRoSt] analytically prove the existence of periodic solutions of isotropy
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(O(2); 1), (D

4

;Z

2

), (T;Z

3

),

^

SO(2)

1

, and

^

SO(2)

2

. These are exactly the subgroups of �

having a two dimensional �xed point space for our representation, i.e. the subgroups

for which [GoSt] and [GoStSch] predicted the bifurcation of periodic solutions using

group theoretical methods. Moreover the authors give conditions for the stability of

the di�erent branches of periodic solutions by means of regions in the parameter space

of the normal form.

In the following we shall look only at the situation where all solutions bifurcate su-

percritically. In this case there is a region in parameter space where the periodic

solutions of isotropy (O(2); 1) resp.

^

SO(2)

2

are stable simultaneously, see [IoRo]. Us-

ing topological methods, [Le] showed that in this region in parameter space either

other isolated invariant objects besides the trivial solution and the di�erent group

orbits of periodic solutions have to exist or there is recurrent structure between the

trivial solution and the di�erent group orbits of periodic solutions. Recurrent struc-

ture means that it is possible to go back via connecting orbits that connect di�erent

group orbits in the direction of the �ow, from a speci�c group orbit to this group

orbit itself.

In this paper we shall prove the existence of quasiperiodic solutions in the region in

parameter space in question. The quasiperiodic solutions given by [IoRo] using the

third order normal form cannot be con�rmed. We shall prove that the quasiperiodic

solutions bifurcate in �fth order from a curve of periodic solutions that is degenerate

up to third order.

In order to reduce the dimension of the problem, we shall restrict our calculations in

the following to the smallest invariant subspace containing the two stable solutions.

This is a subspace of isotropy (Z

2

; 1) due to the lattice of isotropy subgroups. Next

we want to �x a speci�c subgroup

O(2) � SO(3)

because it is well suited for our coordinates:

O(2) =

8

<

:

r

�

=

0

@

cos� � sin� 0

sin� cos� 0

0 0 1

1

A

; � =

0

@

1 0 0

0 �1 0

0 0 �1

1

A

; � 2 [0; 2�)

9

=

;

:

It acts (cf. [GoStSch]) in the following form on our coordinates z:

r

�

(z

�2

; z

�1

; z

0

; z

1

; z

2

) = (e

�2i�

z

�2

; e

�i�

z

�1

; z

0

; e

i�

z

1

; e

2i�

z

2

);

� (z

�2

; z

�1

; z

0

; z

1

; z

2

) = (z

2

;�z

1

; z

0

;�z

�1

; z

�2

):

Finally let

� = (Z

2

; 1)

with

Z

2

= f1; r

�

g:
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3 Restriction to Fix(Z

2

; 1)

Lemma 3.0.1

Fix(�) = Spanf(z

�2

; 0; z

0

; 0; z

2

)g

�

=

C

3

:

Lemma 3.0.2

� =

N(�)

�

= O(2) � S

1

:

The group O(2) � S

1

acts on C

3

:

r

�

(z

�2

; z

0

; z

2

) = (e

�i�

z

�2

; z

0

; e

i�

z

2

);

�(z

�2

; z

0

; z

2

) = (z

2

; z

0

; z

�2

);

�(z

�2

; z

0

; z

2

) = (e

i�

z

�2

; e

i�

z

0

; e

i�

z

2

):

The group O(2) is generated by the rotations r

�

and the re�ection � and the group S

1

by the rotations �.

Proof: We have N

SO(3)

(Z

2

) = O(2). The representation of O(2) � S

1

on C

3

is given

by restriction of the representation of SO(3) � S

1

on Fix(�). 1

Let z = (z

�2

; z

0

; z

2

) 2 C

3

. The de�nition

�z = �z; � 2 �;

gives rise to an unitary representation of � on the space

C

3

� C

3

� f(z; z); z 2 C

3

g = R

6

:

3.1 Poincare-series, invariants, and equivariants

The number of generators of the ring of �-invariant polynomials P : R

6

! R and

of the module of �-equivariant, polynomial mappings Q : R

6

! R

6

over the ring of

invariant polynomials can be determined using Poincaré-series.

For an unitary representation T of a compact Lie-group G on a vector space V we

have

P

I

(t) =

Z

G

1

det(I � tT (g))

dg =

1

X

i=0

c

i

t

i

;

P

Eq

(t) =

Z

G

�(g)

det(I � tT (g))

dg =

1

X

i=0

d

i

t

i

:

Here c

i

; i > 0; denotes the dimension of the vector space of homogeneous invariant

polynomials of degree i and d

i

; i > 0; the dimension of the vector space of homoge-

neous, equivariant mappings of degree i. Let c

0

= d

0

= 1. The integral appearing in

the formulas is the Haar-integral associated to the compact Lie-group G (cf. [BrtD]),

�(g); g 2 G; denotes the character of g relative to the representation T . The theory

of Poincaré-series is presented in [La2].
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Lemma 3.1.1

P

I

(t) =

1 + t

4

(1� t

2

)

2

(1� t

4

)

2

;

P

Eq

(t) =

2t+ 3t

3

+ t

5

(1� t

2

)

2

(1� t

4

)

2

:

Proof: The group � = O(2) � S

1

can be written as the disjoint union of two sets in

the following form

O(2) � S

1

= SO(2)� S

1

_

[ �SO(2)� S

1

:

Therefore the integrals appearing in the formulas split in two parts.

a. �

1

= SO(2)� S

1

acts on the space C

3

� C

3

. So we get

P

1

I

(t) =

Z

�

1

1

det(I � tT (g))

dg

=

1

(2�)

2

Z

2�

�=0

Z

2�

�=0

1

det(I � tT (�; �))

d� d�:

For our representation we have

det(I � tT (�; �)) = (1� te

i(���)

)(1� te

�i�

)(1 � te

�i(�+�)

)(1� te

i(��+�)

)

(1� te

i�

)(1 � te

i(�+�

):

A transformation of variables

e

i�

! y

1

; e

i�

! y

2

leads to

P

1

I

(t) =

1

(2�i)

2

I

y

1

I

y

2

1

y

1

y

2

det(I � tT (y

1

; y

2

))

dy

1

dy

2

=

1

(2�i)

2

I

y

1

I

y

2

y

1

y

2

2

(y

2

� ty

1

)(y

2

� t)(y

1

y

2

� t)(y

1

� ty

2

)(1� ty

2

)(1� ty

1

y

2

)

dy

1

dy

2

:

Using the residue theorem twice, one gets

P

1

I

(t) =

1 + t

4

(1 � t

2

)

3

(1 � t

4

)

:

b. For the set �SO(2)� S

1

we have

det(I � tT (�; �; �)) = (1� te

�i�

)

2

(1 + te

�i�

)(1� te

i�

)

2

(1 + te

i�

):

A transformation of variables gives

P

2

I

(t) =

1

2�i

I

y

2

y

2

2

(y

2

� t)

2

(y

2

+ t)(1� ty

2

)

2

(1 + ty

2

)

dy

2

:
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Using the residue theorem, one gets

P

2

I

(t) =

1 + t

4

(1 � t

4

)

2

(1 � t

2

)

:

c. Because of the normalization of the Haar-integral, we have

P

I

(t) =

1

2

�

P

1

I

(t) + P

2

I

(t)

�

=

1 + t

4

(1� t

2

)

2

(1� t

4

)

2

proving the �rst formula.

d. We want to calculate

P

1

Eq

(t) =

Z

�

1

�(g)

det(I � tT (g))

dg:

Here we get

�(�; �) = Tr(T (�; �))

= e

i(��+�)

+ e

i�

+ e

i(�+�)

+ e

i(���)

+ e

�i�

+ e

�i(�+�)

=

�

e

i�

+ e

�i�

� �

e

i�

+ 1 + e

�i�

�

:

This leads to

P

1

Eq

(t) =

1

(2�i)

2

I

y

1

I

y

2

y

2

(1 + y

1

+ y

2

1

)(1 + y

2

2

)

(y

2

� ty

1

)(y

2

� t)(y

1

y

2

� t)(y

1

� ty

2

)(1 � ty

2

)(1 � ty

1

y

2

)

dy

1

dy

2

= 2

3t+ 3t

3

(1� t

2

)

3

(1� t

4

)

:

e. For the set �SO(2)� S

1

one correspondingly gets

�(�; �; �) = e

i�

+ e

�i�

:

This leads to

P

2

Eq

(t) =

1

2�i

I

y

2

y

2

(1 + y

2

2

)

(y

2

� t)

2

(y

2

+ t)(1� ty

2

)

2

(1 + ty

2

)

dy

2

= 2

t

(1� t

2

)

2

(1� t

4

)

:

f. We therefore have

~

P

Eq

(t) =

1

2

�

P

1

Eq

(t) + P

2

Eq

(t)

�

= 2

2t+ 3t

3

+ t

5

(1� t

2

)

2

(1� t

4

)

2

:

Documenta Mathematica 2 (1997) 61{113



72 Christian Leis

Doing this, we used the diagonal representation of � on C

3

� C

3

. But we are

interested in the subspace f(z; z); z 2 C

3

g � C

3

� C

3

only. Therefore the number

of equivariants given by the formula is twice as big as it should be counting also

equivariants with one component being zero. 1

The Poincaré-series can be interpreted in the following way.

Lemma 3.1.2 The polynomials

�

1

= jz

0

j

2

;

�

2

= jz

�2

j

2

+ jz

2

j

2

;

�

3

= jz

�2

j

2

jz

2

j

2

;

�

4

=

1

2

�

z

0

2

z

�2

z

2

+ z

2

0

z

�2

z

2

�

;

�

5

=

i

2

�

z

0

2

z

�2

z

2

� z

2

0

z

�2

z

2

�

are a minimal set of generators of the ring of invariant polynomials.

P : R

6

! R:

The only relation between them is

�

2

4

+ �

2

5

= �

2

1

�

3

:

Proof: One easily sees that the given polynomials �

1

; : : : ; �

5

are invariant, and

just meet the given relation. Therefore the Poincaré-series of these polynomials is

identical to the one calculated. Because of this there are no additional generators

and relations. 1

Introducing polar coordinates in the following form

z

j

= r

j

e

i�

j

; j 2 f�2; 0; 2g;

and de�ning

� = 2�

0

� �

�2

� �

2

;

one gets

�

4

= r

2

0

r

�2

r

2

cos �

and

�

5

= r

2

0

r

�2

r

2

sin �:

Consequently the invariants �

4

and �

5

represent phase relations between the di�erent

coordinates.

Lemma 3.1.3 Let � : R

6

! R be an invariant polynomial for the representation of �

on R

6

.

Then

p(z; z) = r

z;
z

�(z; z)

is a �-equivariant polynomial mapping for this representation.
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Proof: We have

p(�(z; z)) = r

�(z;
z
)

�(z; z) = r

z;z

�(z; z)�

�1

= �p(z; z):

The last equality is correct because the representation is unitary. 1

Lemma 3.1.4 The independent, �-equivariant, polynomial mappings

Q : R

6

! R

6

up to �fth order are

e

1

=

0

@

0

z

0

0

1

A

; e

2

=

0

@

z

�2

0

z

2

1

A

; e

3

=

0

@

z

�2

jz

2

j

2

0

z

2

jz

�2

j

2

1

A

;

e

4

=

1

2

0

@

z

2

0

z

2

2z

�2

z

2

z

0

z

2

0

z

�2

1

A

; e

5

= �

i

2

0

@

z

2

0

z

2

�2z

�2

z

2

z

0

z

2

0

z

�2

1

A

:

Here e

i

; i = 1; : : : ; 5; always denote the �rst component of the equivariant. The second

is given by complex conjugation of the �rst one.

Proof: Using the previous lemma, one knows that the mappings e

j

= r

z;
z

�

j

; j =

1; : : : ; 5; are equivariant. Power series expansion of P

Eq

(t) leads to

P

Eq

(t) = 2t+ 7t

3

+ 17t

5

+ O(t

7

):

There are 2; 7 resp. 18 di�erent possibilities to construct equivariant mappings of

degree 1; 3 resp. 5 from invariant polynomials �

1

; : : : ; �

5

and equivariant mappings

e

1

; : : : ; e

5

by multiplication of invariants with an equivariant. In the �fth order one

gets the relation

e

1

(�

4

� i�

5

) =

1

2

�

1

(e

4

� ie

5

):

All other combinations can't be generated this way. Therefore the Poincaré-series

belonging to �

1

; : : : ; �

5

and e

1

; : : : ; e

5

is identical to the calculated one up to �fth

order. Because of this there are no further generators or relations up to �fth order.

1

3.2 Orbit space reduction

The most general O(2) � S

1

-equivariant Hopf-bifurcation problem on R

6

up to third

order has the form

_z = (� + i!)(e

1

+ e

2

) + a

1

�

1

e

1

+ a

2

�

1

e

2

+ a

3

�

2

e

1

+ a

4

�

2

e

2

+ a

5

e

3

+ a

6

e

4

+ a

7

e

5

;

a

j

2 C ; j = 1; : : : ; 7; �; ! 2 R, and z = (z

�2

; z

0

; z

2

):

We want to study bifurcation problems on R

6

resulting from a SO(3)�S

1

-equivariant
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problem on V

2

�iV

2

. This gives the following restrictions for the coe�cients a

1

; : : : ; a

7

:

_z = (�+ i!) (e

1

+ e

2

) +

 

a�

1

2

b�

r

3

2

c

!

�

1

e

1

+

 

a�

r

8

3

c

!

�

1

e

2

+

 

a�

r

8

3

c

!

�

2

e

1

+ a�

2

e

2

�

�

b+

p

6c

�

e

3

+

 

�b+

r

2

3

c

!

e

4

+0e

5

: (3.2.1)

Here a; b; c 2 C denote the corresponding coe�cients from the normal form of [IoRo].

This is obtained by comparison of the normal form of [IoRo] restricted to the subspace

with the general equation. De�ne coe�cients �; �; 
 2 C :

� = a�

1

2

b�

q

3

2

c; a = 
;

� = a�

q

8

3

c; b = �2�+

3

2

� +

1

2


;


 = a; c =

q

3

8

(
 � �):

Then the vector �eld has the form

_z = (� + i!)(e

1

+ e

2

) + ��

1

e

1

+ �(�

1

e

2

+ �

2

e

1

) + 
�

2

e

2

+2(�� 
)e

3

+ 2(�� �)e

4

=

�

(� + i!) + ��

1

+ ��

2

�

e

1

+

�

(�+ i!) + ��

1

+ 
�

2

�

e

2

+2(�� 
)e

3

+ 2(�� �)e

4

(3.2.2)

with �; ! 2 R.

Let _x = f(x) be a di�erential equation on a vector space X. Let the mapping f

be equivariant with respect to the representation of the compact Lie-group G on X.

Since

_

(gx) = g _x = gf(x) = f(gx); 8g 2 G;

gx(t); g 2 G; is a solution if x(t) is a solution. This means one has to deal with group

orbits Gx of solutions. Let G

x

denote the isotropy of a point x. Then we have

G

G

x

�

=

Gx:

Here

G

G

x

and Gx are compact manifolds and we have (cf. [Di])

DimGx = DimG�DimG

x

:

In order to get rid of the redundancy in our system induced by the group G, one

studies the orbit space

X

G

. Here points lying on a group orbit are identi�ed:

x ' y () x = gy with x; y 2 X and g 2 G:

The orbit space is homeomorphic to the image of the Hilbert-map �(X)

� : X ! R

k

x ! (�

i

(x))
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(cf. [La2], [Bi]). Here k denotes the minimal number of generators of the ring of G-

invariant polynomials P : X ! R and �

i

; i = 1; : : : ; k; is such a system of generators.

The original di�erential equation is reduced to a di�erential equation on �(X) of the

form

_� = g(�) with � = (�

1

; : : : ; �

k

):

The reduced equation can be calculated as follows:

_�

i

= r

x

�

i

_x = r

x

�

i

f(x); i = 1; : : : ; k:

The advantage of this reduction lies in the fact that in general the dimension of the

reduced problem is smaller than the original one. Furthermore symmetry induced

periodic solutions in the original system correspond to �xed points in the reduced

system and can be dealt with more easily analytically. The disadvantage is that the

orbit space in general is no vector space but a strati�ed space.

In our case the di�erential equation up to third order (Equation (3.2.2)) is given in

the form

_z =

5

X

j=1

q

j

e

j

:

Here

q

j

: R

6

! C ; j = 1; : : : ; 5;

are invariant polynomials. So one gets

_�

i

= r

z

�

i

_z +r

z

�

i

_

z

= e

i

_z + e

i

_

z

= 2Re (e

i

_z)

= 2Re

0

@

5

X

j=1

q

j

e

i

e

j

1

A

:

The products e

i

e

j

; i � j 2 f1; : : : ; 5g; are

e

1

e

1

= �

1

e

2

e

2

= �

2

e

1

e

2

= 0 e

2

e

3

= 2�

3

e

1

e

3

= 0 e

2

e

4

= �

4

+ i�

5

e

1

e

4

= �

4

� i�

5

e

2

e

5

= �i�

4

+ �

5

e

1

e

5

= i�

4

+ �

5

e

3

e

3

= �

2

�

3

e

4

e

4

=

1

4

�

2

1

�

2

+ �

1

�

3

e

5

e

5

=

1

4

�

2

1

�

2

+ �

1

�

3

:

e

3

e

4

=

1

2

�

2

(�

4

+ i�

5

) e

4

e

5

= �

i

4

�

2

1

�

2

+ i�

1

�

3

e

3

e

5

=

1

2

�

2

(�i�

4

+ �

5

):

For i > j 2 f1; : : : ; 5g we have

e

i

e

j

= e

j

e

i

:

So the following lemma is proved.
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Lemma 3.2.1 The Vector Field (3.2.2) yields the following reduced vector �eld on the

orbit space

_�

1

= 2(� + �

r

�

1

+ �

r

�

2

)�

1

+ 4

�

(� � �)

r

�

4

+ (�� �)

i

�

5

�

_�

2

= 2(� + �

r

�

1

+ 


r

�

2

)�

2

+ 8(�� 
)

r

�

3

+ 4

�

(�� �)

r

�

4

� (�� �)

i

�

5

�

_�

3

= 4(� + �

r

�

1

+ �

r

�

2

)�

3

+ 2�

2

�

(�� �)

r

�

4

� (�� �)

i

�

5

�

_�

4

= 2

�

2�+ (�+ �)

r

(�

1

+ �

2

)

�

�

4

+ 2(�� �)

i

(��

1

+ �

2

)�

5

+(� � �)

r

�

1

(�

1

�

2

+ 4�

3

)

_�

5

= 2

�

2�+ (�+ �)

r

(�

1

+ �

2

)

�

�

5

+ 2(�� �)

i

(�

1

� �

2

)�

4

+(� � �)

i

�

1

(��

1

�

2

+ 4�

3

):

Here �

r

; �

r

; 


r

resp. �

i

; �

i

; 


i

denote the real resp. imaginary parts of �; �; 
.

3.3 Lattice of isotropy subgroups

All isotropy subgroups G  O(2) � S

1

can be written as twisted subgroups in the

form

G = H

�

= f(h;�(h)) 2 O(2) � S

1

jh 2 Hg

(cf. [GoSt], [GoStSch]). Here H � O(2) denotes a closed subgroup of O(2) and

� : O(2) ! S

1

is a group homomorphism. For a closed subgroup H � O(2) let

H

0

=




g

�1

h

�1

gh j g; h 2 H

�

denote the commutator of H and

H

ab

=

H

H

0

the abelianisation of H. Since �(H) � S

1

is abelian, the possible twist typs �(H) of

H can be concluded from the abelianisation H

ab

. One gets the following table.

H H

0

H

ab

�(H)

O(2) SO(2) Z

2

1;Z

2

SO(2) 1 SO(2) 1; S

1

D

n

Z

n

2

; n even

Z

n

; n odd

Z

2

�Z

2

; n even

Z

2

; n odd

1;Z

2

Z

n

1 Z

n

1;Z

d

; djn
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(1; 1)

(Z

2

; 1) (Z

2

;Z

2

)

(O(2); 1) (D

2

;Z

2

)

^

SO(2)

O(2) � S

1

Figure 2: Lattice of isotropy subgroups of O(2)� S

1

on R

6

Lemma 3.3.1 For our representation of the group O(2)�S

1

on the space R

6

one gets

the following lattice of isotropy subgroups.

The following table contains generating elements, representatives and the dimension

of the associated �xed point space for every group H

�

.

H

�

generators representative DimFix(H

�

)

O(2) � S

1

O(2)� S

1

(0; 0; 0) 0

(O(2); 1) (O(2); 1) (0; z

0

; 0) 2

^

SO(2)




(�; �); � 2 S

1

�

(z

�2

; 0; 0) 2

(D

2

;Z

2

) h(�; 1); (�; �)i (z

2

; 0; z

2

) 2

(Z

2

;Z

2

) h(�; �)i (z

�2

; 0; z

2

) 4

(Z

2

; 1) h(�; 1)i (z

2

; z

0

; z

2

) 4

(1; 1) f(1; 1)g (z

�2

; z

0

; z

2

) 6

Proof: The dimension of the �xed point space of a potential isotropy subgroup

H

�

� O(2) � S

1

is given by the trace formula (cf. [GoSt], [GoStSch])

DimFixH

�

=

Z

H

�

Tr(h; �(h)) dh:
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The values of Tr(h; �(h)); h 2 O(2); �(h) 2 S

1

; are known by Section 3.1. Since we

use the diagonal representation of the group O(2)� S

1

on C

3

� C

3

� R

6

the formula

yields the real dimension of the �xed point space.

a. Let �(H) = 1. Then

DimFix (O(2); 1) =

1

2

�

1

2�

Z

2�

�=0

2(1 + 2 cos �) d� +

Z

2�

�=0

2 d�

�

= 2;

DimFix (SO(2); 1) =

1

2�

Z

2�

�=0

2(1 + 2 cos�) d� = 2;

DimFix (D

n

; 1) =

1

2n

0

@

n

X

j=1

2

�

1 + 2 cos

2�

n

j

�

+

n

X

j=1

2

1

A

=

�

4 n = 1;

2 n � 2;

DimFix (Z

n

; 1) =

1

n

n

X

j=1

2

�

1 + 2 cos

2�

n

j

�

= 2:

The subspaces f(0; z

0

; 0)g resp. f(z

2

; z

0

; z

2

)g have isotropy (O(2); 1) resp. (Z

2

; 1)

and, consequently, (O(2); 1) resp. (Z

2

; 1) are isotropy subgroups with two resp. four

dimensional �xed point spaces. LetZ

2

= D

1

denote theZ

2

generated by �. The other

groups with trivial twist are no isotropy subgroups.

b. Let �(H) = S

1

. Possible twists are

�

k

: SO(2) ! S

1

� ! k�

with k 2 N. Then we have

DimFix

^

SO(2)

k

=

1

2�

Z

2�

�=0

2(1 + 2 cos�) cos k� d� =

�

2 k = 1;

0 k > 1:

The subspace f(z

�2

; 0; 0)g has isotropy

^

SO(2) and, therefore,

^

SO(2) is an isotropy

group with two dimensional �xed point space.

c. Let �(H) = Z

2

. Then

DimFix (O(2);Z

2

) =

1

2

�

1

2�

Z

2�

�=0

2(1 + 2 cos �) d� �

Z

2�

�=0

2 d�

�

= 0:

In the case (D

n

;Z

2

) there are several possibilities. Let �rst n be even. Here we have

three possible twists.

To begin with let

H

�

1;n

=

��

2�

n

; �

�

; (�; 1)

�

:

Then

DimFixH

�

1;n

=

1

2n

0

@

n

X

j=1

2(�1)

j

�

1 + 2 cos

2�

n

j

�

+

n

X

j=1

2(�1)

j

1

A

=

�

2 n = 2;

0 n � 4:
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De�ning

H

�

2;n

=

��

2�

n

; �

�

; (�; �)

�

;

we have

DimFixH

�

2;n

=

1

2n

0

@

n

X

j=1

2(�1)

j

�

1 + 2 cos

2�

n

j

�

+

n

X

j=1

2(�1)

j+1

1

A

=

�

2 n = 2;

0 n � 4:

Finally let

H

�

3;n

=

��

2�

n

; 1

�

; (�; �)

�

:

Then

DimFixH

�

3;n

=

1

2n

0

@

n

X

j=1

2

�

1 + 2 cos

2�

n

j

�

+

n

X

j=1

�2

1

A

= 0:

Setting

(D

2

;Z

2

) = h(�; �); (�; 1)i = H

�

1;2

;

we have

�

�

�

2

; 1

�

H

�

2;2

�

�

2

; 1

�

= H

�

1;2

:

Therefore both groups are conjugated.

The subspace f(z

2

; 0; z

2

)g has isotropy (D

2

;Z

2

) and, therefore, (D

2

;Z

2

) is an isotropy

group with two dimensional �xed point space.

If n is odd, then

DimFix (D

n

;Z

2

) =

1

2n

0

@

n

X

j=1

2

�

1 + 2 cos

2�

n

j

�

+

n

X

j=1

�2

1

A

=

�

2 n = 1;

0 n � 3:

(D

1

;Z

2

) = h(�; �)i is extended by H

�

2;2

and, consequently, is no isotropy group.

In the case (Z

n

;Z

2

), in particular n has to be even, we have

DimFix (Z

n

;Z

2

) =

1

n

n

X

j=1

2(�1)

j

�

1 + 2 cos

2�

n

j

�

=

�

4 n = 2;

0 n � 4:

The subspace f(z

�2

; 0; z

2

)g has isotropy (Z

2

;Z

2

) = h(�; �)i and, therefore, (Z

2

;Z

2

) is

an isotropy group with four dimensional �xed point space.

d. Finally we have to study the case (Z

n

;Z

d

) with djn and n � 2. Possible nontrivial

twists forZ

n

are

�

k

: Z

n

! S

1

2�

n

j !

2�

n

jk
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with 1 � k < n: This gives

DimFix (Z

n

;�

k

(Z

n

)) =

1

n

n

X

j=1

2

�

1 + 2 cos

2�

n

j

�

cos

2�

n

jk

=

8

<

:

4 n = 2; k = 1

2 n � 3; k 2 f1; n� 1g

0 otherwise:

Studying the representations T

k

of D

n

= h�; �i on C

2

with

T

k

(�) =

�

e

�i

2�

n

k

0

0 e

i

2�

n

k

�

and

T

k

(�) =

�

0 1

1 0

�

;

the last equality follows. The representations T

k

are irreducible for n � 3. The

representations T

1

and T

n�1

are conjugated since

�

0 1

1 0

��

e

�i

2�

n

0

0 e

i

2�

n

��

0 1

1 0

�

=

�

e

i

2�

n

0

0 e

�i

2�

n

�

:

Orthogonality relations for these representations (cf. [La2]) yield the equality.

The case (Z

2

;Z

2

) has been dealt with in part c of the proof, the other cases correspond

to conjugated twists of typ

�

k

: Z

n

! S

1

2�

n

j ! �

2�

n

j:

These are extended by the isotropy group

^

SO(2). 1

Lemma 3.3.2 For the isotropy groups H

�

� SO(3)�S

1

introduced in the �rst chapter

we have

H

�

H

�

\N(�)

�

(Z

2

; 1) (1; 1)

(Z

4

;Z

2

) (Z

2

;Z

2

)

(D

2

; 1) (Z

2

; 1)

(O(2); 1) (O(2); 1)

(D

4

;Z

2

) (D

2

;Z

2

)

^

SO(2)

2

^

SO(2)

(T;Z

3

) (Z

2

; 1):

Note that

H

�

� N (�)
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for all isotropy groups H

�

except for the group (T;Z

3

). The group (T;Z

3

) does not

correspond to a special isotropy typ in the O(2) � S

1

-equivariant system. But the

restricted Vector Field (3.2.2) leaves the corresponding two dimensional �xed point

space lying in Fix (�) invariant.

Lemma 3.3.3

Fix (T;Z

3

) =

��

i

p

2

z

0

; z

0

;

i

p

2

z

0

�

; z

0

2 C

�

:

Proof: Using the representation of SO(3) on the space V

2

� iV

2

introduced in the �rst

chapter, one gets the following representation of the group

T = h�; � i � SO(3)

with

� =

0

@

0 0 1

1 0 0

0 1 0

1

A

on the subspace f(z

2

; z

0

; z

2

)g � R

6

:

�(z

2

; z

0

; z

2

) = (z

2

; z

0

; z

2

);

� (z

2

; z

0

; z

2

) =

 

�

1

2

z

2

�

1

2

r

3

2

z

0

;

r

3

2

z

2

�

1

2

z

0

;�

1

2

z

2

�

1

2

r

3

2

z

0

!

:

If an element has the form

��

i

p

2

z

0

; z

0

;

i

p

2

z

0

�

; z

0

2 C

�

;

then

�

�; e

i

2�

3

�

(z

2

; z

0

; z

2

) = (z

2

; z

0

; z

2

): 1

3.4 Critical points of the reduced vector field

Lemma 3.4.1 The image of the Hilbert-map �(R

6

) is sketched in Figure 3.

One has to imagine circles of radius

�

2

4

+ �

2

5

= �

2

1

�

3

attached to points of the sketch. We have the following assignment

(�

1

; : : : ; �

5

) 2 �(R

6

) isotropy typ

�

1

-axis (O(2); 1)

�

2

-axis

^

SO(2)

�

1

= 0, �

3

=

1

4

�

2

2

(D

2

;Z

2

)

�

1

= 0, 0 < �

3

<

1

4

�

2

2

(Z

2

;Z

2

)

�

1

> 0, �

3

=

1

4

�

2

2

(Z

2

; 1)

�

1

> 0, 0 � �

3

<

1

4

�

2

2

(1; 1):
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�

1

�

2

�

3

�

3

=

1

4

�

2

2

(1; 1)

^

SO(2)

(D

2

;Z

2

)

(Z

2

;Z

2

)

(Z

2

; 1)

(O(2); 1)

Figure 3: Image of the Hilbert-map

Remark 3.4.2 In the following the image of the Hilbert-map �(R

6

) shall be denoted

Hilbert-set. Since the invariants �

1

, �

2

, and �

3

by de�nition mean radii, only non-

negative values are possible. In (�

1

; �

2

; �

3

)-space the Hilbert-set is a wedge (cf. Figure

3) limited at the top by the surface �

3

=

1

4

�

2

2

, at the bottom by the surface �

3

= 0,

and at the back by the surface �

1

= 0.

Proof: By de�nition of the invariants in Lemma 3.1.2 we have

�

1

; �

2

; �

3

� 0:

A calculation using Lagrange-multipliers yields the possible values of �

3

0 � �

3

�

1

4

�

2

2

:

The relation

�

2

4

+ �

2

5

= �

2

1

�

3
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has to be satis�ed by Lemma 3.1.2. 1

Remark 3.4.3 Points with isotropy (O(2); 1) and (D

2

;Z

2

) and images of points with

isotropy (T;Z

3

) in the original system (cf. Lemma 3.4.5) under the Hilbert-map

satisfy the relation

� =

1

4

�

2

2

� �

3

= 0:

In the following we shall study the reduced vector �eld (cf. Lemma 3.2.1) on the

Hilbert-set �(R

6

).

Lemma 3.4.4 Let

� =

1

4

�

2

2

� �

3

:

Then

_

� = 4 � (�+ �

r

�

1

+ 


r

�

2

) :

Proof: The stratum

� = 0

corresponds to points with a certain isotropy and, therefore, is �ow invariant. Thus

we have

_

� = 0 for � = 0 and there exists a relation of the form

_

� = � r(�

1

; : : : ; �

5

):

A simple calculation gives the precise relation. 1

Lemma 3.4.5 The orbit space reduction maps Fix (T;Z

3

) to the invariant curve

�

�

1

; �

1

;

1

4

�

2

1

;�

1

2

�

2

1

; 0

�

� �(R

6

); �

1

> 0;

located on the stratum � = 0.

Proof: The proof follows directly from the Lemmata 3.1.2 and 3.3.3. 1

In the following let the parameter of the Hopf-bifurcation � be positive:

� > 0:

We are only interested in supercritical bifurcations.
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The restriction of the reduced vector �eld (cf. Lemma 3.2.1) to the statum � = 0 is

_�

1

= 2(�+ �

r

�

1

+ �

r

�

2

)�

1

+ 4

�

(�� �)

r

�

4

+ (�� �)

i

�

5

�

(3.4.3)

_�

2

= 2(�+ �

r

�

1

+ �

r

�

2

)�

2

+ 4

�

(�� �)

r

�

4

� (�� �)

i

�

5

�

(3.4.4)

_�

3

=

1

2

�

2

_�

2

(3.4.5)

_�

4

= 2

�

2�+ (�+ �)

r

(�

1

+ �

2

)

�

�

4

+ 2(�� �)

i

(��

1

+ �

2

)�

5

+(�� �)

r

�

1

�

2

(�

1

+ �

2

) (3.4.6)

_�

5

= 2

�

2�+ (�+ �)

r

(�

1

+ �

2

)

�

�

5

+ 2(�� �)

i

(�

1

� �

2

)�

4

+(�� �)

i

�

1

�

2

(��

1

+ �

2

): (3.4.7)

Here �

r

; �

r

resp. �

i

; �

i

denote the real resp. imaginary parts of �; �.

Lemma 3.4.6 Let �

r

; �

r

< 0 and �

r

6= �

r

. Then the set of critical points of the

Equations 3.4.3 to 3.4.7 on the stratum � = 0 is given by a curve

g(�

1

) =

�

�

1

; �

2

= �

�

�

1

+

�

�

r

�

;

1

4

�

2

2

;

1

2

�

1

�

2

; 0

�

; 0 � �

1

� �

�

�

r

;

parametrised by �

1

and

h(�

1

) =

�

�

1

; �

1

;

1

4

�

2

1

;�

1

2

�

2

1

; 0

�

; �

1

= �

�

2�

r

:

The curve g(�

1

), 0 � �

1

� �

�

�

r

; connects a critical point with isotropy (O(2); 1),

g

�

�

�

�

r

�

=

�

�

�

�

r

; 0; 0; 0; 0

�

;

with a critical point with isotropy (D

2

;Z

2

),

g(0) =

�

0; �

2

= �

�

�

r

;

1

4

�

2

2

; 0; 0

�

:

The critical point h(�

1

); �

1

= �

�

2�

r

; lies in �(Fix (T;Z

3

)), the image of points with

isotropy (T;Z

3

) in the original system under the Hilbert-map.

Proof: By addition resp. subtraction of Equations 3.4.3 and 3.4.4 one gets the fol-

lowing equations

0 = �(�

1

+ �

2

) + �

r

(�

2

1

+ �

2

2

) + 2�

r

�

1

�

2

+ 4(�� �)

r

�

4

; (3.4.8)

0 = �(�

1

� �

2

) + �

r

(�

2

1

� �

2

2

) + 4(�� �)

i

�

5

: (3.4.9)

Let (�� �)

i

6= 0 then

�

4

= �

�(�

1

+ �

2

) + �

r

(�

2

1

+ �

2

2

) + 2�

r

�

1

�

2

4(�� �)

r

;

�

5

= �

�(�

1

� �

2

) + �

r

(�

2

1

� �

2

2

)

4(�� �)

i

:
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Inserting this in Equations 3.4.6 and 3.4.7 gives

0 = �

(�

1

+ �

2

)

�

�+ �

r

(�

1

+ �

2

)

��

� + �

r

(�

1

+ �

2

)

�

(�� �)

r

;

0 = �

(�

1

� �

2

)

�

�+ �

r

(�

1

+ �

2

)

�

2(�� �)

r

(�� �)

i

�

2�(�� �)

r

+ (�

1

+ �

2

)(�

r2

� �

r2

+ (�� �)

i2

�

: (3.4.10)

Looking for nontrivial critical points, one, therefore, has to study two cases.

Let �

1

+ �

2

= �

�

�

r

. Since we assume � > 0, only the choice �

r

< 0 gives solutions

that lie in �(R

6

). By insertion one gets the curve

g(�

1

) =

�

�

1

; �

2

= �

�

�

1

+

�

�

r

�

;

1

4

�

2

2

;

1

2

�

1

�

2

; 0

�

; 0 � �

1

� �

�

�

r

;

of critical points. Lemma 3.4.1 gives the associated orbit types.

Now let �

1

+ �

2

= �

�

�

r

. Only the choice �

r

< 0 gives solutions that lie in �(R

6

) as

above. By insertion in Equation 3.4.10 one gets the condition

0 =

�

(�� �)

r2

+ (� � �)

i2

�

�

2

(�+ 2�

r

�

2

)

2�

r3

(�� �)

i

:

In order to get critical points, one has to choose

�

1

= �

2

= �

�

2�

r

:

By insertion one obtains the critical point

h(�

1

) =

�

�

1

; �

1

;

1

4

�

2

1

;�

1

2

�

2

1

; 0

�

; �

1

= �

�

2�

r

;

lying in �(Fix (T;Z

3

)) (cf. Lemma 3.4.5). It shall be shown that there are no other

critical points with radius

�

1

+ �

2

= �

�

�

r

:

Therefore the group orbit of periodic orbits with isotropy (T;Z

3

) in the original system

can only intersect the strati�ed space in the curve given in Lemma 3.4.5.

Now let (�� �)

i

= 0. Equations 3.4.8 and 3.4.9 yield

0 = �(�

1

+ �

2

) + �

r

(�

2

1

+ �

2

2

) + 2�

r

�

1

�

2

+ 4(�� �)

r

�

4

;

0 = (�

1

� �

2

)

�

� + �

r

(�

1

+ �

2

)

�

:

Consequently we have to study two cases.

Let �

1

= �

2

. Then

�

4

= �

�

�+ (�+ �)

r

�

1

�

�

1

2(�� �)

r

:
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By insertion in Equation 3.4.6 one gets

0 = �

�

1

(� + 2�

r

�

1

)(� + 2�

r

�

1

)

(�� �)

r

:

The choice �

1

= �

2

= �

�

2�

r

and the relation

�

2

4

+ �

2

5

= �

2

1

�

3

=

1

4

�

4

1

give the critical point

�

�

1

; �

1

;

1

4

�

2

1

;

1

2

�

2

1

; 0

�

; �

1

= �

�

2�

r

;

that lies on the curve g(�

1

).

The case �

1

= �

2

= �

�

2�

r

again yields the solution h(�

1

); �

1

= �

�

2�

r

:

Finally we have to study the case �

1

+ �

2

= �

�

�

r

. We get

�

4

= �

�

1

2�

r

(�+ �

r

�

1

)

=

1

2

�

1

�

2

:

The relation

�

2

4

+ �

2

5

=

1

4

�

2

1

�

2

2

yields �

5

= 0. So again we get the curve g(�

1

). 1

Lemma 3.4.7

�(Fix (T;Z

3

)) \ g(�

1

) = ;; 0 � �

1

� �

�

�

r

:

The critical point h(�

1

), �

1

= �

�

2�

r

, (cf. Lemma 3.4.6) that lies in �(Fix(T;Z

3

)) is

isolated in the Hilbert-set �(R

6

).

Proof: For points lying on the curve g(�

1

) we have �

1

+ �

2

= �

�

�

r

. Points in

�(Fix (T;Z

3

)) satisfy the condition �

1

= �

2

(cf. Lemma 3.4.5). For a potential

intersection this means �

1

= �

2

= �

�

2�

r

. We have

g

�

�

�

2�

r

�

=

�

�

�

2�

r

;�

�

2�

r

;

1

16

�

2

�

r2

;+

1

8

�

2

�

r2

; 0

�

whereas

�(Fix (T;Z

3

)) \

�

�

1

= �

�

2�

r

�

=

�

�

�

2�

r

;�

�

2�

r

;

1

16

�

2

�

r2

;�

1

8

�

2

�

r2

; 0

�

:

On the stratum � = 0 the critical point h(�

1

), �

1

= �

�

2�

r

, (cf. Lemma 3.4.6) that

lies on �(Fix(T;Z

3

)), therefore, is isolated. We shall show in Lemma 3.4.8 that

there are no further critical points in the Hilbert-set in the region � 6= 0 near h(�

1

),

�

1

= �

�

2�

r

. 1

Documenta Mathematica 2 (1997) 61{113



Invariant Tori 87

Now we are looking for critical points of the reduced vector �eld (cf. Lemma 3.2.1)

in �(R

6

) that do not lie on the stratum � = 0. Such a critical point has to meet the

condition (cf. Lemma 3.4.4)

_

� = 4 � (�+ �

r

�

1

+ 


r

�

2

) = 0:

Since we assumed � 6= 0, this means

�+ �

r

�

1

+ 


r

�

2

= 0: (3.4.11)

So we get the following equations:

0 = 2(�+ �

r

�

1

+ �

r

�

2

)�

1

+ 4

�

(�� �)

r

�

4

+ (�� �)

i

�

5

�

(3.4.12)

0 = 8(�� 
)

r

�

3

+ 4

�

(�� �)

r

�

4

� (�� �)

i

�

5

�

(3.4.13)

0 =

1

2

�

2

_�

2

(3.4.14)

0 = 2

�

2� + (�+ �)

r

(�

1

+ �

2

)

�

�

4

+ 2(�� �)

i

(��

1

+ �

2

)�

5

+(�� �)

r

�

1

(�

1

�

2

+ 4�

3

) (3.4.15)

0 = 2

�

2� + (�+ �)

r

(�

1

+ �

2

)

�

�

5

+ 2(�� �)

i

(�

1

� �

2

)�

4

+(�� �)

i

�

1

(��

1

�

2

+ 4�

3

) (3.4.16)

�

2

= �

� + �

r

�

1




r

: (3.4.17)

Here �

r

; �

r

; 


r

resp. �

i

; �

i

again denote the real resp. imaginary parts of �; �; 
.

In the following we shall assume

�

r

< �

r

< 


r

< 0:

In Lemma 3.5.1 we shall show that only for this choice of the coe�cients the solutions

with isotropy (O(2); 1) resp.

^

SO(2) can be stable simultaneously. Investigations using

the topological Conlex-index suggested to study this case. In the following lemma

the solution with isotropy

^

SO(2) is being described.

Lemma 3.4.8 Let �

r

< �

r

< 


r

< 0. Then

�

0;�

�




r

; 0; 0; 0

�

is the only critical point of the reduced vector �eld in �(R

6

) with � 6= 0. This solution

has isotropy

^

SO(2).

Proof: First let (�� �)

i

6= 0. By addition resp. subtraction of Equations 3.4.12 and

3.4.13 we get

0 = (� + �

r

�

1

+ �

r

�

2

)�

1

+ 4(�� �)

r

�

4

+ 4(�� 
)

r

�

3

;

0 = (� + �

r

�

1

+ �

r

�

2

)�

1

+ 4(�� �)

i

�

5

� 4(�� 
)

r

�

3

:
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Therefore we have

�

4

= �

(� + �

r

�

1

+ �

r

�

2

)�

1

+ 4(�� 
)

r

�

3

4(�� �)

r

;

�

5

= �

(� + �

r

�

1

+ �

r

�

2

)�

1

� 4(�� 
)

r

�

3

4(�� �)

i

:

Insertion in Equation 3.4.15 yields

(� � 
)

r

�

�(� � 
)

r

+ �

r

�

1

(� � 
)

r

�

(���

1

� �

r

�

2

1

+ 4


r

�

3

)

(�� �)

r




r2

= 0:

Let

�

1

= �

�(�� 
)

r

�

r

(� � 
)

r

> 0:

Using Equation 3.4.17 we get

�

2

=

�(�� �)

r

�

r

(� � 
)

r

> 0:

Together with Equation 3.4.16 this yields

0 =

(�� 
)

r

�

(�� �)

r2

+ (�� �)

i2

�

�

�

� �

2

(�� �)

r2

+ 4�

r2

�

3

(� � 
)

r2

�

2�

r3

(�� �)

r

(�� �)

i

(� � 
)

r2

:

So we have

�

3

=

�

2

(� � �)

r2

4�

r2

(� � 
)

r2

=

1

4

�

2

2

:

This solution lies on the stratum � = 0.

Now let

�

3

=

�

1

(� + �

r

�

1

)

4


r

= �

1

4

�

1

�

2

:

Insertion in Equation 3.4.16 yields

0 = �2(�� �)

i2

�

2

1

�

2

�

(�� �)

i2

�

1

�

�+ (� + 
)

r

�

1

�

2

2


r2

�

�

1

�

�(� + � � 2
)

r

+ �

1

(�+ �)

r

(� � 
)

r

�

2

2


r2

:

Since all elements of the sum are nonpositive in �(R

6

) the sum can only be zero if all

elements are zero. This is only possible if �

1

= 0. This yields

�

0;�

�




r

; 0; 0; 0

�

;

the solution with isotropy

^

SO(2).
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Second let (� � �)

i

= 0. Again by addition resp. subtraction of the Equations

3.4.12 and 3.4.13 we get

�

3

=

(�+ �

r

�

1

+ �

r

�

2

)�

1

4(�� 
)

r

;

�

4

= �

2(�� 
)

r

�

3

(�� �)

r

: (3.4.18)

Furthermore we have

�

2

= �

� + �

r

�

1




r

:

Insertion in Equation 3.4.16 yields

0 =

�

2�+ (�+ �)

r

(�

1

+ �

2

)

�

�

5

:

In order to solve this equation, we have to look at several cases.

Let �

5

= 0. Then

�

2

4

+ �

2

5

= �

2

1

�

3

and Equation 3.4.18 yields

4(�� 
)

r2

(�� �)

r2

�

2

3

= �

2

1

�

3

:

For �

3

6= 0 we get

�

1

= �

�(�� 
)

r

�

r

(� � 
)

r

> 0; �

2

=

�(�� �)

r

�

r

(� � 
)

r

> 0; �

3

=

1

4

�

2

2

:

Therefore the solution lies on the stratum � = 0.

The choice �

3

= 0 and Equation 3.4.16 yield the solution

�

0;�

�




r

; 0; 0; 0

�

with isotropy

^

SO(2). For �

5

6= 0 and

0 = 2�+ (�+ �)

r

(�

1

+ �

2

)

Equation 3.4.15 gives

0 = �

1

(�

1

�

2

+ 4�

3

):

Choosing �

1

= 0 again yields the solution with isotropy

^

SO(2).

For �

1

6= 0 one gets the solution

�

1

= �

�(�+ � � 2
)

r

(�+ �)

r

(� � 
)

r

> 0;

�

2

=

�(� � �)

r

(�+ �)

r

(� � 
)

r

> 0;

�

3

=

�

2

(�� �)

r

(�+ � � 2
)

r

4(�+ �)

r2

(� � 
)

r2

< 0

that does not lie in �(R

6

). 1
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Figure 4 sketches the position of the critical points of the reduced vector �eld (cf.

Lemma 3.2.1) in the Hilbert-set �(R

6

) known by Lemmata 3.4.6 and 3.4.8 under the

assumption

�

r

< �

r

< 


r

< 0:

�

1

�

2

�

3

�

3

=

1

4

�

2

2

(1; 1)

^

SO(2)

(D

2

;Z

2

)

(Z

2

;Z

2

)

(Z

2

; 1)

(O(2); 1)

u

u

u

u

Figure 4: Critical points of the reduced vector �eld in the Hilbert-set

We now study the curve

g(�

1

) =

�

�

1

; �

2

= �

�

�

1

+

�

�

r

�

;

1

4

�

2

2

;

1

2

�

1

�

2

; 0

�

; 0 < �

1

< �

�

�

r

;

of critical points of the Equations (3.4.3) to (3.4.7) (cf. Lemma 3.4.6).

Lemma 3.4.9 The preimage of a point g(�

1

); �

1

2

�

0;�

�

�

r

�

, in R

6

is a two-torus. It

is �bered with periodic solutions.

Proof: The curve g of critical points lies on the statum

� =

1

4

�

2

2

� �

3

= 0:
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Introducing polar coordinates in the form

z

j

= r

j

e

i�

j

; j 2 f�2; 0; 2g;

yields

r

�2

= r

2

:

The choice of

�

1

= r

2

0

2

�

0;�

�

�

r

�

and the condition

�

1

+ �

2

= �

�

�

r

determine the radii. Let

� = 2�

0

� �

�2

� �

2

:

Then the conditions for �

4

resp. �

5

yield, in polar coordinates, the phase relations

cos � = 1; sin � = 0

and, thus,

� = 0 mod 2�:

So one angle is determined, two are still available, the preimage is a 2-torus. Points

on the surface � = 0 have the (conjugated) isotropy (Z

2

; 1). Therefore it is possible

just to look at points of the form (z

2

; z

0

; z

2

) in order to determine the resulting �ow

on the preimage of a point on the curve of �xed points. Thus we have the additional

condition

�

�2

= �

2

:

Using � = 0 mod2�, one sees that

�

0

= �

2

mod�:

Inserting this into the di�erential equation yields

_

�

0

= !

0

= ! + �

i

�

r

2

0

+ 2r

2

2

�

:

Thus the 2�torus is �bered with periodic solutions of period near

2�

!

. 1

3.5 Stability of the critical points of the reduced vector field

In Lemmata 3.4.6 and 3.4.8 we have shown that in the case of supercritical bifurcation

(� > 0) the coe�cients �

r

; �

r

; 


r

have to be negative in order that the corresponding

solutions lie in the image of the Hilbert-map �(R

6

). The following lemma gives a

condition on the choice of the coe�cients relative to each other.
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Lemma 3.5.1 Only by choosing the coe�cients

�

r

< �

r

< 


r

< 0; �

r

2

�

1

4

(� + 3
)

r

; 


r

�

;

the critical points with isotropy (O(2); 1) resp.

^

SO(2) of the reduced vector �eld (cf.

Lemma 3.2.1) can be stable simultaneously. The stability of the solution with isotropy

(O(2); 1) is determined by higher order terms because of the existence of a curve of

critical points (cf. Lemma 3.4.6).

Proof: The calculations of [IoRo] yield (using our parameters) up to third order the

following conditions for the stability of the periodic solutions with isotropy (O(2); 1)

resp.

^

SO(2) in the original, ten dimensional system:

isotropy nontrivial Floquet-exponents

(O(2); 1) �2� < 0;�

2�

�

r

(�� �)

r

< 0;�

2�

�

r

(�4�+ � + 3
)

r

< 0

^

SO(2) �2� < 0;�

2�




r

(�� 
); cc;

�




r

(
 � �); cc;

3�

2


r

(
 � �); cc:

Here cc denotes the complex conjugate of the preceding number.

So we get the conditions

�

r

< �

r

< 


r

< 0

and

�

r

+ 3


r

< 4�

r

:

The ansatz

�

r

= t �

r

+ (1� t) 


r

; t 2 (0; 1);

yields

(� � 
)

r

(1� 4t) < 0

and, therefore, we have

t 2

�

0;

1

4

�

:

This means

�

r

2

�

1

4

(� + 3
)

r

; 


r

�

:

Especially

(�� 
)

r

(� � 
)

r

2

�

0;

1

4

�

: 1

Documenta Mathematica 2 (1997) 61{113



Invariant Tori 93

Now we want to determine the linearization of the reduced vector �eld (cf. Lemma

3.2.1) along the curve g(�

1

) of critical points (cf. Lemma 3.4.6). For the general

linearization L one gets

L =

0

B

B

B

B

@

2�+ 4�

1

�

r

+ 2�

2

�

r

2�

2

�

r

4�

3

�

r

2�

4

(�+ �)

r

� 2�

5

(�� �)

i

+ (2�

1

�

2

+ 4�

3

)(�� �)

r

2�

5

(�+ �)

r

+ 2�

4

(�� �)

i

+ (�2�

1

�

2

+ 4�

3

)(�� �)

i

2�

1

�

r

2� + 2�

1

�

r

+ 4�

2




r

4�

3

�

r

+ 2

�

�

4

(�� �)

r

� �

5

(�� �)

i

�

2�

4

(�+ �)

r

+ 2�

5

(�� �)

i

+ �

2

1

(�� �)

r

2�

5

(�+ �)

r

� 2�

4

(�� �)

i

� �

2

1

(�� �)

i

0 4(�� �)

r

4(�� �)

i

8(�� 
)

r

4(�� �)

r

�4(�� �)

i

4(�+ �

r

�

1

+ �

r

�

2

) 2�

2

(�� �)

r

�2�

2

(�� �)

i

4�

1

(�� �)

r

4�+ 2(�

1

+ �

2

)(�+ �)

r

2(��

1

+ �

2

)(�� �)

i

4�

1

(�� �)

i

2(�

1

� �

2

)(�� �)

i

4�+ 2(�

1

+ �

2

)(�+ �)

r

1

C

C

C

C

A

:

We are interested in the eigenvalues of L along the curve g(�

1

) with reference to

�(R

6

) � R

5

. Thus we have to determine the tangent space at points of the curve in

�(R

6

). It is given by the relation

�

2

4

+ �

2

5

= �

2

1

�

3

:

The curve itself lies on the stratum

� =

1

4

�

2

2

� �

3

= 0:

So we get the following lemma.

Lemma 3.5.2 The tangent space at the stratum � = 0 along the curve

g(�

1

); 0 < �

1

< �

�

�

r

;

is spanned by the vectors

t

1

=

�

1;�1;�

1

2

�

2

;

1

2

(�

2

� �

1

); 0

�

;

t

2

=

�

�

1

; �

2

;

1

2

�

2

2

; �

1

�

2

; 0

�

;

t

3

=

�

2�

r

(� � �)

i

;�2�

r

(�� �)

i

;��

2

�

r

(�� �)

i

; �

r

(�

2

� �

1

)(�� �)

i

;

��

r

(�

1

+ �

2

)(� � �)

r

) :

The vectors t

1

; t

2

; t

3

are eigenvectors of L to the eigenvalues

ew

1

= 0;

ew

2

= �2� = 2�

r

(�

1

+ �

2

);

ew

3

=

2(�� �)

r

�

�

r

= �2(� � �)

r

(�

1

+ �

2

):
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The curve g(�

1

); 0 < �

1

< �

�

�

r

; is stable on the stratum � = 0.

Proof: The relations �

2

4

+ �

2

5

= �

2

1

�

3

and � = 0 yield the following vectors normal to

the tangent space at the surface � = 0 in �(R

6

) � R

5

:

n

1

=

�

�2�

1

�

3

; 0;��

2

1

; 2�

4

; 2�

5

�

;

n

2

=

�

0;

1

2

�

2

;�1; 0; 0

�

:

The orthogonal complement to Span(n

1

; n

2

) is spanned by the vectors t

1

; t

2

; t

3

. A

simple calculation shows that these vectors are eigenvectors to the given eigenvalues.

The eigenvector t

1

points along the curve of critical points. Therefore the associated

eigenvalue is zero. By de�nition of the curve g(�

1

) we have

�

1

+ �

2

= �

�

�

r

:

Therefore the curve g(�

1

); 0 < �

1

< �

�

�

r

; is stable on the stratum � = 0. 1

Now we want to determine the linearization of the reduced vector �eld along the

curve g(�

1

) of �xed points in the direction of the principal stratum. We shall show

that there exists a point ~�

1

on the curve g(�

1

) in which the stability of the curve

changes from stable to unstable in the direction of the principal stratum. In this

point the linearization L of the vector �eld of the reduced equation has a nontrivial

two dimensional Jordan-block with respect to the eigenvalue zero.

Let

t = (0; 1; 0; 0;0):

Then n

1

t = 0 and n

2

t 6= 0 for �

2

6= 0. Thus the vectors t

1

; t

2

; t

3

; t span the tangent

space at the Hilbert-set �(R

6

) along the curve g(�

1

); 0 < �

1

< �

�

�

r

: One gets

L t = a t

1

+ b t

2

+ c t

3

+ d t

with

a = �2�

1

(�� �)

r2

+ (�� �)

i2

(�� �)

r

;

b = 2�

r

;

c = �

1

(�� �)

i

�

r

(�� �)

r

;

d = 4

�(�� 
)

r

+ �

1

�

r

(� � 
)

r

�

r

:

Restricted to the tangent space at the curve g(�

1

); 0 < �

1

< �

�

�

r

; according to our

choice of the vectors t

1

; t

2

; t

3

; t, L has the form

~

L:

~

L =

0

B

B

@

0 0 0 a

0 �2� 0 b

0 0

2(���)

r

�

�

r

c

0 0 0 d

1

C

C

A

:
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Especially the fourth eigenvalue is

ew

4

= d

= 4

�(�� 
)

r

+ �

1

�

r

(� � 
)

r

�

r

= �4

�

�

1

(�� �)

r

+ �

2

(�� 
)

r

�

:

For

~�

1

= �

�(�� 
)

r

�

r

(� � 
)

r

we have ew

4

(~�

1

) = 0: Choosing the coe�cients according to Lemma 3.5.1 yields

0 < ~�

1

< �

�

4�

r

:

The point g(~�

1

) is exactly the intersection point of the curve g(�

1

); 0 � �

1

� �

�

�

r

;

with the surface �+ �

r

�

1

+ 


r

�

2

= 0 (cf. Lemma 3.4.4). Only on this surface we can

have critical points of the reduced vector �eld (cf. Lemma 3.2.1) outside the stratum

� = 0 (cf. Lemma 3.4.6).

For

h(~�

1

) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

�

(��
)

r

�

�

(���)

r2

�(���)

i2

�

(���)

r2

(��
)

r

(��
)

r

�

�

(���)

r2

�(���)

i2

�

(���)

r2

(��
)

r

�

2

�

(���)

r3

�(��
)

r

(���)

i2

�

2�

r

(���)

r

(��
)

r2

�

(��
)

r

�

2

�

2(���)

r3

+(�2�+�+
)

r

(���)

i2

�

2�

r

(���)

r2

(��
)

r2

(��
)

r

(���)

i

�

2

2�

r

(���)

r

(��
)

r

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

we have

h(~�

1

) = �

r

t

2

(~�

1

)�

(�� �)

i

~�

1

2(�� �)

r2

t

3

(~�

1

) + �t:

Consequently, h(~�

1

) 2 Span

�

t

1

(~�

1

); t

2

(~�

1

); t

3

(~�

1

); t

�

; and one sees that Lh(~�

1

) =

j t

1

(~�

1

) with

j =

2�

2

(�� 
)

r

�

(�� �)

r2

+ (�� �)

i2

�

�

r

(�� �)

r

(� � 
)

r

< 0:

So we have shown the following lemma.

Lemma 3.5.3 In the point g(~�

1

), ~�

1

= �

�(��
)

r

�

r

(��
)

r

, the linearization L of the vector

�eld of the reduced equation (cf. Lemma 3.2.1) has a nontrivial, two dimensional

Jordan-block with respect to the eigenvalue zero.

Up to now we have studied the reduced vector �eld resulting from the normal

form up to third order (cf. [IoRo]). It has been shown in this section that this vector

�eld is degenerate. In the next section we shall use �fth order terms to investigate

this degeneracy.
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3.6 Fifth order terms

Restricted to Fix(Z

2

; 1) the normal form (cf. [IoRo]) yields the following �fth order

terms (FOT). Proceed as in Chapter 3.2 to get these terms.

FOT = (�

1

�

2

1

+ �

2

�

1

�

2

+ �

3

�

2

2

+ �

4

�

3

+ �

5

�

4

) e

1

+ (�

6

�

2

1

+ �

7

�

1

�

2

+ �

8

�

2

2

+ �

9

�

3

+ �

10

�

4

+ �

11

i�

5

) e

2

+ (�

12

�

1

+ �

13

�

2

) e

3

+ (�

14

�

1

+ �

15

�

2

) e

4

�

1

2

�

11

�

2

ie

5

:

The coe�cients �

1

; : : : ; �

15

2 C result from a transformation of the coe�cients

d

1

; : : : ; d

9

2 C of the normalform (cf. [IoRo])

d

3

!

p

6d

3

d

4

! �d

4

d

5

! �

p

6 d

5

d

6

!

q

3

2

d

6

d

7

!

q

3

2

d

7

d

9

!

3

8

d

9

as follows

�

1

= d

1

+

1

4

d

2

� 3d

3

+

1

2

d

4

�

3

2

d

5

+ d

6

+ d

7

� d

8

�

2

= 2d

1

� 7d

3

+

1

2

d

4

� 2d

5

� 2d

7

+ 3d

8

�

3

= d

1

� 4d

3

� 2d

8

+ d

9

�

4

= d

2

+ 2d

5

+ 12d

6

+ 4d

7

� 4d

9

�

5

= d

2

+ 2d

5

� 4d

6

� 4d

7

�

6

= d

1

+

1

4

d

2

� 4d

3

+

1

2

d

5

� 2d

7

+ d

8

�

7

= 2d

1

� 4d

3

+ 4d

7

� 2d

8

�

8

= d

1

�

9

= d

2

� 6d

5

�

10

= d

2

� 2d

5

+ 4d

7

� 2d

8

�

11

= �4d

5

+ 4d

7

+ 2d

8

�

12

= �6d

3

+ d

4

� 4d

5

+ 12d

6

� 2d

8

�

13

= �6d

3

+ d

4

�

14

= 2d

3

+ d

4

� 4d

5

� 4d

6

+ 2d

8

�

15

= 2d

3

+ d

4

� 2d

5

+ 2d

7

� 3d

8

:

In the following we want to study the vector �eld perturbed in �fth order of the form

_� = f(�) + "RFOT(�); "� 1:
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By reduction of the �fth order terms (FOT) to the orbit space one gets the pertur-

bation RFOT (reduced �fth order terms) with components RFOT1; : : : ;RFOT5.

RFOT1 = 2�

1
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r
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�
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+ �
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+ �
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+ �
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Lemma 3.6.1 Restriction to the stratum � = 0 yields

�RFOT1 = 2�
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1

2

�

13

�

r

�

2

2

� �

i

11

�

5

�

+2�

4

�

5

(�

5

+ �

10

� �

11

)

r

+ �

1

�

2

�

�

1

2

�

i

14

�

2

1

+

�

1

4

�

11

+

1

2

�

14

�

1

2

�

15

�

i

�

1

�

2

+

�

1

4

�

11

+

1

2

�

15

�

i

�

2

2

�

:

Here �RFOT1, : : : , �RFOT5 denote the components of the reduced �fth order terms

(RFOT) restricted to the statum � = 0.
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3.7 Singular perturbation theory

For the moment we want to restrict our considerations to the stratum � = 0. The

curve g(�

1

); 0 � �

1

� �

�

�

r

; of critical points of the reduced vector �eld _� = f(�) (cf.

Equations 3.4.3 to 3.4.7) is located on this stratum (cf. Lemma 3.4.6). According to

Lemma 3.5.2 this curve is asymptotically stable for our choice of the coe�cients

�

r

< �

r

< 


r

< 0:

Now we want to study the perturbed vector �eld (cf. Lemma 3.6.1)

_� = f

"

(�) = f(�) + "�RFOT(�); "� 1: (3.7.19)

We have the following propostion.

Proposition 3.7.1 For the perturbed Vector Field 3.7.19 and 0 < j"j < "

0

there per-

sists an invariant curve g

"

near g on the stratum � = 0. This curve g

"

is parametrised

over �

1

. The vector �eld on g

"

has the form

r(�

1

) = 2

�

1

�

2

�

1

+ �

2

�

16�

2

1

+ 16

�

�

r

�

1

+ 3

�

2

�

r2

�

d

with

0 < �

1

< �

�

�

r

; �

1

+ �

2

= �

�

�

r

;

d =

�

(d

6

+ d

7

� d

8

)

r

+

(�� �)

i

(�� �)

r

(d

6

+ d

7

� d

8

)

i

�

:

Proof: In Lemma 3.5.2 we showed that the curve g(�

1

); 0 < �

1

< �

�

�

r

, is normally

hyperbolic. Thus an invariant curve g

"

near g persists under small perturbations.

The curve g

"

will no longer consist of critical points but there will be a resulting �ow

on g

"

. This �ow is determined in the lowest order by projection of the perturbation

onto the curve g.

Let

E =

�

g(�

1

) j 0 < �

1

< �

�

�

r

�

be the curve of critical points of the vector �eld f

0

(�) on the stratum

F =

�

� 2 �(R

6

) j�(�) = 0

	

:

For a point � 2 E let

Tf

0

(�) : T

�

F ! T

�

F

denote the linearization of f

0

in �. By construcion T

�

E lies in the kernel of Tf

0

(�).

So a linear map

Qf

0

(�) :

T

�

F

T

�

E

!

T

�

F

T

�

E
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is induced on the quotient space. The eigenvalues of Qf

0

(�) have been determined

in Lemma 3.5.2 and are both negative. Thus for every � 2 E T

�

E has a unique

complement N

�

that is invariant under Tf

0

(�). Let P

E

denote the projection onto

TE de�ned by the splitting

TF

jE

= TE �N

On E we de�ne the vector �eld

f

R

(�) = P

E

@

@"

f

"

(�)

j"=0

:

We have the extended vector �eld

f

"

(�)� f0g on F � (�"

0

; "

0

):

In this system, according to [Fe], a two dimensional center manifoldC exists for small

"

0

� 1. The second dimension has its origin in the extension of the system in "-

direction.

On C near E � f0g a smooth vector �eld

f

C

=

�

1

"

f

"

(�)� 0; " 6= 0

f

R

(�) � 0; " = 0

is de�ned. The center manifold is �bered in "-direction with invariant curves g

"

. The

�ow on g

"

has the form

_� = " f

R

(�) + O("

2

):

We want to determine the vector �eld

f

R

(�) = P

E

@

@"

f

"

(�)

j"=0

:

The vectors t

1

; t

2

; t

3

that span the tangent space to the stratum F along the curve

g, are known (cf. Lemma 3.5.2). The vector t

1

is the tangent vector along the curve

g. Now we want to write the terms of higher order �RFOT along the curve g in the

form

�RFOT(�) = a(�)t

1

+ b(�)t

2

+ c(�)t

3

:

This gives the projection P

E

we are looking for and we have

f

R

(�) = a(�):
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As the restriction of the vector �eld

@

@"

f

"

(�)

j"=0

along the curve g one gets

r

1

= �

1

�

2�

r

1

�

2

1

+ (2�

2

+ �

5

+ �

14

)

r

�

1

�

2

+

�

2�

3

+

1

2

�

4

+

1

2

�

11

+ �

15

�

r

�

2

2

�

r

2

= �

2

�

(2�

6

+ �

14

)

r

�

2

1

+

�

2�

7

+ �

10

�

1

2

�

11

+ �

12

+ �

15

�

r

�

1

�

2

+

�

2�

8

+

1

2

�

9

+ �

13

�

r

�

2

2

�

r

3

=

1

2

�

2

r

2

r

4

= �

1

�

2

��

�

1

+ �

6

+

1

2

�

14

�

r

�

2

1

+

�

�

2

+

1

2

�

5

+ �

7

+

1

2

�

10

�

1

4

�

11

+

1

2

�

12

+

1

2

�

14

+

1

2

�

15

�

r

�

1

�

2

+

�

�

3

+

1

4

�

4

+ �

8

+

1

4

�

9

+

1

4

�

11

+

1

2

�

13

+

1

2

�

15

�

r

�

2

2

�

r

5

= �

1

�

2

��

�

1

� �

6

�

1

2

�

14

�

i

�

2

1

+

�

�

2

+

1

2

�

5

� �

7

�

1

2

�

10

+

1

4

�

11

�

1

2

�

12

+

1

2

�

14

�

1

2

�

15

�

i

�

1

�

2

+

�

�

3

+

1

4

�

4

� �

8

�

1

4

�

9

+

1

4

�

11

�

1

2

�

13

+

1

2

�

15

�

i

�

2

2

�

:

We always have

�

1

+ �

2

= �

�

�

r

and get the following equations

r

1

= a + b�

1

+ 2c�

r

(�� �)

i

(3.7.20)

r

2

= �a + b�

2

� 2c�

r

(�� �)

i

(3.7.21)

r

4

=

1

2

a(�

2

� �

1

) + b�

1

�

2

+ c�

r

(�

2

� �

1

)(�� �)

i

(3.7.22)

r

5

= �c�

r

(�

1

+ �

2

)(�� �)

r

: (3.7.23)

Thus

c = �

r

5

�

r

(�

1

+ �

2

)(� � �)

r

;

r

1

+ r

2

= b(�

1

+ �

2

)

and

r

1

� r

2

= 2a+ b(�

1

� �

2

) + 4c�

r

(�� �)

i

:
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Finally we get

b =

r

1

+ r

2

�

1

+ �

2

and

a =

1

2

(r

1

� r

2

) �

1

2

b(�

1

� �

2

) � 2c�

r

(�� �)

i

=

r

1

�

2

� r

2

�

1

�

1

+ �

2

� 2c�

r

(�� �)

i

:

Insertion of r

1

; r

2

; c and retranslation of the coe�cients �

1

; : : : ; �

15

into the coe�cients

d

1

; : : : ; d

9

�nishes the proof. 1

In the following let

d 6= 0:

Proposition 3.7.2 On the invariant curve g

"

(cf. Propostion 3.7.1) for the per-

turbed Vector Field 3.7.19 exactly two critical points persist for 0 < j"j < ~"

0

< "

0

. In

the entire ten dimensional system these critical points have isotropy (O(2); 1) resp.

(D

4

;Z

2

). The latter corresponds to the isotropy (D

2

;Z

2

) in the reduced system. Their

stability in R

6

is determined by the sign of

d =

�

(d

6

+ d

7

� d

8

)

r

+

(�� �)

i

(�� �)

r

(d

6

+ d

7

� d

8

)

i

�

:

Especially a connection between the group orbits of solutions with isotropy (O(2); 1)

resp. (D

4

;Z

2

) persists for small " in R

6

.

The position of the critical points, their isotropy in the entire system, and the direction

of the resulting �ow on g

"

is given in Figure 5.

Proof: On the curve g

"

(�

1

); 0 < �

1

< �

�

�

r

, near g there are two critical points of the

Fenichel vector �eld r(�

1

) (cf. Proposition 3.7.1) with

�

1

2

�

�

�

4�

r

;�

3�

4�

r

�

:

Linearization of the vector �eld r(�

1

) in these critical points yields

�

1

dr

d�

1

�

�

4�

r

�3d

�

2

�

r2

�

3�

4�

r

3d

�

2

�

r2

;

and, thus, they are hyperbolic. Here d is de�ned as in Proposition 3.7.1. Therefore

these critical points persist for j"j < ~"

0

< "

0

in the perturbed Vector Field 3.7.19.

We shall show that the persisting critical points lie on the group orbits of solutions
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with isotropy (O(2); 1) resp. (D

4

;Z

2

) with reference to the entire system.

First let

~� = �

�

4�

r

:

Using the representation of the group element

� =

0

@

0 0 1

1 0 0

0 1 0

1

A

introduced in Lemma 3.3.3 and

� 2 S

1

;

we have

� � (0; z; 0) = � (0;�z; 0) =

 

1

2

r

3

2

z;

1

2

z;

1

2

r

3

2

z

!

:

Points of the form (0; z; 0) with

jzj

2

= �

�

�

r

are mapped to the critical point of isotropy (O(2); 1) in the reduced system by the

Hilbert-map. Thus

�(�� (0; z; 0)) =

�

�

1

= �

�

4�

r

; �

2

= �

�

�

1

+

�

�

r

�

; �

3

=

1

4

�

2

2

;

�

4

=

1

2

�

1

�

2

; �

5

= 0

�

:

Therefore

�

�

� � (0; z; 0)

�

= g(~�):

Second let

~� = �

3�

4�

r

:

Correspondingly the Hilbert-map maps points of the form (z; 0; z) with

jzj

2

= �

�

2�

r

to the critical point of isotropy (D

2

;Z

2

) in the reduced system. With r

�

2 O(2) we

have

r

�

� (z; 0; z) = r

�

 

�

1

2

z;

r

3

2

z;�

1

2

z

!

=

 

1

2

z;

r

3

2

z;

1

2

z

!

:
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Thus

�(r

�

� (z; 0; z)) =

�

�

1

= �

3�

4�

r

; �

2

= �

�

�

1

+

�

�

r

�

; �

3

=

1

4

�

2

2

;

�

4

=

1

2

�

1

�

2

; �

5

= 0

�

= g(~�):

Since the perturbation respects the symmetry, the critical points persisting for small

" on the curve have the same isotropies.

Besides these two critical points there are no critical points on g

"

for small " > 0.

Since the two critical points are hyperbolic, in a neighbourhood of these points no

further critical points exist by the implicit function theorem. If there were critical

points (x

n

; "

n

) in the remaining part of g

"

, for a sequence ("

n

)! 0 the accumulation

point (�x; 0) would have to be a critical point of the resulting vector �eld in contra-

diction to Proposition 3.7.1. 1

Figure 5 shows the resulting �ow on the invariant curve g

"

(�

1

); 0 < �

1

< �

�

�

r

; in a

schematic way for d > 0 and small " > 0. Choosing d < 0 will change the direction of

the arrows. The isotropies of the solutions in the entire ten dimensional system are

indicated in the sketch.

For " = 0 (i.e. g

"

= g) g(0) resp. g(�

�

�

r

) are �xed points of isotropy (D

2

;Z

2

) resp.

(O(2); 1) (cf. Lemma 3.4.6). The curve itself consists of �xed points.

e e

�

�

�

r

�

3�

4�

r

�

�

4�

r

0

(O(2); 1) (O(2); 1)(D

4

;Z

2

) (D

4

;Z

2

)

Figure 5: Resulting �ow on g

"

3.8 Invariant tori

In this section we want to show that for small " > 0 a �xed point bifurcates from the

critical point ~�

1

in the direction of the principal stratum. The critical point ~�

1

lies on

the curve g on the stratum � = 0. According to Lemma 3.5.3 the linearization of the

vector �eld of the reduced equation (cf. Lemma 3.2.1) has a nontrivial Jordan-block

to the eigenvalue zero in the point

g(~�

1

); ~�

1

= �

�(� � 
)

r

�

r

(� � 
)

r

:

The position of this point on the invariant curve

g(�

1

); 0 < �

1

< �

�

�

r

;
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depends on the relative choice of the coe�cients

�

r

< �

r

< 


r

< 0; �

r

2

�

1

4

(�

r

+ 3


r

); 


r

�

;

according to Figure 6. Making the ansatz

�

r

= t �

r

+ (1� t) 


r

; t 2

�

0;

1

4

�

;

this follows as in the proof of Lemma 3.5.1. Thus

~�

1

= �

�(�� 
)

r

�

r

(� � 
)

r

= �

�

�

r

t; t 2

�

0;

1

4

�

:

e e

�

�

�

r

�

3�

4�

r

�

�

4�

r

0

(O(2); 1) (O(2); 1)(D

4

;Z

2

) (D

4

;Z

2

)

Figure 6: Possible region of the point ~�

1

We want to determine the form of the resulting vector �eld on the local two di-

mensional center manifold W

c

loc

near the point g(~�

1

). The center manifold W

c

loc

is

tangential to Span (t

1

; h) (cf. Lemma 3.5.3) and intersects the stratum � = 0 in

a part of the invariant curve g(�

1

) near g(~�

1

). Let t

1

be the tangent vector in the

direction of the curve g(�

1

) and h be the hauptvector associated to the Jordan-block

of the linearization. By de�nition of the vectors t

1

; t; h in Lemma 3.5.3 h points in

the direction of the principal stratum.

We introduce x-coordinates in the direction of (�t

1

) along the invariant curve g(�

1

)

and y-coordinates in the direction of (�h) with origin in g(~�

1

). Therefore the vector

�eld on W

c

loc

has the form

_x = �y + H(x; y) (3.8.24)

_y = y G(x; y):

We are only interested in the region y � 0 that describes a part of the Hilbert-set

�(R

6

) according to our choice of the coordinates. The (�y)-term in the x-equation

models the Jordan-block, the minus sign follows from the equation

Lh = j t

1

with j < 0 according to Lemma 3.5.3. The y-term in the y-equation describes the

�ow invariance of the curve y = 0, i.e. of the stratum � = 0.
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The function H(x; y) has the following properties

H(x; y) = O(x

2

; xy; y

2

);

H(x; 0) � 0;

@H

@x

(x; 0) � 0:

The last two properties are due to the fact that points of the form (x; 0) are critical

points of the system 3.8.24 by construction. The linearization of the Vector Field

3.8.24 in such a point (x; 0) yields

A =

0

@

0 �1 +

@H

@y

(x; 0)

0 G(x; 0)

1

A

:

Consequently the eigenvalues are zero in the direction of the curve of �xed points and

G(x; 0) in the direction of the principal stratum. This eigenvalue has been calculated

in Lemma 3.5.3, and has the form

e

4

= 4

�(�� 
)

r

+ �

1

�

r

(� � 
)

r

�

r

:

Therefore in our coordinates we have

G(x; 0) = a x+ O(x

2

)

with a > 0. The invariant curve changes the stability in the direction of the principal

stratum in the �rst order from stable to unstable in the point (0; 0) (transversality

condition).

Now let's look at the extended system

_� = f(�) + "RFOT(�) (3.8.25)

_" = 0:

Here near the point

(g(~�

1

); 0)

there exists a local center manifold. This manifold is �bered in "-direction with two

dimensional invariant manifolds W

c

loc;"

. For " = 0 the manifold W

c

loc;0

, tangential

to Span ft

1

; hg, intersects the stratum � = 0 in a part of the curve g near g(~�

1

)

transversally. This property is preserved for small

" < " < ~"

:

On the two dimensional center manifoldsW

c

loc;"

again we introduce, now "-dependent,

coordinates x

"

in the direction of g

"

and y

"

in the direction of the principal stratum.

We shall continue writing x resp. y for x

"

resp. y

"

.

Now let ~�

1

be tuned in such a way such that the Fenichel-drift in g

"

(~�

1

), j"j < ", is

not zero. Then the �ow on the corresponding center manifoldW

c

loc;"

has the form

_x = �y + " +H(x; y; ") (3.8.26)

_y = y G(x; y; "):
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The sign of " depends on the direction of the resulting Fenichel-drift. We want

to assume the solution of isotropy (O(2); 1) to be stable. Therefore according to

Proposition 3.7.2 we have to choose d > 0 and the resulting Fenichel-drift has the

form indicated in Figure 5. For the choice of parameters

�

r

< �

r

< 


r

< 0; �

r

2

�

1

4

(� + 3
)

r

; 


r

�

;

we have

~�

1

2

�

0;�

�

4�

r

�

and, thus, we have to choose " < 0.

The functions G(x; y; ") resp. H(x; y; ") have the following properties

G(x; y; ") = O(x; y; ");

G(x; y; 0) = G(x; y)

resp.

H(x; y; ") = O(x

2

; xy; y

2

; "x; "y; "

2

);

H(x; y; 0) = H(x; y):

Proposition 3.8.1 Let

�

r

< �

r

< 


r

< 0; �

r

2

�

1

4

(� + 3
)

r

; 


r

�

:

Then there exists " > 0 and a unique curve

�

x("); y(") � 0

�

; �" < " � 0;

of critical points of the �ow on the center manifold W

c

loc;"

\�(R

6

) with

�

x(0); y(0)

�

= (0; 0):

The critical points are saddles.

Proof: We are looking for critical points of the Vector Field 3.8.26. Therefore we �rst

solve the equation

P (x; y; ") = �y + "+ H(x; y; ") = 0:

We have

P (0; 0; 0) = 0

and

@P

@y

(0; 0; 0) = �1
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since H(x; y; ") is of second order. Using the implicit function theorem, locally

near (x; ") = (0; 0) one gets a unique surface y = y(x; ") with y(0; 0) = 0 and

P (x; y(x; "); ") = 0. Furthermore

y(x; ") = "+ O(x

2

; x"; "

2

)

and

@y

@x

(0; 0) = 0:

Now we want to solve the equation

G(x; y(x; "); ") = 0:

We have

G(0; 0; 0) = 0

and

@G

@x

(0; 0; 0) = a > 0

because of the transversality property of G and the condition

@y

@x

(0; 0) = 0. Therefore,

again by the implicit function theorem, there exists a unique curve

(x("); y(")); 0 � j"j < "; " � 0;

of critical points of the Vector Field 3.8.26. Furthermore

x = O("):

Thus the curve y(") has the form

y(") = " +O("

2

):

The sign of y(") is determined by the sign of " for small ". Here we have " < 0 and,

therefore, y(") < 0. Consequently the curve lies in the Hilbert-set �(R

6

).

The linear stability of the critical point (x("); y(")); �" < " � 0; is to be determined.

The linearization of the Vector Field 3.8.26 in the point (x("); y(")) yields

D =

0

@

@H

@x

(x("); y("); ") �1 +

@H

@y

(x("); y("); ")

y(")

@G

@x

(x("); y("); ") G(x("); y("); ") + y(")

@G

@y

(x("); y("); ")

1

A

=

�

O(") �1 + O(")

" a(") + O("

2

) O(")

�

:

We have

@G

@x

(0; 0; 0) = a > 0. Thus

@G

@x

(x("); y("); ") = a(") > 0
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with a(0) = a for small ". So we get two eigenvalues of D of the following form

�

1;2

= O(")�

p

O("

2

) � " a(")

with " < 0 and a(") > 0. For small " the

p

�"-term is dominating, the critical point

is a saddle. 1

The bifurcating critical point lies in the principal stratum. The preimages are two

2-tori. Since there are no additional, symmetry given phase relations (cf. Lemma

3.4.9) in general we have quasiperiodic solutions.

3.9 Stability of the invariant tori

We want to know the stability of the group orbit of the quasiperiodic solutions (cf.

Proposition 3.8.1) in the entire ten dimensional system. This information is useful

for calculating the Conley-index of this group orbit (cf. [Le]). We shall determine the

Floquet-exponents of the periodic solutions that correspond to the critical points on

the curve

g(�

1

); 0 < �

1

< �

�

�

r

:

According to our choice of the coe�cients only the interval

0 < �

1

< �

�

4�

r

is of interest. Here, in dependence on the relative choice of the coe�cients, critical

points of the reduced system bifurcate (cf. Proposition 3.8.1).

The periodic solutions are rotating waves. In a rotating coordinate system one gets

a static problem which is accessible more easily. We make the ansatz

z

0

= (r

0

+ �

0

) e

i(!

0

t+�

0

)

z

�2

= (r

2

+ �

�2

) e

i(!

0

t+�

�2

)

z

�1

= y

�1

e

i!

0

t

with

!

0

= ! + �

i

�

r

2

0

+ 2r

2

2

�

and

r

2

0

+ 2r

2

2

= �

�

�

r

:

In the lowest order one gets the following systems which decouple for symmetry rea-

sons:

d

dt

0

B

B

@

y

1

y

1

y

�1

y

�1

1

C

C

A

=

0

B

B

@

s t t s

t s s t

t s s t

s t t s

1

C

C

A

0

B

B

@

y

1

y

1

y

�1

y

�1

1

C

C

A
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with

s = r

2

0

�

��+

1

4

� +

3

4




�

+ r

2

2

�

�2�+

3

2

� +

1

2




�

;

t = 2

r

3

8

(
 � �)r

0

r

2

and

d

dt

0

B

B

B

B

B

B

@

�

�2

�

0

�

2

�

�2

�

0

�

2

1

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

B

@

2r

2

2




r

� r

2

0

(� � �)

r

2r

0

r

2

�

r

�2r

2

2




r

+ r

2

0

(�� �)

r

+ 4r

2

2

�

r

2r

2




i

�

r

2

0

r

2

(�� �)

i

2r

2

�

i

�2r

2




i

+

r

2

0

r

2

(�� �)

i

+ 4r

2

�

i

2r

0

r

2

�

r

�2r

2

2




r

+ r

2

0

(�� �)

r

+ 4r

2

2

�

r

2r

2

0

�

r

2r

0

r

2

�

r

2r

0

r

2

�

r

2r

2

2




r

� r

2

0

(�� �)

r

2r

0

�

i

�2r

2




i

+

r

2

0

r

2

(�� �)

i

+ 4r

2

�

i

2r

0

�

i

2r

2

�

i

2r

0

�

i

2r

2




i

�

r

2

0

r

2

(�� �)

i

r

2

0

r

2

(�� �)

i

�2r

2

0

r

2

(�� �)

i

r

2

0

r

2

(�� �)

i

�2r

0

r

2

2

(�� �)

i

4r

0

r

2

2

(�� �)

i

�2r

0

r

2

2

(�� �)

i

r

2

0

r

2

(�� �)

i

�2r

2

0

r

2

(�� �)

i

r

2

0

r

2

(�� �)

i

�(�� �)

r

r

2

0

2(�� �)

r

r

2

0

�(�� �)

r

r

2

0

2(�� �)

r

r

2

2

�4(�� �)

r

r

2

2

2(�� �)

r

r

2

2

�(�� �)

r

r

2

0

2(�� �)

r

r

2

0

�(�� �)

r

r

2

0

1

C

C

C

C

C

C

A

0

B

B

B

B

B

B

@

�

�2

�

0

�

2

�

�2

�

0

�

2

1

C

C

C

C

C

C

A

:

One gets the following eigenvalues

�

1;2

= 0;

�

3

= 2(s + t)

r

;

�

4

= 2(s � t)

r

:

Our choice of coordinates yields

�

��+

1

4

� +

3

4




�

r

< 0;

�

��+

3

4

� +

1

4




�

r

< 0;

2

r

3

8

(
 � �)

r

> 0;

and, therefore,

�

4

< 0:
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Finally we want to show

�

3

< 0:

By insertion on gets

�

3

= 2

 

(
 � �)

r

 

1

2

r

2

0

+ 2

r

3

8

r

0

r

�

�

2�

r

�

r

2

0

2

!

�

�

2�

r

�

�2�+

3

2

� +

1

2




�

r

!

:

The ansatz

r

2

0

= �t

�

�

r

; t 2

�

0;

1

4

�

;

yields

�

3

= �2

�

�

r

 

(
 � �)

r

 

1

2

t+ 2

r

3

8

r

t(1� t)

2

!

+

1

2

�

�2�+

3

2

� +

1

2




�

r

!

:

In the admissible region we have

�

3

< 0:

The eigenvalues of the second system are (cf. Lemmata 3.5.2 and 3.5.3),

�

1;2;3

= 0;

�

4

= �2� < 0;

�

5

= 2

�

�

r

(� � �)

r

< 0;

�

6

= �2

�

r

2

0

(�� �)

r

+ 2r

2

2

(�� 
)

r

�

:

Therefore in the bifurcation point

~�

1

= �

�(�� 
)

r

�

r

(� � 
)

r

there are six trivial and four negative Floquet-exponents. In the entire system the

solution has isotropy (D

2

; 1) in the bifurcation point. Thus the group orbit is four

dimensional. Therefore four trivial exponents are symmetry given. The sign of the

Floquet-exponents of the periodic solution corresponds to the sign of the eigenvalues of

the associated �xed point in the strati�ed space. Dealing with �xed point bifurcation

in the strati�ed space the group orbit of the bifurcating solution inherits the stability

of the bifurcation point. The double zero eigenvalue at the bifurcation point splits

into one positive and one negative eigenvalue (cf. Proposition 3.8.1). Therefore the

bifurcating �xed point is hyperbolic. In the entire system the bifurcating �xed point

has isotropy (Z

2

; 1).

The following lemma is shown.

Lemma 3.9.1 The bifurcating group orbit (cf. Proposition 3.8.1) has the unstable

dimension one.
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Abstract. Recently Bost and Connes considered a Hecke C

�

-algebra aris-

ing from the ring inclusion of Zin Q, and a C

�

-dynamical system involving

this algebra. Laca and Raeburn realized this algebra as a semigroup crossed

product, and studied it using techniques they had previously developed for

studying Toeplitz algebras. Here we associate Hecke algebras to general

number �elds, realize them as semigroup crossed products, and analyze their

representations.
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algebra

Introduction

In their work on phase transitions in number theory, Bost and Connes considered

the Hecke algebra H(�;�

0

) of a particular group{subgroup pair (�;�

0

), and gave a

presentation of this algebra involving a unitary representation of the additive group

Q=Zand an isometric representation of the multiplicative semigroup N

�

[3]. From

this presentation, Laca and Raeburn recognized H(�;�

0

) as a dense subalgebra of a

semigroup crossed product of the form C

�

(Q=Z)oN

�

, and then applied techniques

they had previously developed for studying Toeplitz algebras to obtain information

about H(�;�

0

) and its representations [8].

The fascinating ideas of Bost and Connes raise many possibilities for fruitful

interaction between number theory and operator algebras, and in particular promise

to provide new and intriguing examples of dynamical systems. Here we investigate a

family of semigroup crossed products similar to C

�

(Q=Z)oN

�

, but with Q replaced

by a �nite extension K of Q, and the subring Zof Q replaced by the ring O of

integers in K. We construct an action � of the multiplicative semigroup of nonzero

integers O

�

on the C

�

-algebra of the additive group K=O, and show that all the main

1

This research was supported by the Australian Research Council.
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results of [8] carry over to an arbitrary number �eld K. This has not been completely

routine: in particular, to construct some of the key representations and prove our

main theorem we had to look very closely at the compact dual (K=O)b of the discrete

Abelian group K=O, and our results here may be of independent interest.

The main theorem of [8], motivated by our earlier approach to uniqueness the-

orems for semigroups of non-unitary isometries [1, 7], is a characterization of faith-

ful representations of the crossed product C

�

(Q=Z)oN

�

. Thus the crossed product

has several faithful realizations: on `

2

(Q=Z), extending the regular representation of

C

�

(Q=Z); on `

2

(N

�

), extending the Toeplitz representation of N

�

; and on `

2

(�

0

n�),

arising from the canonical representation ofH(�;�

0

) in the commutant of the induced

representation Ind

�

�

0

1. For our action � of O

�

by endomorphisms of C

�

(K=O), it

is easy enough to construct the regular representation on `

2

(K=O). We shall �nd

a group{subgroup pair (�

K

;�

O

) whose Hecke algebra is isomorphic to our crossed

product and hence gives a representation on `

2

(�

O

n�

K

), and, through our analysis

of (K=O)b, �nd faithful representations of C

�

(K=O) on `

2

(O

�

) which are compatible

with the Toeplitz representation of O

�

. Our main theorem implies that all these

realizations of C

�

(K=O)o

�

O

�

are faithful.

We begin in x1 by constructing the action � of O

�

on C

�

(K=O). For a 2 O

�

,

�

a

is determined on generators �

y

for C

�

(K=O) by averaging in the group algebra the

generators �

x

corresponding to solutions of the equation ax = y in O; thus � is almost

by de�nition a right inverse for the action of O

�

induced by multiplication on K=O.

We then discuss the crossed product C

�

(K=O)o

�

O

�

, which is universal for covariant

representations of the system (C

�

(K=O);O

�

; �), and the dual action of (K

�

)b, which

integrates to give a faithful expectation of C

�

(K=O)o

�

O

�

onto C

�

(K=O). We can

immediately write down several representations of the crossed product, including the

regular representation on `

2

(K=O).

In x2 we construct the Hecke algebra realization H(�

K

;�

O

) of the crossed prod-

uct, and give a presentation of this algebra similar to that given by Bost and Connes

in the case K = Q. The isomorphism of H(�

K

;�

O

) into C

�

(K=O)o

�

O

�

gives a

natural representation of the crossed product on `

2

(�

O

n�

K

), which we call the Hecke

representation. It is interesting to note that, by identifying a subrepresentation with

the GNS-representation of a faithful state on C

�

(K=O)o

�

O

�

, we can see directly

that the Hecke representation is faithful. This approach bypasses the appeal to the

theory of groupoid C

�

-algebras in [3], and our own main theorem.

Our main technical innovations are in x3, where we discuss characters of K=O.

In [3] and [8], essential use was made of the injective character r 7! exp 2�ir on Q=Z.

In general there are no injective characters, and one is forced to look for a family of

characters which can play the same rôle. We show that there is a nonempty set X

K

of

characters � with two important properties: �(a

�1

=O) 6= 1 for every nontrivial ideal

a in O, and fr 7! �(br) : b 2 Og is dense in (K=O)b. The key step in the proof that

X

K

6= ; is the construction of projections which behave as one would expect �

a

(1)

to behave | if we knew that the action � extended to an action of the semigroup

of ideals in O. Using the characters in X

K

, we can construct representations of the

crossed product on `

2

(O

�

) extending the Toeplitz representation.

The characterization of faithful representations of C

�

(K=O)o

�

O

�

is Theorem

4.1. This theorem and its proof have a long history: the strategy is that used by

Cuntz in [4], which has been streamlined over the years, and adapted to the present
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situation in [1, 7]. The crucial ingredient is an estimate, whose proof uses in several

key places the properties of the characters in X

K

. Thus the end result is substantially

deeper than its analogue in [8]; in addition, the presence of units in O

�

, which is

necessary for the construction of the action �, complicates the proof of the estimate.

We �nish x4 with a discussion of the various representations and their interrelations.

In our last section, we consider a �eld K with class number 1. Now the ring

O is a principal ideal domain, and one can realize the semigroup of ideals in O as a

subsemigroup S ofO

�

. There is therefore a similar dynamical system (C

�

(K=O); S; �)

which does not involve units. The corresponding version of Theorem 4.1 is therefore

slightly easier to prove, and is a direct generalization of the main theorem of [8].

While we were preparing the �nal version of this paper, we received a preprint

from David Harari and Eric Leichtnam, in which they extend the original Bost-Connes

analysis to more general �elds K [5]. They associate a Hecke algebra to a class of �elds

more general than ours; however, they have used a principal ideal domain larger than

the ringO of integers, which is principal only ifK has class number 1. Berndt Brenken

has recently told us that he has been looking at the Hecke algebras of more general

almost normal inclusions from the point of view of semigroup crossed products.

Background

This paper is addressed primarily at operator algebraists, so general facts about C

�

-

algebras have been used freely. However, it is an attractive feature of the semigroup-

crossed-product approach to Toeplitz algebras that it is relatively elementary: it

requires only the basic theory of C

�

-algebras and familiarity with the group C

�

-

algebras of discrete groups. Many of the results in the �rst two sections have purely

algebraic analogues, involving the action � of the semigroup O

�

by

�

-endomorphisms

of the group

�

-algebra C (K=O) := spanf�

x

: x 2 K=Og.

Our notation concerning number �elds is as follows. Throughout K will denote

a �nite extension of the rational numbers Q, called a number �eld. Every number

�eld has an associated ring of integers O, consisting of the solutions in K of monic

polynomials with coe�cients inZ; for example,Zis the ring of integers ofQ. We write

O

�

for the multiplicative semigroup of nonzero integers, and O

�

for the multiplicative

group of units, or invertible elements, in O. The only units in Zare �1, but this is

certainly not true for general rings of integers: for example, real quadratic number

�elds have their group of units isomorphic to Z. The �eld K can be recovered from

O as its �eld of fractions: in other words, every number in K has the form a=b for

some a 2 O and b 2 O

�

.

The norm is a multiplicative homomorphism from ideals in O to N, given by

N (a) = jO=aj for an ideal a � O. If a is principally generated, so a = aO for some

a 2 O, then this norm coincides with the absolute value of the standard number-

theoretic norm N (a) of the element a [11, Prop. 3.5.1]. We shall write either N

a

or

N (a) to denote the norm of the ideal a, and for principal ideals, N

a

= jN (a)j will

denote the norm of the ideal aO. In x3, we shall need to use the extension of the

norm to fractional ideals, but we shall discuss the key points then.

1. The semigroup dynamical system (C

�

(K=O);O

�

; �)

Because O is a subring of K, multiplication by elements of O

�

gives an action of

the semigroup O

�

as endomorphisms of the additive group K=O. The universality
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of the group algebra construction allows us to lift this to an action � of O

�

by

endomorphisms of the group C

�

-algebra: thus, by de�nition, we have �

a

(�

x

) = �

ax

for x 2 K=O, a 2 O

�

. These are endomorphisms rather than automorphisms: as

the next Lemma shows, multiplication by a 2 O

�

is not injective at the group or

group-algebra level unless a is a unit.

Lemma 1.1. If a 2 O

�

and y 2 K=O, the equation ax = y has N

a

solutions in K=O.

We write [x : ax = y] for the set of solutions.

Proof. Multiplication by a induces an isomorphism of the group [x : ax = 0] =

1

a

O=O

onto O=aO, and hence [x : ax = 0] is a �nite set with N

a

elements. If x

0

is one solution

of ax

0

= y, then

[x : ax = y] = [x : ax = ax

0

] = [x+ x

0

: ax = 0] = x

0

+ [x : ax = 0];

(1.1)

which also has N

a

elements.

When the equation ax = y has more than one solution in K=O, division by a

does not give a well-de�ned endomorphism of K=O. Nevertheless, one can de�ne an

endomorphism of the C

�

-algebra C

�

(K=O) by averaging over the set of all solutions,

and this endomorphism �

a

is a right inverse for �

a

. It is important to realize that the

construction of �

a

is not possible on K=O itself: one must pass to the group algebra

C

�

(K=O) (or C (K=O)) before the averaging makes sense.

Proposition 1.2. Let K be a number �eld with ring of integers O. The formula

�

a

(�

y

) =

1

N

a

X

[x:ax=y]

�

x

(1.2)

de�nes an action of O

�

by endomorphisms of C

�

(K=O). For every a 2 O

�

, �

a

(1) is

a projection, and

�

a

(1)�

b

(1) = �

ab

(1) whenever aO + bO = O: (1.3)

The action � is a right inverse for the action � de�ned by �

a

: �

y

7! �

ay

, so �

a

��

a

=

id, while �

a

� �

a

is multiplication by �

a

(1).

The action � restricts to an action of O

�

by

�

-endomorphisms of the group

�

-

algebra C (K=O).

Proof. For y; y

0

2 K=O and a 2 O

�

,

�

a

(�

y

)�

a

(�

y

0

) =

0

@

1

N

a

X

[x:ax=y]

�

x

1

A

0

@

1

N

a

X

[x

0

:ax

0

=y

0

]

�

x

0

1

A

=

1

N

2

a

X

[x:ax=y]

X

[x

0

:ax

0

=y

0

]

�

x

�

x

0

=

1

N

2

a

X

[x:ax=y]

X

[x

0

:ax

0

=y

0

]

�

x+x

0

=

1

N

a

X

[x

00

:ax

00

=y+y

0

]

�

x

00

= �

a

(�

y

�

y

0

);

where the fourth equality holds because addition induces a N

a

{to{one surjective map

from [x : ax = y] � [x

0

: ax

0

= y

0

] onto [x

00

: ax

00

= y + y

0

]:

Thus x 7! �

a

(�

x

) is a homomorphism of K=O into C

�

(K=O), and it clearly pre-

serves adjoints. Hence �

a

(1) = �

a

(�

0

) is a projection in the C

�

-algebra C

�

(K=O),
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and x 7! �

a

(�

x

) is a homomorphism of K=O into the unitary group of the C

�

-algebra

�

a

(1)C

�

(K=O)�

a

(1). The universal property of C

�

(K=O) now implies that �

a

ex-

tends to a homomorphism of C

�

(K=O) into itself | that is, to an endomorphism of

the C

�

-algebra C

�

(K=O). It follows similarly from the universal property of C (K=O)

that the same formula gives

�

-endomorphisms �

a

of C (K=O).

Next assume a; b 2 O

�

and z 2 K=O, and calculate

�

a

(�

b

(�

z

)) = �

a

0

@

1

N

b

X

[y:by=z]

�

y

1

A

=

1

N

a

N

b

X

[y:by=z]

0

@

X

[x:ax=y]

�

x

1

A

=

1

N

ab

X

[x:abx=z]

�

x

= �

ab

(�

z

);

where the third equality holds because N

a

N

b

= N

ab

and [x : abx = z] is the disjoint

union of the sets [x : ax = y] with y ranging in [y : by = z]. We have now proved that

� is an action by endomorphisms of C

�

(K=O), and the same calculations show that

it restricts to an action on C (K=O).

To prove (1.3), multiply

�

a

(1)�

b

(1) =

0

@

1

N

a

X

[x:ax=0]

�

x

1

A

0

@

1

N

b

X

[y:by=0]

�

y

1

A

=

1

N

a

N

b

X

[x:ax=0]�[y:by=0]

�

x+y

=

1

N

ab

X

[z:abz=0]

�

z

= �

ab

(1);

for the third equality, note that, by the Chinese Remainder Theorem, aO + bO = O

implies O=abO

�

=

O=aO �O=bO, which in turn implies

1

ab

O=O

�

=

1

a

O=O �

1

b

O=O.

It is easy to check that �

a

(�

a

(�

y

)) = �

y

for any y 2 K=O. To see that �

a

� �

a

is

multiplication by �

a

(1), we compute:

�

a

(�

a

(�

y

)) =

1

N

a

X

[x:ax=ay]

�

x

=

1

N

a

X

[x

0

:ax

0

=0]

�

x

0

+y

=

1

N

a

0

@

X

[x

0

:ax

0

=0]

�

x

0

1

A

�

y

= �

a

(1)�

y

;

where the second equality holds as in (1.1).

Remark 1.3. Since �

a

� �

a

= id, �

a

is injective and �

a

is surjective for each a 2 O

�

.

If a is a unit, �

a

(1) = 1, so �

a

��

a

= id, and units act by automorphisms. Conversely,

�

a

(1) = 1 only for a 2 O

�

, so only units act by automorphisms. These automorphisms

leave the projections �

a

(1) �xed, because for every a 2 O

�

and u 2 O

�

, we have

�

ua

(1) = �

au

(1) = �

a

(�

u

(1)) = �

a

(1).

Definition 1.4. A covariant representation of the system (C

�

(K=O);O

�

; �) is a

pair (�; V ), in which � is a unital representation of C

�

(K=O) on a Hilbert space H,

and V is an isometric representation of O

�

on H, satisfying the covariance condition

�(�

a

(f)) = V

a

�(f)V

�

a

for a 2 O

�

and f 2 C

�

(K=O):
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We can use the same covariance condition to de�ne an algebraic covariant represen-

tation of the system (C (K=O);O

�

; �) with values in a unital

�

-algebra.

This covariance condition combines with the left inverse � to give the following

useful identities:

Lemma 1.5. Suppose (�; V ) is a covariant representation for (C

�

(K=O);O

�

; �). If

a; b 2 O

�

and x 2 K=O, then

1. V

a

�(�

x

) = �(�

a

(�

x

))V

a

, �(�

x

)V

�

a

= V

�

a

�(�

a

(�

x

)),

2. �(�

x

)V

a

= V

a

�(�

a

(�

x

)), V

�

a

�(�

x

) = �(�

a

(�

x

))V

�

a

,

3. and if in addition aO + bO = O, then V

�

a

V

b

= V

b

V

�

a

.

Proof. Since V

�

a

V

a

= 1, claim (1) is immediate from covariance. Use (1) and facts

about � to compute V

a

�(�

a

(�

x

)) = V

a

�(�

ax

) = �(�

a

(�

ax

)V

a

= �(�

a

(�

a

(�

x

)))V

a

=

�(�

a

(1)�

x

)V

a

= �(�

x

)�(�

a

(1))V

a

= �(�

x

)V

a

, since �

a

(1) = V

a

V

�

a

by covariance. The

second equality in (2) is shown similarly. To see (3), multiply (1.3) by V

�

a

on the left

and V

b

on the right.

Example 1.6. We construct a covariant representation (�; L) on `

2

(K=O), in which �

is the left regular representation of C

�

(K=O) on `

2

(K=O).

The isometric representation L of the semigroup O

�

is de�ned by the formula

L

a

�

y

=

1

N

1=2

a

X

[x:ax=y]

�

x

;

where f�

y

: y 2 K=Og is the usual orthonormal basis of `

2

(K=O). First we need to

check that these are actually isometries, and for this it su�ces to show that L

a

maps

this orthonormal basis into orthogonal unit vectors. That they are unit vectors is an

easy calculation. If ax = y 6= y

0

= ax

0

in K=O then x 6= x

0

in K=O, so the sums for

L

a

�

y

and L

a

�

y

0

are over disjoint sets, and hence orthogonal.

The same type of calculation used to show �

a

��

b

= �

ab

yields L

a

L

b

= L

ab

, and

one checks easily that that L

�

a

�

x

= (1=N

1=2

a

)�

ax

, which can then be used to compute

L

a

�(�

x

)L

�

a

�

y

=

1

N

1=2

a

L

a

�

ay+x

=

1

N

a

X

[z:az=ay+x]

�

z

=

1

N

a

X

[z:a(z�y)=x]

�

z

=

1

N

a

X

[z

0

:az

0

=x]

�

z

0

+y

= �(�

a

(�

x

))�

y

:

Therefore the pair (�; L) is a covariant representation of the system

(C

�

(K=O);O

�

; �).

Definition 1.7. Because we have just constructed a non-trivial covariant represen-

tation, we know from Proposition 2.1 of [7] that the system (C

�

(K=O);O

�

; �) has a

crossed product. This is a C

�

-algebra B generated by a universal covariant representa-

tion (i; v) of (C

�

(K=O);O

�

; �) in B: for every other covariant representation (�; V ),

there is a representation � � V of B such that (� � V ) � i = � and (� � V ) � v = V .

The triple (B; i; v) is unique up to isomorphism [7, Proposition 2.1]. Since the rep-

resentation � in the example is faithful, and � = (� � L) � i, the homomorphism i is

injective on C

�

(K=O).

We can similarly de�ne the algebraic crossed product (C (K=O)o

�

O

�

; i; v) to

be the

�

-algebra generated by a universal algebraic covariant representation. The

Documenta Mathematica 2 (1997) 115{138



Semigroup Crossed Products and Hecke Algebras : : : 121

construction of [7, Proposition 2.1] can be easily modi�ed to show that there is such

a representation.

Lemma 1.8. The vector space spanfv

�

a

i(�

x

)v

b

: x 2 K=O; a; b 2 O

�

g is a dense

�

-subalgebra of C

�

(K=O)oO

�

. We also have

spanfv

�

a

i(�

x

)v

b

: x 2 K=O; a; b 2 O

�

g = spanfi(�

x

)v

�

a

v

b

: x 2 K=O; a; b 2 O

�

g

Proof. The vector space certainly contains every i(�

x

) and v

a

, and is obviously closed

under taking adjoints, so it is enough to to show that the product of two spanning

elements is a linear combination of such elements. To prove this let x; y 2 K=O and

a; b; c; d 2 O

�

. Then, since v

b

v

c

= v

c

v

b

, we have

(v

�

a

i(�

x

)v

b

)(v

�

c

i(�

y

)v

d

) = v

�

a

i(�

x

)v

�

c

(v

b

v

c

)(v

b

v

c

)

�

v

b

i(�

y

)v

d

= v

�

a

v

�

c

i(�

c

(�

x

)�

bc

(1)�

b

(�

y

))v

b

v

d

by Lemma 1.5 (1)

= (v

a

v

c

)

�

i(�

bc

� �

bc

(�

c

(�

x

)�

b

(�

y

)))v

b

v

d

by Proposition 1.2

= (v

a

v

c

)

�

i(�

bc

(�

b

(�

x

)(�

c

(�

y

)))(v

b

v

d

)

= (v

a

v

c

)

�

i(�

bc

(�

bx

+ �

cy

))(v

b

v

d

);

which we can see is in the linear span of fv

�

a

i(�

x

)v

b

: x 2 K=O; a; b 2 O

�

g by

considering the formula (1.2) de�ning �. The last equality follows from Lemma 1.5.

Remark 1.9. The labeling of the spanning elements by the ordered triples

(v

a

; i(�

x

); v

b

) is not one-to-one. If bc = ad and bx = dy + n + mb=a for m;n 2 O,

then, using Lemma 1.5(2) repeatedly,

v

�

a

i(�

x

)v

b

= v

�

a

v

b

i(�

bx

)

= v

�

a

v

b

i(�

mb=a

)i(�

dy

) by assumption, since i(�

n

) = 1

= v

�

a

i(�

m=a

)v

b

i(�

dy

)

= i(�

am=a

)v

�

a

v

b

i(�

dy

)

= v

�

c

v

d

i(�

dy

)

= v

�

c

i(�

y

)v

d

;

where the �fth equality holds because i(�

m

) = 1 and v

�

a

v

b

= v

�

a

v

�

c

v

c

v

b

= v

�

c

v

�

a

v

b

v

c

=

v

�

c

v

�

a

v

a

v

d

= v

�

c

v

d

.

From the discussion of the Hecke algebra in x2 it will follow that v

�

a

i(�

x

)v

b

=

v

�

c

i(�

y

)v

d

implies b=a = d=c and bx � dy (mod O +

b

a

O). It will also follow that the

set fv

�

a

i(�

x

)v

b

: x 2 K=O; a; b 2 O

�

g is linearly independent, hence a linear basis for

the dense subalgebra C (K=O)o O

�

of C

�

(K=O)oO

�

.

Proposition 1.10. Let K be a number �eld with ring of integers O. There is a

strongly continuous action b� of the compact group

c

K

�

on C

�

(K=O)o

�

O

�

such that

b�




�

v

�

a

i(�

x

)v

b

�

= 
(a

�1

b)v

�

a

i(�

x

)v

b

for all 
 2

c

K

�

, a; b 2 O

�

and x 2 K=O; b� is called the dual action.

Proof. For �xed 
, the map w : a 7! 
(a)v

a

gives another covariant pair (i; w), which

is easily seen to be universal. Thus we can deduce from the uniqueness of the crossed

product that there is an automorphism b�




of C

�

(K=O)o

�

O

�

with the required
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behavior on generators. The continuity of 
 7! b�




(c) is easy to check when c belongs

to spanfv

�

a

i(�

x

)v

b

g, and because automorphisms of C

�

-algebras are norm-preserving,

this extends to c 2 C

�

(K=O)o

�

O

�

.

Corollary 1.11. There is a faithful positive linear map � of C

�

(K=O)o

�

O

�

onto

C

�

(K=O) (strictly speaking, onto its image i(C

�

(K=O)) in the crossed product) such

that

�

�

v

�

a

i(�

x

)v

b

�

=

(

v

�

a

i(�

x

)v

a

if b = a,

0 otherwise:

Proof. De�ne

�(c) :=

Z

c

K

�

b�




(c) d
;

this gives a norm-decreasing projection of C

�

(K=O)o

�

O

�

onto the �xed-point al-

gebra for the action b�, which is faithful in the sense that �(b

�

b) = 0 only if b = 0.

Because

R


(a

�1

b) d
 = 0 unless a

�1

b = 1, � has the required form on generators.

The covariance of (i; v) implies that v

�

a

i(�

x

)v

a

= i(�

a

(�

x

)) = i(�

ax

), so � does indeed

have range i(C

�

(K=O)). One can check by representing C

�

(K=O)o

�

O

�

on Hilbert

space that � is positive (in fact, completely positive of norm 1).

Example 1.12. Composing the expectation � with the canonical trace � : z 7! z(0)

on C

�

(K=O) gives a state � �� on C

�

(K=O)o

�

O

�

. This state is faithful on positive

elements because both � and � are. Thus the GNS-representation �

���

is a faithful

representation of C

�

(K=O)o

�

O

�

. (We observe that when K = Q, � �� is the KMS

1

state of [3, Theorem 5], which is shown there to be a factor state of type III.)

2. The Hecke algebra of a number field

The universal property de�ning the crossed product C

�

(K=O)o

�

O

�

can be restated

as a presentation in terms of generators and relations similar to the modi�cation in [8,

Corollaries 2.9 and 2.10] of [3, Proposition 18]. To do this we need to extend the de�-

nition of covariance to say that a pair (U; V ) consisting of an isometric representation

V of O

�

and a unitary representation U of K=O is covariant if

1

N

a

X

[x:ax=y]

U (x) = V

a

U (y)V

�

a

; for a 2 O

�

and y 2 K=O:

Since C

�

(K=O) is universal for unitary representations of K=O, a pair (U; V ) is covari-

ant in this sense precisely when (�

U

; V ) is a covariant representation of the dynamical

system.

Proposition 2.1. The crossed product C

�

(K=O)o

�

O

�

is the universal C

�

-algebra

generated by elements fu(y) : y 2 K=Og, fv

a

: a 2 O

�

g subject to the relations:

1. v

�

a

v

a

= 1 for a 2 O

�

,

2. v

a

v

b

= v

ab

for a; b 2 O

�

,

3. u(0) = 1; u(x)

�

= u(�x); u(x)u(y) = u(x+ y) for x; y 2 K=O, and

4.

1

N

a

X

[x:ax=y]

u(x) = v

a

u(y)v

�

a

, for a 2 O

�

and x; y 2 K=O.
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Similarly, the algebraic crossed product C (K=O)o

�

O

�

is the universal involutive

algebra generated by such elements and relations.

Proof. Relations (1) and (2) say that v is an isometric representation of O

�

, (3)

says that u is a unitary representation of K=O, and (4) is the covariance condition.

Clearly, a universal representation of the above relations is a universal covariant pair

for the system (C

�

(K=O);O

�

; �), and vice versa.

In Example 1.6 we gave a concrete representation of these relations. In this

section we obtain another, by real-Ising the crossed product as a Hecke algebra, and

using the regular representation of this Hecke algebra.

Recall that a subgroup �

0

of a group � is almost normal if the orbits for the left

action of �

0

on the right coset space �=�

0

are �nite. Consider the subgroup

�

O

=

��

1 a

0 1

�

: a 2 O

�

of

�

K

=

��

1 y

0 x

�

: x; y 2 K;x 6= 0

�

:

Lemma 2.2. �

O

is an almost normal subgroup of �

K

.

Proof. The right coset of 
 =

�

1 y

0 x

�

2 �

K

is 
�

O

=

�

1 y +O

0 x

�

, so

�

1 a

0 1

�


�

O

=

�

1 a

0 1

��

1 y +O

0 x

�

=

�

1 ax+ y + O

0 x

�

:

Thus the orbit has as many points as there are classes of ax+y modulo O. If x = b=c

with b; c 2 O, then a � a

0

(mod c) implies ax+ y � a

0

x+ y (mod O), so there are at

most N

c

points in the orbit.

The generalized Hecke algebra H(�

K

;�

O

) is de�ned in [3, x1] as a convolution

�

-

algebra of �

O

-biinvariant functions on �

K

. As a complex vector space, H(�

K

;�

O

) is

the space of functions f : �

K

! C which are constant on double cosets, so f(


0





0

0

) =

f(
) for 


0

; 


0

0

2 �

O

and 
 2 �

K

, and which are supported on �nitely many of these

double cosets. The convolution product is

(f � g)(
) =

X




1

2�

O

n�

K

f(



�1

1

)g(


1

);

where the sum is over left-cosets, and the involution is f

�

(
) = f(


�1

). With these

operations, H(�

K

;�

O

) is a unital

�

-algebra.

It is convenient to think of H(�

K

;�

O

) as the linear span of characteristic func-

tions of double cosets, indicated by square brackets, with the multiplication rule:

[�

O




1

�

O

] � [�

O




2

�

O

](
) =

X




0

2�

O

n�

K

[�

O




1

�

O

](



0

�1

)[�

O




2

�

O

](


0

) (2.1)

= # LC

�

(�

O




�1

1

�

O

)
 \ (�

O




2

�

O

)

	

;

where the sum is taken over representatives 


0

of the left cosets �

O

n�

K

, and # LC

counts the number of left cosets in a left-invariant subset of �

K

. The last equal-

ity holds because the term of the sum corresponding to a left coset 


0

is 0 unless
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0

�1

2 �

O




1

�

O

and 


0

2 �

O




2

�

O

, in which case it is 1. Involution is determined by

conjugate-linearity and [�

O


�

O

]

�

= [�

O




�1

�

O

], and the unit is [�

O

].

Consider the maps � : O

�

!H(�

K

;�

O

) and e : K !H(�

K

;�

O

) de�ned by

�

a

=

1

N

1=2

a

�

�

O

�

1 0

0 a

�

�

O

�

(2.2)

e(r) =

�

�

O

�

1 r

0 1

�

�

O

�

: (2.3)

The map e factors through K=O because �

O

�

1 r

0 1

�

�

O

=

�

1 r +O

0 1

�

, and

the same notation will be used for the corresponding map of K=O into H(�

K

;�

O

).

The following generalization of [3, Proposition 18] shows that the Hecke algebra is

generated by these elements, and that they are universal generators. More precisely,

it says that the pair (e; �) is covariant and that �

e

� � is a

�

-algebra isomorphism of

C (K=O)o

�

O

�

onto H(�

K

;�

O

).

Theorem 2.3. Let K be a number �eld with ring of integers O. The elements �

a

and e(x) de�ned in (2:2) and (2:3), with a 2 O

�

and x 2 K=O, generate the Hecke

algebra H(�

K

;�

O

), and satisfy the relations

H1. �

�

a

�

a

= 1 for a 2 O

�

,

H2. �

a

�

b

= �

ab

for a; b 2 O

�

,

H3. e(0) = 1, e(x)

�

= e(�x) and e(x)e(y) = e(x+ y) for x; y 2 K=O, and

H4.

1

N

a

P

[x:ax=y]

e(x) = �

a

e(y)�

�

a

, for a 2 O

�

and y 2 K=O.

Moreover, H(�

K

;�

O

) is the universal

�

-algebra over C with these generators and

relations; it is spanned by the set f�

�

a

e(x)�

b

: a; b 2 O

�

; x 2 Kg.

Proof. To prove (H3), �rst observe that

�

O

�

1 r

0 1

�

=

�

1 r

0 1

�

�

O

= �

O

�

1 r

0 1

�

�

O

=

�

1 r + O

0 1

�

;

so for these elements, left cosets, right cosets and double cosets coincide. Let r; s 2 K,


 =

�

1 y

0 x

�

2 �

K

, and compute as in (2.1):

e(r)e(s)(
) =

��

1 r + O

0 1

��

�

��

1 s +O

0 1

��

(
)

= # LC

��

1 �r + O

0 1

�


 \

�

1 s+ O

0 1

��

= # LC

��

1 y � rx+ xO

0 x

�

\

�

1 s+ O

0 1

��

=

�

1 if x = 1 and y � r + s (mod O)

0 otherwise;

because if x = 1 and y � r � s (mod O), the intersection is the (single) left coset

�

1 s +O

0 1

�

. Thus e(r)e(s) = e(r+ s). The remaining identities are easily veri�ed.

Documenta Mathematica 2 (1997) 115{138



Semigroup Crossed Products and Hecke Algebras : : : 125

To see (H1) and (H2), notice that �

O

�

1 0

0 a

�

�

O

=

�

1 O

0 a

�

=

�

1 0

0 a

�

�

O

; so the support of �

a

is a right coset, and the support of �

�

a

is the

left coset �

O

�

1

1

a

O

0

1

a

�

. Thus, for 
 =

�

1 y

0 x

�

, we have

�

�

a

�

a

(
) =

1

N

a

��

1

1

a

O

0

1

a

��

�

��

1 O

0 a

��

(
)

=

1

N

a

# LC

��

1 O

0 a

�


 \

�

1 O

0 a

��

=

1

N

a

# LC

��

1 y + xO

0 ax

�

\

�

1 O

0 a

��

=

�

1 if x = 1 and y 2 O

0 otherwise,

because if x = 1 and y 2 O the intersection

�

1 O

0 a

�

contains exactly N

a

left cosets.

This proves �

�

a

�

a

=

��

1 O

0 1

��

= [�

O

] = 1. A similar computation proves (H2).

Before proving the covariance condition (H4), we compute �

a

e(r):

�

a

e(r)(
) =

1

N

1=2

a

# LC

��

1

1

a

O

0

1

a

�


 \

�

1 r + O

0 1

��

=

1

N

1=2

a

# LC

��

1 y +

x

a

O

0

1

a

x

�

\

�

1 r +O

0 1

��

=

�

1=N

1=2

a

if x = a and y � r (mod O)

0 otherwise.

Thus �

a

e(r) =

1

N

1=2

a

��

1 r + O

0 a

��

and

�

a

e(r)�

�

a

(
) =

1

N

a

��

1 r + O

0 a

��

�

��

1

1

a

O

0

1

a

��

(
)

=

1

N

a

# LC

��

1 �

r

a

+

1

a

O

0

1

a

�


 \

�

1

1

a

O

0

1

a

��

=

1

N

a

# LC

��

1 y �

rx

a

+

x

a

O

0

x

a

�

\

�

1

1

a

O

0

1

a

��

=

�

1=N

a

if x = 1 and y � r=a 2

1

a

O

0 otherwise.

This gives

�

a

e(r)�

�

a

=

1

N

a

��

1

1

a

(r + O)

0 1

��

;
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which implies (H4) because the right-hand-side is the sum of N

a

characteristic func-

tions of double cosets, one for each class in r=a+ (1=a)O (mod O); in other words,

�

a

e(r)�

�

a

=

1

N

a

X

[x:ax=r]

��

1 x+O

0 1

��

=

1

N

a

X

[x:ax=r]

e(x) = �

e

(�

a

(�

r

)):

Now that we have veri�ed (H1){(H4), the universal property of the algebraic

crossed product gives a

�

-algebra homomorphism �

e

� � of C (K=O)o O

�

into the

Hecke algebra H(�

K

;�

O

), and it only remains to prove that �

e

� � is one-to-one and

onto.

Consider a single monomial �

�

a

e(r)�

b

. A computation similar to the one above

gives

�

�

a

e(r)(
) =

1

N

1=2

a

��

1 r +

1

a

O

0

1

a

��

;

and further calculation shows

�

�

a

e(r)�

b

(
) =

1

N

1=2

ab

# LC

��

1 y � rb+

b

a

O

0 ax

�

\

�

1 O

0 b

��

:

Thus we must have x = b=a and y 2 rb +

b

a

O + O. Since

�

1 O

0 b

�

is not a

(single) left coset, we must count carefully to �nd the number of left cosets in this

intersection. We notice, �rst, that abO � bO\aO � aO,

b

a

O\O is an ideal in O and

(

b

a

O \O)=bO

�

=

(bO\ aO)=abO, and, second, that aO=(bO\ aO)

�

=

O=(

b

a

O\O), so

that jaO=(bO \ aO)j = N (

b

a

O \O). From the isomorphism theorems we have

jaO=(bO \ aO)j j(bO \ aO)=abOj = jaO=abOj = jO=bOj = jN (b)j = N

b

;

and from the multiplicativity of the norm, we deduce that the number of left cosets

is N

b

=N (

b

a

O \O). We divide by N

1=2

ab

and manipulate to get

�

�

a

e(r)�

b

=

N (

b

a

)

1=2

N (

b

a

O \O)

��

1 rb+

b

a

O +O

0

b

a

��

:

The support of the right hand side is a single double-coset. To see this, multiply one

of its elements on the left and on the right by �

O

to get

�

1 O

0 1

��

1 rb

0

b

a

��

1 O

0 1

�

=

�

1 rb+

b

a

O + O

0

b

a

�

:

Since every double coset has this form, and since N (

b

a

)

1=2

6= 0, the linear span of

the elements �

�

a

e(r)�

b

is all of H(�

K

;�

O

). Moreover, if two such elements �

�

a

e(x)�

b

and �

�

c

e(y)�

d

do not have disjoint support, they are supported on the same double

coset, in which case b=a = d=c and �

�

a

e(x)�

b

= �

�

c

e(y)�

d

. Thus the set f�

�

a

e(x)�

b

:

a; b 2 O

�

x 2 K=Og is linearly independent, because distinct elements have disjoint

support.

Since the representation �

e

� � maps fv

�

a

u(x)v

b

: x 2 K=O; a; b 2 O

�

g in-

jectively onto a linear basis for the Hecke algebra, it follows that fv

�

a

u(x)v

b

: x 2

K=O and a; b 2 O

�

g is a linear basis for the algebraic crossed product and that

�

e

� � : C (K=O)o O

�

!H(�

K

;�

O

)

is a

�

-algebra isomorphism. The result now follows from Proposition 2.1.
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The Hecke algebra H(�

K

;�

O

) acts as convolution operators on the Hilbert space

`

2

(�

O

n�

K

), and then the Hecke C

�

-algebra C

�

(�

K

;�

O

) is by de�nition the closure of

H(�

K

;�

O

) in the operator norm, [3, Proposition 3], [2]. Thus, the generators e(r) and

�

a

, viewed as unitaries and isometries on `

2

(�

O

n�

K

), give a covariant representation

(�

e

; �) of (C

�

(K=O); u; v) such that C

�

(�

K

;�

O

) = (�

e

� �)(C

�

(K=O)oO

�

). It will

follow from our main theorem in x4 that this Hecke representation is faithful; i.e. that

the Hecke C

�

-algebra is the universal C

�

-algebra of the relations (H1){(H4).

We can also establish directly that the Hecke representation is faithful by em-

bedding the faithful representation of Example 1.12 as a subrepresentation. Indeed,

the subspace of `

2

(�

O

n�

K

) consisting of biinvariant functions is invariant under the

Hecke representation (�

e

; �), and the corresponding subrepresentation turns out to

be the GNS-representation of the state � ��.

Proposition 2.4. The representation of the Hecke algebra as convolution operators

on `

2

(�

O

n�

K

=�

O

) is unitarily equivalent to the GNS-representation of � ��.

Proof. By uniqueness of the GNS-representation, it is enough to show that the

vector [�

O

] 2 `

2

(�

O

n�

K

=�

O

) is cyclic for the left convolution action of H(�

K

;�

O

)

and that the corresponding vector state !

�

O

is equal to !��. Since [�

O

] is an identity

for convolution, its cyclic component contains every biinvariant function supported

on �nitely many double cosets; this proves that [�

O

] is cyclic.

To show that !

�

O

= � � �, notice �rst that, because the �xed point algebra

of the dual action �̂ of

d

K

�

is exactly C

�

(K=O), any state ! of C

�

(K=O) has a

unique �̂-invariant extension to C

�

(K=O)o

�

O

�

, namely !��. So it su�ces to prove

that the vector state !

�

O

is �̂-invariant and agrees with � on C

�

(K=O). If a 6= b,

then the support of �

�

a

e(r)�

b

[�

O

] is disjoint from �

O

, and hence !

�

O

(�

�

a

e(r)�

b

) =

h�

�

a

e(r)�

b

[�

O

]; [�

O

]; i = 0. Similarly, if r 6= 0 the support of e(r)[�

O

] is disjoint

from [�

O

], and hence !

�

O

(e(r)) = he(r)[�

O

]; [�

O

]i = 0. Since we trivially have

!

�

O

(e(0)) = 1, this proves that !

�

O

is �̂-invariant and agrees with � on C

�

(K=O),

as required.

Corollary 2.5. Let K be a number �eld with ring of integers O. Then the Hecke

representation �

e

� � is faithful on C

�

(K=O)o

�

O

�

and the Hecke C

�

-algebra

C

�

(�

K

;�

O

) is the universal C

�

-algebra of the relations (H1){(H4).

3. Characters of K=O

In [8] the character {(r) = exp(2�ir) gave an embedding of Q=Zin Twhich was

essential to the characterization of faithful covariant representations. There is no

such embedding in general:

Lemma 3.1. If K is a nontrivial extension of Q, there are no injective characters of

K=O.

Proof. Suppose that K is an extension of degree [K : Q] = n > 1, and choose

an integer a 2 Z\ O

�

with a 6= �1. Then the subgroup

1

a

O=O of K=O has order

N

a

= a

n

[11, 2.6(3)]. On the other hand, every x 2 O satis�es x = ax=a = 0 in

1

a

O=O, so the order of �(x=a) divides a for every character �. Thus �(

1

a

O=O) is a

subgroup of the a

th

-roots of unity and � cannot be injective.

For � 2 (K=O)b and b 2 O, de�ne a character �

b

on K=O by �

b

(x) := �(bx). Our

key technical Lemma says that for every number �eld K there exists � 2 (K=O)b such
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that f�

b

: b 2 Og is dense in (K=O)b (Corollary 3.5, Lemma 3.6); these characters

play the role of the injective characters of Q=Z. We begin by recording a general fact.

Lemma 3.2. Let � be a character on K=O, and let a; b 2 O

�

. Then

X

[x:ax=0]

�(bx) = 0 if and only if �(bx) 6= 1 for some x 2 [x : ax = 0]:

(3.1)

Proof. The set f�(bx) : ax = 0g is a group of roots of unity, and hence, unless this

group is trivial, its elements sum to zero.

In dealing with semigroup crossed products Ao

�

S, one often needs to know

that

Q

a2F

(1 � �

a

(1)) is nonzero for every �nite set of elements F of S (see [7,

Theorem 3.7], for example). In the present setting, something stronger is needed.

The problem is that �

a

(1)�

b

(1) is not necessarily of the form �

c

(1) for c 2 O

�

. To

get around this, we would like to make sense of �

a

(1) for ideals a in O, in such a

way that �

a

(1)�

b

(1) = �

a

(1) with a the not-necessarily-principal ideal generated by

a and b. The ideals in O form a semigroup including O

�

=O

�

as the subsemigroup of

principal ideals, but we have been unable to �nd a suitable action � of this semigroup

on C

�

(K=O). However, we can de�ne projections P

a

which have the properties we

require of �

a

(1). Once we have established these properties in Proposition 3.4, we can

show the existence of the required characters on K=O (Corollary 3.5, Lemma 3.6).

We need some basic facts about fractional ideals. A fractional ideal f of a number

�eld K is a nonzero �nitely-generated O-submodule of K such that df � O for some

d 2 O

�

. Ideals in O are certainly fractional ideals, with d = 1; these are called integral

ideals when it is necessary to distinguish them. Products and inverses of fractional

ideals are de�ned by

fg = f

n

X

i=1

f

i

g

i

: f

i

2 f; g

i

2 gg

f

�1

= fx 2 K : xf � Og;

and are fractional ideals too. Since the ring of integers O is a Dedekind domain,

these operations make the set of fractional ideals into a multiplicative group I

K

with

identity element the ideal O; moreover, every element in I

K

can be factored uniquely

into a product of integer powers of prime ideals in O. Hence I

K

is a free Abelian

group with the set P of prime ideals as generators [11, Theorem 3.4.3].

The intersection f\g of two fractional ideals, which is sometimes denoted [f; g], is

a greatest lower bound in terms of ideal inclusion; similarly, f+g, which is sometimes

denoted (f; g), is the least upper bound. The notation of lcm and gcd is meaningful;

if f and g are two fractional ideals with factorizations

f =

Y

p2P

p

n

p

(f)

and g =

Y

p2P

p

n

p

(g)

;

then

[f; g] = f \ g =

Y

p2P

p

max(n

p

(f);n

p

(g))

;

and

(f; g) = f + g =

Y

p2P

p

min(n

p

(f);n

p

(g))

:
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Notice that with these factorizations, if f is integral, all the exponents n

p

are nonneg-

ative, and if f is the inverse of an integral ideal, n

p

� 0 for all p. Thus any fractional

ideal can be written as f =

a

b

, with a; b � O, and we can de�ne the norm of a frac-

tional ideal by N (f) = N (a)=N (b) [6, pp. 17,24]. However, if f is not integral this

norm no longer represents a cardinality.

If a is an integral ideal, then a

�1

contains O. Let d 2 O be an integer such that

da

�1

� O. Since we trivially have dO � da

�1

, the isomorphism theorems give

jO=dOj =

�

�

O=da

�1

�

�

�

�

da

�1

=dO

�

�

;

since da

�1

=dO

�

=

a

�1

=O, we deduce that

�

�

a

�1

=O

�

�

=

�

�

da

�1

=dO

�

�

=

N

d

N (da

�1

)

= N (a):

Lemma 3.3. Suppose a and b are integral ideals in O. Then

0! (a + b)

�1

=O ������!

x 7!(x;�x)

a

�1

=O � b

�1

=O �������!

(x;y)7!x+y

(a \ b)

�1

=O ! 0

is an exact sequence of �nite Abelian groups.

Proof. From the factorization into prime ideals it is easy to see that a

�1

+ b

�1

=

(a \ b)

�1

and a

�1

\ b

�1

= (a + b)

�1

. Hence addition gives a natural surjective

homomorphism (x; y) 2 a

�1

� b

�1

7! x + y 2 (a \ b)

�1

with kernel f(x;�x) : x 2

(a + b)

�1

g. Taking quotients by O gives the sequence.

We are now ready to de�ne the projections P

a

in C

�

(K=O).

Proposition 3.4. For each integral ideal a in O let

P

a

=

1

N (a)

X

x2a

�1

=O

�

x

; (3.2)

where the sum is taken over any set of representatives of a

�1

=O. Then

(i) P

(a)

= �

a

(1) for every a 2 O

�

,

(ii) P

a

is a projection for every a,

(iii) P

a

� P

b

whenever ajb (i.e. whenever b � a),

and, for every �nite collection fa

i

g

1�i�n

of integral ideals,

(iv)

Q

i

P

a

i

= P

\

i

a

i

, and

(v)

Q

i

(1� P

a

i

) 6= 0 whenever a

i

6= O for 1 � i � n.

Proof. Claim (i) is veri�ed directly from the de�nition. Since multiplication and

intersection are associative operations, to prove (iv) it is enough to consider two ideals

a and b:

P

a

P

b

=

1

N (a)N (b)

X

x2a

�1

=O

X

y2b

�1

=O

�

x+y

=

N (a + b)

N (a)N (b)

X

z2(a\b)

�1

=O

�

z

=

1

N (a \ b)

X

z2(a\b)

�1

=O

�

z

= P

a\b

;
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where the second equality holds by Lemma 3.3. Since a

�1

=O contains �x whenever

it contains x, P

a

is self adjoint, and setting a = b in (iv) gives P

2

a

= P

a

, proving (ii).

If bja then a \ b = b, so (iii) follows from (iv).

It remains to prove (v). Observe �rst that replacing each a

i

by one of its prime

factors gives a smaller projection because of (iii); repeated primes are irrelevant be-

cause the P

a

i

are idempotents. Thus it su�ces to prove that

Q

a2F

(1 � P

a

) 6= 0 for

any �nite set F of distinct prime ideals. Multiplying out and using (iv) gives

Y

a2F

(1� P

a

) =

X

A�F

Y

a2A

(�P

a

) =

X

A�F

(�1)

jAj

P

\A

;

where \A indicates the intersection of all the members of A, which in this case equals

their product because they are all prime. This projection is in C (K=O), and, viewing

it as a function on K=O, it makes sense to evaluate it at 0 2 K=O:

Y

a2F

(1� P

a

)(0) =

X

A�F

(�1)

jAj

P

\A

(0)

=

X

A�F

(�1)

jAj

1

N (\A)

X

x2(\A)

�1

=O

�

x

(0)

=

X

A�F

Y

a2A

(�

1

N (a)

); because N (\A) =

Y

a2A

N (a),

=

Y

a2F

(1�

1

N (a)

) 6= 0;

because N (a) > 1 for every integral ideal a 6= O.

Corollary 3.5. Let f 7!

b

f denote the Fourier transform isomorphism of C

�

(K=O)

onto C(

[

K=O). Then

X

K

:=

\

fsupp

\

1� P

a

: a is a nontrivial ideal in Og

is a nonempty compact G

�

subset of

[

K=O.

Proof. The space

[

K=O is compact, and the family fsupp(1 � P

a

)bg has the �nite

intersection property by Proposition 3.4(v).

The following lemma shows that the characters in X

K

have the required proper-

ties.

Lemma 3.6. Let � 2

[

K=O. Then

1. � 2 X

K

if and only if �(a

�1

=O) 6= f1g for every non-trivial ideal a � O,

2. if � 2 X

K

; a; b 2 O

�

, and �(bx) = 1 for all x 2

1

a

O=O, then ajb, and

3. if � 2 X

K

, then f�

b

: b 2 Og is dense in

[

K=O.

Proof. Suppose � 2 X

K

. By the de�nition of the set X

K

,

^

P

a

(�) 6= 1, so it must be

zero, which means

P

x2a

�1

=O

�(x) = 0. Equivalently, the group �(a

�1

=O) of roots of

unity is non-trivial by (3.1), giving (1). To see (2), note that

1

a

(aO + bO) =

1

a

fax+ by : x; y 2 Og = fx+

b

a

y : x; y 2 Og:
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Suppose a does not divide b, and set a

�1

=

1

a

(aO + bO): this makes sense since by

dividing ideals we can compute

1

a

(aO + bO) =

1

a

�

abO

aO\bO

�

= (a)

�1

�

aO\bO

abO

�

�1

;

and so a = (aO \ bO)=bO is an integral ideal. If � 2 X

K

, then from (1) we have

�(f

by

a

: y 2 Og) = �(fx+

by

a

: x; y 2 Og) = �(a

�1

) 6= f1g;

so (2) is proved.

Let � 2 X

K

. The map b 7! �

b

from O to the characters on K=O is a group

homomorphism. We claim that the homomorphism b 7! �

b

j
1

a

O=O

has kernel aO. We

see that a is in the kernel, since �

a

(

1

a

O) = �(O) = f1g. Suppose b is in the kernel.

Then �(bx) = 1 for all x 2

1

a

O=O, so (2) implies that ajb; thus b 2 aO, and the claim

is true. Thus we have an injective homomorphism of O=aO into (

1

a

O=O)b, and since

these are �nite Abelian groups of the same cardinality N

a

, the homomorphism must

also be surjective. Thus every character on

1

a

O=O is the restriction of some �

b

. Since

K=O = [f

1

a

O=O : a 2 O

�

g, we have

[

K=O = lim

 �

\
1

a

O=O;

and we can deduce that f�

b

: b 2 Og is dense in

[

K=O.

Remark 3.7. The referee suggested that it should also be possible to prove the exis-

tence of characters with the required properties using Fourier analysis on the adele

group A of K, as in [6]. In fact, this method is used by Harari and Leichtnam

[5]. The approach presented here is more elementary, and in particular bypasses the

application of the strong approximation theorem.

The characters in X

K

will play a very important rôle in the proof of our main

theorem. We can also use them to construct new covariant representations of the

system (C

�

(K=O);O

�

; �) involving the usual Toeplitz representation T of O

�

on

`

2

(O

�

), which is de�ned in terms of the usual basis f"

b

: b 2 O

�

g for `

2

(O

�

) by

T

a

("

b

) := "

ab

.

Proposition 3.8. Suppose � 2 X

K

. Then �

�

(x) : "

b

7! �

b

(x)"

b

extends to a faithful

representation of C

�

(K=O) such that the pair (�

�

; T ) is covariant.

Proof. The operator �

�

(�

x

) is multiplication by the circle-valued function b 7! �

b

(x)

on `

2

(O

�

), so �

�

is a unitary representation of K=O; we use the same symbol for the

corresponding representation of C

�

(K=O). For f 2 C

�

(K=O), �

�

(f) is multiplication

by the function b 7!

b

f (�

b

), and since f�

b

: b 2 O

�

g is dense in (K=O)b by Lemma 3.6,

�

�

is faithful.

To check the covariance condition, �x b 2 O

�

. Compute �rst

T

a

�

�

(y)T

�

a

"

b

=

�

T

a

�

�

(y)"

b=a

if ajb

0 if a 6 j b

=

�

�((b=a)y)"

b

if ajb

0 if a 6 j b;

and then

�

�

(�

a

(y))"

b

=

1

N

a

X

[x:ax=y]

�

�

(x)"

b

=

0

@

1

N

a

X

[x:ax=y]

�(bx)

1

A

"

b

:
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Let z be a �xed element of [z : az = y]. Then

1

N

a

X

[x:ax=y]

�(bx) =

1

N

a

X

[x

0

:ax

0

=0]

�(b(x

0

+ z)) = �(bz)

1

N

a

X

[x

0

:ax

0

=0]

�(bx

0

)

=

�

�(bz) if ajb

0 if a 6 j b;

by Lemma 3.6(2) and (3.1). Since ajb implies �(bz) = �((b=a)az) = �((b=a)y),

covariance follows.

4. Representations of the crossed product

In this section we prove our main theorem | the characterization of faithful represen-

tations of the crossed product | and then discuss the various speci�c representations

we have constructed earlier.

Theorem 4.1. Let K be a number �eld with ring of integers O. A covariant repre-

sentation � � V of C

�

(K=O)o

�

O

�

is faithful if and only if � is faithful.

The strategy of the proof is familiar: the crux is to show that deleting the terms

with a 6= b from �nite sums

P

a;b2F

�(f)V

�

a

V

b

gives a norm-decreasing expectation of

�� V (C

�

(K=O)o

�

O

�

) onto �(C

�

(K=O)). For this, we want a projection Q = �(q)

such that compressing by Q kills the o�-diagonal terms while retaining the norm

of the remaining sum of diagonal terms (see Lemma 4.3 below). The presence of

invertible elements (units) in the semigroup O

�

makes this trickier than it was in

[8], and we begin with a lemma which will help deal with units. Both the next two

lemmas depend crucially on the characters constructed in the previous section.

Lemma 4.2. Suppose � 2 X

K

, c 2 O

�

and H is a �nite set of units in O. Then

there is a projection q 2 C

�

(K=O) such that q�

u

(q) = 0 for all u 2 H and bq(�

c

) = 1.

Proof. We begin by observing that the units in O act as automorphisms of C

�

(K=O)

(the inverse of �

u

is �

u

�1
), and hence � induces an action of O

�

on the spectrum

(K=O)b of C

�

(K=O). Indeed, we have u � �(x) := �(�

�1

u

(x)) = �(ux) = �

u

(x) for

every � in (K=O)b. We claim that O

�

acts freely on the set f�

b

: b 2 O

�

g. To see

why, suppose u 2 O

�

satis�es u � �

b

= �

b

| or, equivalently, �

ub

= �

b

. Then for all

x 2 K=O, we have

1 = �

ub

(x)�

b

(x)

�1

= �((u� 1)bx):

By Lemma 3.6, this implies that every a 2 O

�

divides (u � 1)b, and this is only

possible if u = 1. This justi�es the claim.

The claim implies that the characters fu ��

c

= �

uc

: u 2 Hg are distinct elements

of (K=O)b. Since the discrete group K=O = [

a

1

a

O=O is a directed union of �nite

subgroups, the dual (K=O)b is a topological inverse limit of �nite groups, and hence

is a totally disconnected compact Hausdor� space. Thus we can �nd a compact

neighborhood N of �

c

such that (u � N ) \ N = ; for all u 2 H. Its characteristic

function 1

N

2 C((K=O)b) is the Fourier transform of a projection q 2 C

�

(K=O) with

the required properties.

Recall from Lemma 1.8 that the crossed product C

�

(K=O)o

�

O

�

is the closed

linear span of fi(f)v

�

a

v

b

: f 2 C (K=O) and a; b 2 O

�

g.
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Lemma 4.3. Let

P

a;b2F

i(f

a;b

)v

�

a

v

b

be a �nite linear combination with f

a;b

2

C

�

(K=O), and let � > 0. Then there exists a projection q = q(�) 2 C

�

(K=O) such

that

i(q)i(f

a;b

)v

�

a

v

b

i(q) = 0 if a 6= b; and (4.1)










q

�

X

f

a;a

�

q










�










X

f

a;a










� �: (4.2)

Proof. Let � 2 X

K

and let g =

P

f

a;a

2 C

�

(K=O). By Lemma 3.6(3) there exists

c 2 O

�

such that jbg(�

c

)j � kbgk � �. Consider the projection

q

1

= �

c

(1)

Y

a6 j b

(1� �

b

� �

ac

(1))

Y

b6 ja

(1 � �

a

� �

bc

(1)):

If a 2 F is not associate to b 2 F then either a 6 j b or b 6 j a. Suppose �rst b 6 j a. Then

i(q

1

)i(f

a;b

)v

�

a

v

b

i(q

1

) has a factor

i((�

c

(1)� �

c

(1)�

a

(�

bc

(1))))v

�

a

v

b

i(�

c

(1)) =

= v

�

a

i((�

ac

(1)� �

ac

(1)�

a

� �

a

(�

bc

(1)))�

bc

(1))v

b

by Lemma 1.5(1),

= v

�

a

i((�

ac

(1)� �

ac

(1)�

a

(1)�

bc

(1))�

bc

(1))v

b

= v

�

a

i((�

ac

(1)� �

ac

(1)�

bc

(1))�

bc

(1))v

b

= 0:

The case a 6 j b reduces to this one by taking adjoints.

We now consider H := fu 2 O

�

n f1g : there exists a 2 F with ua 2 Fg. By

Lemma 4.2, there is a projection q

2

such that q

2

�

u

(q

2

) = 0 for all u 2 H and

bq

2

(�

c

) = 1. We claim that the projection q := q

1

q

2

has the required properties.

Indeed, the calculation in the previous paragraph shows that i(q)v

�

a

v

b

i(q) = 0 when

a; b 2 F are not associate. If a is associate to b, then b = ua for some u 2 H, and

v

�

a

v

b

= v

u

; now the property q

2

�

u

(q

2

) = 0 forces i(q)v

�

a

v

b

i(q) = i(q)v

u

i(q) = 0.

By construction, �

c

is in the support of bq

2

, so to �nish the proof of (4.2) we need

to show that bq

1

(�

c

) = 1. Since �

c

is always in the support of �

c

(1)b, it su�ces to

prove that (�

a

� �

bc

(1))b(�

c

) = 0 whenever b 6 j a in O

�

.

(�

a

� �

bc

(1))b(�

c

) =

1

N

bc

X

[x:bcx=0]

\

�

a

(�

x

)(�

c

)

=

1

N

bc

X

[x:bcx=0]

�(cax):

By Lemma 3.6(2), at least one of the summands is 6= 1, because bc does not divide

ac. Thus the sum vanishes by (3.1).

Recall from Corollary 1.11 that we have a faithful linear map � :

C

�

(K=O)oO

�

! C

�

(K=O), constructed by averaging over the compact orbits

of (K

�

)b.

Proposition 4.4. Let (�; V ) be covariant for (C

�

(K=O);O

�

; �). If � is faithful, the

map

� : �(f)V

�

a

V

b

7!

�

�(f) if a = b

0 if a 6= b
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extends by linearity and continuity to a projection of norm 1 from C

�

(�; V ) onto

C

�

(�), such that the following diagram commutes

C

�

(K=O)o

�

O

�

��V

����! C

�

(�; V )

?

?

y

�

?

?

y

�

C

�

(K=O)

�

����! C

�

(�):

(4.3)

Proof. Let

P

a;b2F

�(f

a;b

)V

�

a

V

b

be a linear combination of the spanning monomials

and �x � > 0. Let q be the projection from Lemma 4.3, and take Q := �(q). Since �

is faithful, it is isometric. Thus










X

a;b2F

�(f

a;b

)V

�

a

V

b










�










Q

X

a;b2F

�(f

a;b

)V

�

a

V

b

Q










=










X

a

Q�(f

a;a

)V

�

a

V

a

Q










=










X

a

qf

a;a

q










�










X

a

f

a;a










� �

=










X

a

�(f

a;a

)










� �:

Since � is arbitrary, this gives the existence of the contractive projection �. That the

diagram commutes is easily veri�ed on the spanning set.

Proof. [Proof of Theorem 4.1.] Since there is a covariant representation (�; L) with

� faithful, and this representation factors through (i; v), i must be faithful. Thus if

� � V is faithful, so is � = (� � V ) � i. For the other direction, suppose � is faithful

and � � V (b) = 0. Then �(�(b

�

b)) = �(�� V )(b

�

b) = 0, and the faithfulness of � on

positive elements implies b = 0.

Next we consider the various covariant representations of C

�

(K=O)o

�

O

�

:

1. The representation �� L on `

2

(K=O) (Example 1.6).

2. The GNS-representation associated to the state � �� on C

�

(K=O)o

�

O

�

, which

is already known to be faithful (Example 1.12).

3. The Hecke representation on `

2

(�

O

n�

K

) (see x2).

4. The representations �

�

� T from Proposition 3.8.

5. A one-dimensional representation: the trivial character on K=O and the trivial

representation of O

�

on C form a covariant pair.

Corollary 4.5. The representations (1), (3) and (4) of C

�

(K=O)o

�

O

�

are all

faithful.

As things stand, it is not obvious that these representations are di�erent. In fact

(�; L) is quite di�erent: the dual action is not unitarily implemented. Our proof of

this shows more: the representations f� � 
L : 
 2 (K

�

)bg are a family of mutually

inequivalent irreducible representations.

Proposition 4.6. Suppose that U is a non-zero bounded operator on `

2

(K=O), and

that there exists 
 2

c

K

�

such that

Documenta Mathematica 2 (1997) 115{138



Semigroup Crossed Products and Hecke Algebras : : : 135

1. U�

x

= �

x

U for all x 2 K=O, and

2. UL

a

= 
(a)L

a

U for all a 2 O

�

.

Then U is a scalar multiple of 1 and 
 = 1.

Proof. Let u

x

:= (U"

0

j"

x

). Then

P

x2K=O

ju

x

j

2

= kU"

0

k

2

< 1. Condition (1)

implies

(U"

y

j"

x

) = (U�

y

"

0

j"

x

) = (�

y

U"

0

j"

x

) = (U"

0

j�

�

y

"

x

) (4.4)

= (U"

0

j�

�y

"

x

) = (U"

0

j"

x�y

) = u

x�y

: (4.5)

(We think of U �

P

u

y

�

y

as the Fourier series of U , which by (1) belongs to the

maximal Abelian algebra �(K=O)

00

.) We claim that, for each �xed n 2 N � O and

each x 2 K=O, we have

X

[y:ny=x]

u

y

= 
(n)u

x

:

To see this, we use (2) and calculate:


(n)u

x

=

�


(n)U"

0

j"

x

�

=

�

L

�

n

UL

n

"

0

j"

x

�

=

�

UL

n

"

0

jL

n

"

x

�

=

�

U

�

1

p

n

n

X

i=1

"

i=n

�

�

�

�

1

p

n

X

[y:ny=x]

"

x

�

=

1

n

X

i

X

[y:ny=x]

u

y�i=n

:

Now fy � i=n : ny = x; 1 � i � ng is n copies of [y : ny = x], so


(n)u

x

=

1

n

X

[y:ny=x]

nu

y

=

X

[y:ny=x]

u

y

;

as claimed.

Now suppose that u

x

6= 0 for some x 6= 0, and �x n 2 N. Recall that the `

2

- and

`

1

-norms on C

n

are related by kzk

2

� kzk

1

=

p

n. Thus the claim implies that

ju

x

j =

�

�

�

X

[y:ny=x]

u

y

�

�

�

�

X

[y:ny=x]

ju

y

j �

p

n

�

X

[y:ny=x]

ju

y

j

2

�

1=2

:

We deduce that

X

y2K=O

ju

y

j

2

�

X

n2N

�

X

[y:ny=x]

ju

y

j

2

�

�

X

n

ju

x

j

2

n

= ju

x

j

2

�

X

n

1

n

�

=1;

contradicting

P

ju

y

j

2

= kU"

0

k

2

<1.

Corollary 4.7. The representations f(�; �L) : � 2

c

K

�

g are irreducible and mutu-

ally inequivalent.

Proof. For the �rst assertion, take 
 = 1 in the proposition, and multiply both sides

by �(a). To see that (�; �

1

L) is not equivalent to (�; �

2

L), apply the proposition with


 = �

�1

1

�

2

.

Corollary 4.8. The automorphisms in the dual action b� of

c

K

�

on C

�

(K=O)o

�

O

�

are not implemented by unitaries in the representation �� L.
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Remark 4.9. That the dual action is not implemented distinguishes the representa-

tions � � 
L from the others in the list. For example, because the state ! � � is

invariant under the dual action b�, there is a unitary representation U of (K

�

)b on

H

!��

such that (�

!��

; U ) is a covariant representation of (C

�

(K=O)o

�

O

�

; (K

�

)b; b�).

It is also easy to check that the representation U : (K

�

)b! B(`

2

(O

�

)) de�ned by

U




"

a

= 
(a)"

a

gives a covariant representation (� � T; U ).

To see that the dual action is unitarily implemented in the Hecke representation,

de�ne U : (K

�

)b! B(`

2

(�

O

n�

K

)) by

U




:

��

1 y + xO

0 x

��

7! 
(x)

��

1 y + xO

0 x

��

:

The necessary relations U




e(r) = e(r)U




and U




�

a

= 
(a)�

a

U




follow easily by

observing that

supp

�

e(r) �

��

1 y + xO

0 x

��

�

�

�

1 �

0 x

�

; and

supp

�

�

a

�

��

1 y + xO

0 x

��

�

�

�

1 �

0 ax

�

:

Remark 4.10. The representation � � L is the GNS-representation corresponding to

the vector state � : c 7! (� � L(c)"

0

j"

0

). Since � � � =

R

c

K

�

� � b�




d
, it is tempting

to guess that �

���

is the direct integral of the representations �� 
L = (��L) � b�




.

However, because each � � 
L is irreducible, the direct integral representation on

L

2

((K

�

)b; `

2

(K=O)) has commutant L

1

((K

�

)b), and is therefore type I. On the other

hand, in the case K = Q, � � � is the KMS

1

-state described in [3, x1], and this is

known to be a factor state of type III

1

[3, Theorem 5].

5. Fields of class number 1

The ideal class group of a �eld K is the quotient of the group F of fractional ideals

by the subgroup P of principally generated ideals; it is a �nite Abelian group whose

cardinality is called the class number h

K

of the �eld [11, x4.3]. The group of principal

ideals is always isomorphic to K

�

=O

�

, so we have an exact sequence

1!O

�

! K

�

! F ! F=P ! 1

of Abelian groups. Since fractional ideals factor uniquely as products of prime ideals,

when h

K

= jF=P j = 1, K

�

=O

�

is the free Abelian group generated by the prime

ideals. It is possible in this case to choose a multiplicative section S in O

�

consisting

of one associate for each class in O

�

: select an arbitrary prime generator from each

prime ideal, and take S to consist of 1 and the products of the selected generators.

Throughout this section, K will be a number �eld with h

K

= 1, and S will

be such a subsemigroup of O

�

. The semigroup S is lattice ordered in the sense of

[10, 7], with a _ b de�ned to be the unique representative in S of the ideal generated

generated by a and b. Restricting � to S gives another semigroup dynamical system

(C

�

(K=O); S; �) associated to a number �eld of class number 1.

In the case of K = Q, selecting the positive primes gives the section N

�

, and

the dynamical system (C

�

(Q=Z);N

�

; �) is the one studied in [8]. In fact S is always

non-canonically isomorphic to N

�

�

=

�

p2P

N, so in some sense the dynamical systems
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(C

�

(K=O); S; �) involve di�erent actions of the same lattice-ordered semigroup. How-

ever, the inclusion of Zin O induces a canonical inclusion of N

�

in S, which takes

each prime generator of N

�

to the unique product in S of (the representatives in S

of) its prime factors, and this is not an isomorphism unless K = Q.

The pairs (�; L) and (�

�

; T ) restrict to covariant representations of

(C

�

(K=O); S; �) which are faithful on C

�

(K=O), so it follows from [7, Proposi-

tion 2.1] that the system has a unique crossed product C

�

(K=O)o

�

S. The following

version of our main theorem is a direct generalization of [8, Theorem 3.7].

Theorem 5.1. Suppose K is a number �eld with h

K

= 1, and (C

�

(K=O); S; �) is

the dynamical system constructed above. Then a representation � � V is faithful on

C

�

(K=O)o

�

S if and only if � is faithful.

This theorem can be proved by modifying the proof of Theorem 4.1. The crossed

product C

�

(K=O)o

�

S carries a dual action of (K

�

)b, and averaging over this dual

action gives a faithful expectation of C

�

(K=O)o

�

S onto C

�

(K=O) (as in Proposition

1.10 and Corollary 1.11). The analogue of Lemma 4.3 is easier: if

P

a;b2F

f

a;b

v

�

a

v

b

is a

�nite sum in C

�

(K=O)o

�

S, then no two di�erent elements of F are associates, and

we can take for q the projection q

1

constructed in the �rst paragraph of the proof of

Lemma 4.3. Now the proofs of Proposition 4.4 and Theorem 4.1 carry over verbatim,

giving Theorem 5.1.

It is interesting to note that Theorem 5.1 is substantially deeper than in the

special case K = Q [8, Theorem 3.7]; it depends crucially on the existence of characters

� such that f�

b

: b 2 Og is dense in (K=O)b , which was much easier in the case of Q

(compare Corollary 3.5 and Lemma 3.6(3) with [8, Lemma 2.5]).

Remark 5.2. The crossed product C

�

(K=O)o

�

S is the Hecke C

�

-algebraC

�

(�

S

;�

O

)

of the almost normal inclusion

�

O

=

�

1 O

0 1

�

� �

S

=

�

1 K

0 SS

�1

�

:

To see this, note that �

O

n�

S

=�

O

is a subset of �

O

n�

K

=�

O

, so H(�

S

;�

O

) naturally

embeds in H(�

K

;�

O

). As in the proof of Theorem 2.3, the characteristic function of

every double coset is �

�

a

e(x)�

b

for some a; b 2 S and x 2 K=O, so H(�

S

;�

O

) is gener-

ated by f�

a

: a 2 Sg and fe(x) : x 2 K=Og; they still satisfy the relations (H1){(H4)

for a; b 2 S, and are linearly independent because they have disjoint support. Hence

H(�

S

;�

O

) is the universal

�

-algebra with such generators and relations. Theorem 5.1

therefore implies that the completion C

�

(�

S

;�

O

) is isomorphic to C

�

(K=O)o

�

S.

Remark 5.3. Because the semigroup S is lattice-ordered, we can write down an alter-

native spanning set for the crossed product C

�

(K=O)o

�

S:

C

�

(K=O)o

�

S = spanfi(x)v

a

v

�

b

: x 2 K=O; a; b 2 S with (a; b) = 1g:

To see this, �rst note that because ideals are principal, Proposition 3.4 yields

�

a

(1)�

b

(1) = �

a_b

(1);

which is equivalent to v

a

v

�

a

v

b

v

�

b

= v

a_b

v

�

a_b

. Multiplying on the left by v

�

a

, right by

v

b

gives

v

�

a

v

b

= v

�

a

v

a_b

v

�

a_b

v

b

= v

a

�1

(a_b)

v

�

b

�1

(a_b)

;

this su�ces to prove the claim because (a

�1

(a _ b); b

�1

(a _ b)) = 1.
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Remark 5.4. It follows from Theorem 5.1 that C

�

(K=O)o

�

S embeds as a subalgebra

of C

�

(K=O)o

�

O

�

. In fact we can recover C

�

(K=O)o

�

O

�

from this subalgebra by

taking the crossed product by the action 
 of O

�

satisfying




u

(i(f)v

�

a

v

b

) = i(�

u

(f))v

�

a

v

b

:

To see this, �rst observe that the unitary elements v

u

implement the automorphisms




u

, so there is a homomorphism � of (C

�

(K=O)o

�

S)oO

�

into C

�

(K=O)o

�

O

�

.

On the other hand, because O

�

is the direct product of O

�

and S, we can combine the

embeddings of O

�

and S in (C

�

(K=O)o

�

S)oO

�

into one homomorphism of O

�

,

which is covariant with the embedding of C

�

(K=O), and hence gives a homomorphism

� of C

�

(K=O)o

�

O

�

into the iterated crossed product. It is easy to check that � and

� are inverses of each other.
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Abstract. We present a new construction of a bivariant K-functor. The

functor can be de�ned on various categories of topological algebras. The cor-

responding bivariant theory has a Kasparov product and the other standard

properties of KK-theory. We study such a theory in detail on a natural cate-

gory of locally convex algebras and de�ne a bivariant multiplicative character

to bivariant periodic cyclic cohomology.

1991 Mathematics Subject Classi�cation: 18G60, 19K35, 19L10, 46H20,

46L87

Keywords and phrases: bivariant, bivariant K-theory, bivariant Chern cha-

racter, Chern-Connes-character, locally convex algebra, Frechet algebra, ex-

tension, K-theory for topological algebras, cyclic homology for topological

algebras

Das Fundament der Nichtkommutativen Geometrie wird gebildet einerseits von Kas-

parovs KK-Theorie und andererseits von der zyklischen Homologie/Kohomologie von

Connes und Tsygan. Diese Theorien verallgemeinern und erweitern zwei wichtige klas-

sische Homologie/Kohomologie-Theorien - n

�

amlich die Atiyah-Hirzebruch-K-Theorie

und die de Rham Theorie - von R

�

aumen oder Mannigfaltigkeiten (kommutative Al-

gebren) auf geeignete Kategorien von nichtkommutativen Algebren. Das Wort \ver-

allgemeinern" ist hier nicht v

�

ollig angebracht, da diese neuen Theorien angewandt

auf den klassischen Fall eine ganz andere neuartige Beschreibung und eine erweiterte

Form f

�

ur die K-Theorie und die de Rham-Theorie geben.

Diese so erweiterten Homologie/Kohomologie-Theorien erlauben es im Prinzip, nicht-

kommutative Algebren (etwa Algebren von Pseudodi�erentialoperatoren) genauso zu

behandeln wie R

�

aume, bzw. Algebren von Funktionen. Beide Theorien sind dar

�

uber-

hinaus in nat

�

urlicher Weise direkt als bivariante Theorien de�niert. Dies stellt einen

wichtigen Vorteil dar und ist f

�

ur Berechnungen der Theorie sehr hilfreich.

Ein wunder Punkt der Theorie war allerdings die Tatsache, dass die K-Homologie

sowie die KK-Theorie auf der einen Seite, und die zyklische Theorie auf der anderen,

auf verschiedenen Kategorien von topologischen Algebren de�niert sind, bzw. sinnvolle
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Ergebnisse liefern. Der nat

�

urliche De�nitionsbereich von Kasparovs KK-Theorie be-

steht aus C*-Algebren, d.h. aus relativ gro�en Algebren vom Typ \alle stetigen Funk-

tionen auf einem kompakten Raum". Die zyklische Theorie dagegen liefert vern

�

unftige

Ergebnisse nur f

�

ur wesentlich kleinere Algebren, wie z.B. die Fr�echetalgebra aller un-

endlich oft di�erenzierbaren Funktionen auf einer Mannigfaltigkeit [Cu4]. Schon wegen

des verschiedenen De�nitionsbereichs konnten beide Theorien daher nur in speziellen

F

�

allen mit Hilfe etwas k

�

unstlicher Tricks miteinander verglichen werden und in die-

sen Situationen ein partieller bivarianter Chern-Connes-Charakter gefunden werden,

siehe z.B. [Co1], [Ks], [Wa], [Ni1].

Andererseits ist bekannt, dass beide Theorien auf ihren verschiedenen De�nitionsbe-

reichen ganz analoge Eigenschaften haben. Der letzte wesentliche Schritt hierzu wurde

durch den Beweis der Ausschneidungseigenschaft der periodischen zyklischen Theorie

in [CuQu2] erzielt. Damit war klar, dass im Prinzip eine allgemeine Transformation

von einer Version der KK-Theorie in die bivariante zyklische Theorie zu erwarten ist

(bivarianter Chern-Connes-Charakter). Rein algebraisch wurde die Konstruktion ei-

nes solchen Charakters schon in [CuQu2] auf Grundlage des Ausschneidungsresultats

erl

�

autert.

In der vorliegenden Arbeit f

�

uhren wir nun eine neue bivariante topologischeK-Theorie

ein, die auf derselben Kategorie von lokalkonvexen Algebren de�niert ist, auf der auch

die zyklische Homologie/Kohomologie Sinn macht. Wir bezeichnen diese Theorie mit

kk. Wir zeigen, dass kk im wesentlichen dieselben abstrakten Eigenschaften wie die

KK-Theorie hat und daher auch in derselben Weise zu berechnen ist. Die Eigenschaf-

ten sind Homotopieinvarianz, Stabilit

�

at und Ausschneidung, wobei allerdings in der

Kategorie der m-Algebren jede dieser Eigenschaften in etwas modi�zierter Form zu

verstehen ist. Ebenso wie KK kann kk als der universelle Funktor mit diesen drei

Eigenschaften charakterisiert werden. Angewendet auf die Algebra der unendlich oft

di�erenzierbaren Funktionen auf einer Mannigfaltigkeit gibt die Theorie nat

�

urlich die

klassische K-Homologie/K-Theorie. Au�erdem ergibt kk(C ;A) die

�

ubliche K-Theorie

von A, wenn A eine Banachalgebra ist (oder wenn A eine Fr�echetalgebra ist, unter

Verwendung der in [Ph] eingef

�

uhrten K-Theorie von Fr�echetalgebren).

Die Existenz und Multiplikativit

�

at des bivarianten Chern-Connes-Charakters folgt

im geraden Fall direkt aus der Charakterisierung von kk als universeller Funktor mit

gewissen Eigenschaften, da die periodische zyklische Theorie HP

�

dieselben Eigen-

schaften besitzt. Im ungeraden Fall ergibt sich die Existenz des Charakters aus der

Ausschneidung f

�

ur HP

�

, und die Multiplikativit

�

at aus der Vertr

�

aglichkeit der Ran-

dabbildungen in kk und in HP

�

. Diese Vertr

�

aglichkeit wird durch eine

�

ahnliche Rech-

nung wie in [Ni2] bewiesen. Im wesentlichen muss das Produkt der Randabbildungen

in der Toeplitzerweiterung und in der Einh

�

angungserweiterung bestimmt werden.

Wir beschreiben jetzt kurz den Inhalt der Arbeit. Die ersten beiden Abschnitte ent-

halten einige allgemeine Grundlagen

�

uber die Klasse von lokalkonvexen Algebren, mit

der wir arbeiten. Wir nennen diese Algebren m-Algebren. Weiter geben wir Beispiele

von m-Algebren und Erweiterungen von m-Algebren, die wir sp

�

ater benutzen. Wir

verweisen auf [Ph] f

�

ur eine ausgezeichnete Zusammenstellung weiterer Konstruktionen

in dieser Klasse von topologischen Algebren.

Der dritte Abschnitt enth

�

alt mit dem Hauptlemma 3.10 die wesentliche neue tech-

nische Idee, die zu einer einfachen und mehr (wenn auch nicht vollst

�

andig) algebrai-

schen Konstruktion des Kasparovprodukts f

�

uhrt. Sie erlaubt es, das Produkt ohne
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die

�

ublichen analytischen Hilfsmittel aus der Theorie der C*-Algebren zu de�nie-

ren.

�

Ubrigens kann die hier eingef

�

uhrte Strategie auch verwendet werden, um die

gew

�

ohnliche KK-Theorie f

�

ur C*-Algebren oder entsprechende bivariante Theorien

f

�

ur �-C*-Algebren (siehe [We]) oder Banachalgebren einzuf

�

uhren. In der Tat gibt un-

sere Methode ein allgemeines Rezept, um die bivariante K-Theorie mit verschiedenen

Homotopieinvarianz- und Stabilit

�

atseigenschaften f

�

ur verschiedene Kategorien von to-

pologischen Algebren zu konstruieren, siehe Bemerkung 4.6. Sie basiert,

�

ahnlich wie in

[Ze] auf Erweiterungen von topologischen Algebren beliebiger L

�

ange und ihren klas-

si�zierenden Abbildungen. Dadurch, dass wir Erweiterungen h

�

oherer L

�

ange zulassen,

bekommen wir eine einfache Beschreibung des Produkts und vermeiden gleichzeitig

eine bekannte Summierbarkeitsobstruktion f

�

ur \glatte" Erweiterungen der L

�

ange 1,

[DoVo].

Abschnitt 4 enth

�

alt die De�nition und eine Aufstellung der einfachsten Eigenschaften

der bivarianten kk-Theorie. Wie in Abschnitt 8 bemerkt wird, ist diese De�nition

formal verbl

�

u�end analog zur Beschreibung der periodischen bivarianten zyklischen

Kohomologie, die in [CuQu2, 3.2] enthalten ist. Ein Unterschied zu den

�

ublichen

De�nitionen der K-Theorie ist, dass wir mit di�erenzierbaren statt mit stetigen Ho-

motopien arbeiten. Dies ist f

�

ur die Existenz des Chern-Connes-Chrakters und f

�

ur die

Ausschneidung in kk wichtig. In Abschnitt 5 wird gezeigt, dass jede Erweiterung von

m-Algebren, die einen stetigen linearen Schnitt besitzt, lange exakte Folgen in beiden

Variablen von kk induziert. Der Beweis benutzt die Methode von [CuSk].

In Abschnitt 6 beweisen wir die Charakterisierung von kk als universeller Funktor,

konstruieren den Chern-Connes-Charakter und untersuchen seine Eigenschaften. Ins-

besondere wird eine Fortsetzung des Charakters auf \p-summierbare" Moduln ange-

geben, die f

�

ur Anwendungen und zum Vergleich mit den von Connes und Nistor gege-

benen Formeln wichtig ist. Als Nebenprodukt ergibt sich

�

ubrigens eine Bestimmung

der (stetigen) periodischen zyklischen Homologie/Kohomologie der Schattenideale `

p

.

In Abschnitt 7 wird gezeigt, dass kk

�

(C ;A) f

�

ur eine Fr�echetalgebra A mit der von

Phillips de�nierten K-Theorie K

�

(A)

�

ubereinstimmt. Dies ist selbst f

�

ur A = C a

priori

�

uberhaupt nicht klar (die kk-Gruppen k

�

onnten trivial oder riesengro� sein).

Der Beweis benutzt wieder das Hauptlemma 3.10. Wir zeigen auch unabh

�

angig von

Phillips' Methoden, dass f

�

ur Banachalgebren und f

�

ur gewisse dichte Unteralgebren von

Banachalgebren ebenfalls kk

�

(C ;A) = K

�

(A) gilt. Man erh

�

alt daher insbesondere eine

neue De�nition der K-Theorie f

�

ur die sehr gro�e Klasse der m-Algebren durch

K

�

(A) =

def

kk

�

(C ;A)

Abschnitt 8 enth

�

alt einige abschlie�ende Bemerkungen zu der nat

�

urlichen Filtrierung

auf kk.

Wir erw

�

ahnen schlie�lich, dass das oben beschriebene Dilemma der verschiedenen De-

�nitionsbereiche der KK-Theorie und der zyklischen Theorie prinzipiell auch auf an-

dere Weise gel

�

ost werden kann. Es l

�

asst sich n

�

amlich eine zyklische Theorie entwickeln,

die auch f

�

ur C*-Algebren Sinn macht. Dies wurde im wesentlichen von Puschnigg in

[Pu] mit der \asymptotische" zyklischen Theorie auf der Basis eines Vorschlags von

Connes-Moscivici [CoMo] erreicht. Die asymptotische Theorie ist aber ihrer Natur

nach weniger algebraisch.

Anwendungen der im vorliegenden Artikel dargestellten Theorie bleiben weiteren Ar-

beiten vorbehalten.
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1 m-Algebren und differenzierbare Homotopien

Eine m�Algebra ist eine Algebra A

�

uber C mit einer vollst

�

andigen lokalkonvexen To-

pologie, die durch eine Familie fp

�

g von submultiplikativen Halbnormen bestimmt ist.

F

�

ur jedes � gilt also p

�

(xy) � p

�

(x)p

�

(y). Die Algebra A ist dann eine topologische

Algebra, d.h. die Multiplikation ist stetig. Es ist leicht zu sehen, dass m-Algebren ge-

rade die lokalkonvexen Algebren sind, die als projektive Limiten von Banachalgebren

darstellbar sind, vgl. [Mi, 5.1]. In [Cu4] wurde gezeigt, dass sich das Argument f

�

ur die

Ausschneidung aus [CuQu2] auf die topologische zyklische Theorie f

�

ur m-Algebren

�

ubertr

�

agt.

Die direkte Summe A�B von zwei m�Algebren ist wieder eine m�Algebra mit der

Topologie, die durch die Halbnormen der Form p � q mit (p � q)(x; y) = p(x) + q(y)

de�niert ist, wobei p eine stetige Halbnorm auf A und q eine stetige Halbnorm auf B

ist.

Wir erinnern an die De�nition des projektiven Tensorprodukts im Sinn von Gro-

thendieck, [Gr], [T]. F

�

ur zwei lokalkonvexe Vektorr

�

aume V and W ist die projektive

Topologie auf dem Tensorprodukt V
W bestimmt durch die Familie der Halbnormen

der Form p 
 q, wo p eine stetige Halbnorm auf V und q eine stetige Halbnorm auf

W ist. Hierbei ist p
 q de�niert durch

p
q (z) = inf

n

n

X

i=1

p(a

i

)q(b

i

)j z =

n

X

i=1

a

i


 b

i

; a

i

2 V; b

i

2W

o

f

�

ur z 2 V 
W . Wir bezeichnen mit V

^


W die Vervollst

�

andigung von V
W bez

�

uglich

dieser Familie von Halbnormen. Wenn A und B m-Algebren sind, so ist auch das pro-

jektive Tensorprodukt A

^


B wieder eine m-Algebra (wenn p und q submultiplikativ

sind, so auch p
 q).

Wir geben jetzt einige Beispiele von m-Algebren, die wir sp

�

ater benutzen werden.

1.1 Algebren von differenzierbaren Funktionen

Sei [a; b] ein Intervall in R. Wir bezeichnen mit C [a; b] die Algebra der komplexwer-

tigen C

1

-Funktionen f auf [a; b], deren Ableitungen in den Endpunkten a und b alle

verschwinden (w

�

ahrend die 0-te Ableitung, d.h. f selbst, in a und b beliebige Werte

annehmen kann).

Eine wichtige Rolle werden auch die Unteralgebren C (a; b]; C [a; b) and C (a; b) von

C [a; b] spielen, die nach De�nition aus den Funktionen f bestehen, die au�erdem

noch in a, bzw. in b, bzw. in a und b verschwinden.

Die Topologie auf diesen Algebren ist die

�

ubliche Fr�echettopologie, die durch die

folgende Familie von submultiplikativen Normen p

n

de�niert ist:

p

n

(f) = kfk+ kf

0

k+

1

2

kf

00

k+ : : :+

1

n!

kf

(n)

k

Hierbei ist nat

�

urlich kgk = supfjg(t)j

�

�

t 2 [a; b]g.

Wir bemerken, dass C [a; b] nuklear im Sinn von Grothendieck [Gr] ist und dass f

�

ur

jeden vollst

�

andigen lokalkonvexen Raum V der Raum C [a; b]

^


V isomorph zu dem
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Raum der C

1

-Funktionen auf [a; b] mit Werten in V ist, deren Ableitungen in beiden

Endpunkten verschwinden, [T,x 51].

Wenn A eine m-Algebra ist, schreiben wir A[a; b];A[a; b) und A(a; b) f

�

ur die m-

Algebren A

^


C [a; b];A

^


C [a; b) und A

^


C (a; b).

Zwei stetige lineare Abbildungen �; � : V ! W zwischen zwei vollst

�

andigen lo-

kalkonvexen R

�

aumen hei�en di�erenzierbar homotop, oder di�eotop, falls eine Fa-

milie '

t

: V ! W; t 2 [0; 1] von stetigen linearen Abbildungen existiert, so dass

'

0

= �; '

1

= � und so dass die Abbildung t 7! '

t

(x) unendlich oft di�erenzierbar

ist f

�

ur jedes x 2 V . Eine andere Formulierung dieser Bedingung ist, dass eine ste-

tige lineare Abbildung ' : V ! C

1

([0; 1])

^


W existiert mit der Eigenschaft, dass

'(x)(0) = �(x); '(x)(1) = �(x) f

�

ur jedes x 2 V .

Sei h : [0; 1]! [0; 1] eine monotone und bijektive C

1

-Abbildung, deren Einschr

�

ankung

auf (0; 1) ein Di�eomorphismus (0; 1)! (0; 1) ist und deren Ableitungen in 0 und 1

alle verschwinden. Durch Ersetzung von '

t

durch  

t

= '

h(t)

sieht man, dass � and �

di�eotop sind genau dann, wenn eine stetige lineare Abbildung  : V ! C [0; 1]

^


W

existiert, f

�

ur die gilt  (x)(0) = �(x);  (x)(1) = �(x), x 2 V . Dies zeigt insbesondere,

dass Di�eotopie eine

�

Aquivalenzrelation ist.

1.2 Die Tensoralgebra

Es sei V ein vollst

�

andiger lokalkonvexer Raum. Wir de�nieren die Tensoralgebra TV

als die Vervollst

�

andigung der algebraischen direkten Summe

T

alg

V = V � V
V � V




3

� : : :

im Bezug auf die Familie fp̂g von Halbnormen, die auf dieser direkten Summe durch

p̂ = p � p
p � p




3

� : : :

gegeben sind , wo p alle stetigen Halbnormen auf V durchl

�

auft. Die Zusammensetzung

von Tensoren de�niert in der

�

ublichen Weise eine Multiplikation auf T

alg

V , f

�

ur die

die Halbnormen p̂ submultiplikativ sind. Die Vervollst

�

andigung TV ist daher eine

m-Algebra.

Im einfachsten Fall, wo V = C , ist TC in nat

�

urlicher Weise isomorph zu der Algebra

der holomorphen Funktionen auf der komplexen Ebene, die im Punkt 0 verschwinden

(unter dem Isomorphismus, der eine Folge (�

n

) in T

alg

C auf die Funktion f mit f(z) =

1

P

n=1

�

n

z

n

abbildet). Die Topologie ist gegeben durch die Topologie der uniformen

Konvergenz auf kompakten Teilmengen

Wir bezeichnen mit � : V ! TV die Abbildung, die V auf den ersten Summanden

in T

alg

V abbildet. Diese Abbildung � hat die folgende universelle Eigenschaft: Es sei

s : V ! A eine beliebige stetige lineare Abbildung von V in eine m-Algebra A. Dann

existiert ein eindeutig bestimmter Homomorphismus �

s

: TV ! A von m-Algebren

mit der Eigenschaft, dass �

s

� � = s.

Die Tensoralgebra ist di�erenzierbar kontrahierbar, d.h. die identische Abbildung von

TV ist di�eotop zu 0. Eine di�erenzierbare Familie '

t

: TV ! TV , f

�

ur die '

0

=

0; '

1

= id gilt, ist gegeben durch '

t

= �

t�

; t 2 [0; 1].
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1.3 Das freie Produkt von zwei m-Algebren

Zwei m-Algebren A und B seien gegeben. Das algebraische freie Produkt (in der

nichtunitalen Kategorie) von A und B ist dann die folgende Algebra

A �

alg

B = A � B � (A
B) � (B
A) � (A
B
A) � : : :

Die direkte Summe erstreckt sich

�

uber alle Tensorprodukte, wo die Faktoren A und B

jeweils abwechselnd auftreten. Die Multiplikation ist, wie bei der Tensoralgebra, die

Zusammensetzung von Tensoren, wobei aber anschlie�end die Multiplikation A

^


A!

A und B

^


B ! B benutzt wird, um alle Terme zu vereinfachen, in denen zwei

Elemente in A oder zwei Elemente in B zusammentre�en.

Wir bezeichnen mit A �B die Vervollst

�

andigung von A �

alg

B bez

�

uglich aller Halb-

normen der Form p � q die in der folgenden Weise de�niert sind:

p � q = p � q � (p
 q) � (q 
 p) � (p
 q 
 p) � : : :

Wir setzen hier alle stetigen Halbnormen p und q auf A und B ein. Wenn p und q

submultiplikativ sind, so ist auch die Halbnorm p � q submultiplikativ und A �B ist

daher eine m-Algebra.

Die Algebra A � B ist das freie Produkt von A und B in der Kategorie der m-

Algebren. Die kanonischen Inklusionen �

1

: A ! A �B und �

2

: B ! A �B haben

die folgende universelle Eigenschaft: Seien � : A! E und � : B ! E zwei stetige Ho-

momorphismen in eine m-Algebra E. Dann existiert ein eindeutig bestimmter stetiger

Homomorphismus � � � : A �B ! E, so dass (� � �)��

1

= � und (� � �)��

2

= �.

1.4 Die Algebra der glatten kompakten Operatoren

Die Algebra K der glatten kompakten Operatoren besteht aus allen Matrizen (a

ij

)

mit schnell abfallenden Matrixelementen a

ij

2 C ; i; j = 0; 1; 2 : : : (f

�

ur eine andere

Beschreibung dieser Algebra siehe [ENN]). Die Topologie auf K ist gegeben durch die

Familie von Normen p

n

; n = 0; 1; 2 : : :, die durch

p

n

�

(a

ij

)

�

=

X

i;j

j1 + i + jj

n

ja

ij

j

de�niert sind. Man pr

�

uft leicht nach, dass die p

n

submultiplikativ sind und dass K

vollst

�

andig ist. Damit ist K eine m-Algebra. Als linearer lokalkonvexer Raum ist K

nat

�

urlich isomorph zum Folgenraum s und daher nuklear.

Die Abbildung, die (a

ij

)
(b

kl

) auf die N

2

�N

2

-Matrix (a

ij

b

kl

)

(i;k)(j;l)2N

2

�N

2

abbildet,

gibt o�ensichtlich einen Isomorphismus � zwischen K

^


K und K (vgl. auch [Ph,2.7])

Lemma 1.4.1 Sei � : K ! K

^


K die oben angegebene Abbildung und � : K ! K

^


K

die Inklusionsabbildung, die x auf e

00


 x abbildet (wo e

00

die Matrix mit Elementen

a

ij

ist, f

�

ur die a

ij

= 1, falls i = j = 0, und a

ij

= 0 sonst). Dann ist � di�eotop zu �.

Dasselbe gilt f

�

ur die entsprechenden Abbildungen �

0

: K!M

2

(K) und �

0

: K!M

2

(K).
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Beweis: Wir k

�

onnen K darstellen als eine Algebra von Operatoren auf dem Raum s

der schnell fallenden Folgen. Die gesuchte Homotopie kann durch direkte Summen von

Rotationen in jeweils zweidimensionalen Teilr

�

aumen, die Vektoren der Form �

i


 �

j

in der Standardbasis von s

^


s in Vektoren der Form �

0


 �

ij

�

uberf

�

uhren, realisiert

werden. Dabei bezeichnet �

ij

eine Umnumerierung der Basis von s mit Indexmenge

N�N; siehe auch [Ph,2.7]. q:e:d:

Bemerkung 1.4.2 Sei V ein Banachraum. Dann besteht K

^


V gerade aus den Ma-

trizen, oder den durch N�N indizierten Folgen (v

ij

)

i;j2N

, f

�

ur die der Ausdruck

�p

n

((v

ij

)) =

def

X

i;j

(1 + i+ j)

n

kv

ij

k

endlich ist f

�

ur jedes n. Die Topologie auf K

^


V ist nat

�

urlich gerade durch die Normen

�p

n

gegeben. Um dies zu sehen, betrachten wir das Tensorprodukt �

n

der Norm p

n

auf

K mit der auf V gegebenen Norm k � k. Wenn dann x

ij

die Matrix bezeichnet, die

x 2 V als i; j-tes Element hat und sonst 0 ist, so gilt

�

n

(x

ij

) = (1 + i+ j)kxk

nach [T, Prop. 43.1]. Dies zeigt sofort, dass

�

n

((v

ij

)) � �p

n

((v

ij

))

f

�

ur alle Matrizen (v

ij

) im algebraischen Tensorprodukt K
V . Die umgekehrte Unglei-

chung folgt aus der De�nition der projektiven Tensornorm. Daher ist f

�

ur jedes feste n

die Vervollst

�

andigung (K
V )

�p

n

isometrisch isomorph zu (K)

p

n

^


V und besteht gerade

aus den Matrizen (v

ij

), f

�

ur die �p

n

((v

ij

)) endlich ist.

1.5 Die glatte Toeplitzalgebra

Die Elemente der Algebra C

1

S

1

k

�

onnen als Potenzreihen in dem Erzeuger z (de�niert

durch z(t) = t, t 2 S

1

� C ) geschrieben werden. Die Koe�zienten sind schnell

abfallend, d.h. genauer gilt

C

1

(S

1

) =

n

X

k2Z

a

k

z

k

�

�

X

k2Z

ja

k

j jkj

n

<1 f

�

ur jedes feste n 2 N

o

Submultiplikative Normen, die die Topologie beschreiben, sind gegeben durch

q

n

�

X

a

k

z

k

�

=

X

j1 + kj

n

ja

k

j

Als topologischer Vektorraum ist die glatte Toeplitzalgebra T dann de�niert als die

direkte Summe T = K� C

1

(S

1

).

Um die Multiplikation in T zu de�nieren, schreiben wir v

k

f

�

ur das Element (0; z

k

)

von T und einfach x f

�

ur das Element (x; 0) mit x 2 K. Au�erdem bezeichnet e

ij

das

Element von T, das durch die Matrix (a

kl

) mit a

kl

= 1, falls k = i; l = j, und a

kl

= 0
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sonst, bestimmt ist (mit der Vereinbarung, dass e

ij

= 0, wenn i < 0 oder j < 0). Die

Multiplikation in T ist dann bestimmt durch die folgenden Regeln:

e

ij

e

kl

= �

jk

e

il

v

k

e

ij

= e

(i+k);j

e

ij

v

k

= e

i;(j�k)

(i; j; k 2Z); und

v

k

v

�l

=

8

<

:

v

k�l

(1�E

l�1

) l > 0

v

k�l

l � 0

wo E

l

= e

00

+ e

11

+ : : : + e

ll

. Wenn p

n

die in 1.4 de�nierten Normen auf K sind

und q

n

die oben de�nierten Normen auf C

1

(S

1

), so ist leicht zu sehen, dass jede

Norm der Form p

n

� q

m

submultiplikativ auf T = K� C

1

(S

1

) mit der so de�nierten

Multiplikation ist. Es ist o�ensichtlich, dass K ein abgeschlossenes Ideal in T ist, und

dass der Quotient T=K gerade C

1

(S

1

) ist.

1.6 Abgeleitete Unteralgebren von Banachalgebren

Viele der wichtigsten m-Algebren sind von einem speziellen Typ - sie sind Algebren

von \nichtkommutativen C

1

-Funktionen". Um diese Klasse von Fr�echetalgebren zu

charakterisieren, verwenden wir die Ideen aus [BlCu], wo der Fall von abgeleiteten

Unteralgebren von C*-Algebren eingehend untersucht wurde.

Sei A eine Banachalgebra. Eine abgeleitete Unteralgebra von A ist eine Unteralgebra

A, f

�

ur die gilt

1) Auf A ist eine Familie p

0

; p

1

; : : : von Halbnormen gegeben, wo p

0

ein Vielfaches

der gegebenen Norm auf A ist. A ist vollst

�

andig im Bezug auf diese Familie.

2) F

�

ur jedes k gilt

p

k

(xy) �

X

i+j=k

p

i

(x)p

j

(y); x; y 2 A

Falls 1) und 2) erf

�

ullt sind, so ist f

�

ur jedes k die Summe p

0

+ p

1

+ : : : + p

k

eine

submultiplikative Norm. A ist daher gleichzeitig eine Fr�echetalgebra und eine m-

Algebra. Eines der wichtigsten Beispiele ist C

1

[0; 1] mit den Halbnormen p

n

(f) =

1

n!

kf

(n)

k oder allgemeiner C

1

M f

�

ur eine di�erenzierbare kompakte Mannigfaltigkeit

M .

Wir erinnern daran, dass eine Unteralgebra A einer Banachalgebra A abgeschlossen

unter holomorphem Funktionalkalk

�

ul ist, falls das Spektrum Sp(x) jedes Elements x

von A, in A und A dasselbe ist und falls au�erdem f

�

ur jede in einer Umgebung von

Sp(x) holomorphe Funktion f , auch f(x) wieder in A liegt.

Lemma 1.6.1 Wenn A � A die Bedingungen 1) und 2) erf

�

ullt, so ist A abgeschlossen

unter holomorphem Funktionalkalk

�

ul.

Beweis: vgl. [BlCu, 3.12 oder 6.4]. Sei A

k

die Vervollst

�

andigung von A bez

�

uglich der

Norm k � k

k

= p

0

+ p

1

+ : : : p

k

. F

�

ur alle x; y 2 A gilt

kxyk

k+1

� kxk

k

kyk

k+1

+ kxk

k+1

kyk

k
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Dies impliziert, dass

lim sup

n

p

kx

2n

k

k+1

� lim sup

n

p

kx

n

k

k

lim sup

n

p

kx

n

k

k+1

f

�

ur jedes x 2 A und damit f

�

ur die Spektralradien

r

A

k+1

(x)

2

= r

A

k+1

(x

2

) � r

A

k

(x)r

A

k+1

(x)

und somit, dass r

A

k+1

(x) = r

A

k

(x).

Dasselbe Argument gilt f

�

ur die Algebren

f

A

k

, wo noch eine Eins adjungiert wurde.

Falls nun x 2

e

A invertierbar in

e

A ist, so existiert " � 0, so dass f

�

ur jedes y 2 A mit

kx

�1

� yk � " gilt, dass r

A

(1 � xy) < 1. Daher ist r

A

k

(1 � xy) < 1 f

�

ur alle k und

somit xy und also auch x invertierbar in A

k

(nach einem Diagonalfolgenargument ist

A der Durchschnitt aller Bilder von A

k

in A).

Dies zeigt, dass Sp

A

x = Sp

A

x f

�

ur alle x 2 A. Wenn jetzt f eine Funktion ist, die

holomorph in einer Umgebung von Sp

A

x = Sp

A

x ist, so liegt f(x) in A

k

f

�

ur alle k

und damit auch in A. q:e:d:

Bemerkung 1.6.2 Falls A eine abgeleitete Unteralgebra einer C*-Algebra ist, so ist

A sogar invariant unter Funktionalkalk

�

ul mit C

1

-Funktionen, siehe [BlCu, 6.4].

Lemma 1.6.3 Seien A und B abgeleitete Unteralgebren von A bzw. B. Dann ist A

^


B

eine abgeleitete Unteralgebra von A

^


B.

Beweis: Falls p

0

; p

1

; : : : und q

0

; q

1

; : : : die Familien von Halbnormen mit der Eigen-

schaft 2) sind, die die Topologien auf A und B bestimmen, so ist u

0

; u

1

; : : : mit

u

k

=

X

i+j=k

p

i


 q

j

eine Familie von Halbnormen auf A

^


B, f

�

ur die A

^


B vollst

�

andig ist und f

�

ur die 2)

gilt. q:e:d:

Wir bezeichnen mit K

1

die Banachalgebra der komplexen Matrizen (a

ij

)

i;j2N

mit

k(a

ij

)k

1

=

X

ja

ij

j <1

Lemma 1.6.4 K ist eine abgeleitete Unteralgebra von K

1

.

Beweis: Die Topologie von K ist bestimmt durch die Halbnormen �

0

; �

1

; �

2

: : : mit

�

n

((a

ij

)) =

1

n!

X

(i+ j)

n

ka

ij

k

Nach De�nition ist �

0

= k � k

1

. Die Gleichung

1

n!

(i+ j)

n

=

X

r+s=n

1

r!

i

r

1

s!

j

s

zeigt, dass �

n

(xy) �

P

r+s=n

�

r

(x)�

s

(y). q:e:d:

Documenta Mathematica 2 (1997) 139{182



148 Joachim Cuntz

Lemma 1.6.5 Sei � : A! B ein stetiger Homomorphismus zwischen Banachalgebren

und B � B eine abgeleitete Unteralgebra mit de�nierendem System von Halbnormen

q

0

; q

1

; : : :.

Dann ist A = �

�1

(B) mit dem System p

0

; p

1

; : : : von Halbnormen, wo

p

0

= Ck � k

A

C = max(1; k�k)

p

i

(x) = q

i

(�(x)); i = 1; 2; : : :

eine abgeleitete Unteralgebra von A.

Beweis: Klar. q:e:d:

2 Einige wichtige Erweiterungen von m-Algebren

In der bivarianten K-Theorie f

�

ur C*-Algebren spielen eine Reihe von Standarder-

weiterungen eine grundlegende Rolle. Wir beschreiben in diesem Abschnitt zun

�

achst

einmal die analogen Erweiterungen in der Kategorie der m-Algebren. Hierbei ist zu

beachten, dass au�erdem jeweils Algebren von stetigen Funktionen durch die entspre-

chenden Algebren von C

1

-Funktionen ersetzt werden, da wir statt mit stetigen Homo-

topien mit di�erenzierbaren Homotopien arbeiten werden. Dar

�

uberhinaus ben

�

otigen

wir aber auch noch weitere Erweiterungen, die bisher in der K-Theorie noch nicht

so stark in Erscheinung getreten sind. Insbesondere wird die universelle Erweiterung

durch die Tensoralgebra in unserer Theorie eine tragende Rolle spielen.

Wir betrachten in erster Linie Erweiterungen, die stetige lineare Schnitte besitzen,

d.h. als exakte Folgen von lokalkonvexen Vektorr

�

aumen einfach direkte Summen dar-

stellen. Wir nennen solche Erweiterungen linear zerfallend. Das Tensorprodukt einer

linear zerfallenden Erweiterung mit einer beliebigen lokalkonvexen Algebra ist wieder

linear zerfallend.

Die meisten Erweiterungen in diesem Abschnitt sind au�erdem von dem Typ, dass

die Algebra in der Mitte kontrahierbar ist, so dass die Ideale verschiedene Formen der

Einh

�

angung (des Quotienten) beschreiben.

2.1 Die Einh

�

angungserweiterung.

Dies ist das Analogon zu der fundamentalen Erweiterung der algebraischen Topologie.

Sie hat die folgende Form

0! C (0; 1) ! C [0; 1) ! C ! 0

oder allgemeiner

0! A(0; 1)! A[0; 1)! A! 0

mit einer beliebigen m-Algebra A.

Wir erinnern daran, dass C (0; 1) und C [0; 1) Algebren von C

1

- Funktionen auf dem

Intervall [0; 1], deren Ableitungen alle in 0 und 1 verschwinden, bezeichnen, und dass

die Algebra C [0; 1) di�erenzierbar kontrahierbar ist, vgl. 1.1.
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2.2 Die universelle Erweiterung.

Auf dieser Erweiterung beruht unsere De�nition der bivarianten K-Theorie f

�

ur m-

Algebren. F

�

ur eine m-Algebra A ist die Tensoralgebra TA

�

uber dem lokalkonvexen

Raum A wie in Abschnitt 1 de�niert. Wenn wir die Tatsache verwenden, dass A auch

eine Algebra ist und die universelle Eigenschaft von TA auf die Abbildung id:A! A

anwenden, so erhalten wir einen Homomorphismus � = �

id

: TA ! A (ein Element

x

1


x

2


 : : :
x

n

von TA wird dabei auf x

1

x

2

: : :x

n

in A) abgebildet. Wir de�nieren

jetzt JA als den Kern von �. Die Erweiterung

0! JA! TA

�

! A! 0

besitzt dann einen stetigen linearen Schnitt. Diem-Algebra TA ist glatt kontrahierbar.

Die universelle Eigenschaft dieser Erweiterung wird im n

�

achsten Abschnitt erl

�

autert

und benutzt werden.

2.3 Die glatte Toeplitzerweiterung.

Die glatte Toeplitzalgebra T wurde in 1.5 eingef

�

uhrt. Nach Konstruktion enth

�

alt T

die Algebra K als Ideal und wir erhalten die folgende Erweiterung

0! K! T

�

! C

1

(S

1

)! 0

die nat

�

urlich nach Konstruktion auch einen stetigen linearen Schnitt erlaubt.

Sei nun � : T ! C der kanonische Homomorphismus, der v

1

und v

�1

auf 1 abbildet

und T

0

= Ker �. Durch Restriktion der Toeplitzerweiterung erhalten wir die folgende

Erweiterung

0! K! T

0

! C

1

0

(S

1

n1)! 0

Wir werden sp

�

ater sehen, dass T

0

\kk-kontrahierbar" ist.

2.4 Die universelle zweifach triviale Erweiterung.

Mit einer m-Algebra A assoziieren wir wie in [Cu2] die Algebra QA = A � A. Wir

bezeichnen mit � und �� die beiden kanonischen Inklusionen von A in QA. Die Algebra

QA ist in nat

�

urlicher Weise Z=2-graduiert durch den involutiven Automorphismus � ,

der �(A) und ��(A) vertauscht.

Das Ideal qA in QA ist de�niert als der Kern des kanonischen Homomorphismus

� = id � id : A �A! A. Die Erweiterung

0! qA! QA

�

�! A! 0 (1)

besitzt dann zwei verschiedene Schnitte, die Algebrenhomomorphismen sind; n

�

amlich

� und ��. Sie hat die folgende universelle Eigenschaft: Sei

0! E

0

! E

1

! A! 0 (2)

eine Erweiterung mit zwei verschiedenen Schnitten �; �� : A ! E

1

, die stetige Al-

gebrahomomorphismen sind. Dann existiert ein Morphismus (d.h. ein kommutatives
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Diagramm von Abbildungen) von der Erweiterung (1) in die Erweiterung (2) wie

folgt:

0! qA ! QA ! A ! 0

# ���� # ���� # id

0! E

0

! E

1

! A ! 0

Dieser Morphismus f

�

uhrt nach Konstruktion die Schnitte � und �� in � und ��

�

uber.

2.5 Die Erweiterung, die die gerade und die ungerade K-Theorie ver-

bindet.

Wir konstruieren in diesem Artikel die bivariante K-Theorie aus Erweiterungen, d.h.

wir benutzen das \ungerade" oder Ext-Bild. Die folgende Erweiterung erlaubt es,

diesen Zugang mit dem \gerade" Bild von [Cu2] zu vergleichen. Sie wird in Abschnitt 7

eine wichtige Rolle spielen. Wie oben seien �;�� : A! QA die kanonischen Inklusionen.

Wir setzen

E := ff 2 QA[0; 1] j 9x2 A; f(0) = �(x); f(1) = ��(x); f(t) � f(0) 2 qA; t 2 [0; 1]g

Die Erweiterung

0! qA(0; 1)! E! A! 0

besitzt dann einen stetigen linearen Schnitt, der x 2 A auf f 2 E mit f(t) = (1 �

t)�(x) + t��(x) abbildet.

3 Morphismen von der universellen Erweiterung.

Als erstes analysieren wir die universelle Eigenschaft der Erweiterung 0 ! JA !

TA! A! 0 aus 2.2.

Satz 3.1 Es sei

0! E

0

! E

1

s

x

�

�! A! 0

eine Erweiterung mit einem stetigen linearen Schnitt s (d.h. �s = id

A

). Weiter sei

' : A

0

! A ein Homomorphismus und �

s'

: TA

0

! E

1

der Homomorphismus, der

sich wie in 1.2 aus der universellen Eigenschaft der Tensoralgebra TA

0

ergibt. Dann

existiert ein eindeutig bestimmter Homomorphismus 


s'

: JA

0

! E

0

so dass das

folgende Diagramm kommutiert

0! E

0

! E

1

s

x

�

! A! 0

" 


s'

" �

s'

" '

0! JA

0

! TA

0

! A

0

! 0

Beweis: Das Bild von JA

0

unter �

s'

ist in E

0

enthalten, weil die Abbildung � � �

s'

das Ideal JA

0

annulliert und weil andererseits E

0

= Ker �. Wir setzen 


s'

= �

s'

j

JA

0

q:e:d:
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Die Anwendung dieses Prinzips auf die in Abschnitt 2 eingef

�

uhrten Erweiterungen

ergibt Homomorphismen JA ! A(0; 1); J(C

1

(S

1

)) ! K und JA ! qA(0; 1), die im

folgenden immer wieder benutzt werden.

Wenn man das Resultat auf die Erweiterung 0! JA! TA! A! 0 anwendet, sieht

man insbesondere, dass A 7! JA ein Funktor ist: Jeder Homomorphismus ' : A

0

! A

induziert einen Homomorphismus JA

0

! JA, den wir mit J(') bezeichnen.

Lemma 3.2 Sei 0 ! E

0

! E

1

s

x

�

�!A ! 0 eine Erweiterung mit stetigem linearen

Schnitt s und ' : A

0

! A ein Homomorphismus wie in 3.1.

(a) Sei s

0

ein weiterer stetiger linearer Schnitt. Dann ist 


s

0

'

: JA ! E

0

di�eotop

zu 


s'

.

(b) Wenn ein stetiger linearer Schnitt s

00

existiert, der ein Algebrenhomomorphis-

mus ist, so ist 


s'

di�eotop zu 0.

(c) Wenn ein Algebrenhomomorphismus '

0

: A

0

! E

1

existiert mit � � '

0

= ', so

ist 


s'

di�eotop zu 0.

Beweis: (a) Setze s

t

= ts

0

+ (1 � t)s. Dann ist 


s

t

; t 2 [0; 1] eine di�erenzierbare

Homotopie, die 


s

und 


s

0

verbindet. (b) und (c) folgen aus (a) und aus der Tatsache,

dass die Einschr

�

ankungen von �

s

00

'

und �

'

0

auf JA

0

verschwinden. q:e:d:

F

�

ur ' = id nennen wir 


s

die klassi�zierende Abbildung zu der linear zerfallenden

Erweiterung

0! E

0

! E

1

s

x

�

�! A! 0

Das n

�

achste einfache Lemma beschreibt das Verhalten der klassi�zierenden Abbildung

unter Morphismen (d.h. kommutativen Diagrammen) von Erweiterungen. Es wird in

den folgenden Abschnitten implizit immer wieder benutzt.

Lemma 3.3 Betrachte das folgende kommutative Diagramm von Erweiterungen

0! E

0

! E

1

! A! 0

" 

0

"  

1

" '

0! E

0

0

! E

0

1

! A

0

! 0

mit stetigen linearen Schnitten s : A! E

1

und s

0

: A

0

! E

0

1

.

Es gilt 


s'

= 


s

� J(') und diese Abbildung ist di�eotop zu  

0

� 


s

0

(falls s' =  

1

s

0

,

so gilt sogar 


s

� J(') =  

0

� 


s

0

).

Definition-Satz 3.4 Gegeben seien zwei Erweiterungen von A

0! E

0

! E

1

s

x

�

�!A! 0

0! E

0

! E

0

1

s

0

x

�

0

�!A! 0
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mit stetigen linearen Schnitten. Die Summe dieser beiden Erweiterungen ist nach

De�nition die Erweiterung

0!M

2

(E

0

)!D ! A! 0

wo D =

n

�

x a

b x

0

�

jx 2 E

1

; x

0

2 E

0

1

; �(x) = �

0

(x

0

); a; b 2 E

0

o

.

Sie erlaubt s � s

0

=

�

s 0

0 s

0

�

als stetigen linearen Schnitt. Der assoziierte Homo-

morphismus 


s�s

0

: JA!M

2

(E

0

) ist gegeben durch




s�s

0

= 


s

� 


s

0

=

�




s

0

0 


s

0

�

Beweis: Klar. q:e:d:

Als Beispiel betrachten wir die glatte Toeplitzerweiterung

0! K! T

�

�!C

1

(S

1

)! 0 (3)

aus 2.3. Es sei u der Automorphismus von C

1

(S

1

), der die Orientierung von S

1

umkehrt. Dann ist die Summe von (3) mit der Erweiterung

0! K! T

u�

�!C

1

(S

1

)! 0 (4)

trivial (d.h. sie erlaubt einen stetigen linearen Schnitt, der ein Algebrenhomomorphis-

mus ist). In der Tat ist die Abbildung, die die k-te Potenz z

k

des Erzeugers z von

C

1

(S

1

); k 2Zauf die k-te Potenz der Matrix

�

v

1

e

00

0 v

�1

�

(mit den Bezeichnungen

von 1.5) abbildet, ein stetiger Homomorphismus. Wenn daher s der stetige lineare

Schnitt C

1

(S

1

)! T ist, der z

k

auf v

k

abbildet und s

0

der Schnitt f

�

ur (4) der z

k

auf

v

�k

abbildet, so ist 


s

� 


s

0

di�eotop zu 0.

Definition-Satz 3.5 Gegeben seien m-Algebren A und B. Wenn ' : A ! B ein

Homomorphismus zwischen m-Algebren ist, so bezeichnen wir mit h'i die

�

Aquiva-

lenzklasse von ' im Bezug auf die Relation der Di�eotopie und wir setzen

hA;Bi = fh'ij' ist ein stetiger Homomorphismus A!B g

F

�

ur Homomorphismen �; � : A! K

^


B de�nieren wir wie in 3.4 die direkte Summe

�� � als

�� � =

�

� 0

0 �

�

: A �!M

2

(K

^


B)

�

=

K

^


B

Mit der durch h�i+ h�i = h� � �i de�nierten Addition ist die Menge hA;K

^


Bi der

Di�eotopieklassen von Homomorphismen von A nach K

^


B eine abelsche Halbgruppe

mit Nullelement h0i.

Beweis: Dies folgt aus Lemma 1.4.1. q:e:d:
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F

�

ur jede m-Algebra A ist JA wieder eine m-Algebra. Wir k

�

onnen daher durch

Iteration J

2

A = J(JA); : : : ; J

n

A = J(J

n�1

A) bilden. Abbildungen von J

n

A in eine

m-Algebra B geh

�

oren dann zu Erweiterungen der L

�

ange n.

Definition-Satz 3.6 Eine exakte Folge

0 �! E

0

'

0

�!E

1

'

1

�! : : : �! E

n

'

n

�!A �! 0

wo E

0

; : : : ;E

n

;Am-Algebren und die '

i

stetige Homomorphismen sind, hei�e linear

zerfallende n-Schritt-Erweiterung, falls sie als exakte Folge von lokalkonvexen Vek-

torr

�

aumen zerf

�

allt (d.h. falls E

i

�

=

Ker'

i

� Im'

i�1

). Jede Wahl s

1

; : : : ; s

n

von ste-

tigen linearen Schnitten (d.h. '

i

s

i

ist f

�

ur alle i eine stetige Projektion auf Im'

i

)

bestimmt in eindeutiger Weise einen Homomorphismus 


(s

1

;:::;s

n

)

: J

n

A ! E

0

und

Homomorphismen 


(s

k+1

;:::;s

n

)

: J

n�k

A ! E

k

so dass das folgende Diagramm kom-

mutiert

0 �! E

0

'

0

�! E

1

'

1

�! : : : E

n�1

'

n�1

�! E

n

'

n

�! A �! 0

" 


(s

1

:::;s

n

)

" �

s

1




(s

2

:::;s

n

)

" �

s

n�1




s

n

" �

s

n

k

0 �! J

n

A �! TJ

n�1

A ! : : : TJA �! TA �! A �! 0

Wenn s

0

1

; : : : ; s

0

n

eine andere Familie von stetigen linearen Schnitten ist, so ist




(s

0

1

;:::;s

0

n

)

di�eotop zu 


(s

1

;:::;s

n

)

.

In dem vorhergehenden Diagramm interessieren wir uns in erster Linie f

�

ur die klas-

si�zierende Abbildung 
 = 


(s

1

;:::;s

n

)

. Diese h

�

angt bis auf Di�eotopie nicht von

(s

1

; : : : ; s

n

) sondern nur von der gegebenen n-Schritt-Erweiterung ab.

Betrachten wir zwei Erweiterungen der L

�

ange n und der L

�

ange m

0 �! E

0

'

0

�!E

1

'

1

�! : : : �! E

n

'

n

�!A �! 0 (5)

und

0 �! E

0

0

'

0

0

�!E

0

1

'

0

1

�! : : : �! E

0

m

'

0

m

�!A

0

�! 0 (6)

wo E

0

0

= A. Das wohlbekannte Yonedaprodukt besteht in der Zusammensetzung dieser

zwei Erweiterungen zu einer Erweiterung der L

�

ange n+ m von der Form

0 �! E

0

'

0

�!E

1

'

1

�! : : : �! E

n

'

0

0

'

n

�! E

0

1

'

0

1

�! : : : �! E

0

m

'

0

m

�!A

0

�! 0 (7)

Lemma 3.7 Es seien 
 : J

n

A �! E

0

und 


0

: J

m

A

0

�! E

0

0

= A die Abbildungen,

die mit (5) und (6) assoziiert sind. Die klassi�zierende Abbildung J

n+m

A

0

�! E

0

zu

der Erweiterung (7) ist gegeben durch 
 � J

n

(


0

).

Beweis: Dies folgt aus 3.3. q:e:d:

Definition 3.8 Es sei ' : JA ! C

1

(S

1

)

^


A die Komposition der klassi�zierenden

Abbildung JA! A(0; 1) zu der Erweiterung

0 �! A(0; 1) �! A[0; 1) �! A �! 0
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mit der Inklusionsabbildung A(0; 1) �! C

1

(S

1

)

^


A. Wir bezeichnen mit " die Abbil-

dung

" : J

2

A �! K

^


A

die unter Benutzung von ' zu der Erweiterung

0 �! K

^


A �! T

^


A

s

x

�! C

1

(S

1

)

^


A �! 0

geh

�

ort (d.h. " = 


s'

).

Man beachte, dass eine linear zerfallende Erweiterung in der Kategorie der lokalkon-

vexen Vektorr

�

aume einfach eine direkte Summe darstellt und daher nat

�

urlich auch

nach Tensorieren mit beliebigen lokalkonvexen R

�

aumen noch exakt bleibt.

Durch Hintereinanderschaltung der Abbildungen J

4

A

J

2

(")

�! J

2

(K

^


A), sowie

J

2

(K

^


A) ! K

^


J

2

(A) und K

^


J

2

A

id
"

�! K

^


K

^


A bekommmen wir, unter leichtem

Missbrauch der Bezeichnungen,

"

2

: J

4

A �! K

^


K

^


A

�

=

K

^


A

und, nach Induktion

"

n

: J

2n

A �! K

^


A

Wir k

�

onnen bei der Konstruktion von " statt der Toeplitzerweiterung auch die inverse

Toeplitzerweiterung verwenden und erhalten dann eine Abbildung "

�

: J

2

A �! K

^


A

, die nach 3.4 die Eigenschaft hat, dass " � "

�

di�eotop zu 0 ist.

Lemma 3.9 F

�

ur jedes Paar von m-Algebren A und B existieren kanonische Abbil-

dungen J(A

^


B ) ! JA

^


B und J(A

^


B ) ! A

^


JB , die mit den folgenden linear

zerfallenden Erweiterungen assoziiert sind

0 ! JA

^


B ! TA

^


B ! A

^


B ! 0

0 ! A

^


JB ! A

^


TB ! A

^


B ! 0 :

Wir bemerken, dass insbesondere f

�

ur jede m-Algebra A ein kanonischer Homomor-

phismus J(A) ! J(C )

^


A existiert. Es ist klar, dass die in 3.8 de�nierte Abbildung

" = "

A

: J

2

A ! K

^


A als Komposition der Abbildung J

2

A ! J

2

C

^


A mit der

Abbildung " 
 id

A

geschrieben werden kann.

Das folgende Lemma bildet den Kernpunkt f

�

ur unsere Konstruktion des Produkts der

in Abschnitt 4 de�nierten bivarianten K-Theorie.

Hauptlemma 3.10 A und B seien m-Algebren und 


+

; 


�

die zwei Abbildungen

von J

2

(A

^


B) nach JA

^


JB, die sich durch Anwendung von 3.9, wie folgt in den

zwei m

�

oglichen Weisen ergeben:

J(JA

^


B)

% &

J

2

(A

^


B)




+

�!

�!




�

JA

^


JB

& %

J(A

^


JB)
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Dann ist die Abbildung 


+

�


�

=

�




+

0

0 


�

�

: J

2

(A

^


B)!M

2

(JA

^


JB) di�eotop

zu 0.

Beweis: Betrachte die folgende Erweiterung

0 �! JA

^


JB �! TA

^


JB + JA

^


TB

s

x

�

�!A

^


JB � JA

^


B �! 0

Die Algebra in der Mitte wird hier als Unteralgebra von TA

^


TB angesehen.

Die Abbildung 


+

�


�

ist durch Rotationen in 2�2-Matrizen di�eotop zu 


s�

, wenn

� : J(A

^


B)! A

^


JB�JA

^


B die nat

�

urliche Abbildung bezeichnet. Zum Beweis der

Behauptung gen

�

ugt es daher nach Lemma 3.2 (c) zu zeigen, dass ein Homomorphismus

�

0

: J(A

^


B ) �! TA

^


JB + JA

^


TB existiert, f

�

ur den � � �

0

= � gilt.

Nun kann aber �

0

als klassi�zierende Abbildung 


s

0

in der linear zerfallenden Erwei-

terung

0 �! JA

^


TB + TA

^


JB �! TA

^


TB

s

0

x

�!A

^


B �! 0

gew

�

ahlt werden. Die Tatsache, dass � � 


s

0

= � folgt aus den zwei folgenden kommu-

tativen Diagrammen

0 �! JA

^


TB + TA

^


JB �! TA

^


TB �! A

^


B �! 0

# # k

0 �! A

^


JB �! A

^


TB �! A

^


B �! 0

und

0 �! JA

^


TB + TA

^


JB �! TA

^


TB �! A

^


B �! 0

# # k

0 �! JA

^


B �! TA

^


B �! A

^


B �! 0

sowie aus Lemma 3.3. q:e:d:

Als n

�

achstes soll die Abbildung " : J

k

A �! K

^


J

k�2

A, die in 3.8 eingef

�

uhrt wurde,

genauer untersucht werden. Zur besseren

�

Ubersichtlichkeit schreiben wir J

i

f

�

ur die

i-te Anwendung des J-Funktors. D.h. also J

k

A = J

k

J

k�1

: : :J

1

(A).

F

�

ur jede Wahl von i; j mit 1 � j < i � k, ergibt die Anwendung von 3.9 eine Abbil-

dung �

ij

: J

k

A �! J

2

C

^


J

k�2

A, indem wir das j-te und das i-te J im Tensorprodukt

C

^


A auf C und alle anderen J auf den zweiten Faktor A anwenden. Explizit sieht

also �

ij

folgenderma�en aus:

�

ij

: J

k

: : : J

1

(A) �! J

i

J

j

(C )

^


J

k

: : :

�

J

i

: : :

�

J

j

: : :J

1

(A)

wo _ Auslassung bedeutet.

Wenn wir dies mit der Abbildung " : J

2

C = J

i

J

j

(C ) �! K kombinieren, erhalten wir

eine Familie von Abbildungen "

ij

: J

k

A �! K

^


J

k�2

A; 1 � j < i � k. (Mit dieser

Bezeichnungsweise w

�

are die unter 3.8 betrachtete Abbildung "

21

).
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Korollar 3.11 Es gelten die folgenden di�erenzierbaren Homotopien

(a) "

i�1;j

� "

i;j

� 0; 1 < j < i � 1 � k � 1

"

i;j�1

� "

i;j

� 0; 2 � j < i � k

(b) F

�

ur alle i; j; 1 � i; j � k � 1; gilt "

i+1;i

� "

j+1;j

Hierbei bezeichnet � Di�eotopie.

Beweis: (a) ergibt sich aus 3.10. (b) folgt aus (a) unter Benutzung der Tatsache, dass

die Menge der Di�eotopieklassen von Homomorphismen J

k

A nach K

^


J

k�2

A nach 3.5

eine abelsche Halbgruppe mit 0-Element ist. In dieser Halbgruppe sind die Klassen

von "

i+1;i

und von "

i;i�1

beide invers zu "

i+1;i�1

, und daher gleich. q:e:d:

4 Der bivariante K-Funktor

Wir sind jetzt soweit, dass wir das eigentliche Untersuchungsobjekt dieser Arbeit

einf

�

uhren k

�

onnen. Wir betrachten die Menge der Di�eotopieklassen von Homomor-

phismen H

k

= hJ

k

A;K

^


B i, wobei H

0

= hA;K

^


B i. Jedes H

k

ist eine abelsche

Halbgruppe mit der

�

ublichen K-Theorie-Addition h�i+ h�i = h�� �i, siehe 3.6. Die

Klasse h0i ist das Nullelement.

Es existiert eine kanonische Abbildung S : H

k

�! H

k+2

, die man in der folgenden

Weise erh

�

alt: f

�

ur h�i 2 H

k

; � : J

k

A �! K

^


B , sei Sh�i = h(id

K


 �) � "i. Dabei ist

" : J

k+2

A �! K
J

k

A die in 3.8 betrachtete Abbildung (genauer gesagt " = "

k+2;k

+

1

mit den Bezeichnungen von 3.9). Weiter sei "

�

: J

k+2

A �! K
 J

k

A die Abbildung,

die sich in derselben Weise, aber unter Ersetzung der Toeplitzerweiterung durch die

inverse Toeplitzerweiterung, ergibt. Die Diskussion nach 3.4 zeigt, dass die Summe

"�"

�

di�eotop zu 0 ist. Daher ist Sh�i+S

�

h�i = 0, wenn wir S

�

h�i = h(id

K


�)�"

�

i

setzen.

Definition 4.1 Es seien A und B m-Algebren und � = 0 oder 1. Wir setzen

kk

�

(A; B ) = lim

�!

k

H

2k+�

= lim

�!

k

hJ

2k+�

A; K

^


B i

Die vorhergehende Diskussion zeigt, dass kk

�

(A; B) nicht nur eine abelsche Halb-

gruppe, sondern sogar eine abelsche Gruppe ist (jedes Element besitzt ein Inverses).

Die wesentliche Eigenschaft von kk

�

ist das Produkt, das mit Hilfe des Hauptlemmas

3.10 de�niert werden kann. Wir ben

�

otigen f

�

ur die De�nition noch einige Bezeichnun-

gen.

Wenn � : J

k

A �! K

^


B ein Homomorphismus ist, so bezeichne �

j

den Ho-

momorphismus �

j

: J

k+j

A ! K

^


J

j

B, der durch Hintereinanderschaltung von

J

j

(�) : J

k+j

A ! J

j

(K

^


B) mit der kanonischen Abbildung J

j

(K

^


B) ! K

^


J

j

B

entsteht; cf. 3.9.

Lemma 4.2 Mit den Bezeichnungen vom Ende des Abschnitt 3 sind die folgenden

Abbildungen J

k+j+2

A! K

^


J

j

B di�eotop (� )

(a) ((id

K


 �) � "

k+2; k+1

)

j

� (id

K


 �

j

) � "

k+j+2; k+j+1

(b) (id

K


 �

j

) � "

k+j+2; k+j+1

� (id

K


 "

j+2; j+1

) � �

j+2
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Beweis: (a) ist eine Konsequenz von Korollar 3.11 und (b) folgt sofort aus Lemma

1.4.1. q:e:d:

Theorem 4.3 (a) Es existiert ein assoziatives und in beiden Variablen additives Pro-

dukt

kk

i

(A;B)� kk

j

(B;C) �! kk

i+j

(A;C)

(i; j 2Z=2; A;B und C m-Algebren), das f

�

ur � : J

n

A! K

^


B ; � : J

m

B ! K

^


C in

der folgenden Weise de�niert ist:

h�i � h�i = h(id

K


 �) � �

m

i

(b) Es existiert ein bilineares graduiert kommutatives

�

au�eres Produkt

kk

i

(A

1

;A

2

)� kk

j

(B

1

;B

2

) �! kk

i+j

(A

1

^


A

2

;B

1

^


B

2

)

Beweis: (a) Die einzige Behauptung, die nicht o�ensichtlich ist, ist die, dass das

Produkt wohlde�niert ist. Wir m

�

ussen zeigen, dass unsere De�nition des Produkts

vertr

�

aglich ist mit den Identi�kationen in dem induktiven Limes, der in der De�nition

von kk

�

in 4.1 benutzt wird. Daf

�

ur m

�

ussen wir nachpr

�

ufen, dass

� � (� � ")

j

� (� � �

j

) � "

(� � ") � �

j+2

� (� � �

j

) � "

(Wir haben hier bei den Bezeichnungen die Indizes von ", die nach 3.11 irrelevant

sind, und das Tensorprodukt mit id

K

weggelassen.) Die Existenz dieser Di�eotopien

ist genau die Aussage von Lemma 4.2.

(b) Dies folgt sofort aus der Existenz der nat

�

urlichen Abbildungen

J

2n+2m+i+j

(A

1

^


A

2

) �! (J

2n+i

A

1

)

^


(J

2m+j

A

2

)

vgl. 3.9. q:e:d:

Lemma 3.7 zeigt, dass das (innere) Produkt in (a) gerade dem Yonedaprodukt von

Erweiterungen entspricht.

Satz 4.4 kk

�

hat die folgenden Eigenschaften

(a) Jeder Homomorphismus ' : A!B de�niert ein Element kk(') in der Gruppe

kk

0

(A;B). Wenn  : B! C, ein weiterer Homomorphismus ist, so gilt

kk( � ') = kk(') � kk( )

kk

�

(A;B ) ist ein kontravarianter Funktor in A und ein kovarianter Funktor in

B. Wenn � : A

0

! A und � : B ! B

0

Homomorphismen sind, so sind die

in der ersten und zweiten Variablen von kk

�

induzierten Abbildungen gegeben

durch Linksmultiplikation mit kk(�) und Rechtsmultiplikation mit kk(�).

(b) F

�

ur jede m-Algebra A ist kk

�

(A;A) ein Z=2-graduierter Ring mit Einselement

kk(id

A

).
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(c) Der Funktor kk

�

ist invariant unter Di�eotopien in beiden Variablen.

(d) Die kanonische Inklusion � : A ! K

^


A de�niert ein invertierbares Element

in kk

0

(A;K

^


A). Insbesondere ist kk

�

(A;B)

�

=

kk

�

(K

^


A;B) und kk

�

(B;A)

�

=

kk

�

(B;K

^


A) f

�

ur jede m-Algebra B.

Beweis: (a) Die Di�eotopieklasse h�i von � ist ein Element von H

0

und damit nach

De�nition auch von kk

0

. Die zweite Behauptung folgt sofort aus der De�nition des

Produkts.

(b) Dies folgt aus 4.3. Das Einselement ist kk (id

A

) 2 kk

0

(A;A).

(c) Die Abbildungen A! A[0; 1] und A[0; 1]! A , die a auf a �1 und f auf f(0) abbil-

den, de�nieren Elemente in kk

0

(A;A[0; 1]) und kk

0

(A[0; 1];A), die invers zueinander

sind.

(d) folgt aus Lemma 1.4.1. q:e:d:

Nach De�nition bestimmt " ein Element in kk

0

(A;A) und zwar dasselbe wie id

A

,

d.h. also das Einselement. Andererseits kann die Abbildung " : J

2

A! K

^


A auch als

Element von kk

0

(J

2

A;A) oder als Element von kk

1

(JA;A) gedeutet werden.

Satz 4.5 Die Abbildung " : J

2

A ! K

^


A de�niert invertierbare Elemente e

0

in

kk

0

(J

2

A;A) und e

1

in kk

1

(JA;A).

Beweis: Die Inversen zu e

0

und e

1

sind gegeben durch id

J

2

A

und id

JA

. q:e:d:

Insbesondere ist also

kk

1

(A;B)

�

=

kk

0

(JA;B)

�

=

kk

0

(A; JB)

Bemerkung 4.6 Die hier entwickelte Konstruktion der bivarianten K-Theorie ist

sehr allgemein und kann ohne weiteres verwendet werden, um bivariante Theorien

mit verschiedenen Stabilit

�

ats- und Homotopieinvarianzeigenschaften auch f

�

ur ganz

andere Kategorien von topologischen Algebren einzuf

�

uhren. Ben

�

otigt werden hierzu

f

�

ur jede Algebra A in einer solchen Kategorie die folgenden Erweiterungen:

(a) die universelle Erweiterung 0! JA ! TA! A ! 0

(b) die Einh

�

angungserweiterung 0!A(0; 1)!A(0; 1]!A ! 0

(c) die Toeplitzerweiterung 0!K
A ! T 
 A! A(S

1

)! 0

Hierbei ist 
 ein geeignetes Tensorprodukt in der Kategorie, K eine Vervollst

�

andigung

der Algebra M

1

der endlichen Matrizen beliebiger Gr

�

osse, sowie A(0; 1), A(0; 1],

A(S

1

) geeignete Algebren von Funktionen auf (0; 1), (0; 1], S

1

mit Werten in A. Die

universelle Erweiterung mu� universell f

�

ur eine gewisse Klasse von Erweiterungen

sein (bei m-Algebren f

�

ur linear zerfallende Erweiterungen). Au�erdem m

�

ussen die

Einh

�

angungserweiterung und die Toeplitzerweiterung zusammensetzbar sein, d.h. es

mu� eine Abbildung A(0; 1)!A(S

1

) existieren.

Diese Bedingungen sind zum Beispiel erf

�

ullt in der Kategorie der C*-Algebren mit der

�

ublichen Toeplitzerweiterung und mit der universellen C*-Algebra- Vervollst

�

andigung

von TA, f

�

ur die die kanonische lineare Inklusion A ! TA involutionserhaltend und
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von Norm � 1 ist. Damit ist die entsprechende Erweiterung universell f

�

ur Erweiterun-

gen, die einen stetigen Schnitt mit Norm 1 erlauben. Dieselben Wahlen funktionieren

in der Kategorie der �-C*-Algebren.

In der Kategorie der Banachalgebren kann f

�

ur K die Algebra K

1

aus 1.6.4 und f

�

ur

die Funktionenalgebren die einmal stetig di�erenzierbaren Funktionen mit Werten in

A verwendet werden. Eine geeignete Wahl f

�

ur das Tensorprodukt ist hier auch das

projektive.

Die Stabilit

�

ats- und Homotopieinvarianzeigenschaften der Theorie sind dann bestimmt

durch die Wahl der Algebra K und der Funktionenalgebren (stetige oder di�erenzier-

bare Funktionen mit Werten in A). Die Gr

�

o�e von K korrespondiert aufgrund der

Toeplitzerweiterung zur Gr

�

o�e der Funktionenalgebren. Die hier dargestellte Theorie

ist gewisserma�en minimal (f

�

ur die Gr

�

o�e von K und der Funktionenalgebren) mit

der Eigenschaft, dass die oben erw

�

ahnte Abbildung A(0; 1)!A(S

1

) noch existiert.

Wenn wir nur Erweiterungen der L

�

ange 1, d.h. Abbildungen JA ! K 
 A zulas-

sen w

�

urden, so m

�

usste nach der Summierbarkeitsobstruktion von Douglas-Voiculescu

[DoVo], die Algebra K alle Schattenideale `

p

f

�

ur p � 1 enthalten. Dadurch, dass wir

Abbildungen J

n

A ! K
 A f

�

ur beliebige n verwenden, erhalten wir das Produkt und

umgehen gleichzeitig diese Obstruktion.

5 Ausschneidung und die langen exakten Folgen in beiden Variablen

In diesem Abschnitt halten wir uns eng an das in [CuSk] gegebene Argument f

�

ur die

Ausschneidung. Ein Unterschied hier ist, dass wir nur di�erenzierbare Homotopien,

d.h. Di�eotopien benutzen. Der Beweisgang zeigt

�

ubrigens interessanterweise auch,

dass dies wirklich wesentlich ist. Wenn wir kk mit Hilfe von stetigen Homotopien

de�niert h

�

atten, w

�

urde die Ausschneidung nicht gelten; siehe Bemerkung 5.6. Weiter

wird ein Teil des Arguments im Vergleich zu [CuSk] dadurch vereinfacht, dass die

inverse Bottabbildung " : J

2

C ! K in unsere Theorie schon eingebaut ist und nach

De�nition das Einselement von kk

0

(C ; C ) repr

�

asentiert.

Wenn � : A ! B ein Homomorphismus zwischen m-Algebren ist, werden wir

im folgenden mit K(�); �(0; 1); �[0; 1); J(�). . . die induzierten Abbildungen K

^


A !

K

^


B; A(0; 1)!B(0; 1); A[0; 1)!B[0; 1); JA! JB. . . bezeichnen.

Wie

�

ublich de�nieren wir auch den (di�erenzierbaren) Abbildungskegel C

�

durch

C

�

= f(x; f) 2 A�B[0; 1)

�

�

�(x) = f(0)g

Lemma 5.1 Sei D eine m-Algebra und � : A!B ein Homomorphismus

(a) Die Folge

kk

�

(D; C

�

)

�kk(�)

�! kk

�

(D;A)

�kk(�)

�! kk

�

(D;B)

ist exakt. Hierbei bezeichnet � : C

�

! A die Projektion auf den ersten Sum-

manden und �kk(�) Rechtsmultiplikation mit kk(�).

(b) Die Folge in (a) kann fortgesetzt werden zu einer exakten Folge

�kk(�(0;1))

�! kk

�

(D;A(0; 1))

�kk(�(0;1))

�! kk

�+1

(D;B (0; 1)) !

kk

�

(D; C

�

)

�kk(�)

�! kk

�

(D;A)

�kk(�)

�! kk

�

(D;B)
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Beweis: (a) Das Element z 2 kk

�

(D;A) sei durch den Homomorphismus ' :

J

2n+�

D ! K

^


A repr

�

asentiert. Die Gleichung h'i � kk(�) = 0 bedeutet, dass f

�

ur

ein geeignetes m � n die durch K(�) �' induzierte Abbildung J

2m+�

D! K

^


B

�

uber

einen Homomorphismus 
 : J

2m+�

D ! K

^


B[0; 1) faktorisiert. Wir k

�

onnen anneh-

men,dass m = n. Das kommutative Diagramm

J

2n+�

D

'

�! K

^


A

# 
 # K (�)

K

^


B[0; 1) �! K

^


B

de�niert einen Homomorphismus 


0

: J

2n+�

D! K

^


C

�

so dass K(�) � 


0

= '.

(b) Dies folgt wie

�

ublich durch Iteration der Konstruktion in (a). Hierzu benutzt man

die Tatsache, dass der Abbildungskegel C

�

f

�

ur die Projektion � : C

�

! A di�eotop

zu B(0; 1) ist, und das folgende kommutative Diagramm

C

�

�

0

�! C

�

" k

B (0; 1)

�

�! C

�

In diesem Diagramm ist � die Inklusion von B(0; 1) in die zweite Komponente von

C

�

und der erste senkrechte Pfeil ist die erw

�

ahnte Di�eotopie

�

aquivalenz (sie bildet

f 2B (0; 1) auf (�f; 0) 2 C

�

� C

�

� A[0; 1)) ab.

Gleicherweise ist der Abbildungskegel C

�

f

�

ur � : B(0; 1)! C

�

enthalten in A(0; 1)�

B([0; 1)� [0; 1)). Die Projektion C

�

! A(0; 1) ist ebenfalls eine Di�eotopie

�

aquivalenz

und macht das folgende Diagramm kommutativ

C

�

�! B(0; 1)

# k

A (0; 1)

�(0;1)

�! B (0; 1)

q:e:d:

Lemma 5.2 � : A !B und D seien wie in 5.1

(a) Die Folge

kk

�

(C

�

;D)

kk(�)�

 � kk

�

(A;D)

kk(�)�

 � kk

�

(B;D)

ist exakt.

(b) Die Folge in (a) kann zu einer langen exakten Folge der Form

kk(�(0;1))�

 � kk

�

(A(0; 1);D)

kk(�(0;1))�

 � kk

�+1

(B(0; 1);D)  

kk

�

(C

�

;D)

kk(�)�

 � kk

�

(A;D)

kk(�)�

 � kk

�

(B;D)

fortgesetzt werden.
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Beweis: (a) Der Einfachheit halber nehmen wir an, dass � = 0. Sei dann ' : J

2n

A �!

K

^


D ein Homomorphismus mit der Eigenschaft, dass kk(�)�h'i = h0i. Dies bedeutet,

dass ein kommutatives Diagramm der Form

J

2n

C

�

J

2n

(�)

�! J

2n

A

# 
 # '

K

^


D[0; 1)

ev

�! K

^


D

existiert. Hierbei ist ev die Auswertungsabbildung in 0. Man beachte, dass '�J

2n

(�)�

" = ' � " � J

2n+2

(�), so dass wir annehmen k

�

onnen, dass die Di�eotopie schon auf

Niveau n realisiert ist. Da 
 in diesem Diagrammden Kern von J

2n

(�) in den Kern von

ev abbildet, d.h. also in K

^


D(0; 1), ergibt die Einschr

�

ankung von 
 eine Abbildung




0

: J

2n

(B(0; 1)) �! K

^


D(0; 1).

Wir verwenden jetzt die nat

�

urlichen Abbildungen JB ! B(0; 1) und J(D(0; 1))

! K

^


D, siehe 3.8, um durch die Komposition

J

2n+2

B �! J

2n+1

(B (0; 1))

J(


0

)

�! J(K

^


D(0; 1)) �! K

^


D

eine Abbildung  : J

2n+2

B �! K

^


D zu konstruieren. Wir m

�

ussen zeigen, dass

 � J

2n+2

(�) � ' � ". Dies folgt aus dem folgenden kommutativen Diagramm

0 �! K

^


D(0; 1) �! K

^


D[0; 1) �! K

^


D �! 0

" 


0

" 
 " '

0 �! J

2n

(B(0; 1) �! J

2n

C

�

�! J

2n

A �! 0

" J

2n

�(0; 1) " J

2n

�

0

k

0 �! J

2n

(A (0; 1)) �! J

2n

(A [0; 1)) �! J

2n

A �! 0

Hierbei ist �(0; 1) die Einh

�

angung von � und �

0

ist die Abbildung, die f 2 A[0; 1) auf

(f(0); �[0; 1)(f)) 2 C

�

abbildet.

Das Diagramm zeigt unter Verwendung von Lemma 3.3, dass die durch ' induzierte

Abbildung J

2n+1

A �! K

^


D(0; 1) di�eotop zur Komposition der folgenden Abbil-

dungen ist

J

2n+1

A �! J

2n

(A (0; 1))

J

2n

(�(0;1))

�! J

2n

(B (0; 1))




0

�!K

^


D(0; 1)

(b) folgt aus (a) genau wie in Lemma 5.1. q:e:d:

Satz 5.3 Es sei 0 ! I ! A

q

�!B ! 0 eine linear zerfallende Erweiterung und

e : I ! C

q

die Inklusionsabbildung, die durch e : x 7! (x; 0) 2 C

q

� A � B [0; 1)

de�niert ist. Dann ist kk(e) ein invertierbares Element in kk

0

(I; C

q

).

Beweis: Wir zeigen, dass das Inverse zu kk(e) in kk

0

(C

q

; I) durch die Di�eotopie-

klasse hui des Homomorphismus u : J

2

C

q

�! K

^


I gegeben ist, der folgenderma�en

konstruiert wird: Sei u

0

: JC

q

�! I(0; 1) die Abbildung, die zu der Erweiterung

0 �! I(0; 1) �! A [0; 1)�! C

q

�! 0
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geh

�

ort. Dann sei u die Komposition von J(u

0

) mit der kanonischen Abbildung

J(I(0; 1)) �! K

^


I. Wir bezeichnen das durch u de�nierte Element auch mit kk(u).

Das kommutative Diagramm

0 �! I(0; 1) �! A[0; 1) �! C

q

�! 0

" " " e

0 �! I(0; 1) �! I[0; 1) �! I �! 0

zeigt, dass u

0

� J(e) gerade die kanonische Abbildung JI �! I(0; 1) ist, so dass also

das Element kk(e) � kk(u) durch die Abbildung " : J

2

I �! K

^


I dargestellt wird.

Nach De�nition entspricht aber " dem Einselement in kk

0

(I; I).

Um das umgekehrte Produkt kk(u) � kk(e) zu bestimmen, betrachten wir das kom-

mutative Diagramm

0 �! C

q

(0; 1) �! C

q

[0; 1) �! C

q

�! 0

" e(0; 1) " e

0

k

0 �! I(0; 1) �! A[0; 1) �! C

q

�! 0

(8)

wo

e

0

(f)(z) =

8

>

<

>

:

q(f(s)) wenn z = se

i�

� > 0 und s > 0

0 wenn jzj � 1

f(s) wenn z = s

Hierbei werden Elemente von C

q

[0; 1) aufgefasst als \Funktionen" g von zwei Varia-

blen (x; y) 2 [0; 1]

2

oder von einer komplexen Variablen z = x+ iy mit

g(x+ iy) 2

�

A y = 0

B y > 0

Au�erdem muss eine Funktion g in C

q

[0; 1) die folgenden Bedingungen erf

�

ullen:

g(x + iy) = 0, wenn x = 1 oder y = 1

f

�

ur y > 0 ist g(x+ iy) eine stetige Funktion von x; y

q(g(x)) = lim

y!0

g(x+ iy)

Das kommutative Diagramm (8) zeigt, dass e(0; 1) � u

0

di�eotop zu der kanonischen

Abbildung JC

q

! C

q

(0; 1) ist und damit, dass kk(u) � kk(e) = 1. q:e:d:

Betrachte nun die nach links unendlichen exakten Folgen aus 5.1(b) und 5.2(b) f

�

ur

den Fall, wo � die Quotientenabbildung q in einer Erweiterung wie in 5.3 ist. Theorem

5.3 erlaubt es, in den exakten Folgen jeweils C

q

durch I zu ersetzen.

�

Uberdies erhalten

wir aus 5.3 auch sofort die Bottperiodizit

�

at.

Satz 5.4 Die durch die Einh

�

angungserweiterung induzierten Abbildungen JA !

A(0; 1) und J

2

A ! A(0; 1)

2

repr

�

asentieren in kk

0

(JA;A(0; 1)), in kk

1

(A;A(0; 1))

und in kk

0

(A;A(0; 1)

2

) invertierbare Elemente.
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Beweis: Dies ergibt sich aus den langen exakten Folgen aus 5.1(b) und 5.2(b) ange-

wandt auf das folgende kommutative Diagramm von Erweiterungen

0 �! A(0; 1) �! A[0; 1) �! A �! 0

" " "

0 �! JA �! TA �! A �! 0

Z.B. zeigt das 5-Lemma und die exakte Folge aus 5.2(b) f

�

ur kk

0

( � ; JA), dass Links-

multiplikation mit g = kk(JA! A(0; 1)) einen Isomorphismus von

kk

0

(A(0; 1); JA) mit kk

0

(JA; JA) induziert. Man schlie�t daraus, dass g von rechts

invertierbar ist. q:e:d:

Theorem 5.5 Es sei D eine beliebige m-Algebra. Jede linear zerfallende Erweiterung

E : 0! I

i

�! A

q

�!B ! 0

induziert exakte Folgen in kk(D; � ) und kk( � ;D) der folgenden Form:

kk

0

(D; I)

�kk(i)

�! kk

0

(D;A)

�kk(q)

�! kk

0

(D;B)

" #

kk

1

(D;B)

�kk(q)

 � kk

1

(D;A)

�kk(i)

 � kk

1

(D; I)

(9)

und

kk

0

(I;D)

kk(q)�

 � kk

0

(A;D)

kk(i)�

 � kk

0

(B;D)

# "

kk

1

(B;D)

kk(i)�

�! kk

1

(A;D)

kk(q)�

�! kk

1

(I;D)

(10)

Die gegebene Erweiterung E de�niert eine klassi�zierende Abbildung JB ! I und

damit ein Element von kk

1

(I;B), das wir mit kk(E) bezeichnen. Die senkrechten

Pfeile in (9) und (10) sind bis auf ein Vorzeichen gegeben durch Rechts-, bzw. durch

Linksmultiplikation mit dieser Klasse kk(E). Das Vorzeichen h

�

angt von den Identi�-

zierungen bei der Bottperiodizit

�

at nach Satz 5.4 ab.

Beweis: Satz 5.3 erlaubt es, in den exakten Folgen aus 5.1(b) und 5.2(b) jeweils C

q

durch I zu ersetzen. Dies ergibt unter Verwendung von 5.4 die exakten Folgen (9)

und (10). Die Verbindungsabbildungen f

�

ur die einfachen Einh

�

angungen in 5.1(b) und

5.2(b) sind induziert durch die Inklusion j : B(0; 1)! C

q

, d.h. sie sind gegeben durch

Produkt mit der Klasse kk(j). Das kommutative Diagramm

0! I(0; 1) ! A[0; 1) ! C

q

! 0

k " " j

0! I(0; 1) ! A(0; 1) ! B(0; 1) ! 0

zeigt andererseits, dass mit den Bezeichnungen aus dem Beweis zu Satz 5.3 die Iden-

tit

�

at kk(j) � kk(u) = kk(E) gilt. Die Identi�kation von C

q

mit I geschieht aber

gerade mit Hilfe des Isomorphismus, der nach Satz 5.3 durch Multiplikation mit

kk(e)

�1

= kk(u) 2 kk(C

q

; I) de�niert ist. q:e:d:

Documenta Mathematica 2 (1997) 139{182



164 Joachim Cuntz

Bemerkung 5.6 Der Beweis f

�

ur die Ausschneidung macht deutlich, dass in der De-

�nition von kk die Beschr

�

ankung auf Di�eotopie, d.h. di�erenzierbare Homotopie als

�

Aquivalenzrelation von grundlegender Bedeutung ist. Der Beweis von 5.2 und vor al-

lem aber auch der zu 5.3 beruht auf der Existenz der Abbildung J(A(0; 1)) ! K

^


A.

Wenn der Abbildungskegel C

q

mit stetigen oder nur k-fach di�erenzierbaren Funktio-

nen de�niert worden w

�

are, w

�

urde das Inverse kk(u) zu kk(e) nicht existieren.

Dies liegt an den Eigenschaften der Toeplitzerweiterung, bei der die Gr

�

osse des Ideals

der des Quotienten entspricht. Man k

�

onnte verschiedene Versionen von kk de�nieren,

indem man Di�eotopie durch stetige oder k-fach di�erenzierbare Homotopie ersetzt

und dann aber auch statt der glatten Toeplizerweiterung entsprechend die stetige oder

die k-fach di�erenzierbare Toeplitzerweiterung verwendet. Dies bedeutet, dass man in

der De�nition von kk das Ideal K durch die C*-Algebra K der kompakten Operatoren

bzw. durch die Algebra K

n

der Matrizen (�

ij

) mit

X

ij

j�

ij

j j1 + i+ jj

n

� 1

ersetzen muss.

Bemerkung 5.7 In Analogie zu [Sk] k

�

onnte man f

�

ur zwei m-Algebren A und B eine

Theorie kk

nuk

�

(A; B ) de�nieren, indem man statt beliebiger Homomorphismen nur

nukleare Homomorphismen J

2n+�

A ! K

^


B betrachtet. Aufgrund der Hochhebungs-

und Fortsetzungseigenschaften nuklearer Abbildungen w

�

urde diese Theorie Ausschnei-

dung in beiden Variablen f

�

ur Erweiterungen von Fr�echetalgebren erf

�

ullen, auch wenn

diese nicht notwendigerweise zerfallen.

6 Der Chern-Connes-Charakter

Wir zeigen in diesem Abschnitt, dass Funktoren E auf der Kategorie der m-Algebren,

die gewisse abstrakte Eigenschaften besitzen, automatisch auch funktoriell unter kk-

Elementen sind. Da die De�nition von kk wesentlich auf der Periodizit

�

atsabbildung "

beruht, besteht der erste Schritt darin, zu zeigen, dass f

�

ur solche Funktoren E(") ein

Isomorphismus sein muss. Weil aber " mit Hilfe der Toeplitzerweiterung de�niert ist,

ben

�

otigen wir zuerst eine genauere Analyse der universellen Eigenschaften der Toep-

litzalgebra T. Hierzu sei U (v; w) die universelle Algebra

�

uber C mit zwei Erzeugern v

und w, die die Relation wv = 1 erf

�

ullen. Dies ist Kurzschreibweise f

�

ur die Bedingung,

dass wv ein Einselement f

�

ur alle Polynome in v und w ist. Wir setzen e = 1�vw. Dann

ist e ein idempotentes Element in U (v; w), und die Elemente e

ij

= v

i

ew

j

erf

�

ullen

e

ij

e

kl

= �

jk

e

il

Man sieht daraus sofort, dass man U (v; w) treu auf dem Hilbertraum `

2

(N) mit der

kanonischen Orthonormalbasis (�

n

)

n=0;1;2;:::

durch

v�

n

= �

n+1

w�

n

= �

n�1

; w�

0

= 0

darstellen kann. Dabei werden dann also die e

ij

auf die Matrixeinheiten mit e

ij

�

n

=

�

jn

�

i

abgebildet. Die Linearkombinationen der e

ij

; 1 � i; j � n bilden eine Matrixal-

gebra isomorph zu M

n

(C )
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Satz 6.1 Die Toeplitzalgebra T ist die universelle m-Algebra, die von zwei Elemen-

ten v und w mit wv = 1, erzeugt wird (d.h. also die eine Vervollst

�

andigung von

U (v; w) ist) und deren Topologie durch eine Familie (p

n

)

n2N

von submultiplikativen

Halbnormen bestimmt ist, die die folgende Wachstumsbedingung erf

�

ullen

p

n

(v

k

) � C

n

(1 + k

n

); k = 1; 2; : : :

p

n

(w

k

) � C

n

(1 + k

n

); k = 1; 2; : : :

Hierbei sind die C

n

positive Konstanten.

Dies bedeutet, dass f

�

ur jede m-Algebra B, deren Topologie durch einen Familie von

Halbnormen (p

0

n

)

n2N

gegeben ist und die von zwei Elementen v

0

und w

0

erzeugt wird,

die dieselben Relationen und Wachstumsbedingungen erf

�

ullen, ein stetiger Homomor-

phismus T!B existiert, der v auf v

0

und w auf w

0

abbildet.

Beweis: Nach De�nition ist T als lokalkonvexer Vektorraum isomorph zu

K� C

1

(S

1

)

Wenn z den Erzeuger von C

1

(S

1

) bezeichnet, so entspricht unter diesem linearen

Isomorphismus v

n

dem Element z

n

und w

n

dem Element z

�n

. Die in 1.5 angegeben

Halbnormen erf

�

ullen also o�ensichtlich die Wachstumsbedingung.

Sei B wie in der Behauptung und ' der Homomorphismus U (v; w) ! B, der v

auf v

0

und w auf w

0

abbildet. Es gen

�

ugt zu zeigen, dass ' auf U (v; w) \ K und auf

U (v; w) \ C

1

(S

1

) stetig ist. Da

p

0

n

('(e

ij

)) = p

0

n

(v

0i

w

0j

� v

0i+1

w

0j+1

)

� 2C

0

n

(1 + (i + 1)

n

)C

0

n

(1 + (j + 1)

n

) � C(1 + i + j)

n

mit einer neuen Konstante C, ist ' auf dem ersten Summanden stetig und die Stetig-

keit auf dem zweiten ist klar. q:e:d:

Lemma 6.2 (vgl. [Cu1, 4.2]) Es existieren eindeutig bestimmte stetige Homomorphis-

men '; '

0

: T! T

^


T, so dass

'(v) = v(1 � e) 
 1 + e
 v '(w) = (1� e)w 
 1 + e 
w

'

0

(v) = v(1� e) 
 1 + e
 1 '

0

(w) = (1� e)w 
 1 + e
 1

Diese beiden Homomorphismen sind di�eotop und zwar durch eine Di�eotopie  

t

:

T! T

^


T; t 2 [0; �=2], f

�

ur die  

t

(x)� '(x) 2 K

^


T f

�

ur alle t 2 [0; �=2]; x 2 T gilt.

Beweis: Wir zeigen, dass ' und '

0

beide di�eotop zu  sind, wo

 (v) = v 
 1  (w) = w 
 1

Wir schreiben im folgenden Linearkombinationen von e

ij


 x; 0 � i; j � n� 1; x 2 T

als n�n-Matrizen mit Matrixelementen in T. Weiter schreiben wir E

n

f

�

ur 1�v

n

w

n

=

e

00

+ e

11

+ : : :+ e

n�1;n�1

. Mit diesen Bezeichnungen setzen wir f

�

ur t 2 [0; �=2]

u

t

= (1 �E

2

) +

�

e+ cos t (1� e) sin t v

� sin t w cos t 1

�

u

0

t

= (1 �E

2

) +

�

cos t 1 sin t 1

� sin t 1 cos t 1

�
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Sowohl u

t

als auch u

0

t

sind o�ensichtlich invertierbar in T

^


T. Wir zeigen nun, dass

f

�

ur jedes t stetige Homomorphismen '

t

; '

0

t

: T! T

^


T existieren, so dass

'

t

(v) = u

t

(v 
 1) '

t

(w) = (w 
 1)u

�1

t

'

0

t

(v) = u

0

t

(v 
 1) '

0

t

(w) = (w 
 1)u

0�1

t

Seien p

n

�q

n

die Halbnormen aus 1.5, die die Topologie auf T bestimmen. Wir m

�

ussen

nachweisen, dass die Halbnormen (p

n

� q

n

)
 (p

n

� q

n

) die Wachstumsbedingung auf

den Potenzen von u

t

(v 
 1); (w 
 1)u

�1

t

; u

0

t

(v 
 1) und (w 
 1)u

0�1

t

erf

�

ullen.

Es ist nun aber

�

u

t

(v 
 1)

�

k

= u

(k)

t

(v

k


 1)

mit u

(k)

t

= (1�E

k

)+L, wo L eine invertierbare k�k-Matrix mit Werten in T ist. Man

sieht sofort, dass L Summe von k

2

Elementen der Form e

ij


 (�

1

W

1

+ �

2

W

2

); 0 �

i; j � k ist, mit j�

i

j � 1, W

i

W

�

orter in v; w der L

�

ange � k + 1. Daher gilt

p

n


 (p

n

�q

n

)(L) � 2k

2

C

n

(1 + 2k

n

)(k + 1)

n

� C(1 + k

2n+2

)

(p

n

�q

n

) 
 (p

n

� q

n

)

�

u

(k)

t

(v

k


 1)

�

� C(1 + k

3n+2

)

mit einer neuen Konstante C. Die Wachstumsbedingungen f

�

ur (p

n

� q

n

)
 (p

n

� q

n

)

auf den Potenzen von (w 
 1)u

�1

t

; u

0

t

(v 
 1) und (w 
 1)u

0�1

t

ergeben sich im ersten

Fall genauso und in den zwei letzteren sogar einfacher.

Die Familie '

t

ergibt nun eine Di�eotopie zwischen ' und  und die Familie '

0

t

ergibt eine Di�eotopie zwischen '

0

und  . Wir erhalten  

t

durch Zusammensetzen

dieser beiden Di�eotopien. Die geforderte Zusatzbedingung  

t

(x) � '(x) 2 K

^


T ist

o�ensichtlich erf

�

ullt. q:e:d:

Wir betrachten im folgenden Funktoren E von der Kategorie der m-Algebren in

die Kategorie der abelschen Gruppen, die die folgenden (wohlbekannten) Bedingungen

erf

�

ullen:

(E1) E ist di�eotopieinvariant, d.h. die Auswertungsabbildung in einem beliebigen

Punkt t 2 [0; 1] induziert einen Isomorphismus E(ev

t

) : E(A[0; 1])! E(A)

(E2) E ist stabil, d.h. die kanonische Inklusion � : A! K

^


A induziert einen Isomor-

phismus E(�).

(E3) E ist halbexakt, d.h. jede linear zerfallende Erweiterung 0! I ! A! B! 0

induziert eine kurze exakte Folge E(I)! E(A)! E(B)

Wir erinnern daran, dass nach einer Standardkonstruktion aus der algebraischen To-

pologie die kurze exakte Folge in (E3) mit Hilfe von Abbildungskegeln und unter

Benutzung der Eigenschaft (E1) zu einer nach links unendlichen langen exakten Folge

der Form

: : :! E(B(0; 1)

2

)! E(I(0; 1))! E(A(0; 1))

! E(B(0; 1))! E(I)! E(A)! E(B)

(11)

fortgesetzt werden kann, vgl. etwa [Ka] oder [Cu3].
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F

�

ur eine m-Algebra A seien QA; qA und �; � : A ! QA wie in 2.4 de�niert. Wir

bezeichnen mit � : qA ! A die Restriktion der Abbildung QA ! A, die �(x) auf x

und �(x) auf 0 abbildet. Das folgende Lemma ist wohlbekannt in der Kategorie der

C*-Algebren, vgl. [Cu2, 3.1].

Lemma 6.3 Es sei E ein Funktor mit den Eigenschaften (E1), (E2), (E3).

(a) Die kanonische Abbildung id�0 � 0�id:QA �! A � A, die �(x) auf (x; 0) und

�(x) auf (0; x) abbildet, induziert einen Isomorphismus E(QA)! E(A)�E(A).

(b) Die Abbildung � : qA! A induziert einen Isomorphismus E(�).

Beweis: (a) Man zeigt genau wie im Fall von C*-Algebren ([Cu2, 3.1]) unter Ver-

wendung der universellen Eigenschaft des freien Produkts, dass die Komposition der

angegebenen Abbildung mit der Abbildung

A�A �!

�

A 0

0 A

�

� M

2

(QA)

in beide Richtungen di�eotop zu den kanonischen Einbettungen von A � A und QA

in die 2�2-Matrizen

�

uber diesen Algebren ist.

(b) Dies folgt aus folgendem kommutativen Diagramm

0 �! qA �! QA

�

�! A �! 0

# � # ' # id

0 �! A �! A� A �! A �! 0

(wo ' = id � 0� �) in Kombination mit (a). q:e:d:

Satz 6.4 Sei T

0

der Kern der kanonischen stetigen Abbildung � : T! C , die v und

w auf 1 abbildet. F

�

ur jeden Funktor E mit den Eigenschaften (E1), (E2), (E3) und

f

�

ur jede m-Algebra A gilt

E(T

0

^


A) = 0

Beweis: Wir betrachten erst den Fall A = C und benutzen hierzu die Homomorphis-

men T ! T

^


T aus Lemma 6.2 und au�erdem den Homomorphismus ! : T ! T

^


T,

der v auf v(1 � e) 
 1 und w auf (1 � e)w 
 1 abbildet. Die Homomorphismen

 

t

� ! : QT! T

^


T bilden qT in K

^


T ab und ergeben durch Restriktion eine Di�eo-

topie

!

t

: qT �! K

^


T

Nach Konstruktion von ' und '

0

gilt

!

0

= � � � !

1

= � � j � � � �

wobei � wie oben, j : C ! T die kanonische Inklusion und � : qT ! T die kanoni-

sche \Auswertung"abbildung ist. siehe 6.3. Nach 6.3 ist E(�) : E(qT) ! E(T) ein

Isomorphismus. Da nach (E2) au�erdem auch E(�) ein Isomorphismus ist, folgt aus

E(� � �) = E(� � j � � � �)
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dass E(j) � E(�) = E(id

T

). Da o�ensichtlich � � j = id

C

, sind also E(j) und E(�)

zueinander inverse Isomorphismen. Da die Erweiterung 0 ! T

0

! T ! C ! 0

zerf

�

allt, ergibt sich aus der langen exakten Folge (11) eine kurze exakte Folge

0 �! E(T

0

) �! E(T)

E(�)

�! E(C ) �! 0

wobei E(�) ein Isomorphismus ist. Dies zeigt, dass E(T

0

) = 0. Der allgemeine Fall

E(T

0

^


A) ergibt sich durch Tensorieren aller Homomorphismen in dem eben gegebe-

nen Beweis mit id

A

oder durch Ersetzen von E durch E( �

^


A). q:e:d:

Die Toeplitzerweiterung mit Ideal K

1

und Quotienten C

1

(S

1

) wurde auch von Laf-

forgue untersucht. F

�

ur sie wurden in [La] Analoga zu Lemma 6.2 und Satz 6.4 bewiesen

und daraus wie in [Cu1] gefolgert, dass jeder Funktor E' auf der Kategorie der Bana-

chalgebren, der Eigenschaften analog zu (E1), E(2), E(3) hat, Bottperiodizit

�

at erf

�

ullt.

Das folgende Korollar ist ebenfalls eine Form der Bottperiodizit

�

at.

Korollar 6.5 F

�

ur jeden Funktor E auf der Kategorie der m-Algebren mit den

Eigenschaften (E1), (E2), (E3) und f

�

ur jede m-Algebra A sind die Abbildungen

E(") : E(J

2

A)! E(K

^


A) und E("

n

) : E(J

2n

A)! E(K

^


A) Isomorphismen.

Beweis: Betrachte die folgenden kommutativen Diagramme

0 �! J

2k+2

A �! TJ

2k+1

A �! J

2k+1

A �! 0

# " # #

0 �! K

^


K

^


A �! K

^


T

0

^


A �! K

^


C

1

(S

1

n f1g)

^


A �! 0

0 �! J

2k+1

A �! TJ

2k

A �! J

2k

A �! 0

# # # "

k

0 �! K

^


A(0; 1) �! K

^


A[0; 1) �! K

^


A �! 0

und die nach (11) mit diesen Erweiterungen assoziierten langen exakten Folgen. Die

Gruppen E(TA),E(T

0

^


A) und E(A[0; 1)) sind trivial f

�

ur jede m-Algebra A, siehe 6.4.

Au�erdem ist die Inklusion K

^


A(0; 1)! K

^


A

^


C

1

(S

1

n f1g) eine Di�eotopie

�

aquiva-

lenz (vgl. 1.1) und die Abbildung E(A(0; 1))! E(A

^


C

1

(S

1

n f1g)) ein Isomorphis-

mus. Anwendung des 5-Lemmas zeigt dann, dass die senkrechten Pfeile auf der linken

Seite unter E jeweils einen Isomorphismus induzieren, wenn dies f

�

ur die Pfeile rechts

der Fall ist. Die Behauptung ergibt sich dann durch Induktion nach k (mit J

0

A = A

und "

0

= �). q:e:d:

Theorem 6.6 Sei E ein kovarianter Funktor mit den Eigenschaften (E1), (E2),

(E3). Dann kann mit jedem h 2 kk

0

(A;B) in eindeutiger Weise ein Morphismus

E(h) : E(A) ! E(B) assoziert werden, so dass E(h

1

� h

2

) = E(h

2

) � E(h

1

) und

E(kk(�)) = E(�) f

�

ur jeden Homomorphismus � : A!B zwischen m-Algebren.

Die analoge Aussage gilt auch f

�

ur kontravariante Funktoren.

Beweis: Sei h durch � : J

2n

A! K

^


B repr

�

asentiert. Wir setzen

E(h) = E(�)

�1

E(�)E("

n

)

�1
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Zun

�

achst einmal ist klar, dass E(h) wohlde�niert ist und dass E(kk(�)) = E(�).

Die Vertr

�

aglichkeit mit dem Produkt ergibt sich aus derselben Rechnung wie die im

Beweis von Theorem 4.3 und ist eine Konsequenz von Lemma 4.2.

Die Eindeutigkeit schlie�lich ist o�ensichtlich. q:e:d:

Das vorhergehende Resultat erlaubt, wie im Fall der KK-Theorie f

�

ur C*-Algebren,

[Hi], [Bl] ein andere Interpretation. Hierzu bemerken wir, dass kk

0

als Kategorie auf-

gefasst werden kann, deren Objekte gerade die m-Algebren sind, und deren Morphis-

men zwischen A und B durch kk

0

(A;B) gegeben sind. Diese Kategorie ist additiv in

dem Sinn, dass die Morphismen zwischen zwei Objekten jeweils eine abelsche Gruppe

bilden und dass das Produkt von Morphismen bilinear ist.

Wir bezeichnen den nat

�

urlichen Funktor von der Kategorie der m-Algebren in die

Kategorie kk

0

, der auf den Objekten die Identit

�

at ist, auch mit kk

0

.

Korollar 6.7 Es sei F ein Funktor von der Kategorie der m-Algebren in eine

additive Kategorie, deren Objekte ebenfalls die m-Algebren sind, mit F (� � �) =

F (�) � F (�). Wir bezeichnen diese Kategorie ebenfalls mit F und ihre Morphismen

mit F (A;B).

Wir nehmen an, dass F (A;B) in der ersten Variablen als kontravarianter Funktor

und in der zweiten Variablen als kovarianter Funktor jeweils die Eigenschaften (E1),

(E2), (E3) erf

�

ullt. Dann existiert ein eindeutig bestimmter kovarianter Funktor F

0

von der Kategorie kk

0

in die Kategorie F , so dass F = F

0

� kk

0

.

Beweis: Wir zeigen zuerst, dass "

n

: J

2n

A ! K

^


A f

�

ur jede m-Algebra A einen

invertierbaren Morphismus F ("

n

) induziert.

Da Links- und Rechtsmultiplikation mit F (�) f

�

ur festgehaltene zweite oder erste Varia-

ble Funktoren in die Kategorie der abelschen Gruppen mit den Eigenschaften (E1),

(E2), (E3) sind, existieren nach 4.5 und 6.6 Elemente x und y in F (A; J

2n

A), so

dass x � F ("

n

) = F (id

A

) und F ("

n

) � y = F (id

J

2n

A

). Da dann x und y Links- und

Rechtsinverse f

�

ur F ("

n

) sind, sind sie gleich und invers zu F ("

n

).

Ebenso sieht man, dass � : A ! K

^


A f

�

ur jede Wahl von A einen invertierbaren

Morphismus E(�) induziert. Wenn jetzt h 2 kk

0

(A;B) durch � : J

2n

A ! K

^


B

repr

�

asentiert ist, k

�

onnen wir setzen

F

0

(h) = F (�)F ("

n

)

�1

F (�)F (�)

�1

q:e:d:

Auf der Kategorie der m-Algebren ist also kk

0

der universelle Funktor in ei-

ne additive Kategorie mit den Eigenschaften (E1), (E2), (E3) in beiden Variablen.

Hieraus ergibt sich als Spezialfall sofort die Existenz des bivarianten Chern-Connes-

Charakters im geraden Fall. Wir fassen hierzu die bivariante periodische zyklische

Theorie HP

0

(�; �) ebenso wie kk

0

als additive Kategorie, deren Objekte die m-

Algebren sind, auf. Ebenso wie bei kk schreiben wir das Produkt in HP

�

in der

umgekehrten Reihenfoge wie bei Homomorphismen. F

�

ur einen Homomorphismus �

bezeichnen wir mit ch(�) das entsprechende Element der bivarianten zyklischen Theo-

rie.
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Korollar 6.8 Es existiert ein eindeutig bestimmter (kovarianter) Funktor ch :

kk

0

! HP

0

, so dass ch(kk(�)) = ch(�) 2 HP

0

(A;B) f

�

ur jeden Homomorphismus

� : A!B zwischen m-Algebren.

Beweis: Die Eigenschaften (E1) und (E2) sind f

�

ur die beiden Variablen von HP

0

seit langem bekannt und im wesentlichen schon von Connes in [Co] bewiesen. Der

Nachweis von Eigenschaft (E3) gelang in [CuQu2]. q:e:d:

Der Chern-Connes-Charakter ch ist also eine bilineare multiplikative Transfor-

mation von kk

0

nach HP

0

. O�ensichtlich respektiert er auch das

�

au�ere Produkt auf

kk

0

aus 4.3 (b), bzw. auf HP

0

, siehe [CuQu2, p.86]. Es bleibt noch die Aufgabe, ch zu

einer multiplikativen Transformation von der Z=2-graduierten Theorie kk

�

nach HP

�

auszudehnen und die Vertr

�

aglichkeit von ch mit der Randabbildung in den langen

exakten Folgen zu untersuchen.

Wenn E : 0! I! A!B! 0 eine linear zerfallende Erweiterung ist, schreiben wir

wie in [CuQu2] � f

�

ur die Randabbildung HP

i

(I;D) ! HP

i�1

(B;D) in der ersten

Variable und �

0

f

�

ur die Randabbildung HP

i

(D;B) ! HP

i+1

(D; I) in der zweiten

Variable. Weiter schreiben wir im folgenden 1

A

f

�

ur ch(id

A

) 2 HP

0

(A;A).

Man rechnet leicht nach, dass �

0

(1

B

) = ��(1

I

), siehe [CuQu2,5.4]. Wie in [CuQu2]

bezeichnen wir dieses Element von HP

1

(B; I) mit ch(E).

Ein Teil des folgenden Satzes wurde in etwas anderer Weise schon in [Ni1], [Ni2]

bewiesen. Der Faktor 2�i beim Vergleich der Periodizit

�

atsabbildungen in der K-

Theorie und der zyklischen Homologie wurde an verschiedenen Stellen in der Literatur

bemerkt, [Co1], [Pu], [Ni1].

Satz 6.9 Wir betrachten die Einh

�

angungserweiterung

E

�

: 0! C (0; 1) ! C (0; 1] ! C ! 0

und die Toeplitzerweiterung

E

�

: 0! K! T! C

1

S

1

! 0

sowie die Einbettungsabbildungen j : C (0; 1) ! C

1

S

1

und � : C ! K. Mit dem Produkt

in HP

�

gilt die folgende fundamentale Beziehung

ch(E

�

) � ch(j) � ch(E

�

) =

1

2�i

ch(�)

Beweis: Wir benutzen kanonische dichte Unteralgebren von C (0; 1); C

1

S

1

;K und T

sowie ihre algebraische periodische zyklische Homologie HP

alg

�

. Au�erdem benutzen

wir, wenn B eine dieser Algebren ist, die Homologie HX

�

(B) des X-Komplexes

X(B) : B

d

�!

 �

b




1

(B)

\
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Wir haben zwei gro�e kommutative Diagramme, wo die horizontalen Abbildungen

alle Isomorphismen sind und die Spalten exakte Folgen mit 6 Termen

# # #

HP

�

(K)

�

=

 � HP

alg

�

(M

1

)

�

=

�! HX

�

(M

1

)

# # #

HP

�

(T)

�

=

 � HP

alg

�

(U (v; w))

�

=

�! HX

�

(U (v; w))

# # #

HP

�

(C

1

(S

1

))

�

=

 � HP

alg

�

(C [z; z

�1

])

�

=

�! HX

�

(C [z; z

�1

])

# # #

Die Folge in der rechten Spalte ist exakt, weil M

1

H-unital und damit HX

�

(M

1

)

isomorph zu der Homologie HX

�

(M

1

: U (v; w)) des relativen X-Komplexes ist, vgl.

[Wo]. Der Isomorphismus HP

alg

�

(M

1

)

�

=

HX

�

(M

1

) gilt, weil M

1

quasifrei ist, siehe

[CuQu1,5.4]. Die Abbildungen in der mittleren Zeile sind Isomorphismen nach dem

5-Lemma. Das zweite Diagramm ist das folgende

# # #

HP

�

(C

1

0

(0; 1))

�

=

 � HP

alg

�

((t� t

2

)C [t])

�

=

�! HX

�

((t� t

2

)C [t] : tC [t])

# # #

HP

�

(C

1

0

(0; 1])

�

=

 � HP

alg

�

(tC [t])

�

=

�! HX

�

(tC [t])

# # #

HP

�

(C )

�

=

 � HP

alg

�

(C )

�

=

�! HX

�

(C )

# # #

Hierbei bezeichnen C

1

0

(0; 1] und C

1

0

(0; 1) die Algebren der glatten Funktionen auf

[0; 1], die bei 0, bzw. bei 0 und 1 verschwinden (ohne Bedingung an die Ableitun-

gen) und HX

�

((t � t

2

)C [t] : tC [t]) bezeichnet wieder die Homologie des relativen

X-Komplexes. Die Isomorphismen in der ersten Zeile gelten nach dem 5-Lemma.

Um die Randabbildungen in der Toeplitz- und Einh

�

angungserweiterung in der Spalte

ganz links zu bestimmen, gen

�

ugt es daher, die Randabbildungen in der Spalte ganz

rechts zu berechnen. Dies ist aber sehr einfach. Nach De�nition gen

�

ugt es, jeweils Ur-

bilder f

�

ur die Repr

�

asentanten einer Klasse in dem Komplex in der Mitte zu �nden und

dann den Randoperator des X-Komplexes darauf anzuwenden. Dies ergibt Elemente

des relativen Komplexes, die das Bild unter der Randabbildung darstellen.

Fangen wir mit dem Erzeuger von HX

0

(C ) an. Er wird durch 1 2 C repr

�

asentiert.

Ein Urbild in X

0

(tC [t]) ist t. Unter dem Randoperator d geht dies auf \(dt) 2 


1

((t�

t

2

)C [t] : tC [t])

\

.

Die Klasse von \(dt) wiederum entspricht unter den Identi�zierungen

HX

1

((t � t

2

)C [t] : tC [t])  HP

alg

1

((t� t

2

)C [t]) ! HP

1

(C

1

0

(0; 1)

�

)

 HP

1

(C

1

(S

1

)) HX

1

(C [z; z

�1

])

der Klasse von \(

1

2�i

z

�1

dz). In der Tat ist z = e

2�it

und in den Di�erentialformen

�

uber S

1

ist z

�1

dz = 2�i dt (man beachte, dass HP

1

(C

1

(S

1

)) durch die de Rham
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Kohomologie von S

1

gegeben ist). Ein Urbild f

�

ur \(z

�1

dz) in X

1

(U (v; w)) ist \(wdv).

Unter der Randabbildung des X-Komplexes wird \(wdv) auf b(wdv) = wv � vw = e

abgebildet. q:e:d:

F

�

ur den speziellen Fall der universellen Erweiterung

E

u

: 0! JA! TA! A! 0

setzen wir

x

A

= ch(E

u

) = �

0

(1

A

) = ��(1

JA

) 2 HP

1

(A; JA)

Die Randabbildungen � und �

0

in der universellen Erweiterung sind durch Links-

und Rechtsmultiplikation mit x

A

gegeben. Die Tatsache, dass � und �

0

f

�

ur die uni-

verselle Erweiterung Isomorphismen sind, impliziert sofort, dass x

A

invertierbar ist

(es existieren Elemente y und y

0

in HP

1

(JA;A) so dass �(y) = x

A

� y = 1

A

und

�

0

(y

0

) = y

0

� x

A

= 1

JA

). Falls � und �

0

wieder die Randabbildungen in den exak-

ten Folgen zu einer beliebigen Erweiterung E : 0 ! I ! A ! B ! 0 sind und

� : JB ! I die klassi�zierende Abbildung, so gilt wegen der Nat

�

urlichkeit der Ran-

dabbildung, dass

�(1

I

) = x

B

� ch(�) �

0

(1

B

) = ch(�) � x

B

(12)

d.h. also ch(E) = x

B

� ch(�), siehe auch [CuQu2, 5.5]. Weiter gilt f

�

ur jeden Homo-

morphismus � : JA!B

ch(�) � x

B

= x

JA

� ch(J(�)) (13)

Satz 6.10 Sei " : J

2

A! K

^


A die kanonische Abbildung. Dann gilt

x

A

� x

JA

� ch(") � ch(�)

�1

=

1

2�i

1

A

Beweis: Wir betrachten zuerst den Fall A = C . Die Abbildung " kann geschrieben

werden als " = "

2

� J(j) � J("

1

), wo "

1

: J(C ) ! C (0; 1) und "

2

: J(C

1

S

1

) ! K die

klassi�zierenden Abbildungen f

�

ur die Einh

�

angungs- und f

�

ur die Toeplitzerweiterung

sind und j : C (0; 1) ! C

1

S

1

die Einbettungsabbildung bezeichnet. Daher

x

A

� x

JA

� ch(") = x

A

� ch("

1

) � ch(j) � x

JA

� ch("

2

) = ch(E

�

) � ch(j) � ch(E

�

)

Die erste Gleichung gilt nach (13) und die zweite folgt aus (12). Die Behauptung f

�

ur

A = C reduziert sich daher auf Satz 6.9.

F

�

ur allgemeines A gilt unter Verwendung des

�

au�eren Produkts in HP

�

(siehe [Cu-

Qu2, p.86])

x

A

� x

JA

� ch("

A

) � ch(�

A

)

�1

= (x

C


 1

A

) � (x

JC


 1

A

) � (ch("

C

)
 1

A

)

= (x

C

� x

JC

� ch("

C

) � ch(�

C

)

�1

)
 1

A

=

1

2�i

1

A

q:e:d:

Documenta Mathematica 2 (1997) 139{182



Bivariante K-Theorie: : : 173

Sei jetzt u ein Element in kk

1

(A;B). Nach De�nition ist kk

1

(A;B) = kk

0

(JA;B).

Sei u

0

das Element in kk

0

(JA;B), das u entspricht. Wir setzen

ch(u) =

p

2�i x

A

� ch(u

0

) 2 HP

1

(A;B)

Satz 6.11 Der so de�nierte Chern-Connes-Charakter ist multiplikativ, d.h. f

�

ur u 2

kk

i

(A;B) und v 2 kk

j

(B;C) gilt

ch(u � v) = ch(u) � ch(v)

Beweis: Der einzig wirklich neue Fall ist i = j = 1. Wir haben nach Lemma 6.9

ch(u) � ch(v) = 2�i x

A

� ch(u

0

) � x

B

� ch(v

0

) = 2�i x

A

� x

JA

� ch(J(u

0

)) � ch(v

0

)

und andererseits nach De�nition von ch im geraden Fall

ch(u � v) = ch(�) � ch(")

�1

� ch(J(u

0

) � v

0

)

Die beiden Ausdr

�

ucke stimmen nach Satz 6.10

�

uberein. q:e:d:

Insbesondere ist der Chern-Connes-Charakter auch mit den Randabbildungen in den

langen exakten Folgen in kk

�

und HP

�

, die mit einer linear zerfallenden Erweiterung

(E) 0! I! A!B! 0

von m-Algebren assoziiert sind, (bis auf den Faktor

p

2�i und m

�

oglicherweise ein Vor-

zeichen) vertr

�

aglich: Die klassi�zierende Abbildung JB! I ergibt Elemente kk(E) 2

kk

1

(B; I) und ch(E) 2 HP

1

(B; I). Nach De�nition gilt

p

2�ich(E) = ch(kk(E)). Die

Randabbildungen in den langen exakten Folgen in kk und HP sind laut Theorem 5.5

und [CuQu, 5.5] bis auf ein Vorzeichen durch Multiplikation mit kk

1

(E) bzw. ch(E)

gegeben.

Wir diskutieren jetzt zum Schluss noch den Zusammenhang mit dem Chern-

Connes-Charakter, der f

�

ur p-summierbare Fredholm- und Kasparovmoduln von

Connes, Nistor und anderen konstruiert wurde, [Co], [Ni1].

Satz 6.12 Gegeben seien m-Algebren I und A. Wir nehmen an, dass stetige Abbil-

dungen � : I! A und � : A

^


A! I mit folgenden Eigenschaften existieren:

(a) � � � ist die Multiplikation auf A

(b) � � (�
 �) ist die Multiplikation auf I

(insbesondere ist also �(I) ein Ideal in A mit A

2

� �(I)). Dann ist kk(�) ein inver-

tierbares Element in kk

0

(I;A).

Beweis: Das Inverse zu kk(�) ist durch die Zusammensetzung der Toeplitzerweite-

rung mit der folgenden Erweiterung bestimmt

0! I(0; 1)! I(0; 1) + At! A! 0 (14)

Die m-Algebra I(0; 1)+At ist folgenderma�en de�niert. Als lokalkonvexer Vektorraum

ist sie einfach die direkte Summe von I(0; 1) und A. Das Symbol t bezeichnet die
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identische Funktion auf [0; 1]. Die Elemente von At werden als Funktionen auf [0; 1]

mit Werten in A, die Vielfache dieser Funktion mit Elementen von A sind, aufgefasst.

Die Multiplikation auf dem ersten Summanden ist die von I(0; 1). Das Produkt einer

Funktion f in I(0; 1) mit einem Element xt 2 At ist �(�(f) 
 xt) (wir setzen hier �

und � kanonisch auf Funktionen fort). Das Produkt von xt und yt in dem zweiten

Faktor ist de�niert als �(x 
 y)(t

2

� t) + ��(x 
 y)t, wobei der erste Summand in

I(0; 1) und der zweite in At liegt. Man pr

�

uft sofort nach, dass mit diesen De�nitionen

I(0; 1) + At eine m-Algebra ist.

Die Erweiterung (14) ist dann o�ensichtlich linear zerfallend und de�niert ein Element

u in kk

1

(A; I(0; 1)). Wir m

�

ussen nachweisen, dass das Produkt von u mit � in beide

Richtungen die kanonischen Abbildungen JA ! A(0; 1) und JI ! I(0; 1) ergibt.

Betrachte hierzu das folgende kommutative Diagramm

0 �! I(0; 1) �! I(0; 1] �! I �! 0

# id # id + � # �

0 �! I(0; 1) �! I(0; 1) + At �! A �! 0

# � # � k

0 �! A(0; 1) �! A(0; 1] �! A �! 0

Man beachte, dass die in der o�ensichtlichen Weise de�nierte Abbildung id + � nach

Bedingung (b) ein Homomorphismus ist. Der obere Teil des Diagramms zeigt nach

Lemma 3.3, dass das Produkt kk(�) � u durch die Einh

�

angungserweiterung von I

repr

�

asentiert wird, w

�

ahrend der untere Teil zeigt, dass u � kk(�) die Einh

�

angungser-

weiterung von A ist. q:e:d:

Wir k

�

onnen dieses Resultat nun anwenden auf die Schattenideale `

p

= `

p

(H).

Betrachte allgemeiner den Fall, wo I = `

p

^


B und A = `

q

^


B f

�

ur eine beliebige m-

Algebra B und p � q � 2p. Die Abbildungen � und � ergeben sich durch die Inklusion

`

p

! `

q

und die Multiplikationsabbildung `

q

^


`

q

! `

p

.

Satz 6.11 zeigt, dass `

p

^


B und `

q

^


B

�

aquivalent in kk

0

und damit auch in HP

0

sind.

Durch Iteration ist `

p

^


B

�

aquivalent zu `

1

^


B f

�

ur jedes p � 1. Andererseits ist `

1

^


B

in HP

0

�

aquivalent zu B, siehe etwa [Ga]. Wir erhalten also

Korollar 6.13 Die m-Algebra `

p

^


B ist in HP

0

�

aquivalent zu B f

�

ur jedes p �

1. Der Chern-Connes-Charakter gibt eine Transformation ch

(p)

: kk

�

(A; `

p

^


B) !

HP

�

(A;B) mit der Eigenschaft, dass

ch

(p)

(x � kk(�

(p)

)) = ch(x) f

�

ur x 2 kk

�

(A;B)

wo �

(p)

die kanonische Inklusion B! `

p

^


B bezeichnet.

Durch Vergleich der funktoriellen Eigenschaften [Ni1, Theorem 3.5] sieht man oh-

ne weiteres, dass dieser Chern-Connes-Charakter mit dem von Connes und Nistor

konstruierten Charakter

�

ubereinstimmen mu�.
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7 Vergleich mit der topologischen K-Theorie

Wir untersuchen in diesem Abschnitt den Spezialfall des Funktors kk, wo die erste

Variable trivial ist, d.h. also kk

�

(C ; � ). Wir zeigen, dass dieser Funktor mit der to-

pologischen K-Theorie

�

ubereinstimmt - im wesentlichen, wann immer diese de�niert

ist. Dazu benutzen wir die von Phillips eingef

�

uhrte Theorie [Ph], die die topologische

K-Theorie f

�

ur die bisher wohl gr

�

o�te Klasse von lokalkonvexen Algebren, n

�

amlich f

�

ur

m-Algebren, die gleichzeitig Fr�echetalgebren sind, de�niert. Dies hat f

�

ur uns den Vor-

teil, dass diese Theorie es erlaubt, den Funktor K

�

direkt auch auf Algebren vom Typ

J

n

C usw., die die Grundlage unserer Theorie bilden, anzuwenden. Dies vereinfacht

den Beweis f

�

ur Theorem 7.4 (selbst im Fall A = C ) bedeutend. Wir skizzieren am En-

de des Abschnitts kurz, wie Theorem 7.4 ohne Verwendung der Theorie von Phillips

f

�

ur spezielle Fr�echetalgebren, n

�

amlich abgeleitete Unteralgebren von Banachalgebren

bewiesen werden kann. Damit erh

�

alt man einen neuen Zugang zur K-Theorie von

m-Algebren, indem man einfach K

�

(A) = kk

�

(C ;A) setzt.

Wie Phillips verstehen wir in dieser Arbeit unter Fr�echetalgebren immer Fr�echet-

algebren, die auch m-Algebren sind, d.h. also vollst

�

andige lokalkonvexe Algebren,

deren Topologie durch eine abz

�

ahlbare Familie von submultiplikativen Halbnormen

bestimmt ist.

Mit einer Fr�echetalgebra A assoziiert Phillips in [Ph] die folgende abelsche Gruppe:

K

0

(A) =

�

[e]

�

�

e ist ein idempotentes Element in

M

2

(K

^


A

�

) so dass e �

�

1 0

0 0

�

2M

2

(K

^


A)

	

(15)

Hierbei bezeichnet, wie

�

ublich K

^


A

�

die Algebra, die man erh

�

alt, wenn man zu K

^


A

eine Eins adjungiert.

Phillips verwendet die Bezeichnung \RK

0

" f

�

ur diese Gruppe. Uns erscheint die Be-

zeichnung K

0

angemessener, da diese Theorie die

�

ubliche topologische K-Theorie von

der Kategorie der Banachalgebren auf die der Fr�echetalgebren verallgemeinert. Wir

setzen auch K

1

(A) = K

0

(A(0; 1))

In (15) bezeichnet [e] die Homotopieklasse von e. In [Ph] wird gezeigt, dass zwei

idempotente Elemente e und e

0

in M

2

(K

^


A

�

), wie sie in (15) betrachtet werden,

homotop sind, genau dann, wenn sie konjugiert und damit auch di�eotop sind. Wir

k

�

onnen also in (15) die Homotopieklasse [e] durch die Di�eotopieklasse hei ersetzen.

Weiter wird in [Ph] gezeigt, dass der Funktor K

�

; � = 0; 1 auf der Kategorie der

Fr�echetalgebren die folgenden Eigenschaften hat:

(a) K

�

ist di�eotopie- und homotopieinvariant

(b) K

�

ist stabil in dem Sinn, dass f

�

ur jede Fr�echetalgebra A die Inklusionsabbildung

A! A

^


K einen Isomorphismus in der K-Theorie induziert.

(c) Jede Erweiterung

0! I

i

�! A

q

�!B ! 0
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von Fr�echetalgebren (d.h. die Folge ist exakt und q ist eine Quotientenabbildung)

induziert exakte Folgen in K

�

der folgenden Form:

K

0

(I)

K

0

(i)

�! K

0

(A)

K

0

(q)

�! K

0

(B)

" #

K

1

(B)

K

1

(q)

 � K

1

(A)

K

1

(i)

 � K

1

(I)

(d) Falls A eine Banachalgebra ist, so stimmtK

�

(A) mit der

�

ublichen topologischen

K-Theorie von A

�

uberein.

F

�

ur weitere Einzelheiten verweisen wir auf [Ph].

Wir betrachten jetzt die Algebra QC und bezeichnen mit e; �e die beiden Erzeuger

e = �(1); �e = �(1)). Nach 6.3 gilt Z

�

=

K

0

(qC ) � K

0

(QC )

�

=

Z

2

. Der Erzeuger von

K

0

(qC ) ist mit der oben angegebenen De�nition von K

0

f

�

ur Fr�echetalgebren gegeben

durch die Di�eotopieklasse des idempotenten Elements p in M

2

(K

^


qC

�

):

p = W

�

�e

?

0

0 e

�

W wo W =

�

�e

?

�e

�e �e

?

�

mit �e

?

= 1� �e. Wir setzen auch

�p =

�

1 0

0 0

�

Man beachte, dass p � �p 2 M

2

(K

^


qC ) � M

2

(K

^


QC

�

) und dass daher [p] � [�p] 2

K

0

(K

^


qC ) � K

0

(K

^


QC ).

Lemma 7.1 Es sei ' : qC ! M

2

(K

^


qC ) die Einschr

�

ankung des Homomorphismus

QC ! M

2

(K

^


QC

�

), der e auf p und �e auf �p abbildet. Dann ist ' di�eotop zu der

Inklusionsabbildung � : qC !M

2

(K

^


qC ).

Beweis: Sei 


t

: qC !M

2

(K

^


qC ); t 2 [0; �=2] die Einschr

�

ankung des Homomorphis-

mus 


0

t

: QC !M

2

((K

^


QC )

�

) der durch




0

t

(e) = W

t

�

�e

?

o

0 e

�

W

�t




0

t

(�e) = W

t

�

�e

?

0

0 �e

�

W

�t

gegeben ist, wo

W

t

=

�

�e

?

0

0 �e

?

�

+

�

�e cos t �e sin t

��e sin t �e cos t

�

F

�

ur jedes t liegt die Di�erenz 


0

t

(e)� 


0

t

(�e) in dem Ideal M

2

(K

^


qC )). Daher de�niert




t

eine Di�eotopie, die ' mit � verbindet. q:e:d:
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Satz 7.2 F

�

ur jede Fr�echetalgebra A gilt

K

0

(A)

�

=

hqC ;K

^


Ai

Beweis: Wir de�nieren die Abbildung � : hqC ;K

^


Ai ! K

0

(A) in der folgenden

Weise: Sei � : qC ! K

^


A ein stetiger Homomorphismus. Wir bezeichnen mit z den

Erzeuger von K

0

(qC )

�

=

Zund setzen �(h�i) = K

0

(�)(z). Wir zeigen, dass � surjektiv

und injektiv ist.

Die Surjektivit

�

at ist o�ensichtlich, da jedes Element w von K

0

A nach De�nition durch

ein idempotentes Element r in M

2

(K

^


A

�

) gegeben ist und daher einen Homomor-

phismus �̂ : QC ! K

^


A

�

bestimmt, der e auf r und �e auf �p (�p wie oben) abbildet.

Die durch �̂ induzierte Abbildung bildet die durch e und �e bestimmten Klassen u und

�u in K

0

(QC ) auf [r] und [�p] in K

0

(A) ab. Wenn daher � die Einschr

�

ankung von �̂ auf

qC bezeichnet, so bildet K

0

(�) den Erzeuger z = u � �u von K

0

(qC ) � K

0

(QC ) auf

[r]� [�p] = [r] 2 K

0

(A) ab.

Um die Injektivit

�

at zu beweisen, benutzen wir Lemma 7.1. Nehmen wir an, dass �

1

; �

2

:

qC ! K

^


A Homomorphismen sind, so dass K

0

(�

1

)(z) = K

0

(�

2

)(z). Das bedeutet,

dass die Bilder r

1

und r

2

des vor 7.1 de�nierten Idempotenten p unter M

2

(id

K

^


�

�

1

)

und M

2

(id

K

^


�

�

2

) in M

2

(K

^


A

�

) konjugiert durch ein invertierbares Element w sind.

Dieses Element w kann sogar durch eine di�erenzierbare Familie w

t

; t 2 [0; 1] mit 1

verbunden werden, so dass 1� w

t

2M

2

(K

^


A) f

�

ur alle t.

Es seien nun �

0

1

; �

0

2

: qC ! K

^


A die Homomorphismen qC ! K

^


A, die durch Ein-

schr

�

ankung der Abbildungen von QC , die e auf r

1

bzw. r

2

und �e auf �p abbilden, ent-

stehen. Nach Lemma 7.1 ist �

0

1

= M

2

(id

K

^


�

�

1

) � ' di�eotop zu �

1

= M

2

(id

K

^


�

�

1

) � �

und �

0

2

di�eotop zu �

2

. Andererseits de�niert die Familie  

t

; t 2 [0; 1] von Homomor-

phismen qC ! K

^


A, die durch Einschr

�

ankung der Abbildungen von QC , die e auf

w

t

r

1

w

�t

entstehen, eine Di�eotopie, die �

0

1

mit �

0

2

verbindet. q:e:d:

F

�

ur eine beliebige m-Algebra A hatten wir in 2.5 die folgende linear zerfallende

Erweiterung betrachtet:

0! qA(0; 1)! E! A! 0

Wenn wir die klassi�zierende Abbildung JA! qA(0; 1) mit der Toeplitzerweiterung

0! K

^


qA! T

0

^


qA! qA(0; 1)! 0

kombinieren, so erhalten wir eine Abbildung "

0

: J

2

A! K

^


qA.

Lemma 7.3 Sei � : qA! A die kanonische Auswertungsabbildung (mit den Bezeich-

nungen von 1.3 ist � die Restriktion von id�0 ). Dann ist die Komposition (id

K

^


�)�"

0

di�eotop zu " : J

2

A! K

^


A.

Beweis: Dies ergibt sich mit Hilfe von Lemma 3.3 aus dem folgenden kommutativen

Diagramm

0 �! qA(0; 1) �! E �! A �! 0

# �(0; 1) #  k

0 �! A(0; 1) �! A[0; 1) �! A �! 0

wo  die Restriktion von (id� 0)[0; 1] : QA[0; 1]! A[0; 1] auf E � QA[0; 1] ist. q:e:d:
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Theorem 7.4 F

�

ur jede Fr�echetalgebra A sind die Gruppen kk

�

(C ;A) und K

�

A

nat

�

urlich isomorph.

Beweis: Wir k

�

onnen annehmen, dass � = 0. Der Fall � = 1 ergibt sich durch

Ersetzung von A durch die Einh

�

angung A(0; 1).

Die Existenz der gew

�

unschten Abbildung kk

�

(C ;A) ! K

�

A ergibt sich f

�

ur � = 0

als Spezialfall aus 6.5. Um den Isomorphismus zu beweisen, m

�

ussen wir aber die

Abbildung in systematischer Weise explizit konstruieren.

Nach Korollar 6.5 ist K

0

(") : K

0

(J

2n

C ) ! K

0

(C ) ein Isomorphismus. Aus Satz

7.2 erhalten wir also Z

�

=

K

0

(C )

�

=

K

0

(J

2n

C )

�

=

hqC ;K

^


J

2n

C i, wobei der zweite

Isomorphismus durch " induziert ist. Sei dann

�

n

: qC ! K

^


J

2n

C

der bis auf Di�eotopie eindeutig bestimmte Homomorphismus, der dem Erzeuger von

Zunter diesem Isomorphismus entspricht, d.h. h�

n

i = K

0

("

n

)

�1

(1).

Andererseits sei �

n

: J

2n

C ! K

^


qC der Homomorphismus, der sich durch Komposi-

tion von "

n�1

: J

2n

C ! K

^


J

2

C mit der Abbildung "

0

: K

^


J

2

C ! K

^


qC aus Lemma

7.3 ergibt.

Lemma 7.3 zeigt dann, dass (id

K

^


�) � �

n

di�eotop zu "

n

ist.

Nach Lemma 6.3(b) ist K

0

(�) : K

0

(qC ) ! K

0

C ein Isomorphismus. Da

K

0

(id

K

^


�) �K

0

(�

n

) �K

0

(�

n

)

nach Konstruktion der Isomorphismus K

0

(�) : K

0

(qC ) ! K

0

C ist, folgt daher nach

Satz 7.2, dass �

n

� �

n

di�eotop zur Inklusion � : qC ! K

^


qC ist und dass "

n

� �

n

di�eotop zu � � � : qC ! K ist.

Wir k

�

onnen jetzt die Isomorphismen zwischen kk

0

(C ;A) undK

0

A in beide Richtungen

explizit angeben. Die Abbildung �

T

: K

0

A ! kk

0

(C ;A) bildet h
i 2 hqC ;K

^


Ai auf

die Klasse von (id

K


 
) � �

n

: J

2n

C ! K

^


A in kk

0

(C ;A) ab. Die umgekehrte

Abbildung �

T

: kk

0

(C ;A) ! K

0

A ist folgenderma�en de�niert: Sei � : J

2n

C ! K

^


A

ein Repr

�

asentant f

�

ur ein Element h in kk

0

(C ;A). Wir setzen dann �

T

(h) = h� ��

n

i 2

hqC ;K

^


Ai. Nach Konstruktion von �

n

h

�

angt diese Di�eotopieklasse nicht von der

Auswahl des Repr

�

asentanten � ab, und �

T

(h) ist daher wohlde�niert. Aus der obigen

Diskussion folgt sofort, dass �

T

� �

T

= id.

Um die Komposition �

T

� �

T

zu berechnen. benutzen wir wieder das Hauptlemma

3.10 und sein Korollar 3.11, d.h. im Grund das Produkt in kk. Sei h ein Element

von kk

0

(C ;A), das durch einen Homomorphismus � : J

2n

C ! K

^


A repr

�

asentiert ist.

Nach Korollar 3.11 sind die folgenden beiden Kompositionen di�eotop

(id

K


 �) � "

n

� J

2n

((id

K


 �

n

) � �

n

) � (id

K


 �)((id

K


 "

n

) � �

n

� �

n

)

2n

(unter Verwendung der Bezeichnungsweise  

j

: J

j+k

A ! K

^


J

j

B f

�

ur  : J

k

A !

K

^


B, die vor Lemma 4.2 eingef

�

uhrt wurde). Da "

n

� J

2n

(') = ' � "

n

f

�

ur alle ',

repr

�

asentiert die erste Komposition �

T

� �

T

(h). Da andererseits "

n

: J

2n

(J

2n

C ) !

K

^


J

2n

C , wieder nach Korollar 3.11, di�eotop zu ("

n

)

n

ist und weil "

n

��

n

��

n

� "

n

,

repr

�

asentiert die zweite Komposition gerade h. Damit ist gezeigt, dass �

T

� �

T

= id.

q:e:d:
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Wie schon in der Einleitung erw

�

ahnt, kann Theorem 7.4 f

�

ur abgeleitete Unteralgebren

von Banachalgebren (im Sinn von 1.6) ohne Verwendung der Theorie von Phillips

direkt bewiesen werden. Wir skizzieren kurz, wie man vorzugehen hat.

Die Topologie auf J

2n

C ist gegeben durch die Familie von submultiplikativen Normen,

die auf T

2n

C durch die Vielfachen der kanonischen Norm auf C induziert werden.

Jeder stetige Homomorphismus ' von J

2n

C in eine abgeleitete Unteralgebra einer

Banachalgebra A ist stetig f

�

ur eine dieser Normen und setzt sich daher auf die ent-

sprechende Vervollst

�

andigung B von J

2n

C fort. Nach Lemma 1.6.5 ist ' dann auf

einer abgeleiteten Unteralgebra B von B de�niert. Die K-Theorie dieser abgeleiteten

Unteralgebra ist wohlde�niert und stimmt mit der von B

�

uberein.

Insbesondere kann das auf den stetigen Homomorphismus " : J

2n

C ! K angewendet

werden und wie in Korollar 6.5 sieht man sofort, dass " einen IsomorphismusK

0

(B)!

K

0

(K) induziert.

Der Beweis von Satz 7.4 benutzt nur die De�nition der K-Theorie durch Di�eo-

topieklassen von Idempotenten in M

2

(K

^


A)

�

, die f

�

ur abgeleitete Unteralgebren in

derselben Form gilt.

Schlie�lich k

�

onnen Homomorphismen von qC ebenso behandelt werden wie die von

J

2n

C und auf abgeleitete Unteralgebren von Banachalgebravervollst

�

andigungen fort-

gesetzt werden. Die Homomorphismen �

n

und �

n

im Beweis zu Theorem 7.4 k

�

onnen

dann als Homomorphismen zwischen solchen Vervollst

�

andigungen (die aber von dem

gegebenen Homomorphismus � abh

�

angen) konstruiert werden.

8 Vergleich der Filtrierungen in kk und HP .

F

�

ur beliebige m-Algebren A und B gilt kk

0

(A;B) = kk

0

(A; J

2

B), vgl. 4.5, und

hA;K

^


Bi

�

=

hK

^


A;K

^


Bi (als Konsequenz aus 1.4.1). Hieraus ergibt sich die folgende

alternative De�nition von kk

0

kk

0

(A;B) = lim

 �

m

�

lim

�!

n

hK

^


J

2n

A;K

^


J

2m

Bi

�

Damit erhalten wir eine sehr einfache Beschreibung des Produkts in kk

0

, das n

�

amlich

genau wie das Produkt von Morphismen zwischen Pro-Objekten de�niert ist. Die

Wohlde�niertheit und Assoziativit

�

at des Produkts ist dann v

�

ollig o�ensichtlich.

Die obige Beschreibung von kk

0

ist nun aber auch formal fast genau analog zur De-

�nition der bivarianten periodischen zyklischen Homologie. Wir erinnern daran, dass

diese in der folgenden Weise de�niert werden kann

HP

�

(A;B)) = H

�

�

lim

 �

m

�

lim

�!

n

Hom(X(JA)

n

; X(JB)

m

)

�

�

siehe [CuQu2,3.2]. Der wichtigste Unterschied in den Formeln f

�

ur kk

0

und HP

�

ist die

Tatsache, dass einmal die durch Iteration des J-Funktors erhaltenen Algebren J

n

A

und J

m

B benutzt werden und das andere Mal die Potenzen (JA)

n

und (JB)

m

.

Wenden wir uns jetzt wieder der De�nition von kk

�

(A;B), wie sie in 4.1 gegeben

wurde, zu. Diese f

�

uhrt unmittelbar zu einer nat

�

urlichen aufsteigenden Filtrierung
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durch die Bilder von hJ

2n+�

A;K

^


Bi in

kk

�

(A;B) = lim

�!

n

hJ

2n+�

A;K

^


Bi

Auf der anderen Seite besitzt die periodische zyklische KohomologieHP

�

(A) und das

Bild der bivarianten Jones-Kassel Theorie in HP

�

(A;B) eine nat

�

urliche Filtrierung

durch die Bilder von HC

n

. Da die Filtrierungen von kk

�

und HP

�

beide mit dem

Produkt vertr

�

aglich sind, und der Chern-Connes-Charakter multiplikativ ist, werden

die Filtrierungen unter dem Charakter wenigstens teilweise erhalten. Man kann etwa

eine Unterhalbgruppe ext

�

(A;B) von kk

�

(A;B) einf

�

uhren, die aus allen Yonedapro-

dukten von Erweiterungen von dem Typ, wie sie in [Ni1] betrachtet werden, besteht.

Diese Unterhalbgruppe tr

�

agt eine nat

�

urliche Filtrierung. Die Konstruktion aus [Ni1]

zeigt, dass die Filtrierung unter dem Chern-Connes-Charakter erhalten wird.

F

�

ur beliebige Element von kk andererseits zeigt Satz 6.12 durch Iteration, dass eine

nat

�

urliche Abbildung J

2p+1

A ! K

^


(JA)

2

p

existiert. Dies legt nahe, dass im allge-

meinen in gewissem Sinn die Ordnung der Filtrierung auf kk dem Logarithmus der

Ordnung der Filtrierung auf HP

�

, d.h. dem Logarithmus der Dimension entspricht.

Eine genauere Untersuchung bleibt einer weiteren Arbeit vorbehalten.

Als letztes bemerken wir, dass auch bei der De�nition der K-Theorie noch interessante

Variationen m

�

oglich sind. Wir k

�

onnen etwa setzen

k

n

(A) = lim

�!

k

hJ

k�n

C ;K

^


J

k

Ai

Ein Argument wie im Beweis zu Theorem 7.4 zeigt, dass f

�

ur n � 1 jeweils

hJ

2k+2n

C ;K

^


J

2k

Ai = hqC ;K

^


J

2k

Ai = K

2n

(A)

F

�

ur negative n ist also k

n

periodisch und stimmt mit der K-Theorie

�

uberein. F

�

ur

positive n ergibt sich eine Art konnektiver K-Theorie, vgl. [Se], [Ro] mit einer Peri-

odizit

�

atsabbildung k

n

(A)! k

n�2

(A), die durch " induziert wird.
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Abstract. We prove that a projective manifold of dimension n = 2 or

3 and Kodaira dimension 1 has a numerically e�ective cotangent bundle if

and only if the Iitaka �bration is almost smooth, i.e. the only singular �bres

are multiples of smooth elliptic curves (n = 2) resp. multiples of smooth

Abelian or hyperelliptic surfaces (n = 3). In the case of a threefold which is

�bred over a rational curve the proof needs an extra assumption concerning

the multiplicities of the singular �bres. Furthermore, we prove the following

theorem: let X be a complex manifold which is hyberbolic with respect

to the Carath�eodory-Rei�en-pseudometric, then any compact quotient of X

has a numerically e�ective cotangent bundle.

1991 Mathematics Subject Classi�cation: 32C10, 32H20

Introduction

It is a natural question in algebraic geometry to classify manifolds by positivity prop-

erties of their tangent resp. cotangent bundles. The �rst result of this kind was

obtained by Mori who solved the Hartshorne-Frankel conjecture [Mo]: every projec-

tive n-dimensional manifold with ample tangent bundle is isomorphic to the complex

projective space P

n

. A degenerate condition of ampleness is numerical e�ectivity. A

line bundle L on a projective manifold X is called numerically e�ective (abbreviated

\nef") if L:C � 0 for all curves C � X. A vector bundle E is said to be nef if the

tautological quotient line bundle O

P(E)

(1) on P(E), the projective bundle of hyper-

planes in the �bres of E, is nef.

Taking the Hartshorne-Frankel conjecture as a guideline, Campana and Peternell

considered projective manifolds whose tangent bundles are nef and classi�ed them in

dimension 2 and 3 [CP]. For dimension 3 this has been done by Zheng [Zh] too. In

general, for arbitrary compact complex manifolds the \nefness" of the tangent bundle

leads to strong structural constraints [DPS].

The purpose of this paper is to investigate some aspects of manifolds X whose cotan-

gent bundles 


1

X

are nef. In the �rst part we will give a characterization of 2 and 3

dimensional manifolds with Kodaira dimension �(X) = 1 and nef cotangent bundle.

We will prove:
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184 Henrik Kratz

Theorem 1 Let X be a minimal projective manifold of dimension n = 2 or 3 with

�(X) = 1 and let � : X ! C be the Iitaka �bration of X. Then the following

conditions are equivalent:

(i) 


1

X

is nef.

(ii) � is almost smooth, in the sense that the only singular �bres of � are multiples of

smooth elliptic curves (n = 2) resp. Abelian or hyperelliptic surfaces (n = 3).

� Exception: To prove (ii))(i) in the case n = 3 and g(C) = 0 we need the assumption

that

P

m

i

�1

m

i

� 2, where the m

i

are the multiplicities of the singular �bres.

� The equivalence of (i) and (ii) holds also for compact K�ahler surfaces.

This theorem generalizes a result of Fujiwara [Fu] who worked in arbitrary dimension

but under the stronger assumption that 


1

X

is semi-ample, i.e. that some power of

O

P(


1

X

)

(1) is globally generated. The implication (i) ) (ii) relies on the topological

constraints, namely the Chern class inequalities, which hold, when the cotangent

bundle is nef. To prove (ii) ) (i) we will proceed in two steps. First, we will show

that the assertion is true for a smooth �bration. This follows basically from Gri�ths's

theory on the variation of the Hodge structure. Then, we will study the base-change

which reduces an almost smooth �bration to a smooth one and show that this process

allows to carry over the \nefness" of the cotangent bundle.

In fact, we will prove in any dimension that a projective manifold has a nef cotangent

bundle if (a) it admits a smooth Abelian �bration over a manifold with nef cotangent

bundle or (b) it admits an almost smooth Abelian �bration over a curve C such that

either (i) g(C) � 1 or (ii) g(C) = 0 and

P

m

i

�1

m

i

� 2.

We remark that the �bres F of the Iitaka �brations in Theorem 1 are paraAbelian

varieties, i.e. there exists an unrami�ed cover T ! F where T is an Abelian variety.

In view of this, we expect in any dimension that a manifold with Kodaira dimension

1 has a nef cotangent bundle if and only if the Iitaka �bration is almost smooth with

para-Abelian �bres.

In the second part of this paper we consider complex manifoldsX which are hyperbolic

with respect to the Carath�eodory-Rei�en pseudometric. We will show :

Theorem 2 Let X be a complex manifold which is hyperbolic with respect to the

Carath�eodory-Rei�en pseudometric and let Q be a compact quotient of X with respect

to a subgroup of the automorphism group of X which operates �xpointfree and properly

discontinuously. Then 


1

Q

is nef.

In particular, any compact quotient of a bounded domain G � C

n

possesses a nef

cotangent bundle. Since the canonical bundle of such a quotient is ample, this yields

a class of manifolds with maximal Kodaira dimension and nef cotangent bundle.

To prove theorem 2 we apply the technique of singular hermitian metrics which

was developed by Demailly. The Carath�eodory-Rei�en pseudometric of X de�nes a

Finsler structure on the tangent bundle of Q and this gives us a singular hermitian

metric on O

P(


1

Q

)

(1). The hyperbolicity of X guarantees that this metric is contin-

uous and that the associated curvature current is positive. These conditions imply

that O

P(


1

Q

)

(1) is nef.

Acknowledgments: I would like to thank M. Schneider and Th. Peternell for

their help and encouragement.
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1 Basic definitions and properties

Let X and Y be compact complex manifolds and let L be a holomorphic line bundle

on X.

Definition 1 (i) When X is projective, L is said to be nef, if L �C =

R

C

c

1

(L) � 0

for every curve C in X.

(ii) Let X be an arbitrary compact complex manifold equipped with a hermitian metric

!. Then L is said to be nef, if for all � > 0 there exists a smooth hermitian metric

h

�

on L such that the associated curvature form satis�es




h

�

(L) � �� � !:

(iii) Let E be a holomorphic vector bundle on X and P(E) the projective bundle of

hyperplanes in the �bres of E. Then we call E nef over X, if the tautological quotient

line bundle O

P(E)

(1) is nef over P(E).

We will frequently use the following propositions which are proved in [DPS].

Proposition 1 Let f : Y ! X be a holomorphic map and let E be a holomorphic

vector bundle over X. Then E nef implies f

�

E nef, and the converse is true if f is

surjective and has equidimensional �bres.

Proposition 2 Let E and F be holomorphic vector bundles. Then

(i) E;F nef ) E 
 F nef.

(ii) E nef ) det(E) nef.

Proposition 3 Let 0 ! F ! E ! Q ! 0 be an exact sequence of holomorphic

vector bundles. Then

(i) E nef ) Q nef.

(ii) F;Q nef ) E nef.

Proposition 1 immediately implies

Proposition 4 Let Y be a �nite unrami�ed covering of X. Then 


1

X

is nef if and

only if 


1

Y

is nef.

A �bration of X over Y is a surjective holomorphic map � : X ! Y whose �bres are

connected. A point x 2 X is said to be critical if the tangent map D�(x) has not

maximal rank. The images �(x) 2 Y of the critical points are the critical values of

�. They form a proper analytic subset of Y , i.e. in the case, where Y is a curve, a

�nite subset fa

1

; : : : ; a

l

g.

Let y 2 Y and let J be the ideal sheaf of y in O

Y

. Then the �bre X

y

is the complex

subspace (�

�1

(y);O

X

=�

�

(J ) � O

X

) of X, and a �bre X

y

is singular if and only if y

is a critical value. A �bration, for which D� has maximal rank everywhere, is called

smooth.

When we consider a �bration � : X ! C over a curve C, we will always assume

that C is smooth. Such a �bration is said to be almost smooth, if the only singular

�bres of � are multiples of smooth irreducible subvarieties. Their multiplicities will

be denoted by m

i

with 1 � i � l, so that the singular �bres are X

a

i

= m

i

F

i

, where

the F

i

are smooth irreducible subvarieties.
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We will denote the Kodaira dimension of X by �(X). Let X be a projective

manifold with �(X) � 1 for which a power of the canonical bundle is globally gen-

erated. Then for m big enough the m�canonical map gives us a holomorphic map

� : X ! Z where Z is a projective variety with dimZ = �(X). Such a map � is

called Iitaka �bration (cf. [Ue]).

2 Manifolds with � = 1 and nef cotangent bundle

We will now prove

Theorem 3 Let X be a minimal projective manifold of dimension n = 2 or 3 with

�(X) = 1 and let � : X ! C be the Iitaka �bration of X. Then the following

conditions are equivalent:

(i) 


1

X

is nef.

(ii) � is almost smooth, in the sense that the only singular �bres of � are multiples of

smooth elliptic curves (n = 2) resp. Abelian or hyperelliptic surfaces (n = 3).

� Exception: To prove (ii))(i) in the case n = 3 and g(C) = 0 we need the assumption

that

P

m

i

�1

m

i

� 2, where the m

i

are the multiplicities of the singular �bres.

� The equivalence of (i) and (ii) holds also for compact K�ahler surfaces.

Proof: (i)) (ii) If X is an n-dimensional projective manifold with 


1

X

nef, it satis�es

the Chern class inequality c

1

(X)

2

� c

2

(X) � 0, i.e.

c

1

(X)

2

�H

1

� : : : �H

n�2

� c

2

(X) �H

1

� : : : �H

n�2

� 0

for all ample divisors H

i

(cf. [DPS], Thm. 2.5). For n = 2 and 3 the abundance

conjecture holds which means that a power of the canonical bundle of X has to

be globally generated so that we get from �(X) = 1 that c

1

(X)

2

� 0 and hence

c

1

(X)

2

� c

2

(X) � 0. Here � denotes numerical equivalence.

So for n = 2 we have an elliptic surface X whose topological Euler characteristic is

e(X) = c

2

(X) = 0. On the other hand, if � : X ! C is the Iitaka �bration of X and

X

a

i

are the singular �bres (1 � i � l), we calculate e(X) =

P

e(X

a

i

) . But now the

assertion follows, because e(X

a

i

) � 0 and e(X

a

i

) = 0 if and only if the �bre X

a

i

is a

multiple of a smooth elliptic curve (cf. [BPV], Chap. III, Prop. 11.4). This argument

remains true for a compact K�ahler surface.

For n = 3 we have a minimal threefold with the extremal Chern classes c

1

(X)

2

�

3c

2

(X) � 0 and the assertion follows from [PW], Theorem 2.1.

(ii)) (i) We will prove this direction by reducing it to the case of a smooth �bration.

2.1 Smooth fibrations

We will consider smooth Abelian �brations �rst:

Proposition 5 Let X and Y be projective manifolds and let � : X ! Y be a smooth

�bration, whose �bres are Abelian varieties. Then the relative cotangent bundle 


1

X=Y

is nef. If 


1

Y

is nef, 


1

X

is nef too.

Proof: (1) We claim that �

�

(�

�




1

X=Y

) = 


1

X=Y

. For all y 2 Y the cotangent bundle of

the �bre 


1

X

y

is trivial, so that �

�




1

X=Y

is locally free of rank equal to the dimension
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of the �bres (cf. [Ha], Chap. III, Cor. 12.9). Moreover for all y 2 Y we have

(�

�




1

X=Y

)

y

�

=

H

0

(X

y

;


1

X

y

) and thus (�

�

(�

�




1

X=Y

))

x

�

=

H

0

(X

y

;


1

X

y

) for �(x) = y .

Now, the canonical homomorphism � : �

�

(�

�




1

X=Y

) ! 


1

X=Y

is described stalkwise

by �

x

: � 7! �(x) with � 2 H

0

(X

y

;


1

X

y

). Since 


1

X=Y

j

X

y

is globally generated, �

x

is surjective and hence bijective.

(2) Any smooth �bration � : X ! Y of projective manifolds gives rise to a variation

of the Hodge structure in its �bres X

y

(y 2 Y ). From this Gri�ths deduces [Gr], Cor.

7.8

Theorem 4 For all n 2 f1; : : : ; dim

C

X

y

g the bundles R

n

�

�

(O

X

) are seminegative

in the sense of Gri�ths.

Now the bundle E = R

n

�

�

(O

X

) is conjugate linear to

�

E = �

�

(


n

X=Y

) so that the

curvature matrices with respect to unitary bases behave as




�

E

=

�




E

= �


t

E

:

Since the transposition of the curvature matrix does not change its positivity proper-

ties, the preceding theorem can equivalently be formulated as

Theorem 5 For all n 2 f1; : : : ; dim

C

X

y

g the bundles �

�

(


n

X=Y

) are semipositive in

the sense of Gri�ths.

In particular, since semipositivity implies \nefness", �

�

(


n

X=Y

) is nef and hence for

a smooth Abelian �bration 


1

X=Y

= �

�

(�

�




1

X=Y

) is nef too. The second assertion

follows immediately from the relative cotangent sequence and Proposition 3.

Remark: Proposition 5 holds also for compact elliptic surfaces � : X ! C, because

for a smooth � one knows from the study of the period map that deg(�

�

!

X=C

) = 0

(cf. [BPV], Chap. III, Thm. 18.2).

We have a similar proposition for smooth hyperelliptic �brations:

Proposition 6 Let X be a projective 3-dimensional manifold and let � : X ! C be

a smooth �bration, whose �bres are hyperelliptic surfaces. Furthermore, let g(C) � 1.

Then 


1

X

is nef.

Proof: We consider the relative Albanese factorization of �, i.e. the commutative

diagram

X

A

�

�! A(X=C)

� & # Alb(�)

C;

where A(X=C) is a smooth �bration over C whose �bres over a 2 C are the Albanese

tori Alb(X

a

) of the �bres X

a

of �. The existence of such a relative Albanese diagram is

proved in [Ca]. Since the tangent bundle of a hyperelliptic surface is nef, the Albanese

map A

�

j

X

a

: X

a

! Alb(X

a

) is a surjective submersion with smooth elliptic curves as

�bres ([DPS], Prop. 3.9.). But also A

�

is smooth: let x 2 X;�(x) = a and A

�

(x) = y,

then both tangent directions of TA(X=C)

y

lie in the image of DA

�

(x). First, we can
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�nd a tangent vector v 2 (TA(X=Y ) j

Alb(X

a

)

)

y

in the image of DA

�

(x) j

X

a

(because

A

�

j

X

a

is smooth). Now let (x

1

; x

2

; x

3

) be a coordinate system centered in x and let z

1

be a coordinate centered in a, such that D�(x):

@

@x

1

=

@

@z

1

. Using the commutativity

of the relative Albanese diagram, we get

0 6= D�(x):

@

@x

1

= DAlb(�)(y) �DA

�

(x):

@

@x

1

:

In particular, w := DA

�

(x):

@

@x

1

6= 0; and since DAlb(�)(y):v = 0 the vectors v and

w have to be linear independent.

We can now apply Proposition 5 twice to conclude that 


1

X

is nef: Alb(�) : A(X=C)!

C is a smooth �bration of projective manifolds whose �bres are elliptic curves and

by assumption g(C) � 1, so that 


1

A(X=C)

has to be nef. Since A

�

: X ! A(X=C) is

a smooth elliptic �bration too, 


1

X

is also nef.

2.2 Almost smooth fibrations

Let X be a compact complex manifold of dimension n and let � : X ! C be an

almost smooth �bration over a smooth curve C. As above we will denote the critical

values of � by a

1

; : : : ; a

l

and their multiplicities bym

i

where 1 � i � l, so that the

singular �bres are X

a

i

= m

i

F

i

, where the F

i

are smooth irreducible subvarieties.

To get rid of the multiple �bres we will now perform a base change which was in-

troduced by Kodaira for elliptic surfaces ([Kod], Thm 6.3), but may be used in this

general context as well. Let m

0

be the lowest common multiple of the multiplicities

and let d be their product. Then we choose a �nite covering � : C

0

! C, which has

d

m

i

rami�cation points of order m

i

� 1 over the points a

i

where 0 � i � l. Remark that

we have to add one extra point a

0

which is not contained in the set of critical values.

Then the normalization of the �bre product X �

C

C

0

gives us a smooth �bration

' : X

0

! C

0

and a commutative diagram (cf. [Kod], Thm 6.3)

X

0

f

�! X

' # # �

C

0

�

�! C :

Here f is a �nite covering which is unrami�ed over X � �

�1

(a

0

), because the multi-

plicities of � and � compensate each other over a

i

(i � 1), and f has

d

m

0

rami�cation

divisors of order m

0

� 1 over �

�1

(a

0

).

Assume that we knew 


1

X

0

is nef, then we would like to carry this over to 


1

X

. How-

ever, it is not possible to apply Proposition 4 since f is rami�ed. But we have the

following commutative diagram with exact rows which was already used in [Fu]

0 �! f

�

(L) �! f

�

(


1

X

) �! 


1

X

0

=C

0

�! 0

# # k

0 �! '

�

(K

C

0

) �! 


1

X

0

�! 


1

X

0

=C

0

�! 0:

Let D =

P

l

i=1

(m

i

� 1)F

i

then L = �

�

(K

C

) 
 O

X

(D) is the full subbundle of 


1

X

associated to �

�

(K

C

) (cf. [Re]). To prove the commutativity of this diagram one uses
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basically the fact that the restriction of f to a �bre of ' is unrami�ed. For i � 1 we

have �

�

(a

i

) = m

i

F

i

. So, de�ning A :=

P

l

i=1

(m

i

�1)

m

i

�a

i

we get L = �

�

(K

C


O

C

(A)).

Combining the diagram and Proposition 5, we obtain

Corollary 1 Let X be a projective manifold of arbitrary dimension and let � :

X ! C be an almost smooth �bration, whose �bres are Abelian varieties. Assume

furthermore that (i) g(C) � 1 or (ii) g(C) = 0 and degA � 2. Then 


1

X

is nef.

Proof: The process described above allows us to pass to a smooth Abelian �bration ',

for which 


1

X

0

=C

0

is nef by Proposition 5. Moreover the line bundle L = �

�

(K

C


 A)

is nef, since our assumptions guarantee that deg(K

C


A) = 2g(C)�2+deg A � 0. If

L is nef, then f

�

(L) and f

�

(


1

X

) are nef (Proposition 3). Since f is a �nite surjective

map, we �nally deduce from Proposition 1 that 


1

X

is nef.

Remark: (i) The corollary holds for arbitrary compact surfaces too, because

Proposition 5 remains true in that case.

(ii) If S is a surface with �(S) = 1 and � : S ! P

1

is an almost smooth elliptic

�bration, the condition that degA � 2 (resp. that L is nef) is automatically satis�ed.

We have deg(�

�

(!

S=P

1

)) = 0 and therefore �

�

(!

S=P

1

) = O

P

1

(cf. [BPV]). Now the

formula for the canonical bundle of an elliptic �bration yields K

S

= �

�

(K

P

1

)
O

S

(D),

so that L = K

S

is nef since �(S) = 1.

Similarly we get

Corollary 2 Let X be a projective 3-dimensional manifold with �(X) � 0 and let

� : X ! C be an almost smooth �bration, whose �bres are hyperelliptic surfaces.

Assume furthermore that (i) g(C) � 1 or (ii) g(C) = 0 and degA � 2. Then 


1

X

is

nef.

Proof: To deduce from Proposition 6 that 


1

X

0

=C

0

is nef as a quotient of 


1

X

0

, we

have to assure that g(C

0

) � 1. But g(C

0

) = 0 leads to �1 = �(X

0

) � �(X) which

contradicts our assumptions.

In particular, these two corollaries yield the direction (ii)) (i) in Theorem 3

which is now completely proved.

3 Quotients with nef cotangent bundle

The goal of this section is to prove that compact quotients of a manifold which is hy-

perbolic with respect to the Carath�eodory-Rei�en pseudometric have a nef cotangent

bundle. We will use the notion of singular hermitian metrics as introduced in [De1]:

Definition 2 Let L be a holomorphic line bundle over a compact complex manifold

X and let �

�

: L j

U

�

'

�! U

�

� C be a local trivialization of L. Then a singular

hermitian metric on L is given by

k�k = j�

�

(�)j � e

�'

�

(x)

; x 2 U

�

; � 2 L

x

;

where '

�

2 L

1

loc

(U

�

) is an arbitrary real valued function, called the weight function

of the metric with respect to the trivialization �

�

.
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The curvature form of the singular metric on L is locally given by the closed (1; 1)-

current c(L) =

i

�

@

�

@'

�

. We will write c(L) � 0, if c(L) is a positive current in the

sense of distribution theory, i.e. if the weight functions '

�

are plurisubharmonic.

Remark: We will say that a singular metric is continuous (or simply that it is a

continuous metric), if the weight functions '

�

are continuous on the trivialization

sets.

The main ingredient for the following arguments will be the next proposition which

is independently due to Demailly, Shi�man and Tsuji (see e.g. [De2])

Proposition 7 Let L be a holomorphic line bundle on a compact complex manifold

X. Then L is nef, if there exists a continuous metric with c(L) � 0.

In fact the proposition is even true in the case where the Lelong numbers of the metric

(which are zero everywhere for a continuous metric) are zero except for a countable

set of points (cf. Thm. 4.2 in [JS]).

Let E be a holomorphic vector bundle over a compact complex manifold X. As in

[Rei] and [Ko] we de�ne

Definition 3 A Finsler structure on E is a continuous function F : E ! R

�0

, so

that for all � 2 E:

(i) F (�) > 0 for � 6= 0,

(ii) F (��) = j�jF (�) for all � 2 C .

If we require in (i) only �, F is said to be a Finsler pseudostructure.

Let P (E) denote the projective bundle of lines in the �bres of E, p : P (E) ! X

the projection and O

P (E)

(�1) the subbundle of p

�

E whose �bre over a point in

P (E) is given by the complex line represented by that point. Then we have a map

~p : O

P (E)

(�1) ! E which is biholomorphic outside the zero sections of O

P (E)

(�1)

and E. The set of all plurisubharmonic functions on a complex manifold Y will be

denoted by PSH(Y ).

Proposition 8 (a) Any Finsler structure F on E de�nes via

k�k := F � ~p(�); � 2 O

P (E)

(�1):

a continuous metric on O

P (E)

(�1).

(b) If logF 2 PSH(Enf0g), then �'

�

2 PSH(U

�

).

Proof: (a) Let �

�

: O

P (E)

(�1) j

U

�

'

�! U

�

� C be a local trivialization and let s

�

be a

local holomorphic section of O

P (E)

(�1) j

U

�

which describes the trivialization. Then

the corresponding weight function is

�'

�

(x) = log ks

�

(x)k = logF � ~p(s

�

(x)); x 2 U

�

:

The map ~p � s

�

: U

�

! E is clearly holomorphic. Moreover for x 2 U

�

we have

s

�

(x) 6= 0, so that property (i) in the de�nition of Finsler structures leads to

F � ~p(s

�

(x)) > 0. From this we conclude �'

�

2 C

0

(U

�

).

(b) If f : Y ! Z is a holomorphic map between complex manifolds and the function

u 2 PSH(Z), then u � f 2 PSH(Y ) (cf. [JP], Appendix, PSH 7). So, since ~p � s

�

is

holomorphic, we have �'

�

2 PSH(U

�

).
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Proposition 9 Let E ! X be a holomorphic vector bundle over a compact complex

manifold X. If there exists a Finsler structure F : E ! R

�0

such that logF 2

PSH(Enf0g), then E

�

is nef.

Proof: To prove that E

�

is nef, we have to show that L := O

P (E)

(1)

�

=

O

P(E

�

)

(1)

is nef. According to Proposition 8 the Finsler structure F : E ! R

�0

induces a

continuous metric on O

P (E)

(�1) so that �'

�

2 PSH(U

�

). For the dual bundle

L = O

P (E)

(1) equipped with the dual metric the weight functions are given by

'

�

�

= �'

�

, hence we have a continuous metric on L whose current is positive and

the assertion follows from Proposition 7.

Let X be a connected complex manifold. A Finsler (pseudo-) structure on the

tangent bundle TX is called a di�erential (pseudo-) metric. Any such X admits a

di�erential pseudometric: for p 2 X and � 2 TX

p

we de�ne




X

(p; �) := supfjDg(p):�j : g 2 O(X;�); g(p) = 0g;

where � is the open unit disc in C and O(X;�) the set of all holomorphic maps from

X to �. Rei�en shows in [Rei]:

Proposition 10 The map 


X

: TX ! R

�0

is a di�erential pseudometric, which has

the following invariance property. Let f : X ! Y be a holomorphic map of connected

complex manifolds, then




Y

(f(p); Df(p):�) � 


X

(p; �);

in particular, for a biholomorphic map f the equality holds.

The function 


X

is called the Carath�eodory-Rei�en pseudometric and X is said to be


-hyperbolic, if 


X

is a di�erential metric.

Examples: (i) Any bounded domainG � C

n

is 
-hyperbolic (cf. [JP], Chap. II, Prop.

2.3.2).

Proposition 10 immediately implies: let i : X ! Y be a holomorphic immersion and

let Y be 
-hyperbolic, then X is 
-hyperbolic too. This gives us

(ii) Let Y be a Stein manifold and let

~

G be a bounded domain in Y , i.e. there exists

an embedding Y ,! C

N

and a bounded domain G � C

N

, such that

~

G = Y \ G is

connected. Then

~

G is 
-hyperbolic.

Proposition 11 Let X be a 
-hyperbolic manifold. Then the function

log 


X

: TXnf0g ! (�1;+1)

is plurisubharmonic.

Proof: Since the logarithm is strictly increasing, we have

log 


X

(p; �) = supflog jDg(p):�j : g 2 O(X;�); g(p) = 0g:

The tangent map of a holomorphic map is again holomorphic, so that ~g(p; �) :=

log jDg(p):�j is in PSH(TX) (see [JP], Appendix, PSH 4). Hence log 


X

= sup

g

f~gg

is the supremum of plurisubharmonic functions. By assumption 


X

is a di�erential
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metric, i.e. 


X

is continuous and 


X

: TXnf0g ! R

>0

, thus log


X

: TXnf0g !

(�1;1) is also continuous. Now we get our assertion from the following fact ([JP],

Appendix, PSH 14). If a family (u

�

)

�2A

of plurisubharmonic functions is locally

uniformly bounded from above, then the function

u

0

:= (sup

�2A

u

�

)

�

is again plurisubharmonic, where \�" denotes the upper semicontinuous regulariza-

tion. But we don't need to regularize log 


X

, since it is already continuous and this

assures also that the family f~gg is locally uniformly bounded from above.

Let G be a subgroup of the automorphism group Aut(X), which operates �xpointfree

and properly discontinuously on X. Then the quotient Q = X=G is a Hausdor� space

which admits a unique complex structure, such that the projection � : X ! Q is a

holomorphic and locally biholomorphic map. We can now prove

Theorem 6 Let X be a 
-hyperbolic manifold and let Q = X=G be a compact quotient

as above. Then the cotangent bundle 


1

Q

is nef.

Proof: As local coordinates  for Q we can take �

�1

restricted to appropriate open

sets such that a coordinate change is described by  

1

�  

�1

0

= f , where f 2 G (cf.

[W], Chap. V, Prop. 5.3.). Then we de�ne for q 2 Q and � 2 TQ

q

F (q; �) := 


X

( (q); D (q):�):

Since the Carath�eodory-Rei�en metric 


X

is invariant under biholomorphic transfor-

mations (Proposition 10), this de�nition does not depend on the choice of the local

coordinate and gives us a di�erential metric F on TQ. Moreover Proposition 11

implies that logF 2 PSH(TQnf0g). Now the assertion follows from Proposition 9.

In particular, compact quotients of a bounded domain in C

n

or in a Stein manifold

have nef cotangent bundles.
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Abstract. We prove that if X is a smooth projective threefold with b

2

= 1

and Y is a Fano threefold with b

2

= 1, then for a non-constant map f : X !

Y , the degree of f is bounded in terms of the discrete invariants of X and

Y . Also, we obtain some stronger restrictions on maps between certain Fano

threefolds.
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1. Introduction

Let X, Y be smooth complex n-dimensional projective varieties with Pic(X)

�

=

Pic(Y )

�

=

Z. Let f : X ! Y be a non-constant morphism. It is a trivial conse-

quence of Hurwitz's formula

K

X

= f

�

K

Y

+ R

that if Y is a variety of general type, then deg(f) is bounded in terms of the numerical

invariants of X and Y , and in particular all the morphisms from X to Y �t in a �nite

number of families.

If we drop the assumption that Y is of general type, then this assertion is no longer

quite true. Indeed, if Y is a projective space P

n

, for any X we can construct in�nitely

many families of maps X ! Y : take an embedding of X in P

N

by any very ample

divisor on X and then project the image to P

n

. However, one might ask if P

n

is the

only variety with this property (the following conjectures are suggested by A. Van de

Ven) :

Conjecture A: Let X, Y be as above and Y 6

�

=

P

n

. Then there is only �nitely many

families of maps from X to Y . Moreover, the degree of a map f : X ! Y can be

bounded in terms of the discrete invariants of X and Y .

A weaker version is the following
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Conjecture B: Let X, Y be smooth n-dimensional projective varieties with b

2

(X) =

b

2

(Y ) = 1. Suppose Y 6

�

=

P

n

and, if n = 1, that Y is not an elliptic curve. Then the

degree of a map f : X ! Y can be bounded in terms of the discrete invariants of X

and Y .

Remark: If n = 1, the Conjecture A is empty and the Conjecture B is trivial. If

n = 2, one must check the Conjecture A with Y a K3-surface, and at the moment I

do not know how to do this. This problem, of course, does not arise for Conjecture B,

which again becomes a triviality in dimension two (note that if for a smooth complex

projective variety V we have b

1

(V ) 6= 0 and b

2

(V ) = 1, then V is a curve). The

assumption in the Conjecture B that Y is not an elliptic curve is , of course, necessary:

any torus has endomorphisms of arbitrarily high degree given by multiplication by an

integer.

Evidence: It seems likely that \the more ample is the canonical sheaf on Y , the more

di�cult it becomes to produce maps from X to Y ". Of course, the projective space

has the \least ample" canonical sheaf: K

P

n

= �(n + 1)H, where H is a hyperplane.

The next case is that of a quadric: K

Q

n

= �nH with H a hyperplane section. For

n = 3, it has been proved by C.Schuhmann ([S]) that the degree of a map from a

smooth threefold X with Picard group Z to the three-dimensional quadric is bounded

in terms of the invariants of X. In [A], I have suggested a simpler method to prove

results of this kind, which also generalizes to higher dimensions.

The main purpose of this paper is to show by a rather simple method that for Fano

threefolds Y , at least for those with very ample generator of the Picard group, the

above Conjecture B is true (we also show that for many of such threefolds Conjecture

A holds). The boundedness results are proved in the next section. In Section 3,

we obtain in a similar way a strong restriction on maps between \almost all" Fano

threefolds with Picard group Z. This is related to the \index conjecture" of Peternell

which states that if f : X ! Y is a map between Fano varieties of the same dimension

with cyclic Picard group, then the index of Y is not smaller than that of X. This

conjecture is studied for Fano threefolds by C.Schuhmann in her thesis, and one of

her main results is that there are no maps from such a Fano threefold of index two to

a Fano threefold of index one with reduced Hilbert scheme of lines. An extension of

this result appears also in Theorem 3.1 of this paper ; however, there is at least one

Fano threefold of index one with non-reduced Hilbert scheme of lines, namely, Mukai

and Umemura's V

22

. The last section of this paper deals with this variety: it is proved

that a Fano threefold of index two with Picard group Z does not admit a map onto

it. One would think that the Mukai-Umemura V

22

is the only Fano threefold of genus

at least four with cyclic Picard group and non-reduced Hilbert scheme of lines. The

proof of this would be a solution to the \index conjecture" in the three-dimensional

case (recall that a Fano threefold of index one and genus at most three has the third

Betti number which is bigger than the third Betti number of any Fano threefold of

index two ([I1] ,table 3.5), so we do not have to consider the case of genus less than

four to prove the index conjecture). In fact even a weaker statement would su�ce

(see Theorem 3.1).
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This paper can be viewed as a very extensive appendix to [A], as a large part of the

method is described there.

We will often use the following notations: Generally, for X � P

n

, H

X

denotes the

hyperplane section divisor on X. Also, for X with cyclic Picard group, we will call

H

X

the ample generator of Pic(X) (in this paper it will mostly be assumed that H

X

is very ample). By V

k

, following Iskovskih, we will often denote a Fano threefold with

cyclic Picard group, which has index one and for which H

3

X

= k (k will be called the

degree of this Fano threefold). For Grassmann varieties, we use projective notation:

G(k; n) denotes the variety of projective k-subspaces in the projective n-space.

Finally, throughout the paper we work over the �eld of complex numbers.

Acknowledgments: I would like to thank Professor A. Van de Ven for many helpful

discussions. I am grateful to Frank-Olaf Schreyer for explaining me many facts on

V

22

and for letting me use his un�nished manuscript [Sch], and also to Aleksandr

Kuznetsov for giving me his master's thesis [K]. The �nal version of this paper was

written during my stay at the University of Bayreuth, to which I am grateful for its

hospitality and support.

2. Boundedness

Let Y be a Fano threefold such that Pic(Y )

�

=

Z, and suppose that the positive

generator of the Picard group is very ample. When speaking of deg(Y ) and other

notions related to the projective embedding ( e.g. the sectional genus g(Y ) of Y ) we

will suppose that this embedding is given by global sections of the generator.

It is well-known ([I],I, section 5 ) that if Y is of index two, then lines on Y are

parameterized by a smooth surface F

Y

(the Fano surface) on Y . A general line on Y

has trivial normal bundle, and there is a curve on F which parametrizes lines with

the normal bundle O

P

1
(�1) �O

P

1
(1) (let us call them (-1,1)-lines). If Y is of index

one, than Y contains a one-dimensional family of lines ([I], II, section 3); the normal

bundle of a line is then either O

P

1
(�1)�O

P

1
, or O

P

1
(�2)�O

P

1
(1). In the last case

such a line is of course a singular point of the Hilbert scheme. In the sequel we will

use the simple fact that if the Hilbert scheme of lines on a Fano threefold of index one

is non-reduced, i.e. every line of one of its irreducible components is (-2,1), then the

surface covered by the lines of this component is either a cone, or a tangent surface

to a curve.

If the generator H

Y

of Pic(Y ) is not very ample, there still exist \lines" on Y : we call

a curve C a line if C �H

Y

= 1. In this case, however, there exist other possibilities

for the normal sheaf N

C;Y

. If Y is a threefold of index 2 and H

3

Y

= 1, C can even be

a singular curve and, moreover, if we want our \lines" to �t into a Hilbert scheme,

we must also allow embedded points ([T]).

At this point, it is convenient to recall from [I] which Fano threefolds have very

ample/not very ample generator of the Picard group. For index two, the threefolds

with very ample generator are cubics, intersections of two quadrics and the linear

section of G(1; 4); the other threefolds are double covers of P

3

branched in a quartic

(quartic double solids) and double covers of the Veronese cone branched in a cubic

section of it (double Veronese cones). For index one, we have nine families of threefolds
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with very ample generators, plus double covers of the quadric branched in a quartic

section and double covers of P

3

branched in a sextic.

Often we will assume here for simplicity that H

Y

is very ample, and discuss the other

case in remarks.

We start by proving the following

Proposition 2.1 A) If Y is a Fano threefold (with Pic(Y )

�

=

Z, H

Y

very ample) of

index 2 such that the surface U

Y

� Y which is the union of all (-1,1)-lines on Y is in

the linear system jiH

Y

j with i � 5, then for any threefold X, Pic(X)

�

=

Z, the degree

of a map f : X ! Y is bounded in terms of the discrete invariants of X.

B) If Y is a Fano threefold of index 1 with Pic(Y )

�

=

Z, H

Y

very ample, such that

the surface S

Y

� Y which is the union of all lines on Y is in the linear system iH

Y

with i � 3, then for any threefold X, Pic(X)

�

=

Z, the degree of a map f : X ! Y is

bounded in terms of the discrete invariants of X.

Proof: Let m be such that f

�

H

Y

= mH

X

. Notice that by Hurwitz' formula, our

conditions on U

Y

resp. S

Y

just mean that if deg(f) is big enough, then not the whole

inverse image of U

Y

resp. S

Y

is contained in the rami�cation. Indeed, if Y is, say, of

index one, we have K

Y

= �H

Y

. The Hurwitz formula reads

K

X

= �mH

X

+R:

If the whole inverse image of S

Y

is in the rami�cation, then R is at least

3

2

mH

X

,

so m cannot get very big. Therefore one gets that the inverse image D of a general

(-1,1)-line on Y (in the index-two case) or a general line on Y (in the index-one case)

has a reduced irreducible component C.

Let Y be a Fano threefold of index two satisfying U

Y

= iH

Y

with i � 5. For C and

D as above, there is a natural morphism

� : (I

C

=I

2

C

)

�

! (I

D

=I

2

D

)

�

j

C

= O

C

(m) �O

C

(�m);

and this map must be an isomorphism at a smooth point of D, i.e. at a su�ciently

general point of C, as C is reduced. Now, also due to the fact that C is reduced, the

natural map

 : T

X

j

C

! (I

C

=I

2

C

)

�

is a generic surjection. Therefore if we �nd an integer j such that T

X

(j) is globally

generated, we must have m � j.

Such j depends only on the discrete invariants of X. Indeed, let A be a very ample

multiple of H

X

. A linear subsystem of the sections of A gives an embedding of a

threefold X into P

7

. We have

T

X

(K

X

) = �

2




X

:

�

2




X

is a quotient of �

2




P

7
j

X

, and we deduce from this that �

2




X

(3A) is generated

by the global sections. So T

X

(K

X

+ 3A) is generated by the global sections, and j

can be taken such that K

X

+ 3A = jH

X

. So one only needs to know which multiple

of H

X

is very ample, and this can be expressed in terms of the discrete invariants of

X (see for example [D] for many results in this direction).
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The case of index one is completely analogous: a normal bundle of any line on a Fano

threefold of index one has a negative summand.

Remark A: The assumption on the very ampleness of the generator of Pic(Y ) is

not really necessary to prove Proposition 2.1. Otherwise, we call \lines" curves C

satisfying C � H

Y

=1. These curves are rational. One has then to count with the

possibility that e. g. some of the \lines" on such a Fano 3-fold of index two can have

normal bundle O

P

1
(�2) � O

P

1
(2), but this is not really essential for the argument:

as soon as we can �nd su�ciently big 1-parameter family of smooth rational curves

with a negative summand in the normal bundle, our method works.

Examples of Fano threefolds Y satisfying our assumptions on S

Y

, U

Y

:

1) Y a cubic in P

4

and

2) Y an intersection of two quadrics in P

5

. To check this is more or less standard and

almost all details can be found in [CG] for a cubic and in [GH] (Chapter 6) for an

intersection of two quadrics. For convenience of the reader, we give here the argument

for Y an intersection of two quadrics in P

5

:

Let F � G(1; 5) be a surface which parametrizes lines on Y (Fano surface) , and let

U ! F be the family of these lines. The rami�cation locus of the natural �nite map

U ! Y consists exactly of (-1,1)-lines, that is, the surface M covered by (-1,1)-lines

on Y is exactly the set of points of Y through which there pass less than four lines

(of course there are four lines through a general point of Y ). F is the zero-scheme

of a section of the bundle S

2

U

�

� S

2

U

�

on G(1; 5). A standard computation with

Chern classes yields then that K

F

= O

F

(in fact, F is an abelian variety ([GH])).

For a general line l � Y consider a curve C

l

� F which is the closure in F of lines

intersecting l and di�erent from l. C

l

contains l i� l is (-1,1). C

l

is smooth for any

l ([GH]). By adjunction, C

l

has genus 2. So the rami�cation R of the natural 3:1

morphism h

l

: C

l

! l sending l

0

to l \ l

0

( with l general, i.e. not a (-1,1)-line) has

degree 8. The branch locus of h consists of intersection points of l and the surface

M of (-1,1)-lines, and so we have that this surface is in jiH

Y

j with i � 4 and i = 4

only if there are only 2 lines through a general point of M . This is again impossible:

otherwise, for l a (-1,1)-line, C

l

would be birational to l. In fact, one gets that i = 8.

3) Y a quartic double solid. The computations are rather similar, and the best

reference is [W]. Bitangent lines to the quartic surface give pairs of \lines" on Y as

their inverse images under the covering map. Welters proves the following results:

the Fano surface F

Y

has only isolated singularities (and is smooth for a general Y );

the curve C

l

for a general l is smooth except for one double point; there are 12 \lines"

through a general point of Y ; p

a

(C

l

) = 71. We use these results to conclude that Y

satis�es our assumptions.

4) Y is a \su�ciently general" Fano threefold of index one ( of course we assume that

Pic(Y )

�

=

Z and that the positive generator of Pic(Y ) is very ample), deg(Y ) 6= 22:

see [I], II, proof of th. 6.1. It is computed there that a Fano threefold Y of index one

(with very ample H

Y

) with reduced scheme of lines satis�es our assumption on S

Y

i� deg(Y ) 6= 22. By the classi�cation of Mukai ([M]), any Fano threefold of index one

as above except V

22

's is a hyperplane section of a smooth (Fano) fourfold. Clearly, a

general line on a Fano fourfold of index two has trivial normal bundle. So a general
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hyperplane section of such a fourfold has reduced Hilbert scheme of lines.

5) Y any Fano threefold of index one and genus 10: Prokhorov shows in [P] that the

Hilbert scheme of lines on any such threefold is reduced.

6) Y any Fano threefold V

14

of index one and genus 8: such a threefold is a linear

section of G(1; 5) in the Pl�ucker embedding. Iskovskih shows in [I], II, proof of th. 6.1

(vi), that on such a threefold with reduced scheme of lines, lines will cover a surface

which is linearly equivalent to 5H. So one sees that if the lines cover only H or 2H,

the scheme of lines is non-reduced and the surface covered by lines consists of one

or two components which are hyperplane sections of Y . Moreover, as a V

14

does not

contain cones, all the lines in one of the components must be tangent to some curve

A. One checks easily that this curve is a rational normal octic. A is then the Gauss

image of a rational normal quintic B in P

5

([A], proof of Proposition 3.1(ii)). This

makes it possible to check that there is no smooth three-dimensional linear section of

G(1; 5) containing the tangent surface to A. Indeed, one can assume that B is given

as

(x

5

0

: x

4

0

x

1

: ::: : x

5

1

); (x

0

: x

1

) 2 P

1

;

one computes then that the Gauss image of B in G(1; 5) � P

14

(where G(1; 5) is

embedded to P

14

by Pl�ucker coordinates (z

i

), the order of which we take as follows:

for a line l through p = (p

0

: ::: : p

5

) and q = (q

0

: ::: : q

5

) we take z

0

= p

0

q

1

�p

1

q

0

; z

1

=

p

0

q

2

� p

2

q

0

; ...; z

5

= p

1

q

2

� p

2

q

1

; ...; z

14

= p

4

q

5

� p

5

q

4

) generates the linear subspace

L given by the following equations:

z

2

= 3z

5

; z

3

= 2z

6

; z

4

= 5z

9

;

z

7

= 3z

9

; z

8

= 2z

10

; z

11

= 3z

12

:

So we must consider all the projective 9-subspaces through L and prove that the

intersection of every such space with G(1; 5) is singular. This can be done for example

as follows: let L

�

=

P

5

be a parametrizing variety for these 9-subspaces. Notice that

the points x = (1 : 0 : ::: : 0) and y = (0 : ::: : 0 : 1) belong to our curve A. Notice

that if t is a point of A, then the set L

t

= fM 2 L : M \ G(1; 5) is singular at tg

is a hyperplane in L. If we see that these sets are di�erent at di�erent points t, we

are done. It is not di�cult to check explicitly (writing down the matrix of partial

derivatives) that for x = (1 : 0 : ::: : 0) 2 A and y = (0 : ::: : 0 : 1) 2 A, L

x

6= L

y

: if a

9-space M through L is given by the equations

a

1i

(z

2

� 3z

5

) + a

2i

(z

3

� 2z

6

) + a

3i

(z

7

� 3z

9

)+

+a

4i

(z

8

� 2z

10

) + a

5i

(z

11

� 3z

12

) + a

6i

(z

4

� 5z

9

) = 0

for i = 1; :::; 5, then M 2 L

x

if and only if

det(a

ki

)

i=1;2;3;4;5

k=1;2;3;4;6

= 0

and M 2 L

y

if and only if

det(a

ki

)

i=1;2;3;4;5

k=1;2;3;4;5

= 0:

These conditions are clearly di�erent.
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Examples of Fano threefolds not satisfying assumptions of Proposition

2.1:

1) Y is a linear section of G(1; 4) in the Pl�ucker embedding: the surface U

Y

has degree

10.

2) Y is a Fano variety of index one and genus 12 (V

22

). The surface of lines belongs

to j � 2K

Y

j for all V

22

's but one ([P]), for which the scheme of lines is non-reduced

and the surface covered by lines belongs to j �K

Y

j. This threefold with non-reduced

Hilbert scheme of lines (the Mukai-Umemura variety) will be denoted V

s

22

.

Question: Are these the only examples?

Remark B: Though any V

22

violates the assumption of the Proposition 2.1, for a

V

22

with the reduced Hilbert scheme of lines (therefore for all V

22

's but one) the

boundedness of the degree of a map f : X ! V

22

can be proved. The point is that

a general line on such a V

22

has the normal bundle O

P

1
� O

P

1
(�1), so if U is the

universal family of lines on V

22

and � : U ! V

22

is the natural map, then � is an

immersion along a general line. Now if the preimage of a general line l is not contained

in the rami�cation R, one can proceed as before. If it is, then let C be the reduction

of an irreducible component of f

�1

(l), and let k be such that at a general point of

the component of R containing C, the rami�cation index is k�1 (i.e. \k points come

together".) It turns out that using our observation about �, we can then estimate

the arithmetic genus of C (see [A], section 5). Namely, let f

�

H

V

22

= mH

X

and let

K

X

= rH

X

. We get then

2p

a

(C)� 2 � (r �

m

k

)CH

X

:

Suppose now that k � 1 is a smallest rami�cation index for R. Hurwitz' formula

implies that if r <

m

3

, then k = 2. So if m gets big, p

a

(C) becomes negative, and this

is impossible.

Concerning the remaining Fano threefolds (in particular, V

s

22

and G(1; 4)

T

P

6

), we

can prove a weaker result (as in Conjecture B):

Proposition 2.2 Let Y be a Fano threefold with Pic(Y ) = Z and with H

Y

very

ample, let X be a smooth threefold with b

2

(X) = 1 and let f : X ! Y be a morphism.

If either Y is of index two, or Y is of index one with non-reduced Hilbert scheme of

lines, then the degree of f is bounded in terms of the discrete invariants of X.

Proof: Consider for example the index one case. We have that Y has a one-dimensional

family of (�2; 1)-lines. If we take a smooth hyperplane section H through a line l of

this family, the sequence of the normal bundles

0! N

l;H

! N

l;Y

! N

H;Y

j

l

! 0

splits.

Therefore, if M is the inverse image of H and C is the inverse image of l (scheme-

theoretically), the sequence

0! N

C;M

! N

C;X

! N

M;X

j

C

! 0
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also splits.

It is not di�cult to see that for a general choice of l and H, the surface M has

only isolated singularities. As M is a Cartier divisor on a smooth variety X (say

M 2 jO

X

(m)j), M is normal.

Now we are in the situation which is very similar to that of the following

Theorem (R. Braun, [B]): Let W be a Cartier divisor on a variety V of dimension

n, 2 � n < N , in P

N

such that W has an open neighborhood in V which is locally a

complete intersection in P

N

. If the sequence of the normal bundles

0! N

W;V

! N

W;P

N ! N

V;P

N j

W

! 0 (�)

splits, then W is numerically equivalent to a multiple of a hyperplane section of V .

It turns out that if we replace here W , V , P

N

by C, M , X as in our situation, the

similar statement is true. The only additional assumption we must make is that M

is su�ciently ample, i.e. m is su�ciently big:

Claim: Let X be a smooth projective 3-fold with b

2

(X) = 1, and letM be a su�ciently

ample normal Cartier divisor on X. If C is a Cartier divisor on M and the sequence

0! N

C;M

! N

C;X

! N

M;X

j

C

! 0

splits, then C is numerically equivalent to a multiple of H

X

j

M

.

The proof of this claim is almost identical to that of Braun's theorem (which is itself

a re�nement of the argument of [EGPS] where the theorem is proved for V a smooth

surface). Recall that the main steps of this proof are:

1) The sequence (�) splits i� W is a restriction of a Cartier divisor from the second

in�nitesimal neighborhood V

2

of V in P

N

;

2)The image of the natural map Pic(V

2

)! Num(V ) is one-dimensional.

In the situation of the lemma, 1) goes through without changes with W , V , P

N

replaced by C, M , X (M

2

will of course denote the second in�nitesimal neighborhood

of M in X). The second step is an obvious modi�cation of that in [B], [EGPS]: as in

these works, it is enough to prove that the image of the natural map

Pic(M

2

)! H

1

(M;


1

M

)

is contained in a one-dimensional complex subspace, and this follows from the com-

mutative diagram

Pic(M

2

) Pic(M ) Num(M )

H

1

(M;


1

M

)

H

1

(M

2

;


1

M

2

) H

1

(M;


1

M

2

j

M

)

H

1

(M;


1

X

j

M

)

-

restr:

?

dlog

- -

- -

�

�

�

�

�

�

�
�*

(where � exists because the sheaves 


1

M

2

j

M

and 


1

X

j

M

are isomorphic)
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and the fact that for su�ciently ample M ,

H

1

(M;


1

X

j

M

)

�

=

H

1

(X;


1

X

)

�

=

C

as follows from the restriction exact sequence

0! 


1

X

(�M )! 


1

X

! 


1

X

j

M

! 0:

Note that we can give an e�ective estimate for \su�cient ampleness" of M in terms

of numerical invariants of X using the Gri�ths vanishing theorem ([G]).

Applying this to our situation of a map onto a Fano threefold Y of index one with

non-reduced Hilbert scheme of lines, we get that C = f

�1

(l) must be numerically

equivalent to a multiple of the hyperplane section divisor on M = f

�1

(H) if the

number m (de�ned by f

�

H

Y

= mH

X

) is large enough. As it is easy to show that C

and the hyperplane section of M are independent in Num(M ), it follows that m and

therefore deg(f) must be bounded. The case of index two is exactly the same (use

the existence of a divisor covered by (-1,1)-lines). So the Proposition is proved.

We summarize our results in the following

Theorem 2.3 Let X be a smooth projective threefold with b

2

(X) = 1, let Y be a Fano

threefold with b

2

(Y ) = 1 and very ample H

Y

and let f : X ! Y be a morphism. If

Y � P

3

, then the degree of f is bounded in terms of the discrete invariants of X;Y .

Proof: Indeed, there are only four possibilities:

a) Y is a quadric: this is proved in [S], [A].

b) Proposition 2.1 applies;

c) Y is V

22

with reduced scheme of lines: the boundedness for deg(f) is obtained in

Remark B;

d) Y is either G(1; 4) \ P

6

, or a Fano threefold with non-reduced Hilbert scheme of

lines: then Proposition 2.2 applies.

Notice that in the �rst three cases it is su�cient that Pic(X)

�

=

Z.

3. Maps between Fano threefolds

It turns out that we obtain especially strong bound if X is also a Fano variety. In

many cases,this even implies non-existence of maps:

Theorem 3.1 Let X, Y be Fano threefolds, Pic(X)

�

=

Pic(Y )

�

=

Z. Suppose that

H

X

, H

Y

are very ample. If either

i) Y is of index one and S

Y

is at least 2H

Y

,

or

ii) Y is of index two and U

Y

is at least 4H

Y

(where S

Y

, U

Y

are as in Proposition 2.1),

then for a non-constant map f : X ! Y we must have

f

�

(H

Y

) = H

X

;

i.e.

deg(f) =

H

3

X

H

3

Y

:
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Before starting the proof, we formulate the following result from [S]:

Let f : X ! Y be a non-trivial map between Fano threefolds with Picard group Z.

Then:

A) If X,Y are of index two, then the inverse image of any line is a union of lines;

B) If X,Y are of index one, then the inverse image of any conic is a union of conics;

C) If X is of index one and Y is of index two, then the inverse image of any line is

a union of conics;

D) If X is of index two and Y is of index one, then the inverse image of any conic is

a union of lines.

(here a conic is allowed to be reducible or non-reduced. Unions of lines and conics

are understood in set-theoretical sense, i.e. a line or a conic from this union can, of

course, have a multiple structure.)

We will also need some facts on conics on a Fano threefold V of index one, with very

ample �K

V

and cyclic Picard group. Iskovskih proves ([I],II, Lemma 4.2) that if C

is a smooth conic on such a threefold, then N

C;V

= O

P

1
(�a) �O

P

1
(a) with a equal

to 0,1,2 or 4. The following lemma is an almost obvious re�nement of this:

Lemma 3.2 a) Let C � V be a smooth conic. Then N

C;V

= O

P

1
(�4)�O

P

1
(4) if and

only if there is a plane tangent to V along C. In particular, such conics exist only if

V is a quartic.

b) Let C � V be a reducible conic: C = l

1

S

l

2

, l

1

6= l

2

. Let N be the (locally free

with trivial determinant) normal sheaf of C in V . Then N j

l

i

= O

P

1(�a

i

)� O

P

1(a

i

)

with 0 � a

i

� 2, and if a

i

= 2 for both i, then there is a plane tangent to V along C

(and V is a quartic ).

Proof: a) This is a simple consequence of the fact that for C � V � P

n

, N

C;V

�

N

C;P

n

, and the only subbundle of degree 4 in N

C;P

n

is N

C;P

with P the plane

containing C. One concludes that V is a quartic as all the other Fano threefolds V

considered here are intersections of quadrics and cubics which contain this V ([I], II,

sections 1,2) and therefore must contain this P , which is impossible.

b) We have embeddings

0! N

l

i

;V

! N j

l

i

;

this implies the �rst statement: 0 � a

i

� 2. If a

i

= 2, then l

i

should be a (-2,1)-line;

therefore there are planes P

i

tangent to V along l

i

, giving the degree 1 subbundle of

N

l

i

;V

and the exceptional section in P(N

l

i

;V

)

�

=

F

3

. In fact P

1

= P

2

. This is easy to

see using so-called \ elementary modi�cations" of Maruyama (of which I learned from

[AW] ,p.11): if we blow P(N

l

1

;V

) up in the point p corresponding to the direction of

l

2

and then contract the proper preimage of the �ber, we will get P(N j

l

1

). Under our

circumstances, p must lie on the exceptional section of P(N

l

1

;V

), so l

2

� P

1

. In the

same way, l

1

� P

2

, q.e.d..

Proof of the Theorem:

Let f : X ! Y be a �nite map between Fano threefolds as above.

Again, the condition on S

Y

, T

Y

means that not the whole inverse image of S

Y

, T

Y

can be contained in the rami�cation. If Y is of index one resp. index two, we will

denote by C be a reduced irreducible component of the inverse image of a general line
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resp. (-1,1)-line l on Y (so C is not contained in the rami�cation), and by D the full

scheme-theoretic inverse image of such a line.

Let f

�

O

Y

(1) = O

X

(m). If X is of index two, then T

X

(1) is globally generated. As

in the Proposition 2.1, we conclude that m = 1.

If X is of index one and Y is of index two, then, by the result quoted in the beginning

of this section, C is a line or a conic.

If C is a smooth conic, we look at the generic isomorphism

� : (I

C

=I

2

C

)

�

! (I

D

=I

2

D

)

�

j

C

= O

C

(m) �O

C

(�m):

Immediately we get that m is equal to one or two. Suppose m = 2. Then, by the

Lemma, X is a quartic and there is a plane P tangent to X along C. Choose the

coordinates so that P is given by x

3

= x

4

= 0. Then the equation of X can be written

as

(q(x

0

; x

1

; x

2

))

2

+ x

3

F + x

4

G = 0;

where q de�nes C and F;G are cubic polynomials. Denote as A and B the curves cut

out on P by these cubics. The necessary condition for smoothness of X is

A \B \X = ;:

Now recall that C resp. P varies in a one-dimensional (complete) family C

t

resp. P

t

.

A and B also vary, and for every t we must have

A

t

\B

t

\X = ;:

This means that all the planes P

t

pass through the same point, not lying on X.

Projecting from this point, we see that the surface W formed by our conics C

t

is in

the rami�cation locus of this projection. The Hurwitz formula then gives W 2 jO

X

(i)j

with i � 3. Now Y is, by assumption, a cubic or an intersection of two quadrics. But

then, as we saw, the surface U

Y

of (-1,1)-lines is at least 5H

Y

, and an elementary

calculation shows that it is impossible that the inverse image of the surface of (-1,1)-

lines U

Y

consists only from W and the rami�cation.

If C is a line, then the argument is similar. One only needs to prove the following

Claim:In this situation, if m = 2, the scheme D has another reduced irreducible

component C

1

, which intersects C.

Then of course either C

1

, or C

S

C

1

is a conic, and one can proceed as above. The

proof of this claim is elementary algebra. We will sketch it after �nishing the following

last step of the Theorem:

If X and Y are both of index one, we have that the inverse image of a line l on Y

should consist of lines and conics; for C as above, we have a map

� : (I

C

=I

2

C

)

�

!O

C

� O

C

(�m);

if l is (0,-1), or

�

0

: (I

C

=I

2

C

)

�

!O

C

(m) � O

C

(�2m);

if l is (1,-2). As these maps must be generic isomorphisms, we get that in both cases

m = 1, whether C is a conic or a line.
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Proof of the claim: Notice that C must be (1,-2)-line. The cokernel of the natural

map

� : I

D

=I

2

D

j

C

! I

C

=I

2

C

is the sheaf I

C;D

=I

2

C;D

, supported on intersection points of C and other components

of D. We see from our assumptions that it must have length one (so be supported at

one point x). Suppose that C intersects non-reduced components of D at x. Let A

be a local ring of D at x and p � A a �ber of I

C;D

. Of course p=p

2

6= 0 by Nakayama.

To see that dimp=p

2

� 2, we �nd an ideal a � p, not contained in p

2

. For example,

we can take an ideal de�ning the union of C and the reduction of an irreducible but

non-reduced component of D intersecting C. We have a surjection

p=p

2

! (p=a)=(p

2

=(p

2

\ a))! 0;

which has non-trivial (again by Nakayama) image and non-trivial kernel, q. e. d..

Corollary 3.3 Let X, Y be Fano threefolds of index one as in Theorem 3.1 i). Then

any map between X and Y is an isomorphism.

Proof: Iskovskih computed the third Betti numbers of all Fano threefolds ( see also

[M]), and in fact as soon as deg(X) > deg(Y ), then b

3

(X) < b

3

(Y ), so a morphism

f : X ! Y cannot exist.

Remark C: Some part of the argument of Theorem 3.1 goes through without assump-

tions on the very ampleness of the generator H of the Picard group. For example,

when X is a quartic double solid, which is a Fano threefold of index two, all the

\lines" C on X except possibly a �nite number, have either trivial normal bundle, or

the normal bundle O

C

(H)�O

C

(�H) (in other words, the surface which parametrizes

lines on X, has only isolated singularities). One can then replace the words \T

X

(H)

is globally generated", which are not true in general, by some \normal bundle argu-

ments" as in the above proof. The same should hold for the Veronese double cone.

See [W], [T] for details. As for maps to the quartic double solid, the argument goes

through without changes.

Examples: Any cubic in P

4

satis�es the assumption we made on Y . By our Theorem

3.1 , we get that if a Fano threefold X of index one with cyclic Picard group is mapped

onto a cubic, then the degree of this map can only be

degX

3

. So if X admits such a

map, then deg(X) is divisible by 3. Of course there are Fano threefolds of index one

which admit a map onto a cubic: we can take an intersection of a cubic cone and

a quadric in P

5

. Theorem 3.1 shows that if a smooth complete intersection of type

(2,3) in P

5

maps to a cubic, then it is contained in a cubic cone and the map is the

projection from the vertex of this cone.

The same applies of course to maps from a complete intersection of three quadrics

in P

6

to a complete intersection of two quadrics in P

5

. Notice that any smooth

complete intersection of two quadrics in P

5

admits a map g onto a quadric in P

4

such

that the inverse image of the hyperplane section is the hyperplane section (any pencil

of quadrics with non-singular base locus contains a quadratic cone). Therefore if a

smooth intersection of three quadrics in P

6

can be mapped onto a smooth complete
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intersection of two quadrics in P

5

, it must lie in a quadric of corank 2 in P

6

. Of

course a general intersection of three quadrics in P

6

does not have this property, as

the space of quadrics of corank 2 is of codimension four in the space of all quadrics.

Additional examples of varieties satisfying the assumption of Theorem

3.1:

1) any complete intersection of a cubic and a quadric in P

5

or

2) any complete intersection of three quadrics in P

6

. Indeed, if lines on these varieties

cover only a hyperplane section divisor, then the scheme of lines must be non-reduced,

i.e. each line must have normal bundle O

P

1
(�2) � O

P

1
(1). So the surface of lines

is either a cone or the tangent surface to a curve. But one can check that these

varieties do not contain cones; neither do they contain a tangent surface to a curve

as a hyperplane section, because by a version of Zak's theorem on tangencies (see

for example [FL]), a hyperplane section of a complete intersection has only isolated

singularities.

3) Any V

22

with reduced Hilbert scheme of lines. By ([P]), there is exactly one V

22

such that its Hilbert scheme of lines is non-reduced.

4) any Fano threefold V

16

of index one and genus 9. This can be shown by the method

of Prokhorov ([P]) :

First, notice that if the lines on V

16

cover only a hyperplane section, the scheme of

lines is non-reduced. So all the lines are tangent to a curve. This is actually a rational

normal curve, so the lines never intersect.

For convenience of the reader, we recall from [I2] the notion of double projection from

a line and its application to V

16

:

Let X be a Fano threefold of index one, g(X) � 7, and let l be a line on X. On

~

X,

the blow-up of X, we consider the linear system j�

�

H � 2Ej, where � is the blow-up,

H = K

Y

and E is the exceptional divisor. This is not base-point-free, namely, its

base locus consists of proper preimages of lines intersecting l, and, if l is (-2,1), from

the exceptional section of the ruled surface E

�

=

F

3

. However, after a 
op (i.e. a

birational transformation which is an isomorphism outside this locus) we can make it

into a base-point-free system j(�

�

H)

+

� 2E

+

j on the variety

~

X

+

.

If g(X) = 9, i.e.X is a V

16

, the variety

~

X

+

is birationally mapped by this linear

system onto P

3

. This map, say g, is a blow-down of the surface of conics intersecting

l to a curve Y � P

3

, which is smooth of degree 7 and genus three (smoothness of Y

is obtained from Mori's extremal contraction theory). Y lies on a cubic surface which

is the image of E

+

. Moreover, the inverse rational map from P

3

to X is given by the

linear system j7H � 2Y j.

One has therefore that the lines from X, di�erent from l, must be mapped by g

to trisecants of Y . Note that if lines on X form only a hyperplane section, the

desingularization of the surface of lines on X is rational ruled, and it remains so after

the blow-up and the 
op. So, as in [P], we must have a morphism F

e

! P

3

, which

is given by some linear system jC + kF j with C the canonical section and f a �ber,

such that the inverse image of Y belongs to the system j3C+ lF j. deg(Y ) = 7 implies

(3C + lF )(C + kF ) = �3e + 3k + l = 7;
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and as degK

Y

= 4,

(C + (l � 2� e)F )(3C + lF ) = �6e + 4l � 6 = 4;

Combining these two equations, we get

2k � e = 3;

However, we must have e � 0 and k � e, as otherwise the linear system jC + kF j

does not de�ne a morphism. This leaves only two possibilities for k and e: either

e = k = 3, or e = 1; k = 2. The �rst case actually cannot occur: this would imply

that Y is singular. So the image of F

e

= F

1

in P

3

is a cubic which is a projection of F

1

from P

4

. By assumption, Y is also contained in another irreducible cubic (the image

of E

+

). But one check that this cannot happen, using e.g. a theorem by d'Almeida

([Al]), which asserts that if a smooth non-degenerate curve Y of degree d � 6 and

genus g in P

3

satis�es H

1

(I

Y

(d � 4)) 6= 0, then Y has a (d-2)-secant provided that

(d; g) 6= (7; 0); (7; 1); (8; 0).

4. V

22

Let us now take Y = V

s

22

, i.e. the only variety of type V

22

which has non-reduced

Hilbert scheme of lines. This V

22

violates the assumptions of Theorem 3.1. However,

using Mukai's and Schreyer's descriptions of conics on varieties of type V

22

, it is still

possible to say something on maps from Fano threefolds onto Y . We will show the

following:

Proposition 4.1 A Fano threefold X of index two with cyclic Picard group and

irreducible Hilbert scheme of lines does not admit a map onto V

s

22

.

As for the last assumption on X, one believes that this is always satis�ed. In fact

this is easy to check (and well-known) for a cubic or a complete intersection of two

quadrics (the Hilbert scheme is smooth in this case, so it is enough to show that it

is connected). The irreducibility is also known for V

5

, in fact, the Hilbert scheme is

isomorphic to P

2

([I], I, Corollary 6.6). For a quartic double solid, see [W]. As for

a double Veronese cone, in [T] it is proven that a general double Veronese cone has

irreducible Hilbert scheme of lines. So the only possible exception could be a special

double Veronese cone.

In fact our argument will work for a su�ciently general V

22

, but for all of them except

V

s

22

this assertion is already proved in the last paragraph.

Proof: Let S be the Fano surface ( = reduced Hilbert scheme) of lines on X and T the

Fano surface of conics on the V

22

. If f : X ! V

22

is a �nite map, then, as Schuhmann

proves in [S], the inverse image of any conic is a union of lines, and, moreover, in this

way f induces a �nite surjective morphism g : S ! T ( thanks to irreducibility of S,

any line on X is in the inverse image of a conic on V

22

).

F.-O. Schreyer ([Sch]) gives the following description of a general conic on V

22

:

Consider V

22

as the variety of polar hexagons of a plane quartic curve C � P

2

(a polar

hexagon of C is the union of six lines l

1

; :::l

6

given by equations L

1

= 0; :::; L

6

= 0 ,

Documenta Mathematica 2 (1997) 195{211



Maps onto Certain Fano Threefolds 209

such that L

4

1

+ :::+ L

4

6

= F where F = 0 de�nes C; \the variety of polar hexagons"

means here the closure of the set of 6-tuples l

1

; :::l

6

with L

4

1

+ ::: + L

4

6

= F in the

Hilbert scheme Hilb

6

(P

2

�

); a general V

22

is isomorphic to such a variety for a certain

curve C; V

s

22

is the variety of polar hexagons of a double conic). Then there is a

birational isomorphism between (P

2

)

�

and T given as follows:

for a general l � P

2

the curve of polar hexagons to C containing l is a conic on V

22

.

This description and the fact that through any point on a V

22

there is only a �nite

number of conics ([I], II, Theorem 4.4) gives that

there are six conics through a general point of V

22

.

In [M], Mukai claims that the Fano surface of conics on a V

22

is even isomorphic to

P

2

. Unfortunately, this paper does not contain a proof of this fact. The proof appears

in the paper of A. Kuznetsov ([K]): he uses another description of a general V

22

as

a subvariety of G(2; 6). Namely, if V and N are 7- and 3-dimensional vector spaces

respectfully and f : N ! �

2

V

�

is a general net of skew-symmetric forms on V , then

a general V

22

(including V

s

22

, [Sch]) appears as a set of all 3-subspaces of V which are

isotropic with respect to this net (i.e. to all forms of the net simultaneously). Let

U (resp. Q) denote restriction on a V

22

of the universal (resp. universal quotient)

bundle on G(2; 6). Kuznetsov proves that every (possibly singular) conic on a V

22

is

a degeneracy locus of a homomorphism U ! Q

�

; the Fano surface of conics is thus

P(Hom(U;Q

�

)) = P

2

.

Now if there is a �nite map f : X ! V

22

as above, then X must be a cubic: indeed,

a Fano threefold with cyclic Picard group and with 6 lines through a general point is

a cubic. Let f

�

H

V

22

= mH

X

, then one easily computes that the inverse image of a

general conic consists of deg(g) = s =

3

11

m

2

lines.

For simplicity, we will use the same notation for points of T (resp. S) and correspond-

ing conics on V

22

(resp. lines on X). We have T

�

=

P

2

. Let a be such that conics on

V

22

intersecting a given (general) conic A, form a divisor D

A

from jO

P

2
(a)j

On S, denote as E

L

the divisor of lines intersecting a given line L. It is well-known

and easy to compute that E

L

�E

M

= 5 for any L;M .

If g

�1

(A) = fL

1

; :::; L

s

g, then

g

�

(O

P

2
(a)) = O

S

(E

L

1

+ :::+ E

L

s

):

We therefore have another formula for deg(g):

deg(g) =

5s

2

a

2

:

From the equality s =

5s

2

a

2

we get that (

m

a

)

2

=

11

15

, however, this is impossible as

11

15

is not a square of a rational number.
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0 Introduction

Our main concern in this work is to provide concrete formulas for the invariant inner

products and hermitian forms on spaces of holomorphic functions on Cartan domains

D of tube type. As will be explained below, the group Aut(D) of all holomorphic

automorphisms of D acts transitively. Aut(D) acts projectively on function spaces

on D via f 7! U

(�)

(')f := (f � ') (J')

�=p

; ' 2 Aut(D); � 2 C, but these actions

are not irreducible in general. The inner products we consider are those obtained

from the holomorphic discrete series by analytic continuation. The associated Hilbert

spaces generalize the weighted Bergman spaces, the Hardy and the Dirichlet space. By

\concrete" formulas we mean Besov-type formulas, namely integral formulas involving

the functions and some of their derivatives. Possible applications include the study

of operators (Toeplitz, Hankel) acting on function spaces and the theory of invariant

Banach spaces of analytic functions (where the pairing between an invariant space

and its invariant dual is computed via the corresponding invariant inner product).

Our problem is closely related to �nding concrete realizations (by means of inte-

gral formulas) of the analytic continuation of the Riesz distribution. [Ri], [Go], [FK2],

Chapter VII.

1
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214 Arazy and Upmeier

In principle, the analytic continuation is obtained from the integral formulas

associated with the weighted Bergman spaces (i.e. the holomorphic discrete series)

by \partial integration with respect to the radial variables". This program has been

successful in the case of rank 1 (i.e. when D is the open unit ball of C

d

, see [A3]).

The case of rank r > 1 is more di�cult, and concrete formulas are known only in

special cases, see [A2], [Y4], [Y1], [Y2].

This paper consists of two main parts. In the �rst part (Sections 2, 3, and 4) we

develop in full generality the techniques of [A2], [Y4], and obtain integral formulas

for the invariant inner products associated with the so-called Wallach set and pole

set. In the second part (section 5) we introduce new techniques (integration on

boundary orbits), to obtain new integral formulas for the invariant inner products

in the important special cases of Cartan domains of type I and IV. This approach

has the potential for further generalizations and applications, including the in�nite

dimensional setup.

The paper is organized as follows. Section 1 provides background information on

Cartan domains, the associated symmetric cones and Siegel domains and the Jordan

theoretic approach to the study of bounded symmetric domains [Lo], [FK2], [U2].

We also explain some general facts concerning invariant Hilbert spaces of analytic

functions on Cartan domains and the connection to the Riesz distribution. Section 2 is

devoted to the study of invariant di�erential operators on symmetric cones. We study

the \shifting operators" introduced by Z. Yan and their derivatives with respect to

the \spectral parameter". Section 3 is devoted to our generalization of Yan's shifting

method, to �nd explicit integral formulas for the invariant inner products obtained

by analytic continuation of the holomorphic discrete series. In section 4 we study the

expansion of Yan's operators, and obtain applications to concrete integral formulas

for the invariant inner products. Some of these results were obtained independently

by Z. Yan, J. Faraut and A. Kor�anyi, [FK2], [Y4]. We include these results and our

proofs, in order to make the paper self contained, and also because in most cases our

results go beyond the results in [FK2], [Y4].

In section 5 we propose a new type of integral formulas for the invariant inner

products. These formulas involve integration on boundary orbits and the applica-

tion of the localized versions of the radial derivative associated with the boundary

components of Cartan domains. We are able to establish the desired formulas in the

important special cases of type I and IV. The techniques established in this section

can be used in the study of the remaining cases.

Finally, in the short section 6 we use the quasi-invariant measures on the bound-

ary orbits of the associated symmetric cone in order to obtain integral formulas for

some of the invariant inner products in the context of the unbounded realization of the

Cartan domains (tube domains). These results are essentially implicitly contained in

[VR], where the authors use the Lie-theoretic and Fourier-analytic approach to analy-

sis on symmetric Siegel domains. We use the Jordan-theoretic approach which yields

simpler formulation of the results and simpler proofs.

Acknowledgment: We would like to thank Z. Yan, J. Faraut, and A. Kor�anyi for

sending us drafts of their work and for many stimulating discussions. We also thank

the referee for valuable comments on the �rst version of the paper.
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Invariant Inner Products 215

1 Preliminaries

A Cartan domain D � C

d

is an irreducible bounded symmetric domain in its Harish-

Chandra realization. Thus D is the open unit ball of a Banach space Z = (C

d

; k � k)

which admits the structure of a JB

�

-triple, namely there exists a continuous mapping

Z � Z � Z 3 (x; y; z) ! fx; y; zg 2 Z (called the Jordan triple product) which is

bilinear and symmetric in x and z, conjugate-linear in y, and so that the operators

D(x; x) : Z ! Z de�ned for every x 2 Z by D(x; x)z := fx; x; zg are hermitian,

have positive spectrum, satisfy the "C

�

-axiom" kD(x; x)k = kxk

2

, and the operators

�(x) := iD(x; x) are triple derivations, i.e. the Jordan triple identity holds

�(x)fy; z; wg = f�(x)y; z; wg+ fy; �(x)z; wg+ fy; z; �(x)wg; 8y; z; w 2 Z:

The norm k � k is called the spectral norm. We put also D(x; y)z := fx; y; zg. An

element v 2 Z is called a tripotent if fv; v; vg = v. Every tripotent v 2 Z gives rise to

a direct-sum Peirce decomposition

Z = Z

1

(v) + Z
1

2

(v) + Z

0

(v); where Z

�

(v) := fz 2 Z; D(v; v)z = �zg; � = 1;

1

2

; 0:

The associated Peirce projections are de�ned for z

�

2 Z

�

(v), � = 1;

1

2

; 0, by

P

�

(v)(z

1

+ z
1

2

+ z

0

) = z

�

; � = 1;

1

2

; 0:

In this paper we are interested in the important special case where Z contains

a unitary tripotent e, for which Z = Z

1

(e). In this case Z has the structure of a

JB

�

-algebra with respect to the binary product x � y := fx; e; yg and the involution

z

�

:= fe; z; eg, and e is the unit of Z. The binary Jordan product is commutative,

but in general non-associative. The triple product is expressed in terms of the binary

product and the involution via fx; y; zg = (x�y

�

)�z+(z �y

�

)�x� (x�z)�y

�

. In this

case the open unit ball D of Z is a Cartan domain of tube-type. This terminology is

related to the unbounded realization of D, to be explained later.

Let X := fx 2 Z;x

�

= xg be the real part of Z. It is a formally-real (or

euclidean) Jordan algebra. Every x 2 X has a spectral decomposition x =

P

r

j=1

�

j

e

j

,

where fe

j

g

r

j=1

is a frame of pairwise orthogonal minimal idempotents in X, and

f�

j

g

r

j=1

are real numbers called the eigenvalues of x. The trace and determinant (or,

\norm") are de�ned in X via

tr(x) :=

r

X

j=1

�

j

; N (x) :=

r

Y

j=1

�

j

respectively, and they are polynomials on X. The maximal number r of pairwise

orthogonal minimal idempotents in X is called the rank of X. The positive-de�nite

inner product in X, hx; yi = tr(x � y); x; y 2 X, satis�es

hx � y; zi = hx; y � zi; x; y; z 2 X:

Equivalently, the multiplication operators L(x)y := x � y; x; y 2 X, are self-adjoint.

The trace and determinant polynomials, as well as the multiplication operators, have

unique extensions to the complexi�cation X

C

:= X + iX = Z. Let


 := fx

2

;x 2 X;N (x) 6= 0g:
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216 Arazy and Upmeier

Then 
 is a symmetric, open convex cone, i.e. 
 is self polar and homogeneous with

respect to the group GL(
) of linear automorphisms of 
. We denote the connected

component of the identity in GL(
) by G(
). De�ne

P (x) := 2L(x)

2

� L(x

2

); x 2 X; (1.1)

then P (x) 2 G(
) for every x 2 
, and x = P (x

1=2

)e. Thus G(
) is transitive on


. The map x ! P (x) from X into End(X) is called the quadratic representation

because of the identity

P (P (x)y) = P (x)P (y)P (x); 8x; y 2 X: (1.2)

The domain T (
) := X + i
, called the tube over 
. It is an irreducible symmetric

domain which is biholomorphically equivalent to D by means of the Cayley transform

c : D ! T (
), de�ned by

c(z) := i

e + z

e � z

; z 2 Z:

This explains why D is called a tube-type Cartan domain.

Let e

1

; e

2

; : : : ; e

r

be a �xed frame of minimal, pairwise orthogonal idempotents

satisfying e

1

+ e

2

+ : : :+ e

r

= e, where e is the unit of Z. Let

Z =

X

1�i�j�r

Z

i;j

be the associated joint Peirce decomposition, namely Z

i;j

:= Z
1

2

(e

i

) \ Z
1

2

(e

j

) for

1 � i < j � r and Z

i;i

:= Z

1

(e

i

) for 1 � i � r. The characteristic multiplicity is the

common dimension a = dim(Z

i;j

); 1 � i < j � r, and d = r + r(r � 1)a=2. The

number p := (r � 1)a+ 2 is called the genus of D. It is known that

Det(P (x)) = N (x)

p

; 8x 2 X;

where \Det" is the usual determinant polynomial in End(Z). From this and (1.2) it

follows that

N (P (x)y) = N (x)

2

N (y) 8x; y 2 X: (1.3)

Let u

j

:= e

1

+ e

2

+ : : :+ e

j

and let Z

j

:=

P

1�i�k�j

Z

i;k

be the JB

�

- subalgebra

of Z whose unit is u

j

. Let N

j

be the determinant polynomials of the Z

j

; 1 � j � r;

they are called the principal minors associated with the frame fe

j

g

r

j=1

. Notice that

Z

r

= Z and N

r

= N . For an r-tuple of integers m = (m

1

;m

2

; : : : ;m

r

) write m � 0 if

m

1

� m

2

� : : : � m

r

� 0. Such r-tuples m are called signatures (or, \partitions").

The conical polynomial associated with the signature m is

N

m

(z) := N

1

(z)

m

1

�m

2

N

2

(z)

m

2

�m

3

N

3

(z)

m

3

�m

4

: : :N

r

(z)

m

r

; z 2 Z:

Notice that N

m

(

P

r

j=1

t

j

e

j

) =

Q

r

j=0

t

m

j

j

, thus the conical polynomials are natural

generalizations of the monomials. Let Aut(D) be the group of all biholomorphic

automorphisms of D, and let G be its connected component of the identity. Let

K := fg 2 G; g(0) = 0g = G \ GL(Z) be the maximal compact subgroup of G.

For any signature m let P

m

:= spanfN

m

� k; k 2 Kg. Clearly, P

m

� P

`

, where
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Invariant Inner Products 217

` = jmj =

P

r

j=1

m

j

and P

`

is the space of homogeneous polynomials of degree `.

By de�nition, P

m

are invariant under the composition with members of K. Let

hf; gi

F

:= @

f

(g

]

)(0) =

1

�

d

Z

Z

f(z)g(z) e

�jzj

2

dm(z) (1.4)

be the Fock-Fischer inner product on the space P of polynomials, where g

]

(z) :=

g(z

�

), @

f

= f(

@

@z

), jzj is the unique K-invariant Euclidean norm on Z normalized

so that je

1

j = 1, and dm(z) is the corresponding Lebesgue volume measure. (Thus

h1; 1i

F

= 1). The following result (Peter-Weyl decomposition) is proved in [Sc], see

also [U1]. Here the group K acts on functions on D via �(k)f := f � k

�1

; k 2 K.

Notice that P

`

, ` = 0; 1; 2; : : : and P are invariant under this action.

Theorem 1.1 (i) The spaces fP

m

g

m�0

, are K-invariant and irreducible. The rep-

resentations of K on the spaces P

m

are mutually inequivalent, the P

m

's are mutually

orthogonal with respect to h�; �i

F

, and P =

P

m�0

P

m

.

(ii) If H is a Hilbert space of analytic functions on D with a K-invariant inner

product in which the polynomials are dense, then H is the orthogonal direct sum

H =

P

m�0

�P

m

. Namely, every f 2 H is expanded in the norm convergent series

f =

P

m�0

f

m

, with f

m

2 P

m

, and the spaces P

m

are mutually orthogonal in H.

Moreover, there exist positive numbers fc

m

g

m�0

so that for every f; g 2 H with

expansions f =

P

m�0

f

m

and g =

P

m�0

g

m

we have

hf; gi

H

=

X

m�0

c

m

hf

m

; g

m

i

F

:

For every signature m let K

m

(z; w) be the reproducing kernel of P

m

with respect to

(1.4). Clearly, the reproducing kernel of the Fock-Fischer space F (the completion of

P with respect to h�; �i

F

) is

F (z; w) :=

X

m

K

m

(z; w) = e

hz;wi

:

An important property of the norm polynomial N is its transformation rule under

the group K

N (k(z)) = �(k)N (z); k 2 K; z 2 Z (1.5)

where � : K ! T := f� 2 C; j�j = 1g is a character. In fact, �(k) = N (k(e)) =

Det(k)

2=p

8k 2 K. Notice that (1.5) implies that P

(m;m;:::;m)

= CN

m

for m =

0; 1; 2; : : :.

The subgroup L of K de�ned via

L := fk 2 K; k(e) = 1g (1.6)

plays an important role in the theory.

Lemma 1.1 For every signature m � 0 the function

�

m

(z) :=

Z

L

N

m

(`(z))d` (1.7)

is the unique spherical (i.e., L-invariant) polynomial in P

m

satisfying �

m

(e) = 1.
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For example, �

(m;m;:::;m)

= N

m

by (1.5). The L-invariant real polynomial on X

h(x) = h(x; x) := N (e� x

2

)

admits a unique K-invariant, hermitian extension h(z; w) to all of Z. Thus,

h(k(z); k(w)) = h(z; w) for all z; w 2 Z and k 2 K, h(z; w) is holomorphic in z

and anti-holomorphic in w, and h(z; w) = h(w; z), [FK1]. The transformation rule of

h(z; w) under Aut(D) is

h('(z); '(w)) = J'(z)

1

p

h(z; w) J'(w)

1

p

; ' 2 Aut(D); z; w 2 D; (1.8)

where J'(z) := Det('

0

(z)) is the complex Jacobian of ', and p is the genus of D.

For s = (s

1

; s

2

; : : : ; s

r

) 2 C

r

one de�nes the conical function N

s

on 
 via

N

s

(x) := N

s

1

�s

2

1

(x)N

s

2

�s

3

2

(x)N

s

3

�s

4

3

(x) : : : �N

s

r

r

(x); x 2 
;

which generalize the conical polynomials N

m

. In what follows use the following no-

tation:

�

j

:= (j � 1)

a

2

; 1 � j � r:

The Gindikin - Koecher Gamma function is de�ned for s = (s

1

; s

2

; : : : ; s

r

) 2 C

r

with

<(s

j

) > �

j

; 1 � j � r, via

�




(s) :=

Z




e

�tr(x)

N

s

(x)d�




(x):

Here tr(x) = hx; ei is the Jordan-theoretic trace of x, and

d�




(x) := N (x)

�

d

r

dx

is the (unique, up to a multiplicative constant) G(
)-invariant measure on 
. The

following formula [Gi] reduces the computation of �




(s) to that of ordinary Gamma

functions:

�




(s) = (2�)

(d�r)=2

Y

1�j�r

�(s

j

� �

j

); (1.9)

and provides a meromorphic continuation of �




to all of C

r

. In particular, �




(�) :=

�




(�; �; : : : ; �) is given by

�




(�) =

Z




e

�tr(x)

N (x)

�

d�




(x) = (2�)

(d�r)=2

Y

1�j�r

�(� � �

j

);

and it is an entire meromorphic function. The pole set of �




(�) is precisely

P(D) := [

1�j�r

(�

j

�N) = f�

j

� n; 1 � j � r; n 2 Ng: (1.10)

For � 2 C and a signature m = (m

1

;m

2

; : : : ;m

r

) one de�nes

(�)

m

:=

�




(m+ �)

�




(�)

=

r

Y

j=1

(�� �

j

)

m

j

=

r

Y

j=1

m

j

�1

Y

n=0

(n + � � �

j

);
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where m+ � := (m

1

+ �;m

2

+ �; : : : ;m

r

+ �).

We recall two important formulas for integration in polar coordinates [FK2],

Chapters VI and IX. The �rst formula uses the fact that K � 
 = Z, namely the

fact that every z 2 Z can be written (not uniquely) in the form z = k(x), where

x 2 
 and k 2 K. This is the �rst (or \conical") type of polar decomposition of x,

and it generalizes the polar decomposition of matrices. This leads to the formula

Z

Z

f(z)dm(z) =

�

d

�




(

d

r

)

Z




�

Z

K

f(k(x

1

2

)) dk

�

dx (1.11)

which holds for every f 2 L

1

(Z;m). Next, �x a frame e

1

; : : : ; e

r

, and de�ne

R := span

R

fe

j

g

r

j=1

and R

+

:= f

r

X

j=1

t

j

e

j

; t

1

> t

2

> : : : > t

r

> 0g

and

R

r

+

:= ft = (t

1

; : : : t

r

); t

1

> t

2

> : : : > t

r

> 0g:

Then Z = K �R, namely every z 2 Z has a representation z = k(

P

r

j=1

t

j

e

j

) for some

(again, not unique)

P

r

j=1

t

j

e

j

2 R and k 2 K. This representation is the second

type of polar decomposition of z. Moreover, m(Z n K � R

+

) = 0, namely up to a

subset of measure zero, every z 2 Z has a representation z = k(

P

r

j=1

t

1=2

j

e

j

) with

t

1

> t

2

> : : : > t

r

> 0. This leads to the formula

Z

Z

f(z)dm(z) = c

0

Z

R

r

+

0

@

Z

K

f(k(

r

X

j=1

t

1

2

j

e

j

)) dk

1

A

Y

1�i<j�r

(t

i

� t

j

)

a

dt

1

dt

2

: : : dt

r

;

(1.12)

which holds for every f 2 L

1

(Z;m). The constant c

0

will be determined as a by-

product of our work in section 5 below. For convenience, we can write (1.12) in the

form

Z

Z

f(z)dm(z) = c

0

Z

R

r

+

f

#

(t)w(t)

a

dt; (1.13)

where

f

#

(t) :=

Z

K

f(k(

r

X

j=1

t

1

2

j

e

j

)) dk; t = (t

1

; t

2

; : : : ; t

r

) 2 R

r

+

is the radial part of F and

w(t) :=

Y

1�i<j�r

(t

i

� t

j

); t = (t

1

; t

2

; : : : ; t

r

) 2 R

r

+

(1.14)

is the Vandermonde polynomial.

By [Hu], [Be], [La1], [FK1], we have the binomial formula:

Theorem 1.2 For � 2 C we have

N (e � x)

��

=

X

m�0

(�)

m

�

m

(x)

k�

m

k

2

F

; 8x 2 
 \ (e �
); (1.15)
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and

h(z; w)

��

=

X

m�0

(�)

m

K

m

(z; w); 8z; w 2 D: (1.16)

The two series converge absolutely, (1.15) converges uniformly on compact subsets of

(�; x) 2 C � (
 \ (e � 
)), and (1.16) converges uniformly on compact subsets of

(�; z; w) 2 C �D �D.

In particular, it follows that for �xed z; w 2 D, the function �! h(z; w)

��

is analytic

in all of C (this can be proved also by showing that h(z; w) 6= 0 for z; w 2 D).

The Wallach set of D, denoted by W(D), is the set of all � 2 C for which the

function (z; w)! h(z; w)

��

is non-negative de�nite in D �D, namely

X

i;j

a

i

a

j

h(z

i

; z

j

)

��

� 0

for all �nite sequences fa

j

g � C and fz

j

g � D. For � 2 W(D) let H

�

be the

completion of the linear span of the functions fh(�; w)

��

; w 2 Dg with respect to the

inner product h�; �i

�

determined by

hh(�; w)

��

; h(�; z)

��

i

�

= h(z; w)

��

; z; w 2 D:

Since h(z; w)

��

is continuous in D � D, it is the reproducing kernel of H

�

. The

transformation rule (1.8) implies that h�; �i

�

is K-invariant, namely hf � k; g � ki

�

=

hf; gi

�

for all f; g 2 H

�

and k 2 K. Thus, by Theorems 1.1 and 1.2, for every

f; g 2 H

�

with Peter-Weyl expansions f =

P

m�0

f

m

, g =

P

m�0

g

m

, we have

hf; gi

�

=

X

m�0

hf

m

; g

m

i

F

(�)

m

: (1.17)

This formula de�nes � 7! hf; gi

�

as a meromorphic function in all of C, whose poles

are contained in the pole set P(D) of �




, see (1.10) and (1.16). Of course, for

� 2 C nW(D) (1.17) is not an inner product, but merely a sesqui-linear form; it is

hermitian precisely when � 2 R.

Using (1.16) and (1.17) one obtains a complete description of the Wallach set

W(D) and the Hilbert spaces H

�

for � 2W(D).

Theorem 1.3 (i) The Wallach set is given by W(D) = W

d

(D) [W

c

(D) where

W

d

(D) := f�

j

= (j � 1)

a

2

; 1 � j � rg is the discrete part, and W

c

(D) :=

(�

r

;1) is the continuous part.

(ii) For � 2W

c

(D) the polynomials are dense in H

�

and H

�

=

P

m�0

�P

m

as in

Theorem 1.1;

(iii) For 1 � j � r, let S

0

(�

j

) := fm � 0;m

j

= m

j+1

= : : : = m

r

= 0g. Then

H

�

j

=

P

m2S

0

(�

j

)

P

m

and

h(z; w)

��

j

=

X

m2S

0

(�

j

)

(�

j

)

m

K

m

(z; w); z; w 2 D:
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For � 2 C, ' 2 G and a functions f on D, we de�ne

U

(�)

(')f := (f � ') � (J')

�

p

Then, U

(�)

(id

D

) = I and for ';  2 G we have

U

(�)

(' �  ) = c

�

(';  ) U

(�)

( ) U

(�)

(');

where c

�

(';  ) is a unimodular scalar which transforms as a cocycle (projective rep-

resentation of G). In particular, U

(�)

('

�1

) = U

(�)

(')

�1

.

Using (1.8) we see that

J'(z)

�

p

h('(z); '(w))

��

J'(w)

�

p

= h(z; w)

��

; 8z; w 2 D; 8' 2 G:

From this it follows that the hermitian forms h�; �i

�

given by (1.17) are U

(�)

-invariant:

hU

(�)

(')f ; U

(�)

(')g i

�

= hf; gi

�

; 8f; g 2 H

�

; 8' 2 G:

In particular, for � 2 W(D) the inner products h�; �i

�

are U

(�)

-invariant and

U

(�)

('); ' 2 G, are unitary operators on H

�

.

There are other spaces of analytic functions on D which carry U

(�)

-invariant

hermitian forms, some of which are non-negative. For any signature m and � 2 C let

q(�;m) := deg

�

(�)

m

be the multiplicity of � as a zero of the polynomial � 7! (�)

m

.

Notice that 0 � q(�;m) � r for all � and m. Let

q(�) := maxfq(�;m);m � 0g: (1.18)

Let

P

(�)

:= spanfU

(�)

(')f ; f polynomial ; ' 2 Gg

For 0 � j � q(�) set

S

j

(�) := fm � 0; q(�;m) � jg M

(�)

j

:= ff 2 P

(�)

; f =

X

m2S

j

(�)

f

m

; f

m

2 P

m

g:

(1.19)

The following result is established in [FK1], see also [A1], [O].

Theorem 1.4 Let � 2 C and let 0 � j � q(�).

(i) The spacesM

(�)

j

; 0 � j � q(�), are U

(�)

-invariant,

M

(�)

0

�M

(�)

1

�M

(�)

2

� : : : �M

(�)

q(�)

= P

(�)

; (1.20)

and every non-zero U

(�)

-invariant subspace of P

(�)

is one of the spaces

M

(�)

j

; 0 � j � q(�).

(ii) The quotients M

(�)

j

=M

(�)

j�1

, 1 � j � q(�), are U

(�)

-irreducible.
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(iii) The sesqui-linear forms h�; �i

�;j

on M

(�)

j

, 1 � j � q(�), de�ned for f; g 2 M

(�)

j

by

hf; gi

�;j

:= lim

�!�

(� � �)

j

hf; gi

�

are U

(�)

-invariant and ff 2M

(�)

j

; hf; gi

�;j

= 0; 8g 2 M

(�)

j

g =M

(�)

j�1

.

(iv) For f; g 2 M

(�)

j

with Peter-Weyl expansions f =

P

m

f

m

and g =

P

m

g

m

,

we have

hf; gi

�;j

=

X

m2S

j

(�)nS

j�1

(�)

hf

m

; g

m

i

F

(�)

m;j

where

(�)

m;j

:= lim

�!�

(�)

m

(� � �)

j

=

1

j!

(

d

d�

)

j

(�)

m

j�=�

: (1.21)

(v) The forms h�; �i

�;j

are hermitian if and only if � 2 R.

(vi) The quotient M

(�)

j

=M

(�)

j�1

is unitarizable (namely, h�; �i

�;j

is either positive def-

inite or negative de�nite on M

(�)

j

=M

(�)

j�1

) if and only if either: � 2W(D) and

j = 0, or: � 2 P(D), j = q(�), and �

r

� � 2 N.

The sequence (1.20) is called the composition series of P

(�)

.

Definition 1.1 H

�;j

= H

�;j

(D) is the completion of M

(�)

j

=M

(�)

j�1

with respect to

h�; �i

�;j

.

Observe that H

�;0

= H

�

for � 2W(D). Also, q(�) > 0 if and only if � 2 P(D).

The main objective of this work is to provide natural integral formulas for the

U

(�)

-invariant hermitian forms h�; �i

�;j

, with special emphasis on the case where the

forms are de�nite, namely the case where H

�;j

is a U

(�)

-invariant Hilbert space. These

integral formulas provide a characterization of the membership in the spaces H

�;j

in

terms of �niteness of some weighted L

2

-norms of the functions or of some of their

derivatives. We discuss now some examples which motivate our study.

The weighted Bergman spaces: It is known [FK1] that for � 2 R the integral c(�)

�1

:=

R

D

h(z; z)

��p

dm(z) is �nite if and only if � > p� 1, and in this case

c(�) =

�




(�)

�

d

�




(��

d

r

)

: (1.22)

For � > p � 1 we consider the probability measure

d�

�

(z) := c(�)h(z; z)

��p

dm(z) (1.23)

on D. The weighted Bergman space L

2

a

(D;�

�

) consists of all analytic functions in

L

2

(D;�

�

). Using (1.8) one obtains the transformation rule of �

�

under composition

with ' 2 G:

d�

�

('(z)) = jJ'(z)j

2�

p

d�

�

(z):
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(The same argument yields the invariance of the measure d�

0

(z) := h(z; z)

�p

dm(z)).

From this it follows that the operators U

(�)

(') are isometries of L

2

(D;�

�

) which leave

L

2

a

(D;�

�

) invariant. It is easy to verify that point evaluations are continuous linear

functionals on L

2

a

(D;�

�

) and that the reproducing kernel of L

2

a

(D;�

�

) is h(z; w)

��

.

(For w = 0 this is trivial, and the general case follows by invariance.) It follows that

H

�

= L

2

a

(D;�

�

).

The Hardy space: The Shilov boundary S of a general Cartan domain D is the set of

all maximal tripotents in Z. S is invariant and irreducible under both of G and K.

Let � be the unique K-invariant probability measure on S, de�ned via

Z

S

f(�) d�(�) :=

Z

K

f(k(e)) dk:

The Hardy space H

2

(S) is the space of all analytic functions f on D for which

kfk

2

H

2

(S)

:= lim

�!1�

Z

S

jf(��)j

2

d�(�)

is �nite. The polynomials are dense in H

2

(S) and every f 2 H

2

(S) has radial

limits

~

f (�) := lim

�!1�

f(��) at �-almost every � 2 S. Moreover, for f 2 H

2

(S),

kfk

H

2

(S)

= k

~

fk

L

2

(S;�)

. This identi�es H

2

(S) as the closed subspace of L

2

(S; �)

consisting of those functions f 2 L

2

(S; �) which extend analytically to D by means of

the Poisson integral. Again, the point evaluations f 7! f(z); z 2 D, are continuous

linear functionals on H

2

(S). The corresponding reproducing kernel is called the Szeg�o

kernel and is given (as a function on S) by S

z

(�) = S(�; z) := h(�; z)

�d=r

. See [Hu],

[FK1]. This non-trivial fact implies that H

d=r

= H

2

(S). The transformation rule of

the measure � under the automorphisms ' 2 G is

d�('(�)) = jJ'(�)j d�(�):

Hence, U

(d=r)

(')f = (f � ') (J')

1=2

, ' 2 G, are isometries of L

2

(S; �) which leave

H

2

(S) invariant.

The Dirichlet space: The classical Dirichlet space B

2

consists of those analytic func-

tions f on the open unit disk D � C for which the Dirichlet integral

kfk

2

B

2

:=

Z

D

jf

0

(z)j

2

dA(z) (1.24)

is �nite. Here dA(z) :=

1

�

dx dy. Clearly, B

2

is a Hilbert space modulo constant

functions, and kf � 'k

B

2

= kfk

B

2

for every f 2 B

2

and ' 2 Aut(D). Thus, B

2

is

U

(0)

-invariant. The composition series corresponding to � = �

1

= 0 is C1 = M

(0)

0

�

M

(0)

1

= P

(0)

. Hence B

2

= H

0;1

(D). The inner product in B

2

can be computed also

via integration on the boundary T := @D (which coincides with the Shilov boundary

in this simple case):

hf; gi

B

2

=

1

2�

Z

T

�f

0

(�) g(�) jd�j: (1.25)

Motivated by this example we call the spaces H

0;q(0)

for a general Cartan domain

D the (generalized) Dirichlet space of D. The paper [A2] provides integral formulas
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generalizing (1.24) and (1.25) for the norms in H

�;q(�)

for � 2W

d

(D), in the context

of a Cartan domain of tube type (in [A1] these formulas are extended to all � 2 P(D)).

Formula (1.24) says that f 2 B

2

= H

0;1

if and only if f

0

2 H

2

. Namely, di�erentiation

\shifts" the space corresponding to � = 0 to the one corresponding to � = 2. This

shifting technique is developed in [Y3] in order to get integral formulas for the inner

products in certain spaces H

�

with � � p � 1. The general idea is to obtain such

integral formulas via \partial integration in the radial directions", see [Ri], [Go], and

[FK2], Chapter VII. (For the open unit ball of C

d

, the simplest (i.e. rank-one) non-

tube Cartan domain, cf. [A3], [Pel]).

Finally, we describe the relationship between the invariant inner product and the

Riesz distribution. The Riesz distribution was introduced in [Ri] for the Lorentz

cone, i.e. the symmetric cone associated with the Cartan domain of type IV (the \Lie

ball"). It was studied in [Go] for the cone of symmetric, positive de�nite real matrices

(associated with the Cartan domain of type III) and for a general symmetric cone in

[FK2], chapter VII. Let 
 be the symmetric cone associated with the Cartan domain

of tube type D. For � 2 C with <� > (r� 1)

a

2

let R

�

be the linear functional on the

Schwartz space S(X) of X de�ned via

R

�

(f) :=

1

�




(�)

Z




f(x)N (x)

��

d

r

dx:

Then R

�

is a tempered distribution satisfying @

N

R

�

= R

��1

; R

�

?R

�

= R

�+�

; R

0

=

�; i.e. R

1

is the fundamental solution for the \wave operator" @

N

:= N (

@

@x

). These

formulas permit analytic continuation of � 7! R

�

to an entire meromorphic function.

It is very interesting to �nd the explicit description of the action of R

�

for general �,

but this is still open. What is known is that the Riesz distribution R

�

is represented

by a positive measure if and only if � 2 W (D).

Writing the inner products h�; �i

�

in conical polar coordinates (1.11), we get for

� > p� 1

hf; gi

�

=

�




(�)

�




(

d

r

) �




(� �

d

r

)

Z


\(e�
)

(fg)

~

(x) N (e � x)

��p

dx; 8f; g 2 H

�

(D);

where (f�g)

~

(x) :=

R

K

f(k(x

1

2

)) g(k(x

1

2

)) dk. Thus

hf; gi

�

=

�




(�)

�




(

d

r

)

�

R

��

d

r

? (f�g)

~

�

(e);

where the convolution of functions u and v on 
 is

(u ? v)(x) :=

Z


\(x�
)

u(y) v(x � y) dy:

Also, the inner product h�; �i

�

, � > p � 1, in the context of the tube domain

T (
) := X + i
 (holomorphically equivalent to D) is

hf; gi

�

:= c(�)

Z




�

Z

X

f(x+ iy) g(x + iy) dx

�

N (2y)

��p

dy:
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See section 6 for the details. Thus

hf; gi

�

= �

�d

2

��p

�




(�) R

��

d

r

�

(f �g)

[

�

;

where (f �g)

[

)(y) :=

R

X

f(x + iy) g(x + iy) dx; y 2 
.

In view of these formulas the problem of obtaining an explicit description of

the analytic continuation of the maps � 7! hf; gi

�

is equivalent to the problem of

determining the analytic continuation of the maps � 7! R

��

d

r

(u).

2 G(
)-invariant differential operators

Let 
 be the symmetric cone associated with the Cartan domain of tube type D,

i.e. the interior of the cone of squares in the Euclidean Jordan algebra X. In this

section we study G(
)-invariant di�erential operators that will be used later for the

invariant inner products. The ring Di�(
)

G(
)

of G(
)-invariant di�erential opera-

tors is a (commutative) polynomial ring C[X

1

; X

2

; : : : ; X

r

], [He], [FK2]. By [FK2],

Proposition IX.1.1, 
 is a set of uniqueness for analytic functions on Z (namely, if

an analytic function on Z vanishes identically on 
, it vanishes identically on Z).

Similarly, 
 \ D = 
 \ (e � 
) is a set of uniqueness for analytic functions on D.

Thus, if f; g and q are polynomials on Z so that @

f

(g)(x) = f(

d

dx

)g(x) = q(x) for

every x 2 
, then @

f

(g)(z) = f(

@

@z

)g(z) = q(z) for every z 2 Z. We begin with the

following known result [FK2], Proposition VII.1.6.

Lemma 2.1 For every s = (s

1

; s

2

; : : : ; s

r

) 2 C

r

and ` 2N, we have

N

`

(

d

dx

)N

s

(x) = �

s

(`) N

s�`

(x); 8x 2 
;

where

�

s

(`) :=

(

d

r

)

s

(

d

r

)

s�`

=

�




(s +

d

r

)

�




(s +

d

r

� `)

=

r

Y

j=1

`�1

Y

�=0

(s

j

� � + (r � j)

a

2

);

and

�




(s)N (

d

dx

)N

s

(x

�1

) = (�1)

r

�




(s + 1) N

s+1

(x

�1

):

Let N

�

j

be the norm polynomial of the JB

�

-subalgebra V

j

:=

P

r�j+1�j�k�r

Z

i;k

,

where Z

i;k

are the Peirce subspaces of Z associated with the �xed frame fe

j

g

r

j=1

. For

every s = (s

1

; : : : ; s

r

) 2 C

r

let

N

�

s

(x) := N

�

1

(x)

s

1

�s

2

N

�

2

(x)

s

2

�s

3

: : :N

�

r

(x)

s

r

; x 2 
;

and

s

�

:= (s

r

; s

r�1

; s

r�2

; : : : ; s

1

):

Then we have N

s

(x

�1

) = N

�

�s

�

(x) for x 2 
, [FK2],Proposition VII.1.5.

Definition 2.1 For ` 2 N and � 2 C let D

`

(�) be the operator on C

1

(
) de�ned

by

D

`

(�) = N

d

r

��

(x)N

`

(

d

dx

)N

`+��

d

r

(x): (2.1)
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In the special case of the Cartan domain of type II the operators D

1

(�) have been

considered by Selberg (see [T], p.208). The operators D

`

(�) were studied in full

generality in [Y3], see also [FK2], Chapter XIV. Notice that by Lemma 2.1 we have

D

`

(�)N

s

=

�




(s+ �+ `)

�




(s+ �)

N

s

: (2.2)

In section 4 below we will extend D

`

(�) to a polynomial di�erential operator on

Z, i.e. D

`

(�) = Q

`;�

(z;

@

@z

) for some polynomial Q

`;�

.

Lemma 2.2 The operator D

`

(�) is K-invariant, i.e.

D

`

(�)(f � k) = (D

`

(�)f) � k 8f 2 C

1

(
); 8k 2 K:

Proof: We have N (kz) = �(k)N (z) for every z 2 Z. Since the operator @

N

= N (

@

@z

)

is the adjoint of the operator of multiplication by N with respect to the inner product

h�; �i

F

, K-invariance of h�; �i

F

implies @

N

(f � k) = �(k)(@

N

f) � k: It follows that

D

`

(�)(f(kz)) = �(k)

`+��

d

r

N (z)

d

r

��

N

`

(

@

@z

)

�

N

`+��

d

r

(kz)f(kz)

�

= �(k)

`+��

d

r

N (z)

d

r

��

�(k)

`

�

N

`

(

@

@z

)(N

`+��

d

r

f)

�

(kz)

= N

d

r

��

(kz)

�

N

`

(

@

@z

)(N

`+��

d

r

f)

�

(kz) = (D

`

(�)f)(kz):

Using (2.2) and the fact that 
 \D = 
 \ (e �
) is a set of uniqueness for analytic

functions on D, we obtain the following result.

Corollary 2.1 The spaces P

m

are eigenspaces of D

`

(�) with eigenvalues

�

`;m

(�) :=

�




(m+ �+ `)

�




(m + �)

: (2.3)

Thus for every analytic function f on D with Peter-Weyl expansion f =

P

m�0

f

m

,

D

`

(�)f =

X

m�0

�




(m+ � + `)

�




(m+ �)

f

m

= (�)

(`;`;:::;`)

X

m�0

(� + `)

m

(�)

m

f

m

: (2.4)

Indeed, for every signature m and every k 2 K,

D

`

(�)(N

m

� k) = (D

`

(�)N

m

) � k =

�




(m+ � + `)

�




(m+ �)

N

m

� k:

Since P

m

= spanfN

m

� k; k 2 Kg, (2.4) follows from the continuity of D

`

(�) with

respect to the topology of compact convergence on D.

Corollary 2.2 Let � 2 C nP(D), ` 2 N, and w 2 D. Then

D

`

(�)h(�; w)

��

= (�)

(`;`;:::;`)

h(�; w)

�(�+`)

: (2.5)
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Proof: Using (1.16) and Corollary 2.2, we get

D

`

(�)h(�; w)

��

=

X

m�0

(�)

m

D

`

(�)K

m

(�; w)

= (�)

(`;:::;`)

X

m�0

(�)

m

(� + `)

m

(�)

m

K

m

(�; w)

= (�)

(`;:::;`)

X

m�0

(�+ `)

m

K

m

(�; w) = (�)

(`;:::;`)

h(�; w)

�(�+`)

:

Notice that the assumption that � is not in P(D) is used in the above proof to ensure

that (�)

m

6= 0 for every m � 0. This is due to the fact that the zero set of the

polynomial (�)

m

is

Z((�)

m

) = [

r

j=1

f�

j

� k; k = 0; 1; : : : ;m

j

� 1g; (2.6)

while P(D) = [

r

j=1

(�

j

�N) = [

m�0

Z((�)

m

). Similarly, for each m � 0 the zero

set of the polynomial de�ned by (2.3) is given by

Z(�

`;m

(�)) = [

r

j=1

f�

j

� k; m

j

� k � m

j

+ ` � 1g: (2.7)

The multiplicities of the zeros are equal to the number of their appearances on the

right hand side of (2.7).

Corollary 2.3 Let � 2 C, ` 2 N be so that fm � 0; (�)

m

= 0g � fm � 0; (� +

`)

m

= 0g. Then (2.5) holds.

Proof: Notice �rst that (�)

(`;`;:::;`)

(� + `)

m

= (�)

m+`

for all � 2 C, ` 2 N, and

m � 0. Hence, using the fact that fm; (� + `)

m

6= 0g � fm; (�)

m

6= 0g, we get for

every w 2 D

D

`

(�)h(�; w)

��

= D

`

(�)

X

(�)

m

6=0

(�)

m

K

m

(�; w)

= (�)

(`;`;:::;`)

X

(�)

m

6=0

(�+ `)

m

K

m

(�; w)

= (�)

(`;:::;`)

X

(�+`)

m

6=0

(�+ `)

m

K

m

(�; w)

= (�)

(`;:::;`)

h(�; w)

�(�+`)

:

For � 2 P(D) let q = q(�) be as in (1.18), and for 0 � j � q consider S

j

(�) and

M

(�)

j

as in (1.19).

Lemma 2.3 Let �, and q = q(�) be as above, and choose an integer ` so that �+ ` �

d

r

= �

r

+ 1: Then

(i) deg

�

((�)

(`;`;:::;`)

) = q.
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(ii) For every j = 0; 1; 2; : : :; q and every m 2 S

j

(�) n S

j�1

(�), deg

�

(�

`;m

) = q � j.

(iii) If 0 � j � q and m 2 S

j�1

(�), then deg

�

(�

`;m

) � q � j + 1.

Proof: Using (2.6) it is clear that

q(�;m) = q , �

j

�m

j

+ 1 � � 8j , �

r

�m

r

+ 1 � �:

Since �

r

+1 � �+`, we see that m = (`; `; : : : ; `) satis�es the above condition, namely

deg

�

((�)

(`;:::;`)

) = q(�; (`; : : : ; `)) = q. This establishes (i). Next, m 2 S

(�)

j

n S

(�)

j�1

is

equivalent to q(�;m) = j. By the argument given above, q(�;m+ `) = q. Since

deg

�

(f=g) = deg

�

(f) � deg

�

(g), we get

deg

�

(�

`;m

) = deg

�

�

(�)

m+`

(�)

m

�

=

= deg

�

((�)

m+`

)� deg

�

((�)

m

) = q(�;m+ `) � q(�;m) = q � j:

This yields (ii). Finally, (iii) follows by similar computations.

Let � 2 P(D), ` 2 N, and q = q(�) as above. For every m � 0 and � 2 N we

de�ne

�

�

`;m

(�) :=

1

�!

(

@

@�

)

�

�

`;m

(�)

j�=�

:

Using Lemma 2.3 (ii), we have

Corollary 2.4 (i) If m 2 S

j

(�) n S

j�1

(�) then

�

q�j

`;m

(�) =

r

Y

i=1

0

Y

m

i

+`�1

k=m

i

(� + k � �

i

);

where the product

Q

0

m

j

+`�1

k=m

j

ranges over all non-zero terms. In particular,

�

q�j

`;m

(�) 6= 0.

(ii) If m 2 S

j�1

(�) then �

q�j

`;m

(�) = 0.

Definition 2.2 For � 2 C and �; ` 2N let D

�

`

(�) be the operator on C

1

(D) de�ned

by

D

�

`

(�)f :=

1

�!

(

@

@�

)

�

(D

`

(�)f)

j�=�

: (2.8)

Notice that if f =

P

m�0

f

m

is analytic in D, then D

�

`

(�)f :=

P

m�0

�

�

`;m

(�) f

m

:

By [FK2], Chapter VI the group G(
) admits an Iwasawa decomposition G(
) =

NAL, where L is the group de�ned via (1.6), and NA is a maximal solvable subgroup

of G(
) (called the triangular subgroup with respect to the frame fe

i

g

r

i=1

) which acts

simply transitively on 
 and for which all the conical functions N

s

, s 2 C

r

, are

eigenfunctions:

N

s

(� (x)) = N

s

(� (e))N

s

(x); 8� 2 NA; 8x 2 
: (2.9)
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Lemma 2.4 The operators D

`

(�) are G(
)-invariant, i.e. D

`

(�)(f �') = (D

`

(�)f)�

'; 8f 2 C

1

(
); 8' 2 G(
).

Proof: By the L-invariance of D

`

(�) (see Lemma 2.2) it is enough to verify the

NA-invariance of D

`

(�) for functions f of the form f = N

s

� ` for some s 2 C

r

and

` 2 L. Let � 2 NA, and decompose ` � � uniquely as ` � � = �

0

� `

0

with �

0

2 NA and

`

0

2 L. Then, using (2.2) and (2.9), we get

D

`

(�)(f � � ) = D

`

(�)(N

s

� ` � � ) = D

`

(�)(N

s

� �

0

� `

0

)

= (D

`

(�)(N

s

� �

0

)) � `

0

= N

s

(�

0

(e))(D

`

(�)N

s

) � `

0

= N

s

(�

0

(e))

�




(s+ � + `)

�




(s+ �)

N

s

� `

0

=

�




(s+ �+ `)

�




(s+ �)

N

s

� �

0

� `

0

=

�




(s + � + `)

�




(s + �)

N

s

� ` � � =

�




(s+ �+ `)

�




(s+ �)

f � �

= (D

`

(�)f) � �:

Corollary 2.5 The operators D

�

`

(�) are G(
)-invariant.

3 Integral formulas via the shifting method

In this section we develop general shifting techniques (introduced in [Y3], for the case

of integer shifts). The simplest case where this technique is applied is the case of the

Dirichlet space D = H

0;1

over the unit disk D (see Section 2). For any � 2 C and

� 2 C nP(D) we de�ne an operator S

�;�

on H(D) via

S

�;�

(

X

m�0

f

m

) :=

X

m�0

(�)

m

(�)

m

f

m

:

Theorem 5 of [A4] and the known estimate

(x)

m

(y)

m

�

r

Y

j=1

(m

j

+ 1)

x�y

; 8x; y 2 R

(an easy consequence of (1.9) and Stirling's formula) ensures that S

�;�

is continuous

on H(D). For � 2 P(D) we de�ne operators S

�;�;j

, 0 � j � q(�), on the space of

analytic functions on D of the form f =

P

m2S

j

(�)

f

m

by

S

�;�;j

f := lim

�!�

(� � �)

j

S

�;�

f =

X

m2S

j

(�)nS

j�1

(�)

(�)

m

(�)

m;j

f

m

;

where (�)

m;j

are de�ned by (1.21). Again, S

�;�;j

is continuous in the topology of

H(D). Also, S

�;�;0

= S

�;�

:
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Proposition 3.1 Let �; � > (r � 1)

a

2

. Then hf; gi

�

= hS

�;�

f; gi

�

for every f; g 2

H

�

.

Proof: By (1.17) the operator S

1

2

�;�

: H

�

!H

�

de�ned by

S

1

2

�;�

(

X

m�0

f

m

) :=

X

m�0

�

(�)

m

(�)

m

�

1

2

f

m

is a surjective isometry, and kfk

2

�

= kS

1

2

�;�

fk

2

�

= hS

�;�

f; fi

�

: Now the result follows

by polarization.

In a similar way one proves the following result.

Proposition 3.2 Let � > (r � 1)

a

2

and let � 2 P(D). Then for every 0 � j � q(�)

and all f; g 2 H

�;j

,

hf; gi

�;j

= hS

�;�;j

f; gi

�

: (3.1)

The operators S

�;�;j

allow the computation of the invariant hermitian forms

hf; gi

�;j

by \shifting" the point � to the point �. This is the \shifting method". One

typically chooses either � =

d

r

or � > p � 1, so the forms hf; gi

�;j

can be computed

by the integral-type inner products of H

2

(D) or L

2

a

(D;�

�

). In order for the shifting

method to be useful, one has to identify the operators S

�;�;j

as di�erential or pseudo-

di�erential operators. Essentially, this is our aim in the rest of the paper. Yan's paper

[Y3] deals with the case where ` := �� � is a su�ciently large natural number. The

following result is a minor generalization of a result of [Y3].

Theorem 3.1 Let � > �

r

=

d

r

� 1 and let ` 2N. Then for all f; g 2 H

�

hf; gi

�

= �(�; `)hD

`

(�)f; gi

�+`

; (3.2)

where

�(�; `) =

�




(�)

�




(�+ `)

=

1

(�)

(`;`;:::;`)

:

We include a short proof for the sake of completeness.

Proof: Let f; g 2 H

�

with expansions f =

P

m�0

f

m

and g =

P

m�0

g

m

respectively.

Then

hD

`

(�)f; gi

�+`

=

X

m�0

�

`;m

(�)

(�+ `)

m

hf

m

; g

m

i

F

=

�




(� + `)

�




(�)

X

m�0

hf

m

; g

m

i

F

(�)

m

= �(�; `)

�1

hf; gi

�

:

Corollary 3.1 Let � > �

r

=

d

r

� 1, and ` 2 N be so that � + ` > p � 1. Then

H

�+`

= L

2

a

(D;�

�+`

), and for every f; g 2 L

2

a

(D;�

�+`

),

hf; gi

�

= �(�; `) c(� + `)

Z

D

(D

`

(�)f)(z) g(z) h(z; z)

�+`�p

dm(z):
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Our main result in this section is a generalization of both Theorem 3.1 and the

other results of [Y3] to the case of invariant hermitian forms associated with the pole

set P(D) = [

r

j=1

(�

j

� N). Since W(D) � P(D), this covers cases not studied in

[A1].

Theorem 3.2 Let � 2 P(D), ` 2 N and assume that � + ` �

d

r

= �

r

+ 1. Let

q = q(�), 0 � j � q, and � = q � j. Then for all f; g 2 H

�;j

,

hf; gi

�;j

= 
hD

�

`

(�)f; gi

�+`

; (3.3)

where 
 = 
(�; `) is the non-zero constant


 :=

1

q!

(

@

@�

)

q

�

(�)

(`;`;:::;`)

�

j�=�

: (3.4)

In particular, if � + ` > p� 1, then

hf; gi

�;j

= 
 c(�+ `)

Z

D

(D

�

`

(�)f)(z) g(z) dm(z): (3.5)

Moreover, if �

r

� � 2N and ` is chosen so that � + ` =

d

r

= �

r

+ 1, then

hf; gi

�;j

= 


Z

S

(D

�

`

(�)f)(�) g(�) d�(�): (3.6)

We shall also give a new proof of the following known result (see [FK1], Theorem

5.3) and of a part of Theorem 1.4 above, based on our analysis of the structure of

zeros of the polynomials (�)

m

. Recall that H

�;j

is said to be unitarizable if h�; �i

�;j

is

either positive de�nite or negative de�nite.

Theorem 3.3 Let �; `; q, and j be as in Theorem 3.2. Then H

�;j

is unitarizable if

and only if either

(a) j = q and �

r

� � 2N, or

(b) j = 0 and � 2W

d

(D) = f�

j

g

r

j=1

.

For the proof of Theorems 3.2 and 3.3 we consider separately the cases j = 0,

j = q, and 1 � j � q � 1.

Case 1: j = 0. Since � 2 P(D), there is a smallest k 2 f1; 2; : : : ; rg and a unique

s 2 N so that � = �

k

� s. We claim that S

0

(�) = fm � 0;m

k

� sg. Indeed,

if m � 0, then

Q

k�1

i=1

Q

m

i

�1

�=0

(� + � � �

i

) 6= 0, by the minimality of k. The term

Q

m

k

�1

�=0

(� + � � �

k

) =

Q

m

k

�1

�=0

(� � s) is non-zero if and only if m

k

� s. If m

k

� s

and k < n � r then

m

k

�1

Y

�=0

(�+ � � �

k

) =

m

k

�1

Y

�=0

((�

k

� �

n

) + (� � s)) 6= 0
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because m

n

� m

k

� s. This establishes the claim. Notice that since � + ` � �

r

+ 1,

we have (� + `)

m

> 0 for any m � 0. Also, deg

�

((�)

(`;`;:::;`)

) = q by Lemma 2.3. It

follows that for m 2 S

0

(�), deg

�

(�

`;m

) = q, and

�

q

`;m

(�) =

1

q!

(

@

@�

)

q

�

`;m

(�)

j�=�

=

1

q!

(

@

@�

)

q

�

(� + `)

m

(�)

m

(�)

(`;`;:::;`)

�

j�=�

=

(� + `)

m

(�)

m

1

q!

(

@

@�

)

q

(�)

(`;`;:::;`)

j�=�

= 


(� + `)

m

(�)

m

:

Hence, for f; g 2 H

�;0

,

hD

q

`

(�)f; gi

�+`

=

X

m2S

0

(�)

�

q

`;m

(�)

hf

m

; g

m

i

F

(�+ `)

m

= 


X

m2S

0

(�)

hf

m

; g

m

i

F

(�)

m

= 
hf; gi

�;0

:

This proves Theorem 3.2 in case j = 0. If � 2 W

d

(D), i.e. � = �

k

and s = 0,

then (�)

m

> 0 for every m 2 S

0

(�), namely 0 = m

k

= m

k+1

= � � � = m

r

. If

� 2 P(D) nW

d

(D), then � = �

k

� s with 1 � s. In this case (�)

m

assumes both

positive and negative values as m ranges over S

0

(�). Indeed, if m and n are de�ned

by m

i

= n

i

= 0 for 1 � i � k � 1 and k < i � r, and m

k

= 0, n

k

= s � 1, then (�)

m

and (�)

n

have di�erent signs. Thus h�; �i

�;0

is not de�nite (positive or negative), and

thus H

�;0

is not unitarizable. This proves Theorem 3.3 in case j = 0.

Case 2: j = q. In this case � = q � j = 0. Also, Lemma 2.3 yields deg

�

(�

`;m

) = 0

if m 2 S

q

(�) and deg

�

(�

`;m

) � 1 if m 2 S

q�1

(�). It follows that for f; g 2 H

�;q

,

hD

`

(�)f; gi

�+`

=

X

m2S

q

(�)

�

`;m

(�)

hf

m

; g

m

i

F

(�+ `)

m

:

Now,

�

`;m

(�) = lim

�!�

(� + `)

m

(�)

m

(�)

(`;`;:::;`)

= (� + `)

m

lim

�!�

(�)

(`;`;:::;`)

(�)

m

= 


(� + `)

m

(�)

m;q

;

where 
 is the non-zero constant de�ned in (3.4). It follows that

hD

`

(�)f; gi

�+`

= 


X

m2S

q

(�)

hf

m

; g

m

i

F

(�)

m;q

= 
hf; gi

�;q

:

This proves Theorem 3.2 in case j = q. To prove Theorem 3.3 in this case, assume

�rst that � = �

r

� s for some s 2N. We claim now that

S

q

(�) n S

q�1

(�) = fm � 0;m

r

� s + 1g: (3.7)

Indeed, if m

r

� s + 1 then

Q

m

r

�1

u=0

(� + u � �

r

) = 0. If � 2 �

i

� N, then

Q

m

i

�1

u=0

(�+u��

r

) = 0 because m

i

� m

r

� s+1. Thus deg

�

((�)

m

) = q. Conversely,

Documenta Mathematica 2 (1997) 213{261



Invariant Inner Products 233

if deg

�

((�)

m

) = q, then in order that

Q

m

r

�1

u=0

(� + u � �

r

) = 0 it is necessary that

s � m

r

� 1. This establishes (3.7).

Next, let m 2 S

q

(�), and let 1 � i � r be so that � 2 �

i

�N, say � = �

i

� k

i

.

Then

lim

�!�

(� � �)

�1

m

i

�1

Y

u=0

(� + u� �

i

) =

k

i

�1

Y

u=0

(� + u� �

i

)

m

i

�1

Y

u=k

i

+1

(�+ u� �

i

) = 


i;m

�

i

with �

i

6= 0 and 


i;m

> 0. If � =2 �

i

�N we let �

i

=

Q

u<�

i

��

(� + u� �

i

) 6= 0 and




i;m

=

Q

u>�

i

��

(� + u� �

i

) > 0. Then

(�)

m;q

= lim

�!�

(�)

m

(� � �)

q

=

r

Y

i=1




i;m

�

i

:

Hence, all the numbers f(�)

m;q

g

m2S

q

(�)

have constant sign (equal to sgn(

Q

r

i=1

�

i

)),

and thus H

�;q

is unitarizable. Assume now that � =2 �

r

�N. Then, necessarily, the

characteristic multiplicity a is odd and � 2 �

r�1

�N. Writing � = �

r�1

� s, s 2 N,

it is clear by the above arguments that

S

q

(�) n S

q�1

(�) = fm � 0; m

r�1

� s + 1g:

Let m = (s+1; s+1; : : :; s+1; 1) and n = (s+1; s+1; : : : ; s+1; 0). Then m;n 2 S

q

(�)

and (�)

m;q

= (���

r

)(�)

n;q

. Thus (�)

m;q

and (�)

n;q

have di�erent signs, and so H

�;q

is not unitarizable. This proves Theorem 3.3 in case j = q.

Case 3: 1 � j � q� 1. Put � = q � j. As before, ` 2 N is chosen so that � + ` �

�

r

+ 1, and this guarantees that deg

�

((�)

m+`

) = q and (�+ `)

m

> 0 for all signatures

m � 0. Let f; g 2 H

�;j

. Then

hD

�

`

(�)f; gi

�+`

=

X

m2S

j

(�)

�

�

`;m

(�)

hf

m

; g

m

i

F

(� + `)

m

:

If m 2 S

j

(�) n S

j�1

(�), then

deg

�

(�

`;m

) = deg

�

�

(�)

m+`

(�)

m

�

= q � j = �:

Thus,

�

�

`;m

(�) = lim

�!�

�

`;m

(�)

(� � �)

�

= lim

�!�

(� + `)

m

(� � �)

�q

(�)

(`;`;:::;`)

(� � �)

�j

(�)

m

= 


(� + `)

m

(�)

m;j

:

If m 2 S

j�1

(�), then deg

�

(�

`;m

) � q � j + 1 = � + 1, and so �

�

`;m

(�) = 0. Thus

hD

�

`

(�)f; gi

�+`

= 


X

m2S

j

(�)nS

j�1

(�)

(� + `)

m

(�)

m;j

hf

m

; g

m

i

F

(�+ `)

m

= 


X

m2S

j

(�)nS

j�1

(�)

hf

m

; g

m

i

F

(�)

m;j

= 
hf; gi

�;j

:
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This proves Theorem 3.2 in case 1 � j � q � 1. To prove Theorem 3.3 in this case

we need to show that as m varies in S

j

(�) n S

j�1

(�), (�)

m;j

assumes both positive

and negative values. Notice �rst that there exists a unique pair (k; s) of integers with

1 � k < s � r so that �

k

� � and �

s

� � are positive integers and

m 2 S

j

(�) n S

j�1

(�) () m

k

� �

k

� � + 1 and m

s

� �

s

� �:

In fact, s = k + 1 if the characteristic multiplicity a is even, and s = k + 2 if a is

odd. Next, �

s

� � = �

k

� � + (s � k)

a

2

� 1. De�ne m, n by m

i

= n

i

= �

k

� � + 1

if 1 � i � k, m

i

= n

i

= 0 if k + 2 � i � r, and m

k+1

= 0, n

k+1

= 1. Then

m;n 2 S

j

(�) n S

j�1

(�) and (�)

n;j

= (�)

m;j

(� � �

s

). Thus (�)

n;j

and (�)

m;j

have

di�erent signs, and so H

�;j

is not unitarizable. This proves Theorem 3.3 in case

1 � j � q � 1.

A special case of Theorem 3.2 is the following essentially known result.

Corollary 3.2 Let � 2 P(D) be so that s = s(�) :=

d

r

� � 2N. Then

(i) H

�;q

is unitarizable, and

hf; gi

�;q

= 


Z

S

N

s

(�)(@

s

N

f)(�) g(�) d�(�); 8f; g 2 H

�;q

:

Thus, an analytic function f on D belongs to H

�;q

if and only if (N

s

@

s

N

)

1=2

f 2

H

2

(S).

(ii) Moreover, if ` 2N is chosen so that � + ` > p� 1, then

hf; gi

�;q

= 


0

Z

D

(D

`

(�)f)(z) g(z) h(z; z)

�+`�p

dm(z); 8f; g 2 H

�;q

:

Consequently, an analytic function f on D belongs to H

�;q

if and only if

(D

`

(�))

1=2

f 2 L

2

a

(D;�

�+`

).

In the last statement (D

`

(�))

1=2

is the positive square root of the positive operator

D

`

(�), see Corollary 2.1 Indeed, part (i) follows from Theorem 3.2 with j = q, � =

q � j = 0, ` = s and D

s

(�) = N

s

@

s

N

. In this case H

�+s

= H d

r

is the Hardy space

H

2

(S) on the Shilov boundary S. Corollary 3.2 (i) for � 2 W

d

(D) was proved in

[A2]. The proof of part (ii) is similar.

The case where � 2 P(D) and s :=

d

r

� � 2 N (i.e. the highest quotient of the

composition series of U

(�)

-invariant spaces is unitarizable) is of particular interest.

Theorem 3.4 Let � 2 P(D) and assume that s :=

d

r

� � 2 N. Then, for each

' 2 Aut(D) and f 2 H(D)

@

s

N

(U

(�)

(')f) = U

(p��)

(')(@

s

N

f): (3.8)

Namely, the operator @

s

N

intertwines the actions U

(�)

and U

(p��)

of Aut(D). More-

over,

hf; gi

�;q

= c

1

h@

s

N

f; @

s

N

gi

p��

; 8f; g 2 H

�;q

; (3.9)

Documenta Mathematica 2 (1997) 213{261



Invariant Inner Products 235

where

c

�1

1

:= (

d

r

)

(s;s;:::;s)

r

Y

j=1

0

Y

s�1

u=0

(�+ u� �

j

); (3.10)

and the product

Q

0

s�1

u=0

ranges over all non-zero terms. In particular, if � < 1, then

hf; gi

�;q

= c

1

c(p� �)

Z

D

(@

s

N

f)(z) (@

s

N

g)(z) h(z; z)

��

dm(z); 8f; g 2 H

�;q

: (3.11)

Proof: (3.8) is proved in [A1], Theorem 6.4. For the proof of (3.9) and (3.11) we

de�ne an inner product on the polynomials moduloM

(�)

q�1

by

[f; g] := h@

s

N

f; @

s

N

gi

p��

; f; g 2 H

�;q

:

We claim that [�; �] is U

(�)

-invariant. Indeed, using (3.8) we see that for every ' 2

Aut(D) and polynomials f and g,

[U

(�)

(')f; U

(�)

(')g] = h@

s

N

(U

(�)

(')f); @

s

N

(U

(�)

(')g)i

p��

= hU

(p��)

(')(@

s

N

f); U

(p��)

(')(@

s

N

g)i

p��

= h@

s

N

f; @

s

N

gi

p��

= [f; g]:

Since polynomials are dense in H

�;q

, the fact that its inner product is the unique

U

(�)

-invariant inner product (see [AF], [A1]) implies that

hf; gi

�;q

= c

1

[f; g]; 8f; g 2 H

�;q

:

The value (3.10) of c

1

is found by taking f = g = N

s

, and using the facts that

hN

s

; N

s

i

F

= (

d

r

)

(s;s;:::;s)

, [N

s

; N

s

] = (@

s

N

N

s

)

2

= hN

s

; N

s

i

2

F

, and

hN

s

; N

s

i

�;q

= lim

�!�

(� � �)

q

hN

s

; N

s

i

F

(�)

(s;s:::;s)

=

hN

s

; N

s

i

F

Q

r

j=1

Q

0

s�1

u=0

(� + u� �

j

)

:

Example: In the special case where � = 0 and s :=

d

r

2 N, H

0;q

is the generalized

Dirichlet space, and formula (3.11) is the generalized Dirichlet inner product

hf; gi

0;q

= c

1

c(p � �)

Z

D

(@

s

N

f)(z) (@

s

N

g)(z) dm(z); 8f; g 2 H

0;q

:

4 The expansion of the operators D

`

(�)

Yan's operators D

`

(�) = N

d

r

��

@

`

N

N

�+`�

d

r

and their derivatives play an important

role in the previous section. In this section we obtain an expansion of D

`

(�) in powers

of �. This expansion will exhibit D

`

(�) as a polynomial in z,

@

@z

, and �, showing that

D

`

(�) is a di�erential operator (with parameters � and `) in the ordinary sense. It

also facilitates the computation of the derivatives

D

�

`

(�) =

1

�!

(

@

@�

)

�

D

`

(�)

j�=�

;
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needed in formulas (3.3), (3.5) and (3.6) for the forms hf; gi

�;j

. Another conse-

quence will be that for any r distinct complex numbers �

1

; : : : ; �

r

the operators

D

1

(�

1

); : : : ; D

1

(�

r

) are algebraically independent generators of the ring of invariant

di�erential operators on the cone 
, a result obtained independently also by Kor�anyi

and Yan (see [FK2], Chapter XIV). We shall work in the framework of the cone 
,

but all the results will be valid for Z, because 
 is a set of uniqueness for analytic

functions on Z.

Example 4.1. Let D � C

d

, d � 3 be a Cartan domain of rank r = 2 (called the Lie

ball). The associated JB

�

-algebra Z = C

d

, called the complex spin factor, is de�ned

via

zw := (z

1

w

1

� z

0

�w

0

; z

1

w

0

+w

1

z

0

); z

�

:= (z

1

;�z

0

);

where z = (z

1

; z

0

), z

0

= (z

2

; z

3

; : : : ; z

d

), and z � w :=

P

d

j=1

z

j

w

j

. The unit

of Z is e := (1; 0; 0; : : :; 0), and the canonical frame is fe

1

; e

2

g, where e

1

:=

1

2

(1; i; 0; 0; : : : ; 0); e

2

:=

1

2

(1;�i; 0; 0; : : :; 0). The norm polynomial and the asso-

ciated di�erential operator are given by

N (z) := z � z =

d

X

j=1

z

2

j

and @

N

= N (

@

@z

) =

1

4

d

X

j=1

@

2

@z

2

j

respectively, since (zjw) = 2z � w is the normalized inner product. Since r = 2 and

a = d� 2, the Wallach set is

W(D) = W

d

(D) [W

c

(D); W

d

(D) = f0;

d� 2

2

g; W

c

(D) = (

d� 2

2

;1):

One can show that D is given by

D = fz 2 Z;

0

@

(

d

X

j=1

jz

j

j

2

)

2

� jN (z)j

2

1

A

1

2

< 1�

n

X

j=1

jz

j

j

2

g: (4.1)

For every � 2 C

@

2

@z

2

k

N

�

=

@

@z

k

(2�N

��1

z

k

+N

�

@

@z

k

)

= 2�N

��1

+ 4�N

��1

z

k

@

@z

k

+ 4�(�� 1)N

��2

z

2

k

+N

�

@

2

@z

2

k

:

Since R =

P

d

j=1

z

j

@

@z

j

, we obtain

@

N

N

�

=

1

4

(

d

X

j=1

@

2

@z

2

j

)N

�

= �(��

a

2

)N

��1

+ �N

��1

R+ N

�

@

N

:

It follows that for every � 2 C and ` 2N,

N

1��

@

N

N

�

= N@

N

+ �R+ �(�+

d� 2

2

)I = N@

N

+ (�)

(1;0)

R+ (�)

(1;1)

I: (4.2)
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Since

D

`

(�) =

�

N

d

r

��

@

N

N

1+��

d

r

��

N

d

r

���1

@

N

N

2+��

d

r

�

� � �

�

N

d

r

+1�`��

@

N

N

`+��

d

r

�

;

we �nally obtain

D

`

(�) =

`

Y

j=1

(N@

N

+ (� �

d

2

+ j)R + (�� 1 + j)(� �

d

2

+ j)I): (4.3)

Note that the factors on the right hand sides of (4.2) and (4.3) commute, since they

are G(
)-invariant, and the entire ring of G(
)-invariant operators is commutative.

Also, the operators R and N@

N

are K-invariant. Hence the factors on the right hand

sides of (4.2) and (4.3) are multipliers of the Peter-Weyl decomposition of analytic

functions on D (see Corollary 2.1).

Consider a general Cartan domain of tube-type D � C

d

with rank r. Let 
 be

the associated symmetric cone in the Euclidean Jordan algebra X and �x a frame

fe

1

; : : : ; e

r

g of pairwise orthogonal primitive idempotents in X, whose sum is the unit

element e. For 1 � � � r, let �

�

:= �

1

�

be the spherical polynomial associated with

the signature 1

�

:= (1; 1; : : : ; 1; 0; 0; : : :; 0), where there are � \1"'s and r � � \0"'s.

Put also �

0

(z) � 1. Let f�

�

g

r

�=0

be the di�erential operators on 
 de�ned via

(�

�

)f(a) := �

�

(

d

dx

)(f(P (a

1

2

)x))

jx=e

; (4.4)

where for b 2 X, P (b) is de�ned via (1.1). Recall that P (b) 2 G(
) for every b 2 
,

and that 
 = fP (b)e; b 2 
g since P (a

1

2

)e = a. Moreover, the L-invariance of the

�

�

's and the \polar decomposition" for 
 imply that

(�

�

)f(a) := �

�

(

d

dx

)(f( (x)))

jx=e

; a 2 
 (4.5)

for every  2 G(
) for which  (e) = a. This implies that the operators f�

�

g

r

�=0

are

G(
)-invariant, namely

�

�

(f �  ) = (�

�

f) �  ; 8 2 G(
); 8f 2 C

1

(
):

We remark that (4.4) and (4.5) are equivalent to

�

�

e

hx;yi

jx=a

= �

�

( 

�

(y)) e

ha;yi

= �

�

(P (a

1

2

)y) e

ha;yi

; a; y 2 
; (4.6)

where  2 G(
) � GL(X) satis�es  (e) = a,  

�

is the adjoint of  with respect to

the inner product h�; �i on X, and �

�

di�erentiates the coordinate x. Notice also that

the operators �

�

can be written as

�

�

= c

m

K

m

(x;

@

@x

);

where m = (1; 1; : : : ; 1; 0; : : : ; 0) (� \ones" and r� � zeros), and c

m

is an appropriate

constant.

Documenta Mathematica 2 (1997) 213{261



238 Arazy and Upmeier

For � = 0; 1, r it is easy to compute �

�

. Clearly, �

0

= I. Since N is L-invariant,

�

r

= N . Using (4.6) and (1.3), we �nd that

�

r

= N @

N

:

Also, �

1

(x) =

1

r

tr(x) =

1

r

hx; ei. Indeed, using N

1

(x) = hx; e

1

i and the fact that L is

transitive on the frames, we get

�

1

(x) =

Z

L

h`x; e

1

i d` =

1

r

r

X

j=1

Z

L

h`x; e

j

i d`

=

1

r

Z

L

h`x; ei d` =

1

r

Z

L

hx; `ei d` =

1

r

hx; ei:

Using the fact that tr(P (a

1

2

)y) = hP (a

1

2

)y; ei = hy; P (a

1

2

)ei = hy; ai; 8a; y 2 
, we

�nd that

�

1

=

1

r

R;

where Rf(x) :=

@

@t

f(tx)

jt=1

is the radial derivative.

Our main result in this section is the expansion of D

1

(�) = N

d

r

��

@

N

N

1+��

d

r

.

This result was obtained independently by A. Kor�anyi, see [FK2], Proposition

XIV.1.5.

Theorem 4.1 For every � 2 C,

D

1

(�) =

r

X

�=0

�

r

�

�

r

Y

j=�+1

(�� �

j

) �

�

: (4.7)

Proof: For x 2 
, the function �! N (x)

�

is entire in �. Hence both sides of (4.7)

are entire in �, and it is therefore enough to prove (4.7) for � with <� < 0. Let

� = �

r

� �. Since <� > �

r

, we get for every x 2 


N (x)

��

=

1

�




(�)

Z




e

�hx;ti

N (t)

�

d�




(t);

where d�




(t) := N (t)

�

d

r

dt is the G(
)-invariant measure on 
. Fix a; y 2 
 and put

f

y

(x) := e

hx;yi

. Then

(N

�+1

@

N

N

��

f

y

)(a)

=

N (a)

�+1

�




(�)

N (

d

dx

)

Z




e

hx;y�ti

N (t)

�

d�




(t)

jx=a

=

N (a)

�+1

�




(�)

Z




e

ha;y�ti

N (y � t)N (t)

�

d�




(t)

=

f

y

(a)

�




(�)

Z




e

�he;P (a

1

2

)ti

N (P (a

1

2

)(y � t))N (P (a

1

2

)t)

�

d�




(t):
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Letting b = P (a

1

2

)y, the substitution t := P (a

�

1

2

)P (b

1

2

)� gives

(N

�+1

@

N

N

��

f

y

)(a) =

f

y

(a)

�




(�)

N (y)

1+�

N (a)

1+�

Z




e

�hb;�i

N (e � � )N (� )

�

d�




(� ):

Now, the well-known \binomial formula"

N (e + x) =

r

X

�=0

�

r

�

�

�

�

(x); x 2 X (4.8)

(which follows from Theorem 1.2 and the knowledge of the norms of the �

�

's) and

the fact that for every s 2 C

r

and b 2 


1

�




(s)

Z




e

�hb;�i

�

s

(� ) d�




(� ) = �

s

(b

�1

) (4.9)

(which follows from the analogous formula for the conical functions), imply

Z




e

�hb;�i

N (e � � )N (� )

�

d�(� ) =

r

X

�=0

�

r

�

�

Z




e

�hb;�i

�

1

�

+�

(� ) d�




(� )

=

r

X

�=0

�

r

�

�

�




(1

�

+ �) �

1

�

+�

(b

�1

) = N (b)

��

r

X

�=0

�

r

�

�

�




(1

�

+ �) �

�

(b

�1

):

We claim that for every b 2 
 and 1 � � � r,

�

�

(b

�1

) = �

r��

(b)N (b)

�1

: (4.10)

Indeed, using (4.8) we have N (e + tb

�1

) =

P

r

�=0

�

r

�

�

�

�

(b

�1

) t

�

, as well as

N (e + tb

�1

) = N (P (b

�

1

2

)(b + te)) = N (b)

�1

t

r

N (e+ t

�1

b)

= N (b)

�1

t

r

r

X

k=0

�

r

k

�

�

k

(b) t

�k

:

Comparing the coe�cients of t

�

in the two expansions, we obtain (4.10). It follows

that

(N

�+1

@

N

N

��

f

y

)(a)

=

f

y

(a) N (y)

1+�

N (a)

1+�

�




(�) N (b)

1+�

r

X

�=0

(�1)

�

�

r

�

�

�




(1

�

+ �) �

r��

(b)

= f

y

(a)

r

X

�=0

(�1)

�

�

r

�

�

�




(1

�

+ �)

�




(�)

�

r��

(b)

= f

y

(a)

r

X

�=0

�

r

�

�

�

Y

j=1

(�

j

� �) �

r��

(P (a

1

2

)y):
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Comparing this with (4.6), we conclude that

N

�+1

@

N

N

��

=

r

X

�=0

�

r

�

�

�

Y

j=1

(�

j

� �) �

r��

=

r

X

k=0

�

r

k

�

r�k

Y

j=1

(�

j

� �) �

k

:

Using the relations � = �

r

� � and

d

r

= 1 + �

r

, we obtain (4.7).

Remark: The \binomial formula" (4.8) yields that for every � = 1; 2; : : : ; r and every

x 2 X,

�

�

(x) =

X

1�i

1

<i

2

<:::<i

�

�r

�

i

1

�

i

2

� � � �

i

�

=

�

r

�

�

= S

r;�

(�)=

�

r

�

�

;

where � = (�

1

; �

2

; : : : ; �

r

) is the sequence of eigenvalues of x, and S

r;�

is the elemen-

tary symmetric polynomial of degree � in r variables.

Combining the de�nition D

`

(�) =

Q

`�1

k=0

D

1

(�+ k) with Theorem 4.1, we obtain

Corollary 4.1 For every � 2 C and ` 2N,

D

`

(�) =

`�1

Y

k=0

r

X

�=0

�

r

�

�

r

Y

j=�+1

(� + k � �

j

) �

�

: (4.11)

For any signature m � 0 let �

m

be the di�erential operator associated with the

spherical polynomial �

m

via

(�

m

f)(a) := �

m

(

d

dx

) f(P (a

1

2

))

jx=e

; a 2 
: (4.12)

Equivalently,

�

m

e

hx;yi

jx=a

= �

m

(P (a

1

2

)y) e

ha;yi

; a 2 
: (4.13)

Again, one can replace in (4.12) and (4.13) P (a

1

2

) by any  2 G(
) satisfying  (e) =

a. Hence the operators �

m

are G(
)-invariant, namely

�

m

(f �  ) = (�

m

f) �  ; 8 2 G(
):

Theorem 4.2 For every � 2 C and ` 2N,

D

`

(�) =

X

m�0

(`)

�




(

d

r

+ `) �




(

d

r

� ��m

�

)

�




(

d

r

+ `�m

�

) �




(

d

r

� ` � �)

d

m

(

d

r

)

m

�

m

(4.14)

= (

d

r

� �� `)

(`;:::;`)

X

m�0

(`)

(�`)

m

(�)

m

d

m

(

d

r

)

m

�

m

:

Here m

�

:= (m

r

;m

r�1

; : : : ;m

1

), d

m

= dim(P

m

), and the summation

P

m�0

(`)

extends over all m = (m

1

;m

2

; : : : ;m

r

) 2N

r

with ` � m

1

� m

2

� : : : � m

r

� 0.

Documenta Mathematica 2 (1997) 213{261



Invariant Inner Products 241

Proof: The general binomial formula (1.15) and the relations

K

m

(x; e) =

�

m

k�

m

k

2

F

; k�

m

k

2

F

=

(

d

r

)

m

d

m

(see [FK2], Chapter XI) imply for ` 2N and x 2 X

N (e+ x)

`

= c

X

m�0

(`)

d

m

(

d

r

)

`�m

�

(

d

r

)

m

�

m

(x); (4.15)

where c := (

d

r

)

(`;`;:::;`)

, and m

�

and

P

m�0

(`)

are as in Theorem 4.2. Indeed, by

(1.15),

N (e + x)

`

=

X

m�0

(�`)

m

(�1)

jmj

d

m

(

d

r

)

m

�

m

(x):

From this (4.15) follows by the fact that (�`)

m

= 0 if m

1

> `, whereas in case m

1

� `,

(�`)

m

(�1)

jmj

=

(

d

r

)

(`;`;:::;`)

(

d

r

)

`�m

�

:

As in the proof of Theorem 4.1, it is enough to prove that for every � 2 C with

<� > �

r

and every ` 2N,

N

�+`

@

`

N

N

��

= c

X

m�0

(`)

(�)

`�m

�

d

m

(

d

r

)

`�m

�

(

d

r

)

m

�

m

: (4.16)

From this one obtains (4.14) by the substitution � =

d

r

� ` � �. To prove (4.16), �x

a; y 2 
 and let f

y

(x) := e

hx;yi

. Then

(N

�+`

@

`

N

N

��

f

y

)(a) =

N (a)

�+`

f

y

(a)

�




(�)

Z




e

�ha;ti

N (y � t)

`

N (t)

�

d�




(t)

=

N (b)

�+`

f

y

(a)

�




(�)

Z




e

�hb;ui

N (e � u)

`

N (u)

�

d�




(u);

by the substitutions b = P (a

1

2

)y and u = P (b

�

1

2

)P (a

1

2

)t. Using (4.15), (4.9), and

�

m

(x

�1

) = �

`�m

�

(x) N (x)

�`

(4.17)

(a consequence of [FK2], Proposition VII.1.5), we obtain

(N

�+`

@

`

N

N

��

f

y

)(a) = c

f

y

(a)

�




(�)

X

m�0

(`)

�




(m+ �) d

m

(

d

r

)

`�m

�

(

d

r

)

m

�

`�m

�

(P (a

1

2

)y):

With the change of variables n := ` �m

�

, the fact that d

m

= d

n

(use (4.17) or the

general formula for d

m

in [U1]), the de�nition (4.12), and

(N

�+`

@

`

N

N

��

f

y

)(a) = c f

y

(a)

X

n�0

(`)

(�)

`�n

�

d

n

(

d

r

)

`�n

�

(

d

r

)

n

�

n

�

(P (a

1

2

)y);

we obtain (4.16).
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Corollary 4.2 The operators f�

k

g

r

k=1

are algebraically independent generators of

the ring Di�(
)

G(
)

of G(
)-invariant di�erential operators on 
.

Proof: Comparing the two expansions (4.11) and (4.14) of D

`

(�), we see that

�

m

2 C[�

1

;�

2

; : : : ;�

r

]

for every signature m � 0. Since f�

m

g

m�0

is a basis for the space of spherical

polynomials, the one-to-one correspondence between spherical polynomials and the

elements of Di�(
)

G(
)

(see [FK2], Chapter XIV) implies that f�

m

g

m�0

is a basis

of Di�(
)

G(
)

. Thus Di�(
)

G(
)

= C[�

1

;�

2

; : : : ;�

r

]. Since the minimal number of

algebraic generators of Di�(
)

G(
)

is r = rank(
) [He], it follows that �

1

;�

2

; : : : ;�

r

are algebraically independent.

The divided di�erences of a C

1

-function f on R are de�ned by

f

[1]

(t

0

; t

1

) :=

f(t

0

)� f(t

1

)

t

0

� t

1

for t

0

6= t

1

, and f

[1]

(t

0

; t

0

) := f

0

(t

0

). The higher order divided di�erences of a smooth

enough function f are de�ned inductively by

f

[n]

(t

0

; t

1

; : : : ; t

n

) := g

[1]

(t

n�1

; t

n

);

where g(x) := f

[n�1]

(t

0

; t

1

; : : : ; t

n�2

; x). Then f

[n]

(t

0

; t

1

; : : : ; t

n

) is symmetric in

t

0

; t

1

; : : : ; t

n

, and

f

[n]

(t; t; : : : ; t) =

1

n!

d

n

dt

n

f(t):

Moreover, if f is analytic in a domain D � C, then

f

[n]

(t

0

; t

1

; : : : ; t

n

) =

1

2�i

Z

�

f(�)

Q

n

j=0

(� � t

j

)

d�

for all t

0

; t

1

; : : : ; t

n

2 D and every Jordan curve � in D whose interior contains

t

0

; t

1

; : : : ; t

n

and is contained in D. The divided di�erences of vector-valued maps

are de�ned in the same way and have analogous properties. For convenience we put

also f

[0]

(t) := f(t).

Theorem 4.3 Let �

1

; �

2

; : : : ; �

r

2 C be distinct. Then fD

1

(�

j

)g

r

j=1

are algebraically

independent generators of Di�(
)

G(
)

. Moreover, for ` = 1; 2; : : : ; r,

�

`

= D

[r�`]

1

(�

`

; �

`+1

; : : : ; �

r

)=

�

r

�

�

; (4.18)

where D

[r�`]

1

(�

`

; : : : ; �

r

) are the divided di�erences of order r� ` of D

1

(�), evaluated

at (�

`

; �

`+1

; : : : ; �

r

).
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Proof: Let h

k

(x) :=

�

r

`

�

Q

r

j=k+1

(x � �

j

), 0 � k � r. Then h

[m]

k

(x

0

; x

1

; : : : ; x

m

) � 0

whenever m > r � k, and h

[r�k]

k

(x

0

; x

1

; : : : ; x

r�k

) �

�

r

`

�

for all choices of

x

0

; x

1

; : : : ; x

r�k

. By Theorem 4.2, D

1

(�) =

P

r

k=0

h

k

(�) �

k

. Hence, for 1 � ` � r,

D

[r�`]

1

(�

`

; �

`+1

; : : : ; �

r

) =

`

X

k=0

h

[r�`]

k

(�

`

; �

`+1

; : : : ; �

r

) �

k

:

Solving this system of equations for the �

k

's, we see that Di�(
)

G(
)

=

C[�

1

;�

2

; : : : ;�

r

] coincides with the ring generated by the operators

fD

[r�`]

1

(�

`

; �

`+1

; : : : ; �

r

)g

r

`=1

. If the f�

j

g

r

j=1

are distinct, then

D

[r�`]

1

(�

`

; �

`+1

; : : : ; �

r

) 2 C[D

1

(�

1

); D

1

(�

2

); : : : ; D

1

(�

r

)]:

Hence,

Di�(
)

G(
)

= C[�

1

;�

2

; : : : ;�

r

] = C[D

1

(�

1

); D

1

(�

2

); : : : ; D

1

(�

r

)]:

The operators fD

1

(�

j

g

r

j=1

are algebraically independent, since Di�(
)

G(
)

cannot be

algebraically generated by less than r elements. If �

j

= �

j

for j = 1; 2; : : : ; r, then

h

[r�`]

k

(�

`

; : : : ; �

r

) = 0 for k < `. Thus, for ` = 1; 2; : : : ; r,

D

[r�`]

1

(�

`

; �

`+1

; : : : ; �

r

) = h

[r�`]

`

(�

`

; �

`+1

; : : : ; �

r

) �

`

=

�

r

`

�

�

`

:

Remark: The �rst statement in Theorem 4.3 was proved independently also by A.

Kor�anyi [FK2] and Z. Yan [Y1]. Our result is slightly stronger, giving the exact

formula (4.18).

Combining Theorems 3.2 and 4.2 (or, 4.1) we obtain integral formulas for the

invariant hermitian forms h�; �i

�;j

, � 2 P(D), 0 � j � q(�).

Corollary 4.3 Let � 2 P(D), ` 2 N and assume that � + ` �

d

r

= �

r

+ 1. Let

q = q(�), 0 � j � q, and � = q� j. Consider the G(
)-invariant di�erential operator

T

�;j

:= 


X

m�0

(`)

c

m

(�; `)

d

m

(

d

r

)

m

�

m

; (4.19)

where 
 is given by (3.4), and for every m � 0 with m

1

� `

c

m

(�; `) :=

1

�!

(

@

@�

)

`

 

�




(

d

r

+ `) �




(

d

r

� � �m

�

)

�




(

d

r

+ ` �m

�

) �




(

d

r

� `� �)

!

j�=�

: (4.20)

Then T

�;j

is de�ned on all analytic functions on D, and for all f; g 2 H

�;j

hf; gi

�;j

= hT

�;j

f; gi

�+`

: (4.21)

In particular, if � + ` > p� 1 or �+ ` =

d

r

then we have

hf; gi

�;j

=

Z

D

(T

�;j

f)(z) g(z) d�

�+`

(z) and hf; gi

�;j

=

Z

S

(T

�;j

f)(�) g(�) d�(�)

(4.22)

respectively.
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The case � = �

r

is particularly simple, since then

d

r

� �

r

= 1, and we can use

(4.7) rather than (4.14).

Corollary 4.4 Let D be a Cartan domain of tube type and rank r � 2 in C

d

, d � 3.

Then

hf; gi

�

r

;0

= h�

r�1

X

�=0

�

r

�

�

r��

Y

i=2

�

i

�

�

f; gi

H

2

(S)

; where � :=

r

Y

i=2

�i: (4.23)

Proof: In this case q = q(�

r

) = 1, j = 0, and � = q � j = 1. We choose ` = 1, so

�

r

+ ` =

d

r

. In order to apply Theorem 3.2 we use Theorem 4.1, and compute

D

1

1

(�

r

) =

@

@�

D

1

(�)

j�=�

=

@

@�

 

r

X

�=0

�

r

�

�

r

Y

i=�+1

(� � �

i

) �

�

!

j�=�

r

=

r�1

X

�=0

�

r

�

�

r�1

Y

i=�+1

(�

r

� �

i

) �

�

=

r�1

X

�=0

�

r

�

�

r��

Y

i=2

�

i

�

�

:

Using this, (4.23) follows from

� :=

@

@�

 

r

Y

i=1

(� � �

i

)

!

�=�

=

r�1

Y

i=1

(�

r

� �

i

) =

r

Y

i=2

�

i

:

Example 4.2. Let D be the Cartan domain of rank r = 2 in C

d

(the Lie ball), d � 3.

Then

hf; gi

d�2

2

;0

= h(

2

d� 2

R+ I)f; gi

H

2

(S)

: (4.24)

Namely, in this case � = �

2

=

d�2

2

, q = q(�) = 1, j = 0, and � = q � j = 1. With

` = 1, � + ` =

d

2

= �

2

+ 1 =

d

r

we get by using Theorem 3.2 and Corollary 3.2,

hf; gi

d�2

2

;0

= 
hD

1

1

(

d� 2

2

)f; gi

d

2

= 
 h(R+

d� 2

2

I)f; gi

H

2

(S)

= h(

2

d� 2

R+ I)f; gi

H

2

(S)

:

Since the Shilov boundary S of D is given by

S = fe

i�

(x

1

; ix

2

; ix

3

; : : : ; ix

d

); � 2 R;

d

X

j=1

x

2

j

= 1g � S

1

� S

d�1

;

the unique K-invariant probability measure on S is d�(e

i�

(x

1

; ix

0

)) =

d�

2�

d�

d�1

(x);

where �

d�1

is the unique O(d � 1)-invariant probability measure on S

d�1

. Thus

(4.24) provides a very concrete formula for the inner product h�; �i

d�2

2

;0

.
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5 Integration over boundary orbits of Aut(D)

In this section we obtain formulas for the invariant inner products in terms of inte-

gration over an orbit of Aut(D) on the boundary @D. We focus on the inner products

h�; �i

�

2

;0

= h�; �i

a

2

, and conjecture that our method can be generalized for the deriva-

tion of similar formulas for the inner products h�; �i

�

j

;0

= h�; �i

�

j

, �

j

= (j � 1)

a

2

,

j = 3; 4; : : : ; r, in terms of integration on an appropriate boundary orbit. (Notice

that the case j = 1 is trivial, since �

1

= 0 and H

0;0

= H

0

= C1).

In order to describe the facial structure of a Cartan domain of tube-type D � C

d

[Lo], [A1], let S

`

be the compact, real analytic manifold of tripotents in Z of rank

` = 1; 2; : : :; r. The group K acts transitively and irreducibly on S

`

. Let �

`

be the

unique K-invariant probability measure on S

`

given by

Z

S

`

f d�

`

=

Z

K

f(k(v

`

)) dk; (5.1)

where v

`

is any �xed element of S

`

. For any tripotent v let Z = Z

1

(v)+Z
1

2

(v)+Z

0

(v)

be the corresponding Peirce decomposition. Then D

v

:= D\Z

0

(v) is a Cartan domain

of tube-type, which is the open unit ball of the JB

�

-algebra Z

0

(v). If v 2 S

`

then the

rank of D

v

is r

v

:= r � `, its characteristic multiplicity is a

v

:= a if ` � r � 2 and

a

v

= 0 if ` = r � 1, and the genus is p

v

= p� ` a. The set v + D

v

is a face of the

closure D of D. For any function f on D let f

v

be the function on D

v

de�ned by

f

v

(z) := f(v + z); z 2 D

v

: (5.2)

The fundamental polynomial \h" of Z

0

(v) is de�ned by

h

v

(z; w) := h(z; w); z; w 2 Z

0

(v): (5.3)

For ` = 1; 2; : : : ; r, @

`

D := [

v2S

`

(v + D

v

) is an orbit of G: @

`

D = G(v

`

). If v 2 S

r

is a maximal tripotent, then D

v

= Z

0

(v) = f0g. Hence @

r

D = S

r

= S is the Shilov

boundary. In particular, S is a G-orbit. The only tripotent of rank 0 is 0 2 Z, and

D = D

0

is also a G-orbit. Thus the decomposition of D into G-orbits is

D = D [

r

[

`=1

@

`

D:

For every tripotent v 2 Z and � > p

v

� 1 consider the probability measure �

v;�

on

D

v

, de�ned via

Z

D

v

f d�

v;�

:= c

v;�

Z

D

v

f(z) h

v

(z; z)

��p

v

dm

v

(z); (5.4)

where m

v

is the Lebesgue measure on D

v

and c

v;�

is the normalization factor. Simi-

larly, one de�nes a probability measure �

v

on the Shilov boundary S

v

of D

v

, via

Z

S

v

f d�

v

:=

Z

K

v

f(k(v

0

)) dk;
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where v

0

is any tripotent orthogonal to v and K

v

:= fk 2 K; k(Z

�

(v)) = Z

�

(v)g; � =

0; 1=2; 1, so that K

v

(v

0

) = S

v

. The combination of �

v;�

and �

`

yields K-invariant

probability measures �

`;�

on @

`

D, 1 � ` � r � 1, � > p� ` a � 1, via

Z

@

`

D

fd�

`;�

:=

Z

S

`

�

Z

D

v

f

v

(z) d�

v;�

(z)

�

d�

`

(v):

Next, consider the \sphere bundle" B

`

, 1 � ` � r, whose base is S

`

and the �ber

at each v 2 S

`

is v + S

v

(where S

v

:= @

r�`

D

v

is the Shilov boundary of D

v

). The

group K acts on B

`

naturally, and this action is transitive. The combination of the

measures �

v

, v 2 S

`

and �

`

yields K-invariant probability measures �

`

on B

`

via

Z

B

`

f d�

`

:=

Z

S

`

�

Z

S

v

f(v + �) d�

v

(�)

�

d�

`

(v):

For v 2 S

`

, consider the symmetric cone 


v

in Z

0

(v), and let �

(v)

1

;�

(v)

2

; : : : ;�

(v)

r�`

be

the canonical generators of the ring Di�(


v

)

G(


v

)

as in section 4. We also denote

�

(v)

0

= I; �

(v)

:= (�

(v)

1

;�

(v)

2

; : : : ;�

(v)

r�`

); and �

j

= (j � 1)

a

2

; 0 � j � r:

Conjecture: For every 2 � j � r and every � > �

j�1

there exists a positive function

p

j;�

2 C

1

([0;1)

j�1

), so that the inner product h�; �i

�

j

= h�; �i

�

j

;0

is given by

hf; gi

�

j

=

Z

S

r�j+1

hp

j;�

(�

(v)

)f

v

; g

v

i

H

�

(D

v

)

d�

r�j+1

(v): (5.5)

Moreover, if � = �

j�1

+ 1 = dim(D

v

)=rank(D

v

), then p

j

:= p

j;�

is a polynomial with

positive coe�cients.

If � is chosen appropriately then (5.5) becomes an integral formula for hf; gi

�

j

.

For instance, if � = �

j�1

+ 1 in (5.5), then we have H

�

(D

v

) = H

2

(S

v

), and (5.5)

becomes

hf; gi

�

j

=

Z

S

r�j+1

�

Z

S

v

(p

j;�

(�

(v)

)f

v

)(�) g

v

(�)d�

v

(�)

�

d�

r�j+1

(v): (5.6)

Also, if � > (j � 2)a+ 1 in (5.5) then H

�

(D

v

) = L

2

a

(D

v

; �

v;�

), and (5.5) becomes

hf; gi

�

j

=

Z

S

r�j+1

�

Z

D

v

(p

j

(�

(v)

)f

v

)(z) g

v

(z) d�

v;�

(z)

�

d�

r�j+1

(v): (5.7)

Note that the integral in (5.7) can be expressed as an integral on @

r�j+1

D with respect

to d�

r�j+1;�

. Similarly, (5.6) is an integral on B

r�j+1

with respect to �

r�j+1

.
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Integral formulas for hf; gi

a=2

via integration on @

r�1

D

In what follows we shall establish (5.5) for j = 2 (i.e. �

2

=

a

2

) in two important

special cases, namely for Cartan domains of type I and IV. Our method suggests an

approach for the general case. For j = 2 (5.5) becomes

hf; gi

a

2

=

Z

S

r�1

d�

r�1

(v)hp

�

(R

(v)

)f

v

; g

v

i

H

�

(D)

; (5.8)

where p

�

(x) = p

2;�

(x) 2 C

1

([0;1)) is a positive function, �

(v)

1

= R

(v)

, where R

(v)

is the localized radial derivative (i.e. the radial derivative in Z

0

(v)), and D

v

� D =

fz 2 C; jzj < 1g. We will show that in our two cases

p

�

(x) =

�(x+ �)

�(�)�(x + 1)

q(x);

where q(x) is a polynomial with positive rational coe�cients. In particular, for � =

1; 2; : : :, p

�

(x) itself is a polynomial with positive rational coe�cients. If � is chosen

appropriately, then (5.8) becomes an integral formula analogous to (5.6) or (5.7). For

� = 1, (5.8) becomes

hf; gi

a

2

=

Z

S

r�1

d�

r�1

(v)hp

1

(R

(v)

)f

v

; g

v

i

H

2

(T)

; (5.9)

and for � > 1, (5.8) becomes

hf; gi

a

2

=

Z

S

r�1

d�

r�1

(v)hp

�

(R

(v)

)f

v

; g

v

i

L

2

(D;�

�

)

: (5.10)

Lemma 5.1 The right hand side of (5.5) is K-invariant. Consequently, the right

hand sides of (5.6), (5.7), (5.8), (5.9), and (5.10) are K-invariant.

Proof: Let ` = r � j + 1, and note that for each �xed smooth function f the maps

S

`

3 v 7! �

(v)

i

(f

v

), 1 � i � j � 1, are K-invariant, in the sense that

�

(k(v))

i

(f

k(v)

) � k = �

(v)

i

((f � k)

v

); 8k 2 K; 8v 2 S

`

:

From this it follows that if v

`

2 S

`

is any �xed element, then

Z

S

`

hp

j;�

(�

(v)

)f

v

; g

v

i

H

�

(D

v

)

d�

`

(v)

=

Z

K

hp

j;�

(�

(v

`

)

)(f � k)

v

`

; (g � k)

v

`

i

H

�

(D

v

`

)

dk:

The K-invariance of the right hand side of (5.5) follows from the invariance of the

Haar measure dk.

Since M

(

a

2

)

0

=

P

1

m=0

P

(m;0;0;:::)

and

hf; gi

a

2

=

X

m=(m;0;:::;0);0�m<1

hf

m

; g

m

i

F

(

a

2

)

m

;
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in order to establish (5.8) it is enough, by the K-invariance of both sides, to �nd

positive functions p

�

(x) 2 C

1

([0;1)) so that (5.8) holds for the functions f(z) =

g(z) = N

m

1

(z), m � 0. This is equivalent to

Z

S

r�1

d�

r�1

(v)hp

�

(R

(v)

)(N

m

1

)

v

; (N

m

1

)

v

i

H

�

(D)

=

m!

(

a

2

)

m

: (5.11)

Fix a frame e

1

; e

2

; : : : ; e

r

in Z. Then N

1

(z) = (z; e

1

), where (�; �) is the unique K-

invariant inner product on Z for which (v; v) = 1 for every minimal tripotent v. Let

e

0

:= e

2

+ e

3

+ : : :+ e

r

. Then for z = k(�e

1

+ e

0

) with k 2 K and � 2 T, we have

N

m

1

(z) = (�k(e

1

) + k(e

0

); e

1

)

m

=

m

X

`=0

�

m

`

�

(k(e

1

); e

1

)

`

(k(e

0

); e

1

)

m�`

�

`

:

Thus, for v = k(e

0

), m � 0 and any continuous function f we have

(f(R

(v)

)N

m

1

)(z) =

m

X

`=0

�

m

`

�

(k(e

1

); e

1

)

`

(k(e

0

); e

1

)

m�`

f(`) �

`

:

Let us de�ne

J

m;`

:=

Z

K

j(k(e

1

); e

1

)j

2`

j(k(e

0

); e

1

)j

2(m�`)

dk; 0 � ` � m <1: (5.12)

It follows that the function p

�

should satisfy

Z

S

r�1

d�

r�1

(v) hp

�

(R

(v)

)(N

m

1

)

v

; (N

m

1

)

v

i

H

�

(D)

=

m

X

`=0

J

m;`

�

m

`

�

2

`!

(�)

`

p

�

(`):

Thus (5.11) becomes

m

X

`=0

J

m;`

�

m

`

�

2

q

`

=

m!

(

a

2

)

m

; m = 0; 1; 2; : : : ; (5.13)

where the numbers

q

`

:=

`!

(�)

`

p

�

(`); ` = 0; 1; 2; : : : (5.14)

do not depend on �. The in�nite system of linear equations (5.13) in the unknowns

fq

`

g

1

`=0

corresponds to the lower triangular matrix A = (a

m;`

)

1

m;`=0

, where a

m;`

=

J

m;`

�

m

`

�

2

for m � `, and a

m;`

= 0 for m < `. Since a

m;m

> 0 for m = 0; 1; 2; : : :,

there exists a unique solution fq

`

g

1

`=0

to (5.13). There are many smooth functions

which interpolate the values fq

`

g

1

`=0

. We will show that q

`

> 0 for every ` � 0, and

prove that fq

`

g

1

`=0

can be interpolated by a polynomial of degree r � 1 with positive

coe�cients. For Cartan domains of type I and IV, we will solve the system (5.13) by

calculating explicitly the numbers J

m;`

and applying powers of the di�erence operator

�(f)(t) := f(t) � f(t � 1); t 2 R:
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If f is de�ned only on [0;1) then we de�ne �(f) := �(F ), where F (t) := f(t) for

0 � t and F (t) = 0 for 0 > t. Similarly, � can be de�ned on two-sided sequences (i.e.

on functions on Z) or on sequences (i.e. functions on N). The powers of � are de�ned

inductively by �

n+1

:= � � �

n

.

Case 1: Cartan domains of type I. Let D = D(I

r;r

) := fz 2M

r;r

(C); kzk < 1g.

The rank of D is r, the dimension is d = r

2

, the genus is p = 2r, and the characteristic

multiplicity is a = 2. To every k 2 K there correspond u;w 2 U (r) (the unitary group)

so that det(u) = det(w), and

k(z) = uzw

�

; z 2 D: (5.15)

Thus

R

K

f(k(z)) dk =

R

U(r)

R

U(r)

f(uzw

�

) du dw, where dk is the Haar measure of

K. Choose the canonical frame of matrix units e

j

:= e

j;j

; j = 1; 2; : : : ; r, and denote

e =

P

r

j=1

e

j

and e

0

:= e� e

1

=

P

r

j=2

e

j

.

Proposition 5.1 Let D = D(I

r;r

). Then for every integers m; ` with 0 � ` � m <

1, we have

J

m;`

=

(r � 1) (` !)

2

(m � `)! (m� `+ r � 2)!

(r)

m

(m + r � 1)!

: (5.16)

Proof: Let k 2 K be given by (5.15). Then (k(e

1

); e

1

) = u

1;1

w

1;1

and (k(e

0

); e

1

) =

P

r

j=2

u

1;j

w

1;j

. Thus, for 0 � ` � m <1,

J

m;`

=

Z

U(r)

Z

U(r)

ju

1;1

j

2`

jw

1;1

j

2`

j

r

X

j=2

u

1;j

w

1;j

j

2(m�`)

du dw:

This integral can be written as an integral on the product of the unit spheres @B

r

�

C

r

with respect to the U (r)-invariant probability measure �:

J

m;`

=

Z

@B

r

Z

@B

r

j�

`

1

j

2

j�

`

1

j

2

j(�

0

; �

0

)j

2(m�`)

d�(�) d�(�);

where �

0

:= (�

2

; : : : ; �

r

) and �

0

:= (�

2

; : : : ; �

r

). Now, by the U (r)-invariance,

Z

@B

r

j�

`

1

j

2

j(�

0

; �

0

)j

2(m�`)

d�(�)

= k�

0

k

2(m�`)

Z

@B

r

j�

`

1

j

2

j�

m�`

2

j

2

d�(�)

= k�

0

k

2(m�`)

k�

`

1

�

m�`

2

k

2

H

r

(D)

= k�

0

k

2(m�`)

`!(m� `)!

(r)

m

:

It follows by using [Ru], 1.4.5, that

J

m;`

=

`!(m � `)!

(r)

m

Z

@B

r

j�

`

1

j

2

(1� j�

1

j

2

)

m�`

d�(�)

=

`!(m � `)!

(r)

m

(r � 1)

Z

1

0

t

`

(1� t)

m�`+r�2

dt
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=

`!(m � `)!

(r)

m

(r � 1)B(` + 1;m� `+ r � 1)

=

(r � 1)(`!)

2

(m � `)!(m� `+ r � 2)!

(r)

m

(m+ r � 1)!

:

Corollary 5.1 For D = D(I

r;r

) the system of equations (5.13) is equivalent to the

system

m

X

`=0

(m � ` + r � 2)!

(m � `)!

q

`

= (r � 2)!

�

m + r � 1

r � 1

�

2

; m = 0; 1; 2; : : : : (5.17)

Proposition 5.2 For every r � 2 there exists a polynomial q(x) = q

r

(x) of degree

r � 1 with positive rational coe�cients, so that q(`) = q

`

for ` = 0; 1; 2; : : : , where

fq

`

g

1

`=0

is the unique solution of (5.17).

For small values of r it is easy to solve (5.17) explicitly by applying powers of �. Thus,

q

2

(x) = 2x+ 1; q

3

(x) = 3x

2

+ 3x+ 1; and q

4

(x) =

1

3

(10x

3

+ 15x

2

+ 11x+ 3):

The proof in the general case requires more preparation. De�ne

f

n

(x) := (x+ 1)

n

=

n

Y

j=1

(x+ j); n � 1; and g

n

(x) :=

n

Y

j=0

(x+ j)

2

; n � 0: (5.18)

Then g

n

(x+ 1) = f

n+1

(x)

2

, and

(�

k

f

n

)(x) = n(n� 1) � � � (n� k + 1) f

n�k

(x); k � 0; (5.19)

where � is de�ned by �(f)(x) := f(x) � f(x � 1). Indeed, (5.19) is trivial for k = 0.

For k = 1 and all n we have

�(f

n

)(x) =

n

Y

j=1

(x+ j) �

n

Y

j=1

(x+ j � 1) =

n�1

Y

j=1

(x+ j) (x+ n� x) = n f

n�1

(x):

Assuming (5.19) for k, let n > k and compute �

k+1

(f

n

)(x) = n(n � 1) � � � (n � k +

1) �(f

n�k

)(x) = n(n� 1) � � � (n� k + 1)(n� k)f

n�k�1

(x): This establishes (5.19).

Next, de�ne an operator �, analogous to �, via

(�f)(x) := f(x) + f(x � 1); x 2 R:

Clearly, �� = ��, and both � and � commute with all the translation operators

(�

c

f)(x) := f(x + c):

Denote by P

+

the set of polynomials in one variable with non-negative coe�cients.
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Lemma 5.2 Let f(x) be a polynomial and let n;m 2 N. If �

n

f 2 P

+

, then

�

n+j

�

m=2

f 2 P

+

for every integer 0 � j � m.

Proof: Since � commutes with translations, we may assume that n = 0 and m = 1.

It is therefore enough to check that ��

1=2

x

k

2 P

+

for every k 2N. This follows from

the binomial expansion:

��

1=2

x

k

= (x+

1

2

)

k

� (x�

1

2

)

k

=

[

k�1

2

]

X

j=0

�

k

2j + 1

�

2

�2j

x

k�2j�1

:

Lemma 5.3 Let f(x) be a polynomial and let n 2 N. Assume that �

j

�

n�j

f 2

P

+

for every 0 � j � n. Then �

j

�

n�j

�

(x+ c)

k

f(x)

�

2 P

+

for every k 2 N,

c �

n

2

and 0 � j � n.

Proof: Again, since � and � commute with translations, it is enough to assume that

k = 1. We shall prove the assertion by induction on n. The case n = 0 is trivial since

P

+

is closed under sums and products. Assume that n > 0 and that the assertion

holds for n� 1. A computation yields

�

�

(x+

n

2

)f(x)

�

= (x+

n� 1

2

)(�f)(x) +

1

2

(�f)(x) (5.20)

and

�

�

(x +

n

2

)f(x)

�

= (x+

n� 1

2

)(�f)(x) +

1

2

(�f)(x): (5.21)

If 0 < j � n then using (5.20) we get

�

j

�

n�j

�

(x+

n

2

)f(x)

�

= �

j�1

�

(n�1)�(j�1)

�

(x+

n � 1

2

)(�f)(x) +

1

2

(�f)(x)

�

:

By assumption,

�

j�1

�

(n�1)�(j�1)

�f = �

j�1

�

n�(j�1)

f 2 P

+

; for 0 < j � n:

Similarly,

�

j�1

�

(n�1)�(j�1)

�f = �

j

�

n�j

f 2 P

+

for 0 < j � n:

Thus, by the induction hypothesis on n� 1,

�

j�1

�

(n�1)�(j�1)

�

(x +

n� 1

2

)�f(x)

�

2 P

+

; for 0 < j � n:

Next, using (5.21) we get

�

n

�

(x +

n

2

)f(x)

�

= �

n�1

�

(x+

n � 1

2

)�f(x) +

1

2

�f(x)

�

:

By assumption, �

n�1

�f(x) 2 P

+

and �

`

�

n�1�`

�f(x) 2 P

+

for 0 � ` � n � 1. Thus,

by the induction hypothesis, �

`

�

n�1�`

�

(x +

n�1

2

)�f(x)

�

2 P

+

for 0 � ` � n� 1, and

in particular �

n�1

�

(x+

n�1

2

)�f(x)

�

2 P

+

. It follows that �

n

�

(x+

n

2

)f(x)

�

2 P

+

.

This completes the induction step.
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Lemma 5.4 Let g

n

(x) be the polynomial de�ned by (5.18). Then �

i

�

j

g

n

2 P

+

when-

ever i + j � n.

Proof: We proceed by induction on n. The case n = 0 is trivial, since g

0

(x) =

x

2

2 P

+

. Assume that n > 0 and that �

i

�

j

g

n�1

2 P

+

whenever i + j � n � 1. A

computation yields

�g

n

(x) = 2(n+ 1)(x+

n � 1

2

) g

n�1

(x) (5.22)

and

�g

n

(x) = 2

�

(x+

n � 1

2

)

2

+ (

n + 1

2

)

2

�

g

n�1

(x): (5.23)

Now assume i + j � n. If i > 0, (5.22) yields

�

i

�

j

g

n

(x) = �

i�1

�

j

(�g

n

(x)) = 2(n+ 1)�

i�1

�

j

�

(x+

n� 1

2

)g

n�1

(x)

�

;

and by induction hypothesis and Lemma 5.3

�

i�1

�

j

�

(x+

n� 1

2

)g

n�1

(x)

�

2 P

+

;

so that �

i

�

j

g

n

2 P

+

. If i = 0 and 0 � j � n, then (5.23) implies

�

j

g

n

(x) = �

j�1

(�g

n

(x)) = 2�

j�1

��

(x+

n� 1

2

)

2

+ (

n + 1

2

)

2

�

g

n�1

(x)

�

:

The polynomial �

j�1

g

n�1

belongs to P

+

by the induction hypothesis. Also, the

induction hypothesis (�

i

�

j�1

g

n�1

2 P

+

whenever i + j � n) and Lemma 5.3 imply

that

�

i

�

j�1

�

(x+

n� 1

2

)g

n�1

(x)

�

2 P

+

whenever i + j � n:

In particular, �

j�1

�

(x+

n�1

2

)g

n�1

(x)

�

2 P

+

. Hence �

j

g

n

2 P

+

8 0 � j � n.

Corollary 5.2 (i) �

j

g

n

2 P

+

for all j; n 2N satisfying 0 � j � n.

(ii) �

j

�

(x+

m

2

)g

n

(x)

�

2 P

+

for all j; n;m 2N satisfying 0 � j � n+m.

(iii) �

j

f

n

(x)

2

2 P

+

for all j; n 2N satisfying 0 � j � n+ 1.

Proof: (i) is a special case of Lemma 5.4, and (ii) follows by (i) and Lemma 5.2.

Since f

n

(x)

2

= g

n�1

(x+ 1), (iii) follows from Lemma 5.2 with m = 2.

Remark The result in part (iii) of Corollary 5.2 is best possible in the sense that

�

n+2

(f

2

n

)

2

) need not be in P

+

. Indeed, �

6

(f

2

4

)

2

) is not in P

+

.
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Proof of Proposition 5.2: In terms of the polynomials (5.18), the system of

equations (5.17) with unknowns q

`

has the form

m

X

`=0

f

r�2

(m � `) q

`

=

f

r�1

(m)

2

(r � 1) (r � 1)!

; m � 0: (5.24)

Applying powers of the operator � with respect to the variable m and using (5.19),

we get by induction on k that

�

k

 

m

X

`=0

f

r�2

(m � `) q

`

!

= (r � 2)(r � 3) � � � (r � k � 1)

m

X

`=0

f

r�2�k

(m � `) q

`

for 0 � k � r � 2 (here f

0

(x) � 1). From this it follows that

�

r�1

 

m

X

`=0

f

r�2

(m � `) q

`

!

= (r � 2)! q

m

; m � 0:

Applying �

r�1

to both sides of (5.24), Corollary 5.2 (iii) implies that there exists

a polynomial q(x) of degree r � 1 with positive rational coe�cients so that q

m

=

q(m); 8m � 0.

Theorem 5.1 Let D = D(I

r;r

). Then for every f; g 2 H

a

2

(D) and � > 0 we have

hf; gi

a

2

=

Z

S

r�1

d�

r�1

(v)hp

�

(R

(v)

)f

v

; g

v

i

H

�

(D)

;

where p

�

(x) := �(x+�) �(�)

�1

�(x+1)

�1

q(x), and q(x) is the polynomial of degree

r � 1 with positive rational coe�cients as in Proposition 5.2.

Case 2: Cartan domains of type IV. Let D � C

d

, d � 3, be the Cartan domain

of rank r = 2 (see Examples 4.1 and 4.2), and �x a frame fe

1

; e

2

g. Since a = d� 2,

(5.13) becomes

m

X

`=0

�

m

`

�

2

J

m;`

q

`

=

m!

(

a

2

� 1)

m

; m � 0; (5.25)

where for 0 � ` � m

J

m;`

=

Z

K

j(k(e

1

); e

1

)j

2`

j(k(e

2

); e

1

)j

2(m�`)

dk:

Without computing the numbers J

m;`

explicitly we show that

J

m;`

= J

m;m�`

; 0 � ` � m: (5.26)

Indeed, let k

0

2 K satisfy k

0

(e

1

) = e

2

and k

0

(e

2

) = e

1

. Then, by invariance of the

Haar measure dk,

J

m;`

=

Z

K

j(k(k

0

(e

1

)); e

1

)j

2`

j(k(k

0

(e

2

)); e

1

)j

2(m�`)

dk

=

Z

K

j(k(e

2

); e

1

)j

2`

j(k(e

1

); e

1

)j

2(m�`)

dk = J

m;m�`

:
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Theorem 5.2 The polynomial

q(x) =

4

a

x+ 1 =

4

d� 2

x+ 1

satis�es q(`) = q

`

for every ` � 0, where fq

`

g

1

`=0

is the unique solution of (5.25).

Therefore, for every � > 0 and every f; g 2 H

a

2

(D),

hf; gi

a

2

=

Z

S

1

hp

�

(R

(v)

)f

v

; g

v

i

H

�

(D

v

)

d�

1

(v);

where the functions p

�

, 0 < � <1, are given by

p

�

(x) =

�(x+ �)

�(�) �(x+ 1)

(

4

a

x+ 1): (5.27)

In particular, for � = 1; 2; : : : p

�

is a polynomial of degree � with positive rational

coe�cients.

Proof: We claim �rst that

m

X

`=0

�

m

`

�

2

J

m;`

=

m!

(

d

2

)

m

; m � 0: (5.28)

Indeed, it is clear that

m

X

`=0

�

m

`

�

2

J

m;`

=

Z

K

�

Z

T

j(k(e

it

e

1

+ e

2

); e

1

)

m

j

2

dt

2�

�

dk:

Interchanging the order of integration and using the transitivity of K on the frames,

we get

m

X

`=0

�

m

`

�

2

J

m;`

=

Z

K

j(k(e); e

1

)

m

j

2

dk = kN

m

1

k

2

H

2

(D)

=

m!

(

d

2

)

m

; m � 0;

by using the well-known fact that k(�; z)

m

k

2

F

= m!(z; z)

m

for every z 2 Z and m � 0.

Using (5.26) and (5.28) we see that

m

X

`=0

`

�

m

`

�

2

J

m;`

=

m

X

`=0

(m � `)

�

m

m � `

�

2

J

m;m�`

=

m

X

`=0

(m � `)

�

m

`

�

2

J

m;`

=

m �m!

(

d

2

)

m

�

m

X

`=0

`

�

m

`

�

2

J

m;`

:

Thus

m

X

`=0

`

�

m

`

�

2

J

m;`

=

m �m!

2(

d

2

)

m

; m � 0: (5.29)

Combining (5.28) and (5.29), and using the fact that (

d

2

)

m

= (

a

2

)

m

(

a

2

+m)

a

2

, we get

for m � 0

m

X

`=0

�

m

`

�

2

J

m;`

(

4

a

` + 1) =

4

a

m �m!

2(

d

2

)

m

+

m!

(

d

2

)

m

=

m!

(

a

2

)

m

:
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In view of (5.14), this completes the proof.

|large The computation of hf; gi

p�1

by integration on @

1

D

We conclude this section with the derivation of a formula for hf; gi

p�1

via inte-

gration on @

1

D.

Proposition 5.3 Let F 2 C(D). Then

lim

�#p�1

Z

D

F (z) d�

�

(z) =

Z

S

1

�

Z

D

v

F

v

(w) d�

v;p�1

(w)

�

d�

1

(v); (5.30)

where the measures �

v;p�1

are de�ned by (5.4).

Proof: Using (1.13) and (1.14) as well as (1.22), (1.23), and (1.9), we can write

Z

D

F (z) d�

�

(z) = c

0

c(�)

Z

R

r

+

F

#

(t)w(t)

a

r

Y

j=1

(1� t

j

)

a

dt

= c

0

c(�)

Z

1

0

 (t

1

) (1� t

1

)

��p

dt

1

;

where

 (t

1

) :=

Z

[0;t

1

)

r�1

+

F

#

(t

1

; t

0

)

Y

1�i<j�r

(t

i

� t

j

)

a

r

Y

j=2

(1� t

j

)

��p

dt

0

;

and c(�) = c

D

(�) is given by (1.22). Here t

0

:= (t

2

; t

3

; : : : ; t

r

), dt

0

:= dt

2

dt

3

: : :dt

r

,

and [0; t

1

)

r�1

+

:= ft

0

2 R

r�1

; t

2

> t

3

> : : : > t

r

> 0g. Since  2 C([0; 1]), we have

lim

�#0

�

�

R

1

0

 (t)(1 � t)

��1

dt

�

=  (1). Since lim

�#p�1

�(� � p + 1) (� � p + 1) = 1

and c(p� 1) = 0, we get

lim

�#p�1

Z

D

F (z) d�

�

(z) = b  (1)

= b

Z

[0;1)

r�1

+

F

#

(1; t

0

)

Y

2�i<j�r

(t

i

� t

j

)

a

r

Y

j=2

(1� t

j

)

a�1

dt

0

;

where b := c

0

c

0

(p� 1). Using the de�nitions (5.1), (5.3) and the fact that for v 2 S

1

the genus of D

v

is p� a, we have (with the obvious meaning of the constants)

Z

S

1

�

Z

D

v

F

v

(w) d�

v;p�1

(w)

�

d�

1

(v)

= c

D

e

1

(p� 1)

Z

K

 

Z

D

e

1

F

k(e

1

)

(k(�)) h(k(�); k(�))

a�1

dm(k(�))

!

dk
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= c

D

e

1

(p� 1) c

0

(D

e

1

)

�

Z

K

0

@

Z

[0;1)

r�1

+

0

@

Z

K

e

1

F (k(e

1

+ k

0

(

r

X

j=2

t

1

2

j

e

j

dk

0

))

1

A

w(t

0

)

a

r

Y

j=2

(1� t

j

)

a�1

dt

0

1

A

dk;

where K

e

1

:= fk 2 K; k(e

1

) = e

1

g and w(t

0

) :=

Q

2�i<j�r

(t

i

� t

j

)

a

. Interchanging

the order of integration, and using the fact that k

0

(e

1

) = e

1

and the invariance of the

Haar measure dk, we see that the last expression is equal to

c

D

e

1

(p� 1) c

0

(D

e

1

)

Z

[0;1)

r�1

+

F

#

(1; t

0

) w(t

0

)

a

r

Y

j=2

(1� t

j

)

a�1

dt

0

:

Comparing the computations for the left and right hand sides of (5.30), we see they

are proportional. Taking F (z) � 1, the proportionality constant is 1.

Corollary 5.3 The constant c

0

= c

0

(D) in the formula (1.12) is

c

0

(D) =

�

d

�(

a

2

)

r�2

(

Q

r�1

`=1

`

a

2

) �(r

a

2

)

Q

r�1

`=2

�(`

a

2

)

2

:

Proof: De�ne v

r

= 0, v

`

:= e

1

+ : : :+ e

r�`

, ` = 1; 2; : : : ; r � 1, and 


`

:= c

0

(D

v

`

).

Then the above proof (with r replaced by `) yields




`




`�1

=

c

D

v

`+1

((`� 1)a+ 1)

c

0

D

v

`

((` � 1)a+ 1)

=

�

(`�1)a+1

�(

a

2

)

�((`� 1)

a

2

+ 1) �(

ra

2

)

for ` = 2; 3; : : :; r. Therefore, using the easily proved fact that 


1

= �, we get

c

0

(D) = 


r

=




r




r�1




r�1




r�2

� � �




2




1




1

= �

r

Y

`=2

�

(`�1)a+1

�(

a

2

)

�((` � 1)

a

2

+ 1) �(

ra

2

)

=

�

d

�(

a

2

)

r�2

(

Q

r�1

`=1

`

a

2

) �(r

a

2

)

Q

r�1

`=2

�(`

a

2

)

2

:

Proposition 5.3 allows the computation of the inner products hf; gi

p�1

by inte-

grating over the boundary orbit @

1

(D) = G(e

1

) of G.

Theorem 5.3 Let f; g 2 H

p�1

. Then

hf; gi

p�1

=

Z

S

1

�

Z

D

v

f

v

(w) g

v

(w) d�

v;p�1

(w)

�

d�

1

(v); (5.31)

Proof: It is enough to establish (5.31) for polynomials f and g, and this case follows

from Proposition 5.3 with F (z) = f(z) g(z).
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6 Integral formulas in the context of the associated Siegel domain

In what follows we shall use the fact [FK2] that D is holomorphically equivalent to

the tube domain

T (
) := X + i


via the Cayley transform c : D ! T (
), de�ned by c(z) := i(e + z)(e � z)

�1

. For

� 2W (D) the operator V

(�)

f := (f �c

�1

)(Jc

�1

)

�=p

maps the space H

�

= H

�

(D) iso-

metrically onto a Hilbert space of analytic functions on T (
), denoted by H

�

(T (
)).

We will denote hf; gi

H

�

(T (
))

simply by hf; gi

�

. It is known that the reproducing

kernel of H

�

(T (
)) is

K

�

(z; w) =

�

N (

z �w

�

i

)

�

��

; z; w 2 T (
): (6.1)

Recall that for � > p � 1 we have H

�

(D) = L

2

a

(D;�

�

), where �

�

is the measure on

D de�ned via (1.23). Using the facts that h(c

�1

(w); c

�1

(w)) = 4

r

jN (w+ ie)j

�2

N (v)

and J(c

�1

)(w) = (2i)

d

N (w + ie)

�p

; 8w 2 T (
); we get by a change of variables

that

H

�

(T (
)) = L

2

a

(T (
); �

�

) = L

2

(T (
); �

�

) \ fanalytic functionsg;

where

d�

�

(z) := c(�)dx N (2y)

��p

dy; z = x+ iy; x 2 X; y 2 
; (6.2)

and c(�) is de�ned by (1.22). In this case V

(�)

extends to an isometry of L

2

(D;�

�

)

onto L

2

(T (
); �

�

).

In this section we obtain integral formulas for the invariant inner products in

the spaces H

�

(T (
)). Using the isometry V

(�)

: H

�

(D) ! H

�

(T (
)) one obtains

integral formulas for the inner products in the spaces H

�

(D). Our results are essen-

tially implicitly contained in [VR], where the authors determine the Wallach set for

Siegel domains of type II, using Lie and Fourier theoretical methods. The Jordan-

theoretical formalism allows us to formulate our results in a simpler way, avoiding

the Lie-theoretical details. Since the Fourier-theoretical arguments in our proofs are

contained in[VR], we omit all proofs.

For � > (r � 1)

a

2

consider the measure �

�

on 
 de�ned by d�

�

(v) :=

�

�

N (v)

d

r

��

dv where �

�

:= (2�)

�2d

�




(�).

Proposition 6.1 Let � > (r � 1)

a

2

and let f be a holomorphic function on T (
).

Then the following conditions are equivalent:

(i) f 2 H

�

(T (
));

(ii) The boundary values f(x) := lim


3y!0

f(x + iy) exist almost everywhere on X,

and the Fourier transform

^

f of f(x) is supported in 
 and belongs to L

2

(
; �

�

).

Moreover, the map f 7!

^

f is an isometry of H

�

(T (
)) onto L

2

a

(
; �

�

).

Proposition 6.1 yields the following result.
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Theorem 6.1 Let � > (r � 1)

a

2

and let f; g 2 H

�

(T (
)). Then

hf; gi

H

�

(T (
))

= h

^

f ; ĝi

L

2

(
;�

�

)

=

�




(�)

(2�)

2d

Z




^

f (t)ĝ(t) N (t)

d

r

��

dt:

The group GL(
) := f' 2 GL(X);'(
) = 
g acts transitively on 
 . It acts

also on the boundary @
, but this action is not transitive. The orbits of GL(
) on

@
 are exactly the r disjoint sets

@

k


 := GL(
)(e

k

) = fx 2 
; rank(x) = kg; k = 0; 1; : : : ; r � 1;

where fc

1

; : : : ; c

r

g is a frame of pairwise orthogonal primitive idempotents, e

0

:= 0,

and e

k

:=

P

k

j=1

c

j

; k = 1; 2; : : :; r � 1. Consider the Peirce decomposition X

�

=

X

�

(e

k

) = fx 2 X; e

k

x = �xg, � = 0;

1

2

; 1. Let 
(k) be the symmetric cone of

X

1

(e

k

), and let �


(k)

be the associated Gamma function. Let GL(
) = LN




A be

the Iwasawa decomposition. Then N




A(e

k

) = fx 2 @

k


;N

k

(x) > 0g is an open

dense subset of @

k


, and every x 2 N




A(e

k

) has a Peirce decomposition of the form

x = x

1

+ x
1

2

+ 2(e � e

k

)(x
1

2

(x
1

2

x

�1

1

)) [La2]. Let us de�ne a measure �

k

on @

k


 with

support N




A(e

k

) by

d�

k

(x) := N

k

(x

1

)

k

a

2

�

d

r

dx

1

dx
1

2

: (6.3)

It has the following fundamental properties (see[VR] and [La2]).

Theorem 6.2 Let 1 � k � r � 1. Then the measure �

k

satis�es

Z

N




A(e

k

)

e

�hy;xi

d�

k

(x) = 


k

N (y)

�k

a

2

; 8y 2 
; (6.4)

where 


k

:= (2�)

k(r�k)

a

2

�


(k)

(k

a

2

), and

d�

k

('(x)) = Det(')

(k

a

2

)=

d

r

d�

k

(x); 8' 2 GL(
): (6.5)

Since 
 is a set of uniqueness for analytic functions on T (
), (6.4) implies by analytic

continuation

Z

N




A(e

k

)

e

�h

z�w

�

i

;xi

d�

k

(x) = 


k

2

�k

a

2

�

N (

z � w

�

i

)

�

�k

a

2

; 8z; w 2 T (
):

Thus

�

N (

z�w

�

i

)

�

�k

a

2

is positive de�nite, and so k

a

2

is in the Wallach set W (D) =

W (T (
)).

By complexi�cation, GL(
) is realized as a subgroup of Aut(T (
)) which nor-

malizes the translations �

x

(z) := z + x, i.e.

' �

x

'

�1

= �

'(x)

; 8x 2 X; 8' 2 GL(
):

Let G � Aut(T (
)) be the semi-direct product of X and GL(
). It acts transitively

on T (
). Let N � G be the semi-direct product of X and N




. Then the Iwasawa

decomposition of Aut(T (
))

0

is KAN . For

�

k

=

d

r

+ k

a

2

; k = 0; 1; 2; : : :; r � 1
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let H

�

k

= H

�

k

(T (
)) be the Hilbert space of analytic functions on T (
) whose

reproducing kernel is K

�

k

(z; w) :=

�

N (

z�w

�

i

)

�

��

k

. Note that �

r�1

= p� 1 and for

k = 0 we have �

0

=

d

r

and �

0

= �

0

, the Dirac measure at 0.

Theorem 6.3 For k = 0; 1; : : : ; r� 1 H

�

k

(T (
)) consists of all analytic functions f

on T (
) for which

kfk

2

H

�

k

(T (
))

:= �

k

sup

t2


Z

N




A(e

k

)

�

Z

X

jf(x + i(y + t))j

2

dx

�

d�

k

(y) (6.6)

is �nite, where

�

k

=

�




(�

k

)2

rk

a

2

�


(k)

(k

a

2

)

(2�)

�(d+k(r�k)

a

2

)

:

Moreover, for every f; g 2 H

�

k

(T (
)),

hf; gi

�

k

= �

k

lim


3t!0

Z

N




A(e

k

)

�

Z

X

f(x + i(y + t)) g(x+ i(y + t)) dx

�

d�

k

(y):
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Introduction

Index theory and K-Theory have been close subjects since their appearance [1, 4].

Several recent index theorems that have found applications to Novikov's Conjecture

use algebraic K-Theory in an essential way, as a natural target for the generalized

indices that they compute. Some of these generalized indices are \von Neumann

dimensions"{like in the L

2

{index theorem for coverings [3] that, roughly speaking,

computes the trace of the projection on the space of solutions of an elliptic di�er-

ential operator on a covering space. The von Neumann dimension of the index does

not fully recover the information contained in the abstract (i.e., algebraic K-Theory

index) but this situation is remedied by considering \higher traces," as in the Connes{

Moscovici Index Theorem for coverings [11]. (Since the appearance of this theorem,

index theorems that compute the pairing between higher traces and the K{Theory

class of the index are called \higher index theorems.")

In [30], a general higher index morphism (i.e., a bivariant character) was de�ned

for a class of algebras{or, more precisely, for a class of extensions of algebras{that is

large enough to accommodate most applications. However, the index theorem proved

there was obtained only under some fairly restrictive conditions, too restrictive for

most applications. In this paper we completely remove these restrictions using a

recent breakthrough result of Cuntz and Quillen.

In [16], Cuntz and Quillen have shown that periodic cyclic homology, denoted

HP

�

, satis�es excision, and hence that any two{sided ideal I of a complex algebra A

gives rise to a periodic six-term exact sequence

HP

0

(I)

//
HP

0

(A)

//
HP

0

(A=I)

��
@

HP

1

(A=I)

OO

@

HP

1

(A)

oo
HP

1

(I)

oo

(1)

similar to the topologicalK{Theory exact sequence [1]. Their result generalizes earlier

results from [38]. (See also [14, 15].)

If M is a smooth manifold and A = C

1

(M ), then HP

�

(A) is isomorphic to the de

Rham cohomology of M , and the Chern{Connes character on (algebraic) K{Theory

generalizes the Chern{Weil construction of characteristic classes using connection and

curvature [10]. In view of this result, the excision property, equation (1), gives more

evidence that periodic cyclic homology is the \right" extension of de Rham homology

from smooth manifolds to algebras. Indeed, if I � A is the ideal of functions vanishing

on a closed submanifold N � M , then

HP

�

(I) = H

�

DR

(M;N )

and the exact sequence for continuous periodic cyclic homology coincides with the

exact sequence for de Rham cohomology. This result extends to (not necessarily

smooth) complex a�ne algebraic varieties [22].

The central result of this paper, Theorem 1.6, Section 1, states that the Chern{

Connes character

ch : K

alg

i

(A)! HP

i

(A);

where i = 0; 1, is a natural transformation from the six term exact sequence in

(lower) algebraic K{Theory to the periodic cyclic homology exact sequence. In this
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formulation, Theorem 1.6 generalizes the corresponding result for the Chern character

on the K{Theory of compact topological spaces, thus extending the list of common

features of de Rham and cyclic cohomology.

The new ingredient in Theorem 1.6, besides the naturality of the Chern{Connes

character, is the compatibility between the connecting (or index) morphism in alge-

braic K{Theory and the boundary map in the Cuntz{Quillen exact sequence (Theo-

rem 1.5). Because the connecting morphism

Ind : K

alg

1

(A=I)! K

alg

0

(I)

associated to a two-sided ideal I � A generalizes the index of Fredholm operators,

Theorem 1.5 can be regarded as an abstract \higher index theorem," and the com-

putation of the boundary map in the periodic cyclic cohomology exact sequence can

be regarded as a \cohomological index formula."

We now describe the contents of the paper in more detail.

If � is a trace on the two{sided ideal I � A, then � induces a morphism

�

�

: K

alg

0

(I)! C :

More generally, one can{and has to{allow � to be a \higher trace," while still getting

a morphism �

�

: K

alg

1

(I) ! C . Our main goal in Section 1 is to identify, as explicitly

as possible, the composition �

�

� Ind : K

alg

1

(A=I) ! C . For traces this is done in

Lemma 1.1, which generalizes a formula of Fedosov. In general,

�

�

� Ind = (@� )

�

;

where @ : HP

0

(I) ! HP

1

(A=I) is the boundary map in periodic cyclic cohomology.

Since @ is de�ned purely algebraically, it is usually easier to compute it than it is to

compute Ind, not to mention that the group K

alg

0

(I) is not known in many interesting

situations, which complicates the computation of Ind even further.

In Section 2 we study the properties of @ and show that @ is compatible with

various product type operations on cyclic cohomology. The proofs use cyclic vector

spaces [9] and the external product � studied in [30], which generalizes the cross-

product in singular homology. The most important property of @ is with respect to

the tensor product of an exact sequence of algebras by another algebra (Theorem 2.6).

We also show that the boundary map @ coincides with the morphism induced by the

odd bivariant character constructed in [30], whenever the later is de�ned (Theorem

2.10).

As an application, in Section 3 we give a new proof of the Connes{Moscovici

index theorem for coverings [11]. The original proof uses estimates with heat kernels.

Our proof uses the results of the �rst two sections to reduce the Connes{Moscovici

index theorem to the Atiyah{Singer index theorem for elliptic operators on compact

manifolds.

The main results of this paper were announced in [32], and a preliminary version

of this paper has been circulated as \Penn State preprint" no. PM 171, March 1994.

Although this is a completely revised version of that preprint, the proofs have not

been changed in any essential way. However, a few related preprints and papers have

appeared since this paper was �rst written; they include [12, 13, 33].

I would like to thank Joachim Cuntz for sending me the preprints that have

lead to this work and for several useful discussions. Also, I would like to thank the
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Mathematical Institute of Heidelberg University for hospitality while parts of this

manuscript were prepared, and to the referee for many useful comments.

1. Index theorems and Algebraic K{Theory

We begin this section by reviewing the de�nitions of the groups K

alg

0

and K

alg

1

and of

the index morphism Ind : K

alg

1

(A=I)! K

alg

0

(I) associated to a two-sided ideal I � A.

There are easy formulas that relate these groups to Hochschild homology, and we

review those as well. Then we prove an intermediate result that generalizes a formula

of Fedosov in our Hochschild homology setting, which will serve both as a lemma in

the proof of Theorem 1.5, and as a motivation for some of the formalisms developed in

this paper. The main result of this section is the compatibility between the connecting

(or index) morphism in algebraic K{Theory and the boundary morphism in cyclic

cohomology (Theorem 1.5). An equivalent form of Theorem 1.5 states that the Chern{

Connes character is a natural transformation from the six term exact sequence in

algebraic K{Theory to periodic cyclic homology. These results extend the results in

[30] in view of Theorem 2.10.

All algebras considered in this paper are complex algebras.

1.1. Pairings with traces and a Fedosov type formula. It will be conve-

nient to de�ne the group K

alg

0

(A) in terms of idempotents e 2 M

1

(A), that is, in

terms of matrices e satisfying e

2

= e. Two idempotents, e and f , are called equivalent

(in writing, e � f) if there exist x; y such that e = xy and f = yx. The direct sum of

two idempotents, e and f , is the matrix e�f (with e in the upper{left corner and f in

the lower{right corner). With the direct{sum operation, the set of equivalence classes

of idempotents in M

1

(A) becomes a monoid denoted P(A). The group K

alg

0

(A) is

de�ned to be the Grothendieck group associated to the monoid P(A). If e 2M

1

(A)

is an idempotent, then the class of e in the group K

alg

0

(A) will be denoted [e].

Let � : A ! C be a trace. We extend � to a trace M

1

(A) ! C , still denoted

� , by the formula � ([a

ij

]) =

P

i

� (a

ii

). If e � f , then e = xy and f = yx for some

x and y, and then the tracial property of � implies that � (e) = � (f). Moreover

� (e � f) = � (e) + � (f), and hence � de�nes an additive map P(A) ! C . From the

universal property of the Grothendieck group associated to a monoid, it follows that

we obtain a well de�ned group morphism (or pairing with � )

K

alg

0

(A) 3 [e] �! �

�

([e]) = � (e) 2 C :(2)

The pairing (2) generalizes to not necessarily unital algebras I and traces � : I !

C as follows. First, we extend � to I

+

= I + C1, the algebra with adjoint unit, to be

zero on 1. Then, we obtain, as above, a morphism �

�

: K

alg

0

(I

+

)! C . The morphism

�

�

: K

alg

0

(I) ! C is obtained by restricting from K

alg

0

(I

+

) to K

alg

0

(I), de�ned to be

the kernel of K

alg

0

(I

+

)! K

alg

0

(C ).

The de�nition of K

alg

1

(A) is shorter:

K

alg

1

(A) = lim

!

GL

n

(A)=[GL

n

(A); GL

n

(A)]:

In words, K

alg

1

(A) is the abelianization of the group of invertible matrices of the form

1 + a, where a 2 M

1

(A). The pairing with traces is replaced by a pairing with

Hochschild 1{cocycles as follows.

Documenta Mathematica 2 (1997) 263{295



Higher Index Theorems 267

If � : A
A is a Hochschild 1-cocycle, then the the functional � de�nes a morphism

�

�

: K

alg

1

(A) ! C , by �rst extending � to matrices over A, and then by pairing it

with the Hochschild 1{cycle u
 u

�1

. Explicitly, if u = [a

ij

], with inverse u

�1

= [b

ij

],

then the morphism �

�

is

K

alg

1

(A) 3 [u] �! �

�

([u]) =

X

i;j

�(a

ij

; b

ji

) 2 C :(3)

The morphism �

�

depends only on the class of � in the Hochschild homology group

HH

1

(A) of A.

If 0 ! I ! A ! A=I ! 0 is an exact sequence of algebras, that is, if I is a

two{sided ideal of A, then there exists an exact sequence [26],

K

alg

1

(I)! K

alg

1

(A)! K

alg

1

(A=I)

Ind

���! K

alg

0

(I) ! K

alg

0

(A)! K

alg

0

(A=I);

of Abelian groups, called the algebraic K{theory exact sequence. The connecting (or

index) morphism

Ind : K

alg

1

(A=I)! K

alg

0

(I)

will play an important role in this paper and is de�ned as follows. Let u be an

invertible element in some matrix algebra ofA=I. By replacing A=I withM

n

(A=I), for

some large n, we may assume that u 2 A=I. Choose an invertible element v 2M

2

(A)

that projects to u � u

�1

in M

2

(A=I), and let e

0

= 1� 0 and e

1

= ve

0

v

�1

. Because

e

1

2 M

2

(I

+

), the idempotent e

1

de�nes a class in K

alg

0

(I

+

). Since e

1

� e

0

2 M

2

(I),

the di�erence [e

1

]� [e

0

] is actually in K

alg

0

(I) and depends only on the class [u] of u

in K

alg

1

(A=I). Finally, we de�ne

Ind([u]) = [e

1

]� [e

0

]:(4)

To obtain an explicit formula for e

1

, choose liftings a; b 2 A of u and u

�1

and let

v, the lifting, to be the matrix

v =

�

2a� aba ab� 1

1� ba b

�

;

as in [26], page 22. Then a short computation gives

e

1

=

�

2ab� (ab)

2

a(2� ba)(1� ba)

(1� ba)b (1� ba)

2

�

:(5)

Continuing the study of the exact sequence 0 ! I ! A ! A=I ! 0, choose an

arbitrary linear lifting, l : A=I

2

! A. If � is a trace on I, we let

�

�

(a; b) = � ([l(a); l(b)]� l([a; b])):(6)

Because [a; xy] = [ax; y]+[ya; x], we have � ([A; I

2

]) = 0, and hence �

�

is a Hochschild

1{cocycle onA=I

2

(i.e., �

�

(ab; c)��

�

(a; bc)+�

�

(ca; b)). The class of �

�

in HH

1

(A=I

2

),

denoted @� , turns out to be independent of the lifting l. If A is a locally convex

algebra, then we assume that we can choose the lifting l to be continuous. If

� ([A; I]) = 0, then it is enough to consider a lifting of A! A=I.

The morphisms (@� )

�

: K

alg

1

(A=I

2

) ! C and �

�

: K

alg

0

(I

2

) ! C are related

through the following lemma.
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Lemma. 1.1. Let � be a trace on a two-sided ideal I � A. If

Ind : K

alg

1

(A=I

2

)! K

alg

0

(I

2

)

is the connecting morphism of the algebraic K{Theory exact sequence associated to

the two-sided ideal I

2

of A, then

�

�

� Ind = (@� )

�

:

If � ([A; I]) = 0, then we may replace I

2

by I.

Proof. We check that �

�

� Ind([u]) = (@� )

�

([u]), for each invertible u 2 M

n

(A=I

2

).

By replacing A=I

2

with M

n

(A=I

2

), we may assume that n = 1.

Let l : A=I

2

! A be the linear lifting used to de�ne the 1{cocycle �

�

representing

@� , equation (6), and choose a = l(u) and b = l(u

�1

) in the formula for e

1

, equation

(5). Then, the left hand side of our formula becomes

�

�

�

Ind([u])

�

= �

�

(1� ba)

2

�

� �

�

(1� ab)

2

�

= 2� ([a; b])� � ([a; bab]):(7)

Because (1� ba)b is in I

2

, we have � ([a; bab]) = � ([a; b]), and hence

�

�

(Ind([u])) = �

�

([e

1

]� [e

0

]) = � (e

1

� e

0

) = � ([a; b]):

Since the right hand side of our formula is

(@� )

�

([u]) = (@� )(u; u

�1

) = � ([l(u); l(u

�1

)]� l([u; u

�1

])) = � ([a; b]);

the proof is complete.

Lemma 1.1 generalizes a formula of Fedosov in the following situation. Let B(H)

be the algebra of bounded operators on a �xed separable Hilbert space H and C

p

(H) �

B(H) be the (non-closed) ideal of p{summable operators [36] on H:

C

p

(H) = fA 2 B(H); T r(A

�

A)

p=2

<1g:(8)

(We will sometimes omitH and write simply C

p

instead of C

p

(H).) Suppose now that

the algebra A consists of bounded operators, that I � C

1

, and that a is an element

of A whose projection u in A=I is invertible. Then a is a Fredholm operator, and, for

a suitable choice of a lifting b of u

�1

, the operators 1 � ba and 1 � ab become the

orthogonal projection onto the kernel of a and, respectively, the kernel of a

�

. Finally,

if � = Tr, this shows that

Tr

�

�

Ind([u])

�

= dimker(a) � dimker(a

�

)

and hence that Tr

�

� Ind recovers the Fredholm index of a. (The Fredholm index

of a, denoted ind(a), is by de�nition the right-hand side of the above formula.) By

equation (7), we see that we also recover a form of Fedosov's formula:

ind(a) = Tr

�

(1� ba)

k

�

� Tr

�

(1� ab)

k

�

if b is an inverse of a modulo C

p

(H) and k � p.

The connecting (or boundary) morphism in the algebraic K{Theory exact se-

quence is usually denoted by `@'. However, in the present paper, this notation be-

comes unsuitable because the notation `@' is reserved for the boundary morphism in

the periodic cyclic cohomology exact sequence. Besides, the notation `Ind' is supposed

to suggest the name `index morphism' for the connecting morphism in the algebraic

K{Theory exact sequence, a name justi�ed by the relation that exists between Ind

and the indices of Fredholm operators, as explained above.
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1.2. \Higher traces" and excision in cyclic cohomology. The example of

A = C

1

(M ), for M a compact smooth manifold, shows that, in general, few mor-

phisms K

alg

0

(A)! C are given by pairings with traces. This situation is corrected by

considering `higher-traces,' [10].

Let A be a unital algebra and

b

0

(a

0


 : : :
 a

n

) =

n�1

X

i=0

(�1)

i

a

0


 : : :
 a

i

a

i+1


 : : :
 a

n

;

b(a

0


 : : :
 a

n

) = b

0

(a

0


 : : :
 a

n

) + (�1)

n

a

n

a

0


 : : :
 a

n�1

;

(9)

for a

i

2 A. The Hochschild homology groups ofA, denoted HH

�

(A), are the homology

groups of the complex (A 
 (A=C1)


n

; b). The cyclic homology groups [10, 24, 37]

of a unital algebra A; denoted HC

n

(A); are the homology groups of the complex

(C(A); b +B), where

C

n

(A) =

M

k�0

A
 (A=C1)


n�2k

:(10)

b is the Hochschild homology boundary map, equation (9), and B is de�ned by

B(a

0


 : : :
 a

n

) = s

n

X

k=0

t

k

(a

0


 : : :
 a

n

):(11)

Here we have used the notation of [10], that s(a

0


 : : :
 a

n

) = 1
 a

0


 : : :
 a

n

and

t(a

0


 : : :
 a

n

) = (�1)

n

a

n


 a

0


 : : :
 a

n�1

:

More generally, Hochschild and cyclic homology groups can be de�ned for \mixed

complexes," [21]. A mixed complex (X ; b; B) is a graded vector space (X

n

)

n�0

, en-

dowed with two di�erentials b and B, b : X

n

! X

n�1

and B : X

n

! X

n+1

, satisfying

the compatibility relation b

2

= B

2

= bB+Bb = 0. The cyclic complex, denoted C(X ),

associated to a mixed complex (X ; b; B) is the complex

C

n

(X ) = X

n

� X

n�2

�X

n�4

: : : =

M

k�0

X

n�2k

;

with di�erential b+ B. The cyclic homology groups of the mixed complex X are the

homology groups of the cyclic complex of X :

HC

n

(X ) = H

n

(C(X ); b+ B):

Cyclic cohomology is de�ned to be the homology of the complex

(C(X )

0

= Hom(C(X ); C ); (b + B)

0

);

dual to C(X ). From the form of the cyclic complex it is clear that there exists a

morphism S : C

n

(X )! C

n�2

(X ). We let

C

n

(X ) = lim

 

C

n+2k

(X )

as k ! 1, the inverse system being with respect to the periodicity operator S.

Then the periodic cyclic homology of X (respectively, the periodic cyclic cohomology

of X ), denoted HP

�

(X ) (respectively, HP

�

(X )) is the homology (respectively, the

cohomology) of C

n

(X ) (respectively, of the complex lim

!

C

n+2k

(X )

0

).

If A is a unital algebra, we denote by X (A) the mixed complex obtained by

letting X

n

(A) = A
 (A=C1)


n

with di�erentials b and B given by (9) and (11). The
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various homologies of X (A) will not include X as part of notation. For example, the

periodic cyclic homology of X is denoted HP

�

(A).

For a topological algebra A we may also consider continuous versions of the

above homologies by replacing the ordinary tensor product with the projective tensor

product. We shall be especially interested in the continuous cyclic cohomology of A,

denoted HP

�

cont

(A). An important example is A = C

1

(M ), for a compact smooth

manifold M . Then the Hochschild-Kostant-Rosenberg map

� : A

^



n+1

3 a

0


 a

1


 : : :
 a

n

�! (n!)

�1

a

0

da

1

: : : da

n

2 


n

(M )(12)

to smooth forms gives an isomorphism

HP

cont

i

(C

1

(M )) '

M

k

H

i+2k

DR

(M )

of continuous periodic cyclic homology with the de Rham cohomology of M [10, 24]

made Z

2

{periodic. The normalization factor (n!)

�1

is convenient because it trans-

forms B into the de Rham di�erential d

DR

. It is also the right normalization as far

as Chern characters are involved, and it is also compatible with products, Theorem

3.5. From now on, we shall use the de Rham's Theorem

H

i

DR

(M ) ' H

i

(M )

to identify de Rham cohomology and singular cohomology with complex coe�cients

of the compact manifold M .

Sometimes we will use a version of continuous periodic cyclic cohomology for

algebras A that have a locally convex space structure, but for which the multiplication

is only partially continuous. In that case, however, the tensor products A


n+1

come

with natural topologies, for which the di�erentials b and B are continuous. This is

the case for some of the groupoid algebras considered in the last section. The periodic

cyclic cohomology is then de�ned using continuous multi-linear cochains.

One of the original descriptions of cyclic cohomology was in terms of \higher

traces" [10]. A higher trace{or cyclic cocycle{is a continuous multilinear map � :

A


n+1

! C satisfying � � b = 0 and �(a

1

; : : : ; a

n

; a

0

) = (�1)

n

�(a

0

; : : : ; a

n

). Thus

cyclic cocycles are, in particular, Hochschild cocycles. The last property, the cyclic

invariance, justi�es the name \cyclic cocycles." The other name, \higher traces" is

justi�ed since cyclic cocycles on A de�ne traces on the universal di�erential graded

algebra of A.

If I � A is a two{sided ideal, we denote by C(A; I) the kernel of C(A)! C(A=I).

For possibly non-unital algebras I, we de�ne the cyclic homology of I using the

complex C(I

+

; I). The cyclic cohomology and the periodic versions of these groups are

de�ned analogously, using C(I

+

; I). For topological algebras we replace the algebraic

tensor product by the projective tensor product.

An equivalent form of the excision theorem in periodic cyclic cohomology is the

following result.

Theorem. 1.2 (Cuntz{Quillen). The inclusion C(I

+

; I) ,! C(A; I) induces an iso-

morphism, HP

�

(A; I) ' HP

�

(I), of periodic cyclic cohomology groups.

Documenta Mathematica 2 (1997) 263{295



Higher Index Theorems 271

This theorem is implicit in [16], and follows directly from the proof there of the

Excision Theorem by a sequence of commutative diagrams, using the Five Lemma

each time.

2

This alternative de�nition of excision sometimes leads to explicit formulae for @.

We begin by observing that the short exact sequence of complexes 0 ! C(A; I) !

C(A) ! C(A=I)! 0 de�nes a long exact sequence

:: HP

n

(A; I) HP

n

(A) HP

n

(A=I)

@

 � HP

n�1

(A; I) HP

n�1

(A) ::

in cyclic cohomology that maps naturally to the long exact sequence in periodic cyclic

cohomology.

Most important for us, the boundary map @ : HP

n

(A; I) ! HP

n+1

(A=I) is

determined by a standard algebraic construction. We now want to prove that this

boundary morphism recovers a previous construction, equation (6), in the particular

case n = 0. As we have already observed, a trace � : I ! C satis�es � ([A; I

2

]) = 0,

and hence de�nes by restriction an element of HC

0

(A; I

2

). The traces are the cycles of

the group HC

0

(I), and thus we obtain a linear map HC

0

(I)! HC

0

(A; I

2

). From the

de�nition of @ : HP

0

(A; I)! HP

1

(A=I), it follows that @[� ] is the class of the cocycle

�(a; b) = � ([l(a); l(b)]� l([a; b])), which is cyclically invariant, by construction. (Since

our previous notation for the class of � was @� , we have thus obtained the paradoxical

relation @[� ] = @� ; we hope this will not cause any confusions.)

Below we shall also use the natural map (transformation)

HC

n

! HP

n

= lim

k!1

HC

n+2k

:

Lemma. 1.3. The diagram

HC

0

(I)

��

//
HC

0

(A; I

2

)

��

//@

HC

1

(A=I

2

)

��

HC

1

(A=I)

��

oo

HP

0

(I)

//�
HP

0

(A; I

2

)

//@

HP

1

(A=I

2

) HP

1

(A=I)

oo �

commutes. Consequently, if � 2 HC

0

(I) is a trace on I and [� ] 2 HP

0

(I) is its class

in periodic cyclic homology, then @[� ] = [@� ] 2 HP

1

(A=I), where @� 2 HC

1

(A=I

2

) is

given by the class of the cocycle � de�ned in equation (6) (see also above).

Proof. The commutativity of the diagram follows from de�nitions. If we start with a

trace � 2 HC

0

(I) and follow counterclockwise through the diagram from the upper{

left corner to the lower{right corner we obtain @[� ]; if we follow clockwise, we obtain

the description for @[� ] indicated in the statement.

1.3. An abstract \higher index theorem". We now generalize Lemma 1.1 to

periodic cyclic cohomology. Recall that the pairings (2) and (3) have been generalized

to pairings

K

alg

i

(A)
 HC

2n+i

(A) �! C ; i = 0; 1:

[10]. Thus, if � be a higher trace representing a class [�] 2 HC

2n+i

(A), then, using the

above pairing, � de�nes morphisms �

�

: K

alg

i

(A) ! C , where i = 0; 1. The explicit

formulae for these morphisms are �

�

([e]) = (�1)

n

(2n)!

n!

�(e; e; : : : ; e), if i = 0 and e

2

I am indebted to Joachim Cuntz for pointing out this fact to me.
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is an idempotent, and �

�

([u]) = (�1)

n

n!�

�

(u; u

�1

; u; : : : ; u

�1

), if i = 1 and u is an

invertible element. The constants in these pairings are meaningful and are chosen so

that these pairings are compatible with the periodicity operator.

Consider the standard orthonormal basis (e

n

)

n�0

of the space l

2

(N) of square

summable sequences of complex numbers; the shift operator S is de�ned by Se

n

=

e

n+1

. The adjoint S

�

of S then acts by S

�

e

0

= 0 and S

�

e

n+1

= e

n

, for n � 0. The

operators S and S

�

are related by S

�

S = 1 and SS

�

= 1�p, where p is the orthogonal

projection onto the vector space generated by e

0

.

Let T be the algebra generated by S and S

�

and C [w;w

�1

] be the algebra of

Laurent series in the variable w, C [w;w

�1

] = f

P

N

n=�N

a

k

w

k

; a

k

2 Cg ' C [Z]. Then

there exists an exact sequence

0!M

1

(C ) ! T ! C [w;w

�1

]! 0;

called the Toeplitz extension, which sends S to w and S

�

to w

�1

.

Let C h a; b i be the free non-commutative unital algebra generated by the symbols

a and b and J = ker(C h a; b i ! C [w;w

�1

]), the kernel of the unital morphism that

sends a! w and b! w

�1

. Then there exists a morphism 

0

: C h a; b i ! T , uniquely

determined by  

0

(a) = S and  

0

(b) = S

�

, which de�nes, by restriction, a morphism

 : J !M

1

(C ), and hence a commutative diagram

0

//
J

��
 

//
C h a; b i

��
 

0

//
C [w;w

�1

]

��

//
0

0

//
M

1

(C )

//
T

//
C [w;w

�1

]

//
0

Lemma. 1.4. Using the above notations, we have that HC

�

(J) is singly generated by

the trace � = Tr �  .

Proof. We know that HP

i

(C [w;w

�1

]) ' C , see [24]. Then Lemma 1.1, Lemma

1.3, and the exact sequence in periodic cyclic cohomology prove the vanishing of the

reduced periodic cyclic cohomology groups:

g

HC

�

(T ) = ker(HP

�

(T )! HP

�

(C )):

The algebra C h a; b i is the tensor algebra of the vector space Ca � C b, and hence

the groups

g

HC

�

(T (V )) also vanish [24]. It follows that the morphism  

0

induces

(trivially) an isomorphism in cyclic cohomology. The comparison morphism between

the Cuntz{Quillen exact sequences associated to the two extensions shows, using

\the Five Lemma," that the induced morphisms  

�

: HP

�

(M

1

(C )) ! HP

�

(J) is

also an isomorphism. This proves the result since the canonical trace Tr generates

HP

�

(M

1

(C )).

We are now ready to state the main result of this section, the compatibility of the

boundary map in the periodic cyclic cohomology exact sequence with the index (i.e.,

connecting) map in the algebraic K{Theory exact sequence. The following theorem

generalizes Theorem 5.4 from [30].

Theorem. 1.5. Let 0 ! I ! A ! A=I ! 0 be an exact sequence of complex

algebras, and let Ind : K

alg

1

(A=I) ! K

alg

0

(I) and @ : HP

0

(I) ! HP

1

(A=I) be the
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connecting morphisms in algebraic K{Theory and, respectively, in periodic cyclic co-

homology. Then, for any ' 2 HP

0

(I) and [u] 2 K

alg

1

(A=I), we have

'

�

(Ind[u]) = (@')

�

[u] :(13)

Proof. We begin by observing that if the class of ' can be represented by a trace

(that is, if ' is the equivalence class of a trace in the group HP

0

(I)) then the boundary

map in periodic cyclic cohomology is computed using the recipe we have indicated,

Lemma 1.3, and hence the result follows from Lemma 1.1. In particular, the theorem

is true for the exact sequence

0 �! J ! C h a; b i ! C [w;w

�1

] �! 0;

because all classes in HP

0

(J) are de�ned by traces, as shown in Lemma 1.4. We will

now show that this particular case is enough to prove the general case \by universal-

ity."

Let u be an invertible element in M

n

(A=I). After replacing the algebras involved

by matrix algebras, if necessary, we may assume that n = 1, and hence that u is

an invertible element in A=I. This invertible element then gives rise to a morphism

� : C [w;w

�1

] ! A=I that sends w to u. A choice of liftings a

0

; b

0

2 A of u and

u

�1

de�nes a morphism  

0

: C h a; b i ! A, uniquely determined by  

0

(a) = a

0

and

 

0

(b) = b

0

, which restricts to a morphism  : J ! I. In this way we obtain a

commutative diagram

0

//
J

��
 

//
C h a; b i

��
 

0

//
C [w;w

�1

]

��
�

//
0

0

//
I

//
A

//
A=I

//
0

of algebras and morphisms.

We claim that the naturality of the index morphism in algebraic K{Theory and

the naturality of the boundary map in periodic cyclic cohomology, when applied to

the above exact sequence, prove the theorem. Indeed, we have

 

�

� Ind = Ind ��

�

: K

alg

1

(C [w;w

�1

])! K

alg

0

(I); and

@ �  

�

= �

�

� @ : HP

�

(I)! HP

�+1

(C [w;w

�1

]):

As observed in the beginning of the proof, the theorem is true for the cocycle  

�

(')

on J , and hence ( 

�

('))

�

(Ind [w]) = (@� 

�

('))

�

[w]. Finally, from de�nition, we have

that �

�

[w] = [u]. Combining these relations we obtain

'

�

(Ind [u]) = '

�

(Ind ��

�

[w]) = '

�

( 

�

� Ind[w]) = ( 

�

('))

�

(Ind [w]) =

= (@ �  

�

('))

�

[w] = (�

�

� @('))

�

[w] = (@')

�

(�

�

[w]) = (@')

�

[u]:

The proof is complete.

The theorem we have just proved can be extended to topological algebras and

topological K{Theory. If the topological algebras considered satisfy Bott periodicity,

then an analogous compatibility with the other connecting morphism can be proved

and one gets a natural transformation from the six-term exact sequence in topological

K{Theory to the six-term exact sequence in periodic cyclic homology. However, a

factor of 2�{ has to be taken into account because the Chern-Connes character is not
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directly compatible with periodicity [30], but introduces a factor of 2�{. See [12] for

details.

So far all our results have been formulated in terms of cyclic cohomology, rather

than cyclic homology. This is justi�ed by the application in Section 3 that will use this

form of the results. This is not possible, however, for the following theorem, which

states that the Chern character in periodic cyclic homology (i.e., the Chern{Connes

character) is a natural transformation from the six term exact sequence in (lower)

algebraic K{Theory to the exact sequence in cyclic homology.

Theorem. 1.6. The diagram

K

alg

1

(I)

��

//
K

alg

1

(A)

��

//
K

alg

1

(A=I)

��

//Ind

K

alg

0

(I)

��

//
K

alg

0

(A)

��

//
K

alg

0

(A=I)

��
HP

1

(I)

//
HP

1

(A)

//
HP

1

(A=I)

//@

HP

0

(I)

//
HP

0

(A)

//
HP

0

(A=I);

in which the vertical arrows are induced by the Chern characters ch : K

alg

i

! HP

i

,

for i = 0; 1, commutes.

Proof. Only the relation ch � Ind = @ � ch needs to be proved, and this is dual to

Theorem 1.5.

2. Products and the boundary map in periodic cyclic cohomology

Cyclic vector spaces are a generalization of simplicial vector spaces, with which they

share many features, most notably, for us, a similar behavior with respect to products.

2.1. Cyclic vector spaces. We begin this section with a review of a few needed

facts about the cyclic category � from [9] and [30]. We will be especially interested

in the �{product in bivariant cyclic cohomology. More results can be found in [23].

Definition. 2.1. The cyclic category, denoted �, is the category whose objects are

�

n

= f0; 1; : : : ; ng, where n = 0; 1; : : : and whose morphisms Hom

�

(�

n

;�

m

) are

the homotopy classes of increasing, degree one, continuous functions ' : S

1

! S

1

satisfying '(Z

n+1

) �Z

m+1

.

A cyclic vector space is a contravariant functor from � to the category of complex

vector spaces [9]. Explicitly, a cyclic vector space X is a graded vector space, X =

(X

n

)

n�0

, with structural morphisms d

i

n

: X

n

! X

n�1

, s

i

n

: X

n

! X

n+1

, for 0 �

i � n, and t

n+1

: X

n

! X

n

such that (X

n

; d

i

n

; s

i

n

) is a simplicial vector space

([25], Chapter VIII,x5) and t

n+1

de�nes an action of the cyclic group Z

n+1

satisfying

d

0

n

t

n+1

= d

n

n

and s

0

n

t

n+1

= t

2

n+2

s

n

n

, d

i

n

t

n+1

= t

n

d

i�1

n

, and s

i

n

t

n+1

= t

n+2

s

i�1

n

for

1 � i � n. Cyclic vector spaces form a category.

The cyclic vector space associated to a unital locally convex complex algebra A

is A

\

= (A


n+1

)

n�0

, with the structural morphisms

s

i

n

(a

0


 : : :
a

n

) = a

0


 : : :
a

i


1
a

i+1


 : : :
a

n

;

d

i

n

(a

0


 : : :
a

n

) = a

0


 : : :
a

i

a

i+1


 : : :
a

n

; for 0 � i < n; and

d

n

n

(a

0


 : : :
a

n

) = a

n

a

0


 : : :
a

i

a

i+1


 : : :
a

n�1

;

t

n+1

(a

0


 : : :
a

n

) = a

n


 a

0


 a

1


 : : :
a

n�1

:
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If X = (X

n

)

n�0

and Y = (Y

n

)

n�0

are cyclic vector spaces, then we can de�ne

on (X

n


 Y

n

)

n�0

the structure of a cyclic space with structural morphisms given by

the diagonal action of the corresponding structural morphisms, s

i

n

; d

i

n

, and t

n+1

, of

X and Y . The resulting cyclic vector space will be denoted X � Y and called the

external product of X and Y . In particular, we obtain that (A
B)

\

= A

\

�B

\

for all

unital algebras A and B, and that X � C

\

' X for all cyclic vector spaces X. There

is an obvious variant of these constructions for locally convex algebras, obtained by

using the complete projective tensor product.

The cyclic cohomology groups of an algebra A can be recovered as Ext{groups.

For us, the most convenient de�nition of Ext is using exact sequences (or resolutions).

Consider the set E = (M

k

)

n

k=0

of resolutions of length n + 1 of X by cyclic vector

spaces, such that M

n

= Y . Thus we consider exact sequences

E : 0! Y = M

n

!M

n�1

! � � � !M

0

! X ! 0;

of cyclic vector spaces. For two such resolutions, E and E

0

, we write E ' E

0

whenever

there exists a morphism of complexes E ! E

0

that induces the identity on X and

Y . Then Ext

n

�

(X;Y ) is, by de�nition, the set of equivalence classes of resolutions

E = (M

k

)

n

k=0

with respect to the equivalence relation generated by '. The set

Ext

n

�

(X;Y ) has a natural group structure. The equivalence class in Ext

n

�

(X;Y ) of

a resolution E = (M

k

)

n

k=0

is denoted [E]. This de�nition of Ext coincides with the

usual one{using resolutions by projective modules{because cyclic vector spaces form

an Abelian category with enough projectives.

Given a cyclic vector space X = (X

n

)

n�0

de�ne b; b

0

: X

n

! X

n�1

by

b

0

=

P

n�1

j=0

(�1)

j

d

j

; b = b

0

+(�1)

n

d

n

. Let s

�1

= s

n

n

�t

n+1

be the `extra degeneracy' of

X, which satis�es s

�1

b

0

+b

0

s

�1

= 1. Also let � = 1�(�1)

n

t

n+1

, N =

P

n

j=0

(�1)

nj

t

j

n+1

and B = �s

�1

N . Then (X; b;B) is a mixed complex and hence HC

�

(X), the cyclic ho-

mology ofX, is the homology of (�

k�0

X

n�2k

; b+B), by de�nition. Cyclic cohomology

is obtained by dualization, as before.

The Ext{groups recover the cyclic cohomology of an algebra A via a natural

isomorphism,

HC

n

(A) ' Ext

n

�

(A

\

; C

\

);(14)

[9]. This isomorphism allows us to use the theory of derived functors to study cyclic

cohomology, especially products.

The Yoneda product,

Ext

n

�

(X;Y )
 Ext

m

�

(Y; Z) 3 � 
 � ! � � � 2 Ext

n+m

�

(X;Z);

is de�ned by splicing [18]. If E = (M

k

)

n

k=0

is a resolution of X, and E

0

= (M

0

k

)

m

k=0

a

resolution of Y , such that M

n

= Y and M

0

m

= Z, then E

0

�E is represented by

0! Z = M

0

m

!M

0

m�1

! � � � !

M

0

0

//

��

M

n�1

! � � � !M

0

! X ! 0

Y

;;
①
①
①
①
①
①
①
①
①

Documenta Mathematica 2 (1997) 263{295



276 Victor Nistor

The resulting product generalizes the composition of functions. Using the same no-

tation, the external product E �E

0

is the resolution

E � E

0

=

0

@

X

k+j=l

M

0

k

�M

j

1

A

n+m

l=0

:

Passing to equivalence classes, we obtain a product

Ext

m

�

(X;Y ) 
 Ext

n

�

(X

1

; Y

1

)

�

�! Ext

m+n

�

(X �X

1

; Y � Y

1

):

If f : X ! X

0

is a morphism of cyclic vector spaces then we shall sometimes denote

E

0

� f = f

�

(E

0

), for E

0

2 Ext

n

�

(X

0

; C

\

).

The Yoneda product, \�," and the external product, \�," are both associative

and are related by the following identities, [30], Lemma 1.2.

Lemma. 2.2. Let x 2 Ext

n

�

(X;Y ), y 2 Ext

m

�

(X

1

; Y

1

), and � be the natural transfor-

mation Ext

m+n

�

(X

1

� X;Y

1

� Y ) ! Ext

m+n

�

(X �X

1

; Y � Y

1

) that interchanges the

factors. Then

x� y = (id

Y

� y) � (x� id

X

1

) = (�1)

mn

(x� id

Y

1

) � (id

X

� y);

id

X

� (y � z) = (id

X

� y) � (id

X

� z);

x� y = (�1)

mn

� (y � x); and x� id

C

\ = x = id

C

\ � x:

We now turn to the de�nition of the periodicity operator. A choice of a generator

� of the group Ext

2

�

(C

\

; C

\

), de�nes a periodicity operator

Ext

n

�

(X;Y ) 3 x!Sx= x� � 2 Ext

n+2

�

(X;Y ):(15)

In the following we shall choose the standard generator � that is de�ned `over Z',

and then the above de�nition extends the periodicity operator in cyclic cohomology.

This and other properties of the periodicity operator are summarized in the following

Corollary ([30], Corollary 1.4)

Corollary. 2.3. a) Let x 2 Ext

n

�

(X;Y ) and y 2 Ext

m

�

(X

1

; Y

1

). Then (Sx)� y =

S(x� y) = x� (Sy).

b) If x 2 Ext

n

�

(C

\

; X), then Sx= � � x.

c) If y 2 Ext

m

�

(Y; C

\

), then Sy = y � �.

d) For any extension x, we have Sx= � � x.

Using the periodicity operator, we extend the de�nition of periodic cyclic coho-

mology groups from algebras to cyclic vector spaces by

HP

i

(X) = lim

!

Ext

i+2n

�

(X; C

\

);(16)

the inductive limit being with respect to S; clearly, HP

i

(A

\

) = HP

i

(A). Then Corol-

lary 2.3 a) shows that the external product � is compatible with the periodicity

morphism, and hence de�nes an external product,

HP

i

(A) �HP

j

(B)




�! HP

i+j

(A 
B);(17)

on periodic cyclic cohomology.
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2.2. Extensions of algebras and products. Cyclic vector spaces will be used

to study exact sequences of algebras. Let I � A be a two{sided ideal of a complex

unital algebra A (recall that in this paper all algebras are complex algebras.) Denote

by (A; I)

\

the kernel of the map A

\

! (A=I)

\

, and by [A; I] 2 Ext

1

�

((A=I)

\

; (A; I)

\

)

the (equivalence class of the) exact sequence

0! (A; I)

\

! A

\

! (A=I)

\

! 0(18)

of cyclic vector spaces.

Let HC

i

(A; I) = Ext

i

�

((A; I)

\

; C

\

), then the long exact sequence of Ext{groups

associated to the short exact sequence (18) reads

� � �! HC

i

(A=I)! HC

i

(A)! HC

i

(A; I)! HC

i+1

(A=I)! HC

i+1

(A)!� � �

By standard homological algebra, the boundary map of this long exact sequence is

given by the product

HC

i

(A; I) 3 � ! � � [A; I] 2 HC

i+1

(A=I):

For an arbitrary algebra I, possibly without unit, we let I

[

= (I

+

; I)

\

: Then

the isomorphism (14) becomes HC

n

(I) ' Ext

n

�

(I

[

; C

\

), and the excision theorem in

periodic cyclic cohomology for cyclic vector spaces takes the following form.

Theorem. 2.4 (Cuntz{Quillen). The inclusion j

I;A

: I

[

,! (A; I)

\

of cyclic vector

spaces induces an isomorphism HP

�

(A; I) ' HP

�

(I).

It follows that every element � 2 HP

�

(I) is of the form � = �

0

� j

I;A

, and that

the boundary morphism @

A;I

: HP

�

(I)! HP

�+1

(A=I) satis�es

@

A;I

(�

0

� j

I;A

) = �

0

� [A; I](19)

for all �

0

2 HC

i

(A; I) = Ext

i

�

((A; I)

\

; C

\

). Formula (19) then uniquely determines

@

I;A

.

We shall need in what follows a few properties of the isomorphisms j

I;A

. Let B

be an arbitrary unital algebra and I an arbitrary, possibly non{unital algebra. The

inclusion (I 
 B)

+

! I

+


 B, of unital algebras, de�nes a commutative diagram

0

//
(I 
 B)

[

��
�

I;B

//
(I 
B)

+\

��

//
C

\

��

//
0

0

//
I

[

� B

\

//
(I

+


 B)

\ //
B

\

//
0

with exact lines. The morphism �

I;B

, de�ned for possibly non-unital algebras I, will

replace the identi�cation A

\

�B

\

= (A
 B)

\

, valid only for unital algebras A.

Using the notation of Theorem 2.4, we see that �

I;B

= j

I
B;I

+


B

, and hence,

by the same theorem, it follows that �

I;B

induces an isomorphism

HP

�

(I

[

�B

\

) 3 �! � � �

I;B

2 HP

�

(I 
 B):

Using this isomorphism, we extend the external product


 : HP

�

(I) 
HP

�

(B)! HP

�

(I 
B)

to a possibly non-unital algebra I by
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HP

i

(I) 
 HP

j

(B) = lim

!

Ext

i+2n

�

(I

[

; C

\

)
 lim

!

Ext

j+2m

�

(B

\

; C

\

)

�

�! lim

!

Ext

i+j+2l

�

(I

[

�B

\

; C

\

) = HP

�

(I

[

�B

\

) ' HP

i+j

(I 
B):

This extension of the external tensor product 
 to possibly non-unital algebras will be

used to study the tensor product by B of an exact sequence 0! I ! A! A=I ! 0

of algebras.

Tensoring by B is an exact functor, and hence we obtain an exact sequence

0! I 
B ! A 
B ! (A=I)
 B ! 0:(20)

Lemma. 2.5. Using the notation introduced above, we have the relation

[A
 B; I 
B] = [A; I]� id

B

2 Ext

1

�

((A=I 
 B)

\

; (A
 B; I 
 B)

\

):

Proof. We need only observe that the relation A

\

�B

\

= (A�B)

\

and the exactness

of the functor X ! X � B

\

imply that (A; I)

\

� B

\

= (A 
B; I 
 B)

\

:

2.3. Properties of the boundary map. The following theorem is a key tool in

establishing further properties of the boundary map in periodic cyclic homology.

Theorem. 2.6. Let A and B be complex unital algebras and I � A be a two-sided

ideal. Then the boundary maps

@

I;A

: HP

�

(I) ! HP

�+1

(A=I)

and

@

I
B;A
B

: HP

�

(I 
 B)! HP

�+1

((A=I) 
 B)

satisfy

@

I
B;A
B

(� 
 �) = @

I;A

(�) 
 �

for all � 2 HP

�

(I) and � 2 HP

�

(B).

Proof. The groups HP

k

(I) is the inductive limit of the groups Ext

k+2n

�

(I

[

; C

\

) so �

will be the image of an element in one of these Ext{groups. By abuse of notation, we

shall still denote that element by �, and thus we may assume that � 2 Ext

k

�

(I

[

; C

\

),

for some large k. Similarly, we may assume that � 2 Ext

j

�

(B

\

; C

\

). Moreover, by

Theorem 2.4, we may assume that � = �

0

� j

I;A

, for some �

0

2 Ext

i

�

((A; I)

\

; C

\

).

We then have

@

I;A

(�)
 � = @(�

0

� j

I;A

)� � =

= (�

0

� [A; I])� � by equation (19)

= (id

C

\ � �) � ((�

0

� [A; I])� id

B

) by Lemma 2.2

= (id

C

\ � �) � (�

0

� id

B

) � ([A; I]� id

B

) by Lemma 2.2

= (�

0

� �) � [A
B; I 
 B] by Lemma 2.2 and Corollary 2.3

= @

A
B;I
B

((�

0

� �) � j

I
B;A
B

) by equation (19).

By de�nition, the morphism j

I;A

introduced in Theorem 2.4 satis�es

j

I
B;A
B

= (j

I;A

� id

B

) � �

I;B

:(21)

Equation (21) then gives

@

I;A

(�)
 � = @

I
B;A
B

((� � �) � �

I;B

)

in Ext

i+j+1

�

((A=I 
B)

\

; C

\

). This completes the proof in view of the de�nition of the

external product 
 in the non-unital case: � 
 � = (� � �) � �

I;B

.
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We now consider crossed products. Let A be a unital algebra and � a discrete

group acting on A by � � A 3 (
; a) ! �




(a) 2 A. Then the (algebraic) crossed

product Ao � consists of �nite linear combinations of elements of the form a
, with

the product rule (a
)(b


1

) = a�




(b)



1

. Let �(a
) = a


, which de�nes a morphism

� : A o � ! A o � 
 C [�]. Using �, we de�ne on HP

�

(A o �) a HP

�

(C [�]){module

structure [28] by

HP

�

(Ao �)
 HP

�

(C [�])




�! HP

�

((Ao �)
 C [�])

�

�

�! HP

�

(A o �):

A �{invariant two-sided ideal I � A gives rise to a \crossed product exact se-

quence"

0! I o �! Ao �! (A=I) o �! 0

of algebras. The following theorem describes the behavior of the boundary map of this

exact sequence with respect to the HP

�

(C [�]){module structure on the corresponding

periodic cyclic cohomology groups.

Theorem. 2.7. Let � be a discrete group acting on the unital algebra A, and let I

be a �-invariant ideal. Then the boundary map

@

Io�;Ao�

: HP

�

(I o �)! HP

�+1

((A=I) o �)

is HP

�

(C [�])-linear.

Proof. The proof is based on the previous theorem, Theorem 2.6, and the naturality

of the boundary morphism in periodic cyclic cohomology.

From the commutative diagram

0

//
I o �

��

//
A o �

��

//
(A=I)o �

��

//
0

0

//
(I o �)
 C [�]

//
(A o �) 
 C [�]

//
(A=I) o �
 C [�]

//
0;

we obtain that �

�

@ = @�

�

(we have omitted the subscripts). Then, for each x 2

HP

�

(C [�]) and � 2 HP

�

(I o �), we have �x = �

�

(� 
 x); and hence, using also

Theorem 2.6, we obtain

@(�x) = @(�

�

(� 
 x)) = �

�

(@(� 
 x)) = �

�

((@�) 
 x) = (@�)x :

The proof is complete.

For the rest of this subsection it will be convenient to work with continuous

periodic cyclic homology. Recall that this means that all algebras have compatible

locally convex topologies, that we use complete projective tensor products, and that

the projections A ! A=I have continuous linear splittings, which implies that A '

A=I � I as locally convex vector spaces. Moreover, since the excision theorem

is known only for m{algebras [13], we shall also assume that our algebras are m{

algebras, that is, that their topology is generated by a family of sub-multiplicative

seminorms. Slightly weaker results hold for general topological algebras and discrete

periodic cyclic cohomology.

There is an analog of Theorem 2.7 for actions of compact Lie groups. If G is

a compact Lie group acting smoothly on a complete locally convex algebra A by
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� : G� A! A, then the smooth crossed product algebra is Ao G = C

1

(G;A), with

the convolution product �,

f

0

� f

1

(g) =

Z

G

f

0

(h)�

h

(f

1

(h

�1

g))dh;

the integration being with respect to the normalized Haar measure on G. As before,

if I � A is a complemented G-invariant ideal of A, we get an exact sequence of smooth

crossed products

0! I o G! Ao G! (A=I) oG! 0:(22)

Still assuming that G is compact, let R(G) be the representation ring of G. Then

the group HP

�

(A o G) has a natural R(G){module structure de�ned as follows (see

also [31]). The diagonal inclusion A o G ,! M

n

(A) o G induces an isomorphism in

cyclic cohomology, with inverse induced by the morphism

1

n

Tr : M

n

(Ao G)

\

! (A oG)

\

of cyclic objects. Then, for any representation � : G ! M

n

(C ), we obtain a unit

preserving morphism

�

�

: Ao G!M

n

(Ao G);

de�ned by �

�

(f)(g) = f(g)�(g) 2 C

1

(G;M

n

(A)), for any f 2 C

1

(G;A). Finally, if

� 2 R(G), we de�ne the multiplication by � to be the morphism

(Tr � �

�

)

�

: HP

�

cont

(Ao G)! HP

�

cont

(A oG):

Thus, �x = x � Tr � �

�

.

Theorem. 2.8. Let A be a locally convex m{algebra and I � A a complemented

G{invariant two-sided ideal. Then the boundary morphism associated to the exact

sequence (22),

@

IoG;AoG

: HP

�

cont

(I oG)! HP

�+1

cont

((A=I) oG);

is R(G)-linear.

Proof. First, we observe that the morphism Tr : M

n

(A)

\

! A

\

is functorial, and,

consequently, that it gives a commutative diagram

0

//
X

��

//
M

n

(A oG)

\

��

//
(M

n

(A=I) oG)

\

��

//
0

0

//
(A oG; I o G)

\ //
(Ao G)

\ //
((A=I) oG)

\ //
0

where X = (M

n

(A oG);M

n

(I o G))

\

and whose vertical arrows are given by Tr.

Regarding this commutative diagram as a morphism of extensions, we obtain

that

Tr � [M

n

(A) oG;M

n

(I) o G] = [Ao G; I oG] � Tr:(23)

Then, using a similar reasoning, we also obtain that

[M

n

(A) oG;M

n

(I) o G] � �

�

= �

�

� [AoG; I o G]:(24)

Now let � 2 HP

�

cont

(I o G), which we may assume, by Theorem 2.4, to be an

element of the form � = �

0

�j

IoG;AoG

, for some �

0

2 Ext

i

�

((AoG; IoG)

\

; C

\

). Using
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equations (23) and (24) and that the inclusion j = j

IoG;AoG

, by the naturality of �

�

,

is R(G)-linear, we �nally get

@(��) = @(�(�

0

� j)) = @((��

0

) � j) =

= @(�

0

� Tr � �

�

� j) = �

0

� Tr � �

�

� [AoG; I o G] =

= �

0

� [M

n

(A oG);M

n

(I o G)] � Tr � �

�

= @(�) � Tr � �

�

= �@(�)

The proof is now complete.

In the same spirit and in the same framework as in Theorem 2.8, we now con-

sider the action of Lie algebra cohomology on the periodic cyclic cohomology exact

sequence.

Assume that G is compact and connected, and denote by g its Lie algebra and

by H

�

(g) the Lie algebra homology of g. Since G is compact and connected, we

can identify H

�

(g) with the bi-invariant currents on G. Let � : G � G ! G be

the multiplication. Then one can alternatively de�ne the product on H

�

(g) as the

composition

H

�

(g)
 H

�

(g) ' HP

�

cont

(C

1

(G)) 
HP

�

cont

(C

1

(G))

�

�! HP

�

cont

(C

1

(G�G))

�

�

�! HP

�

cont

(C

1

(G)) ' H

�

(g):

We now recall the de�nition of the product H

�

(g) 
 HP

�

cont

(A) ! HP

�

cont

(A):

Denote by ' : A ! C

1

(G;A) the morphism '(a)(g) = �

g

(a), where, this time,

C

1

(G;A) is endowed with the pointwise product. Then x� � 2 HP

�

cont

(C

1

(G)

b


A)

is a (continuous) cocycle on C

1

(G;A) ' C

1

(G)

b


A, and we de�ne x� = '

�

(x 
 �).

The associativity of the �-product shows that HP

�

cont

(A) becomes a H

�

(g){module

with respect to this action.

Theorem. 2.9. Suppose that a compact connected Lie group G acts smoothly on a

complete locally convex algebra A and that I is a closed invariant two-sided ideal of

A, complemented as a topological vector space. Then

@(x�) = x(@�);

for any x 2 H

�

(g) and � 2 HP

�

cont

(I) .

Proof. The proof is similar to the proof of Theorem 2.8, using the morphism of exact

sequences

0

//
(A; I)

\

��

//
A

\

��

//
(A=I)

\

��

//
0

0

//
X

//
C

1

(G;A)

\ //
C

1

(G;A=I)

\ //
0

where X = (C

1

(G;A); C

1

(G; I))

\

.

2.4. Relation to the bivariant Chern{Connes character. A di�erent type

of property of the boundary morphism in periodic cyclic cohomology is its compat-

ibility (e�ectively an identi�cation) with the bivariant Chern-Connes character [30].

Before we can state this result, need to recall a few constructions from [30].

Let A and B be unital locally convex algebras and assume that a continuous

linear map

� : A! B(H)

b


B
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is given, such that the cocycle `(a

0

; a

1

) = �(a

0

)�(a

1

) � �(a

0

a

1

) factors as a compo-

sition A

b


A ! C

p

(H)

b


B ! B(H)

b


B of continuous maps. (Recall that C

p

(H) is the

ideal of p{summable operators and that

b


 is the complete projective tensor product.)

Using the cocycle `, we de�ne on E

�

= A� C

p

(H)

^


B an associative product by the

formula

(a

1

; x

1

)(a

2

; x

2

) = (a

1

a

2

; �(a

1

)x

2

+ x

1

�(a

2

) + `(a

1

; a

2

)):

Then the algebra E

�

�ts into the exact sequence

0! C

p

(H)

b


B ! E

�

! A! 0:(25)

An exact sequence

[E] : 0! C

p

(H)

b


B ! E ! A! 0:(26)

that is isomorphic to an exact sequence of the form (25) will be called an admissible

exact sequence. If [E] is an admissible exact sequence and n � p � 1, then [30,

Theorem 3.5] associates to [E] an element

ch

2n+1

1

([E]) 2 Ext

2n+1

�;cont

(A

\

; B

\

);(27)

which for B = C recovers Connes' Chern character in K-homology [10]. (The sub-

script \cont" stresses that we are considering the version of the Yoneda Ext de�ned

for locally convex cyclic objects.)

Let Tr : C

1

(H) ! C be the ordinary trace, i.e., Tr(T ) =

P

n

(Te

n

; e

n

) for any

orthonormal basis (e

n

)

n�0

of the Hilbert space H. Using the trace Tr we de�ne

Tr

n

2 HC

2n

(C

p

(H)), for 2n � p� 1, to be the class of the cyclic cocycle

Tr

n

(a

0

; a

1

; : : : ; a

2n

) = (�1)

n

n!

(2n)!

Tr(a

0

a

1

: : :a

2n

):(28)

The normalization factor was chosen such that Tr

n

= S

n

Tr

1

= S

n

Tr on C

1

(H). We

have the following compatibility between the bivariant Chern-Connes character and

the Cuntz{Quillen boundary morphism.

Let HP

�

cont

3 � ! �

disc

2 HP

�

disc

:= HP

�

be the natural transformation that \for-

gets continuity" from continuous to ordinary (or discrete) periodic cyclic cohomology.

We include the subscript \disc" only when we need to stress that discrete homology

is used. By contrast, the subscript \cont" will always be included.

Theorem. 2.10. Let 0 ! C

p

(H)

b


B ! E ! A ! 0 be an admissible exact se-

quence and ch

2n+1

1

([E]) 2 Ext

2n+1

�;cont

(A

\

; B

\

) be its bivariant Chern{Connes character,

equation (27). If Tr

n

is as in equation (28) and n � p� 1, then

@(Tr

n


 �)

disc

= (� � ch

2n+1

1

([E]))

disc

2 HP

q+1

(A);

for each � 2 HP

q

cont

(B).

This theorem provides us{at least in principle{with formul� to compute the

boundary morphism in periodic cyclic cohomology, see [29] and [30], Proposition 2.3.

Before proceeding with the proof, we recall a construction implicit in [30]. The

algebra RA = �

j�0

A

^



j

is the tensor algebra of A, and rA is the kernel of the map

RA ! A

+

. Because A has a unit, we have a canonical isomorphism A

+

' C � A.

We do not consider any topology on RA, but in addition to (RA)

\

; the cyclic object

associated to RA, we consider a completion of it in a natural topology with respect

Documenta Mathematica 2 (1997) 263{295



Higher Index Theorems 283

to which all structural maps are continuous. The new, completed, cyclic object is

denoted (RA)

\

cont

and is obtained as follows. Let R

k

A = �

k

j=0

A

^


j

. Then

(RA)

\

cont;n

= lim

k!1

(R

k

A)

^



n+1

;

with the inductive limit topology.

Proof. We begin with a series of reductions that reduce the proof of the Theorem to

the proof of (29).

Since [E] is an admissible extension, there exists by de�nition a continuous linear

section s : A ! E of the projection � : E ! A (i.e., � � s = id). Then s de�nes a

commutative diagram

0

//
rA

��
'

//
RA

��
 

//
A

+

��
�

A

//
0

0

//
C

p

b


B

//
E

//
A

//
0 ;

where the right hand vertical map is the projection A

+

' C �A! A.

By increasing q if necessary, we may assume that the cocycle � 2 HP

q

cont

(B)

comes from a cocycle, also denoted �, in HC

q

cont

(B). Let

�

1

= (Tr

n


 �)

disc

2 HC

q+2n

disc

(C

p

b


B) := HC

q+2n

(C

p

b


B)

be as in the statement of the theorem.

We claim that it is enough to show that

@('

�

�

1

) � j

A

= (� � ch

2n+1

1

([E]))

disc

;(29)

where j

A

= A

\

! (A

+

)

\

is the inclusion.

Indeed, assuming (29) and using the above commutative diagram and the natu-

rality of the boundary morphism, we obtain

(� � ch

2n+1

1

([E]))

disc

= @('

�

�

1

) � j

A

= �

�

A

(@�

1

) � j

A

= @�

1

� �

A

� j

A

= @�

1

;

as stated in theorem, because �

A

� j

A

= id.

Let j

rA;RA

: (rA)

[

,! (RA; rA)

\

be the morphism (inclusion) considered in The-

orem 2.4. Also, let �

2

2 HC

n

disc

((RA; rA)

\

) = Ext

n

�

((RA; rA)

\

; C

\

) satisfy

�

2

� j

rA;RA

= '

�

�

1

2 HC

n

disc

((rA)

[

) = Ext

n

�

((rA)

[

; C

\

):(30)

(In words: \�

2

restricts to '

�

�

1

on (rA)

[

.") Then, using equation (19), we have

@('

�

�

1

) = �

2

� [RA; rA]:(31)

The rest of the proof consists of showing that the construction of the odd bivariant

Chern-Connes character [30] provides us with �

2

satisfying equations (30) and (32):

�

2

� [RA; rA] � j

A

= (� � ch

2n+1

1

([E]))

disc

:(32)

This is enough to complete the proof because equations (31) and (32) imply (29) and,

as we have already shown, equation (30) implies equation (31). So, to complete the

proof, we now proceed to construct �

2

satisfying (30) and (32).

Recall from [30] that the ideal rA de�nes a natural increasing �ltration of

(RA)

\

cont

by cyclic vector spaces:

(RA)

\

cont

= F

0

(RA)

\

cont

� F

�1

(RA)

\

cont

� : : : ;
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such that (rA)

[

� F

�1

(RA)

\

cont

= (RA; rA)

\

. If (rA)

[

k

is the k{th component of the

cyclic vector space (rA)

[

(and if, in general, the lower index stands for the Z

+

{grading

of a cyclic vector space) then we have the more precise relation

(rA)

[

k

� (F

�n�1

(RA)

\

cont

)

k

; for k � n:(33)

It follows that the morphism of cyclic vector spaces

~�

n

= Tr � F

�n�1

( ) : F

�n�1

(RA)

\

cont

! B

\

(de�ned in [30], page 579) satis�es ~�

n

= Tr �' on (rA)

[

k

, for k � n � p� 1. Fix then

k = q + 2n, and conclude that �

1

= Tr

n


 �

disc

2 HC

q+2n

(C

p

b


B) satis�es

'

�

�

1

= '

�

(Tr

n


 �) = �

disc

�S

n

~�

n

(34)

on (rA)

[

k

� F

�n�1

(RA)

\

cont

, because Tr

n

restricts to S

n

Tr on C

1

(H). Now recall the

crucial fact that there exists an extension

C

2n

0

(RA) 2 Ext

2n

�;cont

(F

�1

(RA)

\

cont

; F

�n�1

(RA)

\

cont

)

that has the property that C

2n

0

(RA) � i = S

n

, if i : F

�n�1

(RA)

\

cont

! F

�1

(RA)

\

cont

is

the inclusion (see [30], Corollary 2.2). Using this extension, we �nally de�ne

�

2

= (� � ~�

n

�C

2n

0

(RA))

disc

2 Ext

n

�

(F

�1

(RA)

\

cont

; C

\

):

Since �

2

has order k = q + 2n � 2n � n, we obtain from the equations (33) and

(34) that �

2

satis�es (30) (i.e., that it restricts to '

�

�

1

on (rA)

[

k

� F

�n�1

(RA)

\

cont

),

as desired.

The last thing that needs to be checked for the proof to be complete is that �

2

satis�es equation (32). By de�nition, the odd bivariant Chern-Connes character ([30],

page 579) is

ch

2n+1

1

([E]) = ~�

n

� ch

2n+1

1

(RA) � j

A

;(35)

where ch

2n+1

1

(RA) = C

2n+1

1

(RA) = C

2n

0

(RA) � q

0

(RA), and j

A

: A

\

! (A

+

)

\

is the

inclusion (see [30], page 568, de�nition 2.4. page 574, and the discussion on page

579). Moreover q

0

(RA) is nothing but a continuous version of [RA; rA], that is

q

0

(RA)

disc

= [RA; rA];

and hence

�

2

� [RA; rA] � j

A

= (� � ~�

n

�C

2n

0

(RA) � q

0

(RA) � j

A

)

disc

= (� � ch

2n+1

1

([E]))

disc

:

Since �

2

satis�es equation (30) and (32), which imply equation (29), the proof is

complete.

For any locally convex algebra B and � 2 HP

�

(B), the discrete periodic cyclic

cohomology of B, we say that � is a continuous class if it can be represented by

a continuous cocycle on B. Put di�erently, this means that � = �

disc

, for some

� 2 HP

�

cont

(B). Since the bivariant Chern{Connes character can, at least in principle,

be expressed by an explicit formula, it preserves continuity. This gives the following

corollary.

Corollary. 2.11. The periodic cyclic cohomology boundary map @ associated to

an admissible extension maps a class of the form Tr

n


 �, for � a continuous class,

to a continuous class.
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It is likely that recent results of Cuntz, see [12, 13], will give the above result for

all continuous classes in HP

�

(C

p

^


B) (not just the ones of the form Tr

n


 �).

Using the above corollary, we obtain the compatibility between the bivariant

Chern{Connes character and the index morphism in full generality. This result had

been known before only in particular cases [30].

Theorem. 2.12. Let 0! C

p

(H)

b


B ! E ! A! 0 be an admissible exact sequence

and ch

2n+1

1

([E]) 2 Ext

2n+1

�

(A

\

; B

\

) be its bivariant Chern{Connes character, equation

(27). If Tr

n

is as in equation (28) and Ind : K

alg

1

(A) ! K

alg

0

(C

p

(H)

b


B) is the

connecting morphism in algebraic K{Theory then, for any ' 2 HP

0

cont

(B) and [u] 2

K

alg

1

(A), we have

hTr

n


 '; Ind[u] i = h ch

2n+1

1

([E]) �'; [u] i :(36)

3. The index theorem for coverings

Using the methods we have developed, we now give a new proof of Connes{Moscovici's

index theorem for coverings. To a covering

f

M ! M with covering group �, Connes

and Moscovici associated an extension

0 �! C

n+1


 C [�] �! E

CM

�! C

1

(S

�

M ) �! 0; n = dimM;

(the Connes{Moscovici exact sequence), de�ned using invariant pseudodi�erential

operators on

f

M ; see equation (45). If ' 2 H

�

(�) � HP

�

cont

(C

n+1


 C [�]) is an even

cyclic cocycle, then the Connes{Moscovici index theorem computes the morphisms

'

�

� Ind : K

alg

1

(C

1

(S

�

M )) �! C ;

where Ind is the index morphism associated to the Connes{Moscovici exact sequence.

Our method of proof then is to use the compatibility between the connecting mor-

phisms in algebraic K{Theory and @, the connecting morphism in periodic cyclic

cohomology (Theorem 1.5), to reduce the proof to the computation of @. This com-

putation is now a problem to which the properties of @ established in Section 2 can

be applied.

We �rst show how to obtain the Connes{Moscovici exact sequence from another

exact sequence, the Atiyah{Singer exact sequence, by a purely algebraic construc-

tion. Then, using the naturality of @ and Theorem 2.6, we determine the connecting

morphism @

CM

of the Connes{Moscovici exact sequence in terms of the connecting

morphism @

AS

of the Atiyah{Singer exact sequence. For the Atiyah{Singer exact

sequence the procedure can be reversed and we now use the Atiyah-Singer Index

Theorem and Theorem 1.5 to compute @

AS

.

A comment about the interplay of continuous and discrete periodic cyclic co-

homology in the proof below is in order. We have to use continuous periodic cyclic

cohomology whenever we want explicit computations with the periodic cyclic coho-

mology of groupoid algebras, because only the continuous version of periodic cyclic

cohomology is known for groupoid algebras associated to �etale groupoids [7]. On the

other hand, in order to be able to use Theorem 1.5, we have to consider ordinary (or

discrete) periodic cyclic cohomology as well. This is not an essential di�culty because,

using Corollary 2.11, we know that the index classes are represented by continuous

cocycles.
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3.1. Groupoids and the cyclic cohomology of their algebras. Our com-

putations are based on groupoids, so we �rst recall a few facts about groupoids.

A groupoid is a small category in which every morphism is invertible. (Think of

a groupoid as a set of points joined arrows; the following examples should clarify this

abstract de�nition of groupoids.) A smooth �etale groupoid is a groupoid whose set of

morphisms (also called arrows) and whose set of objects (also called units) are smooth

manifolds such that the domain and range maps are �etale (i.e., local di�eomorphisms).

To any smooth �etale groupoid G, assumed Hausdor� for simplicity, there is associated

the algebra C

1

c

(G) of compactly supported functions on the set of arrows of G and

endowed with the convolution product �,

(f

0

� f

1

)(g) =

X

r(
)=r(g)

f

0

(
)f

1

(


�1

g):

Here r is the range map and r(
) = r(g) is the condition that 


�1

and g be compos-

able. Whenever dealing with C

1

c

(G), we will use continuous cyclic cohomology, as

in [7]. See [7] for more details on �etale groupoids, and [35] for the general theory of

locally compact groupoids.

�

Etale groupoids conveniently accommodate in the same framework smooth man-

ifolds and (discrete) groups, two extreme examples in the following sense: the smooth

�etale groupoid associated to a smooth manifold M has only identity morphisms,

whereas the smooth �etale groupoid associated to the (discrete) group � has only one

object, the identity of �. The algebras C

1

c

(G) associated to these groupoids are

C

1

c

(M ) and, respectively, the group algebra C [�]. Here are other examples used in

the paper.

The groupoid R

I

associated to an equivalence relation on a discrete set I has I

as the set of units and exactly one arrow for any ordered pair of equivalent objects.

If I is a �nite set with k elements and all objects of I are equivalent (i.e., if R

I

is

the total equivalence relation on I) then C

1

c

(R

I

) ' M

k

(C ) and its classifying space

in the sense of Grothendieck [34], the space BR

I

, is contractable [17, 34].

Another example, the gluing groupoid G

U

, mimics the de�nition a manifold M

in terms of \gluing coordinate charts." The groupoid G

U

is de�ned [7] using an open

cover U = (U

�

)

�2I

of M , i.e., M = [

�2I

U

�

. Then G

U

has units G

0

U

= [

�2I

U

�

� f�g

and arrows

G

(1)

U

= f(x; �; �); �; � 2 I; x 2 U

�

\ U

�

g:

If R

I

is the total equivalence relation on I, then there is an injective morphism

l : G

U

,!M �R

I

of �etale groupoids.

Let f : G

1

! G

2

be an �etale morphism of groupoids, that is, a morphism of

�etale groupoids that is a local di�eomorphism. Then the map f de�nes a con-

tinuous map, Bf : BG

2

! BG

1

, of classifying spaces and a group morphism,

f

Tr

: HP

�

cont

(C

1

c

(G

1

)) ! HP

�

cont

(C

1

c

(G

2

)). If f is injective when restricted to

units, then there exists an algebra morphism �(f) : C

1

c

(G

1

) ! C

1

c

(G

2

) such that

f

TR

= �(f)

�

.

The following theorem, a generalization of [7], Theorem 5.7. (2), is based on the

fact that all isomorphisms in the proof of that theorem are functorial with respect to

�etale morphisms. It is the reason why we use continuous periodic cyclic cohomology

when working with groupoid algebras. Note that the cyclic object associated to

C

1

c

(G), for G an �etale groupoid, is an inductive limit of locally convex nuclear spaces.
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Theorem. 3.1. If G is a Hausdor� �etale groupoid of dimension n, and if o is

the complexi�ed orientation sheaf of B G, then there exists a natural embedding

� : H

�+n

(BG; o) ,! HP

�

cont

(C

1

c

(G)). Here \natural" means that if f : G

1

! G

2

is an �etale morphism of groupoids, then the diagram

H

�+n

(B G

2

; o

2

)

��
(B f)

�

//
HP

�

cont

(C

1

c

(G

2

))

��
f

Tr

H

�+n

(B G

1

; o

1

)

//
HP

�

cont

(C

1

c

(G

1

));

whose horizontal lines are the morphisms �, commutes.

For discrete groups, Theorem 3.1 recovers the embedding

H

�

(�) = H

�

(B �; C ) ,! HP

�

cont

(C [�])

of [8, 20].

For smooth manifolds, the embedding � of Theorem 3.1 is just the Poincar�e

duality{an isomorphism. This isomorphism has a very concrete form. Indeed, let

� 2 H

n�i

(M; o) be an element of the singular cohomology of M with coe�cients in

the orientation sheaf, let � 2 H

i

c

(M ) be an element of the singular cohomology of M

with compact supports (all cohomology groups have complex coe�cients), and let

� : HP

cont

i

(C

1

c

(M )) ' �

k

H

i+2k

c;DR

(M ) = �

k

H

i+2k

c

(M )

be the canonical isomorphism induced by the Hochschild-Kostant-Rosenberg map �,

equation (12). Then the isomorphism � is determined by

h�(�); �i = h� ^ �(�); [M ]i 2 C ;(37)

where the �rst pairing is the map HP

�

cont

(C

1

c

(M )) 
 HP

cont

�

(C

1

c

(M )) ! C and the

second pairing is the evaluation on the fundamental class.

Typically, we shall use these results for the manifold S

�

M , for which there is

an isomorphism H

��1

(S

�

M ) ' HP

�

cont

(C

1

(S

�

M )), because S

�

M is oriented. (The

orientation of S

�

M is the one induced from that of T

�

M as in [5]. More precisely

B

�

M , the disk bundle of M , is given the orientation in which the \the horizontal part

is real and the vertical part is imaginary," and S

�

M is oriented as the boundary of

an oriented manifold.) The shift in the Z

2

-degree is due to the fact that S

�

M is odd

dimensional.

3.2. Morita invariance and coverings. Let M be a smooth compact manifold

and q :

f

M !M be a covering with Galois group �; said di�erently,

f

M is a principal

�{bundle over M . We �x a �nite cover U = (U

�

)

�2I

of M by trivializing open

sets, i.e., q

�1

(U

�

) ' U

�

� � and M = [U

�

. The transition functions between two

trivializing isomorphisms on their common domain, the open set U

�

\ U

�

, de�nes a

1{cocycle 


��

that completely determines the covering q :

f

M !M .

In what follows, we shall need to lift the covering q :

f

M ! M to a covering

q : S

�

f

M ! S

�

M , using the canonical projection p : S

�

M ! M . All constructions

then lift, from M to S

�

M , canonically. In particular, V

�

= p

�1

(U

�

) is a �nite

covering of S

�

M with trivializing open sets, and the associated 1{cocycle is (still)




��

. Moreover, if f

0

: M ! B � classi�es the covering q :

f

M ! M , then f = f

0

� p

classi�es the covering S

�

f

M ! S

�

M .
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Suppose that the trivializing cover V = (V

�

)

�2I

of S

�

M consists of k open sets,

and let

P

'

2

�

= 1 be a partition of unity subordinated to V. The cocycle identity




��




��

= 


��

ensures then that the matrix

p = ['

�




��

'

�

]

�;�2I

2M

k

(C

1

(M )) 
 C [�](38)

is an idempotent, called the Mishchenko idempotent; a di�erent choice of a trivializing

cover and of a partition of unity gives an equivalent idempotent.

Using the Mishchenko idempotent p, we now de�ne the morphism

� : C

1

(S

�

M )!M

k

(C

1

(S

�

M ))
 C [�]

by �(a) = ap, for a 2 C

1

(S

�

M ); explicitly,

�(a)(x) = a(x)p(x) = [a(x)'

�

(x)'

�

(x) 
 


��

]:(39)

Because the morphism � is used to de�ne the Connes{Moscovici extension, equation

(45) below, we need to identify the induced morphism

�

�

: HP

�

cont

(C

1

(S

�

M )
 C [�]) ! HP

�

cont

(C

1

(S

�

M )):

The identi�cation of �, Proposition 3.3, is based on writing � as a composition of

three simpler morphisms, morphisms that will play an auxiliary role. The next few

paragraphs before Proposition 3.3 will deal with the de�nition and properties of these

morphisms.

We de�ne the �rst auxiliary morphism �(g) to be induced by an �etale morphism

of groupoids. Let G

V

be the gluing groupoid associated to the cover V = (V

�

)

�2I

of S

�

M . Using the cocycle (


��

)

�;�2I

associated to V that identi�es the covering

S

�

f

M ! S

�

M , we de�ne the �etale morphism of groupoids g by

G

V

3 (x; �; �)

g

�! (x; �; �; 


��

) 2 G

V

� �;

which induces a morphism �(g) : C

1

c

(G

V

) ! C

1

c

(G

V

) 
 C [�] and a continuous map

B g : BG

V

! B(G

V

� �) = B G

V

� B �.

The projection t : G

V

! S

�

M is an etale morphism of groupoids that induces a

homotopy equivalence BG

V

! S

�

M and hence also an isomorphism

t

Tr

: HP

�

cont

(C

1

(S

�

M ))! HP

�

cont

(C

1

c

(G

V

)):

By de�nition, t

Tr

= Tr � �(l)

�

, where l : G

V

! S

�

M � R

I

is the natural inclu-

sion considered also before, and Tr is the generic notation for the isomorphisms

Tr : HP

�

(M

n

(A)) ' HP

�

(A), induced by the trace. In particular, �(l)

�

is also an

isomorphism.

Using the homotopy equivalence B t of BG

V

and S

�

M , we obtain a continuous

map

h

0

: S

�

M ! S

�

M � B �;

uniquely determined by the condition h

0

� B t = (B t� id) � B g.

Lemma. 3.2. The map h

0

de�ned above coincides, up to homotopy, with the product

function (id

S

�

M

; f), where f : S

�

M ! B � classi�es S

�

f

M ! S

�

M .

Proof. Denote by p

1

and p

2

the projections of S

�

M�B � onto components. The map

p

1

� h

0

is easily seen to be the identity, so h

0

= id

S�M

� h

1

where h

1

: S

�

M ! B � is

induced by the non-�etale morphism of topological groupoids G

V

3 (x; �; �)! 


��

2 �.

In order to show that h

1

coincides with f , up to homotopy, it is enough to show
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that the principal �-bundle (i.e., covering) that h

1

pulls back from B � to S

�

M is

isomorphic to the covering S

�

f

M !

f

M .

Let G

U

be the gluing groupoid associated to the cover U = (U

�

)

�2I

of M . It is

seen from the de�nition that G

V

! � factors as G

V

! G

U

! �, where the function

G

V

! � acts as (m;�; �)! 


��

. Thus we may replace S

�

M by M everywhere in the

proof.

Since the the covering

f

M ! M is determined by its restriction to loops, we

may assume that M is the circle S

1

. Cover M = S

1

by two contractable intervals

I

0

\ I

1

which intersect in two small disjoint neighborhoods of 1 and �1: I

0

\ I

1

=

(z; z

�1

)[ (�z;�z

�1

) where z 2 S

0

and jz�1j is very small. We may also assume that

the transition cocycle is the identity on (z; z

�1

) and 
 2 � on (�z;�z

�1

) (we have

replaced constant �{cocycles with locally constant �{cocycles). The map h

1

maps

each of the units of G

U

and each of the 1-cells corresponding to the right hand interval

(z; z

�1

) to the only 0-cell of B �, the cell corresponding to the identity e 2 �. (Recall

that the classifying space of a topological groupoid is the geometrical realization of the

simplicial space of composable arrows [34], and that that there is a 0 cell for each unit,

a 1-cell for each non-identity arrow, a 2-cell for each pair of non-identity composable

arrows, and so on). The other 1-cells (i.e., corresponding to the arrows leaving from

a point on the left hand side interval) will map to the 1-cell corresponding 
. This

shows that, on homotopy groups, the induced map Z= �

1

(S

1

)! � = �

1

(B�) sends

the generator 1 to 
. This completes the proof of the lemma.

We need to introduce one more auxiliary morphism before we can determine �

�

.

Using the partition of unity

P

�

'

2

�

= 1 subordinated to V = (V

�

)

�2I

, we de�ne

� : C

1

(S

�

M )! C

1

c

(G

V

) by

�(f)(x; �; �) = f(x)'

�

(x)'

�

(x);

which turns out to be a morphism of algebras. Because the composition

C

1

(S

�

M )

�

�! C

1

c

(G

V

)

�(l)

�! C

1

c

(S

�

M � R

I

) = M

k

(C

1

(S

�

M ))

is (unitarily equivalent to) the upper{left corner embedding, we obtain that the mor-

phism �

�

: HP

�

cont

(C

1

c

(G

V

))! HP

�

cont

(C

1

(S

�

M )) is the inverse of t

Tr

.

We are now ready to determine the morphism

�

�

: HP

�

cont

(C

1

(S

�

M )
 C [�]) ! HP

�

cont

(C

1

(S

�

M )):

In order to simplify notation, in the statement of the following result we shall identify

HP

�

cont

(M

k

(C

1

(S

�

M )) 
 C [�]) with HP

�

cont

(C

1

(S

�

M )
 C [�]), and we shall do the

same in the proof.

Proposition. 3.3. The composition

H

��1

(S

�

M � B �; C ) ,! HP

�

cont

(C

1

(S

�

M )
 C [�])

�

�

�!

! HP

�

cont

(C

1

(S

�

M )) ' H

��1

(S

�

M ; C )

is �

�1

� �

�

�� = (id � f)

�

.

Proof. Consider as before the morphism l : G

V

! S

�

M � R

I

of groupoids, which

de�nes an injective morphism of algebras �(l) : C

1

(G

V

) ! C

1

(S

�

M � R

I

) =

M

k

(C

1

(S

�

M )), and hence also a morphism

�(l)
 id = �(l � id) : C

1

(G

V

� �) ,! C

1

(S

�

M � R

I

� �) = M

k

(C

1

(S

�

M ))
 C [�]:
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Then we can write

� = �(l � id) � �(g) � �;

where g : G

V

! G

V

� � is as de�ned before: g(x; �; �) = (x; �; �; 


��

).

Because �

�

= (t

Tr

)

�1

, we have that �

�1

� �

�

� � = (B t)

��1

, by Theorem 3.1.

Also by Theorem 3.1, we have �(g)

�

�� = �� (B g)

�

and �(l� id)

�

�� = �� (B l� id)

�

.

This gives then

�

�1

��

�

�� = �

�1

��

�

��� (Bg)

�

� (B l� id)

�

= (B t)

��1

��� (Bg)

�

� (B l� id)

�

= h

�

0

:

Since Lemma 3.2 states that h

0

= id� f , up to homotopy, the proof is complete.

3.3. The Atiyah{Singer exact sequence. Let M be a smooth compact man-

ifold (without boundary). We shall denote by 	

k

(M ) the space of classical, order

at most k pseudodi�erential operators on M . Fix a smooth, nowhere vanishing den-

sity on M . Then 	

0

(M ) acts on L

2

(M ) by bounded operators and, if an operator

T 2 	

0

(M ) is compact, then it is of order �1. More precisely, it is known that order

�1 pseudodi�erential operators satisfy 	

�1

(M ) � C

p

= C

p

(L

2

(M )) for any p > n.

(Recall that C

p

(H) is the ideal of p{summable operators on H, equation (8)).

It will be convenient to include all (n + 1){summable operators in our calculus,

so we let E

AS

= 	

0

(M ) + C

n+1

, and obtain in this way an extension of algebras,

0! C

n+1

! E

AS

�

0

�! C

1

(S

�

M )! 0;(40)

called the Atiyah-Singer exact sequence. The boundary morphisms in periodic cyclic

cohomology associated to the Atiyah-Singer exact sequence de�nes a morphism

@

AS

: HP

�

(C

n+1

)! HP

�+1

(C

1

(S

�

M )):

Let Tr

n

2 HP

0

cont

(C

n+1

) be as in (28) (i.e., Tr

n

(a

0

; : : : ; a

2n

) = CTr(a

0

: : :a

2n

), for

some constant C), and denote

J (M ) = @

AS

(Tr

n

) 2 HP

1

cont

(C

1

(S

�

M )) � HP

1

(C

1

(S

�

M ));(41)

which is justi�ed by Corollary 2.11.

We shall determine J (M ) using Theorem 1.5. In order to do this, we need to

make explicit the relation between ch, the Chern character in cyclic homology, and

Ch, the classical Chern character as de�ned, for example, in [27]. Let E ! M be a

smooth complex vector bundle, embedded in a trivial bundle: E � M � C

N

, and

let e 2 M

N

(C

1

(M )) be the orthogonal projection on E. If we endow E with the

connection ed

DR

e, acting on �

1

(E) � C

1

(M )

N

, then the curvature 
 of this con-

nection turns out to be 
 = e(d

DR

e)

2

. The classical Chern character Ch(E) is then

the cohomology class of the form Tr(exp(




2�{

)) in the even (de Rham) cohomology

of M . Comparing this de�nition with the de�nition of the Chern character in cyclic

cohomology via the Hochschild-Kostant-Rosenberg map, we see that the two of them

are equal{up to a renormalization with a factor of 2�{. (If � 2 H

�

(M ) = �

k

H

k

(M )

is a cohomology class, we denote by �

k

its component in H

k

(M ).) Explicitly, let

� : HP

cont

i

(C

1

c

(S

�

M )) ' �

k2Z

H

i+2k

(S

�

M ) be the canonical isomorphism induced

by the Hochschild-Kostant-Rosenberg map �, equation (12), then

�(ch(�)) =

X

k2Z

(2�{)

m

Ch(�)

2m�i

2 H

2m�i

(M )(42)

for i 2 f0; 1g and � 2 K

alg

i

(C

1

(M )). (Note the `�i').
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Proposition. 3.4. Let T (M ) 2 H

even

(S

�

M ) be the Todd class of the complexi�-

cation of T

�

M , lifted to S

�

M , and � : H

even

(S

�

M ) ! HP

1

cont

(C

1

(S

�

M )) be the

isomorphism of Theorem 3.1. Then

J (M ) = (�1)

n

X

k

(2�{)

n�k

�(T (M )

2k

) 2 HP

1

cont

(C

1

(S

�

M )):

Proof. We need to verify the equality of two classes in HP

1

cont

(C

1

(S

�

M )). It is

hence enough to check that their pairings with ch([u]) are equal, for any [u] 2

K

alg

1

(C

1

(S

�

M )), because of the classical result that the Chern character

ch : K

alg

1

(C

1

(S

�

M ))! HP

cont

1

(C

1

(S

�

M ))

is onto.

If Ind is the index morphism of the Atiyah{Singer exact sequence then the Atiyah-

Singer index formula [5] states the equality

Ind[u] = (�1)

n

hCh[u]; T (M ) i:(43)

Using equation (41) and Theorem 1.5 (see also the discussion following that theorem),

we obtain that Ind[u] = h ch[u];J (M ) i. Equations (37) and (43) then complete the

proof.

3.4. The Connes{Moscovici exact sequence and proof of the theorem.

We now extend the constructions leading to the Atiyah{Singer exact sequence, equa-

tion (40), to covering spaces.

Let M be a smooth compact manifold and let E

1

= M

k

(E) 
 C [�], which �ts

into the exact sequence

0 �!M

k

(C

n+1

) 
 C [�] �! E

1

�

0

�!M

k

(C

1

(S

�

M ))
 C [�] �! 0:(44)

Let � !

f

M ! M be a covering of M with Galois group �. Using the Mishchenko

idempotent p associated to this covering and the injective morphism

� : C

1

(S

�

M )! p(M

k

(C

1

(S

�

M )) 
 C [�])p;

equation 39, we de�ne the Connes{Moscovici algebra E

CM

as the �bered product

E

CM

= f(T; a) 2 pE

1

p� C

1

(S

�

M ); �

0

(T ) = �(a)g:

By de�nition, the algebra E

CM

�ts into the exact sequence

0 �! p

�

M

k

(C

n+1

)
 C [�]

�

p �! E

CM

�! C

1

(S

�

M ) �! 0:

We now take a closer look at the algebra E

CM

and the exact sequence it de�nes.

Observe �rst that p acts on (L

2

(M )
 l

2

(�))

k

and that p(L

2

(M ) 
 l

2

(�))

k

' L

2

(

f

M )

via a �{invariant isometry. Since E

1

can be regarded as an algebra of operators on

(L

2

(M ) 
 l

2

(�))

k

that commute with the (right) action of �, we obtain that E

CM

can also be interpreted as an algebra of operators commuting with the action of � on

L

2

(

f

M ). Using also [11], Lemma 5.1, page 376, this recovers the usual description of

E

CM

that uses properly supported �{invariant pseudodi�erential operators on

f

M .

Also observe that \M

k

" is super
uous in M

k

(C

n+1

) because M

k

(C

n+1

) ' C

n+1

;

actually, even \p" is super
uous in p

�

M

k

(C

n+1

)
 C [�]

�

p because

p

�

M

k

(C

n+1

)
 C [�]

�

p ' C

n+1


 C [�]
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by an isomorphism that is uniquely determined up to an inner automorphism. Thus

the Connes{Moscovici extension becomes

0 �! C

n+1


 C [�] �! E

CM

�! C

1

(S

�

M )) �! 0;(45)

up to an inner automorphism.

We now proceed as for the Atiyah{Singer exact sequence. The boundary mor-

phisms in periodic cyclic cohomology associated to the Connes{Moscovici extensions

de�nes a map

@

CM

: HP

�

(C

n+1


 C [�]) ! HP

�+1

(C

1

(S

�

M ));

and the Connes{Moscovici Index Theorem amounts to the identi�cation of the classes

@

CM

(Tr

n


 �) 2 HP

�+1

cont

(C

1

(S

�

M )) � HP

�+1

(C

1

(S

�

M ));

for cocycles � coming from the cohomology of �.

In order to determine @

CM

(Tr

n


 �); we need the following theorem.

Theorem. 3.5. Let G

1

and G

2

be smooth �etale groupoids. Then the diagram

H

�+n

(B G

1

; o

1

)
H

�+m

(BG

2

; o

2

)

��
�

//�

HP

�

cont

(C

1

c

(G

2

)) 
HP

�

cont

(C

1

c

(G

2

))

��



H

�+n+m

(B(G

1

� G

2

); o)

//�

HP

�

cont

(C

1

c

(G

1

� G

2

))

is commutative. Here the left product � is the external product in cohomology and o

1

,

o

2

, and o are the orientation sheaves.

Proof. The proof is a long but straightforward veri�cation that the sequence of

isomorphisms in [7] is compatible with products.

Using [30], Proposition 1.5. (c), page 563, which states that the �-products are

compatible with the tensor products of mixed complexes, we replace everywhere cyclic

vector spaces by mixed complexes. Then we go through the speci�c steps of the proof

as in [7]. This amounts to verify the following facts:

(i) The Hochschild-Kostant-Rosenberg map � (equation (12)) transforms the

di�erential B 
 1 + 1
B into the de Rham di�erential of the product.

(ii) By the Eilenberg-Zilber Theorem [25], the augmentation map � ([7] Proposi-

tion 4.2 (1)), and the isomorphism it induces, are compatible with products.

(iii) The chain map f in the Moore isomorphism (see [6], Theorems 4.1 and

4.2, page 32) is compatible with products. This too involves the Eilenberg-Zilber

theorem.

We remark that the proof of the above theorem is easier if both groupoids are of

the same \type," i.e., if they are both groups or smooth manifolds, in which case our

theorem is part of folklore. However, in the case we shall use this theorem{that of a

group and a manifold{there are no signi�cant simpli�cations: one has to go through

all the steps of the proof given above.

Lemma. 3.6. Let � : C

1

(S

�

M )!M

k

(C

1

(S

�

M ))
 C [�] be as de�ned in (39) and

Tr

n

2 HP

0

(C

n+1

) be as in (28). Then, for any cyclic cocycle � 2 HP

�

cont

(C [�]), we

have

@

CM

(Tr

n


 �) = �

�

(J (M )
 �) 2 HP

�+1

cont

(C

1

(S

�

M )) � HP

�+1

(C

1

(S

�

M )):

Documenta Mathematica 2 (1997) 263{295



Higher Index Theorems 293

Proof. Denote by @

1

: HP

�

cont

(C

n+1


C [�]) ! HP

�+1

(C

1

(S

�

M
C [�])) the boundary

morphism of the exact sequence (44). Using Theorem 2.6, we obtain

@

1

(Tr

n


 �) = @

AS

(Tr

n

)
 � = J (M )
 � 2 HP

�+1

cont

(C

1

(S

�

M )
 C [�]) �

HP

�+1

(C

1

(S

�

M )
 C [�]):

Then, the naturality of the boundary map and Theorem 2.10 show that @

CM

= �

�

�@

1

.

This completes the proof.

Let T (M ) 2 H

even

(S

�

M ) be the Todd class of TM 
 C lifted to S

�

M and Ch

be the classical Chern character on K{Theory, as before. Also, recall that Theorem

3.1 de�nes an embedding � : H

�

(B �) = H

�

(�)! HP

�

cont

(C [�]) = HP

�

(C [�]).

We are now ready to state Connes{Moscovici's Index Theorem for elliptic sys-

tems, see [11][Theorem 5.4], page 379, which computes the \higher index" of a matrix

of P of properly supported, order zero, �-invariant elliptic pseudodi�erential operators

on

f

M , with principal symbol the invertible matrix u = �

0

(P ) 2M

m

(C

1

(S

�

M )).

Theorem. 3.7 (Connes{Moscovici). Let

f

M ! M be a covering with Galois group

� of a smooth compact manifold M of dimension n, and let f : S

�

M ! B � the

continuous map that classi�es the covering S

�

f

M ! S

�

M . Then, for each cohomology

class � 2 H

2q

(B �) and each [u] 2 K

1

(S

�

M ), we have

~

�

�

(Ind[u]) =

(�1)

n

(2�{)

q

hCh(u) ^ T (M ) ^ f

�

�; [S

�

M ] i;

where

~

� = Tr

n


�(�) 2 HP

0

(C

n+1


 C [�]).

Proof. All ingredients of the proof are in place, and we just need to put them together.

Let � 2 H

2q

(B �) and

~

� = Tr

n


�(�) be as in the statement of the theorem. Then

(�1)

n

~

�

�

(Ind[u]) =

= (�1)

n

�

@

CM

~

�

�

�

[u] by Theorem 1:5

= (�1)

n

�

�

�

(J (M )
�(�))

�

�

[u] by Lemma 3:6

= (�1)

n

�

�

�

��(�

�1

(J (M )) � �)

�

�

[u] by Theorem 3:5

= (�1)

n

�

� � (id � f)

�

(�

�1

(J (M ))� �)

�

�

[u] by Proposition 3:3

= (�1)

n

h�(�

�1

(J (M )) ^ f

�

�); ch([u])i

= (�1)

n

h�

�1

(J (M )) ^ f

�

�) ^ �(ch[u]); [S

�

M ] i by equation (37)

=

P

k+j=n�q

(2�{)

k�n

hT (M )

2k

^f

�

�^�(ch[u])

2j�1

; [S

�

M ]i by Proposition 3:4

=

P

k+j=n�q

(2�{)

�q

hT (M )

2k

^ f

�

� ^ Ch

2j�1

[u]; [S

�

M ]i by equation (42)

= (2�{)

�q

hCh[u]^ T (M ) ^ f

�

�; [S

�

M ]i:

The proof is now complete.

For q = 0 and � = 1 2 H

0

(B �) ' C , we obtain that � = �(�) is the von

Neumann trace on C [�], that is � (

P

a





) = a

e

, the coe�cient of the identity, and the

above theorem recovers Atiyah's L

2

{index theorem for coverings [2]. The reason for
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obtaining a di�erent constant than in [11] is due to di�erent normalizations. See [19]

for a discussion on how to obtain the usual index theorems from the index theorems

for elliptic systems.
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Abstract. Let F be a �eld of characteristic di�erent from 2,  a quadratic

F -form of dimension � 5, and D a central simple F -algebra of exponent 2.

We denote by F ( ;D) the function �eld of the product X

 

� X

D

, where

X

 

is the projective quadric determined by  and X

D

is the Severi-Brauer

variety determined by D. We compute the relative Galois cohomology group

H

3

(F ( ;D)=F;Z=2Z) under the assumption that the index of D goes down

when extending the scalars to F ( ). Using this, we give a new, shorter

proof of the theorem [23, Th. 1] originally proved by A. Laghribi, and a new,

shorter, and more elementary proof of the assertion [2, Cor. 9.2] originally

proved by H. Esnault, B. Kahn, M. Levine, and E. Viehweg.

1991 Mathematics Subject Classi�cation: 19E15, 12G05, 11E81.

Let  be a quadratic form and D be an exponent 2 central simple algebra over a �eld

F (always assumed to be of characteristic not 2). Let X

 

be the projective quadric

determined by  , X

D

the Severi-Brauer variety determined by D, and F ( ;D) the

function �eld of the product X

 

�X

D

.

A computation of the relative Galois cohomology group

H

3

(F ( ;D)=F )

def

= ker

�

H

3

(F;Z=2Z)! H

3

(F ( ;D);Z=2Z)

�

plays a crucial role in obtaining the results of [8] and [10] concerning the problem of

isotropy of quadratic forms over the function �elds of quadrics.

The group H

3

(F ( ;D)=F ) is closely related to the Chow group CH

2

(X

 

�X

D

)

of 2-codimensional cycles on the product X

 

�X

D

. The main result of this paper is

the following theorem, where both groups are computed assuming dim � 5 and the

index of D goes down when extending the scalars to the function �eld of  :

Theorem 0.1. Let D be a central simple F -algebra of exponent 2. Let  be

a quadratic form of dimension � 5. Suppose that indD

F ( )

< indD. Then

Tors CH

2

(X

 

�X

D

) = 0 and H

3

(F ( ;D)=F ) = [D] [H

1

(F ).

A proof is given in x8. The essential part of the proof is Theorem 6.9, dealing

with the special case where D is a division algebra of degree 8. This theorem has two

applications in the theory of quadratic forms. The �rst one is a new, shorter proof of

the following assertion, originally proved by A. Laghribi ([23, Th. 1]):
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298 O. T. Izhboldin and N. A. Karpenko

Corollary 0.2. Let � 2 I

2

(F ) be an 8-dimensional quadratic form such that

indC(�) = 8. Let  be a quadratic form of dimension � 5 such that �

F ( )

is isotropic.

Then there exists a half-neighbor �

�

of � such that  � �

�

.

The other application we demonstrate is a new, shorter, and more elementary

proof of the assertion, originally proved by H. Esnault, B. Kahn, M. Levine, and E.

Viehweg ([2, Cor. 9.2]):

Corollary 0.3. Let � 2 I

2

(F ) be any quadratic form such that indC(�) � 8. Let A

be a central simple F -algebra Brauer equivalent to C(�) and let F (A) be the function

�eld of the Severi-Brauer variety of A. Then �

F (A)

=2 I

4

(F (A)). In particular, �

F (A)

is not hyperbolic. Moreover, if dim� = 8 then �

F (A)

is anisotropic.

Our proofs of Corollaries 0.2 and 0.3 are given in x7.

An important part in the proof of Theorem 6.9 is played by the formula of

Proposition 4.5, which is in fact applicable to a wide class of algebraic varieties.

A computation of the group H

3

(F ( ;D)=F ) in some cases not covered by The-

orem 0.1 is given in [8] and [10].

1. Terminology, notation, and backgrounds

1.1. Quadratic forms. Mainly, we use notation of [24] and [30]. However there is

a slight di�erence: we denote by hha

1

; : : : ; a

n

ii the n-fold P�ster form

h1;�a

1

i 
 � � � 
 h1;�a

n

i :

The set of all n-fold P�ster forms over F is denoted by P

n

(F ); GP

n

(F ) is the set of

forms similar to a form from P

n

(F ).

We recall that a quadratic form  is called a (P�ster) neighbor (of a P�ster form

�), if it is similar to a subform in � and dim� >

1

2

dim�. Two quadratic forms � and

�

�

are half-neighbors, if dim� = dim�

�

and there exists s 2 F

�

such that the sum

�?s�

�

is similar to a P�ster form.

For a quadratic form � of dimension � 3, we denote by X

�

the projective variety

given by the equation � = 0 and we set F (�) = F (X

�

).

1.2. Generic splitting tower. Let 
 be a non-hyperbolic quadratic form over F .

Put F

0

def

= F and 


0

def

= 


an

. For i � 1 let F

i

def

= F

i�1

(


i�1

) and 


i

def

= ((


i�1

)

F

i

)

an

.

The smallest h such that dim


h

� 1 is called the height of 
. The sequence

F

0

; F

1

; : : : ; F

h

is called the generic splitting tower of 
 ([21]). We need some properties

of the �elds F

s

:

Lemma 1.3 ([22]). Let M=F be a �eld extension such that dim(


M

)

an

= dim


s

.

Then the �eld extension MF

s

=M is purely transcendental.

The following proposition is a consequence of the index reduction formula [25].

Proposition 1.4 (see [6, Th. 1.6] or [5, Prop. 2.1]). Let � 2 I

2

(F ) be a quadratic

form with ind(C(�)) � 2

r

> 1. Then there is s (0 � s � h(�)) such that dim�

s

=

2r + 2 and indC(�

s

) = 2

r

.

Corollary 1.5. Let � 2 I

2

(F ) be a quadratic form with ind(C(�)) � 8. Then there

is s (0 � s � h(�)) such that dim�

s

= 8 and indC(�

s

) = 8.
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1.6. Central simple algebras. We are working with �nite-dimensional associa-

tive algebras over a �eld. Let D be a central simple F -algebra. We denote by X

D

the Severi-Brauer variety of D and by F (D) the function �eld F (X

D

).

For another central simple F -algebra D

0

and for a quadratic F -form  of dimen-

sion � 3, we set F (D

0

; D)

def

= F (X

D

0

�X

D

) and F ( ;D)

def

= F (X

 

�X

D

).

1.7. Galois cohomology. By H

�

(F ) we denote the graded ring of Galois coho-

mology

H

�

(F;Z=2Z) = H

�

(Gal(F

sep

=F );Z=2Z):

For any �eld extension L=F , we set H

�

(L=F )

def

= ker(H

�

(F )! H

�

(L)).

We use the standard canonical isomorphisms H

0

(F ) = Z=2Z, H

1

(F ) = F

�

=F

�2

,

and H

2

(F ) = Br

2

(F ).

We also work with the cohomology groups H

n

(F;Q=Z(i)), i = 0; 1; 2 (see e.g.

[12] for the de�nition). For any �eld extension L=F , we set

H

�

(L=F;Q=Z(i))

def

= ker

�

H

�

(F;Q=Z(i))! H

�

(L;Q=Z(i))

�

:

For n = 1; 2; 3, the group H

n

(F ) is naturally identi�ed with

Tors

2

H

n

(F;Q=Z(n� 1)) :

1.8. K-theory and Chow groups. We are mainly working with smooth algebraic

varieties over a �eld, although the smoothness assumption is not always essential.

Let X be a smooth algebraic F -variety. The Grothendieck ring of X is denoted

by K(X). This ring is supplied with the �ltration \by codimension of support" (which

respects multiplication); the adjoint graded ring is denoted by G

�

K(X). There is a

canonical surjective homomorphism of the graded Chow ring CH

�

(X) onto G

�

K(X);

its kernel consists only of torsion elements and is trivial in the 0-th, 1-st and 2-nd

graded components ([32, x9]). In particular we have the following

Lemma 1.9. The homomorphism CH

i

(X) ! G

i

K(X) is bijective if at least one of

the following conditions holds:

� i = 0, 1, or 2,

� CH

i

(X) is torsion-free.

Let X be a variety over F and E=F be a �eld extension. We denote by i

E=F

the restriction homomorphism K(X) ! K(X

E

). We use the same notation for the

restriction homomorphisms CH

�

(X) ! CH

�

(X

E

) and G

�

K(X) ! G

�

K(X

E

). Note

that for any projective homogeneous variety X, the homomorphism i

E=F

: K(X) !

K(X

E

) is injective by [27].

1.10. Other notations. We denote by

�

F a separable closure of the �eld F . The

order of a set S is denoted by jSj (if S is in�nite, we set jSj

def

= 1).
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2. The group TorsG

�

K(X)

Lemma 2.1. Let X be a variety over F and E=F be a �eld extension such that

the homomorphism i

E=F

: K(X) ! K(X

E

) is injective and the factor group

K(X

E

)=i

E=F

(K(X)) is �nite. Then

j ker(G

�

K(X) ! G

�

K(X

E

)j =

jG

�

K(X

E

)=i

E=F

(G

�

K(X))j

jK(X

E

)=i

E=F

(K(X))j

Proof. The proof is the same as the proof of [15, Prop. 2].

Lemma 2.2. Let X be a variety, i be an integer, and E=F be a �eld extension such

that the group G

i

K(X

E

) is torsion-free. Then

ker(G

i

K(X) ! G

i

K(X

E

)) = TorsG

i

K(X) :

Proof. Since G

i

K(X

E

) is torsion-free, one has ker(G

i

K(X) ! G

i

K(X

E

)) �

TorsG

i

K(X).

To prove the inverse inclusion, let us take an intermediate �eld E

0

such that

the extension E

0

=F is purely transcendental while the extension E=E

0

is algebraic.

The specialization argument shows that the homomorphism G

i

K(X) ! G

i

K(X

E

0

)

is injective; the transfer argument shows that ker(G

i

K(X

E

0

) ! G

i

K(X

E

)) �

TorsG

i

K(X

E

0

). Therefore ker(G

i

K(X) ! G

i

K(X

E

)) � TorsG

i

K(X).

Lemma 2.3. Let X be a smooth variety, i be an integer, and E=F be a �eld extension

such that the group CH

i

(X

E

) is torsion-free. Then

� CH

i

(X

E

) ' G

i

K(X

E

) (and hence the group G

i

K(X

E

) is torsion-free),

� CH

i

(X

E

)=i

E=F

(CH

i

(X)) ' G

i

K(X

E

)=i

E=F

(G

i

K(X)):

Proof. The �rst assertion is contained in Lemma 1.9. The canonical homomorphism

CH

i

(X

E

)! G

i

K(X

E

) induces a homomorphism

CH

i

(X

E

)=i

E=F

(CH

i

(X)) ! G

i

K(X

E

)=i

E=F

(G

i

K(X))

which is bijective since CH

i

(X

E

) ! G

i

K(X

E

) is bijective and CH

i

(X) ! G

i

K(X)

is surjective.

Proposition 2.4. Suppose that a smooth F -variety X and a �eld extension E=F

satisfy the following three conditions:

� the homomorphism i

E=F

: K(X) ! K(X

E

) is injective,

� the factor group K(X

E

)=i

E=F

(K(X)) is �nite,

� the group CH

�

(X

E

) is torsion-free.

Then

jTorsG

�

K(X)j =

jG

�

K(X

E

)=i

E=F

(G

�

K(X))j

jK(X

E

)=i

E=F

(K(X))j

=

jCH

�

(X

E

)=i

E=F

(CH

�

K(X))j

jK(X

E

)=i

E=F

(K(X))j

Proof. It is an obvious consequence of Lemmas 2.1, 2.2, and 2.3.
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3. Auxiliary lemmas

For an Abelian group A we use the notation rk(A) = dim

Q

(A


Z

Q).

Lemma 3.1. Let A

0

� A, B

0

� B be free Abelian groups such that rkA

0

= rkA = r

A

,

rkB

0

= rkB = r

B

. Then

�

�

�

�

A


Z

B

A

0




Z

B

0

�

�

�

�

=

�

�

�

�

A

A

0

�

�

�

�

r

B

�

�

�

�

�

B

B

0

�

�

�

�

r

A

:

Proof. One has

(A
 B)=(A

0


 B) ' (A=A

0

) 
B ' (A=A

0

) 
Z

r

B

' (A=A

0

)

r

B

;

(A

0


 B)=(A

0


 B

0

) ' A

0


 (B=B

0

) 'Z

r

A


 (B=B

0

) ' (B=B

0

)

r

A

:

Therefore,

�

�

�

�

A
 B

A

0


 B

0

�

�

�

�

=

�

�

�

�

A
 B

A

0


B

�

�

�

�

�

�

�

�

�

A

0


B

A

0


 B

0

�

�

�

�

=

�

�

�

�

A

A

0

�

�

�

�

r

B

�

�

�

�

�

B

B

0

�

�

�

�

r

A

:

The following lemma is well-known.

Lemma 3.2. Let A be an Abelian group with a �nite �ltration A = F

0

A � F

1

A �

� � � � F

k

A = 0. Let B be a subgroup of A with the �ltration F

p

B = B \ F

p

A. Let

G

�

A =

L

p�0

F

p

A=F

p+1

A and G

�

B =

L

p�0

F

p

B=F

p+1

B. Then

� jA=Bj = jG

�

A=G

�

Bj,

� if A is a �nitely generated group then rkG

�

A = rkA.

In the following lemma the term \ring" means a commutative ring with unit.

Lemma 3.3. Let A and B be rings whose additive groups are �nitely generated Abelian

groups. Let I be a nilpotent ideal of A such that A=I ' Z. Let R be a subring of

A


Z

B and A

R

be a subring of A such that A

R


1 � R. Then the following inequality

holds

�

�

�

�

A


Z

B

R

�

�

�

�

�

�

�

�

�

A

A

R

�

�

�

�

r

B

�

�

�

�

�

A


Z

B

R+ (I 


Z

B)

�

�

�

�

r

A

where r

A

= rkA and r

B

= rkB.

Proof. Let us denote by B

R

the image of R under the following composition A
B !

(A=I) 
 B 'Z
B ' B. Obviously,

�

�

�

�

A


Z

B

R+ (I 


Z

B)

�

�

�

�

=

�

�

�

�

B

B

R

�

�

�

�

:

For any p � 0 we set F

p

A = fa 2 A j 9m 2 N such that ma 2 I

p

g. Clearly,

Tors(A=F

p

A) = 0, and so A=F

p

is a free Abelian group. Therefore all factor groups

F

p

A=F

p+1

A (p = 0; 1; : : :) are free Abelian. Since A=I 'Z, it follows that F

1

A = I.

Thus A=F

1

A 'Z. Since I is a nilpotent ideal of A, there exists k such that I

k

= 0.

Then F

k

A = 0. Thus the �ltration A = F

0

A � F

1

A � F

2

A � : : : is �nite and

results of Lemma 3.2 can be applied.

Let F

p

A

R

def

= R\F

p

A, F

p

(A
B)

def

= im(F

p

A
B ! A
B), and F

p

R

def

= R\

F

p

(A
B). If K is one of the rings A, A

R

, A
B, or R, we set G

p

K

def

= F

p

K=F

p+1

K

and G

�

K

def

=

L

p�0

F

p

K=F

p+1

K. Obviously, F

p

K � F

q

K � F

p+q

K for all p and q.
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Therefore, K = F

0

K � F

1

K � � � � � F

p

K � : : : is a ring �ltration. Hence, the

adjoint graded group G

�

K has a graded ring structure. Since the additive group of

B is free, we have a natural ring isomorphism G

�

A 
B ' G

�

(A
 B).

Since A

R


 1 � R, we have G

�

A

R


 1 � G

�

R. Clearly G

0

(A
B) = (A=I) 
B,

and G

0

R coincides with the image of the composition R ! A 
 B ! (A=I) 
 B.

By de�nition of B

R

, one has G

0

R = 1

G

�

A


 B

R

(here 1

G

�

A

denotes the unit of the

ring G

�

A). Therefore 1

G

�

A


 B

R

� G

�

R. Since G

�

A

R


 1 � G

�

R, 1

G

�

A


 B

R

�

G

�

R, and G

�

R is a subring of G

�

A 
 B, we have G

�

A

R


 B

R

� G

�

R. Therefore

jG

�

(A 
 B)=G

�

Rj � j(G

�

A 
 B)=(G

�

A

R


 B

R

)j. Applying Lemmas 3.1 and 3.2, we

have

�

�

�

�

A
 B

R

�

�

�

�

=

�

�

�

�

G

�

(A 
B)

G

�

R

�

�

�

�

�

�

�

�

�

G

�

A
 B

G

�

A

R


 B

R

�

�

�

�

=

�

�

�

�

G

�

A

G

�

A

R

�

�

�

�

r

B

�

�

�

�

�

B

B

R

�

�

�

�

r

A

=

=

�

�

�

�

A

A

R

�

�

�

�

r

B

�

�

�

�

�

B

B

R

�

�

�

�

r

A

=

�

�

�

�

A

A

R

�

�

�

�

r

B

�

�

�

�

�

A 


Z

B

R+ (I 


Z

B)

�

�

�

�

r

A

:

4. On the group CH

�

(X � Y )

Let X be a smooth variety. We denote by F

p

CH

�

(X) the group

M

i�p

CH

i

(X) :

Let Y be another smooth variety. For a subgroup A of CH

�

(X) and a subgroup B

of CH

�

(Y ), we denote by A � B the image of the composition A 
 B ! CH

�

(X) 


CH

�

(Y )! CH

�

(X � Y ).

The following assertion is evident (see also [20, x3] or [11]).

Proposition 4.1. Let X and Y be smooth varieties over F . Then

� the natural homomorphism CH

�

(X � Y )! CH

�

(Y

F (X)

) is surjective,

� the kernel of the homomorphism CH

�

(X�Y )! CH

�

(Y

F (X)

) contains the group

F

1

CH

�

(X) � CH

�

(Y ).

Corollary 4.2. If the natural homomorphism CH

�

(X) 
 CH

�

(Y ) ! CH

�

(X � Y )

is bijective and CH

�

(Y ) is torsion-free, then the homomorphism CH

�

(X � Y ) !

CH

�

(Y

F (X)

) induces an isomorphism

CH

�

(X � Y )

F

1

CH

�

(X) �CH

�

(Y )

! CH

�

(Y

F (X)

):

Proof. Since CH

�

(X)
CH

�

(Y ) ' CH

�

(X�Y ) and CH

�

(X)=F

1

CH

�

(X) ' CH

0

(X),

the factor group CH

�

(X � Y )=(F

1

CH

�

(X) � CH

�

(Y )) is isomorphic to CH

0

(X) 


Z

CH

�

(Y ) ' Z


Z

CH

�

(Y ) ' CH

�

(Y ). Thus, it is su�cient to prove that the ho-

momorphism CH

�

(Y ) ! CH

�

(Y

F (X)

) is injective. This is obvious since CH

�

(Y ) is

torsion-free.
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Corollary 4.3. Let X and Y be smooth varieties and E=F be a �eld extension such

that the natural homomorphism CH

�

(X

E

) 
 CH

�

(Y

E

) ! CH

�

(X

E

� Y

E

) is bijective

and CH

�

(Y

E

) is torsion-free. Then there exists an isomorphism

CH

�

(X

E

� Y

E

)

i

E=F

(CH

�

(X � Y )) +F

1

CH

�

(X

E

)�CH

�

(Y

E

)

'

CH

�

(Y

E(X)

)

i

E(X)=F (X)

(CH

�

(Y

F (X)

))

Proof. Obvious in view of Corollary 4.2.

Remark 4.4. It was noticed by the referee that the conditions of Corollary 4.3 (which

appear also in Proposition 4.5) hold, if the variety Y

E

possess a cellular decomposition

(see e.g. [13, Def. 3.2] for the de�nition of cellular decomposition). In the case of

complete varieties X and Y , this statement follows e.g. from [19, Th. 6.5]. In the

present paper, we shall apply Corollary 4.3 only to the case where Y

E

is isomorphic

to a projective space.

Proposition 4.5. Let X and Y be smooth varieties over F and E=F be a �eld

extension such that the following conditions hold

� CH

�

(X

E

) is a free Abelian group of rank r

X

,

� CH

�

(Y

E

) is a free Abelian group of rank r

Y

,

� the canonical homomorphism CH

�

(X

E

) 


Z

CH

�

(Y

E

) ! CH

�

(X

E

� Y

E

) is an

isomorphism.

Then

�

�

�

�

CH

�

(X

E

� Y

E

)

i

E=F

(CH

�

(X � Y ))

�

�

�

�

�

�

�

�

�

CH

�

(X

E

)

i

E=F

(CH

�

(X))

�

�

�

�

r

Y

�

�

�

�

�

CH

�

(Y

E(X)

)

i

E(X)=F (X)

(CH

�

(Y

F (X)

))

�

�

�

�

r

X

:

Proof. Let A = CH

�

(X

E

), A

R

= i

E=F

(CH

�

(X)) and I =

L

p>0

CH

p

(X

E

) =

F

1

CH

�

(X

E

). Let B = CH

�

(Y

E

). By our assumption, we have CH

�

(X

E

� Y

E

) '

A 


Z

B. We denote by R the image of the composition CH

�

(X � Y ) ! CH

�

(X

E




Y

E

) ' A


Z

B. Clearly, all conditions of Lemma 3.3 hold. Moreover,

�

�

�

�

CH

�

(X

E

� Y

E

)

i

E=F

(CH

�

(X � Y ))

�

�

�

�

=

�

�

�

�

A


Z

B

R

�

�

�

�

and

�

�

�

�

CH

�

(X

E

)

i

E=F

(CH

�

(X))

�

�

�

�

=

�

�

�

�

A

A

R

�

�

�

�

:

By Corollary 4.3 we have

�

�

�

�

A


Z

B

R + (I 


Z

B)

�

�

�

�

=

�

�

�

�

CH

�

(Y

E(X)

)

i

E(X)=F (X)

(CH

�

(Y

F (X)

))

�

�

�

�

:

To complete the prove it su�ces to apply Lemma 3.3.

5. The group Tors CH

2

(X

 

�X

D

)

The aim of this section is Corollary 5.6.

Proposition 5.1 (see [14, x2.1]). Let  be a (2n + 1)-dimensional quadratic form

over a separably closed �eld. Set X

def

= X

 

and d

def

= dimX = 2n � 1. Then for all

0 � p � d the group CH

p

(X) is canonically isomorphic to Z(for other p the group

CH

p

(X) is trivial). Moreover,

� if 0 � p < n, then CH

p

(X) = Z� h

p

, where h 2 CH

1

(X) denotes the class of a

hyperplane section of X;
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� if n � p � d, then CH

p

(X) = Z� l

d�p

, where l

d�p

denotes the class of a linear

subspace in X of dimension d� p, besides 2l

d�p

= h

p

.

Corollary 5.2. Let  be a (2n + 1)-dimensional quadratic form over F and let

X = X

 

. Then

� CH

�

(X

�

F

) is a free Abelian group of rank 2n,

� if 0 � p < n then jCH

p

(X

�

F

)=i

�

F
=F

(CH

p

(X))j = 1,

� if n � p � 2n� 1 then jCH

p

(X

�

F

)=i

�

F
=F

(CH

p

(X))j � 2,

� jCH

�

(X

�

F

)=i

�

F
=F

(CH

�

(X))j � 2

n

.

Proposition 5.3. Let D be a central simple F -algebra of exponent 2 and of degree 8.

Let E=L=F be �eld extensions such that indD

L

= 4 and indD

E

= 1. Let Y = SB(D).

For any 0 � p � dimY = 7, the group CH

p

(Y

E

) is canonically isomorphic to Z.

Moreover, the image of the homomorphism i

E=L

: CH

p

(Y

L

)! CH

p

(Y

E

) 'Zcontains

1 if p = 0; 4; 2 if p = 1; 2; 5; 6; 4 if p = 3; 7.

Proof. Since degD = 8 and indD

E

= 1, Y

E

is isomorphic to P

7

E

. Hence, the group

CH

p

(Y

E

)

�

=

CH

p

(P

7

E

) (where p = 0; : : : ; 7) is generated by the class h

p

of a linear

subspace ([4]).

The rest part of the proposition is contained in [16, Th.]. For the reader's con-

venience, we also give a direct construction of the elements required. The class of

Y

L

itself gives 1 2 i

E=L

(CH

0

(Y

L

)). Let � be the tautological line bundle on the pro-

jective space P

7

E

' Y

E

. Since expD = 2, the bundle �


2

is de�ned over F and, in

particular, over L. Its �rst Chern class gives 2 2 i

E=L

(CH

1

(Y

L

)). Since indD

L

= 4,

the bundle �

�4

is de�ned over L. Its second Chern class gives 6 2 i

E=L

(CH

2

(Y

L

)).

1

Thus 2 2 i

E=L

(CH

2

(Y

L

)). The third Chern class of �

�4

gives 4 2 i

E=L

(CH

3

(Y

L

)).

The fourth Chern class of �

�4

gives 1 2 i

E=L

(CH

4

(Y

L

)). Finally, taking the product

of the cycles constructed in codimensions 1, 2, and 3 with the cycle of codimension

4, one gets the cycles of codimensions 5, 6, and 7 required.

Corollary 5.4. Under the condition of Proposition 5.3, we have

jCH

�

(Y

E

)=i

E=L

(CH

�

(Y

L

))j � 256 :

Proof.

7

Q

p=0

jCH

p

(Y

E

)=i

E=L

(CH

p

(Y

L

))j � 1 � 2 � 2 � 4 � 1 � 2 � 2 � 4 = 256 :

Proposition 5.5. Let D be a central division F -algebra of degree 8 and exponent 2.

Let  be a 5-dimensional quadratic F -form. Suppose that D

F ( )

is not a skew�eld.

Then TorsG

�

K(X

 

�X

D

) = 0.

Proof. Let X = X

 

and Y = X

D

. Corollary 5.2 shows that CH

�

(X

�

F

) is a free abelian

group of rank r

X

= 4 and jCH

�

(X

�

F

)=i

�

F
=F

(CH

�

(X))j � 2

2

= 4.

Since D is a division algebra of degree 8 and D

F ( )

is not division algebra, it

follows that indD

F (X)

= 4. Applying Corollary 5.4 to the case L = F (X), E =

�

F (X),

we have jCH

�

(Y

�

F
(X)

)=i

�

F
(X)=F (X)

(CH

�

(Y

F (X)

))j � 256.

1

In fact, it is enough only to know that the Grothendieck classes of the bundles �


2

and �

�4

are

in K(Y

L

) what can be also seen from the computation of the K-theory.
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Since Y

�

F

= SB(D

�

F

) ' P

7

�

F

, the group CH

�

(Y

�

F

) is a free Abelian of rank r

Y

= 8

and CH

�

(X

�

F

)
CH

�

(Y

�

F

) ' CH

�

(X

�

F

�Y

�

F

) (see [3, Prop. 14.6.5]). Thus all conditions

of Proposition 4.5 hold for X, Y , E =

�

F and we have

�

�

�

�

�

CH

�

(X

�

F

� Y

�

F

)

i

�

F
=F

(CH

�

(X � Y ))

�

�

�

�

�

� 4

8

� 256

4

= 2

48

:

Using [29, Th. 4.1 of x8] and [33, Th. 9.1], we get a natural (with respect to

extensions of F ) isomorphism

K(X � Y ) ' K

�

(F

�3

� C)


F

(F

�4

�D

�4

)

�

'

' K

�

F

�12

� C

�4

�D

�12

� (C 


F

D)

�4

�

where C

def

= C

0

( ) is the even Cli�ord algebra of  . Note that C is a central simple

F -algebra of the degree 2

2

. Since D

F ( )

is not a skew �eld, [25, Th. 1] states that

D ' C 


F

B with some central division F -algebra B. Therefore, indC = degC = 2

2

and indC 
D = indB = degB = 2. Hence

�

�

�

�

�

K(X

�

F

� Y

�

F

)

i

�

F
=F

(K(X � Y ))

�

�

�

�

�

= (indC)

4

� (indD)

12

� (indC 
D)

4

= 2

2�4+3�12+1�4

= 2

48

:

Applying Proposition 2.4 to the variety X � Y and E =

�

F , we have

jTorsG

�

K(X � Y )j =

jCH

�

(X

�

F

� Y

�

F

)=i

�

F
=F

(CH

�

(X � Y ))j

jK(X

�

F

� Y

�

F

)=i

�

F=F

(K(X � Y ))j

�

2

48

2

48

= 1 :

Therefore, TorsG

�

K(X � Y ) = 0.

Applying Lemma 1.9 we get the following

Corollary 5.6. Under the condition of Proposition 5.5, the group CH

2

(X

 

�X

D

)

is torsion-free.

6. A special case of Theorem 0.1

In this section we prove Theorem 0.1 in the special case where D is a division algebra

of degree 8.

Proposition 6.1 ([1, Satz 5.6]). Let  be a quadratic F -form of dimension � 5. The

group H

3

(F ( )=F ) is non-trivial i�  is a neighbor of an anisotropic 3-P�ster form.

Proposition 6.2 (see [28, Prop. 4.1 and Rem. 4.1]). Let D be a central division F -

algebra of exponent 2. Suppose that D is decomposable (in the tensor product of two

proper subalgebras). Then H

3

(F (D)=F ) = [D] [H

1

(F ).

Proposition 6.3. If D and D

0

are Brauer equivalent central simple F -algebras, then

the function �elds F (D) and F (D

0

) are stably equivalent.

2

2

Two �eld extensionsE=F and E

0

=F are called stably equivalent, if some �nitely generated purely

transcendental extension of E is isomorphic (over F ) to some �nitely generated purely transcendental

extension of E

0

.
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Proof. Since the algebras D

F (D

0

)

and D

0

F (D)

are split, the �eld extensions

F (D;D

0

)=F (D

0

) and F (D;D

0

)=F (D)

are purely transcendental. Therefore each of the �eld extensions F (D)=F and

F (D

0

)=F is stably equivalent to the extension F (D;D

0

)=F .

Corollary 6.4. Fix a quadratic F -form  and integers i; j 2 Z. For any central

simple F -algebra D, the groups H

i

(F (D)=F ), H

i

(F (D)=F;Q=Z(j)), H

i

(F ( ;D)=F ),

H

i

(F ( ;D)=F;Q=Z(j)) only depend on the Brauer class of D.

Proposition 6.5. Let D be a central simple F -algebra of exponent 2 and let  be a

quadratic F -form. The group H

3

(F ( ;D)=F;Q=Z(2)) is annihilated by 2.

Proof. Let  

0

be a 3-dimensional subform of  . Clearly,

H

3

(F ( ;D)=F;Q=Z(2))� H

3

(F ( 

0

; D)=F;Q=Z(2)) :

Therefore, it su�ces to show that the latter cohomology group is annihilated by 2.

Replacing  

0

by the quaternion algebra C

0

( 

0

), we come to a statement covered by

[7, Lemma A.8].

Corollary 6.6. In the conditions of Proposition 6.5, one has

H

3

(F ( ;D)=F;Q=Z(2)) = H

3

(F ( ;D)=F ) :

Proposition 6.7. Let D be a central simple F -algebra of exponent 2 and let  be a

quadratic F -form of dimension � 3. Suppose that indD

F ( )

< indD. Then  is not

a 3-P�ster neighbor and there is an isomorphism

H

3

(F ( ;D)=F )

H

3

(F ( )=F ) + [D] [H

1

(F )

' Tors CH

2

(X

 

�X

D

) :

Proof. By [9, Prop. 2.2], there is an isomorphism

H

3

(F ( ;D)=F;Q=Z(2))

H

3

(F ( )=F;Q=Z(2)) +H

3

(F (D)=F;Q=Z(2))

'

'

Tors CH

2

(X

 

�X

D

)

pr

�

 

Tors CH

2

(X

 

) + pr

�

D

Tors CH

2

(X

D

)

:

By Corollary 6.6, we have H

3

(F ( ;D)=F;Q=Z(2)) = H

3

(F ( ;D)=F ); by [9, Lemma

2.8], we have H

3

(F ( )=F;Q=Z(2)) = H

3

(F ( )=F ); and by [7, Lemma A.8], we have

H

3

(F (D)=F;Q=Z(2)) = H

3

(F (D)=F ).

Let D

0

be a division algebra Brauer equivalent to D. By Corollary 6.4, we

have H

3

(F (D)=F ) = H

3

(F (D

0

)=F ); by [18, Prop. 1.1], we have Tors CH

2

(X

D

) '

Tors CH

2

(X

D

0

). Since D

0

F ( )

is no more a skew �eld, there is a homomorphism of F -

algebras C

0

( )! D

0

([34, Th. 1], see also [26, Th. 2]). Although the algebra C

0

( )

is not always central simple, it always contains a non-trivial subalgebra central simple

over F . Therefore, D

0

is decomposable, what implies H

3

(F (D

0

)=F ) = [D] [H

1

(F )

(Proposition 6.2) and Tors CH

2

(X

D

0

) = 0 ([17, Prop. 5.3]). Finally, the existence of

a homomorphism C

0

( ) ! D

0

implies that  is not a 3-P�ster neighbor; therefore

Tors CH

2

(X

 

) = 0 ([14, Th. 6.1]).
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Corollary 6.8. Let D be a central division F -algebra of degree 8 and exponent 2.

Let  be a 5-dimensional quadratic F -form. Suppose that D

F ( )

is not a skew �eld.

Then H

3

(F ( ;D)=F ) = [D] [H

1

(F ).

Proof. It is a direct consequence of Proposition 6.7, Corollary 5.6, and Proposition

6.1.

Theorem 6.9. Theorem 0.1 is true if D is a division algebra of degree 8.

Proof. Let  

0

be a 5-dimensional subform of  . Applying Corollary 6.8, we have

[D] [ H

1

(F ) � H

3

(F ( ;D)=F ) � H

3

(F ( 

0

; D)=F ) = [D] [ H

1

(F ). Hence

H

3

(F ( ;D)=F ) = [D] [H

1

(F ).

The assertion on Tors CH

2

(X

 

�X

D

) is Corollary 5.6.

Corollary 6.10. Let � 2 I

2

(F ) be a 8-dimensional quadratic form such that

indC(�) = 8. Let D be a degree 8 central simple algebra such that c(�) = [D].

Let  be a quadratic form of dimension � 5 such that �

F ( )

is isotropic. Then

1) D is a division algebra;

2) D

F ( )

is not a division algebra;

3) H

3

(F ( ;D)=F ) = [D] [H

1

(F ).

7. Proof of Corollaries 0.2 and 0.3

We need several lemmas.

Lemma 7.1. Let � 2 I

2

(F ) be a 8-dimensional quadratic form and let D be an algebra

such that c(�) = [D]. Then �

F (D)

2 GP

3

(F (D)).

Proof. We have c(�

F (D)

) = c(�)

F (D)

= [D

F (D)

] = 0. Hence �

F (D)

2 I

3

(F (D)). Since

dim� = 8, we are done by the Arason-P�ster Hauptsatz.

Lemma 7.2. Let �; �

�

2 I

2

(F ) be 8-dimensional quadratic forms such that c(�) =

c(�

�

) = [D], where D is a triquaternion division algebra.

3

Suppose that there is a

quadratic form  of dimension � 5 such that the forms �

F ( ;D)

and �

�

F ( ;D)

are

isotropic. Then � and �

�

are half-neighbors.

Proof. Lemma 7.1 implies that �

F ( ;D)

; �

�

F ( ;D)

2 GP

3

(F ( ;D)). By the assumption

of the lemma, �

F ( ;D)

and �

�

F ( ;D)

are isotropic. Hence �

F ( ;D)

and �

�

F ( ;D)

are

hyperbolic. Thus �; �

�

2W (F ( ;D)=F ).

Let � = � ? �

�

. Clearly � 2 W (F ( ;D)=F ). Since c(� ) = c(�) + c(�

�

) =

[D] + [D] = 0, we have � 2 I

3

(F ). Thus e

3

(� ) 2 H

3

(F ( ;D)=F ). It follows from

Corollary 6.10 that e

3

(� ) 2 [D] [ H

1

(F ). Hence there exists s 2 F

�

such that

e

3

(� ) = [D] [ (s). We have e

3

(� ) = [D] [ (s) = c(�) [ (s) = e

3

(� hhsii). Since

ker(e

3

: I

3

(F ) ! H

3

(F )) = I

4

(F ), we have � � � hhsii (mod I

4

(F )). Therefore

�+ �

�

= � � � hhsii = �� s� (mod I

4

(F )): Hence �

�

+ s� 2 I

4

(F ). Hence � and �

�

are half-neighbors.

The following statement was pointed out by Laghribi ([23]) as an easy conse-

quence of the index reduction formula [25].

3

An F -algebra is called triquaternion, if it is isomorphic to a tensor product of three quaternion

F -algebras.
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Lemma 7.3. Let  be a quadratic form of dimension � 5 and D be a division tri-

quaternion algebra. Suppose that D

F ( )

is not a division algebra. Then there exists

an 8-dimensional quadratic form �

�

2 I

2

(F ) such that  � �

�

and c(�

�

) = [D].

Proof of Corollary 0.2. Let D be triquaternion algebra such that c(�) = [D]. Since

indC(�) = 8, it follows that D is a division algebra. Since �

F ( )

is isotropic, D

F ( )

is

not a division algebra. It follows from Lemma 7.3 that there exists an 8-dimensional

quadratic form �

�

2 I

2

(F ) such that  � �

�

and c(�

�

) = [D]. Obviously, all

conditions of Lemma 7.2 hold. Hence � and �

�

are half-neighbors.

Lemma 7.4. Let D be a division triquaternion algebra over F . Then there exist a �eld

extension E=F and an 8-dimensional quadratic form �

�

2 I

2

(E) with the following

properties:

(i) D

E

is a division algebra,

(ii) c(�

�

) = [D

E

],

(iii) �

�

E(D)

is anisotropic.

Proof. Let � 2 I

2

(F ) be an arbitrary F -form such that c(�) = [D]. Let K =

F (X;Y; Z) and 
 = �

K

? hhX;Y; Zii be a K-form. Let K = K

0

;K

1

; : : : ;K

h

;




0

; 


1

; : : : ; 


h

be a generic splitting tower of 
.

Since 
 � �

K

(mod I

3

(K)), we have c(
) = c(�

K

) = [D

K

]. Since K=F is purely

transcendental, indD

K

= indD = 8. Hence indC(
) = 8. It follows from Corollary

1.5 that there exists s such that dim


s

= 8 and indC(


s

) = 8. We set E = E

s

,

�

�

= 


s

.

We claim that the condition (i){(iii) of the lemma hold. Since c(�

�

) = c(


E

) =

c(�

E

) = [D

E

], condition (ii) holds. Since [D

E

] = c(�

�

) = c(


s

), we have indD

E

=

indC(


s

) = 8 and thus condition (i) holds.

Now we only need to verify that (iii) holds. Let M

0

=F be an arbitrary �eld

extension such that �

M

0

is hyperbolic. Let M = M

0

(X;Y; Z). We have 


M

= �

M

?

hhX;Y; Zii

M

. Clearly hhX;Y; Zii is anisotropic over M . Since �

M

is hyperbolic, we

have (


M

)

an

= hhX;Y; Zii

M

and hence dim(


M

)

an

= 8. Therefore dim(


M

)

an

=

dim


s

. By Lemma 1.3, we see that the �eld extension ME=M = MK

s

=M is purely

transcendental. Hence dim(


ME

)

an

= dim(


M

)

an

= 8. Since (�

�

ME

)

an

= (


ME

)

an

,

we see that �

�

ME

is anisotropic. Since �

M

is hyperbolic, it follows that [D

M

] =

c(�

M

) = 0. Hence [D

ME

] = 0 and therefore the �eld extension ME(D)=ME is purely

transcendental. Hence �

�

ME(D)

is anisotropic. Therefore �

�

E(D)

is anisotropic.

Lemma 7.5. Let �; �

�

2 I

2

(F ) be 8-dimensional quadratic forms such that c(�) =

c(�

�

) = [D], where D is a triquaternion division algebra. Suppose that �

�

F (D)

is

anisotropic. Then �

F (D)

is anisotropic.

Proof. Suppose at the moment that �

F (D)

is isotropic. Then letting  

def

= �

�

, we see

that all conditions of Lemma 7.2 hold. Hence � and �

�

are half-neighbors, i.e., there

exists s 2 F

�

such that �

�

+ s� 2 I

4

(F ). Therefore �

�

F (D)

+ s�

F (D)

2 I

4

(F (D)).

Since �

F (D)

is isotropic, it is hyperbolic and we see that �

�

F (D)

2 I

4

(F (D)). By the

Arason-P�ster Hauptsatz, we see that �

�

F (D)

is hyperbolic. So we get a contradiction

to the assumption of the lemma.
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Proposition 7.6. Let � 2 I

2

(F ) be an 8-dimensional quadratic form such that

indC(�) = 8. Let A be an algebra such that c(�) = [A]. Then �

F (A)

is anisotropic.

Proof. Let D be a triquaternion algebra such that c(�) = [D]. Since indC(�) = 8,

D is a division algebra. Let E=F and �

�

be such that in Lemma 7.4. All conditions

of Lemma 7.5 hold for E, �

E

, �

�

, and D

E

. Therefore �

E(D)

is anisotropic. Hence

�

F (D)

is anisotropic. Since [A] = c(�) = [D], the �eld extension F (A)=F is stably

isomorphic to F (D)=F (Proposition 6.3). Therefore �

F (A)

is anisotropic.

Proof of Corollary 0.3. Suppose at the moment that �

F (A)

2 I

4

(F (A)). Since

indC(�) � 8, it follows that dim� � 8. By Corollary 1.5 there exists a �eld ex-

tension E=F such that dim(�

E

)

an

= 8, indC(�

E

) = 8. Since dim(�

E

)

an

= 8 and

�

E(A)

2 I

4

(E(A)), the Arason-P�ster Hauptsatz shows that ((�

E

)

an

)

E(A)

is hyper-

bolic. We get a contradiction to Proposition 7.6.

8. Proof of Theorem 0.1

By Proposition 6.7, there is a surjection

H

3

(F ( ;D)=F )

[D] [H

1

(F )

� Tors CH

2

(X

 

�X

D

) :

Thus, it su�ces to prove the second formula of Theorem 0.1.

Proving the second formula, we may assume that dim = 5 (compare to the proof

of Theorem 6.9) and D is a division algebra (Corollary 6.4). Under these assumptions,

we can write down D as the tensor product C

0

( ) 


F

B (using [25, Th. 1]). In

particular, we see that C

0

( ) is a division algebra, i.e. indC

0

( ) = degC

0

( ) = 4.

If degD < 8, then D ' C

0

( ). In this case,  

F (D)

is a 5-dimensional qua-

dratic form with trivial Cli�ord algebra; therefore  

F (D)

is isotropic; by this rea-

son, the �eld extension F ( ;D)=F (D) is purely transcendental and consequently

H

3

(F ( ;D)=F (D)) = 0. It follows that

H

3

(F ( ;D)=F ) = H

3

(F (D)=F ) = [D][H

1

(F ) ;

where the last equality holds by Proposition 6.2.

If degD > 8, then indB � 4. Applying the index reduction formula [31, Th.

1.3], we get

indC

0

( )

F (D)

= minfindC

0

( ); indBg = 4 :

Therefore  

F (D)

is not a 3-P�ster neighbor and by Proposition 6.1 the group

H

3

(F ( ;D)=F (D)) is trivial. Thus once again

H

3

(F ( ;D)=F ) = H

3

(F (D)=F ) = [D][H

1

(F ) :

Finally, if degD = 8, then we are done by Theorem 6.9 and Proposition 6.7.
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Abstract. We study Darboux and Christo�el transforms of isothermic

surfaces in Euclidean space. Using quaternionic calculus we derive a Riccati

type equation which characterizes all Darboux transforms of a given isother-

mic surface. Surfaces of constant mean curvature turn out to be special

among all isothermic surfaces: their parallel surfaces of constant mean cur-

vature are Christo�el and Darboux transforms at the same time. We prove

| as a generalization of Bianchi's theorem on minimal Darboux transforms

of minimal surfaces | that constant mean curvature surfaces in Euclidean

space allow 1

3

Darboux transforms into surfaces of constant mean cur-

vature. We indicate the relation between these Darboux transforms and

B�acklund transforms of spherical surfaces.

1991 Mathematics Subject Classi�cation: (Primary) 53A10, (Secondary)

53A50, 53C42.

Keywords: Isothermic surface, Darboux transformation, Christo�el trans-

formation, Riccati equation, Constant mean curvature, Baecklund transfor-

mation.

1 Introduction

Transformations play an important role connecting surface theory with the theory

of integrable systems. A well known example is the B�acklund transformation of

pseudospherical (and spherical [1]) surfaces in Euclidean 3-space which \adds solitons"

to a given surface. In case of isothermic surfaces the Darboux transformation takes

the role of the B�acklund transform for pseudospherical surfaces. Darboux transforms

of isothermic surfaces naturally arise in 1-parameter families (\associated families")

1
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314 U. Jeromin, F. Pedit

allowing to rewrite the underlying (system of) partial di�erential equation(s) as an

(in�nite dimensional) integrable system [6], [4]. It is mainly for this reason that

Darboux transformations provoke new interest among contemporary geometers |

even though the subject was well studied around the turn of the century [5], [7]

and [2]. A key tool in the study of Darboux transforms of an isothermic surface in

Euclidean space is a careful analysis of the Christo�el transform (or dual isothermic

surface) of the surface | which may be considered as a certain limiting case of

Darboux transforms. In the present paper, we develop classical results further using

quaternionic calculus which makes de�nitions elegant and calculations more e�cient.

Characterizations thus obtained turned out to be necessary in the development of the

corresponding discrete theory [10].

In the �rst part of the paper, we develop isothermic surface theory in codimen-

sion 2 | which is a more appropriate setting when using quaternionic calculus. When

restricting to codimension 1, all notions become classical. Here, we rely on the charac-

terizations of Darboux and Christo�el pairs in IHP

1

given in [9]. The consequent use

of the quaternionic setup yields a new and uni�ed description for these surface pairs

in IR

4

�

=

IH. Even though the quaternionic calculus (as developed in [9]) provides a

setting to study the global geometry of surface pairs in M�obius geometry (cf.[11]) we

will restrict to local geometry in this paper, for two reasons: �rst, there are a number

of possible de�nitions of a \globally isothermic surface" whose consequences have not

yet been worked out. For example, de�nition 1 may well be read as a global de�ni-

tion but it is far too general to provide any global results. Secondly, Christo�el and

Darboux transforms of a (compact) surface generally do not exist globally. Moreover,

around certain types of umbilics they may not even exist locally. However, up to the

problem of closing periods, the results on constant mean curvature surfaces can well

be read as global results: here, the Christo�el transform can be determined without

integration which ensures its global existence (with branch points at the umbilics of

the original surface).

A central result is obtained by carefully analyzing the relation between Dar-

boux and Christo�el pairs: we derive a Riccati type equation describing all Darboux

transforms of a given isothermic surface. This equation is crucial for the explicit cal-

culation of Darboux transforms | in the smooth case (all the pictures shown in this

paper are obtained from this equation) as well as in the theory of discrete isothermic

nets [10]. Moreover, most of our remaining results are di�erent applications of the

Riccati equation: �rst, we extend Bianchi's permutability theorems for Darboux and

Christo�el transforms for the codimension 2 setup. We then discuss constant mean

curvature surfaces in 3-dimensional Euclidean space as \special" isothermic surfaces:

they can be characterized by the fact that their Christo�el transforms arise as Dar-

boux transforms

3

. Together with the Riccati equation, this provides more detailed

knowledge about the 1

3

constant mean curvature Darboux transforms of a constant

mean curvature surface | whose existence is a classical result due to Bianchi [1].

Our new proof shows that any such Darboux transform has (pointwise) constant dis-

tance to the Christo�el transform. This fact provides a geometric de�nition for a

3

While the notion of \Darboux pairs" is naturally a conformal notion (i.e. relates surfaces in

M�obius space) the notion of \Christo�el pairs" is a Euclidean one. This might explain the (untypical)

fact that constant mean curvature surfaces in Euclidean space have a special position, not constant

mean curvature surfaces in any space of constant curvature.
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The Darboux Transform 315

Figure 1: A Darboux transform of a torus of revolution

discrete analog of smooth constant mean curvature surfaces [10]. We conclude this

paper relating this 3-dimensional family with the Bianchi-B�acklund transformation

for constant mean curvature surfaces discussed in [12] (cf.[1]).

2 Darboux pairs in the conformal 4-sphere

In 3-dimensional M�obius space (the conformal sphere S

3

) an isothermic surface may

be characterized by the existence of conformal curvature line coordinates around

each (nonumbilic) point

4

. Note that the notion of principal curvature directions

is conformally invariant | even though the second fundamental form is not. In

higher codimensions the second fundamental form (with respect to any metric in the

conformal class) takes values in the normal bundle. In order to diagonalize this vector

valued second fundamental form, i.e. simultaneously diagonalize all components of a

4

As mentioned earlier, there is a variety of possible de�nitions for isothermic surfaces which are

all equivalent away from umbilics | for example, any of the characterizations of isothermic surfaces

(cf.[9]) given in this paper could be used as (global) de�nitions instead of de�nition 1 (cf.[11]).
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basis representation, the surface's normal bundle has to be 
at

5

. This is an implicit

prerequisite in the following

Definition 1 A (2-dimensional) surface in (4-dimensional) M�obius space is called

isothermic if around each (nonumbilic) point there exist conformal curvature line

coordinates, i.e. conformal coordinates which diagonalize the (vector valued) second

fundamental form taken with respect to any conformal metric of the ambient space.

In order to understand the notion of a \Darboux pair of isothermic surfaces" we

also have to learn what a \sphere congruence" is and what we will mean by \envelope

of a sphere congruence":

Definition 2 A congruence of 2-spheres in (4-dimensional) M�obius space is a 2-

parameter family of 2-spheres.

A 2-dimensional surface is said to envelope a congruence of 2-spheres if at each

point it is tangent

6

to a corresponding 2-sphere.

Note that the requirements on a congruence of 2-spheres in 4-space to be en-

veloped by two surfaces are much more restrictive than on a hypersphere congruence

[9]. Also, a congruence of 2-spheres in S

4

may have only one envelope | which gener-

ically does not occur in the hypersphere case. In the second half of the paper we will

concentrate on the more familiar situation in 3-space.

If, however, we have two surfaces which envelope a congruence of 2-spheres the

congruence will establish a point to point correspondence between its two envelopes

by assigning the point of contact on one surface to the point of contact on the other

surface. For a 3-dimensional ambient space it is well known [3] (cf. [7]) that two

cases can occur if this correspondence preserves curvature lines

7

and is conformal:

the congruence consists of planes in a certain space of constant curvature | in which

case the two envelopes are M�obius equivalent | or, both envelopes are isothermic |

in this case one surface is called a \Darboux transform" of the other (see [9], compare

[3] or [4]). These remarks may motivate the following

Definition 3 If a congruence of 2-spheres (which is not a plane congruence in a

certain space of constant curvature) is enveloped by two isothermic surfaces, the cor-

respondence between its two envelopes being conformal and curvature line preserving,

the surfaces are said to form a Darboux pair. Each of the two surfaces is called a

Darboux transform of the other.

Before studying Darboux pairs in Euclidean space we will recall

3 A basic characterization for Darboux pairs

In order to discuss (Darboux) pairs of surfaces in 4- (or 3-) dimensional M�obius

geometry we consider the conformal 4-sphere as the quaternionic projective line [9]:

S

4

�

=

IHP

1

= fx � IH jx 2 IH

2

g: (1)

5

Since the principal directions of the (scalar) second fundamental forms with respect to any

normal vector are conformally invariant, as in the codimension 1 case, the 
atness of the normal

bundle is a conformal invariant, too.

6

As usually done in the 3-dimensional case, we also want to allow the surface to degenerate.

7

This is what is called a \Ribaucour sphere congruence".
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The Darboux Transform 317

Note that we consider the space IH

2

of homogeneous coordinates of the quaternionic

projective line as a right vector space over the quaternions IH.

Now, let (f;

^

f ) : M

2

! P be an immersion into the (symmetric) space of point

pairs

8

in S

4

,

P := f(x; y) 2 S

4

� S

4

jx 6= yg: (2)

We may write the derivatives of f and

^

f as

9

df = f' +

^

f!; d

^

f = f!̂ +

^

f'̂ (3)

where '; !; '̂; !̂ : TM ! IH denote suitable quaternionic valued 1-forms. Then, the

integrability conditions d

2

f = d

2

^

f = 0 for f and

^

f | the Maurer Cartan equations

| read

0 = d'+ ' ^ '+ !̂ ^ ! (Gau� equation for f),

0 = d! + ! ^ '+ '̂ ^ ! (Codazzi equation for f),

0 = d!̂ + !̂ ^ '̂+ ' ^ !̂ (Codazzi equation for

^

f ),

0 = d'̂+ '̂ ^ '̂+ ! ^ !̂ (Gau� equation for

^

f ).

(4)

Since the quaternions are not commutative ' ^ ' 6= 0 in general. Before continuing,

let us list some useful identities for quaternionic 1-forms: let �; � : TM ! IH be

quaternionic valued 1-forms and g : M ! IH be a quaternionic valued function; then

� ^ g� = �g ^ �;

� ^ � = �

�

� ^ ��;

d(g�) = dg ^ �+ g � d�;

d(�g) = �� ^ dg + d� � g;

(5)

where (� ^ �)(x; y) := �(x)�(y) � �(y)�(x).

In this framework we are now able to state a basic characterization for Darboux

pairs of isothermic surfaces (for more details

10

including a proof see [9]):

Proposition 1 A pair of surfaces (f;

^

f ) : M

2

! P is a Darboux pair if and only if

! ^ !̂ = !̂ ^ ! = 0 (6)

where !; !̂ : TM ! IH are de�ned by

df = f' +

^

f!; d

^

f = f!̂ +

^

f'̂: (7)

It is easy to see that this characterization does not depend upon the choice

of homogeneous coordinates for the two surfaces: given a change of homogeneous

coordinates (f;

^

f ) 7! (fa;

^

f â), a; â : M ! IH, we have

d(fa) = (fa) � (a

�1

'a + a

�1

da) + (

^

f â) � (â

�1

!a);

d(

^

fâ) = (fa) � (a

�1

!̂â) + (

^

f â) � (â

�1

'̂â+ â

�1

dâ):

(8)

8

The homogeneous coordinates of a pair of (di�erent) points in IHP

1

form a basis of IH

2

. Thus, P

can be identi�ed with the symmetric space

Gl(2;IH)

IH

�

�IH

�

. Sometimes it is more convenient to use suitably

normalized coordinates: the groupGl(2; IH) may be replaced by a 15-dimensional subgroup Sl(2; IH)

which is a double cover of the group of orientation preserving M�obius transformations of S

4

[9].

9

We will use \f" and \

^

f" for the point maps into S

4

as well as for their homogeneous coordinates.

10

In fact, this proposition states the connection between Darboux pairs and \curved 
ats" [8] in

the symmetric space of point pairs.
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4 Christoffel pairs of isothermic surfaces in Euclidean space

Another observation is that introducing a real parameter into the Maurer Cartan

equations (4) we can obtain the Darboux pair equations (6) together with the original

integrability conditions as integrability conditions of a 1-parameter family of Darboux

pairs | the \associated family" of Darboux pairs

11

: writing

df

r

= f

r

'+

^

f

r

(r

2

!); d

^

f

r

= f

r

(r

2

!̂) +

^

f

r

'̂ (9)

with a parameter r 2 IR the Gau� equations for f

r

and

^

f

r

become

0 = d'+ ' ^ ' + r

4

� !̂ ^ !;

0 = d'̂+ '̂ ^ '̂ + r

4

� ! ^ !̂

(10)

while the Codazzi equations remain unchanged. This shows that if there exist surface

pairs | not necessarily Darboux | (f

r

;

^

f

r

) for more than one value of r > 0, then,

we have a whole 1-parameter family of Darboux pairs.

Assuming we have such a 1-parameter family (f

r

;

^

f

r

) of Darboux pairs a special

situation will occur when r ! 0. To discuss this, we assume ' = '̂ = 0 without loss

of generality: we have 0 = d' + ' ^ ' and 0 = d'̂ + '̂ ^ '̂ and thus at least locally

' = �da a

�1

and '̂ = �dâ â

�1

with suitable functions a; â : M ! IH. Rescaling by

those and applying (8) gives ' = '̂ = 0. Thus,

df

r

=

^

f

r

(r

2

!); d

^

f

r

= f

r

(r

2

!̂); (11)

and after the rescaling (f;

^

f ) 7! (f

1

r

;

^

fr) (or (f;

^

f ) 7! (fr;

^

f

1

r

), respectively) we see

that

^

f (or f) becomes a �xed point in the conformal 4-sphere | which should be

interpreted as a point at in�nity. Thus, the other limit surfaces, f

0

and

^

f

0

, naturally

lie in (di�erent) Euclidean spaces. Identifying these two Euclidean spaces \correctly"

we obtain df

0

= �! and d

^

f

0

= !̂ [9].

These two limit surfaces

^

f

c

0

:= f

0

and f

c

0

:=

^

f

0

usually do not form a Darboux

pair | in general they do not even envelope a congruence of 2-spheres

12

. But they

do form what is called a Christo�el pair:

Definition 4 Two surfaces f

0

;

^

f

0

: M

2

! IR

4

�

=

IH in Euclidean 4-space are said to

form a Christo�el pair if they induce conformally equivalent metrics on M and have

parallel tangent planes with opposite orientations. Each of the surfaces of a Christo�el

pair is called a Christo�el transform or dual of the other.

Note that the two surfaces of a Christo�el pair are automatically isothermic; in

fact, isothermic surfaces can be characterized by the (local) existence of a Christo�el

transform [9]. The Christo�el transform of an isothermic surface is unique

13

up to a

11

As we mentioned in a previous footnote (10) Darboux pairs are actually curved 
ats in the

symmetric space of point pairs | and curved 
ats arise in associated families.

12

This might seem more natural if we remember that f

0

and

^

f

0

take values in \di�erent"Euclidean

spaces (cf. [4]). | However, one of these surfaces and the point at in�nity (which are the remains

of the other surface) do form a (degenerate) Darboux pair.

13

Except in one case: Christo�el transforms of the 2-sphere appear in 1-parameter families. We

will discuss this case later (see page 324).
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The Darboux Transform 319

homothety and a translation | so that in the sequel we will denote the Christo�el

transform of an isothermic surface f by f

c

.

Finally, let us state a characterization of Christo�el pairs similar to that for

Darboux pairs:

Proposition 2 Two surfaces f

0

;

^

f

0

: M

2

! IR

4

�

=

IH form a Christo�el pair if and

only if

d

�

f

0

^ d

^

f

0

= d

^

f

0

^ d

�

f

0

= 0: (12)

Both surfaces of a Christo�el pair are isothermic.

As for the characterization of Darboux pairs (page 317) a proof may be found

in [9]. However, in case of 3-dimensional ambient space we will present an easy proof

later (page 323) using some of the calculus we are going to develop.

Now we are prepared to study

5 Darboux pairs in IR

4

Let (f;

^

f ) : M

2

! P denote a pair of surfaces with

df = f' +

^

f!; d

^

f = f!̂ +

^

f'̂; (13)

as before. Assuming that f;

^

f : M ! IH � f1g

�

=

IH take values in Euclidean 4-space

we see that ' = �! and '̂ = �!̂, and hence

df = (

^

f � f) � !; d

^

f = (f �

^

f ) � !̂: (14)

This allows us to rewrite condition (6) on f and

^

f to form a Darboux pair

14

as

0 = df ^ (f �

^

f )

�1

d

^

f = d

^

f ^ (

^

f � f)

�1

df: (15)

As a �rst consequence of these equations we derive the equations

0 = df ^ (

^

f � f)

�1

d

^

f (

^

f � f)

�1

= (

^

f � f)

�1

d

^

f (

^

f � f)

�1

^ df;

0 = d

^

f ^ (f �

^

f )

�1

df(f �

^

f )

�1

= (f �

^

f )

�1

df(f �

^

f)

�1

^ d

^

f

(16)

for any Darboux pair (f;

^

f ). Since (15) also implies

0 = d[(

^

f � f)

�1

d

^

f(

^

f � f)

�1

] = d[(f �

^

f )

�1

df(f �

^

f )

�1

] (17)

we conclude that the Christo�el transforms f

c

and

^

f

c

of f and

^

f are given by

df

c

= (

^

f � f)

�1

d

^

f (

^

f � f)

�1

;

d

^

f

c

= (f �

^

f )

�1

df(f �

^

f)

�1

:

(18)

Finally, if we �x the translations of f

c

and

^

f

c

such that

(f

c

�

^

f

c

) = (f �

^

f )

�1

(19)

| note that d(f �

^

f )

�1

= d(f

c

�

^

f

c

) | we learn from the above characterization

(15) of Darboux pairs that f

c

and

^

f

c

also form a Darboux pair (cf. [2]):

14

Hopefully, the reader will forgive our context dependent notation: f and

^

f denote points in

IHP

1

�

=

S

4

, vectors in IH

2

or numbers in IH

�

=

IR

4

.
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Theorem 1 If f;

^

f : M

2

! IR

4

form a Darboux pair, then, their Christo�el trans-

forms f

c

;

^

f

c

: M

2

! IR

4

(if correctly scaled and positioned) form a Darboux pair,

too.

So far we learned how to derive the Christo�el transforms f

c

and

^

f

c

of two

surfaces f and

^

f forming a Darboux pair. But usually it will be much easier to

determine an isothermic surface's Christo�el transform than a Darboux transform.

In the next section we will see that deriving Darboux transforms

^

f and

^

f

c

of two

surfaces f and f

c

forming a Christo�el pair

15

comes down to solving

6 A Riccati type equation

Solving (18) for d

^

f we obtain d

^

f = (

^

f � f)d

�

f

c

(

^

f � f). This yields the following

Riccati type partial di�erential equation

16

for g := (

^

f � f):

dg = g d

�

f

c

g � df: (20)

Using our characterization (12) of Christo�el pairs it is easily seen that this equation

is \completely" (Frobenius) integrable. Note that | in agreement with our previous

results | the common transform g

c

= �g

�1

for Riccati equations yields

dg

c

= g

c

d

�

f g

c

� df

c

; (21)

showing that

^

f

c

= f

c

+ g

c

will provide a Darboux transform of f

c

whenever f + g is

a Darboux transform of f coming from a solution g of (20).

Since every Darboux transform

^

f of an isothermic surface f provides a Christo�el

transform f

c

of f via (18) every Darboux transform comes from a solution of (20) |

if we do not �x the scaling of the Christo�el transform f

c

. On the other hand every

solution g of (20) de�nes a Darboux transform

^

f = f+g of f since df ^ g

�1

d(f+g) =

d(f + g) ^ g

�1

df = 0. This seems to be worth formulating as a

Theorem 2 If f; f

c

: M

2

! IR

4

form a Christo�el pair of isothermic surfaces every

solution of the integrable Riccati type partial di�erential equation

dg = g d

�

f

c

g � df (22)

provides a Darboux transform

^

f = f + g of f . On the other hand, every Darboux

transform

^

f of f is obtained this way | if we do not �x the scaling of f

c

.

At this point, we should discuss the e�ect of a rescaling of the Christo�el trans-

form f

c

in the equation (20). For this purpose we examine the equations

dg = g (�r

4

d

�

f

c

) g � df (23)

15

Note that the notation

^

f

c

for a Darboux transform of f

c

makes sense because of our previous

theorem: we have

b

f

c

=

^

f

c

.

16

The pictures in this paper were produced usingMathematica to numerically integrate this Riccati

type equation.
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The Darboux Transform 321

Figure 2: Darboux transforms of the Catenoid when H

c

!1

where r 6= 0 is a real parameter. For the derivatives of f and a Darboux transform

^

f = f + g of f this yields

df = f � [�g

�1

df ] +

^

f � [g

�1

df ];

d

^

f = f � [�r

4

d

�

f

c

g] +

^

f � [�r

4

d

�

f

c

g]:

(24)

Interpreting f;

^

f : M

2

! IH

�

=

IH�f1g as homogeneous coordinates of the point pair

map (f;

^

f ) : M

2

! P we may choose new homogeneous coordinates by performing a

rescaling (f;

^

f ) 7! (fr;

^

f (rg)

�1

) to obtain

17

d[fr] = [fr] � [�g

�1

df ] + [

^

f(rg)

�1

] � [r

2

df ];

d[

^

f(rg)

�1

] = [fr] � [�r

2

d

�

f

c

] + [

^

f(rg)

�1

] � [df g

�1

]:

(25)

Even though this system resembles very much our original system (9) which describes

the associated family of Darboux pairs, there is an essential di�erence: in (9) the

forms ', !, '̂ and !̂ are independent of the parameter r whereas the forms g

�1

df and

df g

�1

in the system we just derived do depend on r. In fact, in the associated family

(f

r

;

^

f

r

) of Darboux pairs obtained from (9) both surfaces, f

r

as well as

^

f

r

, change

with the parameter r whereas the parameter contained in the Riccati equation just

e�ects the Darboux transform

^

f =

^

f

r

while the original surface f remains unchanged.

However, the original system (9) appears in the linearization of our Riccati equation

18

which indicates a close relation of these two parameters.

As a �rst application of this parameter which occurs from rescalings of the

Christo�el transform f

c

in our Riccati equation we may prove an extension of

Bianchi's permutability theorem [2] for Darboux transforms:

Theorem 3 Let

^

f

1;2

: M

2

! IH be two Darboux transforms of an isothermic surface

f : M

2

! IH,

d

^

f

1;2

= r

1;2

(

^

f

1;2

� f) d

�

f

c

(

^

f

1;2

� f); (26)

where we �xed any scaling for the Christo�el transform f

c

of f . Then, there exists

an isothermic surface

^

f : M

2

! IH which is an r

1

-Darboux transform of

^

f

2

and an

17

Note that this rescaling provides an Sl(2; IH) framing of the point pair map (f;

^

f) [9].

18

Here, we would like to thank Fran Burstall for helpful discussions.
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r

2

-Darboux transform of

^

f

1

at the same time

19

:

d

^

f = r

2;1

(

^

f �

^

f

1;2

) d

�

^

f

c

1;2

(

^

f �

^

f

1;2

): (27)

Moreover, the points of

^

f lie on the circles determined by the corresponding points of

f ,

^

f

1

and

^

f

2

, the four surfaces having a constant (real) cross ratio

20

r

2

r

1

� (f �

^

f

1

)(

^

f

1

�

^

f )

�1

(

^

f �

^

f

2

)(

^

f

2

� f)

�1

: (28)

To prove this theorem we simply de�ne the surface

^

f : M

2

! IH by solving the

cross ratio equation

21

(28) for

^

f :

^

f := [r

2

^

f

1

(

^

f

1

� f)

�1

� r

1

^

f

2

(

^

f

2

� f)

�1

] � [r

2

(

^

f

1

� f)

�1

� r

1

(

^

f

2

� f)

�1

]

�1

: (29)

Using this ansatz, it is a straightforward calculation to verify the Riccati equations

(27) which proves the theorem.

As indicated earlier, from now on we will concentrate on surfaces in 3-dimensional

Euclidean space IR

3

�

=

ImIH:

7 Christoffel pairs in IR

3

In this situation, much of our previously developed calculus will simplify considerably.

For example, we will be able to give an easy proof of our characterization of Christo�el

pairs and to write down the Christo�el transform of an isothermic surface quite explic-

itly. First we note that our characterizations (15) and (12) of Darboux and Christo�el

pairs of isothermic surfaces reduce to just one equation: if f;

^

f : M

2

! ImIH both

take values in the imaginary quaternions,

d

^

f ^ d

�

f = �d

�

f ^ d

^

f;

d

^

f ^ (

^

f � f)

�1

df = �df ^ (f �

^

f )

�1

d

^

f:

(30)

In order to continue we will collect some identities present in the codimension 1 case.

We may orient an immersion f : M

2

! IR

3

�

=

ImIH by choosing a unit normal �eld

n : M

2

! S

2

. This de�nes the complex structure J on M via

df � J = ndf (31)

| note that since f and n take values in the imaginary quaternions

ndf = �hn; dfi + n � df = n� df = �df n: (32)

The Hodge operator is then given as the dual of this complex structure:

�� = �� � J (33)

19

Note, that this claim makes no sense before we �x a scaling for the Christo�el transforms

^

f

c

1;2

of

^

f

1;2

. But, according to our \permutability theorem" for Christo�el and Darboux transforms

(theorem 1) there is a canonical scaling for

^

f

c

1;2

after we �xed the scaling of f

c

.

20

For a comprehensive discussion of the (complex) cross ratio in IR

4

�

=

IH see [10]. The idea for

the proof given in this paper actually originated from the discrete version of this theorem.

21

Note that the denominator does not vanish as long as

^

f

1

6=

^

f

2

. For r

1

= r

2

we get

^

f = f .
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for any 1-form � on M .

With this notation we are now able to give a useful reformulation

22

of the equation

arising in our characterizations of Darboux pairs and Christo�el pairs: if � : TM ! IH

is any quaternionic valued 1-form we have

(df ^ �)(x; Jx) = df(x) � (� � �(x) + n �(x)) (34)

for any x 2 TM . Consequently, df ^ � = 0 if and only if

�� = n �: (35)

This criterium shows that the space of imaginary solutions � : TM ! ImIH of the

equation 0 = df ^� is pointwise 2-dimensional

23

| if � is an (injective) solution, then,

every other solution ~� is of the form

~� = (a + b n) � � (36)

with suitable functions a; b : M ! IR. But one (imaginary) solution to the equation

0 = df ^ � is easily found: it is well known that

d � df = �dn ^ df = H df ^ df (37)

where H is the mean curvature of f . Thus

df ^ (dn+H df) = 0 (38)

which gives an injective solution � = dn+H df away from umbilics of f .

At this point, we are ready to give the announced proof of our characterization

of Christo�el pairs (12) in the 3-dimensional case:

Theorem 4 Two surfaces f; f

c

: M

2

! IR

3

�

=

ImIH form a Christo�el pair if and

only if

df ^ df

c

= 0: (39)

Generically, the Christo�el transform f

c

of f is uniquely determined by f up to

homotheties and translations of IR

3

.

The fact that both surfaces of a Christo�el pair in 3-space are isothermic is

classical (see for example [5]) | and thus we omit this calculation.

Now, in order to prove this theorem we note that from the above we know that

f

c

: M

2

! ImIH satis�es (39) if and only if

�df

c

= ndf

c

: (40)

22

At this point we would like to thank Ulrich Pinkall for many helpful discussions | this criterium

is actually due to him.

23

The space of solutions with values in the full quaternions is 4-dimensional as is easily seen: (36)

becomes

~� = (a+ b n) � � + (��+ n�)

with an arbitrary real 1-form � : TM ! IR.
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But this equation means that in corresponding points f and f

c

have parallel tangent

planes and that the almost complex structure induced by f

c

with respect to n

c

:= �n

is just J | the same as that induced by f with respect to n. Thus,

df ^ df

c

= 0 (41)

if and only if f; f

c

: M

2

! IR

3

have parallel tangent planes with opposite orientations

and they induce conformally equivalent metrics, i.e. they form a Christo�el pair.

Now assume we have not just one but two Christo�el transforms f

c

and

~

f

c

of an

isothermic surface f : M

2

! IR

3

. Then we know from (36) that

d

~

f

c

= (a+ b n) � df

c

: (42)

The integrability condition for

~

f

c

reads

0 = da ^ df

c

+ db^ �df

c

+ bH

c

df

c

^ df

c

(43)

showing that a = const and b = 0 since df

c

^ df

c

takes values in normal direction while

all other components are tangential | provided that f

c

is not a minimal surface

24

.

This concludes the proof.

With (38) it also follows that

dn+H df = (a+ b n)df

c

(44)

for suitable functions a; b : M ! IR. Similarly, we obtain

�dn+ H

c

df

c

= (a

c

+ b

c

n)df (45)

by interchanging the roles of f and f

c

. Adding these two equations yields a = H

c

,

a

c

= H and b = b

c

= 0 since the forms df , ndf , df

c

and ndf

c

are linearly independent

(over the reals). As a consequence, we have a quite explicit formula relating the two

surfaces of a Christo�el pair:

H

c

df

c

= dn+H df: (46)

This equation shows that whenever one of the surfaces of a Christo�el pair is a

minimal surface the other is totally umbilic (namely, a scaling of its Gau� map) and

vice versa. This brings us back to our previous problem of the uniqueness of Christo�el

transforms: assume we have a Christo�el pair (f; n) consisting of a minimal surface

f and its Gau� map n. Then all the pairs

( a

Z

(cos(t) + sin(t)n) � df ; n ) (47)

with real constants a and t will also form Christo�el pairs. Up to homotheties (given

by a) this will run us through the associated family of minimal surfaces (given by t)

re
ecting the fact that associated minimal surfaces have the same Gau� map

25

.

Another fact that can be derived from (46) is that the (correctly scaled and

positioned) Christo�el transform of a surface of constant mean curvature H 6= 0 is its

24

The case of minimal Christo�el transforms will be discussed below.

25

However, choosing \curvature lines" for the Gau� map will �x the minimal surface [9].
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Figure 3: A Darboux transform of the Catenoid
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parallel surface f +

1

H

n of the same constant mean curvature H

c

= H. Note that this

parallel surface induces a conformally equivalent metric on the underlying manifold

M

2

and consequently it is also a Darboux transform of the original surface

26

| the

enveloped sphere congruence consisting of spheres with constant radius

1

2H

. Later, we

will see that constant mean curvature surfaces in Euclidean space can be characterized

by the fact that their Christo�el transforms are Darboux transforms too. Thus, in

the remaining part of this paper we will study constant mean curvature (H 6= 0 or

H = 0) Darboux transforms of

8 Surfaces of constant mean curvature

Using the reformulation (35) of our characterizing equation (15) of Darboux pairs we

conclude that for any Darboux transform

^

f = f + g of f : M

2

! IR

3

�g d

^

f = n g d

^

f (48)

where we used the fact that g

�1

= �

1

jgj

2

g for g 2 ImIH. Consequently, the normal

�eld n̂ of

^

f is given by

27

n̂ =

gng

jgj

2

=

1

jgj

2

(jgj

2

n� 2hn; gig) (49)

since we must have �d

^

f = �n̂d

^

f .

Thus, if the normal �eld of a Darboux transform

^

f of an isothermic surface

f : M

2

! ImIH equals that of its Christo�el transform,

n̂ = n

c

= �n; (50)

then g = an for a suitable constant a 2 IR (remark that a has to be constant in order

to obtain parallel tangent planes of

^

f and f). With (46) we conclude

Hdf + dn = H

c

df

c

= H

c

(df + dg) = H

c

df +H

c

a dn (51)

which implies that either one of the surfaces is minimal and the other is totally umbilic,

or, H = H

c

=

1

a

which means that f and

^

f = f

c

form a pair of parallel constant

mean curvature surfaces.

Together with our previous remark (page 326) this leaves us with the following

characterization of constant mean curvature surfaces:

26

Note that in order to obtain g =

n

H

as a solution of our Riccati type equation (20) the Christo�el

transform df

c

of f has to be scaled such that H

c

=

1

H

| then, the Riccati equation is equivalent

to (46). This means that the parallel constant mean curvature surface appears at a well de�ned

location in the associated family.

27

Note that with this formula we easily see that

^

f is the second envelope of a sphere congruence

enveloped by f :

2hg;nif + jgj

2

n = 2hg;ni

^

f + jgj

2

n̂:

The second fundamental form of

^

f is quite complicated, but at least, when introducing frames it

can be seen that it has the same principal directions as the second fundamental form of f

c

. Since

^

f also induces the conformally equivalent metric jd

^

f j

2

= jgj

4

jdf

c

j

2

we get half of a proof for our

characterization (15) of Darboux pairs in the case of 3-dimensional ambient space.
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Theorem 5 The (correctly scaled and positioned) Christo�el transform f

c

of an

isothermic surface f : M

2

! IR

3

is also a Darboux transform

^

f of f if and only

if f is a surface of constant mean curvature H 6= 0. In this case

^

f = f

c

is the parallel

surface of constant mean curvature.

In order to study constant mean curvature Darboux transforms of constant mean

curvature surfaces in general we have to calculate the mean curvature of a Darboux

transform

^

f of an isothermic surface. We will eventually derive the existence of a 3-

parameter family of constant mean curvature Darboux transforms of a constant mean

curvature surface, all of them having (pointwise) constant distance from the parallel

constant mean curvature surface of the original surface. There are several ways to do

so: we could calculate the second fundamental form of

^

f | which is not convenient

because this second fundamental form looks quite di�cult | or, we could use (37)

to directly calculate

^

H with the help of our Riccati type equation (20). This second

way is quite straightforward but not very interesting. So, we will present another way

which grew out of discussions with Ulrich Pinkall

28

: observing that if d

^

f = ��gdf

c

g,

the integrability condition for

^

f becomes

0 = �g(dg g

�1

^ df

c

� df

c

^ dg g

�1

)g; (52)

i.e. the reality of the form df

c

^ dg g

�1

. Since the volume form

1

2

df

c

^ � df

c

induced

by f

c

is a basis of the real 2-forms on M this may be reformulated as

0 = df

c

^ (dg g

�1

�

1

2

U � df

c

) (53)

with a suitable function U : M ! IR. With (35) we obtain the equivalent equation

n

c

dg � �dg = U df

c

g (54)

| the \Dirac equation" with reference immersion f

c

.

Using this equation we may calculate the mean curvature

^

H of

^

f in terms of the

function U via

d � d

^

f =

1

jgj

2

(U �H

c

) d

^

f ^ d

^

f (55)

since

�� ^ �� = � ^ � (56)

for any two 1-forms �; � : TM ! IH on a Riemann surface and hence

�df

c

^ dg =

1

2

(�df

c

^ dg � �df

c

^ � � dg) =

1

2

df

c

^ (n

c

dg � �dg): (57)

Substituting our Riccati equation (20) into the Dirac equation yields U = 2hn; gi and

consequently

^

H =

1

jgj

2

(2hn; gi �H

c

): (58)

28

The Dirac equation (54) which we will discover on our way can be considered as a replacement

for the Cauchy Riemann equations in a generalized \Weierstra� representation" for surfaces in IR

3

.

Given an immersion f :M

2

! IR

3

this generalized \Weierstra� representation" will provide us with

any immersion

^

f which induces the same complex structure on M .
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Figure 4: Darboux transforms of the Catenoid when H

c

! 0

Now we assume the mean curvature H of our original surface f to be constant

| and consequently H

c

is constant too | and rewrite this equation as

0 = h

^

H

(g) :=

^

H jgj

2

� 2hn; gi+H

c

: (59)

Taking the derivative of this function h

C

where C denotes any constant and assuming

H

c

to be constant yields

dh

C

(g) = �2hdf

c

; gi � h

C

(g) � 2hdf; gi � (C �H) (60)

where we got rid of dn by using (46). This shows that whenever we choose an initial

value g(p

0

) = g

0

for a function g : M

2

! ImIH such that h

H

(g

0

) = 0 the trivial

solution h

H

� 0 will be the unique solution to the above (linear and homogeneous:

C = H) di�erential equation. Thus our Riccati type equation (20) will produce a

Darboux transform

^

f = f + g of constant mean curvature

^

H = H out of a surface of

constant mean curvature (H 6= 0 or H = 0).

To conclude let us study the geometry of the condition h

H

(g) = 0: for a minimal

surface this simply says that the points

^

f (p) of

^

f = f+g always lie in distance

1

2

H

c

o�

the tangent planes f(p) +d

p

f(T

p

M ) of f . Since we also have the freedom of rescaling

the Christo�el transform f

c

of f we end up with a 3-parameter family of minimal

Darboux transforms of a minimal surface (cf. [2]). A minimal Darboux transform

of the Catenoid is shown in �gure 3. Sending H

c

! �1 | note that in case of

surfaces of constant mean curvature the associated family of Darboux pairs may be

parameterized by H

c

| the Darboux transforms look more and more like the original

surface (Fig. 2) while sending H

c

! 0 the Darboux transforms approach a planar

surface patch | the best compromise between the Catenoid's Christo�el transform

and a minimal surface (Fig. 4).

In case of a surface of constant mean curvature H 6= 0 we may reformulate the

condition h

H

(g) = 0 as

jH g � nj

2

= 1�H

c

H (61)

showing that the points

^

f (p) lie on spheres centered on the parallel surface f +

1

H

n

and with constant radius

1

H

p

1�H

c

H. Since the radius has to be real to provide real

Darboux transforms we see that we have to have H

c

H � 1 which restricts the range of

the parameter H

c

to a ray H

c

�

1

H

containing 0 (without loss of generality we assume
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H � 0). As H

c

!�1 and H

c

! 0 we obtain the original surface and its Christo�el

transform, respectively. But now, we obtain the Christo�el transform a second time

| as a Darboux transform when H

c

=

1

H

, i.e. when the spheres h

H

(g) = 0 collapse

to points. Figures 5 and 6 show constant mean curvature Darboux transforms of the

cylinder.

To summarize the results we found in this section we formulate a theorem gen-

eralizing Bianchi's theorem on minimal Darboux transforms of minimal surfaces [2]:

Theorem 6 Any surface of constant mean curvature (H 6= 0 or H = 0) in Euclidean

3-space allows a 3-parameter family of Darboux transforms into surfaces of the same

constant mean curvature.

In case of a minimal surface all its minimal Darboux transforms have (pointwise)

constant normal distance from the original surface while,

in case of a surface of constant mean curvature H 6= 0, all the constant mean

curvature Darboux transforms have (pointwise) constant distance from the parallel

constant mean curvature surface of the original surface.

Having a second look at the Darboux transform of the cylinder shown in �gure

5 we recognize a strong similarity to Ivan Sterling's \doublebubbleton" [12]. This

suggests a relation between our constant mean curvature Darboux transform and

9 The Bianchi-B

�

acklund transform of constant mean curvature sur-

faces

We may supply any surface f : M

2

! IR

3

of constant mean curvature H =

1

2

with

conformal coordinates (x; y) : M

2

! IR

2

such that

I = e

2u

(dx

2

+ dy

2

);

II = e

u

(sinh(u)dx

2

+ cosh(u)dy

2

)

(62)

| re
ecting the fact that every surface of constant mean curvature is isothermic.

Then, a new surface of constant mean curvature | a \Bianchi-B�acklund transform"

of the original surface | can be obtained as

^

f = f + g where

g =

2

sinh(�) cosh(� + ')

�

cosh(�)e

�u

[cos f

x

� sin f

y

]� sinh'n

�

; (63)

� denoting a real parameter and ' + i = � being given by the linear system

�

x

+ iu

y

= sinh � sinh � coshu+ cosh � cosh � sinhu

i�

y

+ u

x

= � sinh � cosh � sinhu� cosh � sinh � coshu:

(64)

In fact, this transformation is obtained by applying two successive B�acklund trans-

forms to the surface of constant Gau� curvature [1] which is parallel to the original

surface of constant mean curvature and then, taking the (correct) parallel surface of

constant mean curvature [12]. In this construction, the second B�acklund transform

has to be matched to the �rst one such that the resulting surface of constant Gau�

curvature is a real surface again.
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Figure 5: A Darboux transform of the cylinder

Documenta Mathematica 2 (1997) 313{333



The Darboux Transform 331

Fixing the scaling of the Christo�el transform f

c

of f such that H

c

= H =

1

2

,

i.e. f

c

= f + 2n, it is an unpleasant but straightforward calculation to see that our

Riccati type equation

dg = g(

sinh

2

(�)

4

df

c

)g � df (65)

is equivalent to the above linear system (64) de�ning the function �. Thus we have:

Theorem 7 Any Bianchi-B�acklund transform of a surface of constant mean curva-

ture is a Darboux transform.

Analyzing the e�ect of the three parameters (� and initial values for ' and  )

contained in the Bianchi-B�acklund transform on the function g : M ! IR

3

at an initial

point we �nd that any solution of our Riccati equation (20) with a positive multiple

of the parallel constant mean curvature surface f + 2n as Christo�el transform f

c

can be obtained via a Bianchi-B�acklund transform

29

. Those constant mean curva-

ture Darboux transforms of a constant mean curvature surface where the Christo�el

transform is taken a negative multiple of the parallel constant mean curvature surface

(see Fig. 6) seem not to occur as Bianchi-B�acklund transforms.

29

Hereby, we also have to allow singularities '!1 to obtain vertical values of g too.
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Figure 6: Another Darboux transform of the cylinder
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Abstract. A quaternionic calculus for surface pairs in the conformal 4-

sphere is elaborated. It introduces a rich algebraic structure and allows

the use of global frames while, at the same time, incorporates the classical

\geometric" model of M�obius geometry providing geometric clarity. This

way, it provides the foundation for the development of new techniques in

M�obius di�erential geometry.

A �eld where the quaternionic calculus already proved particularly useful is

the geometry of transformations of isothermic surfaces: in the second half of

the paper, the relation of Darboux and Christo�el pairs of isothermic sur-

faces and curved 
ats in the symmetric space of point pairs is discussed and

some applications are sketched. In particular, a new viewpoint on relations

between surfaces of constant mean curvature in certain spaces of constant

curvature, and on Bryant's Weierstrass type representation for surfaces of

constant mean curvature 1 in hyperbolic 3-space is presented.
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1. Introduction

It is well known that the orientation preserving M�obius transformations of the \con-

formal 2-sphere" S

2

�

=

=

C [ f1g can be described as fractional linear transformations

z 7!

a

11

z+a

12

a

21

z+a

22

where a = (a

ij

) 2 Sl(2;

=

C). The reason for this fact is that the conformal

2-sphere S

2

�

=

=

CP

1

can be identi�ed with the complex projective line. Introducing

homogeneous coordinates p = v

p

=

C, v

p

2

=

C

2

, on

=

CP

1

the special linear group Sl(2;

=

C)

acts on

=

CP

1

by projective transformations | which are, for 1-dimensional projective

spaces, identical with M�obius transformations | via v

p

=

C 7! Av

p

=

C = v

q

=

C. Thus, in

a�ne coordinates one has

�

z

1

�

7!

�

a

11

a

12

a

21

a

22

�

�

�

z

1

�

'

�

a

11

z+a

12

a

21

z+a

22

1

�

:

This (algebraic) model of M�obius geometry in dimension 2 complements the (\geo-

metric") model commonly used in di�erential geometry: here, the conformal 2-sphere

(or, more general, the conformal n-sphere) is considered as a quadric in the real pro-

jective 3-space IRP

3

and the group of M�obius transformations is isomorphic to the

group of projective transformations of IRP

3

that map the \absolute quadric" S

2

onto

itself (cf.[3]). Equipping the space of homogeneous coordinates of IRP

3

with a Lorentz

scalar product that has the points of S

2

as isotropic (null) lines, the M�obius group

can be identi�ed with the pseudo orthogonal group of this Minkowski space IR

4

1

.

Several attempts have been made to generalize the described algebraic model

to higher dimensions | in particular to dimensions 3 and 4, by using quaternions

(cf.[14],[15]): analogous to the above model, the conformal 4-sphere is identi�ed with

the quaternionic projective line, S

4

�

=

IHP

1

, with Sl(2; IH) acting on it by M�obius

transformations. In order to use such an \algebraic model" in M�obius di�erential

geometry, it is not enough to describe the underlying space and the M�obius group

acting on it, though. One also needs a convenient description for (hyper-) spheres since

the geometry of surfaces in M�obius geometry is often closely related to the geometry

of an enveloped sphere congruence (cf.[3]). For example, Willmore surfaces in S

3

can

be related to minimal surfaces in the space of 2-spheres in S

3

, and the geometry of

isothermic surfaces is related to that of \sphere surfaces" with 
at normal bundle,

\Ribaucour sphere congruences".

One way is to identify a hypersphere s � IHP

1

with the inversion at this sphere.

The problem with this approach is, that only the orientation preserving M�obius trans-

formations are naturally described in the algebraic model | but, inversions are ori-

entation reversing M�obius transformations. Adjoining the (quaternionic) conjugation

as a basic orientation reversing M�obius transformation and working with the larger

group of all M�obius transformations, works relatively �ne for 2-dimensional M�obius

geometry, but turns into a nightmare

1)

in dimension 4 since the quaternions form a

non commutative �eld.

Another way is to identify a sphere s � S

4

�

=

IHP

1

with that quaternionic her-

mitian form on the space IH

2

of homogeneous coordinates that has this sphere s as a

1)

Identifying 2-spheres in S

3

� S

4

�

=

IHP

1

with inversions in S

4

provides a solution in the codimension

1 case, though: as the composition of two inversions at hyperspheres, the inversion at a 2-sphere in S

4

is

orientation preserving.

Documenta Mathematica 2 (1997) 335{350



Curved Flats and Isothermic Surfaces 337

null cone. After discussing some basics in quaternionic linear algebra we will follow

this approach | to obtain not only a description for the space of spheres but also to

establish the relation with the classical \geometric" model of M�obius geometry: the

space of quaternionic hermitian forms will canonically turn into a real six dimensional

Minkowski space, the classical model space.

This (second) way, we combine the advantages of both models for M�obius di�er-

ential geometry: on one side, we introduce a rich algebraic structure which provides

a signi�cant simpli�cation of calculations and, at the same time, we also obtain a cal-

culus that will be more suitable to discuss the global geometry of surfaces in M�obius

geometry, as well as the geometry of discrete nets. On the other side, we keep a close

connection to the classical model of M�obius geometry which will make it easier to

understand the results geometrically. In particular, our calculus will provide an ideal

setting for the study of surface pairs, maps into the (symmetric) space of point pairs

in IHP

1

| in M�obius di�erential geometry, surfaces often occur naturally in pairs,

as envelopes of certain distinguished sphere congruences: for example, Willmore sur-

faces come in dual pairs as envelopes of their common central sphere congruences,

and isothermic surfaces permit pairings via Darboux (and Christo�el) transforms.

The latter will be examined in the remaining part of the paper, on one side

to see the calculus at work, on the other side to demonstrate some new results:

here, our quaternionic calculus provides very elegant characterizations for Darboux

and Christo�el pairs of isothermic surfaces that led to the discovery of the Riccati

type equation (cf.[11]) for the Darboux transformation of isothermic surfaces | an

equation that apparently cannot be derived in the classical calculus (cf.[2]). This is

one reason, why the presented calculus was necessary to develop the de�nition of the

discrete version of the Darboux transformation for discrete isothermic nets and the

(geometric) de�nition of discrete cmc nets (cf.[10]). The mentioned characterizations

rely on the relation between Darboux pairs of isothermic surfaces and curved 
ats in

the space of point pairs | since this space will turn out to be symmetric the notion

of curved 
ats makes sense. Although this relation was already established in [6] for

the codimension 1 case, it might be of interest to see that it also holds in the higher

codimension case

2)

of Darboux pairs in IHP

1

(cf.[13]). Even though our calculus

also provides a framework to discuss global aspects of isothermic surfaces (cf.[12]) we

will only focus on their local geometry: there is a variety of possible de�nitions of

\globally isothermic surfaces" whose degree of generality and whose consequences are

yet to be worked out. However, computer experiments seem to indicate that Darboux

(and Christo�el) transforms of isothermic surfaces only exist locally, in general. And,

worse, near certain types of umbilics even their local existence is not clear | resp.

depends on the chosen de�nition of a \globally isothermic surface" ...

In the last section, we study minimal and constant mean curvature surfaces in 3-

dimensional spaces of constant curvature. These are \special" isothermic surfaces, and

a suitable Christo�el transform in IR

3

can be determined algebraically (in the general

case, an integration has to be carried out). Examining the e�ect of the spectral

parameter that comes with a curved 
at, we obtain a new interpretation for the

relations between surfaces of constant curvature in certain space forms. In fact, these

2)

Most recently, these results were generalized to arbitrary codimension using an extension of the

presented calculus [5].
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relations can be interpreted in terms of Bianchi's \T-transformation" for isothermic

surfaces [2]. For example, the well known relation between minimal surfaces in the

(metric) 3-sphere and surfaces of constant mean curvature in Euclidean space, as

well as the relation between minimal surfaces in Euclidean 3-space and surfaces of

constant mean curvature 1 in hyperbolic 3-space are discussed. In case of the constant

mean curvature 1 surfaces in hyperbolic 3-space, a new form of Bryant's Weierstrass

type representation [4] is given. In this context, the classical Enneper-Weierstrass

representation for minimal surfaces in Euclidean 3-space is described as a Goursat

type transform of the (multiply covered) plane | similar to the way certain surfaces

of constant Gauss curvature are described as a B�acklund transforms of a line. Finally,

the classical Goursat transformation for minimal surfaces is generalized for isothermic

surfaces in Euclidean space.

2. The Study determinant

Throughout this paper we will use various well known models [1] for the non commu-

tative �eld of quaternions:

IH

�

=

fa+ v j a 2 IR

�

=

ReIH; v 2 IR

3

�

=

ImIHg

�

=

fa

0

+ a

1

i + a

2

j + a

3

k j a

0

; a

1

; a

2

; a

3

2 IRg

�

=

fx+ y j jx; y 2

=

Cg

�

=

fA 2M (2� 2;

=

C) j trA 2 IR;A+A

�

2 IRIg:

Herein, we can identify i; j; k with the standard basis vectors of IR

3

�

=

ImIH: if

v; w 2 ImIH are two \vectors" their product v w = �v �w+ v�w which is equivalent

to the familiar identities i

2

= j

2

= k

2

= �1, ij = k = �ji, jk = i = �kj and

ki = j = �ik. Obviously, the �rst model will turn out particularly useful when

focusing on the geometry of 3-space while the decomposition IH

�

=

=

C +

=

C j will prove

useful in the context of surfaces, 2-dimensional submanifolds, since their tangent

planes (and normal planes) carry a natural complex structure. We will switch between

these models as it appears convenient.

As the quaternions can be thought of as a Euclidean 4-space, IR

4

�

=

IH, the

(conformal) 4-sphere S

4

�

=

IR

4

[f1g can be identi�ed with the quaternionic projective

line: S

4

�

=

IHP

1

= flines through 0 in IH

2

g. Thus, a point p 2 S

4

of the conformal

4-sphere is described by its homogeneous coordinates v

p

2 IH

2

; and its stereographic

projection onto Euclidean 4-space IR

4

�

=

fv 2 IH

2

j v

2

= 1g is obtained by normalizing

the second component of v

p

.

Since the quaternions form a non commutative �eld, we have to agree whether

the scalar multiplication in a quaternionic vector space is from the right or left: in

this paper, IH

2

will be considered a right vector space over the quaternions. This

way, quaternionic linear transformations can be described by the multiplication (of

column vectors) with (quaternionic) matrices from the left : A(v�) = (Av)�. For a

quaternionic 2-by-2 matrix A 2 M (2 � 2; IH) we introduce the Study determinant

3)

[1] (cf. Study's \Nablafunktion" [14])

D(A) := det(A

�

A)

= ja

11

j

2

ja

22

j

2

+ ja

12

j

2

ja

21

j

2

� (�a

11

a

12

�a

22

a

21

+ �a

21

a

22

�a

12

a

11

):

3)

Note, that the notion of determinant makes sense for self adjoint matrices A 2M (2� 2; IH).
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This is exactly the determinant of the complex 4-by-4 matrix corresponding to A

when using the complex matrix model for the quaternions. Thus, D clearly satis�es

the usual multiplication law, D(AB) = D(A)D(B), and vanishes exactly when A is

singular. The multiplication law implies that D is actually an invariant of the linear

transformation described by a matrix: D(U

�1

AU ) = D(A) for any basis transforma-

tion U : IH

2

! IH

2

. Also note that 0 � D(A) 2 IR.

Definition. The general and special linear groups of IH

2

will be denoted by

Gl(2; IH) := fA 2M (2� 2; IH) j D(A) 6= 0g

Sl(2; IH) := fA 2M (2� 2; IH) j D(A) = 1g:

With the help of Study's determinant, the inverse of a quaternionic 2-by-2 matrix

A 2 Gl(2; IH) can be expressed directly as

A

�1

=

1

D(A)

�

ja

22

j

2

�a

11

� �a

21

a

22

�a

12

ja

12

j

2

�a

21

� �a

11

a

12

�a

22

ja

21

j

2

�a

12

� �a

22

a

21

�a

11

ja

11

j

2

�a

22

� �a

12

a

11

�a

21

�

:

Note also, that Sl(2; IH) is a 15-dimensional Lie group | it will turn out to be a

double cover of the identity component of the M�obius group of S

4

.

Considering D : IH

2

� IH

2

! IR as a function of two (column) vectors we see

that D(v; v + w) = D(v; w) and D(v; w�) = j�j

2

D(v; w) | similar formulas holding

for the �rst entry since D is symmetric: D(v; w) = D(w; v). Reformulating our

previous statement, we also obtain that D(v; w) = 0 if and only if v and w are

linearly dependent

4)

. Particularly, if v and w are points in an a�ne quaternionic line,

say the Euclidean 4-space fv 2 IH

2

j v

2

= 1g, then D(v; w) = jv

1

�w

1

j

2

measures the

distance between v and w with respect to a Euclidean metric. This fact can be used

to express the cross ratio of four points in Euclidean 4-space (cf.[10]) in terms of the

Study determinant

5)

:

jDV (h

1

; h

2

; h

3

; h

4

)j

2

=

D

�

h

1

h

2

1 1

�

D

�

h

3

h

4

1 1

�

D

�

h

2

h

3

1 1

�

D

�

h

4

h

1

1 1

�

:

The expression on the right hand is obviously invariant under individual rescalings of

the vectors which shows that the cross ratio is, in fact, an invariant of four points in

the quaternionic projective line IHP

1

.

3. Quaternionic hermitian forms

will be a key tool in our calculus for M�obius geometry: any quaternionic hermitian

form s : IH

2

� IH

2

! IH,

s(v; w

1

�+ w

2

�) = s(v; w

1

)� + s(v; w

2

)�

s(v

1

�+ v

2

�;w) =

�

�s(v

1

; w) + ��s(v

2

; w)

s(w; v) = s(v; w);

4)

All these properties are also easily checked directly, without using the complex matrix representation

of the quaternions.

5)

For a more complete discussion of the complex cross ratio of four points in space consult [10].
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is determined by its values on a basis (e

1

; e

2

) of IH

2

, s

ij

= s(e

i

; e

j

). Since s is

hermitian, s

11

; s

22

2 IR and s

21

= �s

12

2 IH, the quaternionic hermitian forms on IH

2

form a 6-dimensional (real) vector space. Clearly, Gl(2; IH) operates on this vector

space via (A; s) 7! As := [(v; w) 7! s(Av;Aw)], or, in the matrix representation of s,

via (A; s) 7! A

�

sA. A straightforward calculation shows that det(As) = D(A)det(s).

This enables us to introduce a Lorentz scalar product

hs; si := �det(s) = js

12

j

2

� s

11

s

22

on the space IR

6

1

of quaternionic hermitian forms, which is well de�ned up to a scale

6)

(or, the choice of a basis in IH

2

). Fixing a scaling of this Lorentz product, the special

linear transformations act as isometries on IR

6

1

| Sl(2; IH) is a double cover of the

identity component

7)

of SO

1

(6), which itself is isomorphic to the group of orientation

preserving M�obius transformations of S

4

. Thus, restricting our attention to Euclidean

4-space fe

1

h+e

2

jh 2 IHg, the orientation preserving M�obius transformations appear

as fractional linear transformations (cf.[14],[15])

�

h

1

�

7!

�

a

11

a

12

a

21

a

22

��

h

1

�

'

�

(a

11

h+ a

12

)(a

21

h+ a

22

)

�1

1

�

:

If s 6= 0 lies in the light cone of IR

6

1

, hs; si = 0, then the corresponding quadratic

form v 7! s(v; v) annihilates exactly one direction vIH � IH

2

: 0 = s(v; v) vanishes i�

0 = js

11

v

1

+s

12

v

2

j

2

or 0 = js

21

v

1

+s

22

v

2

j

2

since at least one, s

11

or s

22

does not vanish.

Hence, we can identify a point p = vIH 2 IHP

1

of the quaternionic projective line |

the 4-sphere | with the null line of quaternionic hermitian forms in the Minkowski

IR

6

1

that annihilate this point. In homogeneous coordinates, this identi�cation can be

given by

8)

v =

�

v

1

v

2

�

$

�

jv

2

j

2

�v

1

�v

2

�v

2

�v

1

jv

1

j

2

�

= s

v

: (1)

Note, that with this identi�cation, hs

v

; si = �s(v; v) for any quaternionic hermitian

form s 2 IR

6

1

. If s = s

w

is an isotropic form too, then hs

v

; s

w

i = �D(v; w).

If, on the other hand, hs; si = 1 we obtain | depending on whether s

11

= 0 or

s

11

6= 0 in the chosen basis (e

1

; e

2

) of IH

2

|

s =

�

0 �n

��n 2d

�

or s =

1

r

�

1 �m

� �m jmj

2

� r

2

�

with suitable n resp. m 2 IH and d resp. r 2 IR: the null cone of s is a plane with unit

normal n and distance d from the origin or a sphere with center m and radius r in

Euclidean 4-space fe

1

h + e

2

jh 2 IHg. Consequently, we identify the Lorentz sphere

S

5

1

� IR

6

1

with the space of spheres and planes in Euclidean 4-space, or with the space

of spheres in S

4

| as the readers familiar with the classical model (cf.[3]) of M�obius

geometry might already have suspected. The incidence of a point p 2 S

4

�

=

IHP

1

and

a sphere s � S

4

, i.e. s 2 S

5

1

, is equivalent to s(p; p) = 0 in our quaternionic model.

A key concept in

6)

At this point, we notice that the geometrically signi�cant space is the projective 5-space IRP

5

with

absolute quadric Q = fIRx j hx; xi = 0g, not its space of homogeneous coordinates, IR

6

1

.

7)

Using a basis of quaternionic hermitian forms, it is an unpleasant but straightforward calculation to

establish a Lie algebra isomorphism sl(2; IH)$ o

1

(6).

8)

Note the analogy with the Veronese embedding.
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4. M

�

obius differential geometry

is that of (hyper-) sphere congruences and envelopes of sphere congruences:

Definition. An immersion f : M ! S

4

is called an envelope of a hypersphere

congruence s : M ! S

5

1

if, at each point p 2 M , f touches the corresponding sphere

s(p): f(p) 2 s(p) and d

p

f(T

p

M ) � T

f(p)

s(p).

According to our previous discussion, the �rst condition | the incidence of f(p) and

the corresponding sphere s(p) | is equivalent to s(f; f) = 0 in our quaternionic model.

Calculating, for a moment, in a Euclidean setting | i.e. s =

1

r

�

1 �m

� �m jmj

2

� r

2

�

| we

�nd s(f; df) + s(df; f) =

2

r

(f �m) � df . Thus

9)

,

Lemma. An immersion f : M ! IHP

1

envelopes a sphere congruence s : M ! S

5

1

if

and only if s(f; f) = 0 and s(f; df) + s(df; f) = 0.

Before going on, we introduce the symmetric space of point pairs: given two (distinct)

points of the quaternionic projective line IHP

1

, we may identify these points with a

quaternionic linear transformationP which maps a (�xed) basis (e

1

; e

2

) of IH

2

to their

homogeneous coordinates | or, in coordinates, with a matrix having for columns the

homogeneous coordinates of the two points. This linear transformation P is obviously

not uniquely determined by the two points in IHP

1

: any gauge transform P � H of

P with H in the isotropy subgroup K := fH 2 Gl(2; IH) jHe

1

= e

1

�;He

2

= e

2

�g

determines the same point pair. Thus, the space P of point pairs in the conformal 4-

sphere IHP

1

is a homogeneous space, P = Gl(2; IH)=K. Moreover, the decomposition

gl(2; IH) = k � p with

k = fX 2 gl(2; IH) jXe

1

= e

1

�;Xe

2

= e

2

�g

p = fX 2 gl(2; IH) jXe

1

= e

2

�;Xe

2

= e

1

�g

(2)

is a Cartan decomposition since [k; k] � k [k; p] � p and [p; p] � k so that P is, in fact,

a symmetric space.

Now, if F = (f;

^

f ) : M ! Gl(2; IH) is a framing (lift) of a point pair map

M ! P, a simple calculation using (1) shows that

Ff =

�

0 0

0 1

�

and F

^

f =

�

1 0

0 0

�

if the relative scaling of f and

^

f is chosen such that F takes values in the special linear

group Sl(2; IH). Since Sl(2; IH) acts by isometries on the space IR

6

1

of quaternionic

hermitian forms, for any sphere congruence s : M ! S

5

1

containing the points of f

and

^

f , we have

Fs =

�

0 s

0

�s

0

0

�

9)

Note, that with the identi�cation (1) of points in IHP

1

with isotropic quaternionic hermitian forms,

s(f; df ) + s(df; f ) = �hs; df i which gives the link with the classical model of M�obius geometry.
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with a suitable function s

0

: M ! S

3

� IH taking values in the unit quaternions.

Passing to another set of homogeneous coordinates by means of a gauge transfor-

mation (f;

^

f) 7! (f�;

^

f

^

�) results in s

0

7!

�

�s

0

^

�. Thus, depending on a given sphere

congruence s, we may �x the homogeneous coordinates of f and

^

f such that s

0

� 1 |

leaving us with a scaling freedom (f;

^

f ) 7! (f�;

^

f

�

�

�1

) with � 2 IH. A second sphere

congruence ~s (orthogonal to the �rst one) can be used to further �x the scalings via

~s

0

� i up to � 2

=

C. Giving a complete set of four accompanying orthogonal sphere

congruences and �xing a third one, ŝ, to satisfy ŝ

0

� j leaves us with the familiar

real scaling freedom, � 2 IR (cf.[3]). These choices of accompanying spheres, and

accordingly these choices of homogeneous coordinates for a point pair map (f;

^

f ) are

the only aspect of the presented calculus that will generally not work globally.

Writing down the derivatives df = f' +

^

f and d

^

f = f

^

 +

^

f'̂ of f and

^

f , we

obtain the connection form

� := F

�1

dF =

�

'

^

 

 '̂

�

: TM ! gl(2; IH)

of a framing F : M ! Gl(2; IH). A gauge transformation (f;

^

f ) 7! (f�;

^

f

^

�) of the

frame will result in a change

�

'

^

 

 '̂

�

7!

�

�

�1

'� �

�1

^

 

^

�

^

�

�1

 �

^

�

�1

'̂

^

�

�

+

�

�

�1

d� 0

0

^

�

�1

d

^

�

�

(3)

of the connection form �. The integrability conditions 0 = d

2

f = d

2

^

f yield the

Maurer-Cartan equation 0 = d� + � ^ � for the connection form: the Gauss-Ricci

equations for f resp.

^

f ,

0 = d'+ ' ^ '+

^

 ^  

0 = d'̂+ '̂ ^ '̂+  ^

^

 ;

(4)

and the Codazzi equations,

0 = d +  ^ '+ '̂ ^  

0 = d

^

 +

^

 ^ '̂+ ' ^

^

 :

(5)

Note, that since the quaternions are not commutative, generally '^' 6= 0. Moreover,

d(�') = d�^'+�d', d('�) = d'��'^d� and ' ^  = �

�

 ^ �' for any quaternion

valued 1-forms ' and  and function � : M ! IH.

If s : M ! IR

6

1

is a map into the vector space of quaternionic hermitian forms,

then its derivative, ds : TM ! IR

6

1

is a 1-form with values in the quaternionic

hermitian forms. If Fs � const, this derivative can be expressed in terms of the

connection form � of F : since d(Fs) = 0,

F ds = �F [s(:;�) + s(�; :)] ' �[Fs �� + �

�

� Fs] (6)

when using the matrix representation for quaternionic hermitian forms.
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5. Curved flats and Isothermic surfaces

The concept of curved 
ats in symmetric spaces was �rst introduced by D. Ferus

and F. Pedit [9] as a natural generalization of developable surfaces: a curved 
at

is an envelope of a congruence of 
ats in a symmetric space or, more technical, a

submanifold of a symmetric space (with semisimple isometry group) whose tangent

spaces are maximal abelian subalgebras in the tangent spaces of that symmetric space.

In [6] it was then applied to the geometry of isothermic surfaces in 3-space. To

demonstrate our quaternionic calculus at work, we are going to discuss curved 
ats

in the symmetric space P of point pairs in IHP

1

. As in the codimension 1 case, these

will turn out to be Darboux pairs of isothermic surfaces in 4-space: given a point pair

map (f;

^

f ) : M ! P, we choose a framing F : M ! Sl(2; IH) and write its connection

form � = �

k

+ �

p

: TM ! sl(2; IH) = k � p. Then

10)

,

Definition. A map (f;

^

f ) : M ! P into the symmetric space of point pairs is called

a curved 
at if �

p

^ �

p

= 0.

Note, that the de�ning equation is invariant under gauge transformations (3) of F ,

i.e. does not depend on a choice of homogeneous coordinates. Thus, the notion of a

curved 
at is a well de�ned notion for a point pair map (f;

^

f ) : M ! P.

In order to understand the geometry of a curved 
at (f;

^

f ) : M

2

! P in the

symmetric space of point pairs we will �rst express its connection form in a simpler

form, and then interpret it geometrically in a second step

11)

. We start with an

Sl(2; IH)-framing F : M

2

! Sl(2; IH) and write its connection form

� =

�

'

1

+ '

2

j

^

 

1

+

^

 j

 

1

+  j '̂

1

+ '̂

2

j

�

in terms of complex valued 1-forms. Using a rescaling (f;

^

f ) 7! (f�;

^

f

^

�) we can

achieve  

1

= 0; then, the curved 
at equations read (we assume  6= 0)

^

 

1

= 0

and

^

 ^

�

 = 0. A rescaling (f;

^

f ) 7! (f

�

�;

^

f�

�1

) with a complex valued function

� results in ( ;

^

 ) 7! (�

2

 ;

�

�

�2

^

 ); as any 1-form on M

2

has an integrating factor,

we may assume d = 0, i.e.  = dw. Since

^

 ^

�

 = 0,

^

 = �a

4

d �w with a suitable

function a : M !

=

C. From the Codazzi equations, da ^ dw = 0 | thus, by a

holomorphic change z

w

= a

2

of coordinates,  = a

�2

dz and

^

 = �a

2

d�z, or, after

rescaling again with � = a,  = dz and

^

 = d�z. Now, the Codazzi equations

also yield '̂

2

^ dz = �'

2

^ d�z and '̂

2

^ d�z = �'

2

^ dz. Thus, '

2

= q

1

dz � �q

2

d�z and

'̂

2

= ��q

1

dz+q

2

d�z with suitable functions q

1

; q

2

: M !

=

C. This way, '

2

^ �'

2

= '̂

2

^

�

'̂

2

such that d'

1

= d'̂

1

from the Gauss-Ricci equations. With the ansatz '̂

1

�'

1

= 2a,

we �nd that a rescaling (f;

^

f ) 7! (f�;

^

f�

�1

) with � = e

a

yields '

1

= '̂

1

. At the same

time, ( ;

^

 ) 7! (e

u

 ; e

�u

^

 ) with u = a+ �a. So, we end up with a connection form

� =

�

i� + (q

1

dz � �q

2

d�z)j e

�u

d�z j

e

u

dz j i� + (��q

1

dz + q

2

d�z)j

�

(7)

10)

For simplicity of notation, we reduce the de�nition to the case under investigation.

11)

Note that, from this point on, we will restrict to local geometry: as Darboux pairs of isothermic

surfaces generally only exist locally so do curved 
ats in the space of point pairs. Also, some of the

presented arguments require the dondegeneracy of the curvature line net of the surfaces.
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where u : M ! IR, q

1

; q

2

: M !

=

C and � : TM ! IR is a real valued 1-form |

remember that we have chosen an Sl(2; IH)-framing from the beginning.

In order to interpret this connection form geometrically, we �rst note that all

sphere congruences

s

c

:= F

�1

�

0 c

�c 0

�

: M ! S

5

1

with c = e

i#

are enveloped by the two maps f and

^

f :

Fds

c

= �

�

0 2[�Re(�cq

1

)dz + Re(cq

2

)d�z]j

2[Re(�cq

1

)dz �Re(cq

2

)d�z]j 0

�

Thus, in the IR

6

1

-model of M�obius geometry, the s

c

can be viewed as common normal

�elds of f and

^

f . Using the identi�cation (1) of points in IHP

1

and isotropic lines in

IR

6

1

, we obtain

df = F

�1

�

0 e

u

dz j

�e

u

dz j 0

�

and d

^

f = F

�1

�

0 �e

�u

d�z j

e

�u

d�z j 0

�

as the derivatives (6) of f and

^

f . Calculating the induced metrics

hdf; dfi = e

2u

jdzj

2

and hd

^

f; d

^

fi = e

�2u

jdzj

2

of f and

^

f , and their second fundamental forms with respect to s

c

,

�hdf; ds

c

i = e

u

[�2Re(�cq

1

)jdzj

2

+ Re(cq

2

)(dz

2

+ d�z

2

)];

�hd

^

f ; ds

c

i = e

�u

[�2Re(cq

2

)jdzj

2

+ Re(�cq

1

)(dz

2

+ d�z

2

)];

we see that f and

^

f have well de�ned principal curvature directions (independent

of the normal direction s

c

) which do correspond on both surfaces (fs

c

j c 2 S

1

g is a

\Ribaucour sphere pencil"), and that f and

^

f induce conformally equivalent metrics

on M . Moreover, z : M !

=

C are conformal curvature line coordinates on both sur-

faces, i.e. both surfaces are isothermic. Consequently, (f;

^

f ) : M ! P is a \Darboux

pair" of isothermic surfaces in 4-space

12)

:

Definition. Two surfaces are said to form a Darboux pair if they envelope a (non-

trivial) congruence of 2-spheres (two orthogonal congruences of 3-spheres in 4-space)

such that the curvature lines on both surfaces correspond and the induced metrics in

corresponding points are conformally equivalent.

Conversely, if (f;

^

f ) : M ! P envelope two congruences of orthogonal spheres, say

s

1

; s

i

: M ! S

5

1

, then the connection form

� =

�

'

1

+ '

2

j

^

 j

 j '̂

1

+ '̂

2

j

�

12)

This geometric description of Darboux pairs of isothermic surfaces can obviously be used to de�ne

isothermic surfaces and Darboux pairs of any codimension | as the one below for Christo�el pairs can

(cf.[13]). Note, that the 
atness of the normal bundle of a surface | which is necessary to make sense of

the notion of curvature lines | is a conformal notion, i.e. it is invariant under conformal changes of the

ambient space's metric.
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with complex 1-forms  ;

^

 : TM !

=

C. Assuming the curvature lines of f and

^

f to

correspond, and their induced metrics to be conformally equivalent, we can introduce

common curvature line coordinates:  = e

u

! and

^

 = e

�u

!, or

^

 = e

�u

�!. In both

cases, from the Gauss-Ricci equations Re[d('

1

� '̂

1

)] = 0, so that after a suitable real

rescaling of f and

^

f , Re('

1

� '̂

1

) = 0. Then, in the �rst case, the Codazzi equations

imply u � const: the sphere congruences enveloped by f and

^

f lie in a �xed linear

complex, consequently f and

^

f are congruent in some space of constant curvature

(cf.[3], [6]) | and are not considered to form a Darboux pair. In the other case, the

Codazzi equations yield d! = 0 | we have conformal curvature line parameters, i.e.

f and

^

f are isothermic; we could also have concluded this from the fact that f and

^

f

obviously form a curved 
at:

Theorem. A surface pair (f;

^

f) : M

2

! P is a curved 
at if and only if f and

^

f

form a Darboux pair. Two surfaces forming a Darboux pair are isothermic.

The k-part | see (2) | of the Maurer-Cartan equation of a Gl(2; IH)-framing reads

0 = d�

k

+ �

k

^ �

k

+ �

p

^ �

p

. Thus, for a curved 
at, �

k

= H

�1

dH with a suitable

H : M ! K: if � and

^

� are given by

�

�1

d� = i� + (q

1

dz � �q

2

d�z)j and

^

�

�1

d

^

� = i� + (��q

1

dz + q

2

d�z)j

then a gauge transformation (f;

^

f) 7! (f�

�1

;

^

f

^

�

�1

) of our previous framing with

connection form (7) leaves us with

� =

�

0 �(e

�u

d�z j)

^

�

�1

^

�(e

u

dz j)�

�1

0

�

=:

�

0 !̂

! 0

�

:

The Codazzi equations for this new framing simply read d! = d!̂ = 0 showing that

�! = df

0

and !̂ = d

^

f

0

with suitable maps f

0

;

^

f

0

: M ! IH. Here, we identify the two

copies of the quaternions sitting in p = IH � IH as the eigenspaces of ad

C

: p ! p,

C =

�

1 0

0 �1

�

, by means of the real endomorphism X 7! X

�

of p. Note, that since

the 1-forms �

�1

d�;

^

�

�1

d

^

� : TM ! ImIH take values in the imaginary quaternions,

j�j = j

^

�j � 1. Consequently, the induced metrics of f

0

: M ! IH and

^

f

0

: M ! IH,

IH

�

=

IR

4

considered as a Euclidean space, are

df

0

� df

0

= e

2u

jdzj

2

and d

^

f

0

� d

^

f

0

= e

�2u

jdzj

2

:

Moreover, with the common unit normal �elds n

c

= ��c

^

�

�1

of f

0

and

^

f

0

, where

c = e

i#

, their second fundamental forms become

�df

0

� dn

c

= e

u

[�2Re(cq

1

)jdzj

2

+ Re(�cq

2

)(dz

2

+ d�z

2

)];

�d

^

f

0

� dn̂

c

= e

�u

[�2Re(�cq

2

)jdzj

2

+ Re(cq

1

)(dz

2

+ d�z

2

)]:

(8)

Thus, f

0

and

^

f

0

are two isothermic surfaces that carry common curvature line coor-

dinates | and,

^

f

0

and

�

f

0

have parallel tangent planes. Hence, we de�ne

13)

:

13)

If f

0

;

^

f

0

:M

2

! ImIH , this de�nition yields the classical notion of a Christo�el pair (cf.[6]).
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Definition. Two (non homothetic) surfaces f

0

;

^

f

0

: M

2

! IH with parallel tangent

planes in corresponding points are said to form a Christo�el pair if the curvature lines

on both surfaces correspond and the induced metrics are conformally equivalent.

Conversely, if two surfaces f

0

;

^

f

0

: M

2

! IH carry conformally equivalent metrics

and have parallel tangent planes in corresponding points f

0

(p) and

^

f

0

(p) then

14)

,

df

0

= �e

u

 j

^

�

�1

and d

^

f

0

= ��e

�u

 j

^

�

�1

, or d

^

f

0

= �e

�u

�

 j

^

�

�1

with a real valued

function u, a complex 1-form  : TM !

=

C and suitable quaternionic functions

�;

^

� : M ! IH | where j�j = j

^

�j � 1 without loss of generality. In the �rst case, the

integrability conditions yield 0 = du^ showing that u � const. Consequently,

^

f

0

is

homothetic to f

0

| and f

0

and

^

f

0

are not considered to form a Christo�el pair. In

the second case, d

�

f

0

^ d

^

f

0

= d

^

f

0

^ d

�

f

0

= 0. Hence, the surface pair f

0

;

^

f

0

: M ! IH

gives rise to a curved 
at by integrating � :=

�

0 d

^

f

0

d

�

f

0

0

�

| we obtain the following

Theorem. Two surfaces f

0

;

^

f

0

: M

2

! IH form a Christo�el pair if and only if

d

�

f

0

^ d

^

f

0

= d

^

f

0

^ d

�

f

0

= 0. Two surfaces forming a Christo�el pair are isothermic.

Curved 
ats | or, Darboux pairs of isothermic surfaces | naturally arise in 1-

parameter families [9]: if � = �

k

+�

p

denotes one of the connection forms associated

to a curved 
at (f;

^

f ) : M

2

! P, then, with a real parameter % 2 IR, all the connection

forms

�

%

:= �

k

+ %

2

�

p

: TM

2

! sl(2; IH) = k � p (9)

are integrable and give rise to curved 
ats (f

%

;

^

f

%

) : M

2

! P; in fact, if the connection

forms (9) are integrable for more than one value of %

2

, then the associated point pair

maps are necessarily curved 
ats. From (3), we learn that this 1-parameter family

of curved 
ats does not depend on the framing chosen to describe the curved 
at

(f;

^

f ). Moreover, sending the parameter %! 0, and rescaling (f

%

;

^

f

%

) 7! (%

�1

f

%

; %

^

f

%

)

or (f

%

;

^

f

%

) 7! (%f

%

; %

�1

^

f

%

) at the same time, provides us with

(f

%=0

;

^

f

%=0

) =

�

1 0

�

f

0

1

�

or (f

%=0

;

^

f

%=0

) =

�

1

^

f

0

0 1

�

:

Hence, we may think of the Christo�el pair (f

0

;

^

f

0

) | that is, as before, associated

to a 1-parameter family of curved 
ats by integrating

�

%

=

�

0 %

2

d

^

f

0

%

2

d

�

f

0

0

�

| as a limiting case for the Darboux pairs (f

%

;

^

f

%

). Comparison with (3) shows that

the spectral parameter % corresponds to the scaling ambiguity of the members of a

Christo�el pair: one of the surfaces of a Christo�el pair is determined by the other

only up to a homothety (and translation).

We will use those facts to discuss perturbation methods (cf.[16]) for the construc-

tion of constant mean curvature surfaces and, in particular, for Bryant's Weierstrass

type representation [4] for

14)

If p is not an umbilic for either surface, it follows that the principal curvature directions of both

surfaces correspond. In case one of the surfaces is totally umbilic we need also to assume that the curvature

lines on both surfaces coincide | otherwise we might �nd two associated minimal surfaces.
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6. Constant mean curvature surfaces

in hyperbolic space forms. We restrict our attention to codimension 1 by assuming

that our surfaces lie in a �xed conformal 3-sphere, say s

1

. Thus the connection form

(7) of a Darboux pair (f;

^

f) : M

2

! IHP

1

takes the form

� =

�

i[� +

1

2

(e

u

Hdz � e

�u

^

Hd�z)j] e

�u

d�z j

e

u

dz j i[� +

1

2

(e

u

Hdz � e

�u

^

Hd�z)j]

�

(10)

where the (real) functions H;

^

H can be interpreted as the mean curvature functions of

the members f

0

and

^

f

0

of the limitingChristo�el pair: from (10) we see that a rescaling

(f;

^

f ) 7! (f�;

^

f�) will provide us with �

k

= 0, such that df

0

; d

^

f

0

: TM ! ImIH. The

second fundamental forms (8) with respect to the remaining common normal �eld

n

i

= ��i�

�1

= �n̂

i

become

�df

0

� dn

i

= He

2u

jdzj

2

�

1

2

^

H(dz

2

+ d�z

2

)];

�d

^

f

0

� dn̂

i

=

^

He

�2u

jdzj

2

�

1

2

H(dz

2

+ d�z

2

)]:

The Codazzi equations (5) yield � =

i

2

(�u

z

dz + u

�z

d�z) and from (4) we recover the

classical Gauss equation 0 = u

z�z

+

1

4

(H

2

e

2u

�

^

H

2

e

�2u

) holding for both surfaces

f

0

and

^

f

0

, and the classical Codazzi equations dH ^ e

u

dz = d

^

H ^ e

�u

d�z: Hence,

H � const if and only if

^

H � const, re
ecting the fact that a pair of parallel constant

mean curvature surfaces, or a minimal surface and its Gauss map form Christo�el

pairs (cf.[11]).

Calculating the derivative of the sphere congruence s

i

enveloped by the two

surfaces f and

^

f | which form the Darboux pair associated with the Christo�el pair

(f

0

;

^

f

0

) | we �nd

Fds

i

=

�

0 (He

u

dz �

^

He

�u

d�z)j

(�He

u

dz +

^

He

�u

d�z)j 0

�

= H �F df +

^

H � F d

^

f :

Hence, the vector N := s

i

�Hf�

^

H

^

f is constant as soon as one of the mean curvatures,

H or

^

H, is. In order to interpret this fact geometrically, we have to distinguish two

cases:

If H

^

H 6= 0, i.e. (f

0

;

^

f

0

) is equivalent to a pair of parallel constant mean curvature

surfaces, then hN;

2

^

H

fi � 1 and hN;

2

H

^

f i � 1 | and consequently (cf.[3]), the two

surfaces

1

^

H

f;

1

H

^

f : M

2

! s

1

' S

3

� IHP

1

can be interpreted as surfaces in the space

M

3

N

:= fy 2 IR

6

1

j hN; yi = 1; hs

1

; yi = 0; hy; yi = 0g of constant sectional curvature

� = �hN;N i = �(1�H

^

H). Their induced metrics are

hd(

2

^

H

f); d(

2

^

H

f)i =

4

^

H

2

e

2u

jdzj

2

and hd(

2

H

^

f
); d(

2

H

^

f
)i =

4

H

2

e

�2u

jdzj

2

while, with the unit normal �elds t = s

i

�

2

^

H

f and

^

t = s

i

�

2

H

^

f in that space M

3

N

,

their second fundamental forms become

�hd(

2

^

H

f); dti =

4

^

H

2

e

2u

(1�

1

2

H

^

H) jdzj

2

+ (dz

2

+ d�z

2

)

�hd(

2

H

^

f ); d

^

ti =

4

H

2

e

�2u

(1�

1

2

H

^

H) jdzj

2

+ (dz

2

+ d�z

2

)
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| showing that both surfaces have the same constant mean curvature 1�

1

2

H

^

H. As

a special case, H = 1 and

^

H = 2, this provides the well known relation between

constant mean curvature surfaces in Euclidean space IR

3

and minimal surfaces in the

3-sphere S

3

.

If H

^

H = 0, one of the surfaces f

0

or

^

f

0

is a minimal surface, say

^

H = 0, while the

other is homothetic to its Gauss map, say n = H f

0

. Now, the surface

2

H

^

f : M

2

!M

3

N

lies in hyperbolic space, � = �1, while f is the hyperbolic Gauss map (cf.[4]) of

2

H

^

f

since hN; fi � 0, i.e. f takes values in the in�nity boundary N 2 S

5

1

of M

3

N

. As

before, the mean curvature of

2

H

^

f : M

2

! M

3

N

is easily calculated to be constant

= 1. This is how Bryant's Weierstrass type representation [4] for surfaces of constant

mean curvature 1 in hyperbolic 3-space H

3

can be obtained in this context: we write

the di�erential d

^

f

0

=

1

2

(i + gj)�!j(i + gj) of a minimal immersion

^

f

0

: M

2

! IR

3

(and its Christo�el transform, its Gauss map f

0

= (i+ gj)i(i + gj)

�1

: M

2

! S

2

) in

terms of a holomorphic 1-form ! : TM

2

!

=

C and the (meromorphic) stereographic

projection g : M !

=

C of its Gauss map. Then, the constant mean curvature surface

^

f : M

2

! H

3

(and its hyperbolic Gauss map f : M

2

! N ' S

2

) are obtained by

integrating the connection form

15)

� =

�

0

1

2

(i + gj)�!j(i + gj)

�2(i+ gj)

�1

dg j(i + gj)

�1

0

�

; (11)

to the framing (f;

^

f ) ' F : M

2

! Gl(2; IH) where dF = F� | thus (locally)

characterizing Bryant's Weierstrass type representation of surfaces of constant mean

curvature 1 in hyperbolic space as Bianchi's T-transform [2] of minimal surfaces in

Euclidean space. In fact, introducing the spectral parameter (9), surfaces of constant

mean curvature c in hyperbolic space forms of curvature � = �c

2

arise by \perturba-

tion" of minimal surfaces in Euclidean 3-space (cf.[16]).

Parametrizing a minimal surface patch

^

f

0

in terms of curvature line parameters,

z = x+ iy, the above representation of

^

f

0

becomes the classical Enneper-Weierstrass

representation, i.e. ! =

dz

g

0

. Performing a M�obius transformation on the Gauss map

g (resp. f

0

| its Christo�el transform) and integrating the Enneper-Weierstrass rep-

resentation again (i.e. taking the Christo�el transform of the M�obius transformed

Gauss map) yields the classical Goursat transformation of the minimal surface patch.

But, a closer look at the connection form (11) suggests that the Enneper-Weierstrass

representation itself can be interpreted as a Goursat type transformation of a pla-

nar patch: considering gj;

R

�!j : M

2

!

=

Cj as a (highly degenerate) Christo�el pair,

the corresponding minimal surface

^

f

0

is obtained as a Christo�el transformation of

f

0

=

1

1+jgj

2

[(1 � jgj

2

)i + 2gj], the stereographic projection of gj (\the" Christo�el

transform of

R

�!j) into S

2

. This Goursat type transformation can (obviously) be

generalized to arbitrary Christo�el pairs of isothermic surfaces: if f

0

;

^

f

0

: M

2

! IH

form a Christo�el pair, then, for any (constant) a 2 IH, the quaternionic 1-forms

15)

With the ansatz F =

�

2(x

21

g + x

22

)(i + gj)

�1

j(x

21

i � x

22

j)

2j(x

11

g + x

12

)(i + gj)

�1

�(x

11

i � x

12

j)

�

, the common form of Bryant's

representation is obtained as xx

�

:M

2

! H

3

� fy 2 Gl(2;

=

C) j y = y

�

g

�

=

IR

4

1

where the scalar product on

H

3

is induced by the Lorentz scalar product jyj

2

= �det(y) on IR

4

1

.
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(a+

�

f

0

)

�1

d

�

f

0

(a+

�

f

0

)

�1

and (a+

�

f

0

)d

^

f

0

(a+

�

f

0

) are closed | and consequently give

rise to a new Christo�el pair.
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Abstract. The theory of theta functions for arithmetic groups � that act

on the Drinfeld upper half-plane is extended to allow degenerate parameters.

This is used to investigate the cuspidal divisor class groups of Drinfeld mo-

dular curves. These groups are �nite for congruence subgroups � and may

be described through the corresponding quotients of the Bruhat-Tits tree by

�. The description given is fairly explicit, notably in the most important

special case of Hecke congruence subgroups � over a polynomial ring.

1991 Mathematics Subject Classi�cation: 11G09, 11G18, 11F11, 11F12

Keywords: Drinfeld modular curves, theta functions, cuspidal divisor class

groups

Introduction.

Drinfeld modular curves are the substitutes in positive characteristics of classical

modular curves. Like these, they have a rich structure where various mathematical

disciplines interact: number theory, algebraic geometry, (non-Archimedean) function

theory, representation theory and automorphic forms, and others. They encode im-

portant pieces of the arithmetic of global function �elds, notably those related to

two-dimensional Galois representations and elliptic curves, in a way similar to the

correspondence ascribed to Shimura, Taniyama and Weil and partially proven by A.

Wiles.

By their very construction, these curves come equipped with a uniformization

through the Drinfeld upper half-plane 
, a one-dimensional rigid analytic symmetric

space. Hence many questions about such a curve M

�

may be attacked by function

theoretic means, through the construction and investigation of analytic functions on


 (analogues of elliptic modular forms, or of theta functions) that satisfy functional

equations under �, the group that uniformizes M

�

= � n
.

Leaving aside Tate's elliptic curves, the �rst appearance of non-Archimedean

uniformized curves is in work of Mumford [16] and of Manin-Drinfeld [14], where the

acting group � is a Schottky group, that is, a �nitely generated free group consisting
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of hyperbolic elements. For the corresponding Mumford curves, Gerritzen and van der

Put in their monograph [11] obtained a very satisfactory description of the minimal

model, the Jacobian, the Abel-Jacobi map, ...

A similar program for Drinfeld modular curves was started in [10], whose main

results were the construction of the Jacobian J

�

of M

�

through non-Archimedean

theta functions �

�

(!; �; z) and, as an application, the analytic description of \Weil

uniformizations" of elliptic curves over global functions �elds. Apart from the fact

that a Drinfeld modular curve is de�ned over a global �eld (which gives an abundance

of arithmetic structure), the crucial di�erence to Mumford curves is that M

�

= � n


by construction is an a�ne curve, and has to be \compacti�ed" to a smooth projective

curve M

�

by adding a �nite number of \cusps" of �. Several natural questions (with

important arithmetical applications) arise, about the

� structure of the group C generated in the Jacobian J

�

by the cusps;

� degeneration of the theta functions �

�

(!; �; z) if the parameters !; � 2 
 ap-

proach cusps of �;

� relationship between C and the minimal model of M

�

.

It turns out that these questions have satisfactory answers in terms of the associated

almost �nite graphs �nT , which can be mechanically calculated from the initial data

that de�ne �, e.g., from congruence conditions.

In order to give more precise statements, we now introduce some notation.

We start with a function �eld K in one variable with exact �eld of constants F

q

,

the �nite �eld with q = p

r

elements. In K, we �x a place \1", and we let A � K

be the Dedekind subring of elements regular away from 1. Then A is a discrete

and cocompact subring of the completion K

1

. We �nally need C, the completed

algebraic closure of K

1

. By an arithmetic subgroup of GL(2;K), we understand a

subgroup commensurable with GL(2; A). Such a group � acts with �nite stabilizers

on 
 = C � K

1

, and M

�

will be the uniquely determined algebraic curve whose

space of C-points is given by � n 
. The cusps are given as the orbits � nP

1

(K) on

the projective line P

1

(K). It is customary to recall here the obvious analogy of the

data K; A; K

1

; C; 
; GL(2; A) with Q; Z; R; C ; H = complex upper half-plane,

SL(2;Z) (or rather H

�

= C �R and GL(2;Z)), respectively.

In [10], we studied theta functions �

�

(!; �; z), which are de�ned as certain in�nite

products depending on parameters !; � 2 
. These functions are meromorphic on 


with zeros (resp. poles) at the orbits of ! (resp. �); they transform according to a

character c(!; �) : � �! C

�

, have a nice behavior at the boundary @
 = P

1

(K) of 
,

and give rise to a pairing ��� �! K

�

1

on the maximal torsion-free Abelian quotient

� of �. The analytic space 
 has a canonical covering through standard rational

subsets of P

1

(C), the nerve of which equals the Bruhat-Tits tree T of GL(2;K

1

).

There results a GL(2;K

1

)-equivariant map � : 
 �! T (R) that allows to describe

many properties of M

�

and of related objects in terms of the graph � n T . The main

results of the present paper go into this direction. They are:

� Theorem 3.8 and its corollaries, which give the link between theta functions,

cuspidal divisors on M

�

, and harmonic �-invariant cochains on T ;
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� the description, given in sections 4 and 5, of the cuspidal divisor class group

C(�) of M

�

and of the canonical map from C(�) to �

1

(�) = group of connected

components of the N�eron model of J

�

at1 (here � is assumed to be a congruence

subgroup);

� the determination of the subgroup generated by the �

�

(!; �; z) (!; � 2 P

1

(K))

in the group of all theta functions for � (Thm. 5.4), valid for Hecke congruence

subgroups � of GL(2; A), where A is a polynomial ring.

These results depend on an extension of the theory developed in [10] to the case of

theta functions �

�

(!; �; z) whose parameters !; � are allowed to lie in the boundary

of 
. This is carried out in section two: proof of convergence, functional equation,

behavior at the boundary. Roughly speaking, theta functions with degenerate pa-

rameters behave similar to those with !; � 2 
, and analytic dependence on the

parameters holds at least for the associated multipliers c(!; �). That part of the the-

ory, as well as the links (given in section three) with harmonic cochains on T and

cuspidal divisor groups on M

�

, works in the context of arbitrary groups � commen-

surable with GL(2; A), and may thus be used also for the study of non-congruence

subgroups. From section four on we specialize to congruence subgroups � and use the

known �niteness of C(�) in this case (i.e., the analogue of Manin-Drinfeld's theorem,

cf. [2], [5]) to express it through the graph � n T . C(�) agrees (modulo �nite groups

annihilated by q

deg 1

� 1) with H=H

!

�H

?

!

, where H = H(T ;Z)

�

is the group of

�-invariant Z-valued harmonic cochains on T , H

!

is the subgroup of cochains with

compact support mod �, and H

?

!

its ortho-complement in H.

A re�nement of the above in the important special case of Hecke congruence

subgroups �

0

(n) over A = F

q

[T ] is given in section �ve. Here we use in a crucial way

the known results (cf. [9]) about the structure of the graph �

0

(n)nT . We conclude, in

section six, with a worked-out example (hopefully instructive), where the canonical

map can

1

: C(�) �! �

1

(�) fails to be injective or surjective even for a Hecke

congruence group � with prime conductor. The existence of a non-trivial kernel of

can

1

is re
ected in congruence properties of a corresponding \Eisenstein quotient"

of J

�

, an elliptic curve in the example treated.

The notation of the present paper is largely compatible to that of [10], to which

it is a sequel. Thus without further explanation, for a group G acting on a set X and

x 2 X, G

x

is the stabilizer, Gx the orbit, GnX the set of all orbits, G

ab

the maximal

Abelian quotient of G. We often write gx for g(x), g 2 G. As far as misconceptions

are unlikely, we do not distinguish between matrices in GL(2) and their classes in

PGL(2), and between varieties over C or K

1

, their associated analytic spaces, and

their sets of C-valued points.

1. Background [10].

(1.1) We let K be the function �eld of a smooth projective geometrically connected

curve C over F

q

(q = power of the rational prime p) and 1 2 C a closed point �xed

once for all. Attached to these data, we dispose of

� the subring A of K of functions regular away from1;

� the completion K

1

of K at 1;

� the completed algebraic closure C = C

1

of K

1

;
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� Drinfeld's upper half-plane 
 = C � K

1

, on which GL(2;K

1

) acts through

�

a b

c d

�

z =

az+b

cz+d

;

� the Bruhat-Tits tree T of GL(2;K

1

).

Recall that T is a (q

1

+ 1)-regular tree (q

1

= q

deg 1

= size of residue class �eld

F

q

(1)) provided with a GL(2;K

1

)-action and an equivariant map � from 
 to the

real points T (R) of T .

The group GL(2;K) acts from the right on the space K

2

of row vectors. For an

A-lattice (= projective A-submodule of rank two) Y ,! K

2

, we let GL(Y ) = f
 2

GL(2;K) j Y 
 = Y g.

(1.2) An arithmetic subgroup � of GL(2;K) is a subgroup commensurable with

some GL(Y ), i.e., � \ GL(Y ) has �nite index in both � and GL(Y ), and which

acts without inversion on T . A congruence subgroup is some � that satis�es

GL(Y; n) � � � GL(Y ), where 0 6= n � A is an ideal and GL(Y; n) is the kernel

of the reduction map GL(Y ) �! GL(Y=nY ). According to [20] II Thm. 12, there

are \many" subgroups of �nite index of GL(Y ) that are not congruence subgroups,

although it is not easy to display examples.

Now �x some arithmetic subgroup � as above. The following facts, in the case

of congruence subgroups, are proved and/or described in more detail in [10] I - III;

their generalization to arbitrary arithmetic subgroups is obvious .

(1.2.1) � acts with �nite stabilizers on 
 and T . Hence e.g. the quotient � n 


may be de�ned as an analytic space.

(1.2.2) � has �nite covolume in GL(2;K

1

) modulo its center.

(1.2.3) The quotient �nT is (in an essentially unique fashion, loc. cit.) the union

of a �nite graph and a �nite number of half-lines � � � � � � � � � � � � � � � �, the

ends of � n T .

(1.2.4) There exists a smooth connected a�ne algebraic curve M

�

=C (which may

even be de�ned over a �nite �eld extension K

0

� K

1

of K) whose set M

�

(C) of C-

points agrees with � n 
 as an analytic space. The M

�

or their canonical smooth

compacti�cations M

�

are what we here call Drinfeld modular curves.

(1.2.5) There are canonical bijections between the sets of

(a) ends of � n T ,

(b) cusps M

�

(C)�M

�

(C) of M

�

, and

(c) orbits � nP

1

(K) on the projective line P

1

(K).

In the sequel, we will not distinguish between (a), (b), (c) and label it by cusp(�).

Its cardinality is denoted by c = c(�).

(1.2.6) The genus g = g(�) of M

�

agrees with the number of dim

Q

H

1

(� n T ;Q)

of independent cycles of the graph �nT , which in turn equals the rank rk(�

ab

) of the

factor commutator group �

ab

of �.

Let � = �

ab

=tor(�

ab

)

�

=

Z

g(�)

and �

f

be the subgroup of � generated by the

elements of �nite order. It follows from [20] I Thm. 13, Cor. 1 that

(1.2.7) (i) �=�

f

is free in g generators,

(ii) tor(�

ab

) is generated by the image of �

f

in �

ab

, and

(iii) the canonical map � �! (�=�

f

)

ab

is an isomorphism.
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(1.3) Let X(T ) and Y (T ) be the sets of vertices, of oriented edges of T , re-

spectively. As in [10], H(T ;Z) is the right GL(2;K

1

)-module of Z-valued harmonic

cochains in T , i.e., of maps ' : Y (T ) �!Zthat satisfy '(e) = �'(e) (e = e oriented

inversely) and

(1:3:1)

X

e2Y (T ) with origin v

'(e) = 0 (v 2 X(T )):

Further, H(T ;Z)

�

denotes the �-invariants in H(T ;Z) and H

!

(T ;Z)

�

�

H(T ;Z)

�

the subgroup of those ' with �nite support modulo �. It follows

from (1.2.3) and simple graph-theoretical arguments that H

!

(T ;Z)

�

is free Abelian

of rank g = g(�), and is a direct factor of the free Abelian group H(T ;Z)

�

of rank

g + c � 1. In fact, there is a canonical injection with �nite p-free cokernel (loc. cit.

sect. 3, 6)

j : H

1

(� n T ;Z)

�

=

�! � ,! H

!

(T ;Z)

�

;

which turns out to be bijective in important cases.

(1.4) A holomorphic theta function for � is an invertible holomorphic function

f : 
 �! C that for each 
 2 � satis�es

f(
z) = c

f

(
) f(z)

with some c

f

(
) 2 C

�

, and is holomorphic non-zero at the cusps of � ([10] 5.1). For

meromorphic theta functions, we allow poles and zeros on 
, but not at the cusps.

The homomorphism c

f

: � �! �

ab

�! C

�

that maps 
 to c

f

(
) is the multiplier of

the (holomorphic or meromorphic) theta function f . The main construction of such

functions is as follows. Let !; � be �xed elements of 
, and put

(1:4:1) �

�

(!; �; z) =

Y


2

~

�

�

z � 
!

z � 
�

�

:

Note that the product is not over � but over its quotient

~

� by its center (the latter

being isomorphic with a subgroup of A

�

= F

�

q

), which acts e�ectively on 
. The

next theorem collects the principal properties of the �

�

. In the case of congruence

subgroups �, it is the synopsis of several results proved in [10], mainly Thm. 5.4.1,

Thm. 5.4.12, Thm. 5.7.1 and their corollaries. The reader will easily convince himself

that the arguments given there apply verbatim to the case of general arithmetic

subgroups as de�ned in (1.2).

1.5 Theorem. (i) The product (1.4.1) for �(!; �; z) = �

�

(!; �; z) converges locally

uniformly (loc. cit. (5.2.2)) in z 2 
 and de�nes a meromorphic theta function for

�. It is invertible (holomorphic nowhere zero) if the orbits �!, �� agree, and has its

only zeroes and poles at �!, ��, of order ]

~

�

!

, ]

~

�

�

, respectively, if �! 6= ��.

(ii) The multiplier c(!; �; �) : � �! C of �(!; �; �) factors through �.

(iii) Given � 2 �, the holomorphic theta function u

�

(z) = �(!; �!; z) is well-de�ned

independently of ! 2 
, and depends only on the class of � in �. Further, u

��

=

u

�

u

�

.

(iv) c(!; �; �) =

u

�

(�)

u

�

(!)

, and in particular, is holomorphic in ! and �.

(v) Let c

�

( � ) = c(!; �!; �) be the multiplier of u

�

. The rule (�; �) 7�! c

�

(�) de�nes
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a symmetric bilinear map on �� �, which takes its values in K

�

1

,! C

�

.

(vi) Let v

1

: K

�

1

�! Zbe the valuation and (�; �) := �v

1

(c

�

(�)). Then (: ; :) :

� � � �!Zis positive de�nite.

As a consequence of (vi), the map c : � �! Hom(�; C

�

) induced by � 7�! c

�

is

injective, and the analytic group variety Hom(�; C

�

)=c(�) carries the structure of an

Abelian variety J

�

de�ned over K

1

.

1.6 Theorem ([10] Thm. 7.4.1). J

�

equals the Jacobian variety of the curve

M

�

, and the Abel-Jacobi map with base point [!] 2 �n
 = M

�

(C) is given by [�] 7�!

class of c(!; �; �) modulo c(�).

Again, the proof given in loc. cit. (including its ingredients (6.5.4) and (6.4.4)

carries over to the case of a general arithmetic �.

2. Theta functions with degenerate parameters.

(2.1) We show how functions �

�

(!; �; z) with similar properties can be de�ned when

the parameters !; � are allowed to take values in

(2:1:1) 
 = 
 [P

1

(K):

Here � is any arithmetic subgroup of GL(2;K) and

~

� ,! PGL(2;K) its factor group

modulo the center. For !; � 2 
 we de�ne the rational function F (!; �; z) in z 2 P

1

(C)

as

(2:1:2)

z�!

z��

if ! 6=1 6= �

(1�

z

�

)

�1

if ! =1; � 6= 0;1

1�

z

!

if � =1; ! 6= 0;1

z

�1

if ! =1; � = 0

z if � =1; ! = 0

1 if ! = � =1:

Hence, up to cancelling, F (z) = F (!; �; z) has a simple zero at !, a simple pole at �,

and is normalized such that F (1) = 1 (resp. F (0) = 1, resp. F (1) = 1) whenever

the �rst of these conditions makes sense. We further put

(2:1:3) �

�

(!; �; z) =

Y


2

~

�

F (
!; 
�; z);

which specializes to (1.4.1) if both ! and � are in 
.

(2.2) Our �rst task will be to establish the locally uniform convergence of the

product. We let \j : j": C �! R

�0

be the extension of the normalized absolute value

on K

1

to C and \j : j

i

": C �! R

�0

the \imaginary part" map, i.e., jzj

i

= inffjz�xj j

x 2 K

1

g. Besides several obvious properties, it also satis�es

(2:2:1) j
zj

i

=

det 


jcz + dj

2

jzj

i

for z 2 
, 
 =

�

a b

c d

�

2 GL(2;K

1

). We will perform the relevant estimates on the sets

(2:2:2) U

n

= fz 2 
 j jzj � q

n

1

; jzj

i

� q

�n

1

g:

These are a�noid subsets of P

1

(C), and 
 =

S

n2N

U

n

is an admissible covering.
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2.3 Proposition. Let !; � 2 
 be �xed. The product (2.1.3) for �

�

(!; �; z)

converges locally uniformly for z 2 
 and de�nes a meromorphic function on 
. If

both !; � are in P

1

(K) or if �

!

= �

�

, it is even invertible on 
. Otherwise, �

�

(!; �; z)

has zeroes of order ]

~

�

!

at �!, poles of order ]

~

�

�

at ��, and no further zeroes or poles

on 
.

Proof. It is easily seen that the assertion is stable under replacing � by a com-

mensurable group. Since any � is commensurable with GL(2; A), we may assume

� = GL(2; A). Now for !; � 2 
, the result is [10] Prop. 5.2.3. Hence suppose that

at least one of ! and � lies in P

1

(K). Without restriction, ! 2 P

1

(K), ! 6= �, and

! 6=1 6= �. We need the following facts, which result from (2.2.1) and/or elementary

calculations:

(2:3:1) f
 2 � j 
U

n

\ U

n

6= ;g is �nite for each n 2 N;

(2:3:2)

z�
!

z�
�

� 1 =

(det 
)(��!)

(z�
�)(c!+d)(c�+d)

(
 =

�

a b

c d

�

2 �; 
! 6=1 6= 
�);

(2:3:3)


 =

�

a b

c d

�

and 


0

=

�

a

0

b

0

c

0

d

0

�

de�ne the same element in �

1

n �

if and only if (c

0

; d

0

) = u(c; d) with some u 2 F

�

q

;

(2:3:4) jz � 
�j � q

�n

1

whenever z 2 U

n

; 
� 62 U

n

:

Combining (2.3.1) and (2.3.4) yields the existence of c

1

(n; !; �) > 0 such that

(2:3:5)

jdet 
j j��!j

jz�
�j

� c

1

(n; !; �)

uniformly on U

n

for almost all 
 2 �:

In view of (2.3.2), we must estimate j(c! + d)(c� + d)j from below.

2.3.6 Claim. For given c

2

> 0, the number of classes of pairs (c; d) as in (2.3.3)

(i.e., of classes of 
 =

�

a b

c d

�

in �

1

n�) such that j(c!+d)(c�+d)j < c

2

holds, is �nite.

Proof of claim. First, exclude the �nite (!) number of pairs (c; d) with c!+d = 0

or c�+ d = 0. There exists c

3

(!) > 0 such that the non-vanishing elements c! + d of

the fractional ideal A! + A � K satisfy

(2:3:7) jc! + dj � c

3

(!):

Hence, if � 2 
, the claim follows from:

(2:3:8)

For any c

4

> 0, the number of pairs (c; d) with

jc� + dj < c

4

is �nite:

If � 2 K, we consider the map (c; d) 7�! (c! + d; c� + d) from A � A to K

1

�K

1

,

which by ! 6= � is injective. Its image is an A-lattice, which implies:

(2:3:9)

Given c

5

; c

6

> 0, the simultaneous inequalities

jc! + dj � c

5

; jc�+ dj � c

6

are possible for

a �nite number of pairs only.
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Since the possible values of jc!+dj, jc�+dj are discrete and bounded from below (cf.

(2.3.7)), the assertion (2.3.6) follows.

Next we observe:

(2:3:10)

If (c; d) as above, n 2 N and c

7

> 0 are �xed;

then jz � 
!j � c

7

uniformly in z 2 U

n

for almost all


 2 � of the form 
 =

�

a b

c d

�

:

Now (2.3.2) together with (2.3.5), (2.3.6) and (2.3.10) yields the following:

(2:3:11)

Given � > 0 and n 2 N, almost all of the factors

of type

z�
!

z�
�

that appear in (2.1.3) satisfy

�

�

�

z�
!

z�
�

� 1

�

�

�

< �

uniformly in z 2 U

n

.

It remains to verify the analogous statement for the other factors in (2.1.3). They are

of type

(2:3:12)

(a) (1�

z


�

)

�1

if 
! =1; 
� 6= 0;1

(b) (1�

z


!

) if 
� =1; 
! 6= 0;1

(c) z

�1

if 
! =1; 
� = 0

(d) z if 
� =1; 
! = 0:

Now cases (c) and (d) can occur only �nitely many times since �

1

\ �

0

is �nite.

Cases (a) and (b) are similar, so we restrict to (b). Let 


0

be such that 


0

� = 1.

The other such elements of � are the 



0

, where 
 2 �

1

= f

�

a b

0d

�

j a; d 2 F

�

q

; b 2 Ag.

Thus we have to show that

�

a b

0 d

�




0

! =

a

d




0

! +

b

d

tends with b to in�nity in absolute

value, which is clear. Hence the product (2.1.3) converges uniformly on each U

n

to a

meromorphic function with the asserted divisor. �

From now on, we omit the subscript � in �(!; �; z) = �

�

(!; �; z).

2.4 Proposition. For � 2 �, �(!; �; z) satis�es a functional equation

�(!; �; �z) = c(!; �; �) �(!; �; z)

with c(!; �; �) 2 C

�

independent of z 2 
.

Proof. We let h(!; �; �) be the quotient of F (!; �; �z) by F (�

�1

!; �

�1

�; z).

Since the two rational functions have the same divisors, h(!; �; �) is well-de�ned and

constant. Now

�(!; �; �z) =

Y


2

~

�

F (
!; 
�; �z)

=

Q

h(
!; 
�; �) �

Q

F (�

�1


!; �

�1


�; z)

=

Q

h(
!; 
�; �) �(!; �; z);

whence the convergence of c(!; �; �) :=

Y


2

~

�

h(
!; 
�; �) results from that of �(!; �; z),

i.e., from (2.3). �
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(2.5) The next step is to describe the behavior of �(!; �; z) at the boundary, i.e.,

at s 2 P

1

(K) = 
�
. As usual, possibly replacing � by its conjugate 
�


�1

, where


 2 GL(2;K) satis�es 
1 = s, it su�ces to discuss the case s = 1. The stabilizer

~

�

1

in

~

� is represented by matrices

�

a b

01

�

, where a runs through a subgroup W

1

(of

order w

1

, say) of F

�

q

, and b through an in�nite-dimensional F

p

-vector space b � K

commensurable with a fractional A-ideal. In particular, b 2 C is discrete, which

ensures the convergence of the in�nite product written below. Put

(2:5:1) t

1

(z) = e

�1

b

(z);

where e

b

: C �! C is the function

e

b

(z) = z

Y

0 6=b2b

(1�

z

b

):

For the essential properties of such functions, see e.g. [12] I, IV. We need the obser-

vation:

(2.5.2) e

b

is F-linear, where F � F

q

is the sub�eld generated by W

1

. Hence for

a 2W

1

, t

1

(az) = a

�1

t

1

(z) and t

w

1

1

(az) = t

w

1

1

(z).

It results from the fact that b is even an F-vector space.

(2.5.3) The subspace 


c

= fz 2 
 j jzj

i

� cg of 
 is stable under

~

�

1

and

~

�

u

1

= f

�

1 b

01

�

j b 2 bg, and for a suitable c� 0, t

1

identi�es

~

�

u

1

n


c

= b n


c

with a

small pointed ball B

�

(0) � f0g = ft 2 C j 0 < jtj � �g. Again for c� 0,

~

�

1

n 


c

is

an open subspace of � n
 ,! � n
 (since 



c

\ 


c

6= ; implies 
 2 �

1

, cf. (2.2.1)),

and t

w

1

1

is a uniformizer around the point 1. This allows to de�ne holomorphy,

meromorphy, vanishing order at1, ... for functions on 


c

invariant under

~

�

u

1

or

~

�

1

.

(For more details, see e.g. [5] V or [10] 2.7.)

As results from (2.4) and (2.3), �(!; �; z) is invariant under

~

�

u

1

and has neither

zeroes nor poles on b n


c

, provided c is large (or � is small) enough. It has therefore

a Laurent expansion with respect to t

1

. Now the factors of type

z�
!

z�
�

in (2.1.3) tend

to 1 uniformly in 
 if jzj

i

�!1, i.e., if jt

1

(z)j �! 0, hence they contribute 1+o(t

1

)

to the Laurent expansion. Therefore,

(2:5:4)

�(!; �; z) is invertible around t

1

= 0 if

neither �! nor �� contains 1.

(2.5.5) Suppose that1 2 �� 6= �!. Without restriction, we may even assume � =1.

The factors of type (b) and (d) in (2.3.12) yield

Y


2

~

�

1


!=0

z

Y


2

~

�

1


! 6=0

(1 �

z


!

) =

Y


2

~

�

1


!=0

z

Y


2

~

�

1


! 6=0

(1�

z

a! + b

);

writing 
 2

~

�

1

in the form

�

a b

01

�

as above. That product de�nes an entire function

f : C �! C with its zeroes at the points z

0

of shape z

0

= a! + b, each of the same

order ]f

�

a b

01

�

2

~

� j a! + b = z

0

g.

Let �rst ! 62 b . Since an entire function is determined up to constants by its
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divisor, we have, using (2.5.2):

const. f(z) =

Y

a2W

1

e

b

(z � a!)

=

Y

a

(e

b

(z)� ae

b

(!))

=

Y

a

(t

�1

1

(1 + o(t

1

)))

= t

�w

1

1

(1 + o(t

1

)):

Next, let ! 2 b . Then f has zeroes of order w

1

at the points of b, which gives

const. f(z) = e

b

(z)

w

1

= t

�w

1

1

:

It is straight from de�nitions that for a 2W

1

(i.e.,

�

a0

0 1

�

2

~

�

1

),

�(!; �; az) = �(!; �; z)

holds. Hence, by (2.5.2), the Laurent expansion of �(!; �; z) w.r.t. t

1

is actually a

series in t

w

1

1

. Therefore, under our condition 1 2 �� 6= �!, �(!; �; z) has a simple

pole at the cusp represented by 1 w.r.t. its correct uniformizer t

w

1

1

. Analogous

assertions hold if 1 2 �! 6= ��, or if �! = �� (in which case the possible zeroes and

poles at the cusps cancel).

We collect what has been proven.

2.6 Proposition. The function �(!; �; �) has a meromorphic continuation to

the boundary P

1

(K) of 
. With respect to the uniformizer t

w

s

s

at the cusp [s] of M

�

represented by s 2 P

1

(K), it

has a simple zero; if s 2 �! 6= ��;

has a simple pole; if s 2 �� 6= �!;

is invertible; if �! = �� (whether or not s 2 �! = ��): �

Here of course, w

s

is the weight of [s], i.e., the size of the non-p part W

s

of

~

�

s

(cf.

(2.5)).

2.7 Corollary. The holomorphic function u

�

(z) := �(!; �!; z) on 
 (! 2 
,

� 2 � �xed) does not depend on the choice of !.

Proof. In view of (2.6), it su�ces to verify this for z 2 
. If the parameters !; �

are in 
, we get as in [10] Thm. 5.4.1 (iv):

�(!; �!; z)

�(�; ��; z)

=

Y


2

~

�

�

z � 
!

z � 
�!

��

z � 
��

z � 
�

�

=

Y


2

~

�

�

z � 
!

z � 
�

��

z � 
��

z � 
�!

�

= �(!; �; z)�(�; !; z) = 1

The reader will easily verify through a case-by-case consideration that the same can-

celling takes place if !; � are allowed to take values in P

1

(K). �

2.8 Definition. A cuspidal theta function for � is an invertible holomorphic

function f on 
 that for each 
 2 � satis�es

f(
z) = c

f

(
)f(z)
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with some c

f

(
) 2 C

�

, and is meromorphic at the cusps. This means that, compared

to (1.4), we allow zeroes and poles at the cusps.

The prototype of a cuspidal theta function is �(!; �; �), where both ! and � are

in P

1

(K).

2.9 Lemma.Let !; � 2 
, �; 
 2 �. The factors F ( : ; : ; : ) of (2.1.2) satisfy

F (
!; 
�; �z)

F (
!; 
�; z)

=

F (


�1

�z; 


�1

z; !)

F (


�1

�z; 


�1

z; �)

(identity of rational functions in z 2 P

1

(C)).

Proof. We may assume that ! 6= �. Let

D(a; b; c; d) :=

a� c

b� c

=

a� d

b� d

(a; b; c; d 2 P

1

(C))

be the cross-ratio which, through the usual conventions, delivers a well-de�ned element

of P

1

(C) if at least three of a; b; c; d are di�erent. Going through the cases, it is easily

seen that F (a; b; c)=F (a; b; d) = D(c; d; a; b), and hence the assertion follows from the

invariance of D(a; b; c; d) under projective transformations, in particular, under the

Klein group of order 4. �

2.10 Corollary. Let � 2 � be �xed. The multiplier c(!; �; �) satis�es

c(!; �; �) =

u

�

(�)

u

�

(!)

. In particular, it is holomorphic on 
 and at the cusps, considered

as a function in ! with � �xed (resp. in � with ! �xed).

Proof. Let !; � 2 
 be given. Then

c(!; �; �) =

�(!; �; �z)

�(!; �; z)

=

Y


2

~

�

F (
!; 
�; �z)

F (
!; 
�; z)

=

Y


2

~

�

F (


�1

�z; 


�1

z; !)

F (


�1

�z; 


�1

z; �)

=

u

�

(�)

u

�

(!)

;

where the last equality follows from (2.7). �

2.11 Corollary. Let !; � 2 
. The constant c(!; �; �) and the function u

�

depend only on the class of � in � = �

ab

=tor(�

ab

).

Proof. By (2.10), the statement about c(!; �; �) follows from that on u

�

. But

u

�

= �(!; �!; �) may be described with an arbitrary base point ! 2 
, so the result

follows from (1.5) (iii). �

2.12 Remark. As in Shimura's book [21], we may provide 
 with a topology

coming from the strong topology on P

1

(C). To do so, it su�ces to describe a funda-

mental system of neighborhoods for s 2 P

1

(K). By the usual homogeneity argument,

we may even assume s =1, in which case the system of sets f1g[ 


c

(c 2 N) is as

desired. It is then natural to expect that our theta functions satisfy

(2:12:1) lim

!!!

0

; �!�

0

�(!; �; z) = �(!

0

; �

0

; z)

with respect to that topology. This is easy to verify if e.g. all of !

0

; �

0

; z 62 �!

0

[��

0

belong to 
. On the other hand, for !; � 2 
, �(!; �; z) is normalized such that it

takes the value 1 at z =1, whereas �(1; �; z) has a simple zero at z =1 if � 62 �1.
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This rules out the possibility of (2.12.1) if one of the parameters !

0

; �

0

belongs to the

boundary. The best we can hope for is the continuous dependence on parameters of

the multiplier instead of the theta functions themselves.

2.13 Corollary. Let !

0

; �

0

2 
, � 2 �. Then

lim

!!!

0

; �!�

0

c(!; �; �) = c(!

0

; �

0

; �);

where the double limit with respect to the topology de�ned in (2.12) is taken in arbitrary

order.

Proof. Apply (2.10). �

We �nally note the observation, which is immediate from the product for

�(!; �; �):

(2.14) The multiplier c(!; �; �) : � �! C

�

has values in K

�

1

if both !; � are in

P

1

(K).

3. Relationship with harmonic cochains.

Recall Marius van der Put's exact sequence ([24], [1])

(3:1) 0 �! C

�

�! O




(
)

�

r

�! H(T ;Z)�! 0

of right GL(2;K

1

)-modules, where the middle term is the group of invertible func-

tions on 
. As is explained in [10], the map r plays the role of logarithmic derivation.

We brie
y sketch the construction of r, and refer to loc. cit. for details and notations.

Let f 2 O




(
)

�

and e be an oriented edge of T with origin v and terminus w.

Then jf j is constant on the rational subdomains �

�1

(v) and �

�1

(w) of 
 determined

by v and w. Both of these are isomorphic with a projective line P

1

(C) with q

1

+ 1

disjoint open balls deleted. The value of r(f) on e is then

(3:1:1) r(f)(e) = log

jf j

�

�1

(w)

jf j

�

�1

(v)

;

where here and in the sequel, log = log

q

1

is the logarithm to base q

1

.

Let � be any arithmetic subgroup of GL(2;K). We put �

h

(�) � �

c

(�) for the

groups of holomorphic and cuspidal theta functions for � as de�ned in (1.4) and (2.8),

respectively. We have a commutative diagram

(3:2)

�

�

�

�

�)

P

P

P

Pq

u

j

�

h

(�)=C

�

r

h

�! H

!

(T ;Z)

�

\ \

# #

�

c

(�)=C

�

r

c

�! H(T ;Z)

�

;

where u is derived from � 7�! u

�

and the horizontal maps from r. Recall that j is

injective with �nite prime-to-p cokernel ([10] 6.44; the proof given there applies to

general arithmetic groups), and is bijective at least if

~

� has no prime-to-p torsion, or

if K is a rational function �eld, 1 the usual place at in�nity, and � is a congruence

subgroup of GL(2; A) [9].
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(3.3) Next, we let b � K,

~

�

1

,

~

�

u

1

, e

b

, t

1

etc. be as in (2.5). The function e

b

is

invertible on 
 and so r(e

b

) is de�ned. The quotient graph

~

�

u

1

n T = b n T has the

following shape:

s s s

s s s

s s s

s s

� � � � � � >1

where the distinguished end points to 1.

Since r(e

b

) 2 H(T ;Z) is invariant under

~

�

u

1

, it follows from the way how edges

of T are identi�ed mod b (see e.g. proof of Proposition 3.5.1 in [10]) that for edges

su�ciently close to 1, the function r(e

b

) grows by a factor q

1

for each step towards

1. In view of (3.1.1), this allows to describe the growth of e

b

(z) (or the decay of

t

1

= e

�1

b

(z)) if z �!1 in the topology introduced in (2.12). It is given by

(3:3:1) c

1

q

c

2

jzj

i

1

� log je

b

(z)j � c

0

1

q

c

2

jzj

i

1

(jzj

i

� 0)

for suitable constants 0 < c

1

< c

0

1

, c

2

> 0 depending on b. (These constants can be

made explicit if the need arises, see e.g. [7] for the case of A = F

q

[T ].) Note that

multiplying z by the inverse �

�1

1

of a uniformizer �

1

of K

1

corresponds to shifting

�(z) by one towards 1, using again the terminology of [10].

Similarly, if f 2 O




(
)

�

is invariant under

~

�

u

1

, its logarithmic derivative r(f)

may be considered as a function on edges of b n T , which implies that f must satisfy

similar estimates

c

3

q

c

4

jzj

i

1

� log jf(z)j � c

0

3

q

c

4

jzj

i

1

for jzj

i

large. Hence, multiplying f(z) by a suitable power t

k

1

of t

1

, the resulting

t

k

1

f(z) will be bounded around t

1

= 0, and f(z) is meromorphic at 1. The same

reasoning applies to the other cusps. Thus:

(3.3.2) If f 2 O




(
)

�

is invariant under the unipotent radical

~

�

u

s

of

~

�

s

then f is

meromorphic at the cusp represented by s 2 P

1

(K).

3.4 Proposition. The maps r

h

and r

c

in (3.2) are bijective.

Proof. For r

h

, this is [10] 6.4.3. Injectivity of r

c

follows directly from (3.1). Thus

let ' 2 H(T ;Z)

�

equal r(f) with f 2 O




(
)

�

. Then f satis�es f(
z) = c

f

(
)f(z)

for 
 2 �. The map 
 7�! c

f

(
) is a homomorphism, which vanishes on p-groups of

type

~

�

u

s

. By (3.3.2), f is meromorphic at the cusps, and is therefore a cuspidal theta

function. �

(3.5) We let �

0

c

(�) � �

c

(�) be the subgroup of cuspidal theta functions f whose

multiplier c

f

:

~

�

ab

�! C

�

factors over � = �

ab

=tor(�

ab

) =

~

�

ab

=tor(

~

�

ab

). Since the

prime-to-p torsion of

~

�

ab

is always �nite ([20] II, sect. 2, Ex. 2), the inclusion

(3:5:1)

�

c

(�)=�

0

c

(�) ,! Hom(tor(

~

�

ab

); C

�

)

f 7�! c

f

j tor(

~

�

ab

)
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shows that the index [�

c

(�) : �

0

c

(�)] is always �nite and not divisible by p. Note

that Hom(tor(

~

�

ab

); C

�

) is trivial if

~

� has no prime-to-p torsion, as follows e.g. from

(1.2.7) (ii). Hence �

c

(�) = �

0

c

(�) in this case.

3.6 Lemma. Let j : � ,! H

!

(T ;Z)

�

be the canonical inclusion. We have

j(�) = H

!

(T ;Z)

�

\ r(�

0

c

(�)):

Proof. The inclusion of j(�) in r(�

0

c

(�)) comes from (1.5) (ii), i.e., the fact that c

�

factors through �. The opposite inclusion is [10] Cor. 7.5.3. �

(3.7) We next interpret the quotient r(�

0

c

(�))=j(�) as the group of cuspidal

divisors of degree zero on the curve M

�

. Recall that cusp(�) = � nP

1

(K) is the set

of cusps, of order c = c(�), and for each [s] 2 cusp(�), w

s

= [

~

�

s

:

~

�

u

s

] is its weight.

We put

D

1

:= D

1

(�) :=Z[cusp(�)]

for the group of cuspidal divisors on M

�

. At [s], each f 2 �

c

(�) has an expansion

w.r.t. t

s

, and even w.r.t. t

w

s

s

if f 2 �

0

c

(�). We let ord

[s]

(f) be the order of f w.r.t.

t

s

(which clearly depends only on the class [s] of s) and

(3:7:1) div(f) =

X

[s]2cusp(�)

ord

[s]

f

w

s

[s] 2 D

1


Q:

3.8 Theorem. The map f 7�! div(f) induces an isomorphism

div : r(�

0

c

(�))=j(�)

�

=

�! D

0

1

;

where D

0

1

,!D

1

is the subgroup of divisors of zero degree.

Proof. For f 2 �

0

c

(�), div(f) lies in D

1

, as follows from (2.5.2). Clearly, div

restricted to H

!

(T ;Z)

�

(or more precisely, to those f such that r(f) 2 H

!

(T ;Z)

�

) is

trivial, hence div is well-de�ned. It is surjective by (2.6) and injective since, by (3.4)

and (3.6), r(�

0

c

(�)=j(�) is free Abelian of rank c(�)� 1. �

3.9 Corollary. �

0

c

(�) is the group generated by the constants C

�

and the

functions �(!; �; �) with !; � 2 P

1

(K).

Proof. Obvious from (3.8), (3.6), (3.4), and (2.11). �

For what follows, we write �

0

c

for �

0

c

(�), and abbreviate H(T ;Z)

�

and H

!

(T ;Z)

�

by H and H

!

, respectively. Let l be the least common multiple of the weights w

s

,

[s] 2 cusp(�).

3.10 Corollary. The index of (H

!

+ r(�

0

c

))=H

!

�

=

�! r(�

0

c

)=j(�)

�

=

�! D

0

1

in

H=H

!

is a divisor of l

�1

Y

[s]2cusp(�)

w

s

, and the quotient group is annihilated by q � 1.

Proof. We may extend div to a map from H=H

!

into the elements of degree zero

of �

[s]

w

�1

s

Z[s] ,! D

1


 Q. The inverse image of D

0

1

is precisely (H

!

+ r(�

0

c

))=H

!

,

as follows from (3.8). The assertion now results from chasing in the diagram

(3:10:1)

0 �! D

0

1

�! D

1

deg

�! Z �! 0

\ \ \

# # #

0 �! (�w

�1

s

Z[s])

0

�! �w

�1

s

Z[s] �! l

�1

Z �! 0
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and noting that the w

s

are divisors of q � 1. �

(3.11) Since H

!

is a space of functions with �nite support on the edges of the

graph � n T , it is provided with a natural bilinear form

(: ; :) : H

!

�H

!

�! Q:

If

~

�

e

is the stabilizer of e 2 Y (T ), the volume of the corresponding edge of � n T is

1

2

](

~

�

e

)

�1

. Two remarks are in order.

(3.11.1) (: ; :) as de�ned above is the restriction of the Petersson scalar product

on H

!

(T ; C )

�

, which is a space of automorphic forms. In fact, the restriction of (: ; :)

to �

�

=

�! j(�) ,! H

!

agrees with the pairing (: ; :) in (1.5) (vi) ([10] 5.7.1), and in

particular, takes its values in Z.

(3.11.2) There exists a natural extension of (: ; :) to a pairing labeled by the same

symbol

(: ; :) : H

!

�H �! Q:

It is characterized through its restriction to j(�)� r(�

0

c

), where it satis�es

(3:11:3) (r(u

�

); r(f)) = �v

1

(c

f

(�));

compare (3.2) and (1.5) (vi). Finally, we put

(3:11:4) H

?

!

:= f' 2 H(T ;Z)

�

j (H

!

; ') = 0g:

Then H

?

!

is a direct factor of H and \almost complementary" to H

!

, i.e.,

H=H

!

� H

?

!

is �nite. We will see at once that this group is closely related to the

cuspidal divisor class group of M

�

.

4. The cuspidal divisor class group.

From now on, we assume that � is a congruence subgroup of some GL(Y ). The next

result follows from determining the divisors of certain modular units (analogues of

classical Weber or Fricke functions) and expressing them through partial zeta func-

tions. This has been carried out in detail in the special cases where

a) the base ring A is a polynomial ring F

q

[T ] and � � GL(2; A) is an arbitrary

congruence subgroup [2], or

b) the base ring A is subject only to the conditions given in (1.1), but � = GL(Y ) is

the full linear group of a rank-two A-lattice Y [5].

The proof of the general case (A and � without further restrictions) will follow e.g.

by combining the methods of [2] and [5]. The necessary ingredients are sketched in

[5] VI.5.13, but still some work has to be done to complete the argument. A rather

short proof which avoids the di�cult calculations of loc. cit. will be given in [8].

4.1 Theorem. Let � be a congruence subgroup of GL(2;K). The cuspidal

divisors of degree zero on M

�

generate a �nite subgroup C(�) of the Jacobian J

�

of

M

�

.

The corresponding result for classical modular curves has been proven by Manin

and Drinfeld [14]; a di�erent proof has been given by Kubert and Lang [13]. Our aim

is now to give a more accurate description of C = C(�).
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4.2 Proposition. Let f be a modular unit, i.e., a meromorphic function on M

�

with its divisor supported by the cusps. Then r(f) 2 H

?

!

= H

!

(T ;Z)

�

)

?

. Conversely,

if f 2 �

0

c

(�) is such that r(f) 2 H

?

!

then f

q

1

�1

is a modular unit.

Proof. Since f is invertible on 
, r(f) is de�ned, and r(f) 2 H

?

!

follows from

(3.11.3). Let f 2 �

0

c

be such that r(f) 2 H

?

!

, and let � = c

f

be its multiplier. By

(4.1) there exists n 2 N and a modular unit g such that f

n

=g is holomorphic on 


and at the cusps. From [10] 7.5.3 f

n

=g = const: u

�

for some � 2 �, hence �

n

= c

�

.

Since r(f)?j(�), we have jc

�

(�)j = 1 for all � 2 �, which gives c

�

= 1. Therefore, �

has �nite order, which by (3.9) and (2.14) is a divisor of q

1

� 1. �

(4.3) We let P

1

be the divisors of modular units, i.e., the principal divisors on

M

�

supported by the cusps. The map div(f) 7�! r(f) identi�es P

1

with a subgroup

of H

?

!

,!H, which by abuse of language will be labeled by the same symbol P

1

. By

the above,

(4:3:1) (q

1

� 1)(H

?

!

\ r(�

0

c

)) � P

1

� H

?

!

\ r(�

0

c

);

and the group C of cuspidal divisor classes is

(4:3:2) C = D

0

1

=P

1

�

=

�! r(�

0

c

)=(j(�)� P

1

):

We therefore have an exact sequence

(4:3:3) 0 �! U �! C �! V �! 0;

where U = H

?

!

\ r(�

0

c

)=P

1

is isomorphic with a quotient of (Z=(q

1

�1)Z)

c(�)�1

and

V = r(�

0

c

)=(j(�) �H

?

!

\ r(�

0

c

)) ,! H=H �H

?

!

. The following diagram displays the

inclusions.

(4.4)

�

�

�

�

�

�

@

@

@

@

@

@

�

�

�

�

�

�

@

@

@

@

@

@

r(�

0

c

)

H = r(�

c

)

H

?

!

H

!

(q

1

�1)(H

?

!

\ r(�

0

c

))�P

1

�H

?

!

\ r(�

0

c

) H

!

\ r(�

0

c

) = j(�)

9

>

=

>

;

,!Hom(tor(

e

�

ab

); C

�

)

. . . . . . . . . . . . . . . . . .

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

D

0

1

4.5 Remarks. (i) As follows from (1.2.7), the vertical inclusions are bijective if �

has no non-p torsion, in which case V = H=H

!

�H

?

!

.

(ii) In the general case, both U and the cokernel of V in H=H

!

�H

?

!

have prime-to-p

order. Hence the p-parts of C and of H=H

!

�H

?

!

always agree.

(iii) We know of no single example of a congruence group � such that j(�) 6= H

!

=

H

!

(T ;Z)

�

. The two groups agree at least if A = F

q

[T ] (see [9]). However, there are

examples, given in the next section, where r(�

0

c

) and even r(�

0

c

) +H

!

di�ers from H.

The description for the Jacobian J

�

of M

�

given in (1.6) is valid over each

complete subextension of C=K

1

, in particular, over K

1

itself. We let �

1

(�) be the

group of connected components of the N�eron model J

�

of J

�

=K

1

.
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4.6 Theorem. �

1

(�) is canonically isomorphic with Hom(�;Z)=i(�), where

i : � ,! Hom(�;Z) comes from the pairing (: ; :) on �.

Proof. Easy consequence of the construction of J

�

([10] sect. 7) and Mumford's

results [17] on degenerating Abelian varieties. Details are given in [6] Cor. 2.11. The

assumption of A = F

q

[T ] made in that paper is not used in an essential fashion. �

There is a canonical map can

1

from C = C(�) to �

1

(�), which to each divisor

class [D] associates the component of the reduction of [D] at in�nity. Combining

what we know about these groups ((4.3), (4.4), (4.6)) yields the following description

of can

1

.

4.7 Corollary. The map can

1

: C(�) �! �

1

(�) is given by

C(�)

�

=

�! r(�

0

c

)=(j(�)� P

1

) �! Hom(�;Z)=i(�)

�

=

�! �

1

(�)

class of r(f) 7�! class of (�v

1

� c

f

):

Here c

f

: � �! K

�

1

is the multiplier of f and v

1

: K

�

1

�!Zthe valuation.

Obviously, the kernel of can

1

is j(�)� (H

?

!

\ r(�

0

c

))=j(�)� P

1

, i.e., the group

U of (4.3.3). As we will see, can

1

need neither be injective nor surjective.

We �nally recall the fact that each congruence subgroup �

0

contains a congruence

subgroup � without prime-to-p torsion. For such �, (4.5) (i) applies, and (4.7) becomes

(4:8) C(�)

�

=

�! H=H

!

� P

1

proj:

�! H=H

!

�H

?

!

,! Hom(H

!

;Z)=i(H

!

)

�

=

�! �

1

(�):

Hence in this case, �

1

(�) as well as the image �

cusp

1

(�) := can

1

(C(�)) of the cuspidal

divisor classes may be described entirely in terms of the almost �nite graph � n T .

Note that assertions similar to (4.6) - (4.8) are valid also in the case of a general

arithmetic group � (i.e., without the assumption of being a congruence subgroup),

except for the �niteness of C(�). By analogy with the number �eld case [18], that

latter is unlikely to hold.

5. The case of Hecke congruence subgroups over a polynomial ring.

We now assume that A equals the polynomial ring F

q

[T ] and � is the Hecke congruence

subgroup �

0

(n) = f

�

a b

c d

�

2 GL(2; A) j c � 0 mod ng for a certain n 2 A. A lot

of material about these groups, including structural properties of � n T , formulae for

g(�), c(�) etc., may be found in [9]. Note in particular that (loc. cit., Thm. 3.3)

(5:1) H

1

(� n T ;Z)

�

=

�

�

=

�!

j

H

!

= H

!

(T ;Z)

�

:

(5.2) We start with a few examples that illustrate how can

1

: C(�) �! �

1

(�) may

be calculated. Let q = 2. Apart from the general advantage that g(�) and c(�) are

then small, q = 2 forces that

(5.2.1) the group U of (4.3.3) is trivial, hence

(5.2.2) can

1

: C(�) is injective, and

(5.2.3) C(�) = H=H

!

�H

?

!

, due to (3.10).

5.3 Examples.

(5.3.1) � = �

0

(n), n = T (T

2

+ T + 1) 2 F

2

[T ]. The graph � n T looks:
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Here � � � > indicates a cusp. Let 


1

; 


2

be the two cycles of length 4, oriented counter-

clockwise, and '

1

; '

2

; '

3

the Z-valued harmonic cochains 
owing from the SW, the

SE, the NE cusp, respectively, to the NW cusp, going the way round counter-clockwise.

Then f


1

; 


2

g and f


1

; 


2

; '

1

; '

2

; '

3

g are Z-bases of H

!

and H, respectively. With

respect to these bases, the pairing (: ; :) : H

!

�H �!Zis given by




1




2

'

1

'

2

'

3




1

4 �1 2 1 1




2

�1 4 3 2 1

:

We get ]�

1

(�) =

�

�

�

det

�

4;

�1;

�1

4

�

�

�

�

= 15, and after an elementary computation, ]C(�) =

[H : H

!

�H

?

!

] = 15, too. Hence can

1

is bijective.

N.B. J

�

splits into two elliptic curves with 3 resp. 5 rational points over K =

F

2

(T ), which are therefore all \cuspidal" ([6] 4.4).

(5.3.2) Drawings of the graphs � n T (� = �

0

(n)) for the next examples may be

found in [19]. For these, the matrix of (: ; :) : H

!

� H �! Zand thus C and �

1

may be calculated as above. We restrict to giving the results. In all cases, can

1

is

bijective (which, however, is not typical: see (5.3.3)!).

n 2 F

2

[T ] g(�) c(�) C(�)

T

2

(T + 1) 1 6 Z=6Z

T

3

1 4 Z=4Z

T

3

+ T + 1 2 2 Z=7Z

(T

2

+ T + 1)

2

2 5 Z=2Z�Z=10Z

T

4

3 6 Z=2Z�Z=8Z�Z=8Z

(5.3.3) � = �

0

(n), where (i) n = T

4

+ T

3

+ 1 or (ii) n = T

4

+ T + 1, which both

are irreducible over F

2

. In both cases, g(�) = 4, c(�) = 2, ]C(�) = 5 (see also (5.6)).

However, �

1

(�)

�

=

Z=2Z�Z=80Zfor (i) and �

1

(�)

�

=

Z=45Zfor (ii). Hence can

1

is

not surjective in these cases.

We let now again F

q

be an arbitrary �nite �eld, n a monic polynomial of degree

d in A = F

q

[T ], and � = �

0

(n). We give an intrinsic description of the group �

0

c

(�)

of (3.5).

5.4 Theorem. Let n have h di�erent monic prime divisors in A. Then �

0

c

(�)

has index (q � 1)

2

h�1

in �

c

(�).

Proof. Without restriction, we may assume q > 2.

(i) By (5.1) and (3.6), H

!

� r(�

0

c

), hence �

c

=�

0

c

�

=

�! H=r(�

0

c

). Consider the commu-

tative diagram with exact rows:
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(5:4:1)

0 ! r(�

0

c

)=H

!

! H=H

!

! H=r(�

0

c

) ! 0

ok

j

#

\

#

div

j

#

�

0 ! Div

0

1

!(

L

[s]2cusp(�)

w

�1

s

Z[s])

0

! (

L

w

�1

s

Z[s] =Z[s])

0

! 0

The right hand arrow � is injective; it su�ces therefore to calculate its image.

(ii) From [9] 2.15 we know that � has precisely 2

h

cusps [s] with w

s

= q � 1 (the

regular cusps), and for the other (irregular) cusps, w

s

= 1. Hence the lower right

group in (5.4.1) equals (Z=(q� 1)Z)

reg(�);0

, the subgroup of elements of degree zero

in (Z=(q�1)Z)

reg(�)

, where reg(�) is the set of regular cusps. Using this identi�cation,

� : r(�

c

)=r(�

0

c

) = H=r(�

0

c

) ,! (Z=(q� 1)Z)

reg(�);0

associates with each r(f) 2 H the 2

h

-tuple (: : : ; ord

[s]

f mod q � 1; : : :).

(iii) We have to introduce some more notation. Suppose from now on that d :=

deg n � 2. (The case d = 1, which leads to g(�) = 0, c(�) = 2, � n T isomorphic

with a straight line � � � � � � ���� � ��� � � � �, is easily dealt with directly. The

result follows in this case also from (5.7).)

Then to each cusp [s] there corresponds a maximal half-line hl[s] of � n T . We let e

[s]

be the �rst edge of hl[s], oriented away from [s], and call it the base edge of [s].

s s s� . . . . . . . . . .-

[s]

e

[s]

5.4.3 Claim. For each f 2 �

c

, we have ord

[s]

f = r(f)(e

[s]

).

For the proof of this fact, it su�ces to verify r(t

s

)(e

[s]

) = 1, where t

s

is the

corresponding uniformizer, cf. (2.5). As usual, possibly replacing � by a conjugate,

we may assume s =1, in which case the assertion is a consequence of

� Proposition 1.14 of [7],

� the way how vertices and edges of T are identi�ed under �

1

,

and the trivial but crucial fact:

� each fractional ideal b of K has a direct complement of the form (�

r

1

) in K

1

.

Here �

1

is a uniformizer at 1, e.g. �

1

= T

�1

.

(iv) Let ' 2 H = H(T ;Z)

�

. The harmonicity condition (1.3.1) for ' as a function

on � n T reads

(5:4:4)

X

e2Y (�nT )

o(e)=v

m(e)'(e) = 0

for each vertex v of � n T , where the multiplicity m(e) (1 � m(e) � q + 1) takes care

of the identi�cation of edges of T modulo �. Clearly,

X

o(e)=v

m(e) = q + 1.
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(v) The next statements result from the description of � n T given in [9]. As

usual, [0] and [1] denote the cusps represented by (0 : 1) and (1 : 0), respec-

tively. Their corresponding half-lines hl[0] and hl[1] in � n T are connected by

a path 
 consisting of a sequence of d � 2 edges e

1

; : : : ; e

d�2

of valence 3. The

edges e = e

[0]

; e

1

; e

1

; : : : ; e

d�2

; e

d�2

; e

[1]

enter with multiplicitym(e) = 1 into (5.4.4),

whereas the d � 1 edges connecting hl[0] [ 
 [ hl[1] with the rest of � n T have

multiplicity q � 1, always with respect to vertices on 
. This is the picture:

(5.4.5)

� -....... ....... .....-..... - - �u u u uu u




[0]

e

[0]

e

1

e

d�2

e

[1]

[1]

| {z }

hl[0]

| {z }

edges e with m(e) = q � 1

| {z }

hl[1]

(vi) By the above, for any ' 2 H we have

'(e

[0]

) � '(e

1

) � � � � � '(e

d�2

) � �'(e

[1]

) mod q � 1:

The group W of Atkin-Lehner-involutions (which acts on M

�

as well as on �nT ) acts

transitively on reg(�), and some pair ([s]; [s

0

]) of regular cusps lies in the W -orbit of

([0]; [1]) if and only if [s

0

] = w[s], where w = w

n

is the total involution induced from

the matrix

�

01

n0

�

2 GL(2;K). Hence for any ' 2 H 2 reg(�),

(5:4:6) '(e

[s]

) � �'(e

w[s]

) mod q � 1

holds. On the other hand, it is obvious from (5.4.5) that for each pair ([s]; w[s]) of w-

conjugate regular cusps there exists a harmonic cochain ' 2 H such that '(e

[s]

) = 1,

'(e

w[s]

) = �1. Hence the image of � in (Z=(q� 1)Z)

reg(�);0

(see (5.4.2)) agrees with

the free Z=(q� 1)Z-submodule of rank

1

2

] reg(�) = 2

h�1

de�ned by the congruence

condition (5.4.6), which �nally yields the result. �

5.5 Corollary. With notations as in (5.4), the cokernel �

1

=�

cusp

1

of can

1

:

C(�) �! �

1

(�) has order a multiple of (q � 1)

2

h�1

: [H

?

!

: H

?

!

\ r(�

0

c

)].

Proof. With identi�cations as in (4.7), �

cusp

1

= r(�

0

c

)=H

!

� H

?

!

\ r(�

0

c

) ,!

H=H

!

�H

?

!

,! �

1

. The stated value is the index of �

cusp

1

in H=H

!

�H

?

!

. �

For the remainder of this section, we suppose in addition that n is prime. The

cuspidal divisor class group C = C(�) of � = �

0

(n) has been determined in [3] and,

with di�erent methods, in [7]. The result is

5.6 Theorem. In the above situation, C is cyclic of order

q

d

�1

q

2

�1

if d = deg n is

even and

q

d

�1

q�1

if d is odd.

Here c(�) = 2 with the two cusps [0] and [1]. A meromorphic function f on M

�

with divisor ](C)([0] � [1]) may be constructed as follows. Let � : 
 �! C be the

Drinfeld discriminant (see e.g. [7]) and �

n

(z) = �(nz). Then �=�

n

is a modular

function (i.e., invariant) for � and div(�=�

n

) = (q

d

� 1)([0]� [1]) (loc. cit. (3.11)).

Let now

r := (q

2

� 1)(q � 1) for even d

= (q � 1)

2

for odd d:

Using the machinery of Drinfeld modular forms, it is further shown in [7] 3.18:

Documenta Mathematica 2 (1997) 351{374



On the Cuspidal Divisor Class Group . . . 371

5.7 Theorem. �=�

n

admits an r-th root in O




(
)

�

, and r is maximal with

this property.

(5.8) Let D

n

be such an r-th root. It transforms under � through a certain

character !

n

: � �! F

�

q

,! C

�

of precise order q� 1 (loc. cit. 3.21, 3.22). Therefore,

D

q�1

n

(but no smaller power of D

n

) is �-invariant, and it has the asserted divisor

](C)([0]� [1]) on M

�

. Put �nally

(5:8:1) t := gcd(q � 1; ](C)):

Then yet

div(D

(q�1)=t

n

=

](C)

t

([0]� [1])

is an integral divisor, whose class generates the subgroup U

t

of order t in C. A look

at (4.7) shows that U

t

is contained in the kernel of can

1

, with which it must agree

in view of (5.7).

5.9 Theorem. Let n be an irreducible monic polynomial of degree d in A =

F

q

[T ], let � = �

0

(n) be the Hecke congruence subgroup, and t as given in (5.8.1).

(i) There is an exact sequence 0 �! U

t

�! C

can

1

�! �

1

, where U

t

is the unique

subgroup of order t in C = C(�).

(ii) The cokernel �

1

=�

cusp

1

of can

1

has order a multiple of t.

Proof. (i) has been shown. (ii) comes from (5.5), noting that [H

?

!

: H

?

!

\r(�

0

c

)] =

(q � 1)=t. �

Pairs (q; d) where t > 1 are for example (4,3), (7,3), (13,3) with t = 3 and (3,4),

(5,4) with t = 2. In the �nal section, we work out an example with (q; d) = (7; 3).

6. An example.

We consider in detail the case where n is a prime of degree 3 in A = F

q

[T ]. The graph

� n T looks ([4] 5.3, � := �

0

(n)):

(6.1) u u u

u u

- - �

??

-

u� ... -. . .

[0]

e

[0]

e

1

e

[1]

[1]

~e

[0]

~e

[1]

ee

x

Here

-

stands for q edges ~e

x

indexed by x 2 F

q

. The multiplicities m(e) (see

(5.4.4)) of all drawn edges and their inverses are 1 except for ~e

[0]

and ~e

[1]

, which enter

with multiplicity q� 1 into the harmonicity condition w.r.t. their origins. Hence e.g.

(q � 1)'(~e

[1]

) � '(e

1

) � '(e

[1]

) = 0

for ' 2 H. The scalar product on H

!

= H

!

(T ;Z)

�

is such that each pair fe; eg of

inversely oriented edges contributes volume 1 except for fe

1

; e

1

g, which has volume

q � 1. For each x 2 F

q

, let '

x

be the unique element of H

!

with

'

x

(~e

[1]

) = �1; '

x

(~e

y

) = �

x;y

(y 2 F

q

):

Documenta Mathematica 2 (1997) 351{374



372 Ernst-Ulrich Gekeler

Let further  2 H be such that

 (e

[0]

) = 1 =  (e

1

) = � (e

[1]

)

and  vanishes o� the line from [0] to [1]. Next, let � 2 H be de�ned as

� =

X

x2F

q

'

x

+ (q

2

+ q + 1) :

Then, as is easily veri�ed:

(6.2) (i) f'

x

j x 2 F

q

g is a basis of H

!

.

(ii) f'

x

j x 2 F

q

g [ f g is a basis of H.

(iii) H

?

!

= Z�

(iv) r(�

0

c

) = H

!

+ (q � 1)Z (use (5.4)!)

(v) H

?

!

\ r(�

0

c

) =

q�1

t

Z� (t := gcd(q � 1; q

2

+ q + 1))

(vi) P

1

= (q � 1)Z� (see (4.3)).

Furthermore,

(6.3) (i) C = r(�

0

c

)=H

!

� P

1

�

=

�!Z=(q

2

+ q + 1)Z

' 7�! '(e

[0]

)

(in accordance with (5.6)) and

(ii) ](�

1

) = q

2

+ q + 1 = ](C) (from calculating the determinant of

(: ; :) : H

!

� H

!

�! Z), but can

1

: C �! �

1

has kernel and cokernel each of

size t. (It is easy to show that in this case, �

1

is cyclic, too.)

(6.4) As is explained in [10], the splitting of the Jacobian J := J

0

(n) of M

�

corresponds to the splitting ofH

!


Q under the Hecke algebra, which can be calculated

by the formulae in [4], or by the approach via modular symbols proposed in [23]. Let

now, more speci�cally

(6.4.1) q = 7 and n = T

3

�2 2 F

7

[T ], which gives ](C) = 57 and t = gcd(6; 57) =

3. In that case, H

!


 Q splits under the Hecke algebra into an irreducible piece of

dimension 6 and the eigenspace generated by (see [4], table 10.3)

(6:4:2) ' =

X

x2F

7

a

x

'

x

with (a

0

; : : : ; a

6

) = (4; 1; 1;�2; 1;�2;�2):

This means, there exists an elliptic curve E=K, uniquely determined up to isogeny,

with good reduction outside of the two places 1; (n) of K = F

7

(T ), multiplicative

reduction at (n) and split multiplicative reduction at 1, which has a \Weil uni-

formization" � : M

�

�! E, and whose reduction at (T � x) has 8 + a

x

rational

points over A=(T � x) = F

7

. We have

(6.4.3) ('; ') = 39, m := minf('; �) > 0 j � 2 H

!

g = 3, hence ([6] 3.19, 3.20)

deg � = 39=3 = 13 and v

1

(j

E

) = �3 for the j-invariant j

E

of E, � supposed to be a

\strong Weil uniformization". Comparing with [4] table 9.3, case 3a and performing

the unrami�ed quadratic twist to get split multiplicative reduction at 1 yields the

following equation for E:

(6:4:4) Y

2

= X

3

+ aX + b
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with a = �3T (T

3

+ 2), b = �2T

6

+ 3T

3

+ 1. It can be shown by routine methods

that (6.4.4) in fact yields the strong Weil curve in the given isogeny class, and that

(6:4:5) E(K) = f0; (3T

2

;�4(T

3

� 2))g

�

=

Z=3Z:

(We should note here that the equation given in [23] p. 289, dealing with the same

example, does not describe the isogeny factor E of J but its unrami�ed quadratic

twist. Hence some conclusions derived there must be slightly modi�ed.)

Similar to (4.7), there is a map can

1;E

: C

E

�! �

1;E

and a commutative

diagram

(6:4:6)

C

can

1

�! �

1

# #

C

E

can

1

;E

�! �

1;E

;

where C

E

is the image of the map C �! E(K) derived from � and �

1;E

the group

of connected components of E at 1, isomorphic with Z=mZ= Z=3Z. Further,

as results from the calculation of Hecke operators, C �! E(K) is non-trivial, hence

C �! C

E

= E(K)

�

=

Z=3Z, and E is the quotient of J corresponding to the Eisenstein

prime number l = 3 ([15], [22]). Since, by (5.9), can

1

kills the subgroup of order t = 3

in C, (6.4.6) forces can

1;E

to be trivial. In other words:

(6.4.7) The rational 3-division points (6.4.5) of E map to the connected compo-

nent of the N�eron model at 1.

Of course, this is easy to see directly. An equivalent form of stating this fact is as

follows: Let f 2 �

c

(�) be such that r(f) = �, and regard ' 2 H

!

�

=

 � � as the class

of some element of �. Then f

6

is a modular unit and, up to scaling, a 6-th root of

�=�

n

. Its third root f

2

belongs to �

0

c

(�) and transforms under � through a character

� = c

f

2
, and �(') is a non-trivial third root of unity.

(6.5) The above example (and similar ones) suggests to re�ne the investigation

(begun in [3] and, much more deeply, in [22]) of the Eisenstein ideal, the Eisenstein

quotient of J etc., i.e., of data de�ned by means of the cuspidal divisor class group

C(�), by taking into account the Hecke module �

1

(�) and the map can

1

: C(�) �!

�

1

(�).
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Abstract. We show that there exists a C

�

-algebra B such that M

2

(B) is

stable, but B is not stable. Hence stability of C

�

-algebras is not a stable

property. More generally, we �nd for each integer n � 2 a C

�

-algebra B

so that M

n

(B) is stable and M

k

(B) is not stable when 1 � k < n. The

C

�

-algebras we exhibit have the additional properties that they are simple,

nuclear and of stable rank one.

The construction is similar to Jesper Villadsen's construction in [7] of a

simple C

�

-algebra with perforation in its ordered K

0

-group.
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1 Introduction

A C

�

-algebra A is said to be stable if A

�

=

A 
 K, where K is the C

�

-algebra of

compact operators on a separable, in�nite dimensional Hilbert space. The problem

of deciding which C

�

-algebras are stable relates to structure problems of simple C

�

-

algebras. For example, as shown in [3, Proposition 5.2], if all non-unital hereditary

sub-C

�

-algebras of a given C

�

-algebra A are stable, and if A is simple and not of type

I, then A must be purely in�nite. It was also remarked in [3, Proposition 5.1] that an

AF-algebra is stable if and only if it admits no bounded (densely de�ned) traces, and

it was asked if a similar characterization might hold in general. In more detail, is a

C

�

-algebra A stable if and only if A admits no bounded (quasi-)trace and no quotient

of A is unital?

It is a consequence of the examples produced in this article that the answer to

this question is no. Indeed, let A be a C

�

-algebra such that M

2

(A) is stable and A is

not stable. Then M

2

(A) admits no bounded (quasi-)trace, and no quotient of M

2

(A)

is unital. This is easily seen to imply that A admits no bounded (quasi-)trace, and

that no quotient of A is unital.
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376 Mikael R�rdam

Jesper Villadsen gave in [7] the �rst examples of simple C

�

-algebras whose or-

dered K

0

-groups have perforation. As shown in Proposition 3.3, the examples con-

structed here must also have perforation in their K

0

-group (at least when they admit

an approximate unit consisting of projections). We shall in this article make extensive

use of the techniques developed by Villadsen.

2 A preliminary result

Let A be a C

�

-algebra and consider the set �(A) consisting of those integers n � 1

where M

n

(A) is stable. The result below shows that this set must be either empty,

N, or equal to fn; n+1; n+2; : : :g for some n � 2. Clearly, the empty set and N arise

as �(A) for appropriate C

�

-algebras A. The main result of this article (Theorem 5.3)

shows that the remaining sets are also realized.

Proposition 2.1 Let A be a �-unital C

�

-algebra, let n � 1 be an integer, and suppose

that M

n

(A) is stable. Then M

n+1

(A) is stable.

Proof: By [3, Theorem 2.1 and Proposition 2.2] it su�ces to show that one for all

positive elements a 2M

n+1

(A) and all " > 0 can �nd positive elements b; c 2M

n+1

(A)

with ka�bk � ", kbck � ", and b � c (i.e. b = x

�

x and c = xx

�

for some x 2M

n+1

(A)).

To obtain this it su�ces to �nd positive elements e; f 2M

n+1

(A)

+

with e � f , e ? f ,

and ea close to a. Indeed, if e = x

�

x and f = xx

�

, then set y = xa

1=2

, and note that

y

�

y is close to a and that (yy

�

)(y

�

y) is small.

Now,

a =

�

a

1

z

z

�

a

2

�

;

where a

1

2 M

n

(A)

+

, a

2

2 A

+

and z 2 M

n;1

(A). Let " > 0, and let '

"

: R

+

! [0; 1]

be a continuous function which is zero on [0; "=2] and equal to 1 on [";1). Set

e

0

=

�

'

"

(a

1

) 0

0 '

"

(a

2

)

�

:

Then e

0

a is close to to a if " > 0 is small.

Since M

n

(A) is stable, we can �nd positive elements e

1

; f

1

; f

2

2 M

n

(A) and

e

2

2 A such that e

1

� f

1

, e

2

� f

2

(in the sense that e

2

= x

�

x and f

2

= xx

�

for some

x 2M

n;1

(A)), e

1

; f

1

; f

2

are mutually orthogonal, e

1

is close to '

"

(a

1

), and e

2

is close

to '

"

(a

2

). Set

e =

�

e

1

0

0 e

2

�

; f =

�

f

1

+ f

2

0

0 0

�

:

Then ea is close to a, e � f , and e ? f as desired. �

3 Stability and the scale of K

0

We investigate in this section the connection between the scaled ordered group of a

C

�

-algebra and stability of matrix algebras over the C

�

-algebra. Recall that if A is a

C

�

-algebra, then

K

0

(A)

+

= f[p]

0

j p 2 P (A
 K)g � K

0

(A); �(A) = f[p]

0

j p 2 P (A)g � K

0

(A)

+

;
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where P (A
 K) and P (A) denote the set of projections in A
 K, respectively, A.

One can in some cases see from the triple (K

0

(A);K

0

(A)

+

;�(A)) if A is stable.

A C

�

-algebra A is said to have the cancellation property if p+ r � q+ r implies that

p � q for all projections p; q; r 2 A
K with p ? r and q ? r. If A has the cancellation

property, then [p]

0

= [q]

0

in K

0

(A) implies p � q for all projections p; q 2 A 
 K.

Recall also that A has the cancellation property if A is of stable rank one (see [1,

Proposition 6.5.1]).

Proposition 3.1 Let A be a C

�

-algebra with the cancellation property and with a

countable approximate unit consisting of projections. Then A is stable if and only if

�(A) = K

0

(A)

+

.

Proof: The \only if" part is trivial. To show the \if" part, assume that �(A) =

K

0

(A)

+

. By [3, Theorem 3.3] it su�ces to show that for each projection p 2 A there

exists a projection q 2 A with p � q and p ? q. Let a projection p 2 A be given.

By the assumptions that A has an approximate unit consisting of projections, and

�(A) = K

0

(A)

+

, there exist projections e; f 2 A such that [e]

0

= 2[p]

0

= [p � p]

0

,

e � f and p � f . Since A has the cancellation property, this implies that e � p� p,

which again implies that e = e

1

+ e

2

, where e

1

� e

2

� p. Now, [f � p]

0

= [f � e

1

]

0

,

and so p � e

2

� f � e

1

� f � p: Hence p is equivalent to a subprojection q of f � p

as desired. �

Definition 3.2 A triple (G;G

+

;�) will be called a scaled, ordered abelian group if

(G;G

+

) is an ordered abelian group, and � is an upper directed, hereditary, full subset

of G

+

, ie.,

(i) 8x

1

; x

2

2 � 9x 2 � : x

1

� x; x

2

� x,

(ii) 8x 2 G

+

8y 2 � : x � y =) x 2 �,

(iii) 8x 2 G

+

9y 2 � 9k 2 N : x � ky.

Let (G;G

+

) be an ordered abelian group, and let �

1

and �

2

be upper directed,

hereditary, full subsets of G

+

. De�ne �

1

^

+ �

2

to be the set of all elements x 2 G

+

for

which there exist x

1

2 �

1

and x

2

2 �

2

with x � x

1

+ x

2

. Observe that �

1

^

+ �

2

is an

upper directed, hereditary, full subset of G

+

. Denote the k-fold sum �

^

+ �

^

+ � � �

^

+ �

by k
^
��. Using that � is upper directed we see that y 2 k

^
�� if and only if 0 � y � kx

for some x 2 �.

If A is a stably �nite C

�

-algebra with the cancellation property and with an

approximate unit consisting of projections, then (K

0

(A);K

0

(A)

+

;�(A)) is a scaled,

ordered abelian group. If A has these properties, then

�

K

0

(M

k

(A));K

0

(M

k

(A))

+

;�(M

k

(A))

�

�

=

(K

0

(A);K

0

(A)

+

; k
^
��(A)): (1)

Suppose that n � 2 and that (G;G

+

;�) is a scaled, ordered Abelian group

such that (n � 1)
^
�� 6= G

+

and n
^
�� = G

+

, and suppose that A is a C

�

-

algebra of stable rank one and with an approximate unit of projections such that

(K

0

(A);K

0

(A)

+

;�(A))

�

=

(G;G

+

;�). Then it follows from Proposition 3.1 and (1)

that M

n

(A) is stable and M

k

(A) is not stable for 1 � k < n.

Recall that an ordered Abelian group (G;G

+

) is called weakly unperforated if

ng 2 G

+

n f0g for some n 2 N and some g 2 G implies g 2 G

+

.
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Proposition 3.3 Let (G;G

+

;�) be a weakly unperforated, scaled, ordered, Abelian

group, and suppose that n
^
�� = G

+

for some n 2 N. Then � = G

+

.

Proof: Let g be an element of G

+

, and choose a non-zero element u 2 G

+

. Since

n
^
�� = G

+

, there is an element x 2 � with nx � ng+u. Now, n(x� g) � u > 0, and

this entails that x � g � 0, by the assumption that (G;G

+

) is weakly unperforated.

By the hereditary property of � we get that g 2 �. Thus � = G

+

. �

We give below an explicit example of a scaled, ordered Abelian group (G;G

+

;�)

with �

^

+ � = G

+

and � 6= G

+

. Note that this ordered group necessarily must be

perforated (by Proposition 3.3 above).

It is not known if every (countable) scaled ordered Abelian group is the scaled

ordered Abelian group of a C

�

-algebra | the problem here lies in realizing the given

order structure, not in realizing the given scale. We can therefore not immediately

conclude from the example below that there exists a non-stable C

�

-algebra B where

M

2

(B) is stable. Actually, it is not known (to the author) if the ordered Abelian

group constructed below is the ordered K

0

-group of any C

�

-algebra.

Example 3.4 Let Z

2

denote the group Z=2Z, and let Z

(1)

2

denote the group of all

sequences t = (t

j

)

1

j=1

, with t

j

2 Z

2

and where t

j

6= 0 only for �nitely many j. For

each t 2Z

(1)

2

, let d(t) be the number of elements in fj 2 N j t

j

6= 0g: Set

G

2

= Z�Z

(1)

2

; G

+

2

= f(k; t) j d(t) � kg; �

2

= f(k; t) j d(t) = kg:

Then (G

2

; G

+

2

;�

2

) is a scaled, ordered Abelian group with �

2

6= G

+

2

and �

2

^

+ �

2

=

G

+

2

. To see this, let e

j

2Z

(1)

2

be the element which is a generator of Z

2

at the jth

coordinate and zero elsewhere, set g

j

= (1; e

j

) 2 G

+

, and set h

j

= g

1

+ g

2

+ � � �+ g

j

.

Then

�

2

=

1

[

j=1

fx 2 G

+

j x � h

j

g: (2)

The claims made about (G

2

; G

+

2

;�

2

) are now easy to verify.

Notice that �

2

+ �

2

6= �

2

^

+ �

2

, since for example (3; e

1

+ e

2

) =2 �

2

+ �

2

. This

was pointed out to me by Jacob Hjelmborg, and it shows that the sum of two scales

is not a scale in general. �

Example 3.5 Let n � 2 be an integer. LetZ

(1)

n

be the Abelian group of all sequences

(t

j

)

1

j=1

with t

j

2Z

n

(= Z=nZ), and t

j

6= 0 only for �nitely many j. Let e

j

2Z

(1)

n

be

a generator of the jth copy of Z

n

. Then each t 2Z

(1)

n

is a sum t =

P

1

j=1

r

j

e

j

with

0 � r

j

< n and where r

j

= 0 for all but �nitely many j. Set d(t) =

P

1

j=1

r

j

, and set

G

n

= Z�Z

(1)

n

; G

+

n

= f(k; t) j d(t) � kg; �

n

=

1

[

j=1

fx 2 G

+

j x � h

j

g;

where g

j

= (1; e

j

) and h

j

= g

1

+g

2

+ � � �+g

j

. Then (G

n

; G

+

n

;�

n

) is a scaled, ordered,

Abelian group, (n� 1)
^
��

n

6= G

+

n

and n
^
��

n

= G

+

n

. �
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Adopt the following (standard) notation. If e 2 M

n

(A) and f 2 M

m

(A) are projec-

tions, then let e�f denote the projection diag(e; f) 2M

n+m

(A). Write e � f if there

is an element v 2M

m;n

(A) with e = v

�

v and f = vv

�

, and write e - f if e � f

0

for

some subprojection f

0

of f . Denote the k-fold direct sum e� e� � � � � e by e
 1

k

. If

A has the cancellation property (see the introduction to this section), and if e; f 2 A

are projections, then [e]

0

� [f ]

0

if and only if e - f .

Proposition 3.6 Let A be a C

�

-algebra, let n � 2 be an integer, and suppose that

A contains projections e; p

1

; p

2

; p

3

; : : : that satisfy

(i) e 
 1

n

� p

j


 1

n

for all j,

(ii) e is not equivalent to a subprojection of (p

1

� p

2

� � � � � p

j

)
 1

n�1

for any j.

Set q

j

= p

1

�p

2

�� � ��p

j

, and embed all matrix algebras over A coherently into A
K

so that q

j

belongs to A 
K for all j. Set

B =

1

[

j=1

q

j

(A
 K)q

j

: (3)

Then M

k

(B) is not stable for 1 � k < n, but M

n

(B) is stable.

Let H be the subgroup of K

0

(B) generated by the K

0

-classes of the projections

e; p

1

; p

2

; p

3

; : : : . Assume that B has the cancellation property. Then

(H;H \K

0

(B)

+

;H \ �(B))

�

=

(G

n

; G

+

n

;�

n

); (4)

where the triple on the right hand-side is the scaled, ordered, Abelian group de�ned in

Example 3.5.

Proof: Observe that

M

k

(B) =

1

[

j=1

(q

j


 1

k

)(A
 K)(q

j


 1

k

);

for each k, and that fq

j


 1

k

g

1

j=1

is an approximate unit for M

k

(B).

To show that M

k

(B) is not stable for 1 � k < n it su�ces by Proposition 2.1 to

show that M

n�1

(B) is not stable.

If M

n�1

(B) were stable, then there would exist a projection q 2M

n�1

(B) such

that q � p

1


 1

n�1

and q ? p

1


 1

n�1

. (This is rather easy to see directly, and one

can also obtain this from [3, Theorem 3.3].) Since fq

j


 1

n�1

� p

1


 1

n�1

g

1

j=1

is an

approximate unit for (1�p

1


1

n�1

)M

n�1

(B)(1�p

1


1

n�1

), there is a j, so that q is

equivalent to a subprojection of q

j


 1

n�1

� p

1


 1

n�1

(= (p

2

� p

3

� � � �� p

j

)
 1

n�1

).

By assumption (i),

e - e 
 1

n

� p

1


 1

n

- (p

1


 1

n�1

)� (p

1


 1

n�1

) - (p

1


 1

n�1

)� q

- (p

1

� p

2

� � � � � p

j

) 
 1

n�1

;

in contradiction with assumption (ii).
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We proceed to show that M

n

(B) is stable. By (i), q

j


 1

n

is equivalent to the

direct sum of e 
 1

n

with itself j times. It follows quite easily from this that M

n

(B)

is stable. We can also use [3, Theorem 3.3] to obtain this conclusion by showing that

there for each projection p in M

n

(B) exists a projection q in M

n

(B) with p � q and

p ? q. One can here reduce to the case where p is a subprojection of q

j


 1

n

for some

j, and the result then follows from the fact that q

2j


 1

n

� q

j


 1

n

� q

j


 1

n

.

Assume now that B has the cancellation property. To establish the isomorphism

(4), note �rst that n([p

j

]

0

� [e]

0

) = 0 by (i). Retaining the notation from Example

3.5, we de�ne a group homomorphism ' : G

n

! H by '(1; 0) = [e]

0

and '(0; e

j

) =

[p

j

]

0

�[e]

0

. ' is clearly surjective. For any (k; t) 2 G

n

with t =

P

N

j=1

r

j

e

j

, 0 � r

j

< n,

'(k; t) = k[e]

0

+

N

X

j=1

r

j

�

[p

j

]

0

� [e]

0

�

=

�

k � d(t)

�

[e]

0

+

N

X

j=1

r

j

[p

j

]

0

:

It follows that '(k; t) � 0 if (k; t) � 0. Conversely, if (k; t) is not positive, then

k � d(t) � �1, and so

'(k; t) =

�

k � d(t)

�

[e]

0

+

N

X

j=1

r

j

[p

j

]

0

� (n� 1)

�

[p

1

]

0

+ [p

2

]

0

+ � � �+ [p

N

]

0

�

� [e]

0

:

By (ii) and the assumption that B has the cancellation property, the element on

the right-hand side of this inequality is not positive. All in all we have shown that

'(k; t) � 0 if and only if (k; t) � 0. This entails that ' is injective and that '(G

+

n

) =

H \K

0

(B)

+

.

Since fq

j

g

1

j=1

is an approximate unit for B, an element g 2 K

0

(B) lies in �(B) if

and only if 0 � g � [q

j

]

0

for some j. Notice that '(h

j

) = [q

j

]

0

. Hence '(k; t) 2 �(B)

if and only if 0 � (k; t) � h

j

for some j, and this shows that '(�

n

) = H \ �(B). �

Remark 3.7 Corollary 4.2 and Proposition 5.2 contain for each prime number n

examples of C

�

-algebras with projections e; p

1

; p

2

; p

3

; : : : satisfying (i) and (ii) of

Proposition 3.6. The C

�

-algebras in Proposition 5.2 have the cancellation property

(being of stable rank one).

Remark 3.8 One can replace condition (i) in Proposition 3.6 by a weaker condition

such as for example e - p

j


 1

n

for all j, and still obtain that the C

�

-algebra B

de�ned in (3) has the property that M

k

(B) is not stable for 1 � k < n and M

n

(B) is

stable. However, with this weaker condition one would not have a description of the

scaled ordered group as in (4).

4 The commutative case

We realize for each positive prime number n projections e; p

1

; p

2

; p

3

; : : : satisfying

conditions (i) and (ii) of Proposition 3.6, with respect to that n, inside a C

�

-algebra

which is stably isomorphic to a commutative C

�

-algebra. At the same time, Lemma

4.1 below, is a key ingredient in Section 5.

If � : X

1

! X

2

is a continuous function, then �

�

will denote the map from the

cohomology groups of X

2

to the cohomology groups of X

1

, and the same symbol will
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be used to denote the map from vector bundles over X

2

to vector bundles over X

1

.

By naturality of the Euler class, e(�

�

(�)) = �

�

(e(�)) for all complex vector bundles �

over Y .

The proof of Lemma 4.1 below is almost identical to the proof of [6, Theorem 3.4].

The statements of Lemma 4.1 and of [6, Theorem 3.4] are, however, quite di�erent.

Therefore, and for the convenience of the reader, we include a proof of Lemma 4.1.

Let D denote the unit disk in the complex plane. Consider for each integer n � 2

the equivalence relation � on D given by: z � w if z = w or if jzj = jwj = 1 and

z

n

= w

n

. Put Y

n

= D=�.

Lemma 4.1 Let n be a positive prime number, and put X = Y

n�1

n

. There exists

a complex line bundle ! over X with the following properties. Let m be a positive

integer, let �

1

; �

2

; : : : ; �

m

: X

m

! X be the coordinate maps, and set

�

(m)

k

= �

�

1

(!) � �

�

2

(!) � � � � � �

�

k

(!); 1 � k � m;

which is a complex vector bundle over X

m

of dimension k. Let �

d

denote the trivial

complex vector bundle (over X or X

m

) of (complex) dimension d. Then

(i) n!

�

=

�

n

,

(ii) if (n� 1)�

(m)

k

� �

d

1

�

=

� � �

d

2

for some complex vector bundle � over X

m

, and

some positive integers d

1

and d

2

, then d

1

� d

2

, and

(iii) ! � �

�

=

�

n

for some (n� 1)-dimensional complex vector bundle � over X.

Proof: Recall that H

2

(Y

n

;Z)

�

=

Z=nZ. There is a complex line bundle � over Y

n

with

non-trivial Euler class e(�) 2 H

2

(Y

n

;Z), and with n�

�

=

�

n

. Let �

1

; �

2

; : : : ; �

n�1

: X =

Y

n�1

n

! Y

n

be the coordinate projections, and set

! = �

�

1

(�) 
 �

�

2

(�)
 � � � 
 �

�

n�1

(�):

Then ! is a complex line bundle over X, and successive applications of the isomor-

phism n�

�

=

�

n

= n�

1

, yield n!

�

=

�

n

. Hence (i) holds, and (iii) is a trivial consequence

of (i).

To prove claim (ii) we �rst show that the Euler class, e((n� 1)�

(m)

k

), is non-zero.

The Euler class of ! is given by

e(!) =

n�1

X

j=1

�

�

j

(e(�)); (5)

cf. [4, Proposition V.3.10]. By the product formula for the Euler class, cf. [4, Propo-

sition V.3.10],

e((n � 1)�

(m)

k

) =

k

Y

j=1

�

�

j

(e(!)

n�1

): (6)

Since e(�)

2

2 H

4

(Y

n

;Z) and H

4

(Y

n

;Z) = 0, it follows from (5) and (6) that

e(!)

n�1

= (n� 1)!

n�1

Y

i=1

�

�

i

(e(�)):
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Let �

1

; �

2

; : : : ; �

k

: X

k

! X and � : X

m

! X

k

be the projections maps. Then �

j

=

�

j

� �, and �

�

: H

2k

(X

k

;Z)! H

2k

(X

m

;Z) is an injection. The map

� : H

2

(Y

n

;Z)
H

2

(Y

n

;Z)
 � � � 
H

2

(Y

n

;Z)! H

2k(n�1)

(X

k

;Z)

given by

�(x

1;1


 x

1;2


 � � � 
 x

k;n�1

) =

k

Y

j=1

n�1

Y

i=1

(�

�

j

� �

�

i

)(x

i;j

);

is injective by the K�unneth formula. Now,

e((n � 1)�

(m)

k

) =

k

Y

j=1

�

�

j

(e(!)

n�1

)

=

k

Y

j=1

�

�

j

�

(n� 1)!

n�1

Y

i=1

�

�

i

(e(�))

�

= (n � 1)!

k

�

�

�

k

Y

j=1

n�1

Y

i=1

(�

�

j

� �

�

i

)(e(�)

�

= (�

�

� �)

�

(n � 1)!

k

e(�) 
 e(�) 
 � � � 
 e(�)

�

:

The element e(�) 
 e(�) 
 � � � 
 e(�) has order n in H

2

(Y

n

;Z)
 H

2

(Y

n

;Z)
 � � � 


H

2

(Y

n

;Z). Because n is assumed to be prime, and because �

�

�� is injective, we get

that e((n � 1)�

(m)

k

) 6= 0.

Assume (ii) were false. Then (n � 1)�

(m)

k

� �

d

1

�

=

� � �

d

2

for some � and

some positive integers d

1

< d

2

. Hence (n � 1)�

(m)

k

would be stably isomorphic to

� � �

d

2

�d

1

. The Euler class is invariant under stable isomorphism, and the Euler

class of a trivial bundle (of dimension � 1) is zero, and so by the product formula we

get e((n� 1)�

(m)

k

) = 0, a contradiction. �

George Elliott pointed out to me that one obtains the following corollary from Lemma

4.1:

Corollary 4.2 Let n be a positive prime number, let Z be the in�nite Cartesian

product of Y

n

with itself. Then there exist projections e; p

1

; p

2

; p

3

; : : : in M

n

(C(Z))

satisfying

(i) e 
 1

n

� p

j


 1

n

for all j,

(ii) e is not equivalent to a subprojection of (p

1

�p

2

�� � ��p

j

)
1

n�1

for any j � 1.

Proof: Let ! be the complex line bundle over X = Y

n�1

n

from Lemma 4.1 and use

Lemma 4.1 (iii) to �nd a projection p 2 C(X;M

n

(C )) = M

n

(C(X)) that corresponds

to !. Identify Z with

Q

1

j=1

X, and let �

j

: Z ! X, j 2 N, be the coordinate maps.

Put p

j

= p � �

j

2 C(Z;M

n

(C )) = M

n

(C(Z)), and let e 2 M

n

(C(Z)) be a one-

dimensional constant projection. It follows from Lemma 4.1 (i) that p

j


 1

n

� e
 1

n

for all j. To see (ii), view M

n

(C(Z)) as the inductive limit,

M

n

(C(X))!M

n

(C(X

2

))!M

n

(C(X

3

))! � � � !M

n

(C(Z));

Documenta Mathematica 2 (1997) 375{386



Stability of C

�

-Algebras is Not a Stable Property 383

so that e; p

1

; p

2

; : : : ; p

j

2 M

n

(C(X

j

)). Then, by Lemma 4.1 (ii), for each k and for

each m � k, e is not equivalent to a subprojection of (p

1

� p

2

� � � � � p

k

) 
 1

n�1

in

(a matrix algebra over) M

n

(C(X

m

)). This implies that (ii) holds. �

Combining Corollary 4.2 with Proposition 3.6 we get for each prime number n a

hereditary sub-C

�

-algebra B of C(Z)
K such that M

k

(B) is not stable for 1 � k < n,

and M

n

(B) is stable. Proceeding as in the proof of Theorem 5.3 one can �nd such

examples B for all integers n � 2.

5 The simple case

We use an inductive limit construction, like the one Villadsen used in [7], to obtain

projections as in Proposition 3.6 inside a simple C

�

-algebra.

Fix a positive prime number n. Let fk

j

g

1

j=1

be a sequence of positive integers

chosen large enough so that

1

X

j=1

�

1�

1

Y

i=j

k

i

1 + k

i

�

<

1

n � 1

: (7)

De�ne inductively another sequence of integers fm

j

g

1

j=1

by m

1

= 1 and m

j+1

=

m

j

(k

j

+ 1).

Let Y

n

= D=� be as de�ned in Section 4, and put X = Y

n�1

n

. De�ne inductively

a sequence of spaces fX

j

g

1

j=1

by setting X

1

= X and X

j+1

= X

k

j

j

�X

m

j+1

. Set

A

j

= M

2

n�1

m

j

(C(X

j

)) = C(X

j

;M

2

n�1

m

j

(C )):

Choose x

j

2 X

j

appropriately (in a way which will be made precise later), and de�ne

�

-homomorphisms '

j

: A

j

! A

j+1

by

'

j

(f)(x) = diag((f ��

j

1

)(x); (f ��

j

2

)(x); : : : ; (f ��

j

k

j

)(x); f(x

j

)); x 2 X

j+1

; f 2 A

j

;

where �

j

1

; �

j

2

; : : : ; �

j

k

j

: X

j+1

= X

k

j

j

�X

m

j+1

! X

j

are the projections from the �rst

factor of X

j+1

.

Let (A, �

j

: A

j

! A) be the inductive limit of the sequence

A

1

'

1 //
A

2

'

2 //
A

3

'

3 //
� � �

:

It will be convenient to have an expression for the composed connecting maps

'

i;j

: A

j

! A

i

for i > j. For this purpose set

k

i;j

=

i�1

Y

n=j

k

n

; l

i;j

=

i�1

Y

n=j

(k

n

+ 1)�

i�1

Y

n=j

k

n

; m

i;j

=

i

X

n=j+1

m

n

k

i;n

; (8)

(with the convention that k

i;i

= 1). Then X

i

= X

k

i;j

j

� X

m

i;j

; and the composed

connecting maps are up to unitary equivalence given by

'

i;j

(f)(x)

= diag

�

(f � �

i;j

1

)(x); (f � �

i;j

2

)(x); : : : ; (f � �

i;j

k

i;j

)(x); f(x

i;j

1

); f(x

i;j

2

); : : : ; f(x

i;j

l

i;j

)

�

:
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The maps �

i;j

1

; �

i;j

2

; : : : ; �

i;j

k

i;j

: X

i

= X

k

i;j

j

�X

m

i;j

! X

j

are here the projections onto

the �rst k

i;j

coordinates of X

i

, the set

X

i

j

:= fx

i;j

1

; x

i;j

2

; : : : ; x

i;j

l

i;j

g � X

j

is for i � j + 2 equal to X

i�1

j

[ f�

i;j

1

(x

i

); �

i;j

2

(x

i

); : : : ; �

i;j

k

i;j

(x

i

)g, where each element

of the �rst set is repeated k

i

+ 1 times, and X

j+1

j

= fx

j

g.

Choose the points x

j

2 X

j

such that

S

1

r=j+1

X

r

j

is dense in X

j

for each j 2 N.

Since each X

i

j

is �nite and since no X

j

has isolated points this will entail that

S

1

r=i

X

r

j

is dense in X

j

for each j 2 N and for every i > j.

By [2, Proposition 1] and [7, Proposition 10] we get:

Proposition 5.1 The C

�

-algebra A is simple and has stable rank one.

With the C

�

-algebra A and the prime number n as above, we have:

Proposition 5.2 There exist projections e; p

1

; p

2

; p

3

; : : : in A so that

(i) p

j


 1

n

� e
 1

n

for all j � 1, and

(ii) e is not equivalent to a subprojection of (p

1

�p

2

�� � ��p

j

)
1

n�1

for any j � 1.

Proof: By Lemma 4.1 (iii) there exists a projection q 2 A

1

= M

2

n�1(C(X)) which

corresponds to the complex line bundle !. Let �

1

; �

2

; : : : ; �

m

j

: X

j

= X

k

j�1

j�1

�X

m

j

!

X be coordinate projections corresponding to the last factor of X

j

. Set q

1

= q, set

q

j

= diag(q � �

1

; q � �

2

; : : : ; q � �

m

j

) 2 A

j

;

for j � 2, and set p

j

= �

j

(q

j

) 2 A. Let e

1

2 A

1

be a constant projection of dimension

1, so that e

1

corresponds to the trivial complex line bundle �

1

, and set e = �

1

(e

1

) 2 A.

It follows from Lemma 4.1 (i) that q 
 1

n

� e

1


 1

n

. This implies that q

j


 1

n

is equivalent to a constant projection. Since '

j;1

(e

1

)
 1

n

is a constant projection (in

M

n

(A

j

)) of the same dimension as q

j


 1

n

, we �nd that q

j


 1

n

� '

j;1

(e

1

) 
 1

n

in

M

n

(A

j

). Hence

p

j


 1

n

= �

j

(q

j


 1

n

) � �

j

('

j;1

(e

1

)
 1

n

) = e 
 1

n

in M

n

(A).

For i � j, put

f

i;j

= '

i;1

(q

1

)� '

i;2

(q

2

)� � � � � '

i;j

(q

j

):

Then p

1

� p

2

� � � � � p

j

= �

i

(f

i;j

), and f

i;j

= '

i;j

(f

j;j

). Observe that X

j

= X

d

j

,

where d

1

= 1 and d

j+1

= n

j

k

j

+m

j+1

. By inspection of the formula for the composed

connecting maps '

j;l

, we �nd that the projection f

j;j

corresponds to the vector bundle

�

(d

j

)

d

j

� �

c

j

, where c

j

=

P

j

r=1

m

r

l

j;r

, cf. (8). From this we get that the projection

f

i;j

corresponds to the vector bundle �

(d

i

)

a

i;j

� �

b

i;j

over X

i

, where a

i;j

= k

i;j

d

j

and

b

i;j

=

P

j

r=1

m

r

l

i;r

, possibly after a permutation of the coordinates of X

i

.
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The trivial projection '

i;1

(e

1

) has dimension m

i

and corresponds therefore to

the trivial vector bundle �

m

i

. Now,

1

m

i

b

i;j

=

1

m

i

j

X

r=1

m

r

l

i;r

=

1

m

i

j

X

r=1

r�1

Y

s=1

(1 + k

s

)

�

i�1

Y

s=r

(1 + k

s

)�

i�1

Y

s=r

k

s

�

=

j

X

r=1

�

1�

i�1

Y

s=r

k

s

1 + k

s

�

�

1

X

r=1

�

1�

1

Y

s=r

k

s

1 + k

s

�

<

1

n� 1

;

where the last inequality follows from (5). This shows that (n � 1)b

i;j

< m

i

. By

Lemma 4.1 (ii), there exists no vector bundle � over X

i

such that

� � �

m

i

�

=

(n� 1)�

(d

i

)

a

i;j

� �

(n�1)b

i;j

(= (n � 1)(�

(d

i

)

a

i;j

� �

b

i;j

));

or, equivalently, '

i;1

(e

1

) is not equivalent to a subprojection of f

i;j


1

n�1

. Since this

holds for all i > j, e is not equivalent to a subprojection of (p

1

�p

2

�� � ��p

j

)
1

n�1

,

and this completes the proof. �

Theorem 5.3 For each integer n � 2 there exists a C

�

-algebra B such that M

n

(B)

is stable, and M

k

(B) is not stable for 1 � k < n. Moreover, B can be chosen to

be simple, nuclear, with stable rank one and with an approximate unit consisting of

projections.

Proof: Consider �rst the case where n is prime. Let B be the C

�

-algebra de�ned in

display (3) in Proposition 3.6 corresponding to the C

�

-algebraA and to the projections

e; p

1

; p

2

; p

3

; : : : found in Proposition 5.2. Then B is a hereditary subalgebra of A
K,

and since A is simple, nuclear and has stable rank one, it follows that B also has

these properties (see [5, Theorem 3.3] for the last claim). The sequence fq

j

g

1

j=1

is an

approximate unit for B. By Proposition 3.6, M

k

(B) is not stable for 1 � k < n and

M

n

(B) is stable.

Suppose now that n � 2 is an arbitrary integer. Observe that all integers �

(n � 1)

2

belong to the set

1

[

m=1

((n� 1)m;nm]:

Choose a prime number p � (n � 1)

2

. Then there exists an integer m � 1 so that

(n � 1)m < p � nm. By the �rst part of the proof there exists a C

�

-algebra D

with M

p

(D) stable and M

k

(D) not stable for 1 � k < p. Set B = M

m

(D). Then

B is simple, nuclear, and has stable rank one and an approximate unit consisting of

projections because D has these properties. Moreover, M

k

(B) = M

km

(D), and so,

by Proposition 2.1, M

k

(B) is stable if and only if km � p, which, by the choice of p

and m, happens if and only if k � n. �

Documenta Mathematica 2 (1997) 375{386



386 Mikael R�rdam

References

[1] B. Blackadar, K-theory for operator algebras, M. S. R. I. Monographs, vol. 5,

Springer Verlag, Berlin and New York, 1986.

[2] M. D�ad�arlat, G. Nagy, A. N�emethi, and C. Pasnicu, Reduction of topological stable

rank in inductive limits of C

�

-algebras, Paci�c J. Math. 153 (1992), 267{276.

[3] J. Hjelmborg and M. R�rdam, On stability of C

�

-algebras, J. Funct. Anal., to

appear.

[4] M. Karoubi, K-theory, Grundlehren der mathematisches Wissenschaften, no. 226,

Springer Verlag, 1978.

[5] M.A. Rie�el, Dimension and stable rank in the K-theory of C

�

-algebras, Proc.

London Math. Soc. 46 (1983), no. (3), 301{333.

[6] M. R�rdam and J. Villadsen, On the ordered K

0

-group of universal free product

C

�

-algebras, preprint.

[7] J. Villadsen, Simple C

�

-algebras with perforation, J. Funct. Anal., to appear.

Mikael R�rdam

Department of Mathematics

University of Copenhagen

Universitetsparken 5

2100 Copenhagen �, Denmark

rordam@math.ku.dk

Documenta Mathematica 2 (1997) 375{386


