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STABILITY OF THE RELATIVISTIC ELECTRON-POSITRON FIELD
OF ATOMS IN HARTREE-FOCK APPROXIMATION:

HEAVY ELEMENTS !
RAYMOND BRUMMELHUIS, NORBERT ROHRL, HEINZ SIEDENTOP

Received: September 15, 2000

Communicated by Alfred K. Louis

ABSTRACT. We show that the modulus of the Coulomb Dirac oper-
ator with a sufficiently small coupling constant bounds the modulus
of the free Dirac operator from above up to a multiplicative constant
depending on the product of the nuclear charge and the electronic
charge. This bound sharpens a result of Bach et al [J] and allows
to prove the positivity of the relativistic electron-positron field of an
atom in Hartree-Fock approximation for all elements occurring in na-
ture.

2000 Mathematics Subject Classification: 35Q40, 81Q10
Keywords and Phrases: Dirac operator, stability of matter, QED,
generalized Hartree-Fock states

1. INTRODUCTION

A complete formulation of quantum electrodynamics has been an elusive topic
to this very day. In the absence of a mathematically and physically complete
model various approximate models have been studied. A particular model
which is of interest in atomic physics and quantum chemistry is the the electron-
positron field (see, e.g., Chaix et al [[], f]). The Hamiltonian of the electron-
positron field in the Furry picture is given by

o 30 - U (1 z) o 3, 3 U (2)P(y) Y(y)V(z) :
H.—/d .\I/()Dgym\Il().—kQ/d /dy E— ,

1 Financial support of the European Union and the Deutsche Forschungsgemein-
schaft through the TMR network FMRX-CT 96-0001 and grant SI 348/8-1 is gratefully
acknowledged.
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2 BRUMMELHUIS, ROHRL, SIEDENTOP

where the normal ordering and the definition of the meaning of electrons and
positrons is given by the splitting of L?(R?)® C* into the positive and negative
spectral subspaces of the atomic Dirac operator

1
Dyn = =0V - mff = J

x

This model agrees up to the complete normal ordering of the interaction energy
and the omission of all magnetic field terms with the standard Hamiltonian as
found, e.g., in the textbook of Bjorken and Drell [f, (15.28)]. (Note that we
féeely use the notation of Thaller [§], Helffer and Siedentop [ff], and Bach et al
)

From a mathematical point of view the model has been studied in a series of
papers @, ﬂ, E] The first paper is of most interest to us. There it is shown that
the energy £(p) := p(H) is nonnegative, if p is a generalized Hartree-Fock state
provided that the fine structure constant « := e? is taken to be its physical
value 1/137 and the atomic number Z does not exceed 68 (see Bach et al [P
Theorem 2]). This pioneering result is not quite satisfying from a physical
point of view, since it does not allow for all occurring elements in nature, in
particular not for the heavy elements for which relativistic mechanics ought to
be most important. The main result of the present paper is

THEOREM 1 The energy E(p) is nonnegative in Hartree-Fock states p, if a <

(4/7)(1 — g*>)V/2(\ /492 + 9 — 49)/3.

We use g instead of the nuclear number Z = g/« as the parameter for the
strength of the Coulomb potential because this is the mathematically more
natural choice. For the physical value of o ~ 1/137 the latter condition is
satisfied, if the atomic number Z does not exceed 117.

Our main technical result to prove Theorem [l is

LEMMA 1. Let g € [0,v/3/2] and

:{%(«/492-1-9—49) m=0

\/1—g2%(\/4g2+9—4g) m>0"

Then we have for m >0
(1) |Dg,m| > d|Dool-

The following graph gives an overview of the dependence of d on the coupling
constant g
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STABILITY OF HEAVY ELEMENTS 3
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Our paper is organized as follows: in Section E we show how Lemma proves
our stability result. Section E contains the technical heart of our result. Among
other things we will prove Theorem [|| in that section. Eventually, Section @
contains some additional remarks on the optimality of our result.

2. POSITIVITY OF THE ENERGY

As mentioned in the introduction, a first — but non-satisfactory result as far
as it concerns heavy elements — is due to Bach et al [E] Their proof consists
basically of three steps:

(i) They show that positivity of the energy £(p) in generalized Hartree-Fock
states p is equivalent to showing positivity of the Hartree-Fock functional

EHE . X SR,

M (y) =tr(Dgm7) + aD(py, py) /d dy _y|
where D(f, g) := (1/2) [ge dxdy f(x)g(y)|x —y|" is the Coulomb scalar prod-
uct, X is the set of trace class operators v for which | Dy, mW is also trace class
and which fulfills —P_ <~ < P, and p,(x) := Zi Lz, x). (See [B], Section
3.)

(ii) They show, that the positivity of EF follows from the inequality

|D9,m‘ > d|Dg,0‘

(Inequality ([l)), if o < 4d/7 (see [}, Theorem 2).

(iii) They show this inequality for d = 1 — 2¢ implying then the positivity of
E(p) in Hartree-Fock states p, if @ ~ 1/137 and Z < 68.

From the first two steps, the proof of Theorem [l| follows using Lemma El -
Step (iii) indicates that it is essential to improve ([]) which we shall accomplish
in the next section.

DOCUMENTA MATHEMATICA 6 (2001) 1-9



4 BRUMMELHUIS, ROHRL, SIEDENTOP

3. INEQUALITY BETWEEN MODULI OF DIRAC OPERATORS

We now start with the main technical task, namely the proof of the key Lemma
. We will first prove Inequality () in the massless case. Then we will roll
back the “massive” case to the massless one.

Because there is no easy known way of writing down |Dy ¢| explicitly, we prove
the stronger inequality

2) D2, > &2,

again following Bach et al [E] However, those authors proceeded just using the
triangular inequality. In fact this a severe step. Instead we shall show (E) with
the sharp constant d? = (1/4g2 + 9 — 49)?/9 in the massless case. Since the
Coulomb Dirac operator is essentially selfadjoint on D := C§°(R? \ {0}) ® C*
for g < V/3/2, (E) is equivalent to showing

1Dg.0f1I5 = d*[ Do f5 = 0

for all f € D.

Since the Coulomb Dirac operator — and thus also its square — commutes with
the total angular momentum operator, we use a partial wave decomposition.
The Dirac operator Dy ,, in channel x equals to

_ _d 4k
hg,m,n = <ZL ar T> :
o T

m_ g
T
It suffices to show () for the squares of hy o, and hoo, for £ = £1,£2, ...
Notice that hg . is homogeneous of degree -1 under dilations. Therefore it
becomes — up to a shift — a multiplication operator under (unitary) Mellin
transform. The unitary Mellin transform M : L?(0,00) — L%(R), f — f#
used here is given by

S|m3k

1 e .
#(s) = —/ 27 £ () dr
o= | §r)
Unitarity can be seen by considering the isometry

L L*(0,00) — L?(—00,00)
fore f(r) w— h:izese*2f(e?)

The Mellin transform is just the composition of the Fourier transform and .
We recall the following two rules for f# = M(f) on smooth functions of com-
pact support in (0, 00).

(2 F)* (8) = # (s + i)
#
(51) @) =tis+r*6-0)

These two rules give
Y\ —g —is— 1+ K\ (MfT(s—1)
Mirg0,r (f— T \tis+ 14k —g Mf=(s=1))"

DOCUMENTA MATHEMATICA 6 (2001) 1-9



STABILITY OF HEAVY ELEMENTS 5

M
9,0,k

(3) (h%,n)*hé\,/lo,n - dZ(h%,n)*hOAj([),ﬁ =
P+ 1-d)(s*+ (k+3)?) —2(k —1i8)g >0
—2(k +is)g FHA=d) s+ (k=5 ) =7
where k = +1,4+2,.... This is true if and only if the eigenvalues of the matrix

on the left hand side of (E) are nonnegative for all s € R and x = £1,£2,....
The eigenvalues are the solutions of the quadratic polynomial

If we denote above matrix by h we see that () is equivalent to

N A+ (1) w24 )+ (02 (=) (5 4624 7) (1)
—4g%(s* + K?).

Hence the smaller one equals

1
Mo=g" (1= d) (% + a7+ ) = V(1= @)%+ 492(s% + 2).

Here we can already see that d may not exceed 1, and that d = 1 is only
possible for g = 0. It the following we therefore restrict d to the interval [0, 1).
At first we look at the necessary condition A;(s = 0) > 0. Now,

Mils = 0) = ¢ + (1= )2 + ) = sl /(1 = P2+ g2

is positive, if || not in between the two numbers

VI —d?)?+4g2 £ /(1 — d?)? + 492 — 4(1 — d?) (g + (1 — d?)/4)
2(1 — d?)

(1 —d?)? + 49 +2gd
2(1 —d?)
But since we are only interested in integer |x| > 1, we want to get the critical
interval below 1 (to get the interval above 1 would require g > v/3/2), i.e.,

_ A2)\2 2
VA —d2)?2+4g +2d

2(1 — d?) ’

or — equivalently —
(1 —d2)2 + 492 <2(1 —d?*) — 2gd.

Since by definition of d we have g < (1 — d?)/d, the right hand side of above
inequality is non-negative. Hence, the above line is equivalent to

(4) 4g* +8dg — 3(1 — d*) < 0.
Solving (| for d yields

(5) d<1/6( -89+ /1642 + 36) =1/3(\/4g2+9—4g>.

DOCUMENTA MATHEMATICA 6 (2001) 1-9



6 BRUMMELHUIS, ROHRL, SIEDENTOP

We also need the solution for g:

1 3 1—d?
6 <Z(V34+d?2—-2d) = - —mM .
(©6) 9= 5 Wiy

We now compute the derivative

A -
% = 25[1 — &> — 2¢°((1 — d°)*K° + 4g°(s° + #2)) 7).
s
The possible extrema are s = 0 and the zeros of [...]. We will show below that
under condition (E) only s = 0 is an extremum. It is necessarily a minimum,
since A(s = £00) = oo, which concludes the proof. Now we show [...] > 0.

The expression obviously reaches the smallest value if we choose k2 = 1 and
s = 0. In this case we get the inequality

4g* — (1 —d®)*((1 - d?)? +4¢%) <0,

which implies
1 2
) < V2

By the necessary condition ([) we get a sufficient condition for ([) to hold

1— 2 142
3 <4/ V2.
23+ d2+2d 2

Because d < 1 this is equivalent to

3 <V2\/1+V2(V/3+d2+2d)

and the right hand side is bigger than 3 for all d.

Before we proceed to the massive case, we note that we did not loose anything
in the above computation, i.e., our value of d? is sharp for Inequality (E)
Next, we reduce the massive inequality to the already proven massless one. We
have the following relation between the squares of the massive and massless
Dirac operator

(1—d?)>%

DZ,m = D;O +m? — 2mfBg/|x|.

The above operator is obviously positive, but we will show in the following that
we only need a fraction of the massless Dirac to control the mass terms.
To implement this idea, we show

(8) eD? o +m® — 2mfg/|x| > 0,

if and only if € > g2.
To show (), we note that from the known value of the least positive eigenvalue
of the Coulomb Dirac operator (see, e.g., Thaller [{]) we have D2, >m*(1—
g%). Scaling the mass with 1/¢ and multiplying the equation by e yields
2 1— 2
-9

1
= < eD;m/6 = €D§,o + ng —2mpq/|x|.

DOCUMENTA MATHEMATICA 6 (2001) 1-9



STABILITY OF HEAVY ELEMENTS 7
It follows that

1— 2 2
6D30+m2—2mﬁg/|$|2<1—1/6+ J )mzz(l—g—)mQ,
’ €

€

showing (E)7 if € > ¢g2. This is also necessary, since all inequalities in the proof
are sharp for f equal to the ground state eigenfunction.
With (E) the massive inequality follows in a single line:

Dg,m =(1- QQ)D?],O + 92D§,o +m? - 2mfg/|x| > (1 - 92)d2D§70.

4. SUPPLEMENTARY REMARKS ON THE NECESSITY OF THE HYPOTHESIS

g<V3/2

We wish to shed some additional light, on why ¢ in our lemma does not exceed
v/3/2. In this section we will show again that for the “squared” inequality

(9) D2, >dD§,,

g,m —

we inevitably get d> < 0 for g = v/3/2. This is because there are elements
of the domain of D s /2,m whose derivatives are not square integrable. One
example is the eigenfunction of the lowest eigenvalue.

For general g € [0,+/3/2] this function is given in channel x = —1 as

) s —gmmr
(1) e

where s = /1 — g2 and n, is the normalization constant for the L%-norm. Its
derivative is square integrable, if and only if s > 1/2 or equivalently g < V3 /2.
To make the argument precise, we compute the L2-norm of h V3 /Q’mfllllg and

hom,—1¥s with 8 € (1,2], g = +/3/2, s =1/2, m’ > 0, and

Vg :=ng ((S—g 1)> pPsggm'r

with the normalization constant ng. We will see that as # — 1, the first one
stays finite and the second one tends to infinity. This only leaves d? < 0 for
g =/3/2 in (fl). The value of m/ is not relevant; it is just necessary to take
m # m' if m =0 to keep ¥ square integrable. Now,

—gm+ g /r+ (s =1+ (s = 1)/r\ g —gm'r
n o U, = dr g
gm,-1¥p =13 (—g%+g/r+(s—1)m+(s—1)g/r ne

—n (.92 + (65 + 1)(5 - 1) + T(_gm - (3 - l)gm/)> rﬁs—le—gm'r
—9Bs+g+ (s =g +r(g®m’ + (s — 1)m) '

Writing the above function as

f(ﬂ)+7“h /2—1_ —gm'r
ng (f;(ﬂ)—i—rh;) pB/2=1g—gm'r

DOCUMENTA MATHEMATICA 6 (2001) 1-9



8 BRUMMELHUIS, ROHRL, SIEDENTOP

we get the following expression for its norm
[ (CB) 47 (faB) b)) e
0

The potentially unbounded terms are those involving f2. Now, fi(3) = (1 —
B)/4, f2(3) = (1 — 3)v/3/2, and for a € (—1,0),b > 0 we have the straight
forward inequality

o0 1 et
a, —br
dr < —— + —.
/0 rUe r_a+1+ b

Hence
(1- ﬂ)z/ PP=2e729m"" dr — 0 for B — 1.
0
Proceeding as before we get in the free case

B —gm+(s— 1)%4‘(5_1)/7" Bs ,—gm'r
hom,—1%s = ng < _g%+g/r+(s—1)m ne
o (B D (s = 1) r(—gm — (s = Dgm)\ se—1 —gm's
p —gBs + g +r(g*m’ + (s — 1)m) '

But now the terms that depend on r like 7?*~1 do not vanish for 3 — 1.
Therefore the L2-norm is unbounded.
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COMPACT MODULI SPACES OF STABLE SHEAVES

OVER NON-ALGEBRAIC SURFACES

MATEI TOMA

Received: October 18, 2000

Communicated by Thomas Peternell

ABSTRACT. We show that under certain conditions on the topolo-
gical invariants, the moduli spaces of stable bundles over polarized
non-algebraic surfaces may be compactified by allowing at the border
isomorphy classes of stable non-necessarily locally-free sheaves. As a
consequence, when the base surface is a primary Kodaira surface, we
obtain examples of moduli spaces of stable sheaves which are compact
holomorphically symplectic manifolds.

2000 Mathematics Subject Classification: 32C13

1 INTRODUCTION

Moduli spaces of stable vector bundles over polarized projective complex sur-
faces have been intensively studied. They admit projective compactifications
which arise naturally as moduli spaces of semi-stable sheaves and a lot is known
on their geometry. Apart from their intrinsic interest, these moduli spaces al-
so provided a series of applications, the most spectacular of which being to
Donaldson theory.

When one looks at non-algebraic complex surfaces, one still has a notion of
stability for holomorphic vector bundles with respect to Gauduchon metrics
on the surface and one gets the corresponding moduli spaces as open parts
in the moduli spaces of simple sheaves. In order to compactify such a moduli
space one may use the Kobayashi-Hitchin correspondence and the Uhlenbeck
compactification of the moduli space of Hermite-Einstein connections. But the
spaces one obtains in this way have a priori only a real-analytic structure. A
different compactification method using isomorphy classes of vector bundles on
blown-up surfaces is proposed by Buchdahl in [ﬁ] in the case of rank two vector

DOCUMENTA MATHEMATICA 6 (2001) 11-29



12 MATEI TOMA

bundles or for topological invariants such that no properly semi-stable vector
bundles exist.

In this paper we prove that under this last condition one may compactify the
moduli space of stable vector bundles by considering the set of isomorphy clas-
ses of stable sheaves inside the moduli space of simple sheaves. See Theorem B
for the precise formulation. In this way one gets a complex-analytic structure
on the compactification. The idea of the proof is to show that the natural map
from this set to the Uhlenbeck compactification of the moduli space of anti-
self-dual connections is proper. We have restricted ourselves to the situation of
anti-self-dual connections, rather than considering the more general Hermite-
Einstein connections, since our main objective was to construct compactificati-
ons for moduli spaces of stable vector bundles over non-Ké#hlerian surfaces. (In
this case one can always reduce oneself to this situation by a suitable twist). In
particular, when X is a primary Kodaira surface our compactness theorem com-
bined with the existence results of [P3] and [[] gives rise to moduli spaces which
are holomorphically symplectic compact manifolds. Two ingredients are needed
in the proof: a smoothness criterion for the moduli space of simple sheaves and
a non-disconnecting property of the border of the Uhlenbeck compactification
which follows from the gluing techniques of Taubes.

ACKNOWLEDGMENTS I’d like to thank N. Buchdahl, P. Feehan and H. Spindler
for valuable discussions.

2 PRELIMINARIES

Let X be a compact (non-singular) complex surface. By a result of Gauduchon
any hermitian metric on X is conformally equivalent to a metric g with 00-
closed Kahler form w. We call such a metric a GAUDUCHON METRIC and fix one
on X. We shall call the couple (X, g) or (X,w) a POLARIZED SURFACE and w
the POLARIZATION. One has then a notion of stability for torsion-free coherent
sheaves.

DEFINITION 2.1 A torsion-free coherent sheaf F on X is called REDUCIBLE if it
admits a coherent subsheaf 7' with 0 < rank F/ < rank F, (and IRREDUCIBLE
otherwise). A torsion-free sheaf F on X is called STABLY IRREDUCIBLE if every
torsion-free sheaf F’ with

rank(F’') = rank(F), c1(F') = c1(F), ca(F') < ca(F)
is irreducible.

Remark that if X is algebraic (and thus projective), every torsion-free coherent
sheaf 7 on X is reducible. But by [[f] and [P there exist irreducible rank-
two holomorphic vector bundles on any non-algebraic surface. Moreover stably
irreducible bundles have been constructed on 2-dimensional tori and on primary
Kodaira surfaces in [pJ], 4] and [fl].
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COMPACT MODULI SPACES OF STABLE SHEAVES 13

We recall that on a non-algebraic surface the DISCRIMINANT of a rank r torsion-
free coherent sheaf which is defined by

AF) = (ear) - O Ve (7p?)

is non-negative [f].

Let M®*(E, L) denote the moduli space of stable holomorphic structures in a
vector bundle E of rank r > 1, determinant L € Pic(X) and second Chern
class ¢ € H*(X,Z) = Z. We consider the following condition on (r,c1(L), c):

* every semi-stable vector bundle £ with rank(E) =r,

c1(&) = c1(L) and c2(E) < ¢ is stable.

Under this condition Buchdahl constructed a compactification of M5 (E, L) in
[ We shall show that under this same condition one can compactify M*(E, L)
allowing simple coherent sheaves in the border. For simplicity we shall restrict
ourselves to the case deg, L = 0. When b;(X) is odd we can always reduce
ourselves to this case by a suitable twist with a topologically trivial line bundle;
(see the following Remark).

The condition (*) takes a different aspect according to the parity of the first
Betti number of X or equivalently, according to the existence or non-existence
of a Kéhler metric on X.

REMARK 2.2 (a) When by (X) is odd (¥*) is equivalent to: "every torsion free
sheaf F on X with rank(F) = r, ¢i(F) = c1(L) and co(F) < c is irre-
ducible”, i.e. (r,¢1(L),c) describes the topological invariants of a stably
irreducible vector bundle.

(b) When by (X) is even and ¢; (L) is not a torsion class in H2(X,Z,) one can
find a Kéhler metric g such that (r,c1(L), ) satisfies (*) for all c.

(c) When b1(X) is odd or when deg L = 0, (*) implies ¢ < 0.

(d) If b3(X) = 0 then there is no torsion-free coherent sheaf on X whose
invariants satisfy (*).

PROOF It is clear that the stable irreducibility condition is stronger than (*).
Now if a sheaf F is not irreducible it admits some subsheaf F' with 0 <
rank ' < rank F. When by (X) is odd the degree function deg,, : Pic®(X) —
R is surjective, so twisting by suitable invertible sheaves Li,Ls € Pico(X )
gives a semi-stable but not stable sheaf (L; ® F') @ (L2 ® (F/F')) with the
same Chern classes as F. Since by taking double-duals the second Chern class
decreases, we get a locally free sheaf

(Li @ (F)Y) & (La @ (F/F)7)

which contradicts (*) for (rank(F), ¢1(F), ca(F)). This proves (a).
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14 MATEI TOMA

For (b) it is enough to take a Kihler class w such that
w(r’ -e1(L) —r-a)#0 for all « € NS(X)/Tors(NS(X))

and integers 7’ with 0 < r’ < r. This is possible since the Kihler cone is open
in H1(X).

For (c) just consider (L ® L1) ® O??(T_l) for a suitable L; € Pic’(X) in case
b1(X) odd. Finally, suppose b2(X) = 0. Then X admits no Ké&hler structure
hence b1 (X) is odd. If F were a coherent sheaf on X whose invariants satisfy
(*) we should have

A(F) = %(02 - %cl(L)Q) - %CQ <0

contradicting the non-negativity of the discriminant. [

3 THE MODULI SPACE OF SIMPLE SHEAVES

The existence of a coarse moduli space Splx for simple (torsion-free) sheaves
over a compact complex space has been proved in [IF] ; see also [[L9. The
resulting complex space is in general non-Hausdorfl but points representing
stable sheaves with respect to some polarization on X are always separated.
In order to give a better description of the base of the versal deformation of a
coherent sheaf F we need to compare it to the deformation of its determinant
line bundle det F. We first establish

PROPOSITION 3.1 Let X be a nonsingular compact complex surface, (S,0) a
complex space germ, F a coherent sheaf on X xS flat over S andq: X x5 — X
the projection. If the central fiber Fo := F|x {0} is torsion-free then there exists
a locally free resolution of F over X x S of the form

0—q¢G—FE—F—0

where G is a locally free sheaf on X.

PROOF In [@] it is proven that a resolution of Fy of the form
0—G—FEy— Fy—0

exists on X with G and Ejy locally free on X as soon as the rank of G is large
enough and
H?*(X, Hom(Fy,G)) = 0.

We only have to notice that when Fy and G vary in some flat families over S
then one can extend the above exact sequence over X x S. We choose S to be
Stein and denote by p: X x S — S the projection.
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COMPACT MODULI SPACES OF STABLE SHEAVES 15

From the spectral sequence relating the relative and global Ext-s we deduce
the surjectivity of the natural map

Ext' (X x S; F,¢*G) — HO(S, Ext! (p; F,¢* Q).

We can apply the base change theorem for the relative Ext! sheaf if we know
that Ext?(X; Fy, G) = 0 (cf. [f] Korollar 1). But in the spectral sequence

HP (X, Ext!(Fy, G)) = Ext?t9(X; Fo, G)

relating the local Ext —s to the global ones, all degree two terms vanish since
H?*(X; Hom(Fy,G)) = 0 by assumption. Thus by base change

Ext'(X; o, G) = Ext' (p; F, q*G)o/ms,o Ext! (p; F,q*G)
and the natural map
Ext'(X x S; F,¢*G) — Ext'(X; Fo, G)

given by restriction is surjective. [
Let X, S and F be as above. One can use Proposition EI to define a morphism

det : (57 0) — (PlC(X),det JTO)

by associating to F its DETERMINANT LINE BUNDLE det F.

The tangent space at the isomorphy class [F] € Splx of a simple sheaf F
is Ext!(X;F,F) since Sply is locally around [F] isomorphic to the base of
the versal deformation of F. The space of obstructions to the extension of a
deformation of F is Ext?(X;F, F).

In order to state the next theorem which compares the deformations of F and
det F, we have to recall the definition of the TRACE maps

trt: Ext!(X; F,F) — HY(X,Ox).

When F is locally free one defines trz : End(F) — Ox in the usual way
by taking local trivializations of F. Suppose now that F has a locally free
resolution F'*. (See [R1] and [[L0] for more general situations.) Then one defines

trpe : Hom®(F*,F*) — Ox
by '
| (=Dtrp:, fori=j
tree [nom(ri,pi= 0, for i # j.
Here we denoted by Hom®(F*,F*) the complex having Hom™(F*®, F*) =
@ Hom(F?, F©*™) and differential

d(p) = dpe 0 p — (—1)98% . p o dpe
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16 MATEI TOMA

for local sections ¢ € Hom™(F*®, F'*). trpe becomes a morphism of complexes
if we see Ox as a complex concentrated in degree zero. Thus trpe induces
morphisms at hypercohomology level. Since the hypercohomology groups of
Hom*(F*, F*) and of Ox are Ext?(X;F,F) and H?(X,Ox) respectively, we
get our desired maps

trt: Ext!(X; F,F) — HY(X,Ox).

Using tr° over open sets of X we get a sheaf homomorphism tr
End(F) — Ox. Let Endy(F) be its kernel. If one denotes the kernel of
tri: Ext?(X; F,F) — HY(X,0Ox) by Ext?(X,F,F)o one gets natural maps
HY(X,Endy(F)) — Ext(X,F,F)o, which are isomorphisms for F locally
free.

This construction generalizes immediately to give trace maps

tr: Ext!(X; F,F® N) — HI(X,N)

for locally free sheaves IV on X or for sheaves N such that Torio X (N, F) vanish
for i > 0.
The following Lemma is easy.

LEMMA 3.2 If F and G are sheaves on X allowing finite locally free resolutions
and u € ExtP(X; F,G), v € Ext!(X;G,F) then

trP T (y - v) = (=1)P UrPT (v - u).

THEOREM 3.3 Let X be a compact complex surface, (S,0) be a germ of a com-

plex space and F a coherent sheaf on X xS flat over S such that Fy := F x(0)
X
is torsion-free. The following hold.

(a) The tangent map of det : S — Pic(X) in 0 factorizes as
ToS X5 Bxt! (X; F, F) 25 HY(X, Ox) = Tiaer 7, (Pic(X)).

(b) If T is a zero-dimensional complex space such that Ogo = Or /I for an
ideal I of Ory with I -mpo = 0, then the obstruction ob(F,T') to the
extension of F to X x T is mapped by

tr? @c idy : Ext?(X; Fo, Fo @c I) = Ext*(X; Fo, Fo) @c I —
— H*(X,0x) ®c I =2 Ext?(X;det Fy, (det Fy) ®c I)

to the obstruction to the extension of det F to X x T which is zero.
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COMPACT MODULI SPACES OF STABLE SHEAVES 17

PRrROOF (a) We may suppose that S is the double point (0, C[e¢]). We define the
Kodaira-Spencer map by means of the Atiyah class (cf. []).

For a complex space Y let p1,p2 : Y XY — Y be the projections and A C Y xY
the diagonal. Tensoring the exact sequence

0 — Zp/I% — Oyxy/IA — Ox — 0
by p5F for F locally free on Y and applying p; . gives an exact sequence on Y
0 — FRQy — p1.(p3F @ (Oyxy/IZ)) — F — 0.

The class A(F) € Ext}(Y;F, F ® Qy) of this extension is called the ATIYAH
CLASS of F. When F is not locally free but admits a finite locally free resolution
F* one gets again a class A(F) in Ext!(Y; F, F ®y) seen as first cohomology
group of Hom®*(F*, F* @ Qy).

Consider now Y = X x S with X and S as before, p: Y — S, ¢: Y — X the
projections and F as in the statement of the theorem.

he decomposition Qx x5 = ¢*Qx P p*Qg induces

Ext'(X x S; F,F ® Qsxx) =
Ext' (X x S; F,F®¢*Qx) @ Ext' (X x S; F, F®p*Qs).
The component Ag(F) of A(F) lying in Ext!(X x S; F, F ®p*Qg) induces the
”tangent vector” at 0 to the deformation F through the isomorphisms
Ext'(X x S; F,F @p*Qs) ZExt'(X x S; F,F @ p*mg,) =
Ext!(X x S; F, Fo) = Ext!(X; Fo, Fo).
Applying now tr! : Ext*(Y; F, F@Qy) — H(Y;Qy) to the Atiyah class A(F)

gives the first Chern class of F, ¢;(F) := tr'(A(F)), (cf. [, R1)).
It is known that

c1(F) = ci(det F), ie. tr'(A(F)) = tr' (A(det F)).
Now det F is invertible so
tr! : Ext'(Y,det F, (det F) ® Qy)) — H*(Y,Qy)

is just the canonical isomorphism. Since tr! is compatible with the decompo-
sition Qxxs = ¢*Qx & p*Qgs we get tri(As(F)) = Ag(det F) which proves
(a).

(b) In order to simplify notation we drop the index 0 from Og 9, mg,9, Orp,
mr o and we use the same symbols Og, mg, O, my for the respective pulled-
back sheaves through the projections X x S — S, X xT — T.

There are two exact sequences of Og-modules:

(1) 0—mg— 05 — C—0,

(2) 0— 1 —mp —mg—0.
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18 MATEI TOMA

(Use I -mp =0 in order to make my an Og-module.)

Let j : C — Og be the C-vector space injection given by the C-algebra structure
of Og. j induces a splitting of (1). Since F is flat over S we get exact sequences
over X x S

0 — FRosmg — F — Fo—0
0—>7®OSI—>f®oSmT—>f®@Sms—>0

which remain exact as sequences over Ox. Thus we get elements in
Ext!(X; Fo, F ®0smg) and Ext!(X; F @0, mg, F Q¢ I) whose Yoneda compo-
site ob(F,T) in Ext?(X; Fy, F ®c I) is represented by the 2-fold exact sequence

0 —F®os I — FRosmr —F — Fy—0

and is the obstruction to extending F from X x S to X x T, as is well-known.

Consider now a resolution
0—¢G—FE—F—0

of F as provided by Proposition EI, i.e. with G locally free on X and E locally
free on X x S. Our point is to compare ob(F,T) to ob(E,T).

Since F is flat over S we get the following commutative diagrams with exact
rows and columns by tensoring this resolution with the exact sequences (1) and

(2):

0 0 0
00— ¢*G ®c mg TG Gy 0
00— E ®p, mg E Ey 0 (1)
00— F ®oz mg F Fo 0

0 0 0
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00— ¢GRI ——=q¢*GRcmyr —¢*G ®c mg ——= 0

0—=E®os I —= EQo;,mr ——> E®p, mg ——= 0 (2’)

00— F ®og [ —=F ®@os mp —F ®os Mg —> 0

0 0 0

Using the section j : C — Og we get an injective morphism of Ox sheaves

idgxg®J
—

Go ¢FGRcmpr — E RKRog M

which we call jg.
From (1') we get a short exact sequence over X in the obvious way

0 — (E®og ms) @ jo(Go) — E — Fo — 0
Combining this with the middle row of (2") we get a 2-fold extension
00— (E®osI)®Go — (E®osmr)®Go — E — Fy — 0

whose class in Ext?(X; Fo, (E ®o, I) @ Gy) we denote by wu.
Let v be the surjection £ — F and

’ <’U®id[
v =

i ):(E®osl)@ao—>f®osl,

v"z(%o)!Eo@Go—)]:O,

the O x-morphisms induced by v.
The commutative diagrams

00— (E®osI) @Gy — (E ®ps mr) @ Gy E Fo 0
A
0——FQog I ———— F ®oy mr F Fo 0
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and

0—(EQops I)® Gy — (E®o;my)®Gy—>E®Gy—EydGy—>0

N

O%(E@osl)@GOH(E(@mT)@GO E Fo 0

show that ob(F,T) =v' - u and
(ob(E,T),0) = u-v" € Ext*(X; Ey @ Go, (E ®0 I) ® Gy).

We may restrict ourselves to the situation when [ is generated by one element.
Then we have canonical isomorphisms of Ox-modules £y = E ®p, I and
Fo = F @0, I. By these one may identify v' and v”. Now the Lemma B.3 on
the graded symmetry of the trace map with respect to the Yoneda pairing gives
tr2(ob(F,T)) = tr?(ob(E, T)).

But E is locally free and the assertion (b) of the theorem may be proved for it
as in the projective case by a cocycle computation.

Thus tr?(ob(E,T)) = ob(det E) and since det(E) = (det F) ® ¢*(det G) and
q*(det G) is trivially extendable, the assertion (b) is true for F as well. O
The theorem should be true in a more general context. In fact the proof of (a)
is valid for any compact complex manifold X and flat sheaf F over X x S. Our
proof of (b) is in a way symmetric to the proof of Mukai in [[7 who uses a
resolution for F of a special form in the projective case.

NoOTATION For a compact complex surface X and an element L in Pic(X) we
denote by Splx (L) the fiber of the morphism det : Splx — Pic(X) over L.

COROLLARY 3.4 For a compact complez surface X and L € Pic(X) the tangent
space to Splx (L) at an isomorphy class [F] of a simple torsion-free sheaf F
with [det F) = L is Ext(X; F, F)o. When Ext?(X;F,F)y = 0, Splx(L) and
Splx are smooth of dimensions

dim Ext*(X; F, F)o = 2rank(F)?A(F) — (rank(F)? — 1)x(Ox)

and
dim Ext'(X; F, F) = dim Ext'(X; F, F)o + h'(Ox)

respectively.
We end this paragraph by a remark on the symplectic structure of the moduli
space Splx when X is symplectic.
Recall that a complex manifold M is called HOLOMORPHICALLY SYMPLECTIC if
it admits a global nondegenerate closed holomorphic two-form w. For a surface

X, being holomorphically symplectic thus means that the canonical line bundle
Kx is trivial. For such an X, Splx is smooth and holomorphically symplectic
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as well. The smoothness follows immediately from the above Corollary and a
two-form w is defined at [F] on Splx as the composition:

TirSplx x TipSplx = Ext'(X; F, F) x Ext'(X; F, F) —
L Ex(XGFF) Y B (X,0x) = H2(X, Kx) = C.

It can be shown exactly as in the algebraic case that w is closed and nonde-
generate on Splx (cf. [, [f]). Moreover, it is easy to see that the restriction
of w to the fibers Splx (L) of det : Splx — Pic(X) remains nondegenerate, in
other words that Splx (L) are holomorphically symplectic subvarieties of Splx.

4 THE MODULI SPACE OF ASD CONNECTIONS AND THE COMPARISON MAP

4.1 THE MODULI SPACE OF ANTI-SELF-DUAL CONNECTIONS

In this subsection we recall some results about the moduli spaces of anti-self-
dual connections in the context we shall need. The reader is referred to [}, [
and [IE] for a thorough treatment of these questions.

We start with a compact complex surface X equipped with a Gauduchon metric
g and a differential (complex) vector bundle E with a hermitian metric A in its
fibers. The space of all C'*° unitary connections on FE is an affine space modeled
on AY(X, End(E,h)) and the C° unitary automorphism group G, also called
gauge-group, operates on it. Here End(E, h) is the bundle of skew-hermitian
endomorphisms of (E, h). The subset of anti-self-dual connections is invariant
under the action of the gauge-group and we denote the corresponding quotient
by MASD — p\fASD ().

A unitary connection A on FE is called REDUCIBLE if E admits a splitting in
two parallel sub-bundles.
We use as in the previous section the determinant map

det : MASP(E) — MA5P(det E)

which associates to A the connection det A in det £. This is a fiber bund-
le over MA5P(det E) with fibers MA5P(E, [a]) where [a] denotes the gau-
ge equivalence class of the unitary connection a in det E. We denote by
M (E) = MSH(E) the moduli space of stable holomorphic structures in E
and by M*!(E, L) the fiber of the determinant map det : M*(E) — Pic(X)
over an element L of Pic(X). Then one has the following formulation of the
Kobayashi-Hitchin correspondence.

THEOREM 4.1 Let X be a compact complex surface, g a Gauduchon metric on
X, E a differentiable vector bundle over X, a an anti-self-dual connection on
det E (with respect to g) and L the element in Pic(X) given by 9, on det E.
Then M®*(E, L) is an open part of Splx (L) and the mapping A v+ Oa gives
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rise to a real-analytic isomorphism between the moduli space MASP*(E, [a]) of
irreducible anti-self-dual connections which induce [a] on det E and M**(E, L).

We may also look at MASP(E, [a]) in the following way. We consider all anti-
self-dual connections inducing a fixed connection a on det F and factor by those
gauge transformations in G which preserve a. This is the same as taking gauge
transformations of (E, h) which induce a constant multiple of the identity on
det E. Since constant multiples of the identity leave each connection invariant,
whether on det E or on E, we may as well consider the action of the subgroup
of G inducing the identity on det E. We denote this group by SG, the quotient
space by MA49P(E, a) and by MASP*(E, a) the part consisting of irreducible
connections. There is a natural injective map

MASP(E a) — MASP(E, [a])

which associates to an SG-equivalence class of a connection A its G-equivalence
class. The surjectivity of this map depends on the possibility to lift any unitary
gauge transformation of det E' to a gauge transformation of E. This possi-
bility exists if £ has a rank-one differential sub-bundle, in particular when
r :=rank E > 2, since then F has a trivial sub-bundle of rank r — 2. In this
case one constructs a lifting by putting in this rank-one component the given
automorphism of det E/ and the identity on the orthogonal complement. A lif-
ting also exists for all gauge transformations of (det E, det h) admitting an r-th
root. More precisely, denoting the gauge group of (det E, det h) by (1), it is
easy to see that the elements of the subgroup U(1)" := {u" | u € U(1)} can be
lifted to elements of G. Since the obstruction to taking r-th roots in (1) lies
in H'(X,Z,), as one deduces from the corresponding short exact sequence, we
see that U(1)" has finite index in ¢ (1). From this it is not difficult to infer that
MASP(E [a]) is isomorphic to a topologically disjoint union of finitely many
parts of the form MA5P(E, a;) with [ay] = [a] for all k.

4.2 THE UHLENBECK COMPACTIFICATION

We continue by stating some results we need on the Uhlenbeck compactification
of the moduli space of anti-self-dual connections. References for this material
are [f and [§.

Let (X, g) and (E,h) be as in [L.1] For each non-negative integer k we consider
hermitian bundles (E_x,h_g) on X with rank E_j; = rank F =: r, (det E_,
det h_j) = (det E,det h), ca(E_j) = c2(E) — k. Set

MY(E) = | JMP(E_;) x S*X)

keN
MU(E Ja]) = | J (MAP (B, [a]) x S*X)
keN
MY (E,a) = | J(MPP(E_y,a) x S*X)
keN
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where S* X is the k-th symmetric power of X. The elements of these spaces are
called IDEAL CONNECTIONS. The unions are finite since the second Chern class
of a hermitian vector bundle admitting an anti-self-dual connection is bounded
below (by %c?).

To an element ([A], Z) € MY (E) one associates a Borel measure

w([A], Z) = |Fa|?® + 87257

where ¢z is the Dirac measure whose mass at a point z of X equals the mul-
tiplicity m,(Z) of  in Z. We denote by m(Z) the total multiplicity of Z. A
topology for MY (E) is determined by the following neighborhood basis for
([4], 2):

Vune([A],Z) = {([A),Z") € MY(E) | w([A"),Z") € U and there is an
L2 -isomorphism 1) : E_rz) Ix\n— E_nz) |x\n
such that [|A —¢"(A")||zx\n) < €}

where € > 0 and U and N are neighborhoods of u([A4],Z) and supp (dz)
respectively. This topology is first-countable and Hausdorff and induces the
usual topology on each MASP(E_,) x S*X. Most importantly, by the weak
compactness theorem of Uhlenbeck MY (E) is compact when endowed with
this topology, M43P(E) is an open part of MY (E) and its closure M45P(E)
inside MY (E) is called the UHLENBECK COMPACTIFICATION of MA5P(E).
Analogous statements are valid for MA9P(E[a]) and MA5P(E, a).

Using a technique due to Taubes, one can obtain a neighborhood of an ir-
reducible ideal connection ([A],Z) in the border of MASP(E a) by gluing
to A "concentrated” SU(r) anti-self-dual connections over S*. One obtains
"cone bundle neighborhoods” for each such ideal connection ([A],Z) when
H?*(X,Endo(Egz,)) = 0. For the precise statements and the proofs we refer
the reader to [é] chapters 7 and 8 and to [E] 3.4. As a consequence of this de-
scription and of the connectivity of the moduli spaces of SU(r) anti-self-dual
connections over S* (see [@}) we have the following weaker property which will
suffice to our needs.

PROPOSITION 4.2 Around an irreducible ideal connection ([A], Z) with
H?*(X,Endy(Ez,)) = 0 the border of the Uhlenbeck compactification
MASP(E a) is LOCALLY NON-DISCONNECTING in MASP(E,a), i.e. the-
re exist arbitrarily small neighborhoods V' of ([A],Z) in MASP(E, a) with
VO MASP(E a) connected.

Note that for SU(2) connections a lot more has been proved, [[, [LJ]. In this

case the Uhlenbeck compactification is the completion of the space of anti-self-
dual connections with respect to a natural Riemannian metric.
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4.3 'THE COMPARISON MAP

We fix (X,g) a compact complex surface together with a Gauduchon me-
tric on it, (E,h) a hermitian vector bundle over X, a an unitary anti-self-
dual connection on (det E,deth) and denote by L the (isomorphy class of
the) holomorphic line bundle induced by 9, on det E. Let ¢y := co(E) and
r := rank . We denote by M5t (r, L, c3) the subset of Splx consisting of iso-
morphy classes of non-necessarily locally free sheaves F' (with respect to g)
with rank F' = r,det F = L, c5(F) = ca.

In @ we have mentioned the existence of a real-analytic isomorphism between
MH(E, L) and MASP*(E, [a]). When X is algebraic, rank £ = 2 and a is the
trivial connection this isomorphism has been extended to a continuous map
from the Gieseker compactification of M**(E, Q) to the Uhlenbeck compactifi-
cation of MASP(E,0) in [L6] and [L3. The proof given in [[Ld] adapts without
difficulty to our case to show the continuity of the natural extension

O : M (r, L, cy) — MY(E, [a]).

® is defined by ®([F]) = ([4], Z), where A is the unique unitary anti-self-dual
connection inducing the holomorphic structure on FVV and Z describes the
singularity set of F with multiplicities m,(Z) := dim¢(FYY/F,) for z € X.
The main result of this paragraph asserts that under certain conditions for X
and F this map is proper as well.

THEOREM 4.3 Let X be a non-algebraic compact complex surface which has

either Kodaira dimension kod(X) = —oco or has trivial canonical bundle and
let g be a Gauduchon metric on X. Let (E,h) be a hermitian vector bundle
over X, r :=rank E, co := c2(E), a an unitary anti-self-dual connection on

(det E,det h) and L the holomorphic line bundle induced by 0, on det E. If
(r,e1(L), ca) satisfies condition (*) from section [} then the following hold:

(a) the natural map ® : M3 (r,L,co) — MY(E,|a]) is continuous and
proper,

(b) any unitary automorphism of (det E,det h) lifts to an automorphism of
(E,h) and

(c) M®(r,L,ca) is a compact complex (Hausdorff) manifold.

Proor

Under the Theorem’s assumptions we prove the following claims.

Claim 1. Splx is smooth and of the expected dimension at points [F] of
Mt (r, L, ca).

By Corollary @ for such a stable sheaf F we have to check that
Exzt?>(X;F,F)g = 0. When Kx is trivial this is equivalent to
dim(Ext*(X; F, F)) = 1 and by Serre duality further to dim(Hom(X; F, F)) =
1 which holds since stable sheaves are simple. So let now X be non-algebraic and
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kod(X) = —o0. By surface classification b;(X) must be odd and Remark P.J
shows that F is irreducible. In this case we shall show that Ext?(X; F, F) = 0.
By Serre duality we have Ext?(X;F,F) =& Hom(X; F, F ® Kx)*. By taking
double duals Hom(X;F,F ® Kx) injects into Hom(X;FYV, F¥V @ Kx).
Suppose ¢ is a non-zero homomorphism ¢ : FYV — FYV ® Kx. Then
det ¢ : det FVV — (det FVV) @ K" cannot vanish identically since F is irredu-
cible. Thus it induces a non-zero section of K" contradicting kod(X) = —oo.
Claim 2. M (r, L, c3) is open in Splx.

This claim is known to be true over the open part of Splx parameterizing
simple locally free sheaves and holds possibly in all generality. Here we give an
ad-hoc proof.

If by is odd or if the degree function deg, : Pic(X) — R vanishes iden-
tically the assertion follows from the condition (*). Suppose now that X is
non-algebraic with b; even and trivial canonical bundle. Let F' be a torsion-
free sheaf on X with rank F' = r,det F = L and co(F') = co. If F is not stable
then F sits in a short exact sequence

0—F, —F—F,—0

with Fi, Fy torsion-free coherent sheaves on X. Let ry := rank F', 75 := rank F5.
We first show that the possible values for deg F; lie in a discrete subset of R.
An easy computation gives

Ca(f)? a(f)? ci(F)?

= — + QTA(F) - 27“1A(F1) - QTQA(FQ).
1 T2 r

Since all discriminants are non-negative we get

C1 (F)2
1 T2 r

_C1(F1)2 _ Cl(F2)2 < _

+2rA(F).

In particular ¢;(F)? is bounded by a constant depending only on (r,¢1 (L), ca).
Since X is non-algebraic the intersection form on NS(X) is negative semi-
definite. In fact, by [{]] NS(X)/Tors(NS(X)) can be written as a direct sum
N @ I where the intersection form is negative definite on N, I is the isotropy
subgroup for the intersection form and I is cyclic. We denote by c¢ a generator of
1. Tt follows the existence of a finite number of classes b in NV for which one can
have ¢;(F}) = b+ ac modulo torsion, with & € N. Thus deg F; = degb+adegc
lies in a discrete subset of R.

Let now b € NS(X) be such that 0 < degb < |deg F}| for all possible subs-
heaves F3 as above with deg F} # 0. We consider the torsion-free stable cen-
tral fiber Fy of a family of sheaves F on X x S flat over S. Suppose that
rank(Fy) = r,det Fo = L, ca(Fy) = ca. We choose an irreducible vector bundle
G on X with ¢;(G) = —b. Then H?(X, Hom(Fy,G)) = 0, so if rank G is large
enough we can apply Proposition to get an extension

0 —¢G—FE—F—0
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with F locally free on X x S, for a possibly smaller S. (As in Proposition E
we have denoted by ¢ the projection X x S — S.) It is easy to check that
Ey doesn’t have any subsheaf of degree larger than — degb. Thus Ej is stable.
Hence small deformations of Fj are stable as well. As a consequence we get
that small deformations of Fy will be stable. Indeed, it is enough to consider
for a destabilizing subsheaf I of Fy, for s € S, the induced extension

0—G— FE, — F; — 0.

Then E4 is a subsheaf of F, with deg £y = deg G+deg F; > 0. This contradicts
the stability of F.

Claim 3. Any neighborhood in Splx of a point [F| of M*(r,L,c2) contains
isomorphy classes of locally free sheaves.

The proof goes as in the algebraic case by considering the ”double-dual stra-
tification” and making a dimension estimate. Here is a sketch of it.

If one takes a flat family F of torsion free sheaves on X over a reduced base
S, one may consider for each fiber F,, s € S, the injection into the double-
dual FYY := Hom(Hom(Fs, Oxx(s}), Ox x{s}). The double-duals form a flat
family over some Zariski-open subset of S. To see this consider first FV :=
Hom(F,Oxxs). Since F is flat over S, one gets (Fs)¥ = F. F¥ is flat over
the complement of a proper analytic subset of S and one repeats the procedure
to obtain FVV and FYV/F flat over some Zariski open subset S’ of S. Over
X x 8, FYY is locally free and (FYV/F), = FSV/Fs for s € S’. Take now S
a neighborhood of [F] in M*!(r, L, c2). Suppose that

length(F,Y /Fsy) =k >0

for some sg € S’. Taking S’ smaller around sg if necessary, we find a morphism
¢ from S’ to a neighborhood T' of [FJV] in M*!(r, L, cy — k) such that there
exists a locally free universal family £ on X x T with &, = FJ/V for some to € T
and (idx x¢)*€ = FVV. Let D be the relative Douady space of quotients of
length & of the fibers of £ and let m: D — T be the projection. There exists
an universal quotient Q of (idx x7)*€ on X x D. Since FVV/F is flat over
S, ¢ lifts to a morphism ¢ : S’ — D with (idx x ¢)*Q = FVV/F. By the
universality of S’ there exists also a morphism (of germs) ¢ : D — S’ with
(idx x9)*F = Ker((idx x7)*€ — Q). One sees now that 1) o ¢ must be an
isomorphism, in particular dim S’ < dim D. Since S’ and T have the expected
dimensions, it is enough to compute now the relative dimension of D over T.
This is k(r 4+ 1). On the other side by Corollary B.4 dim S’ — dim T' = 2kr. This
forces r = 1 which is excluded by hypothesis.

After these preparations of a relatively general nature we get to the actual
proof of the Theorem. We start with (b).

If b5 (X) denotes the number of negative eigenvalues of the intersection form
on H?(X,R), then for our surface X we have by (X) > 0. This is clear when
K is trivial by classification and follows from the index theorem and Remark
P-4 (d) when b1(X) is odd. In particular, taking p € H?(X,Z) with p? < 0 one

DOCUMENTA MATHEMATICA 6 (2001) 11-29



COMPACT MODULI SPACES OF STABLE SHEAVES 27

constructs topologically split rank two vector bundles F' with given first Chern
class [ and arbitrarily large second Chern class: just consider (L@ P®™)&(P*)®"
where L and P are line bundles with ¢;(L) =1, ¢;(P) =pandn € N. If E
has rank two we take F' with det F = det E and co(F) > c3(E) = co. (When
r > 2 assertion (b) is trivial; cf. section [i.1). We consider an anti-self-dual
connection A in F inducing a on det E and Z C X consisting of co(F) — ca(E)
distinct points. By the computations from the proof of Claim 1 we see that A
is irreducible and HELO = 0. Using the gluing procedure mentioned in section
.9 , one sees that a neighborhood of ([A], Z) in MY (F,[a]) contains classes
of irreducible anti-self-dual connections in F'. We have seen in section that
any unitary automorphism of det F' lifts to an unitary automorphism u of F. If
we take a sequence of anti-self-dual connections (A,) in F with det A,, = a and
([An]) converging to ([4],Z), we get by applying v a limit connection B for
subsequence of (u(A,,)). Since MY (F, [a]) is Hausdorff, there exists an unitary
automorphism @ of E' with @*(B) = A. It is clear that @ induces the original
automorphism u on det F' = det F' .

We leave the proof of the following elementary topological lemma to the reader.

LEMMA 4.4 Let w: Z — 'Y be a continuous surjective map between Hausdorff
topological spaces. Suppose Z locally compact, Y locally connected and that there
is a locally non-disconnecting closed subset Y1 of Y with Zy := n~(Y1) compact

and Z1 = (). Suppose further that m restricts to a homeomorphism
Tlpnzyw: Z\Z1 — Y\ Y1

Then for any neighborhood V' of Z1 in Z, n(V') is a neighborhood of Y1 in'Y .
If in addition Y is compact, then Z is compact as well.

We complete now the proof of the Theorem by induction on cs. For fixed r and
c1(E), c2(E) is bounded below if E is to admit an anti-self-dual connection.
If we take ¢y minimal, then M*®*(r, L, co) = M**(E, L) and MASP*(E [a]) =
MASP(E, [a]) is compact. From Theorem [i.1] we obtain that @ is a homeomor-
phism in this case.

Take now cy arbitrary but such that the hypotheses of the Theorem hold and
assume that the assertions of the Theorem are true for any smaller co. We apply
Lemma Q to the following situation:

Z = M(r,L,cy), Y := MY(E, [a]) = MA9P(E, [a]) = MASP(E, a).

The last equalities hold according to Claim 3 and Claim 4. Let further Y
be the border MA5P(E, a) \ MA9P(E a) of the Uhlenbeck compactification
and Z; be the locus M (r,L,c3) \ M®(E, L) of singular stable sheaves in
Splx. Z is smooth by Claim 1 and Hausdorff, Y7 is locally non-disconnecting
by Propositioﬁ, Z1 =0 by Claim 3 and 7 |2\2:,v\y; is a homeomorphism
by Theorem W{.1. In order to be able to apply Lemma Q and thus close the
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proof we only need to check that Z; is compact. We want to reduce this to the
compactness of M5 (r, L, co — 1) which is ensured by the induction hypothesis.
We consider a finite open covering (75;) of M®(r, L, cy — 1) such that over each
X x T; an universal family &; exists. The relative Douady space D; parame-
terizing quotients of length one in the fibers of &; is proper over (T;). In fact
it was shown in ] that D; 2 P(&;). If m; : D; — T; are the projections, we
have universal quotients Q; of 7*&; and F; := Ker(n*&; — Q;) are flat over
D;. This induces canonical morphisms D; — Z;. It is enough to notice that
their images cover Z1, or equivalently, that any singular stable sheaf F' over X
sits in an exact sequence of coherent sheaves

0—F—F—5Q—0
with length @ = 1 and E torsion-free. Such an extension is induced from
0—F—F"Y —F"V/F—0

by any submodule @ of length one of F'VV/F. (To see that such @ exist re-
call that (FVV/F), is artinian over Ox , and use Nakayama’s Lemma). The
Theorem is proved. 0O

REMARK 4.5 As a consequence of this theorem we get that when X is a 2-
dimensional complex torus or a primary Kodaira surface and (r, L, ¢2) is chosen
in the stable irreducible range as in [R4], B3 or [[]], then M*t(r, L, cy) is a
holomorphically symplectic compact complex manifold.
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1 MAIN RESULT

For a locally compact topological group G let us define Ag as the set of all
g € G such that the cyclic subgroup {¢" : n € Z} of G is discrete. If there is
no danger of ambiguity, we write simply A instead of Ag.

Let G be a connected non-compact real semisimple Lie group and p a Haar
measure on G. In a preceding article ([ff]) we proved that u(Ag) = oo and
that furthermore p(G \ Ag) = oo if G contains a compact Cartan subgroup
and u(G \ Ag) = 0 otherwise.

During the “Colloquium on Lie Theory and Application” in Vigo in July 2000
K. H. Hofmann suggested to me to investigate the asymptotic behavior of the
ratio of volumes of the respective intersections with balls.

This paper is concerned with establishing such an asymptotic description.
The first problem is to make precise what is meant “balls”. What is a natural
choice of “balls” to be considered here? The first idea would be to consider
balls with respect to some Riemannian metric which should be a canonical as
possible. However, a non-compact semisimple Lie group does not admit any
Riemannian metric invariant under both left and right translations and there
is no good reason to discriminate against left or right wingers.

Here we took a different approach. Let K be a maximal compact subgroup of
G and consider the double quotient X = K\G/K. For a continuous exhaustion
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function p on X we define “balls” B, = {p < r}. We demonstrate that with
respect to such an exhaustion asymptotically the share of A tends to one.
Now let us proceed to a precise statement.

First we recall that an “exhaustion function” p on a topological space X is
a continuous map p : X — RT U {0} such that p~1(]0,r]) is compact for all
r € RT. If H is a subgroup of a topological group G, then an exhaustion
function p on G is called “H-biinvariant” if p(hgh') = p(g) for all g € G,
h,h' € H.

THEOREM. Let G be a connected, non-compact real semisimple Lie group, A
the set of all elements g € G for which the generated subgroup {g™ : n € Z} is
discrete in G, p a Haar measure on G, K a mazimal compact subgroup of G,
and p: G — RT U {0} a K-biinvariant exhaustion function.

Let B, ={g € G:p(g) <r}.

Then

lim MANB)
r—oo /’I’(BT)
Proof. Let Z denote the center of G. We distinguish three different cases,
depending on the cardinality of Z.
Case 1. Here we assume that the center Z is trivial. Then G admits a faithful
representation A : G — GL(V) (for instance, the adjoint representation is
faithful.) Note that {g" : n € Z} must be discrete if g € G with | Tr(A(g))| > n.
Let K be a maximal compact subgroup of G, Lie(G) = Lie(K) + p a Cartan
decomposition, a a maximal Abelian subspace of p and A the corresponding
connected Lie subgroup of G. Then (see e.g. [f]) A4 is a reductive connected
and simply-connected Lie group and closed in G. It follows that, in suitably
chosen coordinates on V, the image A(A) is a closed subset of the set Dt of
all diagonal matrices with all entries non-negative. This implies in particular
that g — Tr(\(g)) defines an exhaustion function on the closed set A.
Next recall that G = K AK by a result of E. Cartan ([fl], see also [F], thm.7.39).
We will consider the double coset space X = K\G/K and the natural projec-
tion p : G — X. By results due to Cartan (see [J]) X = K\G/K ~ A/W where
W = Ng(A)/A is the (restricted) Weyl group. Since the trace of an endomor-
phism is invariant under conjugation, Tro\|4 is W-invariant, and therefore
there exists an exhaustion function 7 on X such that Tro\ and 7 o p coincide
on A.
Using the natural projection p : G — X ~ K\G/K we define a Borel measure
n on X by setting n(U) = u(p~1(U)) for every Borel set U C X. This is an
infinite measure, n(X) = p(G) = +oo, and for every compact set C' C X we
have 1(C) < oo, because p~1(C) is compact, too. Let & denote the normalized
Haar measure on K x K. Then for all f € C.(G)

/G F(g)dulg) = /X /K  (kahde(F )i,
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Next we define a function
¢ :End(R") x Rff — Ry
by
((a, R) = £ (S(a, R))
where
S(a,R) ={(k,h) € K : | Tr(A(k) - a- (A(h)))| < R}.
If Tr(a) # 0, then
{(k,h) € K : Tr(A(k) - a- (A(h))) = 0}

is a nowhere dense real analytic subset of K x K and therefore of measure zero.
It follows that

lim ((a, ) = 0

for all a € End(R™) with Tr(a) # 0.
We observe that

S(a,R) C S(a,R+¢)
for a,a € End(R") with Y. | [A(a)i; — A(@):i] < e. Using this, it follows that

lim ((ap,r,) =0
for all convergent sequences (a, ), in End(R™), (r,)y in R with limr, = 0 and
Tr(lima,) # 0.
This in turns implies, that if we have a compact subset C C End(R") such that
Tr(c) # 0 for all ¢ € C, then

i (sup ) ) =

t—=0 \cec

We now define such a compact set. Let C' be the set of all diagonal matrices
diag(dy, ... ,d,) in End(R") with 0 < d; <1 foralliand ), d; = 1.

Now C'is a compact set with Tr(c) = 1 for all ¢ € C. By definition of C' it is
clear that for every a € A there is an element ¢ € C such that ¢ Tr(A\(a)) = A(a).
We claim: For every e > 0 there exists a number Ry > 0 such that ((A(a),n +
1) < € for all @ € D with Tr(a) > Rp. Indeed, for every € there is a number
0o such that

C(e,d) < e
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for all c € C, § < dg.
By the linearity of the trace operator, we have
C(C’ 6) = C({ZZC, ;136)
for all c € C and # € RT. Now let v € D*. Then v = zc with c € C, z € RT
and Tr(v) = . This implies
C(Uaé) = C(:L'Cv 5) < C(TI‘(”U)C, 6) - C(Ca 5/ TI'(U)).

Therefore ((v,d) < € whenever §/ Tr(v) < dp. Thus

Con+1)<e

for all v € DT with Tr(v) > Ry = (n + 1)/dp.
Now fix a number € > 0. We will demonstrate that there exists a number R > 0
such that

w(ANB,)

>1—c€
1(Br)

for all r > R.

We start by choosing R such that ((a,n+ 1) < ¢/2 for alla € AT C D" with
Tr(a) > Ro. Recall that 7(X) = 400 and that § : X — R{ is an exhaustion
function. Hence we may choose a number R; > Ry such that

n({z € X : 0(z) < Ro}) < %n({aﬁ € X :0(z) < Ri}).

Finally choose R such that {# < Ry} C p(Bg).
Now we have for r > R:

(B \A) < pu({g € Br:Tr(Ag)) <n+1})

- / C(#,n+ 1)dn
z€p(By)

_ / Closn+ 1)y + / ¢y + 1)dn
0(z)<Ro

Ro<60(z),zep(B:)

< n({zr e X :0(x) < Ry} +/ Edn
Ro<0(2),z€p(B,) 2

< gnl{ze X :0() < Ro}) + gnl{e € p(B,) : Ro < 0(a)))
= en(p(Br)) = eu(B;).

Case 2. Assume that Z is finite, but non-trivial. Let p : G — G/Z denote
the natural projection. Since Z is compact and normal, it is contained in
every maximal compact subgroup K. Therefore every K-biinvariant exhaustion
functions on G is a pull-back of a p(K)-biinvariant exhaustion function on G/Z.
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Finiteness of Z furthermore implies that p~*(Ag,z) = Ag and that the Haar
measure on G/Z pulls back to a Haar measure on G. Therefore the statement
of the theorem for this case follows from the proof for case 1.
Case 3. Assume that Z is infinite. In this case Z is not compact. Since Cartan
subgroups are maximally nilpotent and therefore necessarily contain Z, this
implies that G' admits no compact Cartan subgroups. By the results of [J] it
follows that in this case u(G \ A) = 0, implying (A N B,) = p(B,) for all
reRT.

dJ

2 INTERPRETATION FROM A LIE ALGEBRA POINT OF VIEW

One may consider the projection Lie(G) — P(Lie(G)). In the projective space
P(Lie(G)) both the set corresponding to compact Cartan subgroups as well as
the set corresponding to non-compact Cartan subgroups contains non-empty
open sets, if we assume that G is a non compact semisimple Lie group containing
a compact Cartan subgroup. In this sense it seems that one the Lie algebra
level the set A and its complement look as having the same size. How does
this reconcile with our result? The answer may be found in the following
reasoning: The correspondence between Lie algebra and Lie group is given by
the exponential map. However, the exponential map behaves quite differently
for compact and non-compact Cartan subgroups: it is injective on non-compact
Cartan subgroups and has infinite kernel for compact Cartan subgroups. Thus,
multiplicities are quite different for Lie algebra and Lie groups. Taking these
multiplicities into account, it appears only reasonable that on the Lie group A
dominates if both sides have the same size in P(Lie(G)).

3 EXPLICIT CALCULATIONS FOR SL(2,R)

In this section, we deduce explicit results for the special case G = SLa(R).
In this case the K AK-decomposition can be written as the map

F: S xR x S' — SLy(R)

given by
. cosf  sinf s cos¢g  sing
F:(9,5,0) — <— sin 0 cos@) ' ( 51) . (— sin ¢ COS¢>
Then
de do
g _ -3y 2v a@
F du—27r(s s )277/\d8/\277

for a Haar measure dy on G. We can define a K-biinvariant exhaustion function
p on SLy(R) by

g max
(9) veR2\{(0,00} ||v]|
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Then p(F(0,s,9)) = s.
An element g € SLo(R) generates a discrete subgroup if and only if it is
diagonalizable or unipotent or a torsion element. It follows that g € A iff
| Tr(g)] = 2 or §Tr(g) = cos(3L) for a rational number ¢ € Q. Hence {g :
| Tr(g)] > 2} C A and

n(AN\A{g : | Tr(g)| > 2}) = 0.
An easy calculation yields

Te(F(0,s,6)) = (s+s " )cos(d+ o).

It follows that

1 C(5,2) = € (1(0,0) | TH(F(6, 5,6)] > 2}) = darceos .

Therefore

and
w(B, NA) = / 4 arccos (2/(8 + 8_1)) 21(s — s~ 3)ds.
s=1

Using Maple, the graph of the function f(r) = u(B, N A)/u(B,) now appears
as shown in the graphic below:
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ABSTRACT. Bipartite graphs occur in many parts of mathematics,
and their embeddings into orientable compact surfaces are an old sub-
ject. A new interest comes from the fact that these embeddings give
dessins d’enfants providing the surface with a unique structure as a
Riemann surface and algebraic curve. In this paper, we study the
(surprisingly many different) dessins coming from the graphs of finite
cyclic projective planes. It turns out that all reasonable questions
about these dessins — uniformity, regularity, automorphism groups,
cartographic groups, defining equations of the algebraic curves, their
fields of definition, Galois actions — depend on cyclic orderings of
difference sets for the projective planes. We explain the interplay
between number theoretic problems concerning these cyclic ordered
difference sets and topological properties of the dessin like e.g. the
Wada property that every vertex lies on the border of every cell.

2000 Mathematics Subject Classification: 51E15, 05C10, 14H25,
14H55, 20H10, 30F10

Keywords and Phrases: Projective planes, difference sets, dessins
d’enfants, Riemann surfaces, Fuchsian groups, algebraic curves

1 FINITE PROJECTIVE PLANES AND DESSINS D’ENFANTS

1.1 PROJECTIVE PLANES, BIPARTITE GRAPHS, AND MAPS

It is well known that the incidence pattern of finite projective planes can be
made visible by connected bipartite graphs using the following dictionary.
line «+— white vertex
point «—— black vertex
incidence «— existence of a joining edge

flag «— edge
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40 MANFRED STREIT AND JURGEN WOLFART

Following this dictionary, the axioms of projective geometry translate into
graph—theoretic properties like

For any two different black vertices there exists a unique white vertex as a com-
mon neighbor.

The same is true for elementary properties like

Every black vertex has precisely ¢ = n + 1 white neighbors and every white
vertex has precisely ¢ =n + 1 black neighbors. The graph has | =n? +n+1
black and white vertices, respectively, and ql edges.

As usual, we will call n the order of the projective plane. (Recall that up to
now only finite projective planes of prime power order are known.) On the
other hand, it is well known that connected graphs can be embedded as maps
into oriented compact surfaces L.

1.2 DESSINS D’ENFANTS

Now, bipartite graphs embedded into orientable compact surfaces cutting these
surfaces into simply connected cells represent a way to describe Grothendieck’s
dessins d’enfants.

Definition. A (p,q,r)-DESSIN is a bipartite graph on an orientable compact
surface X with the following properties.

1. The complement of the graph is the disjoint union of simply connected
open cells.

2. p is the l.c.m. of all valencies of the graph at the black points.
3. g is the L.c.m. of all valencies of the graph at the white points.

4. 2r is the l.c.m. of all valencies of the cells (i.e. the numbers of bordering
edges; they have to be counted twice if they border the cell at both sides).

Dessins arise in a natural way on compact Riemann surfaces (non-singular
complex projective algebraic curves) X if there is a non—constant meromorphic
(= rational) BELYI FUNCTION (3 : X — C ramified at most above 0,1, co.
Then 371{0}, 371{1} are the sets of white and black vertices respectively an
the connected components of 371]0,1[ are the edges of the dessin. According
to a theorem of Belyi such a function exists if and only if — as an algebraic
curve — X can be defined over a number field. Moreover, for every dessin D
on a compact orientable surface X there is a unique conformal structure on X
such that D results from a corresponding Belyi function § on X. Therefore the
combinatorics of dessins should encode all properties of curves definable over
Q. For a survey on this topic, see [@] In the present paper, we concentrate
on two aspects namely uniformization theory and Galois actions.
As a Riemann surface with a (p,q,r)-dessin, X is the quotient space of a
subgroup T of the triangle group A of signature (p, g, ), acting discontinuously
on C, C or the hyperbolic plane H if

1 1 1 .

-+ -+ ->1, =1 or < 1 respectively.

p q r
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CycLIC PROJECTIVE PLANES AND WADA DESSINS 41

The dessin is UNIFORM if all black points have equal valency p, all white points
have equal valency ¢, and all cells have equal valency 2r ; equivalently, I" has no
torsion and is therefore the universal covering group of the Riemann surface.
This is satisfied e.g. if the dessin is REGULAR, i.e. if its automorphism group G
acts transitively on the edges; equivalently, I" is a normal torsion—{ree subgroup
of A (and then A/T = G; for other reformulations of this condition see the
first section of ]) AUTOMORPHISM of the dessin means the restriction
of an orientation—preserving topological — and automatically conformal —
automorphism of X to the bipartite graph.

Recall that via the action of o € GalQ/Q on the coefficients of the defining
equations of the algebraic curve X — or of an extension of o to AutC/Q on
the coordinates of their points — one has a Galois action on the set of Riemann
surfaces. We can even speak of Galois actions on dessins in the following sense:
for a dessins D on X consider the corresponding Belyi function 3. Clearly,
for every o € GalQ/Q we have on the image curve X7 a Belyi function 3°
defining a Galois conjugate dessin. (This Galois action is only the first step of
Grothendieck’s far reaching ideas for a better understanding of the structure
of GalQ/Q via the so called Grothendieck-Teichmiiller lego.)

1.3 THE FANO PLANE. AN EASY OBSERVATION

Concerning the embedding of the bipartite graph of a finite projective plane as
a dessin on X, some immediate questions arise:

How does the structure of the Riemann surface depend on the choice of the
embedding? Which additional structure of the projective plane (like e.g. AutP,
the group of collineations) translates into a structure of the dessin and the
Riemann surface?

We are grateful to David Singerman who informed us about former work on
these questions by himself [Bid], Fink and in particular Arthur White ([FiW1],
[@}) In the following, we will take up their work under new topological and
arithmetical aspects. Already the easiest example, i.e. the Fano plane P2(FFy),
shows the existence of different embeddings leading to different dessins.

Fig. 6.5 of [@] shows one of two embeddings of the graph of the Fano plane as
a regular (3,3, 3)—dessin, consisting of 7 hexagons on a torus. The underlying
Riemann surface is the torus C/A for the sublattice A of the hexagonal lattice
Z[%(14 v/=3)] corresponding to one of the two prime ideals of norm 7 in that
ring of integers. The automorphism group G of the dessin is isomorphic to Z7 x
Zs3 , in fact a subgroup of PGL3(F2) ( Z,, denotes the cyclic group of order m ).
This full group of collineations of the Fano plane contains elements not giving
automorphisms of the dessin because an automorphism of the dessin fixing an
edge is automatically the identity. There is another embedding of the Fano
plane graph as a dessin to be discussed now which is better for generalizations
to other projective planes: Identify F3 — {0} with the multiplicative group Fj
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42 MANFRED STREIT AND JURGEN WOLFART

of order 7 and generator g. The exponents m of g give a bijection

P2(Fy) «—— ZJTZ
and an analogous bijection — with ¢g~! as generator — for the lines of the Fano
plane. To make the incidence structure visible we use the trace ¢ of the field
extension Fg/F5 as a nondegenerate bilinear form

b: FgxFg — Fy : (z,y) — t(zy) .

Then the point z and the line y are incident if and only if t(zy) = 0. We may
choose the generator g such that t(g) = 0; then a point ¢" and a line g~% are

incident if and only
tg™ ) =0 = m—k € {1,2,4}

what is easily seen using the Frobenius of Fg/Fy. Therefore, we may choose
the local orientation of the Fano plane graph as given in Figure 1.

m—1 m—2 k+2 k+1

m—4 k+4

Figure 1: Local pattern of the Fano plane dessin

Then, the global dessin may be given as in Figure 2. To draw the picture
on a Riemann surface, observe that every edge not incident with the white
vertex 0 occurs twice. Identifying these edges, one obtains a (3,3, 7)—dessin
with 3 cells on a Riemann surface of genus 3. Here also, the automorphism
group of the dessin is easily seen to be Z7 x Z3 which is a homomorphic image
of the triangle group (3,3,7) as well. Moreover, one may prove that the
kernel I' of this homomorphism is torsion free and a normal subgroup even in
the triangle group (2,3,7) with factor group PSLo(F7) = PGL3(F2). The
Riemann surface is known to be uniquely determined by this property: it is
Klein’s quartic. One may vary Figure 1 by taking the mirror image on both
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sides: the global result will be a regular dessin looking like Figure 2 but with
completely different identifications of the edges. Its automorphism group is
again Z7 x Zs and its Riemann surface is again Klein’s quartic, and both
dessins are Galois conjugate in the sense explained above, see Theorem 1.

Figure 2: A (3,3, 7)—dessin of the Fano plane

After all necessary identifications, we see that this Fano plane dessin has the
remarkable property that every vertex lies on the border of every cell. Such
phenomena occur even for subdivisions of the Euclidean plane into simply con-
nected open domains, as was long time ago known to Kerékjart6 and Brouwer
([@], p-120), and became popular more recently under the name lakes of Wada
in the theory of dynamical systems [@] Therefore, we propose the following
Definition. A WADA DESSIN is characterized by the property that every vertex
lies on the border of every cell.

(This property may be reformulated passing to a dual dessin by exchanging e.g.
the white vertices with the cells: then we obtain a complete bipartite graph
embedded in such a way that every white vertex lies on the border of every
cell.) Comparing the four realizations of the Fano plane graph as dessins one
may remark that the global picture depends heavily on the choice of the local
orientation of the edges around the vertices, see the proof of Proposition 2.
How typical are the Fano plane dessins for the general situation? An evident
observation is
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44 MANFRED STREIT AND JURGEN WOLFART

PROPOSITION 1 Let P be a finite projective plane of order n. Then any embed-
ding of its graph as a dessin gives a (q,q, N)—dessin for some natural number
N, where ¢ =n+1 is the number of points on a line of P. The automorphism
group of the dessin corresponds to a subgroup of AutP acting fixed-point—free
on the flags.

To prove the last statement one has just to observe that only the identity
automorphism of the dessin can fix an edge.

1.4 MAIN RESULTS

This first Proposition and the Fano plane example raise other questions:

is there a choice of the embedding such that N = [ is the number of points
of P ? Is there a choice of the embedding such that the resulting dessin is a
Wada dessin, uniform or even regular? Which subgroup of the collineation
group of the projective plane becomes the automorphism group of the dessin?
How does the absolute Galois group act on the corresponding set of algebraic
curves? What is their field of definition?

It is not clear to us if these questions have a reasonable answer for very general
embeddings of bipartite graphs coming from arbitrary finite projective planes.
But it turns out that there is an interesting interplay between properties of P
and the algebraic curve X if we concentrate on cyclic projective planes with
an action of a Singer group Z; and a difference set D — the definitions will be
recalled in the beginning of the next section — and on embeddings compatible
with the action of Z;. First we (re)prove in Section 2

THEOREM 1 For the known cyclic projective planes P?(F,,) the graph has em-
beddings into regular dessins if and only if n = 2 or 8. For n = 2 these
are

e 2 non—isomorphic but Galois conjugate reqular (3,3,7)—dessins on
Klein’s quartic (defined over Q ),

e 2 non—isomorphic but Galois conjugate regular (3,3,3) —dessins on the
elliptic curve with affine model y> =23 —1.

For n =8 there are embeddings into

e 6 non—isomorphic, Galois conjugate regular (9,9,73)—dessins of genus
252, defined over Q(Co), Co a 9-th primitive root of unity. Fach pair of
complex conjugate dessins lies on an algebraic curve defined over Q(Co +

G-

e 18 non—isomorphic reqular (9,9,9)-dessins of genus 220 defined over
Q(¢o) and forming 3 Galois orbits. They belong to 18 non—isomorphic
algebraic curves definable over the same field and forming 3 Galois orbits
as well.
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e 12 non—isomorphic regular (9,9, 3)—dessins of genus 147 lying on 12 non—
isomorphic algebraic curves. The dessins and their curves form two Ga-
lois orbits and are defined over Q((o) .

The first sentence and the genera are known by , Sec. 5., 6., [, [@],
Theorem 3.15, Theorem 5.3. Some results of | , §3, Theorem 3.13, overlap
also with

THEOREM 2 (and Definition). Let P be a cyclic projective plane with a fized
Singer group Z; and a fixed difference set D . There is a bijection between

e pairs of cyclic orderings of D and

e embeddings of the graph of P as (q,q, N)—dessin D such that the auto-
morphism group AutD contains Z; .

For special choices of these orderings, characterized by the fact that D/Z; is a
genus 0 dessin, D becomes a (q,q,1)—dessin. We call these D GLOBE COVERING
dessins; they depend on only one cyclic ordering of D .

(For the terminology globe covering see the proof, and for existence of isomor-
phisms between the resulting dessins see the Remark following the proof in
Section 2.)

THEOREM 3 If 1 is prime, all globe covering dessins of a cyclic projective plane
are uniform Wada dessins.

It will turn out that such (g, ¢,1)—dessins are typical Wada dessins, see Section
5, Proposition 7. Regular Wada dessins can be completely characterized by
group theoretical properties (see Proposition 8 and 9) but are in general very
different from dessins coming from projective planes (Proposition 11).

For all other cyclic projective planes with the (possible) exception n = 4
(¢ =5,1=21) there might exist embeddings onto uniform (g, ¢, !)—dessins as
well. Some evidence for this conjecture — reformulated as a number theoretic
question about cyclic orderings of difference sets — will follow from the proof
of Theorem 3 (Section 3) and Proposition 4. Concerning the automorphism
group of the dessin we will prove with similar methods as White [@], 83:

THEOREM 4 Let P be a cyclic projective plane of prime power order n = p® =
2 mod 3, and suppose the number | =n?+n-+1 to be prime. Then the graph
of P has embeddings as globe covering dessins with an automorphism group
Zl A Z3s .

To explain how the subgroup Z3, acts on the normal subgroup Z; recall that p
has the order 3s in the multiplicative group of prime residue classes (Z/IZ)*
[@, Lemma 3.3, hence acts by multiplication on Z; = Z/IZ. As a special
case, Theorem 4 contains the existence of regular dessins for the planes over
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Fy, Fg. Section 6 gives a different proof of a more general result saying that for
all [ and all globe covering dessins, the automorphism group is of type Z; x Z,, .
Section 4 treats the explicit equations for the algebraic curves corresponding
to the uniform globe covering dessins, in particular those of Theorem 3. We
can give these equations in the relatively simple form

R S LR CE bR

where ¢ = (, denotes a primitive g-th root of unity. The exponents b; depend
again on the ordering of the difference set of the projective plane, see Example
1 following Proposition 6. It will be shown that this equation can be replaced
by another with coefficients in Q(¢ +(¢~!). Examples suggest that this field of
definition is the smallest possible — Section 4 describes an effective procedure
for the determination of the moduli field of the curve.

Even non-regular dessins have a description in terms of group theory, namely
by their (hyper-) CARTOGRAPHIC GROUPS, i.e. the monodromy groups M of
the Belyi function belonging to the dessin D (see the proof of Theorem 2 and
Section 6). In the description given above using subgroups I of triangle groups
A this monodromy group can be written as the quotient A/N by the maximal
normal subgroup N of A contained in I'. In other words, M is isomorphic to
the automorphism group of the minimal regular cover R of D. In particular,
M = AutD for regular dessins. How does M look like in the case of uniform
dessins for cyclic projective planes? In Section 6, we give the following partial
answer:

THEOREM 5 Under the conditions of Theorem 3, the cartographic group of the
dessin D is isomorphic to a semidirect product

Z1 X Z,
with an exponent r < q.

Again, we will prove a slightly more general version than stated here. Again,
the ordered difference sets determine the precise nature of the cartographic
group, i.e. the exponent r and the action of Z, on Z; .

It is a great pleasure for us to thank Gareth Jones for the many fruitful dis-
cussions on these subjects during the last Southampton—Frankfurt workshops
on dessins and group actions.

2 CYCLIC PROJECTIVE PLANES AND DIFFERENCE SETS

Recall that a finite projective plane P is called cYCLIC if there is a collineation
a of order [ generating a SINGER SUBGROUP of AutP acting sharply transitive
on the points (and, by duality, on the lines) of P. Fixing one point = and
writing all points as a™(x) we may identify the points with the exponents
m € ZJIZ « Z;, hence read the cyclic automorphism group as the (additive)
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group Z; acting by addition on Z; . For the lines we adopt the same convention.
In the case of the projective plane over the finite field F,, we may — as we
did for the Fano plane — think of the exponents of some generator g of the
multiplicative group F;/F; and describe the incidence between points and
lines using the trace ¢ of F,s/FF,, as nondegenerate bilinear form. Locally, the
embeddings in question will be chosen such that the incidence graph look as
described in Figure 3,

m — ms k+ ks
m — mso k+ ko
m m—mq k+ k1 k
m—mg k4 kg
m—mg_1 k4 kg1

Figure 3: Local pattern of a dessin for a cyclic projective plane

for a fixed set {k1,...,kq} = {ma,...,mq} C Z; characterized by the prop-
erty

t(g") = 0 forall 7 =1,...,q.

But we may use this figure for other cyclic projective planes as well (if there
exist any) reading {k1,...,ks} = {ma,... ,my} C Z, as a DIFFERENCE SET
D characterized by the property that for all m € Z;, m # 0, there are unique
i and j with m = k; — k;. In any case, the cyclic collineation a of P can be
identified with the shift

m— m+1, k— k+1

proving graphically the if part of the following Proposition and the statement
in Theorem 2 about the automorphism group as well.

PROPOSITION 2 Let D be a dessin obtained by embedding the graph of a cyclic
projective plane P with | points. Its Singer group Z; becomes a subgroup of the
automorphism group of D if and only if for all m and k the local orientation
of the edges around the vertices are chosen as indicated in Figure 3. Such
orientations correspond bijectively to the choice of a pair of orderings of a
gwen difference set D for P, both up to cyclic permutations.
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In fact, the translations m — m +r, k+— k+r,r € Z;, preserve incidence
and orientation and give the action of Z; on the dessin. The only if part is true
by the following reason: If a induces an automorphism of the dessin, the local
orientations of the edges around the black vertices must show the same pattern
as the left part of Figure 3, and an analogous statement is true for the white
vertices.

Proof of Theorem 2. We know already by Proposition 2 that embeddings for
the cyclic projective plane P as a dessin D with Z; C AutD determine two
orderings of the (fixed) difference set D. To prove the existence of such em-
beddings, choose a pair of orderings of D giving local orientations of the graph
around all vertices as in Figure 3. These 2/ drawings define in an obvious way
local charts for an orientable surface into which the graph has to be embedded,
and the numbering of the vertices gives the following unique prescription how
to glue the local pieces together. Let €2 the set of all gl edges of D (flags of
P) and let M be the permutation group on 2 generated by b and w where b
is the cyclic counterclockwise shift of all edges around the black vertices (i.e.
sending the edge between m and m — m;, for all i € Z; and all m € Z;,
to the edge between m and m — m;41 in the left part of Figure 3), and w is
the corresponding counterclockwise shift of the edges around all white vertices.
According to [@]7 5. Maps and Hypermaps, M and its generators b and w
of order ¢ define an algebraic hypermap on a unique compact Riemann surface
X or — in the present terminology — a (g, ¢, N)—dessin on X where N is the
order of wb in the cartographic group M . The surface X can be described ex-
plicitly as follows: there is an obvious homomorphism A of the triangle group
A = {(q,q,N) onto M ;let H C M be the fixgroup of an arbitrary edge in Q
and let T':= h=(H), then we can define X as the quotient T'\'H .

For example, consider the case n =4, ¢ = 5,1 = 21 with the cyclic ordering
of a difference set

(mi)im0d5 = (_37 Oa la 67 8) ) (ki)imod5 = (Sa 67 17 07 _3) .

Here one obtains a uniform (5,5,5)-dessin on a surface of genus 22 with 21
cells of valency 10 on which the Singer group Zs; acts fixed-point—free as cyclic
permutation group of the set of cells. The quotient dessin D/Zs; has one cell,
5 edges, one black and one white vertex, hence genus 2.

For the last claim of the theorem suppose D to be globe covering. Since D/Z;
has genus 0 and ¢ edges, one black and one white vertex (the poles), it has
also ¢ cells, and we can imagine the edges as meridians joining the poles and
separating the cells. It is easy to see that this quotient dessin arises if and
only if both orderings of D are the same, i.e. if in Figure 3 m; = k; for all
i =1,...,q. Clearly, the globe covering dessins depend on only one cyclic
ordering of D . Their cells look as indicated in Figure 4.

Then, the numbers corresponding to the vertices on the border of the cell form
arithmetic progressions in Z; and therefore this cell has 2{/¢; edges where ¢; is
the ged of I and k;41 — k; . The resulting dessin is therefore a (g, ¢, N)—dessin
where 2N = 2l/c is the lem of the valencies of the cells and ¢ the ged of all
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ki —kir kA 2k — ki

k—ki+kit1

Figure 4: Cell of a globe covering dessin for a cyclic projective plane (m; = k;)

¢;. But ¢ > 1 would imply that all differences k; — k; were multiples of ¢ in
contradiction to the fundamental property of the difference set. Therefore, we
have N =1 proving that globe covering dessins are (g, g,1)—dessins for P.
Remark. Suppose D,D’ to be dessins resulting from two different pairs of
orderings for D . Then there is no Z;—equivariant isomorphism i : D — D’ i.e.
satisfying 10a = a o, since in that case we could replace ¢ by an isomorphism
preserving the numbering of black and white vertices, hence also the local
pattern of Figure 3. However, non—Z;—equivariant isomorphisms may exist,
related to multipliers of difference sets: for n = 5, ¢ = 6,1 = 31 take two
different cyclic orderings of a fixed difference set D
(mi) = (k;) = (1, 5,11, 25,24, 27), (m}) = (ki) = (5, 25, 24, 1, 27, 11)

? 7

giving isomorphic dessins where the isomorphism is defined by ¢ :  +— 5z mod
l.

Ezxercise. Reverse the orientation in the right part of Figure 1 and show that
this choice induces globally a (3,3,3)-Fano dessin. Reverse the orientation
in the left part of Figure 1 to show that this choice induces globally another
(3, 3,3)-Fano dessin.

Proof of Theorem 1. That we can obtain regular dessins only for n = 2 and
8 follows directly from Proposition 1 and a theorem of Higman/McLaughlin
[, Prop. 12, stating that for the planes P?(F,,) different from the Fano
plane and P?(Fg), flag—transitive groups of collineations cannot act fixed-
point—free on the flags. The converse direction is already verified for the Fano
plane by giving two regular dessins in genus 1 and two in genus 3. The genus
3 dessins belong to Klein’s quartic which is known to be defined over Q. As
the two dessins on the elliptic curves they differ by their local orientation —
see the exercise above (giving a chiral pair of dessins) — whence the dessins
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have to be complex conjugate. For the genus 1 dessins, the underlying elliptic
curve is the same for both dessins since it has an automorphism of order 3,
hence uniquely determined with model y? = 22 — 1. On the other hand, the
dessins are not isomorphic: their vertices are obtained (with suitable coloring)
by the points of Z[3(1 4 +/=3)] on the two tori

C/(2+ \/__3)2[%(1 V3.

These two tori are of course isomorphic but there is no isomorphism mapping
the two dessins onto each other since multiplication by (2 + v/=3)/(2 —v/=3)
does not give an automorphism of the elliptic curve.

The two dessins for the Fano plane on Klein’s quartic are non-isomorphic
since they correspond to two different normal subgroups of the triangle group
(3,3,7) which are conjugate in the index 2 extension (2,3,14), compare also
Lemma 1 and 2 below.

For the plane P?(Fg) one may verify that

ki = 22mod73, i =0,...,8,

form a difference set. A cyclic order is provided by the cyclic order of the
exponents i mod 9. Therefore, it is easy to verify that

b:m w— 2m : Zy3 — Zrg

together with a generates an edge—transitive automorphism group G = Z;3 X
Zgy of the (9,9, 73)—dessin described by Figure 4.

For the proof of the statements about the different possible images under these
embeddings recall that cocompact triangle groups A with signature (p,q,r)

are presented by generators and relations

a
1

Yo, V1 Yeoi Vo = W = Voo = V0NVoo = 1.

The following is well known and turns out to be very useful for the classification
of regular dessins.

LEMMA 1 Let A = (p,q,r) be a Fuchsian triangle group. Then there is a
bijection between

e isomorphism classes of reqular (p, q,r)—dessins with automorphism group
G,

e normal torsion free subgroups T' of A with A/T = G,

o equivalence classes of epimorphisms h : A — G, with torsion—free kernel,
i.e. mapping the generators ~; of A onto generators of G of the same
order. Two epimorphisms are equivalent if they result from each other by
combination with an automorphism of G .
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(The next lemma and the following remark will explain in more detail why
non-isomorphic dessins may however lie on isomorphic Riemann surfaces.) For
the special G under consideration, it is easy to see that such epimorphisms
exist only for the triangle groups (9,9,m) with m = 73,9 or 3. Following
closely the method described in [BtWd|| we can select homomorphisms h (with
pairwise different kernels) onto G = Zz3 x Zg with generators a,b as above in
the following way. For (9,9,73) we may take

h() = b°, h(m) = b7%d", h(ye) = o™, s € (Z/92)°

(another choice of k € (Z/73Z)* changes h only by composition with an ele-
ment of AutG). For (9,9,9) we may take

h(ve) = b°, h(m) = ba¥, h(yse) = a ",

s,t,u€(Z/92)* with s+t +u =0 mod9
(same remark for the choice of k), and for (9,9,3) we may take

h(v) = b, h(n) = b'a", h(ye) = a™"™,

s,t,u€e(Z/92)* with s+t +3u =0 mod9.

(same remark for the choice of k). The number of non—isomorphic dessins now
follows from counting the possible parameter values s,t,u. The question if the
underlying curves are isomorphic can be answered by another well known

LEMMA 2 Let I' and N be two different torsion free normal subgroups of the
Fuchsian triangle group A with isomorphic quotient A/T =2 G = A/N . The
Riemann surfaces T\H and N\H are isomorphic if and only if the following
equivalent conditions hold:

e T and N are PSLy(R)—conjugate.

o I' and N are conjugate in some triangle group A D A .

(The two regular dessins corresponding to I and N are not isomorphic since the
isomorphism of Riemann surfaces induced by the conjugation with A permutes
the different fix-point orbits of A, i.e. does not preserve at least the color
of the vertices.) To apply this Lemma, one has to check if there are larger
triangle groups and to control if the normal subgroups N remain normal in these
larger triangle groups. Equivalently, one has to check if the homomorphisms
found above are extendable to larger triangle groups than the original ones,
see [, Lemma 4. As an example, take the first case m = 73: here we
obtain 6 different normal torsion—free subgroups N of A according to the 6
different choices of s. But A is contained with index 2 in the maximal triangle
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group (2,9,146) in which Ny and N_; are conjugate. Therefore we obtain 6
non—isomorphic dessins but only 3 non—isomorphic Riemann surfaces.

The genera of the quotients of the upper half plane by these kernels can be
computed by standard methods like Riemann—Hurwitz’ theorem.

For the statements about fields of definition and Galois orbits recall first that
curves X with many automorphisms can be defined over their field of moduli,
i.e. the common fixed field of all o with X = X7 [@], Remark 4, ,
Satz 3. For the determination of this field take again the example of the regular
(9,9,73)—dessins. Let N, be the kernel of the homomorphism h defined above
by h(y0) = b*, h(y1) = b~*a* and let X, be the quotient surface N \H .
Recall that n is a MULTIPLIER of an automorphism « of X in some fixed point
x if the action of « in a local coordinate z around z (corresponding to z =0)
can be described by z — 1z (not to be confused with multipliers in the theory
of difference sets!). Then it is easy to prove

LEMMA 3 On X the automorphism b has two fized points with multipliers ¢s
and Gy ° where (9 = e2m/9 gnd $s=1mod 9.

Using the representation of the automorphism group on the canonical model
or Belyi’s cyclotomic character one may prove moreover

LEMMA 4 Let o be € GalQ/Q and let b act as an automorphism of X with a
multiplier n in the fixed point x. Then b acts in % on X7 with a multiplier

a(n).

Lemma 1, 2, 3 and the classification of the covering groups N show that the
isomorphism class of X is uniquely determined among all surfaces with regular
(9,9, 73)—dessin and automorphism group G by the unordered pair of multipli-
ers {¢5, ¢y °}, and that the isomorphism class of dessins is uniquely determined
by the ordered pair of multipliers. On the other hand, Lemma 4 shows that
every o fixing elementwise the cyclotomic field Q((g) fixes the isomorphism
class of dessin and curve. The Galois orbits are now easily determined by the
action of GalQ({y)/Q. The other cases can be treated in the same way.

It remains to prove that all the resulting bipartite graphs are isomorphic (as
graphs, not as dessins) to the graph of P?(Fg). First, we observe that — by
the freedom of choice of kK — we may assume that all h(y;) generate the same
cyclic subgroup of G ; the same observation holds trivially for all h(~yy). Then,
from the first part of the proof we know that at least one resulting dessin has
the desired property. Now, by the preceding classification of Riemann surfaces
with a regular dessin and automorphism group G we obtain graph—isomorphic
dessins what follows from a statement which might be of independent interest:

PROPOSITION 3 Let D,.,D; be regqular (p,q,r)— and (m,n,l)—dessins with au-
tomorphism groups both isomorphic to G, induced by epimorphisms

hy = (p,q,r) — G, h : {mnl) — G
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with torsion—free kernels. The bipartite graphs of D, and D; are graph—
isomorphic if

e p=m and ¢g=n,

e by combination with a group automorphism, h, and h; can be chosen
such that

1. he(y0) and hi(yo) generate the same subgroup B of G,
2. h.(v1) and hi(vy1) generate the same subgroup W of G .

Proof. A necessary condition for the existence of an isomorphism between
both graphs is equality between the valencies in the vertices. Therefore we will
suppose in the sequel that the first condition is satisfied. Since both dessins are
regular with the same automorphism group, we can represent their edges by
group elements g € G if we identify the edge 1 with the image of the hyperbolic
line between the fixed points of 7y and ~; under the map of H onto its quotient
by the kernels of h,. and h; respectively. In order to describe the graph of D,
we have to describe incidence around black (white) vertices. Let B and W
be the subgroups of G generated by h,(yo) and h,(y1) respectively. Then B
and W consist of the edges incident with 1 in its black and white end—vertex,
respectively. Using the G—action from the left, we see that the edge f is inci-
dent in its black end—vertex with all edges in fB and in its white end—vertex
with all edges fWW . Since this property does not depend on the choice of the
generators of B and W , the conditions of Proposition 3 imply that the trivial
and G—covariant application of edges g — ¢ induces an isomorphism of graphs.

Remarks. 1) The different non-isomorphic dessins for P?(Fg) can be obtained
as well by different pairs of orderings of the difference set. If one wants to
obtain a regular dessin then only such permutations of D are admissible which
are preserved by the multiplication with 2 mod 73, and it is easy to see that
there are precisely 6 such permutations. Applied independently to the inci-
dence pattern around black and white vertices, this gives 36 different regular
dessins as found in Theorem 1.

2) Which other cyclic projective planes besides the usual P?(F,,) could exist,
giving also a regular dessin? It is known that their order n has to be > 3600;
furthermore, they should admit a sharply flag-transitive automorphism group,
and by results of Kantor and Feit (see Theorem 8.18 of [Ju]) this could be
possible only if a collection of exotic conditions holds: the order n of the plane
must be a multiple of 8 but no power of 2, the number [ of points is a prime,
and the difference D set can be chosen as set of powers n* mod (Z/IZ)* (for
this point one may also consult Proposition 11). Furthermore, D is its own
group of multipliers and contains all divisors of n .

3) Galois conjugate dessins are in general not necessarily graph isomorphic.
Some non-regular examples can be found in [JSt], but there are also such
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examples for regular dessins: the three regular (2,3, 7)-dessins with automor-
phism group G = PSLy(F;3) on three Macbeath—-Hurwitz curves treated in
[@] give three non—isomorphic but Galois conjugate dessins whose graphs are
not isomorphic.

3 THE WADA PROPERTY

We mention first that the proof of Theorem 3 is an almost trivial consequence
of the proof of Theorem 2: For prime [ and globe covering dessins, i.e. with
m; = k; for all ¢ in Figure 3, every cell in Figure 4 has valency 2I. Therefore,
the dessin is uniform, and every vertex lies on the border of every cell.
According to standard conjectures of number theory, there should exist an
infinity of prime powers n such that [ = n? +n + 1 is a prime (n =
2,3,5,8,9,17,...). But even for composite [, each difference k; — k;11 de-
fines a module for an arithmetic progression in Z/IZ giving the sequence of
black points in clockwise order around the cell, and similarly for the white
points. However, the length of these arithmetic progressions (determining the
valency of the cell) is in general a proper divisor of [ . For example in the case
n=4,q=>5,1=21 the difference set

D :={-3,0,1,6, 8}

has no arrangement such that all differences k; — k;11 are coprime to [ (the
indices 7 have to be considered mod 5, of course).

The question raised for composite ! about the existence of uniform (q,q,!)—
dessins for cyclic projective planes admitting Z; as automorphism group may
be reformulated now in the following way (note that for n =5 we have [ = 31
prime and that for n = 6 no difference set exists). Let n be > 7 and | > 57
be a composite number. Is it always possible to arrange a difference set

D = {k;|imodq} C Z/IZ

in such a way that all successive differences k; — ki1 are coprime tol ¢
For small (prime powers) n the answer is positive thanks to the following Propo-
sitions.

PROPOSITION 4 Letn be > 7 and | > 57 be a composite number with prime
divisor p. A difference set D C ZJIZ can always be arranged in such a way
that all successive differences of elements in D satisfy

ki - ki+1 7_é 0 modp

For the proof it is sufficient to show that no residue class mod p contains
> q/2 elements among the elements of D . This will follow from

PROPOSITION 5 Letn be > 7 and | > 57 be a composite number with prime
divisor p and a difference set D C Z/IZ . Let a, be the number of elements d €
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D with d =rmodp,r =1,...,p. Then the numbers a, have the following
properties.

Zarzqzn-&-l, (1)

l 1
Yoal = —4+n=-@0+@+hn+1), (2)
- p p
! 1,
Z rlris = b }—j(n +n+1) forall s#Z0modp, (3)
1 p—1
ai,...,ap) — —(n+1,...,n+1|? = —=n 4
|| (a ») p( ) p (4)
Max|arfn+1| Vn (5)

a, < n+
(In (4), we use the Euclidean norm in RP ).

From the last inequality, a, < n/2 follows for n > 40 and p > 3 or for
n > 8 and p > 7 (note that the primes 2 and 5 never occur as divisors of 7).
Therefore, one has to check the truth of Proposition 4 by hand for some small
n only. This can be done by giving the solutions of (1) to (3) for p = 3 and
small n. These are, up to permutation of the coordinates

(a1,az2,a3) = (4,3,1) for n =7
(7,4,3) for n = 13
(9,7,4) for n = 19
(12,7,7) for n = 25
(13,12,7) for n = 31
(16,13,9) for n = 37.

Now we can explain the strategy how to construct uniform dessins for projec-
tive planes even in the case of composite [, e.g. for n = 7. Here we have
two prime divisors p = 3, 19 dividing | = 57 and we have to arrange D in
such a way that just every second k; € D is congruent to 1 mod 3. Then,
Proposition 5 is satisfied for p = 3, and we have 2 -4!-4! possibilities for
such arrangements. Among these possibilities, one has to find an arrangement
satisfying Proposition 5 also for p = 19. This is obviously possible since for
p = 19, equations (1) and (2) are satisfied with one a, = 2, for other six
indices m one has a,, = 1, and all other a; vanish.
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Proof of Proposition 5. Equation (1) just counts the number of elements in D .
Equation (2) follows from the fact that precisely % — 1 among the differences

k; — kj, ¢ # j, fall into the residue class 0 mod p , and therefore

Zar(arfl) :ifl,

T

Together with (1), this implies (2). Equation (3) follows by a similar consid-
eration of the differences giving elements = d # 0 mod p . We may consider
(a1,...,ap) as a point on the hyperplane given by equation (1). By Hesse’s
normal form, this hyperplane has square distance (n +1)* from the origin,
and the nearest point to the origin is of course %(n +1,...,n+1). Therefore,
the square distance (2) and Pythagoras enable us to calculate the distance (4),
and this implies (5).

Proof of Theorem 4. If | =n? +n +1 is prime and n = p* a prime power, it
is known [WH], Lemma 3.3, that p mod [ has order 3s in the group (Z/IZ)*.
Moreover, we may choose a difference set D C Z; = Z/IZ for the projective
plane invariant under multiplication with p mod [. Therefore, as in the case
of the plane P?(Fg) described in the proof of Theorem 1, we have at least a
group of graph automorphisms isomorphic to Z; x Z3, . This group becomes an
automorphism group of the globe covering dessin if and only if we can arrange
D in such a way that the multiplication with p preserves this cyclic ordering of
D.

LEMMA 5 Under the hypotheses of Theorem 4, the action of Zss through mul-
tiplication by p™ on the p—invariant difference set D has orbits of length 3s .

Proof of the Lemma. Since [ is prime and p mod [ has order 3s, the orbits of
the action on Z; have length 3s or 1. Length 1 occurs for one orbit only, and
this orbit cannot be contained in D since D has ¢ = n+1 = 0 mod 3 elements.
Proof of Theorem /4, continued. Now let ki,... k. € D represent the Zss—
orbits of the Z3s—invariant difference set D, r =1/3s. Arrange D as

klw"7kr7pk17~"apk7‘vp2klv ~~~~~ P

Then it is easy to check that the multiplication with p mod [ preserves the
cyclic order of the edges incident with black and white vertices as described in
Figure 3. Since [ is prime, this arrangement does not bother the property that
every cell has valency 2[, see the proof of Theorem 3 in the beginning of this
section.

4 EQUATIONS

The aim of this section is the determination of explicit algebraic models for
the curves corresponding to the uniform (g, g, {)—dessins D coming from cyclic
projective planes as described in Theorem 3 and the last Section. We begin
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with a more general remark about globe covering (g, ¢,!)—dessins. The genus
0 quotient D/Z; with its ¢ cells, ¢ edges and two vertices, both of valency ¢,
belongs to a unique Fuchsian subgroup of the triangle group A of signature
(q,q,1), its commutator subgroup ¥ of signature < 0; 19 > je. of genus 0
and with ¢ inequivalent elliptic fixed points of order [ such that

I < ¥ with ¥/ = 7, (7)

U g A with AP = Z,, (8)

if as before D corresponds to the Fuchsian group I'. In the cases studied
in Theorem 3 and the last Section, i.e. for uniform dessins, I' is the universal
(torsion—ree) covering group of the curve whose equation we want to determine,
but with the exception of the cases studied in Theorem 1 we cannot suppose
that I" is normal in A.

LEMMA 6 Suppose ¢ > 2 and 72+q(17%) > 0, and let ¥ be a Fuchsian group
of signature < 0;19 > . Then the number of torsion—free normal subgroups of
U with cyclic factor group = Z; is a multiplicative function fq(l) of L. Forp
prime and integer exponents a > 1 we have

fa(0*) = [(p— 1) 4 1]pra—2e-atd

if q is even, and for q odd we have

fa@®) = [(p— 1) =1 pra—2ematt,

Proof. In order to obtain a torsion—free normal subgroup of ¥ we have to
map the generators 7i,...,7, onto bi,...,b, € (Z/IZ)* such that } b, =
0 mod . By an obvious extension of Lemma 1 to I' < ¥, the number of these
congruence solutions is ¢(1)fy(l) because two such epimorphisms ¥ — Z;
have the same kernel if and only if they result from each other by combination
with one of the (1) automorphisms of Z; where ¢ denotes the Euler function.
The multiplicativity of f, is therefore a consequence of the Chinese remainder
theorem and the multiplicativity of ¢ .

First, let [ = p be prime. Then we count the congruence solutions

(=1 fop) = #{(br,... ,by)|bi € (Z/pZ)*, ) b;=0modp} =
= #{(bl,...,bq,g)\ZbiEOmodp}(p—l)

+ #{(br, - bg2)| p bi FOmodp}(p—2) =
#{ (b1, bg—2) |bi € (Z/pL)'} (p—1) — (p—1)77°

+ #{(b1,... ,bg—2)| ¥ bi=0modp} =
-1 — p—1T2 + (p—1) fo_2(p)
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from which the formulae for | = p follow easily by induction over ¢ .
Now, let I be a prime power p®, a > 1. Every solution of

b = Omod p®, b; € (Z/p°Z)*
i=1

gives by reduction mod p a solution of Y b; = 0 mod p, and conversely every
solution of >>b; = 0mod p comes from p@= D=1 solutions mod p® since
every b; mod p has p~! preimages in (Z/p®Z)* , and we have a free choice for
precisely ¢ — 1 of these preimages. Therefore Lemma 6 follows from

(p—1)p" " fo(p®) = p " (p—1) fo(p) -

For another approach, in particular to the case of | = p prime, see [, p-500.

PROPOSITION 6 Let ¥ of signature < 0;1(0 > be the unique normal subgroup
of the triangle group A of signature {(q,q,l), q > 2, | > 3 with factor group
Zy. Let T of signature < (I —1)(q¢ —2)/2;0 > be the torsion—free kernel of
the epimorphism W — Z; sending the canonical elliptic generators ~y;, i =
1,...,q, of ¥ onto b; € (Z/IZ)* with > .b; = Omod! (w.l.o.g. we may
normalize these epimorphisms by taking by = 1). Let b; be defined by bb; =
1mod!, and let { = exp(2wi/q) be the multiplier of all ;. Then, as an
algebraic curve, the quotient surface T\'H has a (singular, affine) model given
by the equation

yh= (@O (@b

Proof. This curve defines a function field built up by two consecutive cyclic
extensions

C(z,y) D C(z) D C(z9)

of orders [ and g. The function z? on this curve is a Belyi function whose
ramification points lie above 0,1, 00 of orders ¢, 1, q respectively. The condition
> b; = 0 mod ! is necessary and sufficient to ensure that co is unramified under
the extension C(z,y)/C(z). The choice of the exponents easily follows from
a consideration of the local action of the automorphism group Z; in its fixed
points.

Ezxample 1. For the globe covering dessins of Theorem 2, suppose that
ki,....kq € Z/IZ form the difference set D with (k; — ki41,1) = 1 for all
i € Z/qZ . This is true for prime [ (Theorem 3); the Propositions 4 and 5 give
some evidence that there may exist orderings of D with that property as well
for all other g # 5. Then the graph of the projective plane embeds into

y o= (@=L @R R
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Remark. Cyclic permutations of the difference set in Example 1 give isomorphic
dessins and should give therefore isomorphic curves. In Lemma 10 below, we
will study these isomorphisms as coming from cyclic shifts of exponents.
Example 2. With | = ¢ and by = ... =b; =1 the Fermat curves

Y= @) T = at 1

fall under Proposition 6 as well.

Remark. Example 2 corresponds to a dessin for which — in the terminology
of Proposition 6 — T is even normal in A. The dessin has therefore the larger
automorphism group Z 3 inducing additional relations between the exponents
(here: equality). Other examples of this type can be found in [, Section
3.

The remaining part of this section is devoted to a determination of the moduli
field for the curves treated in Proposition 6. To this aim, define

b = (b1,....by) = (1,b2,...,by)

and Xy, := T'\'H to be the curve with the affine equation arising in Proposition
6, i.e. with b; € (Z/IZ)* for alliand 1+ 7, b, = 0mod . Clearly, the field
of definition of X3, can be chosen as a subfield of the cyclotomic field Q((),
hence also the field of moduli (recall that by the definition given in Section 2
between Lemma 2 and Lemma 3, the field of moduli is contained in any field
of definition). We can give a slightly better result:

LEMMA 7 The curve Xy, can be defined over K = Q(¢ + (™) = Q(cos27/q) ,
and K contains the moduli field of Xy, .

A direct proof is provided by a substitution x = p(z) in the defining equation
of Xp where p denotes a fractional linear transformation defined over Q(()
sending R U {oo} onto the unit circle. Another way to prove the statement
about the field of moduli relies on the fact that the complex conjugation on
X}, corresponds on the one hand to the transformation

a:b = (1,by,....by) — (L,by,...,b2).
On the other hand, the same transformation of exponents corresponds to the
isomorphism of curves given by

T — Yy = =

T

)

8=

We know by Lemma 1 that there is a bijection between the normalized g—
tuples b introduced above and the torsion—free normal subgroups N in this
unique subgroup ¥ of A = (q,q,l) with quotient ¥/N = Z,. The absolute
Galois group does only permute the different curves Xy, . To determine their
fields of moduli, one has therefore to determine the isomorphisms between
these different X}, , and by Lemma 2 we know that we have to determine all
conjugacies between the different groups N in maximal triangle groups A
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LEMMA 8 Suppose ¢ >2,1>3, q#1,2l, 4 and suppose that (q,q,l) = A

is a non—arithmetic triangle group. Then A = (2,q,2l) is the unique mazimal
triangle group containing N, ¥, A.

The uniqueness is a consequence of Margulis’ characterization of non—
arithmetic Fuchsian groups that the commensurator of N, ¥, A is only a finite
index supergroup of them. By work of Singerman , these supergroups are
well known, and our hypotheses about ¢ and [ guarantee that (2,¢,2l) is in
fact the maximal triangle group to be considered here.

Remark. The Fermat curves give examples in which (2, ¢, 2¢) are not maximal
— and for which the following determination of the moduli field needs an extra
effort which is useless since we know that K = Q. For the dessins arising from
the embeddings of cyclic projective planes we have | = ¢> — ¢+ 1 > ¢. The
hypotheses of the Lemma are therefore violated only if A is an arithmetical
triangle group. A look into Takeuchi’s classification [[Td] shows that this is
the case only for (3,3,7). Since we already know that in this case X} is
isomorphic to Klein’s quartic defined over K = Q, we can concentrate on the
cases satisfying the hypotheses of Lemma 8.

We continue with four rather obvious observations.

LEMMA 9 Under the hypotheses of Proposition 6, ¥ is a normal subgroup of
A = (2,q,2l), and to the group inclusions ¥ C A C A correspond the normal
function field extensions of their quotient spaces C(x) D C(z?) D C(x?+z79).
The quotient AV is isomorphic to the dihedral group Zq X Zy and acts as
Galois group on the function field extension C(x)/C(x? + x~7) of degree 2q
generated by

1
a:x— — , b:zxzw— (x.
x

LEMMA 10 This group Z, x Za acts on the set of quotient curves Xy = N\H
by

CL(b) = a((17b27"' qu)) = (ququflv"' 7b2)7

b(b) = b((1,ba,...,by)) = (1,baby ', ... byby ', b3") .
If the hypotheses of Lemma 8 are satisfied, the orbits under this group action
form precisely the isomorphism classes among the curves Xy, .
LEMMA 11 For i € Z/qZ denote b'(b) =: (1,b,...,b,). There is a k =
1 —imod g such that the cyclic sequences of quotients
17b27~'-abq—labq and lvb;c+1/b;€7 ;c+2/b;ca'~'7 ;c—l/b;f
coincide. The action of a reverses the order of these sequences, i.e. replaces

b;c-‘rm by b;c—m :
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LEMMA 12 The action of the absolute Galois group GalQ/Q on the set of
curves Xy, factorizes through G = GalQ(¢)/Q . If we identify G in the usual
way with the group of prime residue classes Z; := (Z/qZ)* , every r € Zy acts
on the set of q—tuples b by

Tl (].7 b27 e ,bq> = (1,b7.—1+1, b2r_1+17 N 7b(q—1)r_1+1) .
In particular, the action of r = —1 coincides with the action of a .

The last sentence again shows that the moduli field of every Xy, is a real
subfield of Q(¢) . If X} and X} are isomorphic curves, then their r—images are
isomorphic, too, for all r € Z; . We obtain therefore

LEMMA 13 Under the hypotheses of Lemma 8 there is a well-defined action of
the Galois group G = GalQ(()/Q = Z; on the Zy x Za—orbits considered in
Lemma 10. With this action of G, the moduli field of Xy, is the fixed field of
the stabilizer of (Zy x Z3)(b) .

Ezxample. Let n =7,q = 8,1 = 57 and consider the uniform dessin for the
plane P2?(FF;) belonging to the cyclic ordered difference set

D = (0,1,3,7,21,—19, —24, —8)

satisfying in fact the condition (k; — k;y1,1) = 1, see the last section. Its
algebraic curve X}, corresponds to the 8—tuple (of inverse exponents mod 57)

b = (1,2,4,14,17,-5,16,8) .
For r =3 and r =5 € Z§ = G we obtain
3(b) = (1,14,16,2,17,8,4,—5) and 5(b) = (1,-5,4,8,17,2,16,14) .

Both do not belong to the (Zg x Z3)-orbit of b what can easily be seen using
Lemma 11: the cyclic sequence of the b; contains the subsequent members
1,2,4 which do not occur in any sequence of quotients 1, by, /b , bj.15/bl
for 3(b) and 5(b). Therefore, the field of moduli and the field of definition
of Xy, is in fact the fixed field K = cos2n/8 of the subgroup {1,—1} C G.
Another interesting fact becomes visible in this example: Being the dessin of
a projective plane is not a Galois invariant property because e.g. 5(b) does
not consist of the successive differences of a difference set. By consequence, the
existence or non—existence of quadrangle loops (see Prop. 10, next section) in
a dessin is neither a Galois invariant.

5 REGULAR WADA DESSINS

We start with some more general remarks on the Wada property. Clearly,
unicellular dessins are Wada dessins, and starting with unicellular dessins in
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Figure 5: Non—uniform Wada dessin on a torus

positive genera, it is easy to construct Wada dessins by suitable subdivisions of
the cell as in the following more general genus 1 example (Figure 5) in which
the opposite borderlines have to be identified.

This (4,4, 3)—dessin is not uniform since there are vertices of both colors with
different valencies. The reason is the fact that on the border of each cell there
are different vertices which have to be identified on the Riemann surface. In
other words, one may draw a curve joining this vertex to itself in the cell but not
null-homotopic in the (closed) cell. This turns out to be the only obstruction
for Wada dessins with more than one cell to be uniform.

Definition. We call a dessin FLAT if the topological closure of all cells are simply
connected.

PROPOSITION 7 Let D be a flat Wada dessin with q¢ > 1 cells. Then D is a
uniform (q, q,1)—dessin where l denotes the number of black resp. white vertices.

Proof. By definition, every vertex of D lies on the border of every cell, so the
valencies of the vertices have to be at least ¢. On the other hand, no such
valency can be > ¢: Otherwise there would exist a cell S having a vertex
x twice on its border, more precisely one could join x with itself by a non—
nullhomotopic curve in the cell, but — by hypothesis — null-homotopic in S';
therefore another vertex y # x exists in the interior of this curve, lying on the
border of (only) the cell S, hence ¢ = 1, contradiction. By the same reason,
every cell has precisely the valency 21 .

Remark and Example. By Theorem 2, we know that the resulting dessin of the
embedding of a cyclic projective plane’s graph depends on the chosen orderings
of the difference set. This is also true for the Wada property and for flatness:
For P?(FF3) one has the difference set

D := {0,1,3,9} C Zy3.
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If we take the corresponding globe covering dessin, i.e. with m; = k; , we obtain
a uniform flat (4,4, 13)—dessin as in the proof of Theorem 3. If we change the
cyclic orders of D into

(mi)i=1,..4 = (0,1,3,9) but (k;i)i=1,.4a = (9,3,1,0)

we obtain a non—flat uniform (4,4, 26)-Wada dessin with two cells. With the
cyclic orders

(mi)i=1,...a = (0,1,3,9) and (k;)i=1,..a = (0,3,9,1)

we obtain a Wada dessin with two cells, one of valency 2 - 13 and the other
of valency 2 -39. In both examples the quotient by the Singer group Z;3 is a
dessin with one black vertex and one white vertex and ¢ = 4 edges, but not
with ¢ cells in genus 0 (as for the globe covering dessins treated in Sections 3
and 4) but with two cells in genus 1.

In Section 2, we already met some special regular Wada dessins. Here we
will characterize such dessins, give some more examples and explain why their
underlying graphs do in general not come from finite projective planes even if
the valencies g and [ satisfy the necessary relation [ =n?+n+1=¢>—q+1.

PROPOSITION 8 Let D be a regular (q,m,l)—dessin with automorphism group
G, generated by elements by, b1, bso of Tespective orders q,m,l and generating
cyclic subgroups B, W and C, respectively. Then D is a Wada dessin if and

only if
(G:B) = (C:CNB) and (G:W) = (C:CnW).
In that case, the number of cells of D is
(G:C) = (B:CnNnB) = W:CnW).
D is a flat Wada dessin if and only if moreover
CNB =CnW = {1},
in other words if D has I black and | white vertices and ¢ =m cells.

Proof. There are a black vertex x fixed by B and a white vertex y fixed by
W, both on the border of a cell fixed by C'. Since D is a regular dessin, the
automorphism group G acts transitively on all black (resp. white) vertices, and
since B (resp. W) is the stabilizer subgroup of x (resp.y), the total number
of black (resp. white) vertices is (G : B) resp. (G : W). Now, D is a Wada
dessin if and only if all these black (resp. white) vertices form one orbit under
the action of C'. According to the class formula, this is the case if and only if

(G:B) = (C:CNB) and (G:W) = (C:CNnW).
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The number of cells is deduced in a similar way by the action of G, B and
W on the cells. Moreover, D is flat if and only if all the black (resp. white)
vertices on the border of the cell fixed by C are pairwise different, i.e. if and
only if I is the number of black (resp. white) vertices.

As a non—flat example, take the genus 3 curve with the affine model

with (4,4, 6)-dessin and an automorphism group G of order 12 (a semidirect
product of a cyclic group of order 4 with a normal subgroup of order 3). Here
we have two cells of valency 12 but only 3 different black (resp. white) vertices.
It is not surprising that in the case of flat regular Wada dessins the structure
of G can be determined rather precisely.

PROPOSITION 9 Let D be a reqular (q,q,l)-Wada dessin with q cells and 1
black (resp. white) vertices. Then

1. G=AuwtD has order ql,

2. G=BC =WC for the cyclic stabilizer subgroups B,W of a black and
a white neighbor vertex and the cyclic stabilizer subgroup C of a cell,

3. G" ={1}, i.e. G is metabelian.
4. If q is prime and [ > 1, one has even 1 > q.

5. In the case | = q prime, the dessin belongs to a Fermat curve of exponent
q and with G = Z2 .

6. If 1 is prime > q (arbitrary), q divides | —1 and G = Z; X Z, .

Proof. 1) Clearly, D has gl edges. Since G acts sharply transitive, the number
of edges is the order of G. A similar argument proves assertion 2). As we
learned from Gareth Jones, 3) follows from 2) by a theorem of It [. 4)
Because G is generated by two cyclic subgroups B and W of order ¢, they
coincide if and only if [ = 1. If not and ¢ is prime, they satisfy moreover
BNW = {1}, ordG > ¢* and hence | > ¢q. 5),6) Since G contains a cyclic
subgroup of order [, the statements about the structure of G are standard
consequences of Sylow’s theorems. It is well known that regular (q,q,q)—
dessins with automorphism group Z, q2 belong to Fermat curves, see e.g. [@],7 .
Examples 3. On the other hand: that these dessins are flat Wada dessins can
easily be verified using Proposition 8.

Remark. If q is not prime, the statement 4) in general fails as the following
example shows. On the elliptic curve y? = 2% — 1 there is a regular (4,4,2)-
dessin with 8 edges, ¢ =4 cells, [ = 2 black resp. white points, automorphism
group G = Z4 X Z5 and disjoint generating subgroups B=2W = Z,, C = Z,
(complete the Figure 5 dessin by two edges forming a vertical middle axis).
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For the structure of GG in these more general cases one may consult a paper of
Huppert [@] Theorem 2 of [I] gives the existence of normal subgroups N <G
containing B,W or C and other normal subgroups contained in these cyclic
subgroups, so it is possible to represent D by successive cyclic coverings of very
simple genus 0 dessins.

In [ we studied a series of regular (g, ¢,1)—dessins with ¢,! prime, g|l—1
and automorphism group G = Z; x Z, giving examples for Proposition 9.6).
For the purpose of the present paper, the hypothesis ”¢ prime” is unnecessary,
but we make the assumptions

¢g>2, l=¢>—q+1 prime, G = Zy X Zy
where Z; is generated by a and Z, by b satisfying the relation
b lab = a®

for some fixed prime residue class u € (Z/IZ)* of order ¢. Imitating the
proof of Proposition 3, we generate the automorphism group of the dessin by a
rotation b around a black vertex x and a rotation b~!'a around a white vertex
neighbor y. That all these dessins are flat Wada dessins follows again easily
from Proposition 8.

PROPOSITION 10 Let D be a (q,q, m)—dessin with | = q*> —q+ 1 points, all
vertices with valency q > 2. The underlying graph is the graph of a projective
plane if and only if no quadrangle loop exists in D, i.e. if there are no white
vertices y # y*, black vertices x # x* such that xzyx*y*z are successive
neighbors.

Proof. If such a quadrangle loop exists, the uniqueness of the intersection points
or joining lines is violated, whence we cannot have the graph of a projective
plane. If no such quadrangle exists, counting neighbor vertices one easily shows
that any two black vertices have a unique white neighbor in common, and that
the respective statement is true for two white vertices. The existence of four
points in general position follows easily from ¢ > 2.

With Proposition 10 we can now see why e.g. the regular (7,7,43)—dessin
with automorphism group Z,3 X Z7 has no underlying graph belonging to a
projective plane:

PROPOSITION 11 Let D be a regular (q,q,1)~dessin with | = ¢> —q+ 1 prime
and automorphism group G = Z; x Z; whose generators a,b of respective
orders l,q satisfy

btab = a*,
u € (Z/IZ)* of order q. The underlying graph is a graph of a projective plane

of order n = q—1 if and only if the powers u*, k=1,... ,q, form a difference
set in ZJIZ.
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Proof. Because the dessin is regular, we can start with any black vertex x and
a white neighbor 3, hence we will take the fixed points of b and b~'a. Suppose
there is a quadrangle loop as forbidden by Proposition 9, then

ot = (b7a) ), ¥ = 0"(y)

with k,m # 0 mod ¢ , and the subgroups fixing these two points are generated
by

b ta)*b(b7ta)™* and (b la)p™™
respectively. An edge joining z* with y* exists if and only if it is the G—-image
of the edge joining y and x by a group element which can be written in two
ways:
b La)b™™) ™ = (b~ ra) b (b7 ra)7F)" (b7 a)k

with 7,5 % 0 mod ¢ . This equation is equivalent to

(b7ta)® = b (b la)kb"
or, using the relation between a and b,

au+u2+.4.+u‘“’ p=s — pm au+u2+..4+uk pktr au""(u+u2+4..+uk) p—m—k+r
This relation holds if and only if
s+r =m+k modg and w+...+u* = u"(u+...+u") modl.
The second congruence is easily seen to be equivalent to
u' —1=u —u

meaning that the powers of u do not form a difference set in Z/IZ. On the

other hand, if the powers of u form a difference set, the last congruence is
unsolvable for s,m,k #Z 0 mod g , whence a quadrangle loop cannot exist.

6 'THE CARTOGRAPHIC GROUP

We prove the last theorem in the following more general form.

PROPOSITION 12 Let D be a globe covering dessin obtained by embedding the
graph of a cyclic projective plane P of order n = q — 1 with Singer group
Z; C AutD. Then the cartographic group M of D is isomorphic to a semidirect
product A x Z, for a quotient A of Z*.
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As explained in the beginning of Section 4, the hypothesis globe covering says
that D corresponds to a subgroup I' of the triangle group A = (g, ¢q,l) with
an intermediate normal subgroup ¥ = A’ of signature < 0;1(9 > such that
(7) and (8) hold. In contrast to Section 4, we can even admit the existence
of torsion elements in I', in other words D is allowed to be a non—uniform
dessin. The cartographic group of D can be introduced either as monodromy
group of the corresponding Belyi function 3 or as a certain permutation group
of the edges of D since these represent the sheets of the covering 3. Here, the
easiest way to determine M is the fact that M is isomorphic to the quotient
A/N of A by its maximal normal subgroup N contained in I'. Let ¥’ the
commutator subgroup of ¥. Since V¥ is normal in A, the same holds for ¥’.
The presentation of ¥ shows that

U C T with O/¥ = 777",

Therefore, ¥/ C N CT', and if we denote the quotient ¥/N by A, the result
follows.

Remark. As in Section 4, the choice of the ordered difference set for P deter-
mines the homomorphism ¥ — Z; with kernel I', and the action of A resp. Z,
on Z} ~! is also known. Using these data, it is in principle possible to determine
A and the action of Z, on A.

The same line of arguments as in the proof above gives a more general version of
Theorem 4. Since the full automorphism group of D is isomorphic to Na(T")/T
where Na (T") denotes the normalizer in A (containing ¥, of course), we obtain

PRrROPOSITION 13 Under the hypotheses of Proposition 12 we have
AutD = Z; x Z,,

for some divisor m of q .
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ABSTRACT. Using an idea of C. Simpson we describe Serre’s local I'-
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1 INTRODUCTION

In [§ Serre defined local Euler factors L, (H"™(X), s) for the “motives” H™(X)
where X is a smooth projective variety over a number field k. The definition at
the finite places p involves the Galois action on the l-adic cohomology groups
Hi(X ® Ep,(@l). At the infinite places the local Euler factor is a product
of Gamma factors determined by the real Hodge structure on the singular
cohomology HE(X ® EWR). If p is real then the Galois action induced by
complex conjugation on Ep has to be taken into account as well.

Serre also conjectured a functional equation for the completed L-series, defined
as the product over all places of the local Euler factors.

In his definitions and conjectures Serre was guided by a small number of exam-
ples and by the analogy with the case of varieties over function fields which is
quite well understood. Since then many more examples over number fields no-
tably from the theory of Shimura varieties have confirmed Serre’s suggestions.
The analogy between [-adic cohomology with its Galois action and singular
cohomology with its Hodge structure is well established and the definition
of the local Euler factors fits well into this philosophy. However in order to
prove the functional equation in general, a deeper understanding than the one

Lsupported by TMR Arithmetic Algebraic Geometry
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provided by an analogy is needed. First steps towards a uniform description
of the local Euler factors were made in [D1], [DJ], [DJ]. There we constructed
infinite dimensional complex vector spaces F,(H™(X)) with a linear flow such
that for all places:

-1
Ly(H™(X),s) = deto (%(s id - 0) | Fp(H"(X))) . (1)
Here O is the infinitesimal generator of the flow and det . is the zeta-regularized
determinant. Unfortunately the construction of the spaces

Fo(H™(X)) was not really geometric. They were obtained by formal construc-
tions from étale cohomology with its Galois action and from singular cohomol-
ogy with its Hodge structure.

C. Consani [Q] later developed a new infinite-dimensional cohomology theory
HE s (Y) with operators N and © for varieties Y over R or C such that for
infinite places p:

(Fp(H"(X)),©) 2= (Hlons (X @ k)"0, 0) . (2)

Her constructions are inspired by the theory of degenerations of Hodge struc-
ture and her N has to be viewed as a monodromy operator. The formula for
the archimedean local factors obtained by combining (ﬂ) and (E) is analogous to
the expression for L,(H"(X), s) at a prime p of semistable reduction in terms
of log-crystalline cohomology.

The conjectural approach to motivic L-functions outlined in [m} suggests the
following: It should be possible to obtain the spaces F,(H"™(X)) for archime-
dian p together with their linear flow directly by some natural homological
construction on a suitable non-linear dynamical system. Clearly, forming the
intersection of the Hodge filtration with its complex conjugate and running the
resulting filtration through a Rees module construction as in our first construc-
tion of F,(H™(X)) in [DJ] is not yet what we want: In this construction the
linear flow appears only a posteriori on cohomology but it is not induced from
a flow on some underlying space by passing to cohomology.

In the present paper in Theorems 4.2, 4.3, 4.4 we make a step towards this goal
of a more direct dynamical description of the archimedian Gamma-factors. The
approach is based on a result of Simpson which roughly speaking replaces the
consideration of the Hodge filtration by looking at a relative de Rham complex
with a deformed differential.

In our case, instead of the Hodge filtration F'* we require the non-algebraic
filtration F* N F*. This forces us to work in a real analytic context even
for complex p. It seems difficult to carry Simpson’s method over to this new
context. However this is not necessary. By a small miracle — the splitting of a
certain long exact sequence — his result can be brought to bear directly on our
more complicated situation.

In the appendix to section 4 we explain a relation between Simpson’s deformed
complex and a relative de Rham complex on the deformation of X to the normal
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bundle of a base point. This observation probably holds the key for a complete
dynamical understanding of the Gamma-factor.

Our main construction also provides a C*-vector bundle on R with a flow. Its
fibre at zero can be used for a “dynamical” description of the contribution from
p | oo in the motivic “explicit formulas” of analytic number theory.

In our investigation we encounter a torsion sheaf whose dimension is to some
extent related to the e-factor at p of H™(X).

Using forms with logarithmic singularities one can probably deal more generally
with the motives H™(X) where X is only smooth and quasiprojective.

It would also be of interest to give a construction for Consani’s cohomology
theory using the methods of the present paper.

I would like to thank J. Wildeshaus for discussions which led to the appendix of
section 4. A substantial part of the work was done at the IUAV in Venice where
I would like to thank U. Zannier and G. Troi very much for their hospitality. T
would also like to thank the referee for a number of suggestions to clarify the
exposition.

2 PRELIMINARIES ON THE ALGEBRAIC REES SHEAF

In this section we recall and expand upon a simple construction which to any
filtered complex vector space attaches a sheaf on A' = Al with a G,,-action.
We had used it in earlier work on the T-factors [D1]], [DJ] §5. Later Simpson
[Eﬂ gave a more elegant treatment and proved some further properties. Most
importantly for us he proved Theorem @ below which was the starting point
for the present paper. In the following we also extend his results to a variant
of the construction where one starts from a filtered vector space with an in-
volution. This is necessary later to deal not only with the complex places but
with the real places as well.

Let Filc be the category of finite dimensional complex vector spaces V with a
descending filtration Fil"V such that Fil"™*V = 0,Fil"™?V = V for some integers
r1,7ro. Let ﬁlﬁ{f be the category of finite dimensional complex vector spaces with
a filtration as above and with an involution F,, which respects the filtration.
Finally let Filg be the full subcategory of ]-"ilﬁ{ consisting of objects where Foo
induces multiplication by (—1)* on Gr'V.

These additive categories have ®-products and internal Hom’s. We define Tate
twists for every integer n by

(V,Fil'V)(n) = (V,Fil"™V) in Filc
and by
(V,Fil'V, Fy)(n) = (V,Fil"™"V, (=1)"F) in Fili and Fil .
Note that the full embedding:

i: Filg — FilE
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is split by the functor
s Fili — Filg

which sends (V, ﬁTK Fy) to

r+1

(V,FII'V = (FI V) ¢+ (F V)0 Ry

ie. soi = id. Here W*! denotes the +1 eigenspace of F5, on W. For V in
Filc following [B] §5 define a locally free sheaf &c(V) = &c(V, Fil'V) over Al
with action of G, by

&(V) = ZFﬂpV ®2z PO CV®35.0g,, -
P

Here j : G,,, — A! is the inclusion and z denotes a coordinate on A' determined
up to a scalar in C*. Unless stated otherwise the constructions in this paper
are independent of z. The global sections of the “Rees sheaf” &c(V, Fil'V) form
the “Rees module” over C[z]:

Fil’(V @c Clz, 27 ")) = > _FilPV & 277Clz] C V& Clz, 27"
p

where Fil’C[z,271] = 2PC[z] for p € Z. The natural action of G,, on Al
induces a G,,-action on ¢ by pullback

X (N7 —be s v@g(z) Fo v g(Ae) (3)

Here (A\)~!&c denotes the inverse image of £¢ under the multiplication by \ €
C* map.

Let sq : Al — A! be the squaring map sq(z) = 22 and define F,, : A — Al as
F,, = —id. For V in ]—'il]f{iE the actions of Foo on V and G,, C A! combine to
an action

FrF N (V®5.0g,) — V®i5.0g, -

Thus we get an involution F,, on the sheaf sq¢.(V ® j.G,,) and we define a
locally free sheaf on A' by:

(V) = &(V,Fil'V, Fy) = (sq.&c(V,Fil'V)) e~
The G,,-action on &c leads to an action
(W) R —
The global sections of &g (V, Fil'V, Fly,) are given by

Feo
(ZFilpV®z7p(C[z]) CV®Clz27
P
viewed as a C[z?]-module.
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REMARK 2.1 The global sections of £ — with the action of the Lie algebra of
G, — were also considered in [@] 85
DAY & (V,Fil'V)) = DY(V,Fil'V)
DAY &(VFI'V, Fy)) = DY(V,Fil'V, Fy)

in the notation of that paper.
We denote by E = E(V,Fil'V) resp. E = E(V,Fil"V, F,) the vector bundle on
Al corresponding to the locally free sheaf £&. It has a contravariant G,,-action
with respect to the action of G,,, on A' by

Gy x A — Al | (N, a) — A%q (4)

where ec = 1 and eg = 2.

For K = C resp. R let Di be the category of locally free Oj1-modules of
finite rank with contravariant action by G,, with respect to the action (H)
on A'. The category Dg has ®-products and internal Homs. For M € Dy
set M(n) = 2" M for any integer n. Thus M(n) is isomorphic to M as an
Op1-module but with G,,-action twisted as follows:

The following construction provides inverses to {¢ and £g. For M in Dy set
i (M) = TG, " M)®m = (D(AY, M) @cpzex) Clz, 27 1)

with the filtration (and in case K = R the involution) coming from the one on
Clz, 271].

The main properties of £ and n are contained in the following proposition.
Recall that a map ¢ : V. — W of filtered vector spaces is called strict if
@ 'Fil'W = Fil'V for all i.

PROPOSITION 2.2 a) The functor £k : Filk — Dk is an equivalence of addi-
tive categories with quasi-inverse ng . It commutes with ®-products and internal
Homs and we have that

dimV =1kéx (V) and dimng (M) = kM

for all V in Filg and M in Dy.
The functors &c and &g - ﬂ’lﬁg — Dr commute with Tate twists.
For (V,Fil'V, F) € ﬁlﬁ{ there is a canonical isomorphism:

r(V,Fil'V, Fyo)* = &(V*, Fil" V" FX) .

Here FilPV* := (Fil' PV)L in V*.
b) The diagrams

ﬁlﬁ{ =, Dr and Filﬁ{t =, Dr

| A RN

ﬁl]R HZIR
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are commutative.

c) If ¢ : U — V is a morphism in Filc resp. ]-"il]fg then

i) E(ker ) = ker(£(U) — £(V))

and

ii) &(coker ) = coker (£(U) — &(V))/T

where T is the subsheaf of torsion elements. We have T = 0 if and only if ¢
resp. s(p) is strict.

PROOF a) is shown in [E] §5 for K = C. Every object in ﬁlﬁ{f is the direct sum
of objects C(n)* defined as follows: The underlying vector space of C(n)* is
C, the filtration is given by Fil’C(n)* = C(n)* if p < —n and = 0 if p > —n.
Finally F,, acts on C(n)* by multiplication with 1. The objects of Filg are
direct sums of objects C(n)(~")" and we have that

s(C(n)V" ) =Cn) V" and s(Cn)V") =Cn+ 1)
Using decompositions into C(n)(~1"’s, one checks that the natural maps
(V)@ &(W) — &(VeOW)
and
Hom(&r(V), &r(W)) — &r(Hom(V, W)

are isomorphisms for all V, W in Filg. Moreover the rank assertions in a) follow.
Commutation with Tate twists follows immediately from the definitions. The
final isomorphism follows from the above and the first diagram in b) since a
short calculation gives that:
(V,sFil'V, F.o)* = (V*, s(Fil* V™), FL) .

The commutativities in b) can be seen using decompositions into C(n)*’s.
In particular nroég = id for &g : Filg — Dgr. The opposite isomorphism
£ronr = id follows as in Simpson [Bi] §5. Finally c) is stated in loc. cit. for
K = C and remains true for K = R. Part i) is straightforward. As for ii), by
functoriality of £ and the fact that £(coker @) is torsion-free one is reduced to
proving that the kernel of the natural surjection

coker (§(U) — (V) — &(coker )

is torsion. This can be checked using a suitable splitting of . a
The following facts about the structure of the Rees bundle were noted for
K =Cin [B] §5.

PROPOSITION 2.3 i) For all V in Filc resp. ﬁlﬁg there are canonical isomor-
phisms of vector bundles over G,

FE(V,FiI'V) =5V x Gy
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TeSP.
sq*F*E(V,Fil'V, Fa) =5V x Gy,

functorial in V' and compatible with the (contravariant) G,,-action. Thus the
local systems Fg and sq* Fr are trivialized functorially in V. Under the iso-
morphism

E(V,FiI'V, F.u)1 = (s¢*E(V,Fil'V, F.))1 — V

the monodromy representation of m1(C*,1) = Z maps n to FZ.
ii) For V in Filc resp. ﬁlﬁg there are isomorphisms depending on the choice
of a coordinate z on A':

E(V,Fil'V)y = Gr'V
Tesp.
E(V,Fil'V, Fyo)o = Gr"(sV)

functorial in V. They are compatible with the G,,-action if G, acts on Gr*V
resp. GrP(sV') by the character z7P.

PROOF i) We treat the case K = R. It suffices to check that
sq* i ¢(V,FiI'V, F) — V ® Og,,

compatibly with the G,,-action and functorially in V. This can be verified on
global sections. The required maps

Foo
A= (ZFﬂpV ® z_p(C[z}) ®cp2 Clz, 27" — V& Clz, 27 ]
P

are obtained by composition:
A — (VaClz, zil]) ®c[2) Clz, zfl]
— (V®Clz,27 ") ®¢c) Clz, 27 =V & Clz,27'] .

That they are isomorphisms needs to be checked on the generators (C(n)(*l)n
of Filg only. As for the second assertion it suffices to show that the diagram:

(sq"Fr(V))1=Fr(V)1= (s¢"Fr(V))-1

all? alll
Foc

|4 v

is commutative where the vertical arrows come from the above trivialization.
They are given by setting z = 1 on the left and z = —1 on the right. The value
of a global section of the form

SO+ Fa(v @) = L0+ (-1 Fufv) @ 2
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in sq*Fp(V)x1 is mapped by ayi to (—1)P3(v + (—1)PFs(v)). Hence the
1

composition a_j o (a1)™! maps w = (v + (—1)PFx(v)) to (—1)Pw = Fu(w).
Since the w’s generate V we have a_10(ay)~! = F,, as claimed.
ii) This is a special case of Proposition @ O

3 A REAL-ANALYTIC VERSION OF THE REES SHEAF

A real structure on an object V' of Filc leads to a real structure in the algebraic
sense on the vector bundle E¢(V, Fil°V') — it is then defined over A}. For reasons
explained in section 3 we are interested however in obtaining a real structure in
the topological sense on the Rees bundle. There does not seem to be a natural
real Rees bundle over C = A'(C). However over R C C a suitable topologically
real bundle can be constructed, and its properties will be important in section
4. We now proceed with the details.

Let }"il{ceal etc. be categories defined as before but using real instead of complex
vector spaces. Let Ay denote the sheaf of real valued real-analytic functions
on a real C*“-manifold or more generally orbifold Y. For V in Filf! we set

EV,FI'V) =) FilV@rPAp CV @ j. Ap-
p

where 7 denotes the coordinate on R and j : R* < R is the inclusion. This is
a free Ag-module. With respect to the flow ¢k (r) = re™* on R it is equipped
with an action

¥t (o)1 — €8
which is induced by the pullback action:
¥t = (00)" 1 (90) " ia AR — Judre -

Let sq : R — R2% be the squaring map sq(r) = 72 and consider the action of
w2 = {£1} on R by multiplication. Let p : R — R/us be the natural projection.
If we view RZ0 as a C¥-orbifold via the isomorphism

5G:R/pg — R [r] — 12
we have

Agzo = 5G,(p«Ar)"* = (s¢. Ar)"*
In the previous situation over C the adjunction map:

sq¢* : Oc — (5q.0¢)** , f— (2 — f(z%))

was an isomorphism and we used it to view &g = (5¢.&c)f™ as an Oc-module.
Over R however the corresponding map is not an isomorphism since sq : R — R
is not even surjective and we will have to work with Ap>o in the following.
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For V in ]—"ilfREreal we set
(V. FIl'V, Fio) = (squ&8(V, FiI'V)) ™ C 5. (V © junAg-)

viewed as a free Ag>o-module on the orbifold RZ0. With respect to the flow
PL (") = r'e7? on R=Y where 7’ = r? we have an action

P (o) e — &
induced by the action 9 on &£¢.

Let D%, be the category of locally free Ag- resp. Ag>o-modules M with an
action

U (@) TIM — M.
Then D%, has ®-products and internal Hom’s and we define the Tate twist by

an integer n as M(n) = r"M. Then M(n) is canonically isomorphic to M as
a module but equipped with the twisted action:

’%[Jﬁ\/l(n) = e_tn¢5\4 :

As before €& and & : FilE™™ — D commute with Tate twists.

The relation with the previous algebraic construction is the following. For Y
as above set Oy = Ay ®r C. Let i : R «— C denote the inclusion. Then we
have Og =i~ 'O¢ and Ogzo = (8¢.Or)"? = i~ 1(sq.Oc)"2. Moreover:

(V)RR C =i (VRC). (5)

Here £3*(V ® C) is obtained from {x(V ® C) by analytification. It carries a
natural involution J coming from the real structures V of V®C and R[z, 271] of
C[z, 27 ']. The involution id®c on the left of (f]), where ¢ is complex conjugation
corresponds to i~ 1(.J) on the right.

These facts can be used to see that the analytic version £% over R resp. R=°
of £x has analogous properties as the algebraic £k on A%:.

An object of Filc resp. ﬁlﬁ{ may be viewed as an object of Fill*! resp. ﬁlﬁgreal
by considering the underlying R-vector space. We write this functor as V' +— V.
It is clear from the definitions that

& (Vo) = i 1€ (V) (6)

as Agr- resp. Ap>o-modules.
Looking at associated C*-vector bundles we get:

COROLLARY 3.1 To every V in Fli™ resp. ﬂl]f{real there is functorially at-
tached a real C¥-bundle E“ over R resp. RZ9 together with a C¥-action

Yt pREEY — B .
The rank of E¥ equals the dimension of V and there are functorial isomor-
phisms:

E“(V,Fil'V)y — Gr'V  resp. E¥(V,Fil'V, F.)o — Gr"(sV)

such that V§ corresponds to e*t.
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4 THE RELATION OF REES SHEAVES AND REES BUNDLES WITH ARCHIME-
DIAN INVARIANTS OF MOTIVES

In this section we first recall briefly the definition of the spaces F,(M) for
archimedian primes using Rees sheaves. We then describe the local contribution
from p in the motivic “explicit formulas” of analytic number theory in terms of
a suitable Rees bundle. This formula is new. We also explain the motivation
for considering C*-Rees bundles over R or RZ? in the preceeding section.
Consider the category of (mixed) motives My, over a number field k, for exam-
ple in the sense of Deligne or Jannsen [fJ].

For an infinite place p let M, be the real Hodge structure of M ® k,. In case p
is real M}, carries the action of an R-linear involution F,, which maps the Hodge

filtration F*M, ¢ on Myc = M, g C to F.Mpy(c. Consider the descending
filtration

V' My =My N F'Myc=M,NF'MycNF M,c
on M, and set
ny (M) = dim Grl M, .
For real p write
nE(M,) = dim(Gr? My )*

where £ denotes the £1 eigenspace of Fj,.
Set VWM, = ~v"M, if p is complex and

VM, = (F'My.c 0 My) ™" @ (B My 0 0 My)
if p is real. In other words:
(My, V' My, Foo) = s(My, 7" My, Fo) .
In the real case there is an exact sequence
0 — (G M)V — GriM, — (Gr¥M,) D" — 0.

We set d,(M,) = dimGr),M, and T'c(s) = (2m)7°T'(s) and T'r(s) =
2127 =5/21(5/2).

In [F-PR] the local Euler factors of M for the infinite places were defined as
follows:

L,(M,s)= HI‘C(S — )™ Me)if pis complex

174

and

L,(M,s) = HFR(S +e, — V)”j(MP)FR(s +1—¢, —v)™ M)
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if p is real. Here ¢, € {0,1} is determined by €, = v mod 2.
Using the above exact sequence we get an alternative formula for real p:

Ly(M,s) = [[Ta(s — v)®@ )

See also [D4] for background. It follows from remark that for p|oo the
space F, (M) of D) §5 is given as follows:

Fo(M) =T(A", éc(Mpc, 7" Myc))  if p is complex
and

fP<M) = F(AlagR(MpC77.MpCaFm))
= T(AY, &(Mpc, V' My, Fio))  if p s real.

According to [DJ] Cor. 6.5 we have:

L,(M, s) = deto (%(s id-0)|F(00) .

Here © is the infinitesimal generator of the G,,-action of F,(M), i.e. the
induced action by 1 € C = Lie G,,.
We define the real analytic version of F, (M) as follows:

Fo (M) =T (R, &8 (My, " My)) if p is complex

and
f;j(M) = F(Rzoa&fé(MW’y.Mvaoo))
= T(R=Y,&(M,, V' My, Fy)) if p is real.

It follows from the above formula for L,(M,s) in terms of F,(M) and the
relation between €% and {x that we have for all p | oco:

~1
Lp(M, s) = detoc (%(s id-0)|F () (7)
Here © denotes the infinitesimal generator of the flow 4" induced on Fy (M)
by the actions v’ and gb}ip which were defined in section 2.

In the next section we will express F(H" (X)) for smooth projective varieties
X/k in “dynamical” terms. Via formula (f]) we then get formulas for the
archimedian L-factors L,(H"(X), s) which come from the geometry of a simple
dynamical system.

Let us now turn to the motivic “explicit formulas” of analytic number theory.
To every motive M in M, one can attach local Euler factors L, (M, s) for all
the places p in k£ and global L-functions:

L(M,s) =[] Ly(M,s) and L(M,s) =[] Lp(M,s),
ptoo p
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cf. [F-PR|, [D4]. Assuming standard conjectures about the analytical be-
haviour of L(M, s) and L(M™*, s) proved in many interesting cases the following
explicit formula in the analytic number theory of motives holds for every ¢ in

D(RT) = C°(RT) c.f. [D-Scl] (2.2.1):
—> @(p)ord,—, L(M, s) ZWP (8)

Here ®(s) = [ ¢(t)e" dt and p runs over all places of k.
For ﬁmte p we have
Wy(p) = log Np _ Tr(Fry | M )o(k log Np) (9)
k=1

where Fr, denotes a geometric Frobenius at p and MlIp is the fixed module
under inertia of the [-adic realization of M with p 1 1.

The terms W, for the infinite places are given as follows: For complex p we
have:

vt

=Y o) [ o0 (10)

— €

whereas for real p:

vt

=Sty [ o0 ar. ()

The distributions W, for p| oo can be rewritten as follows:

Tr(e* | Gr}, M,)

A (12)
where e*! is the map e on Gr” and k, = 2 resp. 1 according to whether p is
real or complex.

In terms of our conjectural cohomology theory c.f. [D3] §7, equation (f) can
thus be reformulated as an equality of distributions on RT:

D (—1) Tr(¢" | H' (“specor”, F(M)))ais (13)

Tr(e** | Gry, M,
ZlongZTr Frj | M )6k 106 Np + Z % .

e~ fwt
ptoo k=1 p|oo

Compare [D-Schf| (3.1.1) for the elementary notion of distributional trace used
on cohomology here. In the rest of this section we will be concerned with a
deeper understanding of the function Tr(e*" | Gr},M,).
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Certain dynamical trace formulas for vector bundles E over a manifold X with
a flow ¢! and an action ! : $** E — E involve local contributions at the fixed
points x of the form:

Tr(ys | Bx)

some Ky > 0.
1 — e #at

This is explained in [D7] §4. These formulas bear a striking resemblance to
the “explicit formulas” and they suggest that infinite places correspond to fixed
points of a flow. Incidentially the finite places would correspond to the periodic
orbits. This analogy suggests that for the infinite places it should be possible
to attach to M a real vector bundle E in the topological sense over a dynamical
system with fixed points. If 0 denotes the fixed point corresponding to p, we
should have:

Te(yg | Eo) = Tr(e™ | GryMy) -

At least over one flowline this is achieved by Corollary @ as follows.
Define as follows a real C*-bundle Ey’(M) over R resp. R=0 together with a
C*-action

Pt t;E;;’(M) — EY(M) .

Set
EY (M) = E“(My,~"M,) if p is complex
and
E;J(M) = Ew(Mna’V.Mp,Foo)

E“(M,,V'M,, Fy) ifp is real.

Note that this is just the C“-bundle corresponding to the locally free sheaf
F (M) defined earlier. According to Corollary B.1 we then have:

PROPOSITION 4.1 There are functorial isomorphisms
Ey(M)o — Gry, M,
for all p| oo such that 1 corresponds to et. In particular we find:
Tr(yg | By (M)o) = Te(e™ | GryM,)
= (1—e"™W,.
5 A GEOMETRICAL CONSTRUCTION OF F(M) AND EJ(M) FOR M =
H™(X)

In this section we express the locally free sheaf 77 (H" (X)) over R resp. R0
of section 3 in terms of higher direct image sheaves modulo torsion. The con-
struction is based on the following result of Simpson [@] Prop. 5.1, 5.2. For a
variety X/C we write X®" for the associated complex space.
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THEOREM 5.1 (SIMPSON) Let X/C be a smooth proper variety and let F* be
the Hodge filtration on H™(X?*,C). Then we have:

fc(Hn(Xan,(C),F.) = Rnﬂ'*(Q;(XAl/Al,Zd)
where m: X x A' — A' denotes the projection.

REMARKS (1) The G,-action on the deformed complex (2% 41 /,1,2d) given

by sending a homogenous form w to A~9%% . \*(w) for A € G,, induces a
Gyn-action on R"m, (Qg(xAl/Al,zd). Under the isomorphism of the theorem it

corresponds to the G,,-action on éc(H™(X,C), F*) defined by formula (ff).
(2) In the appendix to this section we relate the complex (QB(XAI/Al ,zd) to the

complex of relative differential forms on a suitable deformation of X x Al.

In the situation of the theorem consider the natural morphism from the spectral
sequence:

EY? = (RIm (¥ g1 jp0))™ = (R (Qx ey 2d))™
to the spectral sequence

E{)q = Rqﬂ'*(QI))(anX(C/(C) = Rnﬂ'* (QB(&DXC/C’ Zd) '

By GAGA it is an isomorphism on the E1-terms and hence on the end terms
as well. Thus we get a natural isomorphism of locally free O¢-modules:

(én(Hn(Xanv(c)’ F.) = Rnﬂ-*(QrXanxC/Cv Zd) : (14)
Let id x 7 : X* x R — X" x C be the inclusion and set

Qanypyr = (d x i)flggfarxxc/c :

It is the subsheaf of C-valued smooth relative differential forms on X?" x
R/R which are holomorphic in the X®"-coordinates and real analytic in the
R-variable. We then have an equality of complexes

(Q}aan/erd) = (id x i)il(QB(anxC/Cv zd) .

We define an action ¢! of R on (Q%un g /R rd) by sending a homogenous form
w to etdesw . (id x ¢k )*w:

Pt (id x ¢<€:)_1(Q}aan/Rde) - (Q}aan/R,rd) ‘
This induces an action:

Pt (Q%C)_IRHW*(Q;(aan/RWd) - Rn”*(QB(anx]R/]Rard)
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and hence an Ag-linear action
Pt ¢E:*Rn7r*(93(aan/Rv7"d) - Rn”*(Q}aan/erd) :
By proper base change we obtain from ([[4) that
N HM (XM, C), F) = R (Qyon o yry 1) - (15)
According to (E) this gives an isomorphism
EE((H™(X™,C), F')g) = R"mu(Qxan /> 1) (16)

of locally free Agr-modules which is compatible with the action 1! relative to
.

Let DR x/c be the cokernel of the natural inclusion of complexes of 71 Ag-
modules on X?* x R with action 1)*

a7 Ay — (Qyanr g 7d) -

Here 7' Ag is viewed as a complex concentrated in degree zero and on it v
acts by pullback via id x ¢&. The projection formula gives us

R'm. (n 7t Ag) = H" (X R) ® Ag = &&(H™ (X, R), Fily) (17)
where
Filb H"(X™ R) = H"(X™ R)

for p < 0 and Fil5 = 0 for p > 0. We thus get a long exact 1‘-equivariant
sequence of coherent Ag-modules:

—  GE(H™(X™,R),Fily) — &E((H"(X™,C),F")) —
— R"m.DRx,c —  EE(H™M (X R),Fily) — .
(18)
For any n the natural map
EE(HTL(X&H)R)’FH(.)) - gé(‘l)((Hn(Xan’C%F.)R)

is injective by the {¥-analogue of Prop. @ ¢), part 1) since it is induced by
the inclusion of objects in ]-'z'lfcealz

(H™(X* R),Fily) — (H"(X*,C), F*)r . (19)

The injectivity can also be seen by noting that the fibres of the associated
C%-vector bundles for » € R* are naturally isomorphic to H™(X?" R) resp.
H"(X?,C), the map being the inclusion c.f. the {g-analogue of Proposition

B-31).
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Therefore the long exact sequence (E) splits into the short exact sequences:
0 — &E(H™(X™R),Fily) — &E((H"(X™,C),F")r) (20)
% R'"m.DRx/c — 0.

Using the £g-version of Proposition @ c) ii) we therefore get a v'-equivariant
isomorphism of Ar-modules:

R"m.(DR x/c)/Ar-torsion = EL(H™(X™ R(1)), T (F7)) . (21)
Here we have used the exact sequence:
0 — H"(X*™ R) — H"(X™,C) ™ H"(X* R(1)) — 0,

where 71 (f) = 3(f — f).

Let us now indicate the necessary amendments for the case K = R. We consider
a smooth and proper variety X/R. Its associated complex manifold X" is
equipped with an antiholomorphic involution F,, which in turn gives rise to
an involution F. of H™(X®" R(1)) which maps the filtration 7 (F*) to itself.
By definition of {f we have

&R (H (X™ R(1), m(F7), Fog) = (€8 (H™(X*, R(1)),m1 (F*)"™  (22)

where Foo = F. @ (—id)*.
To deal with the other side of (R1) consider the up-action on X** x R by
Fy x (—id) and let

A XX R — X %, R= (X" xR)/p2

be the canonical projection.
The map

AT Ag) — A (Qan Y )

becomes po-equivariant if —1 € pg acts by (Fs X (—id))* on the left and by
sending a homogenous form w to (—1)48“(F,, x (—id))*@ on the right. We
set

. . H2
Qxanxmm/(ﬂ@/m) = (A*(Qxaan/R>rd))
and
DRx/r = (MDRx/c)!* .
Let 7 be the composed map

5q
T X X, R — R/py — R0,

DOCUMENTA MATHEMATICA 6 (2001) 69-97



ON THE I'-FACTORS OF MOTIVES II 85

Combining the isomorphisms (1)) and (R3) we obtain an isomorphism of free
Ag>o-modules on RZ0:

R"7,(DRx/R)/Agzo-torsion — &8 (H™ (X, R(1)), 7 (F*),Fo) . (23)

The left hand side carries a natural action 1" with respect to the flow ¢% on
R=% and the isomorphism (E) is ¢t-equivariant.
As before we have a short exact sequence:

O—>§§(H"(XED7R)’FHB,F;‘O) - §§((Hn(Xan,C),F.,F;)RXQZL)

[e3

— R'"mDRxm—0.
The first main result of this section is the following:

THEOREM 5.2 Fix a smooth and proper variety X/K of dimension d where
K =C orR. Assume that n +m = 2d. Then we have natural isomorphisms:

1) &e(H™(X™ R),~") = (2mi)!~?Hom 4, (R"m. DR x ¢, Ar(—d))
in case K = C and

2) ER(Hm(Xan’R)v Vanoo)

= (27T7;)1_dHOHlA%0 (RnW*DRx/R,ARZO<1 — d))
if K =R.

These isomorphisms respect the Ar-resp. Ag>o-module structure and the flow
Pt
ProoOF Consider the perfect pairing of R-Hodge structures:

tr

() HY(X™) x H™(X*™) 5 H2(X*) =5 R(—d) (25)

given by U-product followed by the trace isomorphism

1
)= T o
It says in particular that
F'H™(X™,C)* = P " H™(X™,C) . (26)
Moreover it leads to a perfect pairing of R-vector spaces:
(,): H"(X*™ R(1)) x H"(X*"R(d—1)) — R. (27)
Now according to the w-version of Proposition E a) we have:

Hom 4, (§8(H"(X™ R(1)), m1(F")), Ar)
& (H"(X™R(1)",m (F'7")%)

%) & (H™(X™ R(d — 1)), Fil")
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where Fil? consists of those elements v € H™ (X", R(d — 1)) with
(m1(FYP),u) = mg(F'™P u) = 0
i.e. with
(F'™P ) =0.
Using (R4) we find:

Fil’ = H™(X*,R(d—1))nFPrigm™(X*" C)
_ (27ri)d71,yp+de(Xan’R)

and therefore:

Hom . (€& (H™ (X*, R(1)), m1(F")), Ar)
= (m) e ((H™ (X, R),7")(d))
= (2m) "I H™ (X R),7)(d) -

Combining this with the isomorphism (R1)) we get the first assertion. As for
the second note that by Proposition P.d a) we have:

Homy _, (& (H" (X", R(1)), m(F"), L), Agzo)
= &EH™X™ R(1)*,m(F* )", dual off;) .
Since for X/R the pairing (R5) is F . -equivariant this equals
& (H™(X™, R(d — 1)), Fil', ")
where Fil” consists of those elements u with:
(m(F*7P),u) = 0.
Thus
Fil? = (2mi)4 yptd=1gm(xan R)
in FlE*. Hence:
Hom , _, (6 (H" (X™ R(1), w1 (F"), FL,), Ag=o)

= (2m)" G (H™ (X, R),~", FL)(d - 1))
(2mi) g (H™ (X R), v, FL)(d — 1) .

Since we can replace v* by V° = s7° in the last expression the second formula
of the theorem now follows by invoking the isomorphism (@) O
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If X/K is projective, fixing a polarization defined over K the hard Lefschetz
theorem together with Poincaré duality provides an isomorphism of R-Hodge
structures over K:

H™*"(X*)" = H*"(X*)(1) . (28)
Similar arguments as before based on (B§) instead of (R5) then give the following
result:

COROLLARY 5.3 Fix a smooth projective variety X/K together with the class
of a hyperplane section over K. There are canonical isomorphisms:

1) &e(H™(X*",R),v") = Hom 4, (R"7.DRx /¢, Ar(—1))

in case K = C and

2) gR(Hn (Xan’ R)7 V.a F:o) = _HOIH_AREO (Rnﬂ-*DRX/R7 ARZO)

if K = R. These isomorphisms respect the Ag-resp. Apso-module structure
and the action of the flow.

A consideration of the sequence
0— (H"(X™,R),y") — (H"(X*"C),F)r
= (HM(X™R(1)), m(F)) — 0
in il and of
0 — (H"(X™R),y" FL) — (H'(X™.C),F F)r
S5 (HM(XMR(L), m(F7), FL)

in FilEre™ leads to the following expressions for &x of (H™ (X", R), 7", (F%))
which are not based on duality:

— 0

THEOREM 5.4 Let X be a smooth and proper variety over K. Then we have
for K =C

1) &c(H™ (X R),v")
= Ker (R”ﬂ* (Q;(aan/R, rd) N R"W*DRX/C/AR-torsion>

= inverse image in R”m(ﬂ%aan/R, rd) of the mazimal Ag-submodule of
R, DR x,c with support in 0 € R.

For K =R we find similarly:
2) gR((Hn(Xan,R% V.a F;o)

= Ker ( R"7, (Q}anxqu/(R/uz)’rd) = R”W*DRX/R/ARgo—torsion>

= inverse image in R"T(Qyany | r/R/uy)» ) of the mazimal Ag>o-
wo
submodule of R"m.DR x/r with support in 0 € R=0,

By passing to the associated C“-vector bundles over R resp. RZ° the pre-
ceeding theorems and corollary give a geometric construction of the C'“~-bundle
Ey (M) attached to a motive M in section 3. The Hodge theoretic notions pre-
viously required for its definition have been replaced by using suitably deformed
complexes and their dynamics.
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APPENDIX

In this appendix we relate the deformed complex (Q}MAI/AI,zd) in Simpson’s

theorem 4.1 to the ordinary complex of relative differential forms on a suitable

space.

Let X be a variety over a field k. For a closed subvariety Y C X let M =

M (Y, X) denote the deformation to the normal bundle c.f. [V1] §2. Let I ¢ Ox

be the ideal corresponding to Y. Filtering Ox by the powers I’ for i € Z with
i = O for i <0 we have:

M = specFil®(k[z, 27! @, Ox)

= spec <@z_i1i> .
=

Here spec denotes the spectrum of a quasi-coherent O x-algebra. By construc-
tion M is equipped with a flat map

v M — Al
and an affine map
pM—X.
They combine to a map:
h=(p,mn): M — X x A

such that the diagram

M——" > X x Al

commutes.

The map 7y is equivariant with respect to the natural G,,-actions on M and
Al defined by A -z = Az for A € G,,,. The map h becomes equivariant if G,,
acts on X x A! via the second factor.

It is immediate from the definitions that if f : X’ — X is a flat map of varieties
and Y/ =Y xx X’ then

MY, X" =M®Y,X)xx X". (29)
Moreover the diagram
MY, X)L xr Al (30)
fMl lfxid
h

M(Y,X) —> x x Al
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is commutative and cartesian.
From now on let X be a smooth variety over an algebraically closed field k and
fix a base point * € X. Set M = M(x, X) and consider the natural map

h:M— X x A",
Pullback of differential forms induces a map :

B s — Daan s () = B°(@)

We can now formulate the main observation of this appendix:

THEOREM 5.5 For every p > 0 the sheaf Q};\/I/Al has no z-torsion and we have
that

Impy = z”Q’]’WAl )
The map of Opr-modules:

a: h* QP

Xxatynr — 2 a(w) =2z"Ph*(w)

M/Al b
which is well defined by the preceeding assertions is an isomorphism. Hence we
get an isomorphism of complexes:

a: B (Qyeprjans 2d) = Qypn s a(w) = zmdBep (W)

REMARKS. 1) Under the isomorphism « the G,,-action on the left, as defined
after theorem @, corresponds to the natural G,,-action on 3, /a1 by pullback
Aw = (w).

2) By a slightly more sophisticated construction one can get rid of the choice
of base point: The spaces M (x, X) define a family M — X. The maps h :
M (%, X) — X x Al lead to a map M — X x X x Al. Replace M by the inverse
image in M of A x A' where A C X x X is the diagonal. This is independent
of the choice of base point.

PROOF OF 4.5 We first check the assertions for the pair (0, A™),n > 1. In this
case M = M(0,A™) is the spectrum of the ring

B = k[Z,l‘l,... sy Tny Yly e - - 7yn]/(zy1 — X1, ,2Yn _In) .
The maps A &2 M 25 A™ are induced by the natural inclusions
k[z] = B « kl[z1,... ,25] .

The B-module Q}B/k[z] is generated by dZ;,dy; for 1 < ¢ < n modulo the
relations zdy, = dz;. Hence it is freely generated by the dy, and in particular
z-torsion free. The B-module

1
Qe o, ol blz] Oklz,a1,... wn] B
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is free on the generators dx;. The map p corresponds to the natural inclusion
of this free B-module into Q}B Jk[2] which sends dz; to dZ; = zdy,. The map
o which sends dz; to dy; is an isomorphism. Hence the theorem for the pair
(0,A™).

In the general case choose an open subvariety U C X containing * € U and an
étale map

f:U— A"

such that f~1(0) = *. By (R9) and (B{) we then have a cartesian diagram:

M(0,A") X gn U === M(,U) —"—> U x A!
\ fMl lfxid
proj.
M(0,A™) —"> A" x A
Since f x id and hence fy; are étale we know by [M] Theorem 25.1 (2) that
Vrvyar = Irso.am /ar (31)
and

Q%xAl/Al =(fx id)*QK"xAl/Al .

p . . . .
As we have seen, QM(OA,L)/A1 has no z-torsion. Since fj; is flat the same is

true for Qi’w(* 0y/a1 DY [B1). Applying f;; to the isomorphism
@ h*QK"xAl/Al — Qg\}(o,m)ml
it follows from the above that

@ h*QI()JxAl/Al — QfW(*,U)/Al

is an isomorphism as well.

We now choose an open subvariety V' C X not containing the point * and such
that UUV = X. Then M (*,U) and M (0}, V') are open subvarieties of M (*, X)
and we have that

M, X)=M@U)UM(@®,V) .

As we have seen the map « for M (*, X) is an isomorphism over M (x,U). Over
M(D,V) it is an isomorphism as well since

M@, V)=V xG,,

canonically. Hence the theorem follows. O
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6 THE TORSION OF R"m.DRx, K

In this section we describe the Ag-resp. Ag=o-torsion Tx,c resp. Tx/r of
the sheaves R"m, DR x,c resp. R"m.DRx/r which were introduced in the last
section. For this we first have to extend Proposition ii) somewhat.

For a filtered vector space V € Filc and any N > 1 define a graded vector
space by

NGr'v = P FIPV/FIPTNY
PEZ

It becomes a C[z]/(z"V)-module by letting z act as the one-shift to the left: For
v in FilPV/FilP ™V set

z-v = image of v in Fil’”'V/Fil" TN 1V |

This action depends on the choice of z. For N =1 we have VGr'V = Gr'V.
To V in f-ilﬁ{, N > 1 we attach the graded vector space:

War'v .= (QNGr'V)F“’:(*l). )
It is a C[22]/(22")-module and for N = 1 and V in Filg we have:
2Gr'V =Gr'V . (32)
With these notations the following result holds:

PROPOSITION 6.1 a) For V' in Filc, N > 1 there are functorial isomorphisms
of free C[2]/(2N)-modules:

ig WEc(V,Fil'V) @ 01 /2N Op1) = NGr'V .

Here ig : 0 — A' denotes the inclusion of the origin.

b) For V in FilE, N > 1 there are functorial isomorphisms of free C[22]/(2*N)-
modules:

ig (VL Fil'V, Fa) @ 01 /22N 0,1) = 2NGr'V .

Here, A'=specC[2?%] and ip : 0 —A' is the inclusion.

The isomorphisms in a) and b) are compatible with the G,-action if G, acts
on the right in degree p by the character z~P. They depend on the choice of z.

ProOF For V' € Filc the map:

FilPV/Filr Ny — (Z Fil'V ® z‘iC[z]) ® C[2]/(2")
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sending v + Fil?™V to v ® 7P mod 2" is well defined. The induced map
NGr'V — (AL & (V, Fil'V)) @ Cl2]/ (V)
is surjective and Cl[z]/(2"V)-linear by construction. Since
dim YGr'V = NdimV

both sides have the same C-dimension and hence a) follows.

Given V € ﬁlﬁ{ we may view it as an object of Filc and we get an isomorphism
of C[2]/(z*V)-modules

NGV (ZFﬂivm—i«:[z]) ®cp Clel/(z2N)

[
(Z Fil'V z*iC[z]) ®cp2) Cl2%)/(22Y) .

Passing to invariants under F,, ® (—id)* on the right corresponds to taking
invariants under (—1)"F on the left. Hence assertion b). The claim about
the G,,-action is clear. O
As before there is an w-version of this proposition over R resp. RZ% which we
will use in the sequel.

For a proper and smooth variety X/C consider the exact sequence of R-vector
spaces:

0 — H"(X*™ R) — H"(X™,C) ™ H"(X*™ R(1)) — 0. (33)
It leads to a complex of R[r]/(r™V)-modules:
0 — NGrpy H"(X*™ R) % NGrp H"(X*,C) (34)
- NGrj o H"(X™ R(1)) — 0

which is right exact but not exact in the middle or on the left in general. Denote
by VHS /c its middle cohomology.

For a proper and smooth variety X/R we obtain from (@) equipped with the

action of F._ a complex of R[r2]/(r2N)-modules
0 — Gy H"(X™ R) 2% 2V Grp H"(X™,C) (35)

5 2HGry pH"(X*™ R(1)) — 0.

It is again right exact and we denote its middle cohomology by 2V HY /R As

R-vector spaces both V'HS Jc and NHY /g are naturally graded.
We can now describe the torsion sheaves 7Ty, for K = C,R:
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THEOREM 6.2 For N > 0 the map a in @) resp. @) induces isomorphisms
of Ar- resp. Ap>o-modules:

ap : iO*(NH;(/C) — Tx/c
resp.
ag @ ig«( NH;(/R) — TX/]R .
Here the operation 1§ on Tk corresponds to multiplication by e* on the left.

Proor For any N > 1 the exact sequence:
0— Tx/(c — Rnﬂ'*DRx/(C (@ §(C Hn xean R( )),Wl(F.)) — 0

remains exact after tensoring with Ag/r"V Ag since &¢ is Ag-torsion free. To-
gether with the short exact sequence (@) and the w-version of Proposition

.1 a) we obtain the following exact and commutative diagram of Ag/rV Ag-
modules:

0
iy ' (Tx/c ® Ar/rN Ag)

NGrpy H™(X* R)—NGr, H™ (X", €)% iy "(R"mDRx /e ® Ar /TN AR) — 0
™1
NGy gy HM(X*,R(1)) = ig (€8 (H™(X27, R(1)), w1 (F*)) ® A/ Ag)
0.

This shows that «g induces an isomorphism of Ag-modules
Qg ¢ N’H;{/C = ial(TX/C & .AR/TN.AR) .
Since Tx ¢ is a coherent torsion sheaf with support in 0 € R we have

Txjc = Txjc © Ar/rY Az

for N > 0 which gives the first assertion. The remark on 1§ follows from
Proposition @ since the map « in the exact sequence () is 1t-equivariant.
The assertion over R follows similarly. |
In the next result we will view i 7% /i simply as a finite dimensional R-vector
space with a linear flow 1. Let © be its infinitesimal generator i.e. 1§ = expt©
on ’La 1TX /K-

PRrROPOSITION 6.3 The endomorphism © of ialTX/K is diagonalizable over R.
Fora=pe{l,... ,n} the dimension of its a-eigenspace is dimv? H™ (X" R)
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if K = C and dim(y?H™(X*, R)(=1") if K = R. For all other values of o the
a-eigenspace is zero. In particular we have

detr(s — O iy ' Txye) = ][ (s—p)™™"
0<p<n
dimR(ialTX/C) - Zpdim GrgHTL(XanJR)
p€eZ
and
) im (=P
detR(S -0 ‘ ) 1TX/R) = H (3 — p)d ") !
0<p<n
1 1
dimg(ig ' Topp) = 5 dim H'(X™,R)” + 5 3 pdim Gy H" (X" R) .
p€eZ

REMARK: According to the proposition the torsion 7x,x is zero iff vt =0in
case K = C and (7)™ = 0 = (72)" in case K = R. These conditions are
equivalent to the strictness of the inclusion ([[9) if K = C and to the strictness
of

(H™ (X" R), sFily) — (H"(X*",C),sF" )

if K = R. Here s is formed with respect to F; This is as it must be according
to proposition c) ii). More explicitly Tx ¢ is zero iff H" has Hodge type
(n,0), (0,n) whereas Tx g is zero iff H™ has Hodge type either (n,0), (0,n) or
(2,0),(1,1),(0,2) with F., acting trivially on H!.

ProOOF OF @: We assume that K = C, the case K = R being similar.
According to theorem the operator © is diagonalizable on iy 1TX/(C the
possible eigenvalues being integers. For p € Z and N > 0 we have:

dim Ker (p — © | iy " Tx/c) = dim VHE
B gimke & — dim NGrhy H™ (X, R)
+dimg VGrip H"(X™,C) — dim VGrl] | o H"(X™,R(1)) .

Using the exact sequence:

0 — NGr?H"(X*R) — NGrhH"(X*,C)
- NGl o HM(X™R(1)) — 0

we see that this is equal to:
dim Ker i§ + dim ¥ Gr? H"(X™ R) — dim VGrfy H"(X* R) .
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Since
NGrpy H*(X™R) = P H"(X*.R)
—N<p<O0
we find
Kerty = Ker | @ H"(X™R)— & Fr/Frv
—N<p<0 —N<p<O0
- @ e
—N<p<n—N

if N > n. A short calculation now gives the result. O

REMARK. I cannot make the idea rigorous at present but it seems to me that
the complexes R"m, DR x,c and R"m DR x g should have an interpretation in
terms of a suitable perverse sheaf theory. Let us look at an analogy:

Consider a possibly singular variety Y over F,, and let j : U C Y be a smooth
open subvariety. If 7 : X — U is smooth and proper the intermediate extension
F = ji.R"7,Qy for [ # p is a pure perverse sheaf. We have the L-function

Ly(H"(X),t) = HdetQ,(l—tFrgU-'g)_l
ye|Y|

— T detq,(1 — tFr, | H(Y @ F,, 7))~

it+1

By perverse sheaf theory and Deligne’s work on the Weil conjectures it satisfies
a functional equation and the Riemann hypotheses.

For varieties over number fields Y corresponds to the “curve” speco, and for
U we can take e.g. specog. Hypothetically a better analogue for Y (or more
precisely for Y @ F,) is the dynamical system (“specoy”, #') whose existence is
conjectured in [D7]. For U we would take the subsystem (“specoy”, ') which
has no fixed points of the flow i.e. singularities. This is one motivation for the
above idea. Another comes from the discussion in sections 5 and 9 of [D3].
Incidentally the appendix to the preceeding section was motivated by the use
of the deformation to the normal cone in perverse sheaf theory [

We would also like to point out that there is an exact triangle in the derived
category of Ag-modules with a flow:

g(C(Hn(Xaan)apy.) — P — 7:[:*(_1)[_1} — ...
where

P = RHOIH_AR(R”’/T*DX/C,AR(—l)) .
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Here & sits in degree zero with one-dimensional support and 77 (—1)[—1]
sits in degree one with zero-dimensional support. This follows by applying
RHom ,_ (-, Ar(—1)) to the exact sequence:

0 — Tx/c — R"mDx;c — R"m.(Dx/c)/Tx/c — 0
and noting that
Extly, (Tx/c, Ar(=1)) = T¢,c(-1)
= Hom 4 (Tx/c, Ar/rV Ar(—1)) for N> 0.

A similar exact triangle exists for K = R of course.

REMARK. One may wonder whether the torsion 7Tx, g is also relevant for the
L-function. It seems to be partly responsible for the e-factor at infinity as
follows: Let X/K be as usual a smooth and proper variety over K = R or C.
With normalizations as in [Del] 5.3 the e-factor of H™(X) is given by:

1
e =exp(inD) where D = — Zp(hp —dp) .
€K
PEZL
Here:
hy = dim¢ Gr, H*(X,C) and d, = dim Gr},H"(X,R) .

This description of the e-factor can be checked directly. Alternatively it can
be found in a more general context in the proof of Prop. 2.7.
With these notations we have by @:

dim(ig ' Tx/c) = Y pd,

pEL
and
dim(ig ' T /) = lZpd + ldimH"(Xan R)™ .
0 2 P 2 ’
pEZ
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ABSTRACT. For A a central simple algebra of degree 2n, the nth
exterior power algebra A" A is endowed with an involution which pro-
vides an interesting invariant of A. In the case where A is isomorphic
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quite explicitly in terms of the norm form for ) and the corresponding
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The classification of irreducible representations of a split semisimple simply
connected algebraic group G over an arbitrary field F' is well-known: they are
in one-to-one correspondence with the cone of dominant weights of G. Further-
more, one can tell whether or not an irreducible representation is orthogonal or
symplectic (= supports a G-invariant bilinear form which is respectively sym-
metric or skew-symmetric) by inspecting the corresponding dominant weight
[@, §3.11]. (Throughout this paper, we only consider fields of characteristic
# 2, cf. E) A G-invariant bilinear form on an irreducible representation is
necessarily unique up to a scalar multiple.

If the assumption that G is split is dropped, then the Galois group I' of a
separable closure F; of F over F' acts on the cone of dominant weights (via
the so-called “x-action”), and this action may be nontrivial. Those irreducible
representations corresponding to dominant weights which are not fixed by I" are
not defined over F'. Although an irreducible representation p whose dominant
weight is fixed by I' may not be F-defined, there is always some central simple
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F-algebra A and a map G — SL;(A) defined over F' which is an appropriate
descent of p, see [@] or [@, p. 230, Prop. 1] for details. The algebra A is
uniquely determined up to F-isomorphism. If p is orthogonal or symplectic
over Fy, then it is easy to show that A supports a unique G-invariant involution
v of the first kind which is adjoint to the G-invariant bilinear form over every
extension of F' where A is split and hence p is defined.

It is of interest to determine ~. For example, invariants of - in turn provide
invariants of G. All involutions  have been implicitly determined for F' = Q,
and F =R in [[f] and [{], but over an arbitrary field the problem is much more
difficult since involutions are no longer classified by their classical invariants [f].
We restrict our attention to simply connected groups of type 'Ag,_1; that is, to
the case G = SL1(A) for A a central simple F-algebra of degree 2n. Moreover,
we will focus on the fundamental irreducible representation corresponding to
the middle vertex of the Dynkin diagram of G, which supports a G-invariant
involution ~.

For any nonnegative integer & < 2n, there is a central simple F-algebra \*A
attached to A called the kth exterior power of A, and the appropriate analogues
of the fundamental representations of SL;(A) are the natural maps SL;(A) —
SLy(AFA) for 1 < k < 2n. The representation we will study, which corresponds
to the middle vertex of the Dynkin diagram, is the k = n case. In general, \* A
is of degree (%") and is Brauer-equivalent to A®¥, see [f], 10.A]. It is defined so
that when A is the split algebra A = Endp (W), this \¥ Endp (W) is naturally
isomorphic to End gz (A*W).

The nth exterior power A" A is endowed with a canonical involution 7 such
that when A is split, v is adjoint to the bilinear form 6 defined on AW by the
equation @(x1 A...AZp, 1 A AYn)e=T1 A... ATy AY1 A .. Ayp, where e is
any basis of the 1-dimensional vector space A2"WW. This involution is preserved
by the image of G in SL; (A" A) and is the one we wish to describe. If n is even
and A®" is split, then v is orthogonal and A" A is split, so our fundamental
representation of G is defined over F' and orthogonal. For example, for A a
biquaternion algebra over an arbitrary field F, v is adjoint to an Albert form
of A [E, 6.2]. In this paper, we provide a complete description of v for G of
type 'As,_1 when n is odd (see @) or when n is even and A is isomorphic to
B ® @ where @ is a quaternion algebra (in B and @) In particular, until
now a description of v has not been known for any algebra A of index > 8. If A
is a tensor product of quaternion algebras, we provide (in E below) a formula
that gives v in terms of the norm forms of the quaternion algebras.

Describing this particular involution - is also interesting from the point of view
of groups of type 'Ds,. Such a group is isogenous to G' = Spin(E, o) for E a
central simple algebra of degree 4n and ¢ an orthogonal involution with triv-
ial discriminant. If o is hyperbolic, then E is isomorphic to My(A) for some
algebra A of degree 2n. The analogue of the direct sum of the two half-spin
representations for Spin(Msy(A), o) over F is the map G — SL;(C(M2(A),0))
where C(M3(A), o) denotes the even Clifford algebra of (Ma(A), o). This alge-
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bra is endowed with a canonical involution ¢ which is G-invariant; it is mostly
hyperbolic but contains a nontrivial piece which is isomorphic to (A"A4,~).
Please see [ for a precise statement and [[Ld] for a rational proof.

This relationship between representations of Dy, and As,_1 as well as the
results in this paper hint at a general theory of orthogonal representations of
semisimple algebraic groups over arbitrary fields. We hope to study this in the
future.

1 STATEMENT OF THE MAIN RESULTS

We will always assume that our base field F' has characteristic # 2 and that
A is a central simple F-algebra of degree 2n. (See E for a discussion of the
characteristic 2 case.) We assume moreover that A is isomorphic to a tensor
product A = Q® B, where @ is a quaternion algebra over F', and B is a central
simple F-algebra, necessarily of degree n. Note that this is always the case
when 7 is odd. We write g for the canonical symplectic involution on @ and
ng for the norm form.

If n is odd, the main result is the following, proven in Section E:

THEOREM 1.1. Ifn is odd, the algebra with involution (\"(Q ® B),~) is Witt-
equivalent to (Q,~vqo)®™.

Witt-equivalence for central simple algebras is the natural generalization of
Witt-equivalence for quadratic forms, see [[l] for a definition.

Assume now that n is even, n = 2m. Then A" A is split and the involution
is orthogonal. We fix some quadratic form g4 to which ~ is adjoint. It is only
defined up to similarity.

The algebra \™ B is endowed with a canonical involution which we denote by
Ym- For k=0,...,n, welet t; : \*B — F be the reduced trace quadratic form
defined by

(1.2) tr(x) = Trdye g(2?).

This form also has a natural description from the representation-theoretic view-
point: The group SL;(B) acts on the vector space \* B, and when B is split
A B is isomorphic to a tensor product of an irreducible representation with
its dual, see Section . Consequently, there is a canonical SL;(B)-invariant
quadratic form on A*B; it is tj.

We let ¢, and ¢;, denote the restrictions of ¢, to the subspaces Sym(A\™ B, v,,)
and Skew (A B, v,,) of elements of A" B which are respectively symmetric and
skew-symmetric under v,,, so that t,, =t/ @ t, . The forms thus defined are
related by the following equation, proven in @:

THEOREM 1.3. In the Witt ring of I, the following equality holds:

e —t—  if m is even
2)- ) (D=9 ™ ’
P tr if m is odd.
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The similarity class of g4 is determined by the following theorem, proven in E:

THEOREM 1.4. If n is even, n = 2m, the similarity class of qa contains the
quadratic form:

th —t, +ng - (t;I + ZO§k<m<2>tk) if m is even,

k even

o —th g - (Zogk<m<2>tk) if m is odd.

k even

The Witt class of this quadratic form can be described more precisely under
some additional assumptions (see Proposition @ for precise statements). We
just mention here a particular case in which the formula reduces to be quite
nice.

Assume that m is even and B is of exponent at most 2. Then A\™B is split,
and its canonical involution is adjoint to a quadratic form ¢p. Even though
this form is only defined up to a scalar factor, its square is actually defined up
to isometry. We then have the following, proven in :

COROLLARY 1.5. If m is even (i.e., deg B =0 mod 4) and B is of exponent
at most 2, then the similarity class of qa contains a form whose Witt class is

ap +nq (272 = 5(;) — ).

Some of the notation needs an explanation. For a quadratic form ¢ on a vector
space W with associated symmetric bilinear form b so that ¢(w) = b(w,w),
we have an induced quadratic form on A?W which we denote by A%q. For
x1,22,Y1,Yy2 € W, its associated symmetric bilinear form A2b is defined by

(A2b)(z1 A @2, y1 Ayo) = b1, y1)b(22, y2) — b(21, y2)b(22, 11).
Thus if ¢ = (a1, ... ,ay), we have
Nq =~ Br<icicnlioy).

From this, one sees that even if ¢ is just defined up to similarity, A2q is well-
defined up to isometry. (The form A%q also admits a representation-theoretic
description: It is isomorphic to a scalar multiple of the Killing form on the Lie
algebra 0(q), where the scalar factor depends only on the dimension of q.)
From Corollary , we also get the following, which is proven in :

COROLLARY 1.6. Let A, = Q1 ® - ® Q, be a tensor product of r quaternion
F-algebras, where r > 3, and let T, be the reduced trace quadratic form on
A,. The similarity class of qa, contains a quadratic form whose Witt class is

2n72

on—1 @7y - Ta, =270(2" — (2= ng,) - (2 —ng,)),

n

where n =2""1 = %degA and f(r)=2""1—r —1.
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In particular, for » = 3, we get the quadratic form

4(”@1 +nQ, + nQ3) - 2(’”‘@1”@2 TnQ,nQ; + nQ2nQ3) T NQ,NQNQs-

Adrian Wadsworth had casually conjectured a description of ¢4, in [E, 6.8],
and we now see that his conjecture was not quite correct in that it omitted the
nQ,nQ,ng, term.

As a consequence of Corollary E7 we can show that the form g4 lies in the nth
power of the fundamental ideal of the Witt ring W F' for many central simple
algebras A of degree 2n; the following result is proven in @:

COROLLARY 1.7. Suppose that A is a central simple algebra of degree 2n = 0
mod 4 which is isomorphic to matrices over a tensor product of quaternion
algebras. Then the form qa lies in I™F.

The first author conjectured [E, 6.6] that g4 lies in I"F for all central simple
F-algebras A of degree 2n = 0 mod 4 and such that A®? is split. Corollary m
fails to prove the full conjecture because for every integer r > 3 there exists a
division algebra A of degree 2" and exponent 2 such that A doesn’t decompose
as A’ @ A” for any nontrivial division algebras A’ and A” @, 3.3], so such an
A doesn’t satisfy the hypotheses of Corollary m

If A is a tensor product of two quaternion algebras, the form ¢4 is an Albert
form of A, and the Witt index of g4 determines the Schur index of A, as Albert
has shown (see for instance [fi, (16.5)]). Corollary [L. shows that one cannot
expect nice results relating the Witt index of g4, and the Schur index of A, for
r > 3. As pointed out to us by Jan van Geel, the difficulty is that Merkurjev
has constructed in [f], §3] algebras of the form A, for r > 3 (i.e., tensor products
of at least 3 quaternion algebras) which are skew fields but whose center, F,
has I*F = 0. By Corollary E, the forms ¢4, are then hyperbolic.

Remark 1.8 (characteristic 2). One might hope that results concerning repre-
sentations of algebraic groups would not involve the restriction that the charac-
teristic is not 2. However, removing this restriction for the results in this paper
would necessarily dramatically change their nature. For example, the trace
forms t; occurring here are degenerate in characteristic 2. Also, our methods
require the ability to take tensor products of quadratic forms and to scale by
a factor of (2), neither of which are available in characteristic 2. These restric-
tions may be avoidable, but we have chosen not to attempt to do so because
such an attempt would almost certainly make this paper so technical that it
would be nearly unreadable.

2 DESCRIPTION OF A" M5(B)

In order to prove these results, we have to describe the algebra with involution
(A"(@Q ® B),~), which we will do by Galois descent. Hence we first give a
description of A My (B), see Theorem E below.
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Assume B = Endp (V) for some n-dimensional vector space V. For 0 < k < n,
we have \*B = Endp(AFV). We identify My(B) ~ Endr(V @ V) by mapping
(2%) € My(B) to the endomorphism

(z,y) — (a(z) +b(y), c(z) + d(y)).

The distinguished choice of embedding of B in Ms(B) corresponds with the
obvious choice of direct sum decomposition of V& V. (There are many others.)
This gives an identification A" M(B) = Endp(A"(V @&V)). For all integers k, ¢,
this decomposition determines A¥V @ AV as a vector subspace of AFH(V @ V)
by mapping (z1 A+ Axk) ® (y1 A+ Aye) to

(21,00 A A (@, ) A (0, 1) A== A (0,0) € NFFEV @ V).
In particular, we have
(2.1) AN (Ve V)=ai_ (NVeAFV).

For each k, the space AFV @ A" ¥V can be identified to Endz(AFV') as follows.
Fix a nonzero element (hence a basis) e of A"V and define a bilinear form

O: NFV XA FV S F
by the equation
Or(Tk, Tnk)e = Tk A Tp_y, for z; € AV
This form is nonsingular, so it provides the identification mentioned above
(2.2) APV @ A"RV = Endp(AFV)

by sending zj ® x,_k to the map y — zr0,_p(zn—k,y). The product in
Endr(AFV) then corresponds in AFV @ A"V to

(r @ Ton—i) (Yt @ Yn—k) = On—i(Tn—t, Yi) Tk @ Yn—k-

From (.1) and (R.9), we deduce an identification of the corresponding endo-
morphism rings

(2.3) N"My(B) = Endp(7_o\*B).

This remains true in the case when B is non split, as we will prove by Galois
descent. First, we must introduce some maps on @E:O)‘kB .

Since the bilinear form 6}, is nonsingular, for any f € Endr(AFV), we have a
unique element v (f) € Endp(A"*V) such that

O (f(-%'>,y) =0 (%Wk(f)(y)) )
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for every x € A¥V and y € A"~*V. This defines a canonical anti-isomorphism
(not depending on the choice of e)

Vi : EndF(/\kV) — EndF(/\"_kV)
such that
(2.4) mEroy) = (D" Pyor

for z and y as before. One may easily verify that v, o7& = Idgua, (Akv)
for all £k = 0,...,n. By Galois descent, the maps 7, are defined even when
B is nonsplit, i.e., we have anti-isomorphisms v,: A*B — A\"~FB such that
Vi © Yn—k = Idyrp (see [ﬂ, Exercise 12, p. 147] for a rational definition). In
the particular case where n is even, by definition of the bilinear form 6,, 5, the
map 7y, /2 is actually the canonical involution on \"/2P.

THEOREM 2.5. Whether or not B is split, there is a canonical isomorphism
®: \"My(B) = Endp(\’B@---® \"B)

which in the split case is the identification (R.3) above. The canonical involution
v on A" Ms(B) induces via ® an involution on End g (&7 _,A* B) which is adjoint
to the bilinear form T defined on \’B @ --- ® A\"B by

T(u,v) = (—=1)* Trdye g (uye(v)) if k+ £ =n,
B ifk+ 0 #n,

for any u € \*B and v € \'B.

Proof. We prove this by Galois descent. Fix a separable closure F of F' and let
I' := Gal(F,/F) be the absolute Galois group. We fix a vector space V over F
such that dimp V = deg B =n and let Vy, = V®p F;. We fix also an Fs-algebra
isomorphism ¢: B ®@p Fy — Endp(V) ®F Fs. Every o € T acts canonically
on Vs and Endp, (V) = Endp(V) @ Fy; we denote again by o these canonical
actions, so that o(f) = oo foo~! for f € Endg, (V). On the other hand, the
canonical action of I" on B ® p F corresponds under ¢ to some twisted action
x on Endp, (V). Since every Fs-linear automorphism of End g, (V) is inner, we
may find g, € GL(Vs) such that

oxf=gso0(f)og;t =Int(g,)0a(f) for all f € Endp, (V).

Then ¢ induces an F-algebra isomorphism from B onto the F-subalgebra
{f € Endp,(V;) | go00o(f)og,' = fforall o €T}.

The #-action of I' on Endp, (V) induces twisted actions on Endg, (A"(V, @
V,)) and on Endp, (®7_, Endp, (A¥V;)) such that the F-algebras of I'-invariant
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elements are A" (M(B)) and Endp(®}_A\*B) respectively. To prove the first
assertion of the theorem, we will show that these actions correspond to each
other under the isomorphism

Endp, (A"(Vs & V;)) = Endp, (&)—, Endp, (A*V}))

derived from (R.1) and (P-3).
Forc €T and k=0, ..., n, define AFg, € GL(AFV,) by

/\kgg(xl Ao ANTE) = go(T1) Ao A go(ag).
Then ¢ induces an F-algebra isomorphism from A\*B onto the F-subalgebra
{f € Endp, (A*"V) | A¥gy00(f) o (AFgy)™ = fforall o € T'},

hence also from Endr(®7_,A*B) to

{f € Bndp, (@1 Bndr, (A*V)) |

(©rInt(A*gy)) 0 o (f) = f o (BrInt(AFg,)) for all o € F}.
Similarly, define A" (g, ® go) € GL(A™(Vs & V5)) by

A" (go ® go) (X1, 91) A - oo A (s yn)) =
(95 (1), 9 (Y1) A+ - A (90 (20), 9o (un)),

so that A" (Mz(B)) can be identified through ¢ with

{f € Endp, (\" (Vs @ V2)) |

A" (g @ go) 0 0(f) = f 0 A*(go @ go) for all o € r}.

Certainly, A" (g, ® go) = ®F_o(A*gs @ A" *g,) under (P.1), and computation
shows that AFg, @ A" *g, = (det g,) Int(A*g,) under (2.9). Therefore, (P.1)
and (.3) induce an isomorphism of F-algebras

®: \"(M2(B)) = Endp(@p_o\"B).

To complete the proof of the theorem, we show that the canonical involution ~y
on A" (M;(B)) corresponds to the adjoint involution with respect to 7' under
®. In order to do so, we view A" (M(B)) and Endp(®}_(A\*B) as the fixed
subalgebras of Endp, (/\"(Vs &) VS)) and Endps( o Endp, (/\kVS)), and show
that the canonical involution 7 on Endp, (/\"(Vs @ Vs)) corresponds to the
adjoint involution with respect to T (extended to Fy) under the isomorphism

induced by (2-1) and (£.9).
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Taking any nonzero element e € A"V, the identification /\2"(Vs OV;) = A"Vi®
A"V, allows us to write e ® e for a nonzero element of /\2”(Vs ® Vs). Then ~ is
adjoint to the bilinear form

0: N"(Vsa V) x AN (Vs Vy) — F
given by
O(z,y)e®e=a Ay for z,y € \" (Vs & V;)
as was mentioned in the introduction. Using the identiﬁcation of NV, @A\ FV,
as a subspace of A"(V, @ V;), we have that for x;,y; € A"V,
O(zk @ Tn—k, Yo ® Yn—t) =

(=) 0k 2k, yo)On—k (Tr—k, Yn—e) ifk+L=n,
0 ifk+¢+#n.

We translate this into terms involving B, using the isomorphism ¢ to identify
MeB, := (\FB) @ F, with Endp, (AFV;). In particular, we know that

Trdyep (2k ® Tn-k) = On—k(Tn—k, Tk)
for Trd the reduced trace, and that
O (xk, Tni) = (—1)*R0, (k1)
So for & =z, @ i € \*Bg and y = y; @ yn—¢ € \*B,,

_{ (D) Trdyp, (ve(y)z) i k+L=n,
@(x’y)_{o if k + 0 # n.

Of course, in the k 4+ ¢ = n case we could just as easily have taken

O(z,y) = (=1)" Trdyep, (v (2)y).-

So, the vector space isomorphism derived from (P.1) and (R.J) is an isometry of
© and T', and it follows that the canonical involution v adjoint to © corresponds
to the adjoint involution to 7" under . O

For later use, we prove a little bit more about this isomorphism ®. Let us
consider the elements e; = (39) and e = (J9) € My(B), and let ¢ be an
indeterminate over F. We write A" for the map Ms(B) — A"Ms(B) defined
in [E, 14.3], which is a homogeneous polynomial map of degree n. In the
split case where Ms(B) is identified with Endp(V & V) and \"My(B) with
Endg (/\” Ve V)), the map is given by
(A" f)(wi A Awp) = fwi) Ao A f(wn)
for f € Endp(V@®V) and wy, ..., w, € V& V. Whether or not B is split,
there exist g, ..., ¢, € A" Ms(B) such that
)\”(61 + teg) =t"0y + tn_lfl + i+t + .

‘We then have
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LEMMA 2.6. For k = 0,...,n, the image of £y under ® is the projection on
NeB. Moreover, we have y({y) = ln_}.

Proof. Tt is enough to prove it in the split case. Hence, we may assume B =
Endy(V), and use identification (R.9) of the previous section. An element of
MeB = Endp(A*V) can be written as (z1 A+ Axk) ® (Y1 A+ AYn_), Where
XT1yee oy ThyYly -y Yn—k € V. The endomorphism A"(e; + tez) acts on this
element as follows:

A'(er +teg) (w1 A Axk) @ (Y1 A+ AYn—k))
= (21,0) A+ A(xg, 0) A (0, ty1) A=+ A0, tyn—i)
= t"Fag A ATR) @ (YL A A Yn—k)-

Hence, the image under ¢; of this element is itself if ¢ = k and 0 otherwise.
This proves the first assertion of the lemma. By Theorem E, to prove the
second one, one has to check that for any u,v € \’B @ --- @ A" B, we have
T(;(u),v) = T(u,€n_i(v)), which follows easily from the description of T" given
in that theorem. O

Remark 2.7. By the previous lemma, the elements (o, ..., ¢, € \"Ms(B) are
orthogonal idempotents. Hence, the fact that y(¢x) = £,y for all k =0,...,n
implies that the involution v is hyperbolic if n is odd and Witt-equivalent to
its restriction to £, \" Ma(B){,, if n = 2m.

We will also use the following:

LEMMA 2.8. For any b € F*, consider go := (9%) € My(B), and set g =
A"(go). We have:

1. for any u € \*B, ®(g)(u) = b" Fyi(u) € \"7FB;
2. > =" and ~(g) = (~1)"g;
3. Foranyk=0,...,n, gl =l,_1g.

Proof. Again, it is enough to prove it in the split case. A direct computation
then shows that for any z ® y € AV ® A" FV = X\ B, we have

glz@y) = (DD y @ ),
which combined with (R.4) gives (1), which in turn easily implies (3). The first
part of (2) is because A" restricts to be a group homomorphism on M, (B)* [,

14.3], and the second part then follows since v(g)g = Nrdynr,(B)(9) = (=b)"
by [, 14.4]. O
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3 DESCRIPTION OF A\"(Q ® B)

We suppose that @ = (a,b)r is a quaternion F-algebra and B is an arbitrary
central simple F-algebra of degree n. We will describe A"(Q ® B) by Galois
descent from K = F(«), where o € Fy is a fixed square root of a. More pre-
cisely, let us identify @ with the F-subalgebra of Ms(K) generated by (8‘ _Oa)
and go = (9%), i.e.,

Q = {z € My(K) | goZg, ' = =},
where ~ denotes the non-trivial automorphism of K/F. We also have
Q® B = {z € Ma(Bxk) | goTg; ' =z},

where Bx = B®p K, and gg is now viewed as an element of M>(Bg).

The canonical map A™: A — A"™A restricts to be a group homomorphism on
A* [, 14.3]. Moreover, when deg A = 2n, for a € A*, Int(A\"(a)) preserves the
canonical involution v on A" A [ﬂ, 14.4], and so we get a map

A" Aut(A) — Aut(A"A, 7).

In particular this holds for A = My(Bg). This induces a map on Galois
cohomology

HY(M)
_—

H'Y(K/F,Aut(M,(Bx))) HY(K/F, Aut(\"My(Bg), 7))

The image under this map of the l-cocycle = +— Int(gg) is the 1-cocycle ~ —
Int(A"go), as in the preceding section. Since the former 1-cocycle corresponds
to Q ® B, the latter corresponds to A" (Q ® B), so

(3.1) N'(Q® B) = {x € \"Ms(Bg) | gzg™* = x}

for g := A\"(go). We fix this definition of g for the rest of the paper.

4 THE n ODD CASE

This section is essentially the proof of Theorem DI
We set \*V°"B := @o§k<n/\kB. For 0 < k < n, we let t; be the reduced trace

k even

quadratic form on \*B as in ([.2). We then have the following:

LEMMA 4.1. Whenn = deg B is odd, the algebra with involution (\"(Q®B), )
is isomorphic to (Q,7q) ® (C, o), where (C,0) is isomorphic to End (A" B)

endowed with the adjoint involution with respect to Y o<k<n tk-
k even

Proof. If i,j € Q satisfy i> = a, j2 = b and ij = —ji, then since \" restricts to
be a group homomorphism on (Q ® B)*, A"(i® 1) and A\"(j ® 1) € \"(Q ® B)
anticommute and satisfy
/\n(i®1)2:an’ )\n(J®1 2:bn’
YA @ 1) =-A"(i®1), AA\"(Gel)=-A"([Ge1l).
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(For the bottom two equations, see [{], (14.4)].) Hence, these two elements
generate a copy of @ in A\"(Q ® B) on which ~ restricts to be vg and we have
(A" (Q®B),v) ~ (Q,vg)®(C, o), where C is the centralizer of Q in \"(Q® B)
and o denotes the restriction of v to C' [, 1.5].

To describe C, we take i = a(e; — e3) and j = g, as in the beginning of the
previous section, so that A\"(j ® 1) = g and

)\n(l ® ].) = an((_l)ngo + (—1)71_1(1 + -+ én) - _an(geven - godd)v

where leven = D o<k<n {x and load = > o<k<n lk-
k even k odd
Let us consider the map U: loyen A" (M2(B))leyen — A" (Ms(Bg)) defined by

U(r) =x+grg~t. A direct computation shows that ¥ is an F-algebra homo-
morphism, amazingly. Clearly, ¥(x) = ¥(z) and since g = b" is central (see
Lemma P.§), g¥(x) = ¥(z)g for all x. Hence, the image of ¥ is contained in
A™(Q ® B) and is centralized by g. Moreover,

NI @ 1)¥(x) = —a"(z — gzg™t) = U(z)\"(i @ 1).

Hence, the image of ¥ also centralizes A\"(i ® 1), and is therefore con-
tained in C. Now, since feyen is an idempotent of A"(Mz(B)), the algebra
Leyen A" (M3 (B))loyen is simple, hence ¥ is injective. By dimension count it
follows that its image is exactly C.

Since v(¥(z)) = ¥(9 'y(x)g), the involution o on C corresponds via ¥ to
Int(g71) 0o on Loyen A" (Mo (B))loven- Note that if 2 € Loyen A" (Ma(B))loven,
then ,Y(x) € Eodd)\n(M2(B))€odd and g_lfy(x)g € Keven)\n(M2(B))£even- By
Theorem R.§, we get that (C,o) is isomorphic to Endp(A\®*"B) endowed
with the involution adjoint to the quadratic form T’ defined by T'(u,v) =
T(u,®(g)(v)). Using the description of T given in Theorem PR.§ and
Lemma E(l), it is easy to check that the A*B are pairwise orthogonal for
T’ and that T restricts to be ((—b)""*)t; on A*B. Thus T’ is similar to

> o0<k<n tk- ]

k even

Let us now prove Theorem @ If n = 2m+1, then the algebra with involution
(Q,7¢)®™ is isomorphic to (Q,7q) ® (Endp(Q), ad,, )®™, where ad,,, denotes
the adjoint involution with respect to the quadratic form ng. Indeed, one may
easily check that (Q®Q), v ®¢) is isomorphic to (EndF(Q), adT(Qﬂm), where
T(Q.vq) is the quadratic form defined by T{q. ) (z) = Trdg(zyq(x)). Since for
any € Q, we have zvq(z) = ng(x) € F, T(g,,) = (2)ng, and (Q®27782) =~
(Endr(Q),ady,, ). Therefore, to prove Theorem [.1}, it suffices to show that the
algebras with involution (Q,v¢q)®(C,0) and (Q,7¢)® (Endr(Q), ady,)®™ are
Witt-equivalent. We will use the following lemma:

LEMMA 4.2. Let (U,q) and (U',q') be two quadratic spaces over F. There
exists an isomorphism

(@Q,7¢) ® (Endp(U),ad,) ~ (Q,7¢) ® (Endp(U"),ad,)

if and only if the quadratic forms ng ® q¢ and ng ® ¢' are similar.
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Proof. Consider the right Q-vector space Ug = U ®r Q. The quadratic form
g on U induces a hermitian form h: Ug x Ug — @ (with respect to v¢) such
that

h(u®z,u @z') = %(q(u +u') = q(u) — q(u'))yq(2)z’

for u, v’ € U and z, ' € Q. The adjoint involution adj, satisfies

(4.3) (Endg(Ug),ady) = (Endr(U), ad,) @ (Q,v0)-

The trace form of h, which is by definition the quadratic form
U®rQ— F, x— h(z,x),

is ¢ ® ng. Similarly, we denote by 2’ the hermitian form induced by ¢’. By a
theorem of Jacobson [[[d, 10.1.7], the hermitian modules (Ug, h) and (Ug: 1)
are isomorphic if and only if their trace forms are isometric. Hence, if the
quadratic forms ¢ ® ng and ¢’ ® ng are similar, i.e., ¢ ® ng ~ (u)q’ ® ng for
some p € F* then the hermitian forms h and (u)h’ are isomorphic, which
proves that

(Q,')/Q) ® (EndF(U), adq) ~ (Q,")/Q) (39 (EndF(U'), adq/).

Conversely, if there is such an isomorphism, then equation (f.3) shows that
the hermitian forms h and h’ are similar, hence their trace forms ¢ ® ng and
¢’ ® ng also are similar. O

These two lemmas reduce the proof of Theorem to showing that the

quadratic forms ng ® Y o<k<ntr and ng(m+1) are Witt-equivalent, up to a

k even
scalar factor.

On the one hand, we have n M™ng, since n%2 = 4ng. On the other
hand, since the algebra B is split by an odd-degree field extension, Springer’s
Theorem [§, VII.2.3] shows that ¢, is isometric to the trace form of

®(m+1) — 4

N (M, (F)) = My (F)

k

which is Witt-equivalent to (7)(1). Hence the Witt class of ng ® > o<k<n tx is

k even

n n— m
ZOSk<n (k) ng = 2 1nQ =4 nQ,

k even

which completes the proof of Theorem EI

5 THE n EVEN CASE

In this section, we prove Theorems E, @, and Corollary E
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Assume from now on that n is even and write n = 2m. Consider the element

of A" (M (Bk))
h=a(l—b""g)(lo++Llmoi + 3ln) + (L9 (Al + s + - -+ L),
One can check that

At =3 +07g)(lo+ -+ L) + (1= b""ga™ ) (loy + -+ £3))
and g =b™ hh
Therefore, it follows from (B.1)) that

N'(Q® B) = hA"My(B)h™' € A\"My(B)k.
Using the isomorphism ® of Theorem E as an identification, we then have
\"(Q® B) = Endp (h(\°B) & -+ @ h(\"B))

and the canonical involution on A"*(Q ® B) is adjoint to the restriction of the
bilinear form Tk to the F-subspace h(A\°B) @ --- @& h(A"B). This restriction is
given by the following formula:

LEMMA 5.1. The F-subspaces h(\¥B) are pairwise orthogonal. Moreover, for
u, v € \¥B we have

T (h(w), h(v)) =

—2a(—1)*o™=* Trd \» g (uv) if k <m,
(—1)m(142'_“ Trdym g (Ym (w)v) + 152 Trd)\mB(uv)) if k =m,
2(=1)Fb™F Trd yk g (uv) if k> m.

Proof. Using Lemmas E and E(l), one may easily check that for any u €
M B, we have

a(u— b Py (u)) it k <m,
hu) =4 3 [(1+a)u+ (1 —a)yw(w)] ifk=m,
u+ 0™ F ey (u) if k> m.

The claim then follows from the description of T' given in Theorem P.5 and
Lemma @(1) by some direct computations. For instance, if u,v € A™B, we
get

(5.2) T (h(u), h(v)) = (=1)™ Trdxm g, [h(u)ym (h(v))]
by Theorem E7 and

h(w)ym (h(v)) =
(5.3)
11+ @)Puym(v) + (1 = a) (v 4+ Y (u)ym (v) + (1 = a)?ym (u)v].
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Since Trdam g (uvm(v)) = Trdymp(ym(u)v) and Trdam g (Ym (W)ym(v)) =
Trdym g(uv), it follows that

Trdam gy [(1 4 @) uym (v) + (1 — @)y (w)v] = 2(1 + @) Trdam g (Ym (u)v)
and
Trdxm g, [(1 = @) (uv + Y (W)Y (v)] = 2(1 — a) Trdym g (wv).
Therefore, (5.9) and (b.3) yield

Tx (h(u), h(v)) = (—1)m1¥ Trdym g (ym (u)v) + (=1)™

1—a

Trdym g (uv).
O

This lemma provides a first description of the similarity class of ga:

PROPOSITION 5.4. Ifn is even, the similarity class of g4 contains the quadratic
form:

(®ogkem (2(=1)" 0" F)(L, —a)ti) ® ((—1)")(t}, @ (~a)t,,).

Proof. Since the anti-isomorphism -, defines an isometry ty ~ t,_x, the re-
striction of Tk to h(A*B @ A"~*B), for all k < m, is

2(=D)*pmFV (1, —a)ty.
Moreover, we have

1+ 1-—-
—a Trd)\mB (’ym (’LL)'U) + 9

5 a Trdym p(uv) =

Trdym g (uv) if u € Sym(A" B, ym),
—aTrdymp(uv) if u € Skew(A" B, ).

Hence, the proposition clearly follows from the lemma. O

5.5. PrROOF OF THEOREM .

Theorem E is a consequence of the preceding results in the special case where
Q = (a,b)F is split. In that case, we may take b = 1 so that the matrix
go = (9§) then decomposes as go = fofy ', where fo = (] 7). Hence,
if we let f = A"fy, we have ¢ = ff~!. On the other hand, we also have
g = hh~', for h as in the preceding section, hence f~'h = f—1h, which means
that f~'h € A"(Mz(B)). Considering the isomorphism ® of Theorem G|
as an identification as we did in the preceding section, we get that f~'h €
Endr(\°B @ --- ® A" B), hence

AAN’B@-- @ \'B) = fA\°B@--- @ \"B).
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To prove Theorem B, we compute the restriction of Tk to this F-subspace in
two different ways. First, we use [ﬂ, (14.4)], which says that f is a similarity
for Tx with similarity factor Nrdyz, (g, (fo) = (—2a)™ = 2"a™. Hence, for
any u,v € \’B @ --- ® \"B, we have

Tk (f(u), f(v)) = 2"a™ T (u,v).

By Remark @ and Theorem E, the form T is Witt-equivalent to its restriction
to A™B, which is isometric to ((—1)™) (¢} & (=1)t.).

Second, the restriction of Tx to h(A°B @ --- @ A\"B) has been computed in
Lemma @ and the proof of Proposition @ Comparing the results, we get
that the quadratic forms

(Bo<hem 2(=1)*)(1, —a)ty) & (1)) (), & (—a)t;,)
and
2ra™) (=)™t @ (—1)t,)

are Witt-equivalent. If m is even, we get that the following equality holds in
the Witt ring:

_1)k _ + _ - g4+ -
(30 DR, —adta) + 6+ (—a)ty, = 2, — b,
from which we deduce

(1, —a) ((Zogkm <2(—1)k>tk> + t,;) —0.

To finish the proof, we may assume a is an indeterminate over the base field
F'. The previous equality then implies that the quadratic form

(@ogkm <2(*1)k>tk) &t

is hyperbolic, which proves the theorem in this case. A similar argument fin-
ishes the proof for the m odd case.

Remark 5.6. Let t(xmp ,y: A™B — F be the quadratic form

t(AnLB’,Ym)(x) = ’I‘rd)\mB(’ym(,T>m)

Using Theorem E, together with the facts that ¢, = tx, txmp ,,) = th—t .,
and that 2¢ ~ 2(2)q for an arbitrary quadratic form ¢ since 2(2) = 2(1), we
obtain the following memorable formula:

Z(_l)ktk == t(AnLB’,Ym) in WF
k=0
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5.7. PROOF OF THEOREM @ Consider first the case where m is even. In
that case, Theorem B yields

ZO<k<m e+, = ZO<k<m

k even k odd

Substituting in the formula given in Proposition @, we get that the similarity
class of g4 contains a quadratic form whose Witt class is

D ockem (2720t + D> ocpom (—2D, 2ab)t + (—a, —b,ab)t,, + L},

k even k even

=D ockam (2nQts + 5 — Ly, + ngt;,.
k even
Now, suppose m is odd. Multiplying by (a) the quadratic form given in Propo-
sition @ does not change its similarity class, and shows that the similarity
class of g4 contains a quadratic form whose Witt class is

(1,—a) (t+ +Zo<k<m ’““m) + i, —th.

Substituting for ¢} the formula of Theorem B simplifies the expression in
brackets to (1, —b) - (Zogk<m<2>tk) and completes the proof.

k even
5.8. PROOF OF COROLLARY [[.5 Let us assume that B is of exponent at most
2. Then, for any even k, the algebra A\*B is split. Hence, its trace form t;, is
Witt-equivalent to (Z) Since m is even, A"*B is also split, and its canonical
involution =, is adjoint to a quadratic form gg. This form is only defined up
to a scalar factor, but its square is defined up to isometry. Now [ﬂ, 11.4] gives
relationships between ¢p and the forms ¢, and ¢,

th —t, ~q%  and —t, ~(1/2) A2 qp

Hence, by Theorem @, the similarity class of g4 contains a form whose Witt
class is

23 +10((-2(Va5) + Focpm ()2
k even
One may easily check that, since (2,2) ~ (1,1) and ¢p is even-dimensional,
g% ~ (2)g%. Since we are concerned only with the similarity class of g4, we
may therefore forget the factors (2) throughout. Moreover, since m is even,
> o<k<m (Z) =2n2 _ %(Z)v and Corollary @ follows.

k even

6 ANOTHER APPROACH TO THE n EVEN CASE

Let us decompose B = By ® By, where deg By = 2mg is a power of 2 and
deg B; = my is odd. We have m = mgmq, and m is even if and only if mqg > 1.
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We write Tj for the trace form of By. Under the assumption that B(‘?Z is split
(which is automatic if m is odd), we will give a different characterization of g4
for A = @ ® B than the one in Theorem @ Corollaries E and B will follow
from this.

PROPOSITION 6.1. Suppose that 3892 is split. Then the similarity class of qa
contains a form whose Witt class is

n—3

gn—1 4 o To(ng — 2) if m is even

and
2" %(ng — np,) if m is odd.
(Note that By is a quaternion algebra if m is odd.)

This result is already known for m odd: If A is a biquaternion algebra (i.e.,
m = 1) it is [B}, 6.2], and in general it follows from [}, 6.4] by a straightforward
computation, using the fact that for any integer k > 1, one has nf, = 22(=Un,,.
However, the results from [E} make use of Clifford algebras, which seems a long
way to go. So we include a direct proof.

We start with a lemma.

LEMMA 6.2. Suppose that BS92 is split. Then the quadratic form ty is Witt-

equivalent to (Z) if k is even and ﬁ(:)TD if k is odd. Moreover, we have:

2n73
t. = (2)To — (2"*2 - %(Z)) (2) if m is even,
mo

and

th =2""%(2) — (2”_3 - %(;)) (2)To if m is odd.
This lemma actually specifies ¢ and ¢, whatever the parity of m since in both
cases t,, =t + 1t and t,, is known.

Proof. Since Bj is split by an odd-degree field extension, Springer’s Theorem
shows that ¢, is isometric to the trace form of \* (Bo ® M, (F)) If k is even,
this algebra is split, and the result is clear. If k is odd, the algebra is Brauer-

1 n

equivalent to By, hence isomorphic to M,(F') ® By, where p = m(k) The
form of t;, for k odd then follows from the fact that the trace form of a tensor
product of central simple algebras is isometric to the product of the trace forms
of each factor.

We have m = mgm1, and m is odd if and only if mg = 1. Recall that

20§k<m (Z) =

k even

on—2 if m is odd,
n—2 %(TZ) if m is even,
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and

Zo§k<m (Z) =

% odd 2n—2 if m is even.

{2”2 — %(::L) if m is odd,
The second part of the lemma then follows from Theorem [L.3 by a direct
computation. O

Let us now prove Proposition @ Assume first that m is even. The preceding
lemma yields

_ 2n—3
tm + Zogk<m<2>tk = <2>T0

k even mo

and

2n—2
th—tn = (1) —2t, =2"""(2) —

o~ (2)To + () (1. —2).

Since () is even, the last term on the right side vanishes, hence the quadratic

form given by Theorem E is

271,—2 2n—3

To +
mo mo

(2) (2”—1 - nQTo).

This finishes the m even case.

Assume now that m is odd. Then, By is a quaternion algebra, and Ty =
(2)(2 — np,). The preceding lemma yields

ZO§k<m<2>tk = 2"7%(2)

k even

and
b =t = 3T — 265, = 3Ty — 27720 + (2772 - 1(2) ) @) To.

If m = 1, then this reduces to t, — t;7, = —(2)np,, and Theorem [[.4 gives the
desired result. Otherwise, since m is odd and m > 3, the integer 2"~2 — %(SL)

is even, by [, (10.29)], hence (272 —1("))(2) =272 — 1(”) and the right

m m

side of the last displayed equation simplifies to yield
ty —th = —2""2(2)np,.

Therefore, the quadratic form given by Theorem [[4 is 2"~2(2)(ng — ns,),
which is isometric to 2" 2(ng — np,) since 2"7%(2) = 2”72, and the proof of
Proposition @ is complete.

6.3. PROOF OF COROLLARY E Corollary E can be proved by induction,
using the formula given in Corollary @7 but it can also be directly deduced
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from Proposition Ell Indeed, let us assume A = A, = Q1 ® ---® Q. is a
product of r > 3 quaternion algebras. We let B = Q2 ® -+ ® Q... Its degree
n = 2""! is a power of 2, and since r > 3, m = 272 is even. In the notation
from earlier in this previous section, we have By = B and ngg is split. Hence,
we may apply Proposition @ The form Tj is the trace form of B, that is the
tensor product of the trace forms of the quaternion algebras @Q; for: =2,... |r.
Hence, we have Ty = (2" "1)(2—ng,) -+ (2—ng, ), and Proposition .1 tells us
that the similarity class of ¢4 contains a form whose Witt class is

n—3
2 g, ~ D2~ ng,)- (2~ ng,) =
=22 ") (2~ g, ) (2~ mgy) -+ (2 na)

2n71 +

which proves the corollary.

6.4. PROOF OF COROLLARY m Let us now consider a central simple algebra
A as in the statement of Corollary B Then A is isomorphic to My (A4,), where
A, =Q1® - ®Q, is a product of r quaternion algebras. If A is split then
q4 is hyperbolic and the result is clear, so we may assume that r # 0. Because
deg A = 0 mod 4 by hypothesis, we may further assume that r # 1 (so that
r > 2), with perhaps some of the Q; being split.

We first treat the k = 1 case. If r = 2, then A is biquaternion algebra and g4
is an Albert form, which lies in I?F. If r > 3, then by Corollary E we have to
prove that

2" =2 2 - ng,) - (2 - ng,)

lies in I™F. When we expand this product, the terms of the form 27~! cancel,
and we are left with a sum of terms of the form :I:2”’e*1nQi1 -+ ng,,, where
¢ > 1. Since for any i the form ng, lies in I°F, 2”*5’171@1.1 -+ ng,, belongs to
Jrt-1+2tp — 1R and hence to IMF.

Now suppose that k& > 2. Since r > 2, we have deg(4,) = 0 mod 4 and we
can apply [E, 6.3(1)]. Hence, the similarity class of g4 contains a form which

is Witt-equivalent to qf}ff . Since the result holds for A, by the kK = 1 case, we
are done.
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In his recent book [4], Neeman introduces a class of triangulated categories
which he calls well generated. Although Neeman’s definition is not easily stated,
it becomes quite clear that for triangulated categories ‘well generated’ is the
appropriate generalization of ‘compactly generated’ [3]. The well generated
categories share many important properties with the compactly generated cat-
egories. In addition, the class of well generated categories is closed under
various natural constructions, for instance, passing to appropriate localizing
subcategories and localizations. Our aim in this note is to provide an equiva-
lent definition for well generated categories which seems to be more natural.

THEOREM A. LetT be a triangulated category with arbitrary coproducts. Then
T is well generated in the sense of [4] if and only if there exists a set So of
objects satisfying:

(G1) an object X € T is zero provided that (S,X) =0 for all S € Sy;

(G2) for every set of maps X; — Y; in T the induced map (S,]], Xi) —
(8,11, Yi) is surjective for all S € Sy provided that (S,X;) — (S,Y5)
is surjective for all i and S € Sy;

(G3) the objects in Sy are a-small for some cardinal c.

Here, (X,Y) denotes the maps X — Y. In addition, we recall that an object S
is a-small if every map S — [[,.; X; factors through [, ; X; for some J C I
with card J < a.. Conditions (G1) and (G3) are fairly natural to consider; (G2)
is taken from [2] where it is shown that Brown’s Representability Theorem holds
for a triangulated category 7 whenever there is a set Sy of objects satisfying

(G1) - (G2).

DOCUMENTA MATHEMATICA 6 (2001) 121-126



122 HENNING KRAUSE

Neeman’s definition and our characterization of well generated triangulated
categories are based on the concept of compactness. Let us explain this. We fix
a triangulated category 7 with arbitrary coproducts and a cardinal «. Clearly,
there exists a unique maximal class S of a-small objects in 7 such that the
following holds:

(G4) every map S — ][, X; from S € S into a coproduct in 7 factors through
amap [[,¢;: [[; S — [, X; with S; € S for all .

Simplifying Neeman’s terminology, we call the objects in & a-compact and write

T for the full subcategory of a-compact objects. We have now the following

more explicit description of such compact objects.

THEOREM B. Let T be a well generated triangulated category and let Sy be a
set of objects satisfying (G1) — (G2). Then there exists for every cardinal o a
cardinal B > « such that X € T is 3-compact if and only if card(S, X) < 8 for
all S € Sy.

The characterization of well generated triangulated categories uses a result
which relates condition (G2) and (G4) to another condition. To state this, let
C be a small additive category and fix a regular cardinal o, that is, « is not the
sum of fewer than « cardinals, all smaller than «. An a-product is a product
of less than « factors, and we suppose that a-products exist in C. We denote
by Prod,(C, Ab) the category of functors C — Ab into the category of abelian
groups which preserve a-products; the morphisms between two functors are
the natural transformations.

THEOREM C. Let T be a triangulated category with arbitrary coproducts and
« be a reqular cardinal. Let Sy be a set of objects in T and denote by S the full
subcategory of a-coproducts of objects in Sy. Then the following are equivalent:
(1) (G2) holds for Sy and every object in Sy is a-small.
(2) (G4) holds for S and every object in S is a-small.
(3) The functor T — Prod,(S°P,Ab), X — (—,X)|s, preserves arbitrary
coproducts.

PRrROOFS

Let us start with some preparations. Throughout we fix a triangulated category
T with arbitrary coproducts. Let C be an additive category C. A functor
F': C°? — Ab into the category of abelian groups is coherent if there exists an
exact sequence
(= X)— (-Y)— F—0.

The natural transformations between two coherent functors form a set, and the
coherent functors C°? — Ab form an additive category with cokernels which
we denote by C. A basic tool is the Yoneda functor

C—C, Xw— Hx=(—,X).
Note that C is a cocomplete category if C has arbitrary coproducts; in this case

the Yoneda functor preserves all coproducts. Recall from [1] that an object
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X in a cocomplete category is a-presentable if the functor (X, —) preserves
a-directed colimits.

LEMMA 1. Let C be an additive category with arbitrary coproducts. Then an
object X € C is a-small if and only if (—, X) is a-presentable in C.

Proof. Straightforward. O

Suppose that C has kernels and a-products. Then we denote by Lex,(C, Ab)
the category of left exact functors C — Ab which preserve a-products. Given
a class S of objects in 7, we denote by Add S the closure of S in 7 under all
coproducts and direct factors.

LEMMA 2. Let S be a small additive subcategory of T and let « be a regular
cardinal. Suppose that every X € S is a-small and that S is closed under
a-coproducts in T. Then the assignment F +— F|s induces an equivalence

f: AddS — Prod,(S°P, Ab).

Proof. First observe that Hx is a-presentable in AddS for every X € S
by Lemma 1. The inclusion i: § — AddS induces a right exact functor

i S — m which sends Hyx to H;x. This functor identifies S with the
full subcategory of all a-colimits of objects in {Hx | X € S§}. It follows from
Satz 7.8 in [1] that i* induces a fully faithful functor j: Lex,(S°P, Ab) — KddS
which sends a representable functor (—, X) to i* X and identifies Lexq (S°P, Ab)
with the full subcategory of all colimits of objects in {Hy | X € S}. Thus j

is an equivalence. Now consider the Yoneda functor h: § — S. It is easily
checked that the restriction functor

Byt Lexq(S°P, Ab) — Prod, (8P, Ab), F s Foh,
is an equivalence. We have f o j = h, and conclude that f is an equivalence. [
LEMMA 3. Let Sy be a set of objects inT and let S = Add Sy. Then the functor
T—38, X (—X)s,
preserves coproducts if and only if (G2) holds for Sp.
Proof. See Lemma 3 in [2]. O

LEMMA 4. Let S be a set of a-small objects in T which is closed under -
coproducts. Then (G2) and (G4) are equivalent for S.

Proof. Tt is clear that (G4) implies (G2). To prove the converse, let S — [, X;
be a map in 7 with S € §. Choose for every i a map ;: ]_[j Sij — X
with §;; € & for all j such that every map X — X; with X € S factors
through ;. Then (G2) implies that the map S — [[, X; factors through
1.0 I, I, Si — [; Xi- Using the fact that S is a-small and that S has a-
coproducts, we can replace for each i the coproduct [ | j Sij by some S; € S. O
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Proof of Theorem C. The equivalence of (1) and (2) is Lemma 4 and it remains
to show that (1) and (3) are equivalent. We fix a set of objects Sy in 7 and
a regular cardinal a. The full subcategory of a-coproducts of objects in Sy is
denoted by S. We can write

f: T — Prod,(S°?,Ab), X — (-, X)|s,
as composite
f:T -4 AddS, = AddS - Prod, (S°P, Ab)

where gX = (—, X)|adda s, and hF' = F|s. Now suppose that every object in Sy
is a-small and that (G2) holds. Then it follows from Lemma 3 that g preserves
coproducts and Lemma 2 implies that h is an equivalence. We conclude that
f preserves coproducts.

Conversely, suppose that f preserves coproducts. It follows that the right exact
functor f*: T > Prod, (S°P, Ab) which sends Hx to fX preserves colomits.
Now identify Prod,(S°P, Ab) with Lex, (§°p, Ab) as in the proof of Lemma 2.
Using Satz 5.5 in [1], it is not hard to see that f* has a left adjoint which sends
(—, X) in Prod,(S8°P, Ab) to Hx. A left adjoint of a functor which preserves
a-directed colimits, sends a-presentable objects to a-presentable objects. But
the representable functors are a-presentable in Prod, (S°P, Ab). We conclude
from Lemma 1 that every X € S is a-small. The first part of the proof shows
that (G2) holds as well. O

Remark. The proof of Theorem C does not use the triangulated structure of
7. One needs that 7 is an additive category with arbitrary coproducts and
that weak kernels exist in 7.

Recall that a full triangulated subcategory S of 7 is localizing if S is closed
under arbitrary coproducts. Given a regular cardinal «, we call S a-localizing
if S is closed under a-coproducts and direct factors. For example, the full
subcategory 7, of a-small objects in 7 is a-localizing. The full subcategory
T of a-compact objects is a-localizing as well.

LEMMA 5. Let Sy be a set of a-small objects satisfying (G1) — (G2) and de-
note by S the smallest a-localizing subcategory containing Sg. Then S = T.
Moreover:

(1) The objects in S form, up to isomorphism, a set of a-small objects satis-

fying (G2).
(2) FEuvery set of a-small objects satisfying (G2) is contained in S.

Proof. First we prove (1) and (2); the proof for S = T is given at the end.
(1) Using the equivalent condition (G4) from Lemma 4, it is straightforward to
check that (G2) is preserved if we pass to the closure with respect to forming
triangles and a-coproducts. The closure S can be constructed explicitly, and
this shows that the isomorphism classes of objects form a set.

(2) Let S1 be a set of a-small objects satisfying (G2). We denote by S’ the
smallest a-localizing subcategory containing Sy U S and claim that &’ = S.
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Consider the full subcategory 7’ of objects Y € T such that every map X — Y
with X € &' factors through some object in S. Using the fact that (G4)
holds for &’ by Lemma 4, it is straightforward to check that 7" is a localizing
subcategory containing Sy. The Corollary of Theorem A in [2] shows that 7
has no proper localizing subcategory containing Sg. Thus 7/ = 7 and idx
factors through some object in S for every X € §’. We conclude that &’ = S.
The proof for the equality S = 7 is the same as in (2) if we replace S’ by
Te. O

LEMMA 6. Suppose that the isomorphism classes of objects in T® form a set.
Then an object X € T belongs to T if and only if X is a-compact in the sense

of [4].

Proof. It is automatic from the Definition 1.9 of an a-compact object in [4]
that X € 7 belongs to 7¢ if X is a-compact in the sense of [4]. Theorem 1.8
in [4] shows that the objects in 7 which are a-compact in the sense of [4],
form the unique maximal subcategory S C 7, such that the canonical functor
7T — Prod,(S°P, Ab) preserves coproducts. On the other hand, Theorem C
shows that 7“ has precisely this property. O

We are now in a position to prove our main result. To this end recall from
Definition 1.15 in [4] that 7 is well generated if there is a regular cardinal o
such that condition (2) in the following theorem holds.

THEOREM A. LetT be a triangulated category with arbitrary coproducts. Then
the following are equivalent for a reqular cardinal o:

(1) There exists a set of a-small objects satisfying (G1) — (G2).
(2) The isomorphism classes of objects in T form a set, and T is the smallest
localizing subcategory containing T <.

Proof. (1) = (2) Let Sp be a set of a-small objects satisfying (G1) — (G2).
It follows from Lemma 5 that the isomorphism classes in 7% form a set. The
Corollary of Theorem A in [2] shows that 7 has no proper localizing subcate-
gory containing Sy.

(2) = (1) Choose a representative set Sy of objects in 7%. It follows from
Lemma 4 that (G2) holds for Sg. To check (G1) let Y be the class of objects
Y € 7 satistying (S,Y) =0 for all S € Syg. Then the objects X € 7 satisfying
(X,Y)=0for all Y € Y form a localizing subcategory X containing Sy. Thus
X =T and Y = {0}. We conclude that Sy is a set of a-small objects satisfying
(G1) — (G2). O

The following immediate consequence of Theorem A is due to Neeman [4].

COROLLARY. Let 7 be a well generated triangulated category. Then T =
U, T® where o runs through all cardinals.

We end this note with a proof of Theorem B.
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Proof of Theorem B. Let Sy be a set of objects satisfying (G1) — (G2) and fix
a cardinal a. We suppose that 7 is well generated. Therefore the objects in Sy
are -small for some cardinal . It follows from Theorem C in [2] that there
is a cardinal 8 > «a + o’ such that an object X € 7 belongs to the smallest
B-localizing subcategory containing Sy if and only if card(S, X) <  for all
S € Sp. The assertion now follows from Lemma, 5. O

Remark. There is an explicit description for the cardinal 8 in Theorem B; see
Theorem C in [2].
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0 INTRODUCTION.

Given a locally compact group G and a C'*-algebra B equipped with a point-
wise continuous action of G by *-automorphisms, Baum, Connes and Higson
constructed in [fl] the topological K-theory K'°P(G; B) of G with coefficients in
B and an assembly map

pe.s  KI(G; B) — K. (B %, G).
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The Baum-Connes conjecture (with coefficients, cf. [B, §9]) asserts that uq p
is an isomorphism for all G and for every G-C*-algebra B. For convenience,
we will use the following

NoTATION. We say that G satisfies BCC (Baum-Connes conjecture with co-
efficients) if ug, p is an isomorphism for every G-algebra B. Moreover, we say
that G satisfies BCI (resp. BCS) if the assembly map is injective (resp. sur-
jective) for all B. In case we want to specify the coefficient algebra, we simply
say that G satisfies BCC (resp. BCI, BCS) for B.

Although BCC has been shown to be true for many groups (for a general
overview of recent results we recommend the surveys [R4, Bg]), it seems now
to be clear that there exist examples of groups for which the assembly map
is not always surjective (there are counterexamples due to Higson, Lafforgue,
Osawa, Skandalis and Yu, which base on a recent announcement by Gromov
on the existence of finitely presented groups with certain graph-theoretic prop-
erties). However, knowing that the conjecture fails in some cases makes it even
more important to be able to describe the class of groups which do satisfy the
conjecture. A natural problem in this direction is to investigate how the con-
jecture behaves under certain standard operations on the group, like passing
to (closed) subgroups or taking group extensions.

Partial answers to the extension problem were given in [ﬂ], for the case of
semi-direct products by a totally disconnected or almost connected group. The
argument in [f] is based on the construction of a partial assembly map associ-
ated to a semi-direct product, which generalizes and factors the assembly map
of the Baum-Connes conjecture.

In [} we extended the definition of this partial assembly map in order to
decompose the assembly map for arbitrary (non-split) group extension: If N
is any closed normal subgroup of G and B is a G-algebra, we constructed a
natural homomorphism (the partial assembly map)

HS s KIP(G B) — K (G/N B, N),
which factorizes the assembly map for G in the sense that

— G,N
HG,B = HG/N,Bx.N ° N B>

where g /N, Bx, v denotes the assembly map for G/N with (twisted) coefficient
algebra B x, N. For this construction, we had to use Green’s notion of twisted
actions which allows to decompose B ,.G as an iterated twisted crossed product
Bx,Nx,.G/N. Tomake sense of topological K-theory with twisted coefficients,
we had to adapt Kasparov’s equivariant KK-theory to cover twisted group
actions on C*-algebras. The main results on extensions obtained in [ are the
following: Assume that G has a y-element (see Definition [[.7 below), and that
G/N is either almost connected or totally disconnected. Then G satisfies BCC
if G/N and any compact extensions of N in G satisfy BCC.
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In this article we want to generalize these results in two directions: Remove the
assumption on the topology of the quotient group and lift the requirement that
the group has a y-element. We reached the latter objective in full generality in
the case when G/N is totally disconnected (see Theorem @ below), inspired
from some ideas exposed in [@], where Oyono-Oyono obtains quite similar
results for discrete G. We were also able to reach the other objectives to a very
far extend (see the discussion below).

For the investigation of the subgroup problem we study a natural induction
homomorphism

md$ : K'°P(H; B) — K°P(G;Ind$ B),

which provides a link between the assembly map for a subgroup H of a group
G, with coefficient algebra B and the assembly map for G with coefficients in
the induced G-algebra Ind$ B (see Proposition .3 below). For discrete G, this
map has been studied by Guentner, Higson and Trout in [@] (in the frame of
E-theory), where they showed that it is an isomorphism if H is finite. Later,
in [@], H. Oyono-Oyono was able to prove the bijectivity of the induction map
for arbitrary subgroups of discrete groups. Here we prove that

e The induction homomorphism Ind$ : K!°P(H; B) — K'"°P(G;Ind$ B) is
ALWAYS bijective (Theorem P.2).

As a direct consequence we get

o If G satisfies BCC (resp. BCI, BCS), the same is true for every closed
subgroup H of G' (Theorem P.5).

Combining this with our previous results on group extensions we are able to
make further progress in this direction. In fact we show

e Suppose that N is a closed normal subgroup of G such that N satisfies
the Haagerup property (in particular, if N is amenable). Then, if G/N
satisfies BCC (resp. BCS), the same is true for G (Corollary ; but
see Theorem for a more general statement).

e A direct product Gy x G satisfies BCC if and only if G; and Go satisfy

BCC (Theorem B.17).

Another application of the bijectivity of the induction homomorphism is given
in [ﬂ], where it is shown that the generalized Green-Julg theorem (i.e., BCC
for proper G-algebras) holds for all (second countable) locally compact groups
G. Further, in §4 below, we apply the induction isomorphism in a specific
example, which hints into the direction of a more general “Mackey-Machine”
for the investigation of the Baum-Connes conjecture.

The outline of the paper is as follows: After a short preliminary section (§1),
we give a detailed discussion on the induction homomorphism in §2, where we
prove all relevant results, except of the bijectivity of this map. In §3 we briefly
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discuss the partial assembly map and prove most of our results on group exten-
sions, except of our main technical result on extensions by totally disconnected
groups. In §4 we present an example, which illustrates how our results can
be used towards a Mackey-Machine approach to the Baum-Connes conjecture.
Using some general ideas, we show that for K = R or C the Baum-Connes
conjecture with trivial coefficients is true for the groups K™ x SL, (K), a result
which has been known, so far, only for the cases n < 2.

The most difficult (and technical) results of this paper are the proofs of The-
orem @ and Theorem @ on the bijectivity of the induction homomorphism
and the bijectivity of the partial assembly map for totally disconnected quo-
tients, respectively. For this reason we decided to devote two extra sections (§5
and §6) to the proofs of these results. There are some substantial similarities
in the proofs of these theorems: Both depend deeply on a certain realization of
the universal example £(G) for proper actions of G (which is an important in-
gredient in the computation of topological K-theory), using the fact that £(G)
can be realized as a simplicial complex if GG is totally disconnected. Since the
proof of Theorem seemed a bit easier (and perhaps more illustrative), we
decided to do this result first (§5). Note that the approach via our special
realization of £(G) seems to have a bunch of other important consequences.
So, as a further example for the usefulness of this approach, we show in our
final section, §7, that the topological K-theory of a group G is continuous in
the coefficient algebras, i.e.,

K°P(G;lim A;) = lim Ki°P(G; A;)

for any inductive limit lim; A; of G-algebras A;. This result plays an important
role in the proof of the generalized Green-Julg theorem given in [ﬂ]

In order to avoid unnecessary repetitions, we have chosen to make the following
general conventions: ALL C*-ALGEBRAS (EXCEPT OF MULTIPLIER ALGEBRAS)
ARE SUPPOSED TO BE SEPARABLE AND BY GROUP WE MEAN A LOCALLY
COMPACT SECOND COUNTABLE HAUSDORFF TOPOLOGICAL GROUP.

1 SOME PRELIMINARIES

Let G be a group. By a proper G-space we shall always understand a lo-
cally compact space X endowed with an action of G such that the map
GxX — XxX, (g9,2) — (gz,x) is continuous and proper (inverse im-
ages of compact sets are compact). A universal example for the proper actions
of G, £(G), is a proper G-space such that for any other proper G-space Z, there
is a continuous and G-equivariant map F': Z — £(G) which is unique up to G-
equivariant homotopy. Note that £(G) is uniquely defined up to G-homotopy.
The existence of universal proper spaces is shown in [@

Now let N denote a closed normal subgroup of G. A twisted action of (G, N)
on a C*-algebra D (in the sense of Green, [[[2]) consists of a strongly continuous
action by x-automorphisms a : G — Aut(D) together with a strictly continuous
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homomorphism 7 : N — UM (D) of N into the group of unitaries of the
multiplier algebra M (D) of D, such that

an(d) = pdry  and  ag(7h) = Tens—1, foralld € D,se€ G,n € N.

If equipped with such a twisted action, D will be called a (G, N)-algebra.
Note that a twisted action of (G, N) should be viewed as a generalization of
a G/N-action. In particular, every G/N-algebra can be regarded as a (G, N)-
algebra by inflating a given action 8 of G/N to the twisted action (Inf 8,15) of
(G, N), and the corresponding twisted crossed products by (G, N) coincide with
the ordinary crossed products by G/N. The main advantage of working with
twisted actions is, that they allow to decompose crossed products: If B is a G-
algebra, then B x,. N becomes a (G, N)-algebra in a canonical way, so that the
iterated (twisted) crossed product B x, N x.,.(G, N) is canonically isomorphic to
B %, G. We refer to @] for more details on these facts and for the construction
of the bifunctor KKV (Dy, Dy) for pairs (D1, Do) of (G, N)-algebras, which
extends Kasparov’s equivariant KK/ -theory for G /N-algebras.

DEFINITION 1.1. Let D be a (G, N)-algebra. The topological K-theory of G/N
with coefficient algebra D is

K*(G/N; D) = im KK (Co(Y), D),

where the limit is taken over the directed system of all G/N-compact subspaces
Y (i.e,, (G/N)\Y is compact) of a given universal example £(G/N) for the
proper actions of G/N.

REMARK 1.2. In this work we are using a notion of proper G-spaces (resp.
G//N-spaces) which differs from the notion used in [J]. This leads to different
notions of universal proper G-spaces (resp. G/N-spaces). However, it is shown
in [ﬂ] that both notions of properness lead to equivalent definitions of the
topological K-theory of G (resp. G/N).

If D is a G/N-algebra (viewed as a (G, N)-algebra as explained above), then
the above definition of the topological K-theory of G/N with coefficient alge-
bra D coincides with the usual definition of the topological K-theory of G/N
with untwisted coefficient algebra D (this follows from [, Corollary 3.14]). In
particular, if N = {e} in the above definition, we recover the usual topological
K-theory of G with coefficients in the G-algebra D.

For any proper G-space Z, C.(Z) carries a canonical Co(G\Z) — C.(G x Z)
bimodule structure, where we regard C.(G x Z) as a dense subalgebra of
Co(Z) x G. This bimodule structure extends to give a Co(G\Z) — Co(Z) x G
Hilbert bimodule Az . For reference, the module operations are given on the
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dense subspaces by

(v -8)(2) = p(G2)E(2)
(Em(s z) = AG(S)il/zﬁﬁ(silz) (1.1)

€ f)(z) = /G (s ) (s s D) A () 2ds,

with ¢ € Co(G\Z), &, n € C.(Z), and f € C.(G x Z). Together with the zero
operator, we obtain an element (also denoted Az ) of the Kasparov group
KKy (Co(G\2),Co(Z) x G) (see B, §5] for more details). Moreover, if Z is
G-compact, i.e., G\ Z is compact, then we can pair Az ¢ with the unital homo-
morphism C — C(G\Z) to obtain a canonical element Az ¢ € Kq (CO(Z) X G).
We now recall the definition of the twisted Baum-Connes assembly map as
introduced in [f]:

DEFINITION 1.3. Let D be a (G, N)-algebra. The twisted assembly map for
G/N with coefficients in D, pg/n.p : KI°°(G/N; D) — K, (D %, (G,N)), is
defined inductively by the maps

e plY]: KKSY (ColY), D) — K. (D %, (G, N)),

where Y runs through the G/N-compact subspaces of a given realization of
E(G/N) and pg/n,p[Y] is defined via the composition of maps

KKSN (Co(Y),D) — — — — — ~ =K, (D %, (G,N))

\ TAYYG/N@.
e
IN,r

KK, (Co(Y) % (G, N), D x, (G, N))

Here jﬁyr denotes the descent in twisted equivariant KK-theory as described

in [ §4].

REMARK 1.4. For a G/N-algebra D, viewed as a (G, N)-algebra via inflation,
the assembly map of the above definition coincides with the usual Baum-Connes
assembly map for G/N with coefficient algebra D. This follows directly from
[, Corollary 3.14]. Of course, if N = {e}, we get the usual assembly map for
G.

It is important to note that by a result of [[Id], any twisted action of (G, N)
is Morita equivalent, and hence KKV -equivalent, to an untwisted action of
G/N, so that bijectivity, injectivity or surjectivity of the assembly map of
Definition B is equivalent to the corresponding properties of the usual Baum-
Connes assembly map for G/N with the corresponding G/N-algebra as coeffi-
cient (see [f, 5.6]).

The introduction of twisted coefficients enabled us in [f] to define a partial
assembly map for (G, N), which will also play a central role in this paper. We

DOCUMENTA MATHEMATICA 6 (2001) 127-183



PERMANENCE PROPERTIES OF THE BAUM-CONNES CONJECTURE 133

will recall the precise definition of this partial assembly map in §3 below. For
its construction we shall need to work with a kind of fundamental class

AEN € KKSN (Co(N\X), Co(X) % N), (1.2)

associated to a proper G-space X, which will play a similar role in the definition
of the partial assembly map as the class Ay ,g,n in Definition B We briefly
recall its construction: If X is a proper G-space, the given G-action restricts
to a proper action of N on X. Thus we can form the Co(N\X) — Co(X) X N
bimodule Ax n as described above. As was shown in [, §5], there exists a
canonical (twisted) action of (G, N) on Ax n, which (again together with the
zero operator) provides the element A)G(]]\\I, of (L3).

Recall that for two locally compact sp’aces X and Y, any x-homomorphism
P Co(X) — Cp(Y) is a composition

CO(X) L’ CO(Z) L’ C()(Y)v

where Z is an open subset of Y, 15 is the canonical inclusion and v, is induced
by a continuous proper map, say ¢ : Z — X, via ¥1(f)(2) = f(¢(2)), f €
Co(X). In fact, Z is the open subset of Y corresponding to the ideal v (C’O(X)) .
Co(Y) C Co(Y) (note that by an easy application of Cohen’s factorization
theorem, ¥ (Co(X)) - Co(Y) = {w(f) - g | f € Co(X),g9 € Co(Y)} is a closed
ideal of Cy(Y)), and ¢ is the proper map induced from the non-degenerate
*-homomorphism Cy(X) — ¢ (Co(X)) - Co(Y) = Co(Z); f — ¥(f).

If X and Y are G-spaces and v is G-equivariant, then all maps in the above
decomposition (and also the map ¢ : Z — X) are G-equivariant. If, moreover,
G acts properly on X and Y, and N is a closed normal subgroup of G, then
there exist canonical maps

Co(N\X) —220 Cy(N\Z) —22 Cy(N\Y),

where the first homomorphism is induced by the proper map
en : N\Z — N\X, on(Nz)=Ng(z),

and the second map is induced via the inclusion of the open set N\ Z into N\Y.
Note that the composition ¥y := 1 y © ¢ N satisfies the equation

Y(g-f)=vn(g)-¥(f), g € Co(N\X), f € Co(X).

The following lemma will be used frequently throughout this work.

LEMMA 1.5 (cF. [, LEMMA 5.13]). Let ¢ : Co(X) — Co(Y) and vy :
Co(N\X) — Co(N\Y) be as above. Then

AGNT @0t (W) = [on] @ [AFN]  in KKGY (Co(N\X),Co(Y) % N),

where j{l, . KK (Co(X), Co(Y)) — KKN (Co(X)x N, Co(Y) % N) denotes
the partial descent of /Ia, 84]. (Note that by the properness of the N-actions,
the mazimal crossed products coincide with the reduced crossed products.)
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Proof. By the decomposition argument presented above, it is sufficient to prove
each of the following special cases:

(1) 4 is induced by a continuous and proper G-map ¢ : ¥ — X (as explained
above), or

(2) X is an open subset of Y and ¢ : Cy(X) — Cy(Y') is the inclusion.

Since all operators in the Kasparov triples defining the KK-elements of
the lemma are the zero operators, it is enough to show that the two
Co(N\X) — Co(Y) x N Hilbert bimodules Co(N\X) ®c,(n\y) A}(ijj\,v and
Ag:% ®Cy(X)xN (CO(Y) X N) are equivariantly isomorphic. Using the for-
mulas for the module operations as given in Equation ([L.1]) above, we see that
Co(N\X) ®@cy(n\y) A}c/:}zvv is just the closure of ¥y (CC(N\X)) -Ce(Y) C Agjj\\[]
(pointwise multiplication). Now consider the map

D:C.(X)OCAN XY)— C.(Y)
defined by

(@ f)(y) = /N HE) ) f () Ay ()~ 2.

A lengthy but straightforward computation shows that ® is an isometry with
respect to the right inner products on Ai% ®Cy(X)xN (CO(Y) X N) and Ag”f\,v7
respectively, and therefore extends to an isometry

®: ATN Oco(x)un (Co(Y) % N) — AT
Factoring C.(X) as C.(N\X) - C.(X), it follows directly from the formula for
® that it has its image in 1y (Co(N\X)) - A}(,;I]VV Another short computation
shows that ® respects the module actions and that it is equivariant for the
given (G, N)-actions on the modules and algebras (see [, §5] for the precise
formulas of those actions).
Thus the only thing which remains to be checked is the surjectivity of @, at
least if ¢ satisfies either (1) or (2). This is trivial in the case of (2) and we
restrict ourselves to (1).
Consider any functions h € C.(N\X) and € C.(Y). We want to construct
€€ Cu(X) and f € Co.(N xY) such that (£ ® f) = ¥n(h) - n. For this we
choose a function ¢ : X — R such that ¢? is a cut-off function for the action of
N on X (i.e., the restriction of ¢? to any N-compact subset of X has compact
support and [y, ¢?(nz)dn =1 for all z € X). We define £ € Co(X) by £(z) =
h(Nz)c(z), and we define f € C.(N xY) by f(n,ny) = An(n)'/2c(ne(y))n(y).
Then

e(E® f)y) = /N &(ne(y)) f(n,ny) A (y)~/*dn

_ /N h(Ne()) e (np(y))n(y) dn
= (Un(h) - 1) (y).
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This finishes the proof. O

In what follows, we will frequently have to work with the notion of a y-element,
which goes back to the pioneering work of Kasparov @, @], and which turned
out to be the most important tool for the investigation of the Baum-Connes
conjecture. We first have to introduce the notion of proper G-algebras:

DEFINITION 1.6. A G-C*-algebra A is called a proper G-algebra, if there exists
a proper G-space X and a non-degenerate G-equivariant homomorphism & :
Co(X) — ZM(A), the center of the multiplier algebra of A.

We can now recall the abstract definition of a ~y-element:

DerFINITION 1.7 (cF. 3, §5], [[L4, §3 - 5]). Let G be a group. An element
va € KK§(C,C) is called a vy-element for G if

(1) there exists a proper G-algebra A and (Dirac and dual-Dirac) elements
D e KK§ (A, C), n € KK§(C, A) such that y¢ = ®4 D;

(2) for any proper G-space Z we have p*(y¢) = 1z €
RKKOG (Z; C’O(Z),C’O(Z)), where p maps Z to the one-point set {pt}
(see [[l4, Proposition 2.20]).

REMARK 1.8. If G has a vy-element, then it follows from the work of Kasparov
and Tu (see [14, R)) that G satisfies BCI (i.e., the assembly map pg.p is
injective for any coefficient algebra B). Moreover, if v¢ = 1 € KK(? (C,C),
then G satisfies BCC (we refer to@ for a concise proof of this result). By a
result of Higson and Kasparov ([L3], but see also [2d]), every group G which
satisfies the Haagerup property (in particular every amenable group G) has
1 e KKoa((C,(C) as a ~y-element, and hence all such groups satisfy BCC for
every coeflicient algebra B. Moreover, by the work of Kasparov, [B, @], every
group which can be embedded as a closed subgroup of an almost connected
group (i.e., a group with compact component group G/Gg) has a y-element.
We refer to [ﬂ, §6] for a slightly more detailed account on ~-elements.

2 INDUCTION AND THE BAUM-CONNES CONJECTURE FOR SUBGROUPS

Let H be a closed subgroup of the group G and let B be an H-algebra. In this
section we want to discuss the induction homomorphism

nd$ : K°P(H; B) — KP(G;Ind$ B)

between the topological K-theory of H with coefficients in B and the topological
K-theory of G with coefficients in the induced algebra Ind$ B. We will then
use this homomorphism to show that BCC passes to closed subgroups.

Recall that the induced algebra Indg B is defined as

h(f(s)) = f(sh™1) for all s € G,h € H }

{rea@n) | oin i ele tuerm
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together with the pointwise operations and the supremum norm. If B = Cy(X)
is abelian, then Ind$ Cy(X) is canonically isomorphic to Co(G x g X), where
GxgX = (GxX)/H (with respect to the diagonal action h(g,z) = (gh~1, hx))
denotes the classical induced G-space.

If A and B are two H-algebras, then Kasparov constructed a natural induction
homomorphism

i% : KK (A, B) — KKY(Ind$ A, Ind$ B)

(see 13, §5] and [[[4, §3]). Let us briefly recall its construction: Suppose that
z € KK¥ (A, B) is represented by a Kasparov triple (E, ®,T). Similar to the
construction of the induced algebras we can form the induced Indg B-Hilbert
module Indg E as the set

h(€(s)) = &(sh™Y) for all s € G,h € H }

{ecawn | 1€(s)|[ € Co(G/H)

equipped with the pointwise actions and inner products. Pointwise action
on the left provides an obvious induced representation Ind$ ® : Ind$ A —
L(Ind% E). Using a cut-off function ¢ : G — [0, 00[ for the right translation
action of H on G, Kasparov constructs an operator T € E(Indg E) by the
formula:

Té(g) = /H c(gh)h(T(E(gh)))dh, € € nd§ € (2.1)

(see I3, Lemma 2 of §5]), to obtain the Kasparov triple (Ind$ E,Ind$ ®,T)
which represents the element i (z) € KK (Ind$ A, Ind% B).

Now suppose that X is an H-compact proper H-space. Then G xy X is a
G-compact proper G-space and, therefore, there exists a continuous G-map
F:GxygX — &E(G) with G-compact image Y C £(G). The composition

KK (Co(X), B) - = = = KK{(Co(Y), Indf; B)
H
KK (Ind$ Co(X),Ind% B)
provides a well defined homomorphism
md%[X] : KK (Cy(X), B) — K°P(G;Ind$ B), (2.2)

and it is straightforward to check (using a special case of Lemma E) that the
maps Ind%[X] are compatible with taking inclusions i : X; — X, (i.e., that
Ind% [X,] 0 i* = Ind$[X1]). Thus, if we let X run through the H-compact
subsets of £(H) we obtain a well defined homomorphism

md$ : K'°P(H; B) — K'°P(G;Ind$ B).
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DEFINITION 2.1. The homomorphism Ind§, : K!°P(H; B) — K!°P(G;Ind% B)
is called the induction homomorphism between KYP(H;B) and
KP(G;Ind$ B).

The following theorem is one of the main results of this paper. Since the proof
is rather complex and technical, we postpone it to §6 below. For discrete G and
finite subgroups H, a similar result (using E-theory) was obtained by Guentner,
Higson and Trout in [@], and they asked the question whether the result could
be true in more generality. In [@], Oyono-Oyono proves a similar result for
arbitrary subgroups of discrete groups.

THEOREM 2.2. Let H be a closed subgroup of G, and let B be an H-algebra.
Then the induction map Ind$; : K°P(H; B) — KP(G;Ind$ B) is an isomor-
phism.

The above theorem has many interesting consequences. It provides a connection
between the Baum-Connes conjectures for G and H, as we shall study in more
details below. It also allows to prove the fact that the Baum-Connes assembly
map

pa.a: KPP(G; A) — K. (A%, G)

is an isomorphism whenever A is a proper G-algebra, as is worked out in more
detail in [ Note that this was an open question for quite some time, and was
only known for discrete groups by the work of Guentner, Higson and Trout in
[@] Another use of this isomorphism theorem will be indicated in §4 below.

PROPOSITION 2.3. Let H be a closed subgroup of the group G, and let B be an
H-algebra. Let v € KKq (B %, H, (Ind$, B) x, G) be defined by the canonical
Morita equivalence between (Ind$ B) %1, G and B, H (e.g., see [13, Theorem
17]). Then the following diagram commutes:

K%“P(H; B) AR, K. (B x, H)

Indgl El-@z

PG ma€ B

K'P(@;nd§ B) — "= K, ((Ind§ B) x, G).
For the proof we need

LEMMA 2.4. Let H be a closed subgroup of G. If E(G) is a universal example
for the proper actions of G, then, by restricting the action to H, it is also a
universal example for the proper actions of H.

Proof. Since £(G) is unique up to G-homotopy (which certainly implies H-
homotopy), it is sufficient to show that the result holds for one particular
realization of £(G). By [[L7, a realization can be constructed as follows: Choose
any proper G-space Z and let £(G) be the set of positive Radon-measures on
Z with total mass in the half open interval ]%, 1], equipped with the weakx-
topology and the canonical G-action. Now since the action of G on Z restricts
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to a proper action of H on Z, the same set of Radon measures provides a
realization of E(H). O

Proof of Proposition @ By the definition of Indg and Lemma @, it is
enough to show that, for a given realization of £(G), the diagram

Ax m)®iE, (-
KK (Co(X), B Mm@t O K (B H)

Indgl l-@a:

Acx yx,6l®50y (¢
KK (Co(G x g X),Ind§, B) 01000 e 1048 By w, G) (23)

P |=

G a [Ac.x,6]®ify () a
KK; (CO(G~X),IndHB) e K ((IndH B) %, G)

commutes, where X is any H-compact subset X of £(G) (also serving as a
universal example for proper actions of H). An easy application of Lemma
implies that the bottom square commutes, so we may restrict our attention to
the upper square.

Let y denote the invertible element of KK (Co(Gx g X)x G, Co(X)x H) which
is implemented by the canonical Morita equivalence between Co(G x g X) x G
and Cy(X) x H. Then it follows from [[l4, corollary on p. 176]) that the square

-H
J{ey,r

KK (Co(X), B) =, KK, (Co(X) x H,B x, H)

Indﬁl ly@»@x

el
KKY (Co(G x i X),Ind§, B) 210 KK, (Co(G x5 X) x G, (Ind% B) x, G)

commutes. So the commutativity of (R.3) will follow if we can show that

KK. (Co(X) x H, B x, H) 22 KK, (Co(G x g X) % G, (Ind§; B) %, G)

[AX,H]®¢ J{[AGXHX,G](@'
KK, (Co(H\X), B %, H) ———>KK. (Co(H\X), (IndF B) x, G)
commutes. For this it is enough to prove that
Acxux.cl®y = [Ax H] in KKy (Co(H\X),Co(X) x H), (2.4)

where we identify G\(G x g X) with H\X via G[z,s] — Hz. All KK-classes
appearing in this equation are given by a Hilbert bimodule together with the
zero operator: Agx,, x.¢ (resp. Ax m) is the Hilbert module obtained by taking
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the completion of C.(G x g X) (resp. C.(X)) with respect to the inner product,
the right action of Co(G x g X) % G (resp. Co(X) x H) and the left action of
Co(G\(G xp X)) (resp. Co(H\X)) as given in ([L.1)). The underlying module
M for y is obtained by taking the completion of the C. (G7C’0(G X g X)) —
C.(H,Co(X)) bimodule C.(G, Co(X)) with respect to the formulas:

(e -n)(s)(x) = /Gw(t)(s,x)n(t_l)(x)dt
(1, m2) (u) (z) = /GAc(t)l/QAH(t)’l/Qm(t)(x)nz(tU)(U’lx)dt

(77~f)(8)(x)=AG(S)1/2AH(S)’1/2/ n(su)(u™ a) f(u™h) (u w)du,

H
where p e CC(G, C()(G XHX)), i, N2 € CC(G,C()(X)) and f € CC(H, Co(X))
Consider the assignment ® : C.(G xg X) ® Ce(G, Co(X)) — C.(X) defined
by
B0 = [ o @ac e

£EeC.(GxygX),ne CC(G, Co(X )) One can check that this map extends to a
well defined morphism ® : Agx,, x,¢ @c,(Gxux)na M — Ax g which respects
the corresponding left and right actions and which is isometric with respect
to the Cy(X) x H-valued inner products. To see that it is also surjective let
c: G- X — [0,00] be a continuous function such that ¢? is a cut-off function
for the proper G-space G- X (cf. proof of Lemma [L.F). Set &(s,x) = ¢(sz). For
any ¢ € C.(X), set n(s)(z) = c(sx){(x)Ag(s)"/2. Then ¢ = ®(E®@n) € Ax u.
This proves (R.4). O

As a direct consequence of Theorem @ and Proposition E we get

THEOREM 2.5. Let H be a closed subgroup of G and let B be an H-algebra.
Then the following statements are equivalent:

(i) H satisfies BCC (resp. BCI, resp. BCS) for B;
(ii) G satisfies BCC (resp. BCI, resp. BCS) for Ind$ B.

In particular, if G satisfies BCC (resp. BCI, resp. BCS) for all coefficients,
the same is true for H.

We say that a group G satisfies the Baum-Connes conjecture with abelian
coefficients if the assembly map

pe.a : K (G5 A) — K. (A %, G)

is an isomorphism for every commutative C*-algebra A. Since any commutative
H-algebra induces to a commutative G-algebra, we get the following direct
corollary of Theorem E:

COROLLARY 2.6. Let H be a closed subgroup of G. If G satisfies the Baum-
Connes conjecture with abelian coefficients, then the same is true for H.
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3 THE BAUM-CONNES CONJECTURE FOR GROUP EXTENSIONS

In this section we want to present our new results on the stability of the Baum-
Connes conjecture for group extensions. For this we have to recall from [ﬁ] the
definition of the partial assembly map

u N KP(GyB) — KP(G/N; B x, N),

where B X, N is equipped with the decomposition twisted action of (G, N).
Let B be any G-algebra and let X be a G-compact proper G-space. Let

G, G,
AGR € KKGY (Co(N\X),Co(X) x N)
be the fundamental class associated to X as described in §1, ([l.2)). The com-

position of maps

KKY(Co(X),B) — — = KK&N (Co(N\X), B %, N)

G,N
\ TAX,N(@‘
J{e},r

KK (Co(X) x N, B %, N)
determines a map
v[X]: KKY (Co(X), B) — KK&N (Co(N\X), B x, N). (3.1)

Now observe that if X is a proper G-space, then N\X is a proper G /N-space,
and therefore there exists a homotopically unique continuous G /N-equivariant
map F: N\X — £(G/N). In particular, there exists a homotopically unique
continuous G/N-map F : N\E(G) — E(G/N).

DEFINITION 3.1. Let F' : N\E(G) — E(G/N) be as above. For each G-
compact subset X C £(G) let

py BIX] = F*ov[X] : KKY (Co(X),B) — KKSN (Co(F(N\X)), B %, N).

Then it follows from Lemma E that the maps ,u%:% [X] are compatible with
respect to taking inclusions, and, therefore, they determine a well defined ho-
momorphism

uy Sy KiP(Gs B) — KI°P(G/N; B %, N).

M%’g is called the partial assembly map for (G, N) with coefficient algebra B.

The following result was one of the main outcomes of [ff], and it is central
for the investigations in this section. Recall that if B is a G-algebra and N
is a closed normal subgroup of G, then B x, G is canonically isomorphic to
B %, N %, (G,N).
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PROPOSITION 3.2 (CF. [, PROPOSITION 5.15]). The diagram

K'°P(G; B) LN K.(B %, G)

= [
KIP(G/N: B, N) =228 K (B N) e (G )
commutes. Thus, if the partial assembly map
WO KEP(G5B) — KEP(G/N: B N)

is bijective, then G satisfies BCC (resp. BCI, resp. BCS) for B if and only if
G/N satisfies BCC (resp. BCI, resp. BCS) for B x, N.

Proposition @ gives a strong motivation to study the conditions under which
the partial assembly map is an isomorphism. The main technical result in this
direction is the following theorem. The proof will be given in §5 below.

THEOREM 3.3. Let 1 — N — G % G/N — 1 be an extension of groups
such that G/N has a compact open subgroup. Let B be any G-algebra and
assume that for every compact open subgroup K of G/N, the subgroup qil(K)
of G satisfies BCC with coefficients in B. Then the partial assembly map
pSy s KIP(G; B) — KIP(G/N; B », N) is bijective.

As a direct corollary of the theorem and of Proposition @ we get:

COROLLARY 3.4. Assume that G, N, G/N and B satisfy all assumptions of
Theorem . Then G satisfies BCC (resp. BCI, resp. BCS) for B if and only
if G/N satisfies BCC (resp. BCI, resp. BCS) for B x,. N.

Note that we obtained a similar result in [H, Proposition 7.8] under the addi-
tional assumption that G has a y-element. Although the proof of that special
case is easier than the proof of the above result, it can be quite difficult to
check the existence of a y-element in practice. For discrete G, a similar result
(without requiring a ~-element) has been obtained by Oyono-Oyono in [R2],
and the proof of Theorem @, as presented in §5 below, is partly inspired by
the ideas of [2J).

In [E, Example 3, §5.1] it is shown that if N is a normal subgroup of a group K
such that K/N is compact, and if N satisfies the Haagerup property, then K
satisfies the Haagerup property. We mentioned earlier (see Remark @) that
it follows from the work of Higson, Kasparov and Tu [, @] that such groups
satisfy BCC. Thus we get

COROLLARY 3.5. Let 1 — N — G % G/N — 1 be an extension of groups
such that G/N has a compact open subgroup. Suppose further that N satisfies
the Haagerup property (e.g., if N is amenable). Then, if B is a G-algebra, G
satisfies BCC' (resp. BCI, resp. BCS) for B if and only if G/N satisfies BCC
(resp. BCI, resp. BCS) for B x, N.
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Let G be a group and let Gy denote the connected component of the identity of
G. Then G| is a closed normal subgroup of G and G/G| is totally disconnected.
Thus we may apply the above results to the extension 1 — Gy — G — G/Gg —
1. In particular, we get

COROLLARY 3.6. Assume that Gy satisfies the Haagerup property and let B be
a G-algebra. Then G satisfies BCC (resp. BCI, resp. BCS) for B if and only
if G/Gy satisfies BCC (resp. BCI, resp. BCS) for B x,. Gy.

In what follows we want to get rid of the condition of G/N having a compact
open subgroup. It turns out that, at least if we restrict our attention to prop-
erty BCC or BCS, we can indeed obtain very far reaching generalizations. A
very important tool for this is the use of Theorem @ and its consequences as
described in the previous section. The main idea is to reduce to the two cases
where the quotient group is either totally disconnected or almost connected
(i.e.,, (G/N)/(G/N)g is compact). The first case is the one treated above,
and the second case was treated in [[] (under the assumption that G has a
y-element). Tn fact, combining [f, (2) of Proposition 6.7] (note that the injec-
tivity condition in that statement is satisfied by Remark E if G/N is almost
connected) with [f}, Proposition 7.6], we get

THEOREM 3.7. Let 1 — N — G % G/N — 1 be an extension of groups
such that G/N is almost connected and such that G has a y-element. Let
B be a G-algebra, and assume that for the mazimal compact subgroup K of
G/N, the group q_l(K) satisfies BCC for B. Then the partial assembly map
M%’g : K'P(G; B) — KP°P(G/N; B x, N) of Definition [3.1 is bijective. It then
follows that G satisfies BCC' (resp. BCI, resp. BCS) for B if and only if G/N
satisfies BCC' (resp. BCI, resp. BCS) for B x, N.

As indicated above, we want to combine Theorem @ with Theorem @ in
order to cover arbitrary quotients G/N. But before we do this, we want to
weaken the assumption on the v-element in the above theorem. This is done
in Lemma E below, where we show that it is actually enough to assume the
existence of a y-element for the inverse image K = ¢~ *(K) C G of the maximal
compact subgroup K of G /N. But for the proof of this, we first need another
lemma.

For notation: If A is a C*-algebra and X is a locally compact space, we will
write A(X) := A® Cy(X). If Ais a G-algebra and X is a G-space, then A(X)
carries the diagonal action. Recall that if X is a G-space, K is a closed subgroup
of G, and A is a K-algebra, then Ind% (A(X)) = (Ind?( A)(X) (ct. 4, 3.6)).
In fact, both algebras can be viewed as a subalgebra of C,(G x X, A): The
elements F € Tnd% (A(X)) satisfy the equation F(gk,z) = k™! (F(g,kz)) and
the elements G € (Ind% A)(X) satisfy the equation G(gk,z) = k1 (G(g, 2)).
It is then easy to check that

® : Ind% (A(X)) — (Ind§ A)(X); ®(F)(g,2) = F(g.g 'z)  (3.2)

is the desired isomorphism.
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LEMMA 3.8. Let K be a closed subgroup of G, and let A and B be two K-

algebras. Let X be a locally compact G-space. Then the following diagram
commautes

KKX (4, B) KK%(Ind$ 4,Ind% B)

p}l lp}

RKKE (X;A(X),B(X))  RKKY(X;(Ind%A)(X),(Ind§B)(X))

|

RKKY (G x g X;Ind§ (A(X)), Ind% (B(X)))

where p% is induced by the map px : X — {pt} (see /@, Proposition 2.20]), i%

is the induction morphism defined in [18, Theorem 1 of §5] (see §2 above), i™C

is the induction morphism defined in (14, §3.6], and the bottom slant arrow is

obtained by first identifying G x x X with G/K x X via [g,z] — (9K, gx), then

forgetting the action of Co(G/K), and eventually identifying Ind$%(A(X)) with

(Ind$ A)(X) (resp. Ind$(B(X)) with (Ind$ B)(X)) via the isomorphism of
) above.

Proof. Let (£,®,T) be any cycle in EX(A,B). By construction,
the image of the class of this cycle by p% o i% is the class in
RKKY (X; (Ind§ A)(X), (Ind§ B)(X)) of the cycle

P = ((Ind% &) ® Co(X), (Ind% @) ® 1,T ® 1), (3.3)
where the action of Cy(X) is given via the natural inclusions
Co(X) — M((Ind§} A) © Co(X)), M((Ind§ B) @ Cy(X));  fr16f,

and where the operator T on Ind?( £ is given by Equation (@)
On the other hand, the composition i o p% maps the class of (£,®,T) to
the class of the triple

Q = (Indg (€ ® Co(X)), mdG (@@ 1), T 1),

where the Cy(G xx X)-actions on the algebras Ind% (A4 ® Co(X)) (resp.
md% (B ® Cy(X))) are given by

(¢-F)(9,7) = ¢(lg, 7)) F (g, z), for all p € Co(G xx X), F € Ind (A®Co(X))

(resp. F € Ind% (B ® Cy(X))). We now apply the isomorphism (B.) to the
algebras Ind$- (A ® Co(X)) and Ind$ (B ® Cy(X)). The same formula provides
an isomorphism of Hilbert modules ¥ : Ind% (€ ® Co(X)) — (Ind$ £) ® Co(X).
If we now identify G X X with G/K x X as in the lemma, and if we then
forget the Cy(G/K) action on the algebras, then a straightforward computation
shows that these isomorphisms turn @ into the cycle P of (@)
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LEMMA 3.9. Letl - N - G fq> G/N — 1 be an extension of groups such that
G/N is almost connected. Let K be the maximal compact subgroup of G/N and
let K =q Y(K). Assume that K has a y-element. Then G has a y-element.

Proof. Let Ak, (resp. Dg, nx) be the proper algebra (resp. the Dirac, dual-
Dirac element) associated to vk, the y-element of K. By Remark [[.§, G/N
also has a 7-element, and we write vq/n, Ag/n, Da/n and ng/n accordingly.
Let V be the tangent space of G/K at the point eK and let C,, be the Clifford
algebra of V. When viewed as a G-algebra (with trivial N-action), the algebra
Ag/n is given by Ag/n = md$ €, (denoted C,(G/K) in [[14]).

Define

D¢ : =i (0c, (Dk)) ®ag,y Doy € KK§ (Indf (Ax ® C,),C)  and
NG =MNa/N QAgn ZlG( (GCV (UK)) € KK? (C’IndIG{(AK © CV))’

where Dg/n and ng/y are viewed as elements of the respective KK¢-
groups by inflating the actions of G/N to G, and % : KKf(A, B) —
KK%(Ind$ A,Ind$ B) denotes Kasparov’s induction homomorphism. Since
Ag is K-proper, the algebra Indf((.AK ® C,) is G-proper.

Thus, to see that v¢ = ¢ ® Dg € KK§(C, C) is a y-element for G (cf. Defini-
tion [L7), it suffices to check that p% (vg) =1 € RKKS (X;Co(X),Co(X)) for
every proper G-space X, where px denotes the map from X to the one-point
set.

Let 2 = o¢, (vk) € KKé( (C,,C,). Since X is a proper K-space, it follows that
pi(Yk) = 1, and, therefore, that p% (2) = 1 € RKKX (X;C, (X),C,(X)). It
then follows that i¢¢ o p% (2) = 1, and hence, by Lemma E, that

piceiS (o6, (1K) = Piveifi(2) = 1 € RKKC (X3 (Ind .G, ) (X), (Ind§.C, ) (X)),
On the other hand, the map px : X — {pt} factors G/N-equivariantly
through N\X, which is a proper G/N-space. Thus, pk(yg/n) = 1 €
RKKS (X;Co(X),Co(X)). But this implies

px(va) = Pk (ne/n ®i% (o, (&) © Dayn)
=px (na/n) @ px (i%(0c, (v&))) @ P& (Dayn)
=pX (na/n) @ px (Da/n) =X (veyn) = 1.

As a consequence of the above lemma and of Theorem B.7 we obtain

COROLLARY 3.10. Assume thatl1 — N — G % G/N — 1 is a group extension
such that G/N is almost connected. Assume further that the inverse image
K = ¢ Y(K) C G of the mazimal compact subgroup K of G/N has a ~y-element
and satisfies BCC for the given G-algebra B (which is always true if N has the
Haagerup property). Then G satisfies BCC (resp. BCI, resp. BCS) for B if
and only if G/N satisfies BCC' (resp. BCI, resp. BCS) for B x, N.
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The following proposition is the main step for linking our previous results in
order to cover general quotients G/N:

PROPOSITION 3.11. Let1 — N — G % G/N — 1 be an extension of groups
and let B be a G-algebra. Denote by (G/N)q the connected component of the
identity in G/N and let M := q~! ((G/N)O) C G. If H is a compact subgroup
of G/M, we denote by HC G/N the inverse image of H in G/N, and we let
H denote the inverse image of H in G. Then the following are true:

(i) If for every H as above, the group H satisfies BCC for B, then the partial
assembly map for (G, M) with coefficients in B is bijective.

(ii) If G/N satisfies BCC (resp. BCS) for every coefficient algebra, then
G/M satisfies BCC (resp. BCS) for B x, M.

Proof. For (i), let us consider the extension 1 — M — G % G/M — 1. Note
that G/M is isomorphic to (G/N)/(M/N) = (G/N)/(G/N)y, and hence it is
totally disconnected. The condition in (i) is then precisely what we need to
apply Theorem @ to this extension.

For (ii), we write G/N as an extension of M/N by G/M:

1— M/N - G/N -5 G/M — 1. (3.4)

Note that G/M is totally disconnected and that the crossed product B x,. M is
isomorphic to (B X, N) x,. (M, N). Thus, applying Proposition @ to extension
(@)7 the result will follow if the partial assembly map corresponding to (E)
with coefficients in B x, N is a bijection: If G/N satisfies BCC (resp. BCS)
for the coefficient algebra B x, N, G/M will satisfy BCC (resp. BCS) for the
crossed product B x, M = (B x, N) x,. (M, N).

To see that the partial assembly map for (@) with coefficients in B x, N is
bijective, we apply Theorem @ to this extension. It then follows that it is
enough to check that, whenever His a compact subgroup of G/M, the group
HC G/N satisfies BCC for B x, N. We do this by using the hereditarity result
of Theorem R.§: H is a subgroup of G/N which is assumed to satisfy (at least)
BCS with arbitrary coefficients. Thus, Theorem implies that H satisfies (at
least) BCS, too. Since H is almost connected (as a compact extension of the
connected group M/N = (G/N)y), it also satisfies BCI for arbitrary coefficient
algebras by Remark E O

We now formulate and prove our extension result for arbitrary quotients G/N.

THEOREM 3.12. Let1 - N — G % G/N — 1 be an extension of groups and
let B be any G-algebra. Assume that for every compact subgroup C of G/N,
the group C' = q_l(C') has a y-element and satisfies BCC for B. Then, if G/N
satisfies BCC' (resp. BCS) for ARBITRARY coefficients, then G satisfies BCC
(resp. BCS) for B.
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Proof. We are going to use the reduction argument of Proposition : Denote
by (G/N)o the connected component of the identity in G/N and let M =
¢ '((G/N)) € G. Let H be any compact subgroup of G/M, let H C G/N
be the inverse image of H in G/N, and let H denote the inverse image of
H in G. Note that H is an almost connected group. Let K be its maximal
compact subgroup. Then K is a compact subgroup of G /N, so, by assumption,
K = ¢ 1(K) has a y-element and satisfies BCC for B. Lemma B.4 now implies
that H itself has a y-element. Applying Theorem @ to the extension 1 —
N — H — H — 1, it follows that H satisfies BCC for B: Since G/N satisfies
BCS for all coefficients, the same is true for H € G/N by Theorem P.j. Since
H is almost connected, it also satisfies BCL. Thus Theorem @ applies.

We can now apply Proposition : By (i), the partial assembly map for (G, M)
with coefficients in B in bijective, and, by (ii), G/M satisfies BCC (resp. BCS)
for B x,. M. Thus, Proposition @ implies that G satisfies BCC (resp. BCS)
for B. O

REMARK 3.13. Note that the statement of Theorem is a bit weaker than
the statements of Theorems and @ above, since it requires that G/N
satisfies BCC (resp. BCS) for ALL coefficients, while the previous results only
required that G/N satisfies BCC (resp. BCI, BCS) for B x,. N. Also, Theorem
B.19 does not give any information on condition BCL.

If we could show that Theorem @ holds without requiring a v-element for
G, then no reference to y-elements would be needed in Theorem above.
However, note that the assumption on the existence of y-elements for the com-
pact extensions of N in G is much easier to check than the assumption on the
existence of a y-element for G, as we did in [E] A particularly nice application
is given when N satisfies the Haagerup property. As mentioned earlier (see
the discussions before Corollary @) the Haagerup property for N implies the
Haagerup property for every compact extension of N in G. Thus, all compact
extensions of N in G have a vy-element and satisfy BCC (see Remark [L.§).
Thus, the following is a direct corollary of Theorem :

COROLLARY 3.14. Let N be a closed normal subgroup of G such that N sat-
isfies the Haagerup property (e.g., if N is amenable). Then, if G/N satisfies
BCC (resp. BCS), the same is true for G.

In what follows next, we want to look at the consequences of the above results
on the stability of the Baum-Connes conjecture under taking direct products
of groups. We need:

LEMMA 3.15. Let G1 and G4 be groups. Suppose that G1 has a compact open
subgroup, or is an almost connected group, and that Go has a compact open
subgroup. Let B be a G1 X Ga-algebra, and assume that for every compact
subgroup Ko of Go, G1 satisfies BCC for B x Ky. Then the partial assembly
map ugi,XBG%Gl . KI°P(Gy x Ga; B) — KI°P(Ga; B %, G1) of Definition @ 18
bijective.
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Proof. Take any compact subgroup Ks of G5. If G; has a compact open sub-
group, we can apply Theorem @ to the extension Ky X G of K3 by G1. Since
G satisfies BCC for B x K3 by assumption, it is enough to check that for every
compact subgroup K; of Gy, the group K» x K satisfies BCC (which is clear).
It follows that for every compact subgroup Ks of Go, G7 X K> satisfies BCC
for B. Thus the result follows from applying Theorem @ to G1 X Ga.

If G, is almost connected, the same is true for G; x Ky (since K is compact),
so G X K5 has a ~y-element by Remark E Replacing Theorem @ by Theorem
@ in the above argument gives the result. O

REMARK 3.16. In the prove of the theorem below, we shall also need a twisted
version of the above lemma, i.e., a version in which the quotient group G/N has
a product structure as above. However, this extension follows from the above
lemma by the result of [L(] that every (G, N)-algebra is Morita equivalent to
some G/N-algebra.

THEOREM 3.17. Let Gy and Gy be two groups. Then the following statements
are true:

(i) The product group G = Gy x Go satisfies BCC if and only if G1 and Go
satisfy BCC.

(i) Suppose that Gy satisfies BCC. Then G = Gy x Gq satisfies BCS if and
only if Gy satisfies BCS.

(iti) Suppose that G1 has a compact open subgroup, or is almost connected.
Suppose further that Go has a compact open subgroup. If Gy satisfies
BCC and G4 satisfies BCI, then G = G1 x G satisfies BCI.

Proof. We first prove (i) and (ii). If G = G; x G satisfies BCC (resp. BCS),
the same is true for G; and G by Theorem E Assume now that GG satisfies
BCC. Let Gy (resp. Gi,0, G2,0) denote the connected component of G (resp.
G1, G2). It is clear that Gy = G190 X Ga,0. Consider the extension 1 — Gy —
G — G/Gy — 1. The quotient group is totally disconnected. Let B be any
G-algebra. By Corollary B4, to see that G satisfies BCS (resp. BCC) for B, it
is enough to show that

(a) any compact extension of Gq satisfies BCC, and
(b) G/G satisfies BCS (resp. BCC) for B x,. Gy.

For (a), note that if L is a compact extension of Gg, L is contained in
a direct product L; X Lo, where L; is a compact extension of G and
Loy is a compact extension of Ga9. Being a subgroup of Gi (resp. Ga),
Ly (vesp. Ls) satisfies BCS by Theorem P.§. Both groups being al-
most connected, they also satisfy BCI, whence BCC. Consider the extension
1— Ly x{e} — Ly x Ly — Ly — 1. By Theorem @, to see that L1 X Lo satis-
fies BCC (and hence that L satisfies BCC by Theorem P-F), it suffices to check
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that L1 x K satisfies BCC whenever K5 is a compact subgroup of Ga. To see
this, we use again Theorem @ to reduce to the group K; x Koy, where K; is
an arbitrary compact subgroup of G;. But compact groups satisfy BCC.
In order to check (b), first observe that we just saw in particular, that compact
extensions of G in Gy (resp. of G2 in Gg) satisfy BCC. Hence it follows
from Theorem E and Proposition B.d that G /G o satisfies BCC with twisted
coefficients in A X, G, where A; is any G-algebra. A similar result holds
for G2 /G2,0 .
In particular, it follows that G1/G1 o satisfies BCC with (twisted) coefficients
in

B x, Gy %, Ko = B %, G2 %, K3 %, G1,0 = B %, K2 %, G19,

where K, is any compact subgroup of G2/G3 ¢ and K» denotes its inverse image
in GGo. Note that in the above formula we took the freedom to write the twisted
crossed products by the pairs (K2 x G1,0, Go) (in the first crossed product) and
(K2,G2,0) (in the second crossed product) simply as crossed products by the
common quotient K. Using the definition of the twisted crossed products (see
). it is fairly straightforward (but tedious) to check that all three crossed
products in the above formula do coincide.

A similar argument shows that G2/G2 o satisfies BCS (resp. BCC) with coef-
ficients in the algebra

B X GO Ay GI/GI,O =B Aoy G1 X Gz)o.

Using the twisted version of Lemma (replacing Gy by G1/G1,0, G2 by
G2/Ga0 and B by B %, Go = B x, G1,0 %, Ga,), we see that the partial
assembly map for the extension of G1/G1 ¢ by G2/G2, and with coefficients in
B X, Gy is bijective. Composing this with the assembly map for G2/G2 o with
coefficient algebra B X, Gy %, G1/G19 = B X, G1 %, G2, we get (b).
We have now completed the proofs of (i) and (ii). (iii) is a direct consequence
of Lemma and Proposition @

O

4 AN EXAMPLE FOR THE BAUM-CONNES CONJECTURE WITH TRIVIAL CO-
EFFICIENTS

In this section we want to show how the results of the previous sections may be
combined in order to produce new examples for the validity of the Baum-Connes
conjecture without coefficients. The methods we use here give a hint into a
direction of a more general “Mackey-machine” for computing the topological
K-theory of group extensions via an induction process.

The basic idea is to use our partial assembly map to write K°°(G;C) as
K!°°(G/N;C*(N)), where N is a closed normal subgroup of G (see the main
results of §3 above). In good cases, we might be able to decompose C(N) into
finitely many pieces (i.e., G-invariant subquotients) which are induced from
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smaller groups, which satisfy the conjecture for the respective coefficient alge-
bras. The bijectivity of the induction homomorphism (see Theorem then
gives the conjecture for the original pieces, and, using excision, we end up with
the desired result for G. Below, we will give some explicit examples for this
procedure.

But before we present the examples, we need to mention some results on the
functorial properties of the topological K-theory of a fixed group G, viewed as
a functor on the category of G-C*-algebras.

By a result of Kasparov and Skandalis (see [[L4, Appendix]), it is known that for
any proper G-algebra D the functor A — KKG(D, A) is half exact. Replacing
D by Cyp(X), for X a G-compact subspace of £(G), and taking the limit over
X, implies that the topological K-theory functor A — K™P(G; A) is half exact,
too. Since this functor is also homotopy invariant and satisfies Bott-periodicity,
it follows from some general arguments (which, for instance, are outlined in
[E, Chapter IX]) that it satisfies excision in the sense that every short exact
sequence

0—-I—-A—A/I—-0

of G-algebras induces a natural six-term exact sequence

KeP(GiI) —— K{P(GA) —— K{P(G3A/I)
ST la
KiP(G; A/I) «——— K{P(G;A) «——— K{°P(G; ).

If G satisfies BCC, then it follows from the half exactness of K!°P(G, -) and the
naturality of the assembly map that the functor

A— K (Ax,G)

has to be half exact, too. Thus we see that BCC can only hold for G if G is K-
ezact in the sense that for every short exact sequence 0 - 1 — A — A/I — 0
of G-algebras, the natural sequence

K.(I %, G) = Ky (A%, G) = K. (A/I %, G)

is exact in the middle term. By the same general arguments as used above,
K-exactness of G implies that every short exact sequence of G-algebras induces
a natural six-term exact sequence for the K-theories of the reduced crossed
products.

PROPOSITION 4.1. Assume that G is K-exact and that0 — I — A — A/I — 0
is a short exact sequence of G-algebras. Let O : Kicfl (G; A/T) — KI°P(G; 1) and
0 : Kip1(A/I 1, G) = K (I %, G) denote the boundary maps in the respective
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siz-term exact sequences. Then the diagram

K" (G; A/T) —2— K'P(G;1)

:U'G,A/IJ/ l#c,z

K*+1(A/I A G) T> K*(I A G)

commutes. In fact, the assembly map commutes with all maps in the respective
siz-term exact sequences.

Proof. This result follows easily from the naturality of the assembly map and
the general construction of the boundary maps: By [@, Theorem 21.4.3], it
follows that the boundary maps can be factorized via K-theory maps coming
from *-homomorphisms & : Co(R) ® A/I — Cy and e : I — Cy, where C,
denotes the mapping cone for the quotient map g : A — A/I. More precisely,
using suspension, the above diagram splits into the diagram

P,

K%P (G; Co(R) @ A/T) KiP(G5C,) —<— KIP(G3 1)

/‘G,CO(R)(@A/IJ/ #G,CQJV JV#G,I

K. ((Co(R) ® A/T) %, G) ——— Ku(Cy %, G) i K,(I %, G),

s

which commutes by the naturality of the assembly map. The result then follows
from the fact that the assembly map commutes with Bott periodicity. O

Using the above observations, an easy application of the Five Lemma gives the
following general principle:

PROPOSITION 4.2. Suppose that G is K-ezact and let0 - — A — A/I — 0
be a short exact sequence of G-algebras. If G satisfies BCC' for two of the
algebras I, A and A/I, then it satisfies BCC' for all three algebras.

We are now ready to present our example.

ExampPLE 4.3. Let K = R or C. The semi-direct product groups K" X
SL,(K), n € N*, (where the action of SL,(K) on K™ is by matrix multi-
plication) satisfy the Baum-Connes conjecture without coefficients (i.e., with
coefficient algebra C). We believe that this was known before only for the
cases n < 2.

The proof is by induction on n. For short, let us write H,, = SL,(K) and
G, = K™ x H,. For n = 1, the conclusion holds. By induction, take n > 1
and let us assume that the conclusion holds for n — 1.

Since K™ is abelian, hence amenable, it follows from Theorem @ that G,
satisfies the Baum-Connes conjecture for C if and only H,, satisfies BCC for
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CHK"™) = Co(K™). Moreover, the Gelfand transform carries the decompo-
sition action of H, on C*(K™) to the action of H, on Co(K™) given by the
formula

(@ f)(n) = f@@"-n), xeSLy(K),neK",

where z* denotes the adjoint of the matrix x.

There are two orbits under this action of H, on K™: {0} and K™ ~ {0}. Let
n = (1,0,...,0)! € K™. Then a short computation shows that the stabilizer
of 7 under the above action is isomorphic to K"~ ! x SL,,_1(K) = G,,_1, and
therefore we get

Co(K™\{0}) = Co(H,,/G 1) 2 Indg" | C.

By ], we know that the semi-simple group SL,,(K) satisfies BCC for C and
by the induction assumption we know that G,,_; also satisfies BCC for C.
Using Theorem R.§ it follows that H,, satisfies BCC for Co(K™ \ {0}). Thus,
applying Proposition @ to the short exact sequence 0 — Co(K™ \ {0}) —
Co(K™) — C — 0 gives the result.

REMARK 4.4. A similar argument can be used to show that Q) x GL,(Q,)
satisfies BCC with coefficients in C. Since GL,(Q,) can be written as the
product Q,1 - GL,,(O), where GL,,(0O) is the compact group of invertible ma-
trices with p-adic integer entries, it is a (non-direct) product of an amenable
group and a compact group, and therefore exact by a standard argument (e.g.,
see [[IL]). Moreover, by results of Baum, Higson and Plymen [f] and Lafforgue
[L9], it is known that GL,(Q,) satisfies BCC for C. Now the same procedure
as used in the above example, using Theorem B.3 instead of Theorem B.7, gives
the result.

5 PROOF OF THEOREM B.3

In this section we give the proof of Theorem @ As indicated in the introduc-
tion, some of the main ideas (and intermediate results) used in this proof will
also be applied in the proofs of the bijectivity of the induction homomorphism
as given in §6, and the continuity of topological K-theory with respect to the
coefficients as presented in §7. First we recall the statement of the theorem.

THEOREM @ Letl - N - G5 G/N — 1 be an extension of groups such
that G/N has a compact open subgroup. Let B be a G-algebra and assume
that for every compact open subgroup K of G/N, the subgroup ¢ *(K) of G
satisfies BCC' for B. Then the partial assembly map ,ug”g : KIP(G; B) —
KY*P(G/N; B x, N) of Definition is bijective.

As mentioned in the introduction, the proof relies on a special realization of a
universal example for the proper actions of G. In order to obtain this special
realization, we start with the following easy observation:
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LEMMA 5.1. Let Gy and Ga be groups. If E(G1) (resp. £(G2)) is a realization
of the universal example for the proper actions of G1 (resp. Ga), then E(G1)
E(Gq), equipped with the product action of G1 X Ga, is a realization of the
universal example for the proper actions of G1 X Gs.

Proof. The action of G1 x G2 on £(G1) x E£(G3) is clearly proper. To show
the universal property, take any space X endowed with a proper action of
G1 x Gy. This action restricts to proper actions of G; and G on X, so
there exist continuous G;-maps F; : X — &£(G;), ¢ = 1,2. Then F : X —
E(G1)xE(Gy); F(z) = (Fi(x), F»(x)) is a continuous G x Ge-equivariant map.
Conversely, every continuous G X Go-map is of this form. Thus the uniqueness
(up to homotopy), follows from the uniqueness of £(G1) and £(Gs). O

If a group G has at least one compact open subgroup, the constructions in [H
provide a realization of £(G) as a simplicial complex (the constructions in [
are given for discrete GG; the adaptations for the more general case of groups
with compact open subgroup are given in the discussion following [El, Lemma
7.10]). Summing up the results of [[7] and [fl, §7], we obtain

PROPOSITION 5.2. Let G be a group having a compact open subgroup K. Then
there exists a realization E(G) of the universal example for proper actions of
G, such that

(i) E(QG) is the geometric realization of a locally finite simplicial complex on
which G acts properly and simplicially,

(i) If S is any simplex of £(G), S its interior, and g € G, then either g acts
as the identity on S or g SN S=0.

In this section we will from now on assume that N is a closed normal subgroup
of G such that G/N has a compact open subgroup. Thus, in what follows next,
we can always assume that £(G/N) has the structure of a simplicial complex
as described in Proposition @ above. The following lemma shows how this
provides a special realization for the universal example for the proper actions
of G:

LEMMA 5.3. Let £(G) be a universal example for the proper actions of G.
Then the Cartesian product £(G) x E(G/N), endowed with the diagonal action
g(z,y) = (9z, gy), is also a universal example for the proper actions of G.

Proof. £(G) x £(G/N) is a universal example for G x G/N by Lemma f.1]
Because G can be seen as a closed subgroup of G x G/N via the map g — (g, g),
the result follows from Lemma @ O

The main advantage of taking £(G) x £(G/N) as a universal example for the
proper actions of G comes from the fact that the simplicial structure of £(G/N)
allows us to use induction arguments on the dimension of simplices and to
“compress” to smaller subgroups.
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REMARK 5.4. In what follows we will denote by o the projection of £(G) x
E(G/N) onto the second factor £(G/N). Moreover, if we restrict the diagonal
G-action on £(G) x E(G/N) to N, the quotient space N\(E(G) x E(G/N))
can be identified with (N\E(G)) x E(G/N), and we will always denote by po
the second projection of (N\E(G)) x E(G/N) onto E(G/N). Note that by the
universal property of E(G/N), pa : N\(E(G) x E(G/N)) — E(G/N) is the
unique (up to G/N-equivariant homotopy) continuous G /N-equivariant map.
We are now using £(G) x £(G/N) to compute the topological K-theory of G.
We start with

DEFINITION 5.5. Let Y be a G/N-compact subset of £(G/N). Then we define
K!°P(Y)(G; B) to be the inductive limit

K (Y)(G; B) = lim KK (Co(X), B),
over all G-compact subspaces X of £(G) x £(G/N) which satisfy mo(X) =Y.

LEMMA 5.6. Assume that G/N has a compact open subgroup and that E(G/N)
has the simplicial structure described in Proposition @ Let F denote the fam-
ily of subsets Y of E(G/N) such that'Y is the G/N -saturation of a finite union
of simplices of E(G/N). Then the topological K-theory of G with coefficients
in the G-algebra B can be computed by the formula

K\ (G5 B) = fm K (Y)(G; B).

Proof. Using £(G) x E(G/N) as a realization of the universal example for
the proper actions of G, K!°P(G;B) can be computed as K!°P°(G;B) =
limy KK¢ (CO(Z),B), where Z runs through the family of G-compact sub-
sets of £(G) x E(G/N). Clearly, any such Z is contained in a G-compact
subset X of £(G) x £(G/N) satisfying m3(X) = Y for some Y € F: Choose
any Y € F such that m(Z) C Y. Y can be written as ¥ = G/N - K,
where K is a compact subset of £(G/N). Take any point z in £(G) and
put X =ZUG- ({z} x K) C E(G) x E(G/N). dJ

To each piece of the above decomposition of K!°P(G; B) via the elements Y € F
corresponds a piece of the partial assembly map for (G, N): If Y is a G-compact
subset of £(G/N) and X is a G-compact subset of £(G) x E(G/N) (viewed as a
universal example for the proper actions of G) such that m5(X) =Y, we obtain
from Definition @ a well defined morphism

pyB[X] : KKS(Co(X), B) — KK (Co(Y), B %, N)

(note that the map F : N\E(G) — E(G/N) of Definition is given by
the projection py : N\(E(G) x £(G/N)) — £(G/N), and that pa(X) = Y).
It follows from Lemma that the maps ,u%’g[X | commute with the maps
induced by taking inclusions. Thus we may define
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DEFINITION 5.7. For any G/N-compact subset Y of £(G/N) we define
PSR Y) KPPV (G B) — KKSN (Co(Y), B %, N)
as the map which is obtained inductively from the morphisms

G,
HN,g[X]
s

KK (Co(X), B) KKSN (Co(Y), B %, N),

where X runs through all G-compact subspaces of £(G) x £(G/N) which satisty
T2 (X) =Y.

We observe that not only K!°P(G; B) but also the partial assembly map associ-
ated to (G, N) can be recovered from the decomposition described above. This
follows directly from the definitions.

LEMMA 5.8. Let N, G, £(G/N), and F be as in Lemma B.4. Then the partial
assembly map ,u%’g : K'(G; B) — K'°P(G; B %, N) of Definition [5.4 can be
computed inductively from the maps

Py B (Y) 1 KEP(Y)(Gy B) — KKSN (Co(Y), B =, N), Y €F.
In view of Lemma @, the proof of Theorem @ reduces to the proof of:

PROPOSITION 5.9. Let N, G, £(G/N) and F be as in Lemmal[5.4. Letq: G —
G/N be the quotient map and let B be any G-algebra. Assume further that for
any compact open subgroup K of G/N, the subgroup q_l(K) of G satisfies BCC
for B. Then, for any Y € F, the map

HSIY)  KOP(Y)(G; B) — KKON (Co(Y), B %, N)
is bijective.

To prove Proposition E7 we use two ingredients (which goes back to some ideas
used in [[L1], Chapter 12] and [1}, §5]). The first is to make an induction on
the maximal dimension of the simplices generating Y, using a Mayer-Vietoris
argument. For this we need a relative version of Definition E:

DEFINITION 5.10. Let Y be a G/N-compact subset of £(G/N) and let Yj
be an open (in the relative topology) G/N-equivariant subset of Y. For any
G-compact set X C &(G) x E(G/N) satisfying m(X) = Y we put Xy =
X N7y H(Yy). Consider the composition of maps

KK (Co(Xo), B) — — — = KK&Y (Co(Yo), B », N)

KK (Co(N\Xp), B x, N)

DOCUMENTA MATHEMATICA 6 (2001) 127-183



PERMANENCE PROPERTIES OF THE BAUM-CONNES CONJECTURE 155

where py : N\(E(G) x E(G/N)) — E(G/N) denotes the projection onto the
second factor and v[Xo] is as in Equation (B.1)). Using Lemma [L. we see that
these maps induce a well defined map

Sy 5 (Yo) : lim KKY (Cy(Xo), B) — KK&N (Co(Yy), B x, N),

on the inductive limit, where X runs through all G-compact subsets of £(G) x
E(G/N) which project onto Y.

REMARK 5.11. It is important to note that both, the limit
limx KK¢ (Co(Xo), B), and the map u%?ﬁ(%), only depend on the space Yj
and not on the particular choice of the G-compact set Y O Y. To see this, it is
enough to observe that, if Yy CY C Y; such that Y and Y; are G/N-compact
and Yp is open in Y7, then for any G-compact set X C £(G) x E(G/N)
with m2(X) = Y, there exists a G-compact set X; C £(G) x E(G/N) with
m(X1) = Y7 and X C X, (then Xy C X, and, conversely, if X; is given,
and if we put X = X; N WQI(Y), we get X719 C Xo).

We will make use of Definition in our Mayer-Vietoris argument. The
second ingredient for the proof of Proposition @ is a reduction argument
based on an isomorphism in KK-theory, which makes it possible to simplify
the group KKS’N (CO(YO),B X, N)7 if Yy, as a G-space, is induced from an
open Ebgroup of G. The following characterization of induced spaces is taken
from |d]:

PROPOSITION 5.12 (cF. [[l, COROLLARY 2]). Let Y be a locally compact G-
space and let C' be a closed subgroup of G. Then Y is G-homeomorphic to
an induced space G x¢o T, for some C-space T, if and only if there exists a
continuous G-equivariant map p : Y — G/C. In that case, the C-space T can
be chosen as T = p~t({eC}) C Y, and a G-homeomorphism is given by the
mapping G xc T — Y;[(s,2)] — sz.

REMARK 5.13. Assume that G/N has a compact open subgroup and that
£(G/N) has the simplicial structure of Proposition p.3. By part (ii) of that
proposition, the above characterization of induced spaces shows immediately
that any subspace Z of £(G) x £(G/N) which projects onto the G-saturation

of the interior § of a simplex S of E(G/N) is an induced space Z = G x¢ T,

where C is the stabilizer of S under the action of G and T' = 7, * (§) NZ. Since
the action of G/N on £(G/N) is continuous, simplicial, and proper, C is an
open subgroup of G and C/N is a compact subgroup of G/N.

One of the basic ideas of the proof of Theorem @ is to “compress” to the open
subgroup C' C G of the above remark. For this we want to use a more general
compression isomorphism in twisted equivariant KK-theory, which we are now
going to describe.

So assume that C is an open subgroup of G containing the closed normal
subgroup N of G, and let A be a (C, N)-algebra. Let IndS A denote the
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induced algebra of A. Then Ind$ A is a (G, N)-algebra in a canonical way: If
T: N — UM(A) is the twist for the original C-action on A, then the twist
Ind7 : N — UM (Ind$ A) for the induced G-action on Ind$ A is given by the
formula

(Ind7, - F)(9) = 7g-1ng - F9), F€ Indg A.

Since C' is open in G, there exists a canonical (C, N)-equivariant embedding
ia:A— Indg A, given by

—1 .
. _Jg7(a) ifgeC;
(a@)={" @ 15
For any (G, N)-algebra D, the compression homomorphism

comp@ : KK&N (Indg A, D) — KKZN (4, D),

is then defined as the composition

T SG Z*
KKSY (nd 4, D) "= KKOY (Indg A, D) 4 KKV (4, D).

It is shown in [[f] (extending earlier results of [[L1] and [1])) that the compression
map is an isomorphism if N = {e} and C is a compact open subgroup of G.
But for our purposes it is necessary to get rid of these assumptions. Thanks to
a recent result of Ralf Meyer, this is indeed possible:

PROPOSITION 5.14. The map
comp@ : KKV (Ind& A, D) — KKV (4, D)
is an isomorphism.

Proof. We first note that the result is invariant under passing to Morita equiv-
alent twisted actions in both variables: First, if we replace D by a Morita
equivalent (G, N)-algebra D', say, and if y € KKOG’N(D7 D’) is the correspond-
ing invertible element, then the statement follows from the commutativity of
the diagram

compg
_—

KKSN (Indg A4, D)

'®yl% %l-@resg(y)

KKSN(A, D)

1 G
KKV (Indg A, D) =25 KKOV(4, D).

Secondly, if we replace A by a Morita equivalent (C, N)-algebra A’, and if
T € KKOC ’N(A’ , A) denotes the corresponding invertible element, the statement
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follows from the commutativity of

comp&
E—

KK (Indg A, D)
ig(x)e@i% %lw@

KKSN(A, D)

com g
KK (Indg A', D) =% KKSN (4, D),

which follows from the equation [iy] ® resg (i%&(z)) = =z @ [ia] in
KKSN (A, IndS A).

Since every twisted action of (G, N) (resp. (C, N)) is Morita equivalent to an
ordinary action of G/N (resp. C/N) by [L0, Theorem 1], it follows from the
results of [, §3] that we may assume without loss of generality that N = {e}
and all actions are untwisted. Moreover, since an action « : C — Aut(A) is
Morita equivalent to the stabilized action a @ Ad X : C — Aut (A® K(L*(C))),
where A denotes the left regular representation of C' (a Morita equivalence is
given by (A ® L2(C),a ® X)), we can use [d, Proposition 3.2] in order to
assume without loss of generality that every element o € KKC(A, D) can be
represented by a Kasparov triple (€, ®,T), such that ®(A)E = £ and such that
T is a C-equivariant operator on £. Moreover, by [, Proposition 3.4], we
can also assume that the homotopies between equivalent triples have the same
properties.

Using these reductions, we can now follow the constructions of [f, Lemma 4.11]
(see also [R1) to build an inverse

inf& : KKY (A, D) — KK%(Ind§ A, D)

for the compression homomorphism compg: Let a € KKf(A,D) be repre-
sented by a Kasparov triple (£, ®,T) with the properties as described above.
Consider the complex vector space E consisting of all continuous functions
¢ G — &£ such that

* &(gc) = c1(€(g)) forall g € G, c € C;
e the map gC +— ||£(g)|| has finite support in G/C.

Then E becomes a G-equivariant pre-Hilbert D-module by defining the D-
valued inner product, the right D-action on E, and the action of G on E by

Emp =Y g(&9)n(9)p), (£-d)(g)=£(g) g '(d), and

geG/C

(9-9(g) =¢g7 ),

for all g,¢' € G, {,n € E and d € D. Let {f denote the completion of £ and
define ® : Ind% A — £(€) and an operator T' € L(£) by

(B(F) - €)(9) = 2(F(9)) - (£(9)) and (T¢€)(g) = T(£(g)),
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for F € Ind& A and ¢ € E. We want to define
infS ([(€,®, 7)) = [(£, &, T)] € KKE (Indf A, D). (5.1)

For this we first have to show that (f:' &, T ) is a Kasparov triple in
EC(Ind& A, D). Since T is clearly G-equivariant, it is enough to check that
[T, ®(F)],(T? = 1)®(F), and (T* — T)®(F) are compact operators on & for all
Fe Indg A. Since T is G-equivariant, we may replace F by any translate of
it, and since the finite sums of the translates of the elements of the form i4(a),
a € A, are dense in IndS A, we may even assume that F = i4(a) for some
a € A. Now observe that £ embeds (C-equivariantly) as a direct summand of
£ via . . o

(iE(w))(g) = {g O(w) 1f§ Z 07

This induces a corresponding embedding ix(g) @ K(£) — K(€), and it fol-
lows directly from the formulas that [T, ®(i4(a))] = ixce) ([T, ®(a)]), (T% —
D®(ia(a)) = ixe) ((T?~1)®(a)), and (T*=T)®(ia(a)) = ix(e) (T*~T)2(a)),

and hence all three elements are in K(€). Since the assignment (£,®,T) —
(S~ , é, T) preserves homotopy (we just apply the same construction to a homo-
topy), it is now clear that (@) determines a well defined map in KK-theory.
It is easy to check that compgoinfg is the identity on KK%(A, D): Write
E=¢& & F, with respect to the C-equivariant embedding igc : & — € consid-
ered above. Then show that ® o i, decomposes as ® @0 under the above
decomposition of &€, from which it follows that comnginfg (€, @,1)) =
[(57 o, T)} @[(-7:7 0, T)] = [(53 P, T)} € KKC(Av D)

Conversely, to see that inf¢ o comp§ = idKKG(Indg A,p), We start with a Kas-
parov triple (F, U, S) representing a class in KKG(Indg A, D). Passing to the
stabilization A ® K(L?(Q)), if necessary (equipped with action a ® Ad \g), we
can use the equation Ind5 (ARK(L*(G))) = (Indg A)®K(L*(G)) in order to
apply Meyer’s result [@, Proposition 3.2] to the induced algebra Indg A. Thus
we may assume without loss of generality that

(1) ¥(Ind§ A)F = F, and
(2) the operator S € L(F) is G-equivariant.

We can use (1) to define a family {p; | ¢ € G/C} of projections on F by
pg(V(F)E) = U(F|ye)E, for F € Ind% A. We may then assume additionally
that

(3) pgS = Spy for all g € G/C.

In fact, if S does not satisfy this condition, then we pass to the compact per-
turbation S" = 37,5/ cPySpy of S, which then satisfies (1)-(3) (to see that
S’ is a compact perturbation of S, i.e., that (S — S)U(F) € K(F) for all
F € Ind§ A, one first observes that (S — S")U(F) = >cc(S —pS)¥(Flyc),
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where the sum converges in the norm topology, and then one uses the com-
pactness of [S, U(F'|,c)] to see that each summand is a compact operator).
Using these properties, we easily check that (£, ®,T) := (peF, peUpe, peSpe)
is a representative for compg([}' , U, S]). A straightforward computation then

shows that R
0:£—F; 0= Y g)
geGq/C
is an isomorphism which intertwines ® with ¥ and T with S. O

The main reduction argument for the proof of Proposition is contained in
the following lemma. We resume the situation of Lemma p.{, i.e., we assume
that G/N has a compact open subgroup, and £(G/N) has the structure of a
simplicial complex as in Proposition .3, Moreover, for a simplex S of £(G/N)
we let § denote its interior, n its dimension and C' the open subgroup of G
which stabilizes S (with respect to the inflated action of G on E(G/N)).

LEMMA 5.15. For any simplex S of E(G/N), let Y € F be the G-saturation

of S in E(G/N), and let Yy be the open subset of Y generated by S under the
action of G. Let X be a G-compact subspace of E(G) x E(G/N) such that
m(X) =Y, and let Xo be the open subset of X defined by Xo = X N7~ 1(Yp).
Then:

(i) After enlarging X, if necessary, we may assume that there exists a C-
compact subset T of E(G) such that X is G-homeomorphic to the induced

space G X ¢ (T'x 5‘)

(ii) For every G-algebra B, the diagram

G,N
KKS (Co(Xo).B) 250 KK (Co(¥), B xr )
Compgl% glcornpg
pSRIT XS]

KK¢ (Co(Tx S), B) KK (Co(S), B %, N)

5®i% EJ,B@

C.N
KKS,, (Co(T),B) 2 KKSN(C, B x, N)

commutes, where § € KK,, (C,Co(R™)) denotes the Bott element.

Proof. Since S generates Y as a G-space, we can choose a compact subset
L C &(G) x S such that L generates X as a G-space and such that mo(L) = S.
Let T = C - 71 (L), where 711 : £(G) x E(G/N) — £(G) denotes the projection
on the first factor, and let X' = G - (T x S). Then X C X', X’ is G-compact,
and X, = G x¢ (Tx S) by Remark F.13 Thus, replacing X by X' gives (i).
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For the proof of (ii), first note that @ can be seen as an element of

KKSY ((C,Co(é”)) because the action of C on § is trivial and § is homeo-
morphic to R™. To see the commutativity of the upper square of the diagram,
we first have to introduce some notation:

o i : Co(Tx §) — Cp(Xp) and ig : C’o(é‘) — Cy(Yp) denote the canonical
inclusions (recall that because C is open in G, § and T'x § are open
subsets of Y and X respectively).

e g1 : Co(Yy) — Co(N\Xp) and ¢ : C’o(g‘) — Co(N\(T'x 5’)) are
the homomorphisms induced by the second projection py : N\(E(G) x
E(G/N)) — E(G/N) (note that the restrictions of ps to N\ X — Y; and

to N\(T'x §) — S are proper maps).

The corresponding elements in the various equivariant KK-groups are de-
. .. C,N C,N &
noted by the same letters. Using the definitions of yyp[Xol, py p[T* 9]

and compg (see Definition and Proposition above), we get for all
a € KKS (Cy(Xo), B):

Nz(/\},g [T'x é] o compg(a) = ¢2 ® AiNa N ® jfé})r(il @ resg(a)).

xS,

On the other hand we have
comp@ opy [Xo)(@) = ia @ res (1 © ALy ® 3l ,(a)).

But it is clear from Equation ([L1) that resg(A)G(’UJYN) is nothing but A)C(’O]YN.

Using the fact that resg(j{A;} L) = jg} (resg(a)) (cf. B, (2) Remark 4.6]),
we note that the commutativity of the upper square of the diagram reduces to
the equality:

. G C,N _ C,N N s

ia @ resi(a) @ ATy = @ @ A7, @R (i),
which follows from Lemma IE
To see the commutativity of the lower square of the diagram, we first observe
that, since N (as a subgroup of C') acts trivially on 5’, we have
%/ ACN _ x(AC,N N _
pz(ATX§7N> = Uco(g) (pQ(AT,N)) and J{et,r (UC(T) (ﬁ)) = UC(T)xN(ﬁ)a
where for any (C, N)-algebra D, op : KKV (A, B) - KK (A ® D, B® D)
denotes the external tensor product operator. Using this and the commutativ-
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o

ity of the Kasparov product over C, we compute for o € KKiC’N(CO (T'x S),B):

C, * C, .
NN,% [T](B® ) = p3 (AT,%) Qc(TyxN Jf\é},r (UCo(T) (8) ®CO(TX§) O‘)

I
S

5(ATN) @ormyan (9co(myn(5)) B oo (Tx 8y (40,0 ()
PATN) 9 B) O oo (i80.0()

B ®c pS(A%xD B Co(Tx &) N (0. ()

B®e, 3 Ty PATN)) @ gy (05.0()

* C,N -N
®CO(§) (pz(ATxg,N) ®C’0(T><§)>4N (]{6}77,(05)))

@ ug BT 5)(a).

|
N

I
@ =

O

In what follows next, we still assume that G/N has a compact open subgroup,
and that £(G/N) has the structure of a simplicial complex. As before, F
denotes the family of G-saturations of a finite union of simplices in £(G/N).

PROPOSITION 5.16. Let B be a G-algebra such that for every compact subgroup
K of G/N the group K = q~*(K) C G satisfies BCC for B. LetY € F and let
W be a finite set of simplices whose union generates Y as a G/N-space. Define
dim(Y') to be the highest dimension of simplices in W and let Yo C E(G/N)
be the G /N -saturation of the interiors of the simplices of dimension dim(Y') in
w.

(i) Assume that dim(Y') =n > 0. Then the partial assembly map
sy 5 (Yo) - li)r(nKK*G (Co(Xo), B) — KK (Cy(Yo), B x, N)

of Definition is bijective (recall that the limit is taken over the G-
compact subsets X of E(G) x E(G/N) which satisfy m2(X) =Y and
Xo=XNnny (Yp))

(ii) Assume dim(Y) = 0. Then the partial assembly map
Py : lim KKY (Cy(X), B) — KK&N (Co(Y), B %, N)

of Definition @ is bijective.

Proof. To show that ([) holds, note first that Y; is a finite union of disjoint

spaces, each being the G-saturation of the interior S of only one simplex S in
E(G/N). We can therefore assume that Y is the G-saturation of S. It is not
hard to check that the diagram of Lemma is compatible with taking the
inductive limit over the G-compact subsets X of £(G) x £(G/N) which satisfy
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m2(X) = Y. Moreover, by part (i) of Lemma [.15], it follows that taking the
limits over all Xo = X N7, '(Yp) such that X projects onto Y is the same

as taking the limit over the sets G x¢ (T'x ,%’), where T' runs through the C-
compact subsets of £(G). Thus, taking the limit over T of the diagram in part

(ii) of Lemma gives:

limyx KK§ (Co(Xo), B) KKSN (Co(G/C), B %, N)

=| |=

G,N
ﬂN,B<Y>
-

limy KKS, ,,(Co(T), B) KK (C, B x, N)
Kih.(C; B) ———  K(C/N;Bx, N),
KN B

where the first upper vertical arrows are given by the compositions
Bottocompg. We now use the assumption that C' satisfies BCC for B:
Since C/N is compact (and thus satisfies BCC), Proposition B.g implies
that the partial assembly map u%ﬁ» is a bijection. The above diagram then
completes the proof of part (ﬂ) of the proposition.

For (E), the same argument applies, starting from the fact that Y is a finite
union of disjoint “induced spaces” G/N -z = G/C, where = denotes a vertex of
E(G/N) and C its stabilizer under the action of G. No Bott map (and thus no
dimension shift) is required to get the analogue of the above diagram in this
case. O

As we have already suggested, we are going to use Proposition for an
induction argument on the maximal dimension of the simplices involved. To
do this, we need to be able to put the above maps into a six-term exact sequence
in KK-theory, namely the Mayer-Vietoris sequence associated to the inclusion
Y() — Y.

LEMMA 5.17. Let Y, n = dim(Y), and Yy be as in Proposition [5.16. Assume
further that n > 0. Then Yy is a nonempty open subset of Y and Y1 =Y \ Y}
is an element of F and satisfies dim(Y7) = n — 1. Furthermore, for any G-

compact subset X of E(G) x E(G/N) such that mo(X) =Y, we write Xo =
XNy H(Yy) and X1 = X Ny (Y1), Then we get two equivariant ezact
sequences of commutative C*-algebras:

0: OHCO(Xo)HCO(X)—)Co(Xl)—?O and

d: OHCO(Y()) HCO(Y) *)C()(Yl) — 0

which determine elements [0) € KK¢ (Co(X1),Co(Xo)) and [d] €
KK¢ (Co(Y1),Co(Yo)) such that

) @A N @iy . (18]) = [d @3] @A, y] € KK (Co(Y1), Co(Xo) @ N).
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Proof. The existence of [6] € KK¢ (Co(X1),Co(Xo)) and [d] €
KK¢ (Co(Y1),Co(Yy)) is a particular case of [[L§, Corollary of Proposition 6.2].
For the equation, we first consider the extensions

d: 0 —— CO(YO) — Oo(Y) — Co(Yl) — 0,

J/p; lp; J/p;

Applying [P3, Lemma 1.5] to this diagram implies that [p3] ® [on] = [d] @ [p3] €
KKS (Co(Y1),Co(N\Xo)). Thus, it is enough to check that

AN @3t (18]) = (O] @ [AG ] € KK (Co(N\X1), Co(Xo) % N).
(5.2)

According to [l, Remarque 7.5, (2)], [6n5] and [6] are obtained from the Bott
element 3 € KK; (C, Cy(]0,1[)). To be more precise, recall from H, §19.5] that
if

c:0-J—>A—-A/J—0

is a semi-split short exact sequence of C*-algebras (i.e., there exists a completely
positive section ¢ : A/J — A), then the canonical embedding

e:J — Cq:=0Co([0,1[,4)/Co(]0,1[, J)

determines a KK-equivalence [e] € KK(J,Cy). The same computations show
that if the above short exact sequence is equivariant with respect to an action
of a group G and if ¢ can be chosen to be equivariant as well, then e : J —
Cy == Co([0,1[, A)/C(]0,1[, J) determines a KK-equivalence [e] € KK§ (J,C,)
(where G acts trivially on [0, 1]). Moreover, if we also consider the canonical
inclusion

i:Co(]0,1[,A/J) — Cy,

then it follows from [f], Remarque 7.5, (2)] that the element [c] € KK (A/J, J)
coming from any equivariantly semi-split short exact sequence as above satisfies
the equation

] @ [c] = 0a/5(8) @ [i]. (5.3)

We want to apply this to the short exact sequences  and J . For this define Z
by Z = (X x [0,1[) \ (X0x]0,1[). Then Cy(Z) is the algebra C, correspond-
ing to the extension d, and Cy(IN\Z) becomes the substitute for Cy with respect
to the extension dy. Let e : Cp(Xo) — Co(Z) and ey : Co(N\Xo) — Co(N\2)
denote the canonical inclusions (which, by the above discussion, are KK-
equivalences) and let ¢ and ¢y denote the canonical inclusions of Cy (X 1x]0, 1[)
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and Co(N\(X1x]0,1[)) into Cy(Z) and Co(N\Z), respectively. Using this no-
tation we now compute

AT N ® 506y . (0)) = [y @ ATy
& AT @i (8] @ [e]) = 6] @ AS Yy @ ity . (le)
& AN @il (Bl@ ) =[x @ en] @ AZY , by Lemma E
< A?(INN ® j{e} (ocoxn)(B) ®@[i]) = ocy(v\x)(B) ® [ZN] ® AZ ~ » by (B3
= A?QNN ® j{ey r(0coxn) (8) @ [i]) = acynix) () ® Xlx 01N ® j{ey - ([i])

where the last line uses Lemma [L.J. Since G' acts trivially on ]0, 1[, it follows
that

G,N G,N
AX1 x]0,1[N = ¢, <]071[) (AXl,N)' (5.4)

On the other hand, since 8 € KK; (C, Cy(]0,1[)) (inflated to the various equiv-
ariant KK-groups), it follows that

jfve}aT(o.CO(Xl)(ﬁ)) = UCO(XI)NN(ﬁ)' (55)

Using (5.4) and (F.]), the above computation shows that it is
enough to prove that (Ag’NN ® ocyxxn () @ ]{J\Q}T(M) is equal to

(ecomnx) (B) ® ocygoap (A% W) @4y (i) to get Equation (B.d). Using
Kasparov’s notations, this becomes

(AGNy @ B)3f, () = (8 ®c AL )iy . (i),

which is a consequence of the commutativity of the Kasparov product over C
(see [[[4, Theorem 2.14]). This finishes the proof. O

We are now able to complete the proof of Proposition @ This will also
complete the proof of Theorem @ since, as noted earlier, the theorem is a
consequence of Proposition @ and Lemma @

Proof of Proposition @ We are going to make an mductlon on the dimension
of Y € F. Let Y € F such that dim(Y) = 0. Then MN DY) is bijective by (i)
of Proposition .

Let n be an arbitrary non-negative integer, and assume that ,u%’ﬁ(Z ) is bijec-
tive for all Z € F such that dim(Z) < n. 7

Take Y € F such that dim(Y) = n + 1, and let W be a finite set of simplices
in £(G/N) which generate Y under the action of G. Define Yy to be the G-
saturation of the union of the interiors of the simplices of dimension n+1 in W.
Then Yy is open in Y and Y7 = Y \ Y] is an element of F which has dimension
less or equal to n.

Consider any G-compact subset X of £(G) x E(G/N) which satisfies m3(X) =Y
and put Xo = X N7y ' (Yp) and X; = X Ny ' (Y1). Using Lemma p.17, we
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obtain two long exact sequences in equivariant KK-theory, where the boundary
maps are given by Kasparov product with the elements [§] and [d], respectively.
Using [@, Lemma 1.5] we see that the sequence for X is compatible with taking
inclusions of G-compact sets. Thus we can form the inductive limit over the
G-compact subsets X of £(G) x £(G/N) which satisfy m2(X) =Y, to obtain a
diagram

T T

th KKH—l (CO(XI) B) —>KK (Co(Yl) B X N)

T 1 (Yo) G.N T

limy KK{ (Co(Xo), B) ———— KKV (Co(Yp), B %, N)
T s (Y) a.N T

llmeK (CO ) +>KK1- ’ (Co(Y),B ><1TN)
T ;U'N B<Y1> T

limy KK{ (Co(X1), B) ————KK{"" (Co(Y1), B %, N)
T HG,II;’(},) T

limx KK&., (Co(Xo), B) ——"> KKV (Co(Yo), B i, N)

f f

in which the vertical sequences are exact. Using Lemma , it follows from the
definition of the horizontal maps that the diagram commutes. By the induction
hypothesis, the two horizontal arrows corresponding to Y7 are bijective, and
part (i) of Proposition ensures that those corresponding to Yy are also
bijective. Thus, it follows from the Five Lemma that u%’ﬁ(i@ is bijective,
too. O

6 PROOF OF THE INDUCTION ISOMORPHISM

In this section we give the proof of the bijectivity of the induction homomor-
phism as stated in Theorem P.J. For convenience, let’s restate the theorem:

THEOREM @ Let H be a closed subgroup of a group G, and let B be an
H-algebra. Then the map Ind$ : K'°P(H; B) — K'°P(G;Ind%, B) is an iso-
morphism.

As in the proof of Theorem B.d (see §5), we will use a special realization of
the universal proper space for G to obtain a certain simplicial structure which
allows an induction argument based on excision. In fact, if Gy denotes the
connected component of the identity in G, then G/Gj is a totally disconnected
group, and therefore has a compact open subgroup. Thus, by Proposition
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b.4, there exists a realization of £(G/Gy) as a simplicial complex. If £(G) is
any realization of the universal proper G-space, then, by Lemma , E(GQ) x
E(G/Gy) equipped with the diagonal G-action is also a universal proper G-
space, which we will use throughout this section to compute the topological
K-theories of G and H.

The strategy used in the previous section will allow us to reduce the problem of
the bijectivity of the induction homomorphism to the case of almost connected
groups. But by Kasparov’s work, every almost connected group has a y-element
(see Definition and Remark @ So, as a first step, we start with giving
the proof under the extra condition that G has a y-element. For this we have
to use the following general lemma about the image of the assembly map in
the presence of a vy-element for GG. Note that this lemma is well known to the
experts (it is implicitly contained in the work of Kasparov and Tu [[L3], [L4, R3]).
However, it seems that there exist no direct references. Thus, for the reader’s
convenience, we present a short argument building on [J, Proposition 5.23].

LEMMA 6.1. Assume that G has a y-element v = n®4 D € KKY(C,C) (see
Definition B} Then, for every G-algebra B, the assembly map induces an
isomorphism between K'°P(G; B) and the ~y-part

HK(B 1, G)) = Ku(B %, G) @ (75(7)) € KulB %, G)
of Ku(B %, G).

Proof. We will use the facts that the assembly map p¢ p is injective, whenever
G has a v-element ([R5, Proposition 5.23]) and that pg p is surjective if D
is a proper G-algebra (which follows from the descent isomorphism of [@])
It follows from part (2) of Definition [ (see [, Remark 6.4]) that the right
Kasparov product with o5(v) determines the identity map on KK%(Cy(X), B)
for every proper G-space X. Thus, v acts as the identity on K!°°(G; B) via
right Kasparov product. This easily implies that the image of the assembly
map g, g lies in the y-part of K, (B %, G), and we get a commutative diagram

KP(GB) 2920 q6(K.(B %, G)

-®nl L@jf (o5m)

KP(Gi B @A) L9220, a6 (K, (Bo A) %, G))

.®Dl L@j,f;(aB(D))

KOP(GiB) 92 g(Ku(B %, G)).

Since B® A is a proper G-algebra, the middle horizontal row is a bijection, and,
by the above discussion, the composition of the left-hand side vertical rows is
the identity on K!°P(G; B). Finally, since + is an idempotent in KK(C);(C, C) by
[@, Proposition 5.20], the composition of the right-hand side vertical arrows
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is the identity of (K. (B %, G)). Now a straightforward diagram chase gives
the result. O

LEMMA 6.2. Let H be a closed subgroup of G and assume that G has a ~y-
element. Then, for every G-algebra B, the induction homomorphism Indg :
K'P(H; B) — K'°P(G;Ind$ B) is bijective.

Proof. Let y¢ be the y-element of G. Then vy = res$(yg) is the y-element
of H by [B, Remark 6.4]. Let 2 € KK, ((Ind§ B) x, G, B x, H) denote
the invertible element implementing the canonical Morita equivalence between
(Ind% B) %, G and B x, H. As was already noted for the proof of [, Propo-
sition 6.9], the corollary on page 176 of [[l4] and item (2) of [[[5, Theorem 1 of
§5] imply:

i (omag 5(16)) = 2 @pu,m 3 (08(vH)) @B, " (6.1)

Together with Proposition E, this implies that the two squares of the following
diagram are commutative:

€]
Ind%

K'*P(H; B) K'P(G: Ind§, B)

HH,BJ/ luG,Inng

K.(Bx, H) 225 K, ((Ind$ B) x, G)
®iF (asmH))J L@y'? (71006 5(70))
i1 (Ku(B ey H)) —— VG(K* ((Ind$, B) x, G)),

where vy (K.(B %, H)) (resp. 'yg(K* ((Indg B) %, G))) denotes the y-part

of K,.(B %, H) (resp. K, ((Ind§} B) x, G)). But Lemma [.1] implies that the
compositions of the vertical arrows are isomorphisms. Further, since the middle
row of the above diagram is an isomorphism, Equation also implies that
the bottom arrow is an isomorphism. But then the top arrow has to be an
isomorphism, too. O

As noted above, our aim is to reduce the proof of the general result of The-
orem @ to the special case where G is almost connected, in which case the
result follows from Lemma @ We start the reduction argument with some
preliminaries:

LEMMA 6.3. Let H be a closed subgroup of G, let C be an open subgroup of
G, and let B be an H-algebra. For each § in the double coset space H\G/C
(which is a discrete countable space) we put C4, = CNg~'Hg C C, and we
view B as a CY;-algebra by putting g thg-b:=h-b, h€ H,bc B. Then the
induced algebra Indg B is C-equivariantly isomorphic to EBQGH\G/C Indg?{ B.
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Similarly, if £ is an H-equivariant B-Hilbert module, there is a C-equivariant
isomorphism between Indg &, viewed as a C-equivariant Indg B-Hilbert mod-
ule, and the @Indg% B-Hilbert module ;e /o Indg% £.

Proof. Chose a set of representatives I' = {go, g1, .-, In, ...} for H\G/C in
G. By definition, Ind$ B is the subalgebra of Cy(G,B) (the C*-algebra of
continuous bounded functions on G with values in B) consisting of all functions
f which satisfy the conditions:

(i) f(st)=t"1- f(s) for any s € G and t € H,
(ii) sH — ||f(s)|| is an element of Co(G/H).

The G action is given by (s- f)(t) = f(s~'t), for s,t € G.
For f in Indg B and g € I', we define ¢y : Indg B — Indg% B by

(¢5(f)(s) =g ' (f(sg™")), forallseC.

It is straightforward to check that ¢; is a well defined C-equivariant *-
homomorphism. Note that for any f in Inng and any € > 0, there is a
compact set K C G/H such that, for all s in G, s belongs to K if || f(s)[| > €/2.
Thus, if we denote by K the image of K~! in H\G/C, we see that ||¢;(f)|] <€
whenever § does not belong to the compact set K. Hence the sequence
O(f) = (%(f))ger belongs to D;cma/c Indg% B. Tt is readily seen that
this defines an isomorphism ® between Ind% B and Dicmc/c Il’ldg?{ B: If
A= (Agger € Bjema/ondgs B, we define ¥(A) € Cy(G, B) by W(M)(s) =
h=1g )\, (¢), whenever s is equal to cg;h with g; € T. Then ¥ takes values in
Indfl B and V¥ is inverse to ®.

A similar computation implies the decomposition Indfl ExP InnggJ E. O

LEMMA 6.4. Let H be a closed subgroup of G, let C be an open subgroup of G,
and let A and B be two H-algebras. For g € G let

Ag Indgg[ A— @ Indg%/ A and pg: @ Indg
§'€eH\G/C §'e€eH\G/C

;B —Tndg, B

H

denote the canonical C-equivariant inclusions and projections, respectively.
Then, using the direct sum decomposition provided by Lemma @, the diagram

iG
KK (A, B) S SN KK (Ind$ A, Ind$ B)
resgg{l lresg
c? c c c
KK, # (A, B) KK (@ ndg, A, @ Indg,, B)

.C *
‘o l lpg
C C C C
KK¢ (Indgs A, Indgs B) — KKY (@ Ind o A, Indgy B)

g,*
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commutes (here the restriction resp, : KK?(A,B) — KK # (A, B) is defined
H

by first restricting to HNgCg~' = gC% g™ and then identifying this group with

C¥, wvia conjugation). Moreover, if Hg'C # HgC, then [\,] ® res& oi%(a) ®

[pg] = 0 for all a € KKZ (A, B).

Proof. Note that for the proof of the commutativity of the above diagram we
may replace A by any H-algebra A’ which is H-equivariantly Morita equivalent
to A (a similar statement holds for B, but we only need this for A). This follows
easily from the fact that any H-equivariant Morita equivalence X between two
H-algebras A and A’ induces to a G-equivariant Morita equivalence IndeX
between Indg A and Indg A’; which by Lemma @ also has a C-equivariant
direct sum decomposition. Using this one checks that each map in the above
diagram commutes with the respective Morita equivalences.

Replacing A by the Morita equivalent H-algebra A ® K(L?(H)), if necessary
(with action given by o ® Ad A, where o : H — Aut(A) denotes the given
action on A and A denotes the right regular representation of H), we can
now use Meyer’s result [@, Proposition 3.2] in order to assume that every
a e KKZ (A, B) can be represented by a Kasparov triple (£,®,T) € E(A, B)
such that ®(A)€ = £ and such that T is H-equivariant. Using the formulas
for the definitions of zg and zglg{ , respectively (see §2), it follows from the

decomposition of Indg £ as given in Lemma @ and the H-equivariance of T,
that

resg(lndge,lndgcbj)g( P mdl, & P mds, ¢, P Tg)
H\G/C H\G/C H\G/C

in E€(Ind$ A, Ind§, B), where (£,,®,,T,) denotes the cycle in ESH (A, B) ob-
tained by first restricting the H action to gCg~! N H, and then identifying
gCg~' N H with C¥ via the isomorphism given by conjugation with g. The
result now follows immediately from this decomposition. O

The next result will be extended to arbitrary groups in §7 below (see Propo-
sition [.1). We only need here the weaker version where we assume that G is
an almost connected group. As for the induction homomorphism, the proof
of the general case will be done by a reduction to this case where G is almost
connected.

LEMMA 6.5. Let G be an almost connected group and let B = lim; B; be an
inductive limit of G-algebras B;, i € I (with G-equivariant structure maps).
Then

Ki°P(G; B) = im K. (G; By),

where the isomorphism is obtained from the morphisms fi . : KI°°(G; B;) —
K'“P(G; B), which are induced by the canonical maps f; : B; — B.
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Proof. Because G is almost connected, the functor which associates to a G-
algebra the corresponding reduced crossed-product algebra is continuous with
respect to taking inductive limits (in fact this holds whenever G is an exact
group in the sense of [[L]). We also know that G has a y-element. So the lemma
is an immediate consequence of the isomorphism K;°°(G; B) = v(K.(B %, G))
of Lemma p.1] and of the continuity of K-theory ([]). O

We now come back to the proof of Theorem P.9. As noted before, we use £(G) x
E(G/Gy) as a universal example for the proper actions of G and H (see Lemmas
b.3 and R.4 above), and assume that £(G/Gy) has the simplicial structure
described in Proposition @ As mentioned before, we can do this because
G /Gy is totally disconnected and, therefore, it has a compact open subgroup.
In the following, we denote by F¢ the family of all subsets of £(G/Gj) which
are G-saturation of finite unions of simplices of £(G/Go) (cf. Lemma .4, the
subscript here is to prevent confusion between G- and H-actions).

As shown in Lemma b.6, we can use F¢ to compute K'P(G;Ind$ B) in the
following way:

Ki°P(G;Indf; B) = lim lim KK (Co(Y),Indf; B). (6.2)
ZeFg YCE(G)XZ

Y G-compact

But since £(G) x E(G/Gy) (with action restricted to H) serves also as a real-
ization of the universal example for proper H-actions, we can use F¢ also for
the computation of K!°P(H; B):

K'°P(H;B) = lim lim lim KK (Cy(X),B). (6.3)
ZeFqg YCE(G)xZ Xcy
Y G—compact X H-compact
G- X=Y

The above formulas correspond to those of Lemma @ Although these for-
mulas look a bit complicated, they offer the advantage of breaking down the
computation of the two topological K-theories into pieces which correspond to
each other via the induction morphism and on which we can do an induction
argument on the dimension dim(Z) of the elements Z € F¢.

In effect, using the above notations, note that Co(Y) = F* o Ind% (Co(X)),
where F : G xg X — &(G) x E(G/Gy) is defined by F([s,z]) = s - x.
Thus, it follows from the definition of the induction homomorphism that, on
KK (Cy(X), B), it factorizes via the diagram

*OiG
KK (Co(X), B) 21 KKS (Co(Y), Ind§ B)

| l

KI(H;B) ——  K(G;Indf B).
Ind%
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In what follows next we will simply write Indg for the map F* oig in the above
diagram. Hence, in view of formula (.3) and (f.3), the conclusion of Theorem
@ will follows from:

PROPOSITION 6.6. For each Z € Fg, the induction map Indg induces an
isomorphism

G
Ind%

lim lim KK (Co(X),B) ™ lim KK (Co(Y), Indf} B).
YCE(G)XxZ Xcy YCE(G)XZ
Y G-—compact X H-compact Y G—compact

G- X=Y

As mentioned earlier, we want to use induction on n = dim(Z). As in the
proof of Proposition @, we introduce the following notations: Z is the G/Go-
saturation of the interiors of the simplices of dimension n generating 7, Z; =
Z ~\ Zy; and we put

YOZYﬁ((‘:(G)XZO); X():XQ(E(G)XZO);
Y1:YQ(E(G)XZ1), X1:Xﬂ(5(G)><Z1)

Note that

Co(Y) = F*oTndf; (Co(X)),  Co(Yo) = F* oInd (Co(Xo)),

and  Co(Y1) = F* o Ind§ (Co(X1)),

and that we have the exact sequences:

6: 0 —— Co(Xo) I Co(X) —_— Co(Xl) —_— 0, and
d: 0 —— Co(Yo) I C()(Y) EEE— Co(Yl) — 0.

Each of these two short exact sequences gives rise to a long exact sequence
in equivariant KK-theory, which are linked by the induction homomorphisms
Ind$:
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’f ¢ (6.4)
H Indf; G,N G
KK, (Co(X1), B) ——————= KK (Co(v1), Ind§; B)
H ’r Indf G,N ¢ G
KK (Co(Xo), B) KK (Co(Ys), nd§, B)
H Indf G,N G
KK (Co(X), B) KK (Co(Y), Ind§; B)
H ¢ Indg . G.N IT a
KK (Co(X,), B) ————>1limy KK&V (Cy (Y1), Ind§; B)
H ? Indfj G,N ¢ G
KKi—l (Co(Xo), B) —— KK@—’I (C()(Yo), IndH B)
‘We need
LEMMA 6.7. The above diagram commutes.
Proof. The only slight difficulty arises at the square
Ind§
KK, (Co(X1), B) — KK, (Co(Y1),Ind% B)
51| [GE (6.5)
n G
KK (Co(Xo), B) — KK (Co(Yp), Ind§, B).

By the naturality of the boundary maps, we may assume without loss of gen-
erality that Y = G xx X (and then Y; = G xg X;, i = 0,1), and that Ind%
coincides with Kasparov’s induction i§. We then follow the constructions in
the proof of Lemma : Define the spaces

T = (X x[0,1))~(X0x]0,1[) and W = ((Gx g X)x[0,1[) ~ ((Gx g X0)%]0,1[).

Let ex : Co(Xo) — Co(T) and egx,x : Co(G xg Xo) — Co(W) denote the
canonical inclusions, and let ix and igx,x denote the canonical inclusions of
Co (X1 x]0, 1[) and CO((G x g X1)x]0, 1[) into Co(T) and Co(W), respectively.
A short computation shows that [egx, x] = i%([ex]) and [igx,x] = % ([ix])
(where H and G act trivially on [0, 1]). Moreover, we know from the discussion
in the proof of Lemma that [ex] and [egx x| are KK-equivalences and

that
lex]®[0] = 0c,(x,)(B)@[ix] and  [egx,x]®[d] = 0cy(@xpx,)(B)@icxyx];
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where 3 € KK; (C,Cy(]0,1[)) denotes the Bott-element, viewed as an element
of the equivariant KK-groups with respect to the trivial group actions. Using
the fact that zg preserves Kasparov products, we now get

leGxnx] @ [d] = 00y (axnx,)(B) @ [icxux]
=i (0c,(x1) (B) @ [ix])
= ig([ex] ®6)
= leaxnx] @i ([0])-

Since [egx 4 x| is a KK-equivalence, it follows that [d] = i%([6]), which easily
implies the commutativity of (B.5). O

We are now taking limits of Diagram (f.4): First we are taking the inductive
limit over the H-compact sets X such that X C Y and G- X =Y, and then
we take the limit over the G-compact subsets Y of £(G) x Z. As a result, we
obtain the commutative diagram

! !

G
Ind%

limy limx KK&,, (Co(X1), B) — > limy KK} (Co(Y3), Ind§} B)

f !

nd$

limy limy KK§ (Co(Xo), B) ————— limy KKV (Cy(Yo), Ind B)

f !

nd$

limy limy KK§ (Co(X), B) —————— limy KK{"" (Co(Y),Ind$; B)

f !

nd$

limy limy KK§ (Co(X;), B) ———— limy KKV (Cy (Y1), Ind% B)

! !

G
Ind%

limy limy KK | (Cy(Xo), B) ————— limy KK (Co(Yp), Ind$; B)

! !

Using the same induction argument as in the proof of Proposition of the
previous section (based on the Five Lemma), the demonstration of Proposition
@, and hence the proof of Theorem E reduces to show

LEMMA 6.8. Let Z be an element of the family Fq.
(i) If dim(Z) > 0, then the map

G
. . H IndH . G G
lim lim  KK; (Co(Xo),B) —F lim KK (Co(Yo),Indy B)
XCYy
YCE(G)xZ X H-compact YCE(G)xZ
Y G—compact G-X:Y Y G-compact
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s a bijection.

(i) If dim(Z) = 0, then the map

1 G
lim lim KK (Co(X),B) X4 lim KK (Co(Y),Ind§ B)
XCY
YCE@)XZ ol YCE(G)XZ

Y G-compact Y G-compact

G- X=Y

18 a bijection.
Proof. We will only show part (i), since part (ii) follows by almost the same (but
somewhat easier) arguments. So assume that dim(Z) > 0. By the definition of
Fa, the space Zj is a disjoint union of finitely many spaces Z§, ¢ = 1,2, ..., k,
each of the form Z} = G/Gy- é’i, where the S; are simplices of dimensions
dim(Z) of £(G/Gy). Setting Z* = G/Go - Si, Y§ =Y N (E(G/Go) x Z§) and
X§ =X NYy, we obtain finite partitions of Y and of X:

k k

Co(Y) =D Co(Yy) and Co(X) =P Co(X5).
i=1 i=1

Note that these decompositions are compatible with the morphism Indfl, SO
it is enough to give a proof of Lemma in the case where Z is the G/Gg-
saturation of a single simplex S of £(G/Gy). Further, the inductive limits over
Y are taken over the G-compact subspaces of £(G) x Z. But any such space
can be embedded in a G-compact set of the special form ¥V = G - (K x S),
where K is a compact subset of £(G). Hence, we can assume that every set Y
which appears in the formula of the inductive limit is of this special kind.
Denote by C' the stabilizer of S under the action of G/Gyp, and let C :=
¢ '(C) C G. Then

Y=G- (Kx8)=G-((C-K)xS) and Yy=Gxc ((C-K)x§).

For every double coset § € H\G/C, we consider the space
Yi=Hg-(C-K x8S).

It is a closed H-invariant subspace of Y, and any H-compact subspace X of Y
can be written as

X = Ujery X9, with X9 := X NY¥9

where Fx is a finite subset of H\G/C. Put Xg = X9NY,. We record the
fact that each X 9 is an H-compact subspace of Y9, and that X is the disjoint
union of the X§, § € Fx. As a consequence, we get

KK (Co(Xo), B) = €D KK (Co(X]). B).

JEFX
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Moreover, any H-compact subset of Y9 = Hg- (C - K x S) can be realized as
a subset of an H-compact set of the form Hg- (L x S), for L a compact subset
of C'- K satisfying C'- L = C'- K. Thus, when taking the inductive limit over
the H-compact sets X which satisfy G- X =Y, we can always enlarge X in
order to assume that for every §j € Fx, X9 = Hg- (L x S), for some compact
subset L C C' - K such that C'- L = C' - K. Moreover, it follows from this that

X{=Hg- (Lx 5‘) Thus, we obtain:

lim  KKj' (Co(Xo),B)= € lim KK/ (Co(Hg-(Lx S)),B).
XCY=G-(KxS) GgEH\G/C [cc- K
X H-compact compact
GX=Y C-L=C-K

Hence, in order to prove the first part of the lemma, it is enough to show the
bijectivity of

. . o Ind§ . o
lim @ lim KK{{Co(Hg-(Lx3)), B) = lim KK{(Co(G-(K x3)), Ind§B).
Kce(G) 9 LcCK KCE(G)

compact compact compact
C-L=C-K

(6.6)

We already noticed that Yy = G - (K'x 5‘) is canonically G-homeomorphic to
the induced space Yy = G x¢ (C - K x 5’) Correspondingly, we now check that
Xg =Hg- (Lx S’) is also an induced space. The composition

Xi=Hg-(Lx8) ™ Hg § — H/(gCg~'nH)
hg-(l,s) — hgs +— h(gCg—1NH)
is an H-equivariant map, and the pre-image of the coset gCg—1 N H of the
identity is 75 ' (g- é’) =g-(CY - Lx é’), where CY; is the group C N g 'Hyg .
Applying Proposition , we see that Xg is H-homeomorphic to the induced
space H X ycg-1np (9 (C% - Lx §)), with H-homeomorphism given by

Xg =Hg- (Lx é) —  H xycq-1nm (9 (Cf - Lx é))
hg ' (l78) = (hag : (Z,S))

Let ¢ := Botto compgg be the composition of the sequence of isomorphisms
H

0 compHg
KK/ (Co(Hg - (Lx §)),B) —— KK

Bott
BRI

9
Cu
(2

(Co(CY - Lx S), B)
KK, (Co(CY - 1), B),

where n = dim(S). Here the compression isomorphism compgg has to be
H
understood as the composition of the compression

compt c,1 s KK (Co(XT), B) — KKHIMC9 ™ (Co(g- (C - Lx §), B),
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and then making the identification
KKPM999 ™" (Cy(g - (C% - Lx §), B) =KK™ (Co(CY, - Lx §), B),

which comes from identifying C% with HNgCg~! via conjugation with g (please
compare with the definition of the restriction map in Lemma . In particular,
we regard B as a C%-algebra by setting g~ 'hg-b:=h-b for h € gCg~' N H.

By first taking the direct limit over the compact subsets L C C- K, then taking
the algebraic direct sum over the double cosets of H\G/C, and eventually
taking the inductive limit over the compact subsets K C £(G), we then obtain
an isomorphism

lim @ lim KK?(Co(X), B) 2% lim @D lim KK# (Co(C§-L), B)
- 2 i \(~M0\A0 ) ot oty i+n \WO\MH ) :
Kce(G) 9§ Lce-K Kce(g) ¥ LcC K
compact compact compact compact

C.-L=C-K C-L=C K

Note that the direct limit over K and the direct sum over § € H\G/C can be
permuted in the right-hand side term. Thus we get

: : C?—I G _ top g .
lim @  lm KK (Co(CH-L),B) = B KP(Cf:B).
Kce(a) 9€H\G/C Lco-K GJeH\G/C
compact compact
C-L=C-K

In the end, we see that the left-hand side of (f.€) is isomorphic to

D x%.(Ch:B).
GeH\G/C
On the right-hand side of (@) we have a corresponding sequence of
isomorphisms: We first consider the composition g := comp§ o Bott of the
sequence of isomorphisms

com G o
KK (Co(Yo), Ind§ B) —22€, KKE (Co(C - Kx §),Ind$; B)

Bott

KK&,, (Co(C - K),Ind§} B).

Exactly as above, taking the direct limit over the compact subsets K of £(G),
we obtain an isomorphism for the right-hand side of (f.4):

. ° . C G
lim KK{(Co(G-(Kx8)),IndF B) _¢c_ lim KK7;,(Co(C-K), Indj; B)

KCE(G) KCE(G)

compact compact
top . G
K5 (CsIndy; B)

IR
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On the other hand, we can use Lemma to see that Indg B is C-isomorphic

to the direct sum @ Indgz{ B. But C is a compact extension of Gy, so it
geEH\G/C
is almost connected . Therefore, Lemma @ implies that

KiP(C;Indf; B) = KIP(C; @ Indgy, B)= P KIP(C;Indg, B).
geEH\G/C GeH\G/C

Let us now consider the following diagram, where the top line is the map (@)

lim @ lm KK (Co(X(), B) _ma§ = HmKKE (Co(Yo), Indfj B)

Y gx.fl'cyél' Y
chl
“’Hl K% (C;Tndf; B) (6.7)
® Ki(ChB) @ K% (C;Indg, B)
cf

The columns of (f.7) are bijections. The bottom line (obtained from the induc-
tion morphisms from C¥, to C) is an isomorphism by Lemma @7 since C' has
a 7y-element. Hence, to obtain that the map in (@ is an isomorphism, and
thus to conclude the proof of the lemma, we just have to show that Diagram

(67 commutes.

For this let g be any element in G, let K be a compact subset of £(G), and let
L be a compact subset of C' - K such that C'- L =C- K. Let

Xi=Hg-(Lx §) and Yy=G x¢(C-Lx S).

For each ¢” € G let pyr : @Indggl B — Indggu B denote the canonical pro-
H

H
jection. To see that (@) commutes, we have to verify the following two state-
ments:
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(i) The diagram

KK (Cy(X7), B) Indy KK (Co(Yp), IndS, B)
Compgg l lcompg
KK (Co(CY, - Lx S), B) KK (Co(C - Kx §),nd$ B)
l@ Bott
® Bottl KK, (Co(C - K),Tnd$ B)

I
KKZC:FIg{n (CO(C?I L), B) — Kch-"rn (CO (C- K), Indgf{ B)

C
Indc?{

commutes, and
(ii) The composition

G
Ind%

KK (Cy(X0), B) —, KK (Co(Yp), Ind§, B)

compg
e

KK¢ (Co(C - Kx §),Ind$ B)

2, KKE, (Co(C - K),nd§; B)

" KKS,, (Co(C - K), ndS, B)
H

is the zero homomorphism whenever g” ¢ HgC'.

o

If 5 € KK, (C, Cy(S)) denotes the Bott-element, then the first condition is just
the equation

B ® comp& o IndG (o) @ [py] = Indggl (B® compg% (@),

for all o € KK/ (CO(Xg),B). Since C acts trivially on S, we can permute

Indg% and the product with the Bott element 5. Thus, the problem reduces
to showing that

comp o Ind% (a) ® [py] = Indg?{ ocompg?{ (). (6.8)
In order to check this equation, it is useful to introduce the following notations:
e F} is the G-equivariant map appearing in the definition of Indf[:
Fi: GxgX! — Y,c&@G) xEG/N)
lg1,hg - (I, s)] = gihg - (1,s),

o

where we used the equation X7 = Hg(Lx S).
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e 4 is the C-equivariant inclusion used to define compg
ii: C-Lx§ — Gxc(C-Lx8) =Y,
e iy is the C'Y;-equivariant inclusion in the definition of compgg
H

iy: CY%-Lx§ — X§=Hg (Lx3)
(C : l,S) = gc- (l78)7

e [ is the C-equivariant map in the definition of Indgi{

Fy: Cxey (Cf-Lx§) — C-Lx§
[e, (¢ - 1,9)] — (de-l,s).

We will also use that i5 induces a C-equivariant injection
Iy: Cxey (Cf-LxS) — Cxgg (X§)=Cxcy (Hg- (Lx S))
[c1, (e2 -1, 8)] = [c1,gc2 - (1, 8)].
and we will denote by i3 the C-equivariant inclusion
ig: CXC%Xg — GXH(X(‘()])
ezl = g7t 2l
Writing the KK-classes defined by these maps with the same letters, Equation
(6.9) becomes:

[i1] @ res¢ ([F1] ® i () ® [pg] = [F2] @ iy, ([i2] ® resiic (o).

Since [I3] = Indg%([ig]), this is equivalent to:

[i1] @ res@ ([F1]) @ resg(Ind (o)) @ [pg] = [F] ® [I5] @ Tndgs. (rescie (a).
(6.9)

A short computation shows that [i1]®@res&([F1]) = [F2]®[l2]®]i3] (just compute
the compositions of the associated *-homomorphisms). Thus, Equation (f.9)
reduces to:

[is] ® resGi(if (@) ® [pg] = iy (vesgie ().

Note now that i3 . coincides with the canonical inclusion

Ag : Indgg, Co(X§) — @Indgg Co(X§) = resG(IndG Co(XY)),
g/

of Lemma @, so that the last equality follows from the statement of that
lemma.

We now have verified statement (i). Using the above computations, the proof
of statement (ii) follows from the equation [is] ® res& (i (a)) ® [py] = 0, for
g" ¢ HgC, which is also a consequence of Lemma p.4- O
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7 CONTINUITY OF TOPOLOGICAL K-THEORY

The aim of this short section is to state and prove a generalization of Lemma
@ which is used in [ﬂ} In a similar way as in §5-6 above, we obtain the result
by using £(G) x E(G/Gy) as a universal example for the proper actions of
G, where we assume that £(G/Gy) is a simplicial complex (compare with the
discussions preceding Proposition @)

PROPOSITION 7.1. Let G be a group, let (B, fi;) be an inductive system of
G-algebras, and let B =1im B;. Then

KiP(G; B) = im K" (G; B;),

where the isomorphism is obtained from the morphisms f;. : K°P(G; B;) —
K'P(G; B) induced by the canonical maps f; : B; — B.

Proof. Let f* :1lim; K!°°(G; B;) — K!°P(G; B) be the homomorphism induced
by the morphisms f; : B; — B, using the covariance of the topological K-
theory groups as a functor on the category of G-C*-algebras and the universal
property of the inductive limit. We want to show that f* is an isomorphism.
For every proper G-space X, let

fx + lim KK (Co(X), B;) — KK? (Cy(X), B)

denote the canonical morphism on the level of X. Since the structure maps for
taking the limits over X are given by left Kasparov products and the structure
maps for taking limits over the B; are given by right Kasparov products, it
follows from the associativity of the Kasparov product that the limits can be
permuted. Thus, the map f* can be computed via the maps f% by

lign (1im KK(Co(X), By)) 25 lim KK (Co(X), B), (7.1)

where X runs through the G-compact subsets of £(G) x £(G/Gy), which we
use as a realization of the universal example for the proper actions of G.

As before, let F denote the family of all G-saturations Z of finite unions of
simplices in £(G/Gy). It follows then from Lemma [.q that

top SR — . G .
K:°?(G; B;) %1&1: h)rcn KK{ (Co(X),B;) and
top . T : G
K.°P(G; B) —%13}__11)1(11KK* (Co(X),B),

where X runs through the G-compact subsets of £(G) x Z such that m2(X) = Z,
and where 73 : £(G) x E(G/Gp) — E(G/Gy) denotes the projection onto the
second factor. Combining these formulas with (f7.1]), the result will follow if we
can show that for each Z € F the map

. . G . Ix . G
Xglgl(rchz h£n KK, (Co(X),B;) — Xg}:l(rél)xz KK, (Co(X),B) (7.2)
X G—compact X G—compact

7o (X)=2 7o (X)=2
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is an isomorphism. We write Z; for the union of the interiors § of simplices S
in Z of maximal dimension, and we put Z; = Z \ Zj,

Xo=Xn(EG)xZy) and X;=XnN(EG)x Zy).

Doing a similar, but much easier Five-Lemma argument as in the previous
sections (compare with the discussions preceding Lemma @), the result will
follow if we can show that the following two statements are true:

(i) Assume that Z is generated by a single simplex S in £(G/Gp) with
dim(S) > 0. Then

Ik,

. . a . a
lim lim KK (Cy(Xp), B;) — lim KK (Co(Xp), B
colm i + (Co(Xo), Bi) cclim + (Co(Xo), B)
X G—compact X G—compact
o (X)=2Z o (X)=2Z

is bijective.
(ii) Assume that Z is the orbit of a single vertex in £(G/Gy). Then the map
in (F.9) is bijective.

Again, the proof of (ii) is slightly easier than the proof of (i) (because we don’t
have to deal with the Bott-map), so we concentrate on (i). By the structure of
Z, we have

ZO = G/GO 5‘% (G/Go)xc ,%,
where § denotes the interior of the single simplex S generating Z and C' C

G /Gy denotes the stabilizer of S. Thus, if X is a G-compact subset of £(G) x Z

such that mo(X) = Z, then it follows from Proposition that Xo is G-
homeomorphic to the induced space G x¢ (X N w;l(é*)), where C := ¢~ (C) C

G. Enlarging X, if necessary, we may further assume that X N 7wy 1(é‘) =

C - Kx 5‘ for some compact subset K C £(G). Thus, using compression
and Bott-periodicity, and taking the limit over X, we obtain the following
commutative diagram

5

. o fxo . o
lim KK(Co(G xc(CKxS)), Bi) — ImKK(Co(G xc(CKxS)), B)

Bott o compg l% =] l Bott o Compg

5

T ek .
1%111?1KK5(00(0-K),Bi) lox, 11}?1KK§(00(C-K),B)

=| ) |=

lim K'°P(C; B;) < K!°’(C; B),

where K runs through the compact subsets of £(G). Note that the left-hand
lower vertical isomorphism is given by permuting the limits. The top horizontal
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line coincides with the map in Item (i) above. Thus, since the bottom horizontal
row is an isomorphism by Lemma @ (again, here C' is almost connected), the

result follows. O
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ABSTRACT. A tetragonal canonical curve is the complete intersection
of two divisors on a scroll. The equations can be written in ‘rolling
factors’ format. For such homogeneous ideals we give methods to
compute infinitesimal deformations. Deformations can be obstructed.
For the case of quadratic equations on the scroll we derive explicit base
equations. They are used to study extensions of tetragonal curves.
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An easy dimension count shows that not all canonical curves are hyperplane
sections of K3 surfaces. A surface with a given curve as hyperplane section is
called an extension of the curve. With this terminology, the general canonical
curve has only trivial extensions, obtained by taking a cone over the curve. In
this paper we concentrate on extensions of tetragonal curves.

The extension problem is related to deformation theory for cones. This is best
seen in terms of equations. Suppose we have coordinates (xq: -+ :x, : t) on
P"*! with the special hyperplane section given by ¢ = 0. We describe an
extension W of a variety V: f;(x;) = 0 by a system of equations Fj(z;,t) = 0
with Fj(l‘i,O) = fj(l‘l) We write Fj(l‘i,t) = fj(l‘l) + tf]/(.ifz) + -+ ajtdj,
where d; is the degree of F;. Considering (xo,...,Zn,t) as affine coordinates
on C™"t! x C we can read the equations in a different way. The equations
fj(z;) = 0 define the affine cone C(V') over V and Fj(z;,t) = 0 describes a 1-
parameter deformation of C'(V'). The corresponding infinitesimal deformation
is fj(z;) = fj(x;), which is a deformation of weight —1. Conversely, given a
1-parameter deformation F;(z;,t) = 0 of C(V'), with F; homogeneous of degree
dj, we get an extension W of V. For most of the cones considered here the
only infinitesimal deformations of negative weight have weight —1 and in that
case the versal deformation in negative weight gives a good description of all
possible extensions.
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As the number of equations typically is much larger than the codimension one
needs good ways to describe them. A prime example is a determinantal scheme
X its ideal is generated by the ¢ x ¢ minors of an r X s matrix, which gives
a compact description of the equations. Following Miles Reid we call this a
format. Canonical curves are not themselves determinantal, but they do lie on
scrolls: a k-gonal curve lies on a (k — 1)-dimensional scroll, which is given by
the minors of a 2 x (g — k + 1) matrix. For k = 3 the curve is a divisor on the
scroll, given by one bihomogeneous equation, and for kK = 4 it is a complete
intersection, given by two bihomogeneous equations. In these cases there is a
simple procedure (‘rolling factors’) to write out one resp. two sets of equations
on P9~ cutting out the curve on the scroll.

Powerful methods exist to compute infinitesimal deformations without using
explicit equations. We used them for the extension problem for hyperelliptic
curves of high degree [Stevens 1996] and trigonal canonical curves [Drewes—
Stevens 1996]. In these papers also several direct computations with the equa-
tions occur. They seem unavoidable for tetragonal curves, the subject of a
preprint by James N. Brawner [Brawner 1996]. The results of these computa-
tions do not depend on the particular way of choosing the equations cutting
out the curve on the scroll. This observation was the starting point of this
paper.

We distinguish between different types of deformations and extensions. If only
the equations on the scroll are deformed, but not the scroll itself we speak of
pure rolling factors deformations. A typical extension lies then on the pro-
jective cone over the scroll. Such a cone is a special case of a scroll of one
dimension higher. If the extension lies on a scroll which is not a cone, the
equations of the scroll are also deformed. We have a rolling factors deforma-
tion. Finally if the extension does not lie on a scroll of one dimension higher
we are in the situation of a non-scrollar deformation. Non-scrollar extensions
of tetragonal curves occur only in connection with Del Pezzo surfaces. Not ev-
ery infinitesimal deformation of a scroll gives rise to a deformation of complete
intersections on it. One needs certain lifting conditions, which are linear equa-
tions in the deformation variables of the scroll. Our first main result describes
them, depending only on the coefficients of the equations on the scroll.

The next problem is to extend the infinitesimal deformations to a versal de-
formation. Here we restrict ourselves to the case that all defining equations
are quadratic. Our methods thus do not apply to trigonal curves, but we can
handle tetragonal curves. Rolling factors obstructions arise. Previously we ob-
served that one can write them down, given explicit equations on P™ [Stevens
1996, Prop. 2.12]. Here we give formulas depending only on the coefficients of
the equations on the scroll. As first application we study base spaces for hyper-
elliptic cones. The equations have enough structure so that explicit solutions
can be given.

Surfaces with canonical hyperplane sections are a classical subject. References
to the older literature can be found in Epema’s thesis [Epema 1983], which is
especially relevant for our purposes. His results say that apart from K3 surfaces
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only rational surfaces or birationally ruled surfaces can occur. Furthermore he
describes a construction of such surfaces. Extensions of pure rolling factors type
of tetragonal curves fit very well in this description. A general rolling factors
extension is a complete intersection on a nonsingular four-dimensional scroll.
The classification of such surfaces [Brawner 1997], which we recall below, shows
that surfaces with isolated singularities and in particular K3s can only occur
if the degrees of the equations on the scroll differ at most by 4. A tetragonal
curve of high genus with general discrete invariants has no pure rolling factors
deformations. Extensions exist if the base equations have a solution. For low
genus we have more variables than equations. For the maximal genus where
almost all curves have a K3 extension we find:

PRrROPOSITION. The general tetragonal curve of genus 15 is hyperplane section
of 256 different K3 surfaces.

We also look at examples with genus 16 and 17. It is unclear to us which
property of a curve makes it have an extension (apart from the property of
being a hyperplane section).

The contents of this paper is as follows. First we describe the rolling factors
format and explain in detail the equations and relations for the complete inter-
section of two divisors on a scroll. Next we recall how canonical curves fit into
this pattern. In particular we describe the discrete invariants for tetragonal
curves. The same is done for K3 surfaces. The second section is devoted to
the computation of infinitesimal deformations. First non-scrollar deformations
are treated, followed by rolling factors deformations. The main result here de-
scribes the lifting matrix. As application the dimension of T is determined for
tetragonal cones. In the third section the base equations for complete inter-
sections of quadrics on scrolls are derived. As examples base spaces for hyper-
elliptic cones are studied. The final section describes extensions of tetragonal
curves.

1. ROLLING FACTORS FORMAT.

A subvariety of a determinantal variety can be described by the determinantal
equations and additional equations obtained by ‘rolling factors’ [Reid 1989]. A
typical example is the case of divisors on scrolls.

We start with a k-dimensional rational normal scroll S C P™ (for the theory
of scrolls we refer to [Reid 1997]). The classical construction is to take k com-
plementary linear subspaces L; spanning P", each containing a parametrized
rational normal curve ¢;: P! — C; C L; of degree d; = dim L;, and to take for
each p € P! the span of the points ¢;(p). The degree of Sisd = . d; = n—k+1.
If all d; > 0 the scroll S is a P4~ 1-bundle over P'. We allow however that d; = 0
for some i. Then S is the image of P~!-bundle S over P! and S — S is a
rational resolution of singularities.

To give a coordinate description, we take homogeneous coordinates (s :t¢) on
P!, and (2 :---: 2®) on the fibres. Coordinates on P™ are zi" = z(0s% =7t/
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with 0 < j < d;, 1 < i < k. We give the variable 2 the weight —d;. The
scroll S is given by the minors of the matrix

We now consider a divisor on S in the linear system |aH — bR|, where the
hyperplane class H and the ruling R generate the Picard group of S. When we
speak of degree on S this will be with respect to H. The divisor can be given
by one bihomogeneous equation P(s,t,z) of degree a in the 2, and total
degree —b. By multiplying P(s,t, z*) with a polynomial of degree b in (s:t) we
obtain an equation of degree 0, which can be expressed as polynomial of degree
@ in the z](-i); this expression is not unique, but the difference of two expressions
lies in the ideal of the scroll. By the obvious choice, multiplying with s®=™¢™,
we obtain b+ 1 equations P,,. In the transition from the equation P, to Py,41
we have to increase by one the sum of the lower indices of the factors z;) in
each monomial, and we can and will always achieve this by increasing exactly
one index. This amounts to replacing a z§”, which occurs in the top row of the

matrix, by the element 254)-1 in the bottom row of the same column. This is
the procedure of ‘rolling factors’.

Example 1.1. Consider the cone over 2d — b points in P4, lying on a rational
normal curve of degree d, with b < d. Let the polynomial P(s,t) = pgs2?=? +
p152470" 1 4o 4 pog_pt2¢47? determine the points on the rational curve. We
get the determinantal

Z0 21 ... Zd—1

zZ1 R2 ... Zd

and additional equations P,,. To be specific we assume that b = 2¢:

2 2

P = Pozy +DP12021 + -+ + P2d—2c—12d—c—1%d—c T DP2d—2c75_.
2 2

Py P02021 + P127 + * + DP2d—2¢-12]_¢ T P2d—2c¢Zd—cZd—c+1

2 2
Py, DoZ; + DP1ZcZet1 + 0+ P2d—2c—12d—172d + DP2d—2c%5 -

The ‘rolling factors’ phenomenon can also occur if the entries of the matrix are
more general.

Example 1.2. Consider a non-singular hyperelliptic curve of genus 5, with
a half-canonical line bundle L = g% + P; + P> where the P, are Weierstrass
points. According to [Reid 1989], Thm. 3, the ring R(C,L) = @ H°(C,nL) is
klx1,x2,y1,Y2, 21, 22] /I with I given by the determinantal

T oy 75

T2 33% Y2 22
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and the three rolling factors equations

2 = ath+yi + 25y

z1zoh + yiat + 23y5
a3h + 1t + v

z1%22

%

where h is some quartic in x1, %2, Y1, Yo

The description of the syzygies of a subvariety V' of the scroll S proceeds in two
steps. First one constructs a resolution of 0‘7 by vector bundles on S which
are repeated extensions of line bundles. Schreyer describes, following Eisenbud,
Eagon-Northcott type complexes C? such that C®(a) is the minimal resolution of
Qs ((’)g(—aH +bR)) as Opr-module, if b > —1 [Schreyer 1986]. Here 1: S —Pn
is the map defined by H. The resolution of Oy is then obtained by taking an
(iterated) mapping cone.

The matrix ® defining the scroll can be obtained intrinsically from the multi-
plication map

H°O:(R) ® H'O5(H — R) — HOx(H) .

In general, given a map ®: F — G of locally free sheaves of rank f and g
respectively, f > g, on a variety one defines Eagon-Northcott type complexes
C?, b > —1, in the following way:

cl =

{/\jF®Sb_jG, for 0<j<b
J

N ' FoD; y 1G*o NG, forj>b+1

with differential defined by multiplication with ® € F* ® G for j # b+ 1 and
N ®e NF*® A\?G for j = b+ 1 in the appropriate term of the exterior,
symmetric or divided power algebra.

In our situation F = Of,(—1) and G = O32, with ® given by the matrix of the
scroll. Then C®(—a) is for b > —1 the minimal resolution of Oz(—aH +bR) as
Op-module [Schreyer 1986, Cor. 1.2].

Now let V€ S C P™ be a ‘complete intersection’ of divisors Y; ~ a;H —
b;R,i=1, ..., 1, on a k-dimensional rational scroll of degree d with b; > 0.
The resolution of Oy as Og-module is a Koszul complex and the iterated
mapping cone of complexes C is the minimal resolution [Schreyer 1986, Sect. 3,
Example].

To make this resolution more explicit we look at the case I = 2, which is relevant
for tetragonal curves. The iterated mapping cone is

[Cb1+b2<_a1 . a2) N Cbl(_a1> EBCID(—QQ)} O

To describe equations and relations we give the first steps of this complex. We
first consider the case that by > by > 0. We write O for Op». We get the
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double complex

o — Ao~ — N\’ 0d(-1)g0?

I I

Sbl 02(70,1)@552 02(7(12) — Od(71)®sbl _102(7a1)@04(71)®3;,2_1(92(7112)

I

Sbl+b2 02(*0417042)

The equations for V' consist of the determinantal ones plus two sets of additional
equations obtained by rolling factors: the two equations P, P® defining V
on the scroll give rise to b; + 1 equations P and bs + 1 equations P?.

To describe the relations we introduce the following notation. A column in the
matrix ¢ has the form (zj(-”, z;ll) We write symbolically (zq, Zo+1), where the
index « stands for the pair ;) and a + 1 means adding 1 to the lower index.
More generally, if @ = §’ and o/ = ;i,l) then the sum o + o' := j + j' only
involves the lower indices. To access the upper index we say that « is of type
1. The rolling factors assumption is that two consecutive additional equations

are of the form
P, = Zpa,mzon
«@

Perl - § Pa,mZa+1-

[e3

where the polynomials p, ., depend on the z-variables and the sum runs over
all possible pairs oo = ;»“. To roll from P,,+1 to Py, 12 we collect the ‘coefficients’
in the equation P,y in a different way: we also have P, 11 = Za Do,m+1%a-

We write the scrollar equations as fog = 2a23+1 — 2a4123. The relations
between them are

Rapry = fa,%a = fanyzs + 720
Sapy = fa,pza+1 — faqzs+1 T f847a+1,

which corresponds to the term A® O4(—1) ® O? in Schreyer’s resolution. The
second line yields relations involving the two sets of P :

Rp =P y2s — P 2a11 — Y f8.0DSm:
[e3%
where n = 1,2 and 0 < m < b;. We note the following relation:

Rg,mz"/ - Rg,mzﬁ - ZRg,mang,)m = Pg)fﬁﬁ - fﬁ/‘/Pr(r?)'

The right hand side is a Koszul relation; the second factor in each product
is considered as coefficient. There are similar expressions involving z41, 2341
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and Sg .- Finally by multiplication with suitable powers of s and ¢ the Koszul
relation P®P® — P PM gives rise to by + bg + 1 relations — this is the term
Sby 5, 0% (—a1 — ag).

In case by > by = 0 the resolution is

o — AN od-1) — A 0i(-1)0?

I I

Sy, 02(—ay) & O —ay) — OH=1)® Sy, _102(—ay) & N> O%(—1 — ay)

I

Sb1 02(—CL1 — ag)

The new term expresses the Koszul relations between the one equation P® and
the determinantal equations (which had previously been expressible in terms of
rolling factors relations). For the computation of deformations these relations
may be ignored.

Finally, if by = —1, the equations change drastically.

(1.3) Canonical curves [Schreyer 1986).
A k-gonal canonical curve lies on a (k — 1)-dimensional scroll of degree d = g —
k+1. We write D for the divisor of the g}.. To describe the type S(e1, ..., ex—1)
of the scroll we introduce the numbers

fi=h°(C,K —iD) — h°(C,K — (i +4)D) = k + h°(iD) — h°((i + 1)D)

for ¢ > 0 and set
eiz#{j|fj2i}_1'

In particular, e; is the minimal number i such that h°((i + 1)D) — h°(iD) = k
and it satisfies therefore e; < %.
A trigonal curve lies on a scroll of type S(ej, e2) and degree d = e; +e3 = g—2
with 5 5 4

QT >e > ey > gT
as a divisor of type 3H — (g — 4)R. The minimal resolution of O¢ is given by
the mapping cone

C42(=3) —(°.

Introducing bihomogeneous coordinates (x : y;s : ¢) and coordinates x; =
s y; = ys® "' we obtain the scroll

o L1 .- Teg—1 Yo Y1 oo+ Yes—1
T X2 ... Tey Yy Y2 ... Yey

and a bihomogeneous equation for C
_ 3 2 2 3
P = A261762+2x + Bel+2x Yy + Cngery + D2527e1+2y
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where Age, —¢,+2 is a polynomial in (s:t) of degree 2e; —es + 2 and similarly for
the other coefficients. By rolling factors P gives rise to g — 3 extra equations.
The inequality e; < 293_ 2 can also be explained from the condition that the
curve C' is nonsingular, which implies that the polynomial P is irreducible, and
therefore the degree 2e5 —e1 +2 = 29 — 2 — 3e; of the polynomial Doe,_¢, 42 is
nonnegative. The other inequality follows from this one because e; = g—es—2,
but also by considering the degree of Asc, —c,12-

A tetragonal curve of genus g > 5 is a complete intersection of divisors Y ~
2H — bR and Z ~ 2H — b2 R on a scroll of type S(ey, es,e3) of degree d =
e1+ex+e3=g—3, with by + by = d — 2, and

g—1
TZ€1Z€22€320

We introduce bihomogeneous coordinates (z:y: z;s:t). Then Y is given by an
equation
P = P1’1£L'2 + Pl’g.%'y + -4 P3,322

with P;; (if nonzero) a polynomial in (s :t) of degree e; + e; — by and likewise
Z has equation

Q=Q112% + Qrozy + - + Q332>

with deg Qij =e;te — bo.

The minimal resolution is of type discussed above, because the condition —1 <
by < by < d—1 is satisfied: the only possibility to have a divisor of type 2H —bR
with b > d is to have e; = e3 = d/2, e3 = 0 and b = d, but then the equation
P is of the form ax? + Bxy + yy? with constant coefficients, so reducible. If
by = —1 also cubics are needed to generate the ideal, so the curve admits also
a g3 or g2; this happens only up to g = 6. We exclude these cases and assume
that b2 Z 0.

LEMMA 1.4. We have b; < 2e5 and by < 2e3.

Proof. 1If by > 2e5 the polynomials Pss, Po3 and Ps3 vanish so P is reducible
and therefore C. If by > 2e3 then P33 and Q33 vanish. This means that the
section £ =y = 0 is a component of Y N Z on the P2-bundle whose image in
P9~ is the scroll (if e3 > 0 the scroll is nonsingular, but for e3 = 0 it is a cone).
As the arithmetic genus of Y N Z is g and its image has to be the nonsingular
curve C of genus g, the line cannot be a component. O

This Lemma is parts 2 — 4 in [Brawner 1997, Prop. 3.1]. Its last part is incorrect.
It states that by < e; + es if e3 > 0, and builds upon the fact that ¥ has only
isolated singularities. However the discussion in [Schreyer 1986] makes clear
that this need not be the case.

The surface Y fibres over P!. There are now two cases, first that the general
fibre is a non-singular conic. In this case one of the coefficients P;3, Pz or Ps3
is nonzero, giving indeed by < e + e3.
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The other possibility is that each fibre is a singular conic. Then Y is a bi-
rationally ruled surface over a (hyper)elliptic curve E with a rational curve
E of double points, the canonical image of E, and C does not intersect E.
This means that the section E of the scroll does not intersect the surface Z,
so if one inserts the parametrisation of E in the equation of Z one obtains a
non-zero constant. Let the section be given by polynomials in (s :t), which if
nonzero have degree ds; — ey, ds — ea2, ds — e3. Inserting them in the polynomial
Q@ gives a polynomial of degree 2ds — by. So by is even and 2ds = by < 2eg3.
On the other hand ds —e3 > 0 so dg = e3 and by = 2e3. The genus of E
satisfies p,(F) = ba/2+ 1. If by > e1 + es, then Y is singular along the section
x =y = 0. An hyperelliptic involution can also occur if b; < ey + e3.

We have shown:

LEMMA 1.5. IfY is singular, in particular if by > e; + ez, then by = 2e3.
Finally we analyze the case ba = 0 (cf. [Brawner 1996]).

LEMMA 1.6. A nonsingular tetragonal curve is bi-elliptic or lies on a Del Pezzo
surface if and only if b = 0. The first case occurs for e = 0, and the second for
the values (2,0,0), (1,1,0), (2,1,0), (1,1,1), (3,1,0), (2,2,0), (2, 1,1), (3,2,0),
(2,2,1), (4,2,0), (3,2,1) or (2,2,2) of the triple (e1,e2,e3).

Proof. If the curve is bielliptic or lies on a Del Pezzo, the g is not unique,
which implies that the scroll is not unique. This is only possible if b = 0 by
[Schreyer 1986], p. 127. Then C is the complete intersection of a quadric and
a surface Y of degree g — 1, which is uniquely determined by C.

The inequality e; + ea + e3 — 2 = by < 2e5 shows that e3 < es —e—14+2 < 2.
If the general fibre of Y over P! is non-singular we have b; < e; + e3. This
gives eo < 2 and by < 4. The possible values are now easily determined. If
the general fibre of YV is singular then e3 = b2/2 = 0 and Y is an elliptic cone.
|

(1.7) K3 surfaces.

Let X be a K3 surface (with at most rational double point singularities) on
a scroll. If the scroll is nonsingular the projection onto P! gives an elliptic
fibration on X, whose general fibre is smooth. This is even true if the scroll is
singular: the strict transform X on S has only isolated singularities.

We start with the case of divisors. A treatment of such scrollar surfaces with
an elliptic fibration can be found in [Reid 1997, 2.11]. One finds:

LEMMA 1.8. For the general F € |3H —kR| on a scroll S(eq, es, e3) the general
fibre of the elliptic fibration is a nonsingular cubic curve if and only if k < 3eq
and k < ej + 2es.

If one fixes k and e; + es + e3 these conditions limit the possible distribution of
the integers (eq, €2, e3). By the adjunction formula one has k = e;+ea+e3—2 for
a K3 surface. In this case we obtain 12 solutions, which fall into 3 deformation
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types of scrolls, according to Y e; (mod 3):

(e+2,e,e—2) = (e+1,e,e —1) — (e, e,e)
(e+3,e,e—2) = (e+2,e,e—1)— (e+1le+1l,e—1) = (e+1,e,e)
(e+4,e,e—2) — (e+3,¢e,e—1) = (e+2,e+1,e—1) — (e+2,e,e) — (e+1,e+1,€)

The general element of the linear system can only have singularities at the base
locus. The base locus is the section (0:0:1) if and only if k£ > 3e3 and there is a
singularity at the points (s:t) where both Ac, y2¢,—r and Ac,y2¢,—k vanish. The
assumption that the coefficients are general implies now that deg A, y2e,—1 < 0
and deg A¢, y2e5—1k > 0.

In the 12 cases above this occurs only for (e + 3,e,e — 1) and (e + 2,e,e — 1).
In the first case the term 32z is also missing, yielding that there is an As-
singularity at the only zero of A, 9.,_r, whereas the second case gives an A;.
The scroll Sey4,¢,e—2 deforms into Sey3.¢e—1, but the general K 3-surface on it
does not deform to a K3 on Se43..-1, but only those with an A,-singularity.
These results hold if all e; > 0; we leave the modifications in case e3 = 0 to the
reader.

The tetragonal case is given as exercise in [Reid 1997] and the complete solution
(modulo some minor mistakes) can be found in [Brawner 1997]. We give the
results:

LEMMA 1.9. For the general complete intersection of divisors of type 2H —b1 R
and 2H — bR on a scroll Se, ¢, es,c, the general fibre of the elliptic fibration is
a nonsingular quartic curve if and only if either

a: by <ey+ ez, by < 2ey and by < 2e4, or

B: by < eq+eq, by <2es, 264 < by < 2e3 and by < g + 4.

PrOPOSITION 1.10. The general element is singular at a point of the section
(0:0:0:1) if the invariants satisfy in addition one of the following conditions:
la: by < 2ey4, by > €1 + e4.
16i: by <ez+eyq, 0464 < by <eg+ey.
16ii: by > ez + eq, and e + eg + 2e4 > by + bo.
There is a singularity with z # 0 if
20 by > ep+e3,e1+e3>bp >e +ey.
2a3: e1 +e4 > by > ex + e3 and
i if by < 2e4 then 2(61 +e3+ 64) > 2by + by
ii: if 2e4 < by < e3 + e4 then ey + 2e3 + e4 > by + by
iii: es + eq < ba < 2e3

For K3 surfaces we need by + by = e1 + €2 + e3 + e4 — 2. We give a table listing
the possibilities under this assumption, cf. [Brawner 1997, Table A.1-A 4].

The table lists the possible values for (b1,bs) and gives for each pair the in-
variants (e, ea, e3,e4) of the scrolls on which the curve can lie. These form
one deformation type with adjacencies going vertically, except Sci2¢.c. and
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(b1, b2) (e1,e2,€3,€4) M base sings
(2¢,2e — 2) (e+3,e+1l,e—1,e—3) 17 B._4 ——
(e+3,e,e—1,e—2) 15 Bey As
(e+2,e+1le—1e—2) 16 B._1 Aq
(e+2,e,e,e —2) 16 B._» ——
(e+2,e,e—1,e—1) 15 B._1 24,4
(e+1l,e+1l,e—1le—1) 16 B._1 ——
(e+1,e,e,e—1) 17 B, 1 ——
(e,e e e) 17 0 —=
(2¢ —1,2e — 1) (e+1l,e+1,e,e—2) 17 B._» ——
(e+1,e,e,e —1) 17 B._1 ——
(e,e,e,e) 18 0 ——
(2e +1,2e — 2) (e+4,e+1l,e—1e—3) 17 Be_y ——
(e+3,e+1l,e—1,e—2) 16 Be_1 A
(e+2,e+1l,e—1e—1) 16 B._1 ——
(e+1l,e+1,e,e—1) 17 e ——
(2e,2e — 1) (e+2,e+1,e,e —2) 17 B._» ——
(e+2,e,e,e—1) 15 Be_1 Ay
(e+1l,e+1l,e,e—1) 17 Be_1 ——
(e+1,e,e,¢) 18 0 ——
(2e + 2,2¢ — 2) (e+5,e+1l,e—1e—3) 18 B._y ——
(e+4,e+1le—1e—2) 17 B._1 Aq
(e+3,e+1l,e—1,e—1) 17 Be_1 ——
(e+2,e+1,e,e—1) 18 B. ——
(e+1l,e+1le+1le—1) 18 Be_1 ——
(2e +1,2¢ — 1) (e+3,e+1,e,e—2) 16 B. ——
(e+2,e+1l,e,e—1) 16 B, —
(e+1,e+1,e€) 17 B, ——
(2e, 2e) (e+2,e+2,e,e —2) 17 B._» ——
(e+2,e+1l,e,e—1) 16 B._1 Aq
(e+1l,e+1l,e+1l,e—1) 17 B._1 ——
(e+2,e,¢e,€) 15 U ——
(e+1,e+1,e€) 17 0 ——
(2e +2,2¢ — 1) (e+4,e+1,e,e—2) 16 B. Aq
(e+3,e+1,e,e—1) 16 B, Ay
(e+2,e+1,e,€) 17 B, Ay
(e+1l,e+1l,e+1e) 17 B, Ay
(2e + 1, 2¢) (e+3,e+2,e,e —2) 17 B, ——
(e+3,e+1l,e,e—1) 15 B. Ay
(e+2,e+2,e,e—1) 16 B. Aq
(e+2,e+1l,e+1l,e—1) 17 B, ——
(e+2,e+1,e,€) 16 B, ——
(e+1l,e+1l,e+1,e) 18 B, ——
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Se+1,e+1,e4+1,e—1 Which do not deform into each other but are both deforma-
tions of Set2,c41,e,e—1 and both deform to Seyi et1,e,e. Furthermore we give
the number of moduli for each family, in the column M.

In the table we also list the base locus of |2H — by R| (which contains that
of |2H — boR|). The base locus is a subscroll, for which we use the following
notation [Reid 1997, 2.8]: we denote by B, the subscroll corresponding to the
subset of all e; with e; < a, defined by the equations 2% = 0 for e; > a.
We give the number and type of the singularities of the general element; the
number given in the second half of [Brawner 1997, Table A.2] is not correct.
As example of the computations we look at (e+3,¢e,e—1,e—2) with (b1,by) =
(2¢,2e — 2). The two equations have the form

prow + porz + poy® + payx + per?
202" + Qyw + g3TW + 1Yz + a2 + @y’ + gy + gsa?

where the index denotes the degree in (s:¢). We first use coordinate trans-
formations to simplify these equations. By replacing y, z and w by suitable
multiples we may assume that the three constant polynomials are 1. Now re-
placing z by z — %ql — %q4x removes the yz and zz terms. We then replace
y by y — g3z to get rid of the zw term. By changing w we finally achieve the
form 22 + yw + gsz?. By a change in (s:t) we may assume that p; = s. We
now look at the affine chart (w =1, = 1) and find y = —22 — gg2?, which we
insert in the other equation to get an equation of the form x(s+poz+---) + 24,
which is an As.

We leave it again to the reader to analyze which further singularities can occur
if €4 = 0.

2. INFINITESIMAL DEFORMATIONS.

Deformations of cones over complete intersections on scrolls need not preserve
the rolling factors format. We shall study in detail those who do. Many
deformations of negative weight are of this type.

Definition 2.1. A pure rolling factors deformation is a deformation in which
the scroll is undeformed and only the equations on the scroll are perturbed.

This means that the deformation of the additional equations can be written
with the rolling factors. Such deformations are always unobstructed. However
this is not the only type of deformation for which the scroll is not changed.
In weight zero one can have deformations inside the scroll, where the type
(b1,...,b;) changes.

Definition 2.2. A (general) rolling factors deformation is a deformation in
which the scroll is deformed and the additional equations are written in rolling
factors with respect to the deformed scroll.

The equations for the total space of a l-parameter rolling factors deforma-
tion describe a scroll of one dimension higher, containing a subvariety of the
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same codimension, again in rolling factors format. Deformations over higher
dimensional base spaces may be obstructed. Again in weight zero one can have
deformations of the scroll, where also the type (by,...,b;) changes.

Finally there are non-scrollar deformations, where the perturbation of the scrol-
lar equations does not define a deformation of the scroll. Examples of this
phenomenon are easy to find (but difficult to describe explicitly). A trigonal
canonical curve is a divisor in a scroll, whereas the general canonical curve of
the same genus ¢ is not of this type: the codimension of the trigonal locus in
moduli space is g — 4.

Example 2.3. To give an example of a deformation inside a scroll, we let C' be
a tetragonal curve in P? with invariants (2,2,2;3,1). Then there is a weight 0
deformation to a curve of type (2,2,2;2,2). To be specific, let C' be given by
P=s2?+ty? + (s +1)22, Q = t322% + s3y? + (s® — t3)2%2. We do not deform
the scroll, but only the additional equations:

g + YoyL +25  +e(xf —ai)
xoxl +y? + z0z1 + e(z122 — T122)
xl + y1yz + 2’1 +e(yoy1 + 2021)
T122 + Y3 + 2122 + (Y7 + 27)

r1To + yO -+ Zo — 21292
2 2
x5 + Yoy1 + 2021 — 25

For € # 0 we can write the ideal as

Z% _'Tl)
2122 *$1$2)
Z% _xz)

%+mw+% +&(
(
+&(
580301 + 7+ ZOZ1 + (6 + 23)
+&(
(vi

Jﬂozl +yi+ 2021 +5
xl + y1y2 + 21
€

zi+ v + 2} =(voy + 2021)
T1To + Y3 + 2120 +e(yF + 22)

We can describe this deformation in the following way. Write Q = sQ¢ + tQy.
The two times three equations above are obtained by rolling factors from sP —
e@; and tP + Q5. We may generalize this example.

LEMMA 2.4. Let V' be a complete intersection of divisors of type aH — b1 R,
aH — baR, given by equations P, Q. If it is possible to write Q@ = sQs +
thr=b2=1Q), then the equations sP — eQy, t"* =021 P 4 ¢Q, give a deformation
to a complete intersection of type aH — (by — 1)R, aH — (b2 + 1)R.

In general one has to combine such a deformation with a deformation of the
scroll.
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(2.5) Non-scrollar deformations.

Example 2.6. As mentioned before such deformations must exist in weight
zero for trigonal cones. We proceed with the explicit computation of embedded
deformations. We start from the normal bundle exact sequence

O—>NS/C—>N0—>N5’®00—>O-

As C is a curve of type 3H — (9 — 4)R on S we have that C - C = 3g + 6
and H'(C,Ng/c) = 0. So we are interested in H°(C,Ng ® O¢), and more
particularly in the cokernel of the map H°(S, Ng) — H°(C,Ns ® O¢), as
HO(S, Ng) gives deformations of the scroll.

PROPOSITION 2.7. The cokernel of the map H°(S, Ns) — H°(C,Ns ® O¢)
has dimension g — 4.

Proof. An element of H°(C, Ng ® O¢) is a function ¢ on the equations of the
scroll such that the generators of the module of relations map to zero in O¢
and it lies in the image of H°(S, Ng) if the function values can be lifted to Og
such that the relations map to 0 € Og. Therefore we perform our computations
in Os.

We have to introduce some more notation. Using the equations described
in (1.3) we have three types of scrollar equations, f;; = x;Zj41 — Tiy17;5,
9i,j = Yi¥j+1 — Yi+1y; and mixed equations h; ; = x;y;+1 — Ti41¥;. The scrollar
relations come from doubling a row in the matrix and there are two ways to
do this. The equations resulting from doubling the top row can be divided by
s, and the other ones by t, so the result is the same.

A relation involving only equations of type f; ; gives the condition

xsel_i_lt"@(fj,k) — aisel_j_ltjgo(fi,k) + xsel_k_ltkap(fi,j) =0¢e O¢

which may be divided by x. As the image ¢(f; ;) is quadratic in  and y the
resulting left hand side cannot be a multiple of the equation of C', so we have

s O (fin) = s T W o(fi) + 57T (fi) = 0 € Os

and the analogous equation involving only the g; ; equations.
For the mixed equations we get

ws T W o(hy ) — 25T T W p(ha ) + ys T o(fi ) = i P € Og
with 1); ;.. of degree e; +e3 — 3 = g — 5 and analogous ones involving g; ; with
coeflicients v;,; 1. These coefficients are not independent, but satisfy a systems
of equations coming from the syzygies between the relations. They can also be
verified directly. We obtain

s ) g — s T T I g+ s TR R, =0 € O
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and
Iy L et i
ws T I g — s T T g+ ys© TR R, g — ys© T Y =0

The last set of equations shows that sz~ F=1tky, . = se2=I=1¢ly, .0 (rolling
factors!) and therefore v; j.5 = 52~ %~ 1tFy); ;. with v, ;. of degree e; — 2. This
yields the equations

Selfzfltzka; o 8617J71tjwi7k‘; + selfkrfltk:wi’j; =0

IN

Our next goal is to express all 1; ;, in terms of the ; ;41, (where 0 < 4
e1 — 2). First we observe by using the last equation for the triples (0,4, + 1
and (i,i 4+ 1,e; — 1) that t; ;1. is divisible by ¢* and by s 772 80 t; ;41
s~ =2tl¢; for some constant ¢;. By induction it then follows that v; ;.
s e, g s T3 e o 4 59170719 e, s0 the solution of the
equations depends on e; — 1 constants. Similarly one finds e5 — 1 constants d;
for the 14,51 so altogether e; + e2 — 2 = g — 4 constants.

Finally we can solve for the perturbations of the equations. We give the formu-
las in the case that all d; and all ¢; but one are zero, say c, = 1. This implies
that ; ;. = 0if v ¢ [i,4) and t; ;, = s~ IV HI=7=1 if 5 € [i, j); under
the last assumption v j., = s9~4717I=k+1itiTh=r=1 " We take p(f; ;) = 0 if
v & [i,7). It follows that for a fixed k the @(h; ) with i < v are related by
rolling factors, as are the ¢(h; k) with ¢ > «. This reduces the mixed equations
with fixed k to one, which can be solved for in a uniform way for all k. To this
end we write the equation P as

—

(27 P2AY 00 AL, )3 4 y(Be, 422” + Coppaty + Dacy ey 4237)

which we will abbreviate as (s2¢17¢2=7F2A+ 4 771 A7)23 + yE. We set

@(fi,j) O’ if Y ¢ [Z’])
e(fiy) = s ITeITlE s ify €[4, )
e(gij) = 0,

@(hi,k) — _SezflfkfiJrvtiHcAfxz, if 4 <~
ohig) = s*aflzizhyith=y=lA%52 " if > 5

This is well defined, because all exponents of s and t are positive. ]

A similar computation can be used to show that all elements of T (v) with
v > 0 can be written rolling factors type. However, even more is true, they can
be represented as pure rolling factors deformations, see [Drewes—Stevens 1996],
where a direct argument is given.

We generalize the above discussion to the case of a complete intersection of
divisors of type aH — b; R (with the same a > 2) on a scroll

(1) e (k) (*)
(Zo R T de—1>

2 z z z
R TR % G @
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We have equations f (aB) ;”)z;[fﬁl — Z(:_)lz“’) The lowest degree in which non

rolling factors deformatlons can occur is a — 3. We get the conditions
Z<a>sda—i—1ti@(f;]fv)) _ Z(msda—j—ltj@(f(av)) PSP k‘ltkw(f_(flﬁ))

= wa;f;”

with the zﬂl;‘kﬁ 7) homogeneous polynomials in (s:t) of degree b;—1. The relations
between these polynomials come from the syzygies of the scroll: we add four of
these relations, multiplied with a term linear in the z(*; then the left hand side
becomes zero, leading to a relation (in Og) between the P®. As we are dealing
with a complete intersection, the relations are generated by Koszul relations.
Because the coefficients of the relation obtained are linear in the z(*, they
cannot lie in the ideal generated by the P® (as a > 2), so they vanish and we
obtain for each [ equations

Z(a)sdafifltii/}(gvé) 2 gds—i— 1tgq/)(a~/6)

ikm;l

(1) gy —k—14k (aBs) () gds—m—1ym (aBy) _
+z t%Jm Y =0

Here some of the a, ..., § may coincide. If e.g. § is different from «, 8 and 7,
then @ZJE%?) = 0. If there are at least four different indices (e.g. if the scroll
is nonsingular of dimension at least four) then ¢ can always be chosen in this
way, so all coefficients vanish and every deformation of degree a — 3 is of rolling
factors type.

Suppose now the scroll is a cone over a nonsingular 3- dimensional scroll, i.e.
we have three different indices at our disposal. Then every wl k l ) with at most
two different upper indices vanishes, and the ones with three different indices
satisfy rolling factors equations. We conclude that for pairwise different «, 3, v

(aBy) _ gd—i—i—k=3pi+jtk,
wz]kl t wl

with d = d, + dg + d., the degree of the scroll.

Finally, for the cone over a 2-dimensional scroll we get similar computations as
in the trigonal example above.

PROPOSITION 2.8. A tetragonal cone (with g > 5) has non-scrollar defor-
mations of degree —1 if and only if b = 0. If the canonical curve lies on a
Del Pezzo surface then the dimension is 1. If the curve is bielliptic then the
dimension is by = g — 5.

Proof. First suppose es > 0. Then the only possibly non zero coefficients are
the ¢, which have degree b; +2 — > e;. As by + by = > e; — 2 they do not
vanish iff b = 0. In this case the computation yields one non rolling factors
deformation of the Del Pezzo surface on which the curve lies.

DOCUMENTA MATHEMATICA 7 (2002) 185-226



ROLLING FACTORS DEFORMATIONS 201

If e3 = 0, then by = 0. For a bielliptic curve the methods above yield (e; —
1)+ (e2 — 1) = by = g — 5 non-scrollar deformations (a detailed computation is
given in [Brawner 1996]). Suppose now that the curve lies on a (singular) Del
Pezzo surface. If by = e; > e; = 2 then the equation P contains the monomial
xz with nonzero coefficient, which we take to be 1, while there is no monomial
yz. After a coordinate transformation we may assume that the same holds in
case e; = eg = 2. Let p(h; i) = (17 mod (z,y). In the equation

ws T M o(gin) — ys T T W o(hig) + ys T o(hij) = Vi P

holding in Og the monomial yz occurs only on the left hand side, which shows
that the (; 5 are of rolling factors type in the first index. Being constants, they
vanish. This means that in the equation

ws T T i o(hy ) — 25T T W o(hy ) + ys T R (f ) = i P

the monomial xz does not occur on the left hand side and therefore 9; j., = 0.
We find only ez — 1 = 1 non rolling factors deformation. If e; = 2, eo = 1 we
find one deformation. Finally, if e; = 3, e = 1 then there is only one type of
mixed equation. We have two constants ¢y and c¢;. Let the coefficient of zz in
P be pos + p1t. We obtain the equations

5C1,0 — to,0 = co(pos + pit)
sC2.0 — tC1,0 = c1(pos + pit)

from which we conclude that pocg + pi1c1; = 0, giving again only one non rolling
factors deformation. d

(2.9) Rolling factors deformations of degree —1.
We look at the miniversal deformation of the scroll:

o) e & @) *) *)
< ) e Zd,—2 Zdi—1 R0 v Zdy—2 Fdj—1 )
@, W <1> ) o @) ) ) ()

20 +G e g+ Za A e Zge—1tCa-1 0 Za,

To compute which of those deformations can be lifted to deformations of a
complete intersection on the scroll we have to compute perturbations of the
additional equations.

We assume that we have a complete intersection of divisors of type aH — b; R
(with the same a > 2).

Extending the notation introduced before we write the columns in the matrix
symbolically as (2q, Za+1+Ca+1). In order that this makes sense for all columns
we introduce dummy variables ¢§” and CC(;: with the value 0.

The Koszul type relations give no new conditions, but the relation

Pi125 = Pnzgs1 = ) Pamfpa =0
«@

DOCUMENTA MATHEMATICA 7 (2002) 185-226



202 JAN STEVENS

gives as equation in the local ring for the perturbations P/ of P,,:

Pli128 = Phzais — Y Pam(Cot128 — 2aCa11) = 0.

«

In particular we see that we can look at one equation on the scroll at a time.
As Y pa,mza = P, the coefficient of (541 vanishes. Because tzg — szg41 =0
we get a condition which is independent of 3:

SPvgfLJrl - tP’IiI’L - S ZpoquorH =0
«

This has to hold in the local ring, but as the degree of the p, ., is lower than
that of the equations defining the complete intersection on the scroll (here we
use the assumption that all degrees a are equal), it holds on the scroll. From
it we derive the equation

b—1
s'P) —t'P) = Z Zsmﬂtb_m_lpa,m(aﬂ (S)
m=0 «
which has to be solved with P] and P} polynomials in the z, of degree a — 1.
We determine the monomials on the right hand side.

The result depends on the chosen equations, but only on Py and P, and not on
the intermediate ones, provided they are obtained by rolling factors.

Example 2.10. Let b = 4. We take variables y; = s> 7itly, z; = s3 'z with
deformations 7;, (;, and roll from ygzg to y222 in two different ways:

Yozo — Y120 — Y121 — Y221 — Y222

Yozo — Yoc1 — Yoz2 — Y1R2 — Y222
This gives as right-hand side of the equation (S) in the two cases

st3am + sM3yCy + Pty + PPyl
sYG + PPy + st + S

which is the same expression. Similarly, if we roll from 23 to 25 we get
2543 2¢1 + 25°t22¢
However, if we roll in the last step from y; 25 to y123 we get
sUyCy + Sy + M
(remember that we have no deformation parameter (3).
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To analyze the general situation it is convenient to use multi-index notation.
The equation P of a divisor in |[aH — bR| may then be written as

(e,I)—=b
P= Z Z prystoD=b=igi T

|I|=a Jj=0

Here e = (eq,...,ex) is the vector of degrees and z! stands for (z)"
(2,

PRrROPOSITION 2.11. The lifting condition for the equations P,, is that for each
I with |I| =a—1 and (e, I) < b—1 the following b— (e, I) — 1 linear equations

hold:
<€,I+51

k
Z Zl+1p1+5,]<ﬂ_n=0,
1=

1 7=0
where 0 <n < b— (e, I)

Proof. We look at a monomial s(&/)=0=3iI" In rolling from P, to P,
we go from z4 to za4p. Here we write a monomial as product of a factors:
Zay * - Za, With 1] factors of type I. Let I’ = I 4 ¢; with d; the {th unit vector.
The monomial leads to an expression in which the coefficient of z!

Bq

{dloeg of type i} r=1

We stress that the choice of ay can be very different for different j.

We collect all contributions and look at the coefficient of s{&D+7t0—m2I with
0 <n <b— (e, I). This cannot be realized as left-hand side of equation (.5).
Because b —n = b — r 4+ j — a4 this coefficient is

k(e I+d;)—

Z Z Zl+1p[+5,jCJ+n=0,
=1 =0

We note that all terms really occur: in rolling from z4 to z44p we have to
increase the gth factor sufficiently many times, because (e, I) < b— 1. g

Example 2.12: trigonal cones. Let the curve be given by the bihomogeneous
equation

F= A2a—m+223 + Ba+222w + CVWL+22U-)2 + D2m—a+2w3

then there are only conditions for I = (0,2), i.e. for w?, asa+m = g—2 > b—1.
Soif2m <b—1=g—5 we get b —2m — 1 = a — m — 3 equations on the

deformation variables (1, ..., (o—1, W1, « -+, W1
m+2 2m—a+2
> G +3 Y djwiin =0,
j=0 j=0
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as stated in [Drewes—Stevens 1996, 3.11]. We have a system of linear equations
so we can write the coefficient matrix. It consists of two blocks (C | D) with C
of the form

Chp €1 C2 ... Cmy42 0 0 NN 0 0 0
0 c ¢ ... Cm+1 Cm42 0 0 0 0
0 0 ¢ ... Cm Cmt+1 Cmy2 ... 0 0 0
0 0 0 . Co C1 C2 oo Cmy2 0 0
0 0 0 . 0 Co C1 oo Cm4+1 Cm42 0
o 0 0 ... 0 0 Co v Cm  Cm+1l Cm42

and D similarly. Obviously this system has maximal rank.

The Proposition gives a system of linear equations and we call the coefficient
matrix lifting matrix. It was introduced for tetragonal cones in [Brawner 1996].
In general the lifting matrix will have maximal rank, but it is a difficult question
to decide when this happens.

Example 2.13: trigonal K3s. We take the invariants (e, e, e), b = 3e — 2 with
e > 3. The K3 lies on P2 x P! and is given by an equation of bidegree (3,2).
Now there are six I's with |I| = 2 each giving rise to e — 3 equations in 3(e — 1)
deformation variables. In general the matrix has maximal rank, but for special
surfaces the rank can drop. Consider an equation of type p123+poy3+p323 with
the p; quadratic polynomials in (s:¢) without common or multiple zeroes. Then
the surface is smooth. The lifting equations corresponding to the quadratic
monomials zy, xz and yz vanish identically and the lifting matrix reduces to
a block-diagonal matrix of rank 3(e — 3). The kernel has dimension 6, but the
corresponding deformations are obstructed: an extension of the K3 would be
a Fano 3-fold with isolated singularities lying as divisor of type 3H — bR on
a scroll S(eq,eq,e3,€4), and a computation reveals that such a Fano can only
exist for > e; < 8.

We can say something more for the lifting conditions coming from one quadratic
equation.

ProproOSITION 2.14. The lifting matrix for one quadratic equation has depen-
dent rows if and only if the generic fibre has a singular point on the subscroll
By_;.

Proof. The equation P on the scroll can be written in the form ‘211z
with IT a symmetric & X k matrix with polynomials in (s :t) as entries.
The condition that there is a singular section of the form z = (0,...,0,
2D (g 1), ..., 2M (s, 1)) with ¢, > b — 1 is that 21T = 0 or ‘215, = 0 where
zsp = (249 (s,1),...,2%(s,t)) and IIs; is the matrix consisting of the last
k — [ rows of II. The resulting system of equations for the coefficients of the
polynomials zV(s,t) gives exactly the lifting matrix. O
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(2.15) Tetragonal curves. Most of the following results are contained in the

preprint [Brawner 1996]. We have two equations on the scroll and the lifting

matrix M can have rows coming from both equations. We first suppose that

by > 0. Then also ez > 0 and the number of columns of M is always > (e;—1) =

g — 6, but the number of rows depends on the values of (ey, ea, e3;b1,b2): it is
;. max(0,b; —e; —1).

THEOREM 2.16. Let X be the cone over a tetragonal canonical curve and

suppose that by > 0. Then dimT%(—2) = 0. Suppose that the g} is not

composed with an involution of genus %2 + 1.

1) Ifby < e;+1orby <esz+1org<15 then dimT%(—1) = 9+ dim Cork M.

2) Ifby > e1+1, by > e3+1 and g > 15 then 9+dim Cork M < dim Ty (—1) <
% +6+dim Cork M and the maximum is obtained for g of the form 6n—3
and (e1,eg,e3;01,b0) = (3n—2,2n —2,n — 2;4n — 4,2n — 4).

3) For generic values of the moduli dim Cork M = 0.

Proof. 1If by > 0 there are only rolling factors deformations in negative degrees.
In particular dim T’y (—2) = 0. The number of pure rolling factors deformations
is p = ), jmax(e; — b; +1,0). The number of rows in the lifting matrix is
;;max(0,0; —ej —1) =3(b1 +b2) —2(e1 +e2+ez+3) +p=g—15+p. If
p > 9 the number of rows exceeds the number of columns and dim 7% (—1) =
p + dim Cork M; otherwise it is 9 4+ dim Cork M. So we have to estimate p.
As the gi is not composed we have b; < e; 4+ e3. Together with b; < 2e; we
get 3b7 < 2g —6 and 3by > g — 9; from ey < 9—51 we now derive e; — by +1 <
9771+1—9%9. Also by =e;t+egt+e3—2—by >ex—2,80 €3 —by+1<3.
2) Suppose first that by > e; + 1 and b > e3 + 1. Then p = max(0,e; — by +
1) + max(0,e2 — by + 1) < 22 4+ 6. Equality is achieved iff e; = (g — 1)/2,
by = (g—9)/3 and e2 = ba +2, so g has the form 6n—3 and (eq, es, e3;b1,b2) =
(Bn—2,2n—2,n — 2;4n — 4,2n — 4).
1) In all other cases p < 9: if by > e; + 1, but by < e+ 1 then p = (e — by +
1)+(62—b2+1)+(€3—b2+1):g—3b2 <9. Ifea+1<b; <e;+1then
p=(e1 —by+1)+ (e1 —bs + 1) + max(0, ez — bs + 1) + max(0,e3 — by + 1) =
2e1 + 7 — g+ max(0,e2 — by + 1) + max(0,e3 — by + 1). As by > 0 we have that
max(0, ez — by + 1) + max(0, e3 — bz + 1) > max(0, ez + e3 — by + 1). But from
b1 < ey it follows that bg > ea+e3—2. Sop<(9—1)+7—9g+3=09. If
b1 < ez + 1 then p < 2ey + 2e5 +4 — 2b; — 2by + 2e3 = 8.
3) It is easy to construct lifting matrices of maximal rank for all possible num-
bers of blocks occurring. O

Now we consider the case that the g is composed with an involution of genus
g = %2 + 1. So if by > 0, then ¢’ > 1. After a coordinate transformation
we may assume that the surface Y is singular along the section z = y = 0,
so its equation depends only on z and y: P = P(z,y;s,t). We may assume
that Q has the form Q = 2% + Q'(x,y; s,t). Let M, be the submatrix of the
lifting matrix consisting of the blocks coming from P and @’ and the £ and 7

deformations.
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THEOREM 2.17. Let X be a tetragonal canonical cone such that the g} is
composed with an involution of genus g’ > 1. Then dimT%(—1) = e; + ez —
2e3 + 6 4 Cork M,,,.

Proof. The rows in the lifting matrix M coming from the first equation and
the variable z vanish identically. The second equation gives a z-block which
is an identity matrix of size by — ez — 1 = e3 — 1, so all ¢ variables have to
vanish. What remains is the matrix M, which has e; + ex — 2 columns. The
number of rows is max(0,eq — e3 — 3) + max(0,e; — e — 3) + max(0, 2e3 —
e1 — 1) + max(0,2e3 — ez — 1). We estimate the last two terms with eg — 1
and the first two by ey — eg3, resp. e; — e3. Therefore the number of rows is at
most e; + ea — 2. For each term which contributes 0 to the sum we have pure
rolling factors deformations, so if the matrix has maximal rank the dimension
of T (—1) is €1 + €2 — 2 — (2e3 — 8). O

Example 2.18. Tt is possible that the lifting matrix M does not have full rank
even if the g} is not composed. An example with invariants (6,5,5;7,7) is the
curve given by the equations (s® +1°)z2 4+ s3y? + 1322, s°22 + (82 —13) (y — 2)2 +
2t322. The matrix is

0 0] 2 00 0 | 0 00 0
0 0] 0 00 0 | 0 00 2
0 0] 2 00 -2 1] -2 0 0 2
0 0] 200 2 | 2 00 2

Finally we mention the case b, = 0. Bielliptic curves (es = 0) are treated
in [Ciliberto-Miranda 1992], curves on a Del Pezzo in [Brawner 1996] (but he
overlooks those with e3 = 0). Now there is only one equation coming from @,
which can be perturbed arbitrarily. As the z variable does not enter the scroll,
we have one coordinate transformation left. The lifting matrix involves only
rows coming from the equation P. One checks that the matrix M resp. M, has
maximal rank and the number of rows does not exceed the number of columns.
Together with the number of non-scrollar deformations (Prop. 2.8) this yields
the following result, where we have excluded the complete intersection case
g=>5.

ProPOSITION 2.19. Let X be the cone over a tetragonal canonical curve C
with by =0 and g > 5. Then dimT%(—2) = 1.

1) If C lies on a Del Pezzo surface then dim T%(—1) = 10.

2) If C is bielliptic (e3 = 0), then dim Ty, (—1) = 2g — 2.

Remark 2.20. For all non-hyperelliptic canonical cones the dimension of 7% (v)
with v > 0 is the same. The Wahl map easily gives dim7%(0) = 3¢ — 3,
dimT% (1) = g, dimT%(2) = 1 and dimT% (v) = 0 for v > 3 (see e.g. [Drewes—
Stevens 1996], 3.3).

3. ROLLING FACTORS OBSTRUCTIONS.

Rolling factors deformations can be obstructed. We first give a general result
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on the dimension of T2. For the case of quadratic equations on the scroll one
can actually write down the base equations.

PROPOSITION 3.1. Let X be the cone over a complete intersection of divisors
of type aH — b; R with b; > 0 (and the same a > 2) on a scroll. If a > 2, then
dimT%(—a) = >.(b; — 1), and dimT%(—a) > > (b; — 1) in case a = 2.

Proof. Let ¢ € Hom(R/Rp,Ox) be an homogeneous element of degree —a.
The degree of ¥)(Rq3,,) is 3 — a, so 1 vanishes on the scrollar relations, if
a > 2. If a = 2 we can assert that the functions vanishing on the scrollar
relations span a subspace of T'%(—2).

As the degree of the relation Ry, ,, is a + 1, the image ¥(Rj ,,) is a linear
function of the coordinates. The relations

Rz,mzﬁ - Rg,mza - Z R;ﬁk,'yp:,m = Pr(r?)foé,ﬁ - foz,ﬁpr(ntl)'

imply that the ¢ (R}, ,,,) are also in rolling factors form. A basis (of the relevant
subspace) of Hom(R/Ry, Ox)(—a) consists of the 2 b; elements ¢} (R}, ,,) =
035 01m Zars z/Jliyt(Rg(’m) = 0i;0im%a+1, where 0 < m < b;. The image of P{? in
Hom(R/Ro, Ox)(—a) is ¥, 1, — ¥}, if 0 < m < by, =9, for m = 0, and

wéi—LS for m = b;. The quotient has dimension ) (b; — 1). O

For a = 2 only the rolling factors obstructions will contribute to the base
equations. A more detailed study could reveal if there are other obstructions.
Typically this can happen, if there exist non-scrollar deformations. As example
we mention Wahl’s result for tetragonal cones that dimT%(-2) = g — 7 =
by + by — 2, if by > 0, whereas for a curve on a Del Pezzo the dimension is
2(g — 6) [Wahl 1997, Thm. 5.6].
In the quadratic case we can easily write the base equations, given a first order
lift of the scrollar deformations. We can consider each equation on the scroll
separately, so we will suppress the upper index of the additional equations in
our notation. We may assume that we have pure rolling factors deformations
Po and that the lifting conditions are satisfied. We can write the perturbation
of the equation P, as

Pu(2) + PLy(2.C.p) -
Note that P/, is linear in z. Now we have the following result [Stevens 1996].

ProPOSITION 3.2. The maximal extension of the infinitesimal deformation
defined by the P! is given by the b — 1 base equations

P&(Cv(ap)_Pm(C):()?
with 1 <m <b-—1.

Proof. We also suppress p from the notation. We have to lift the relations
Rgp . As the lifting equations are satisfied we can write

Py1(2,0)28 = Pr(2,0)2841 — Y Pam(2)Cat128 = Y f4d4(0) ,
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because the left hand side lies in the ideal of the scroll. This identity involving
quadratic monomials in the z-variables can be lifted to the deformation of the
scroll. We write fga for the deformed equation zg(za+1 + Cat1) — (2841 +
C,B-i—l)za- We get

P7/71+1(Z+<’ Qzp—Pp (2, C)(Zﬁ+1+Cﬁ+1)_Zpa,m(z+C)2a+lzﬁ = Z fﬁwdv(C)-

We now lift the relation Rg ,:

(Prg1(2) + Phyi (24 ¢,0) = Pny1(Q) 28 — (Pm(2) + P, (2,0)) (2341 + Ca41)
- Zfﬁapa,m(z) - Z fﬁ'yd'y(C) =0.
If 1 <m < b-—1, then P, occurs in a relation as first and as second term.

Therefore P/, (z,¢) and P),(2+¢, ) — P (C) have to be equal. These equations
correspond to the b — 1 elements of T% (—2), constructed above. O

Example 3.3. We continue with our rolling factors example 2.10. We look at
two ways of rolling:

Yozo — Y120 — Y121 — Y221 — Y222

Yozo — Yoz1 — YoR2 — Y122 — Y123

The equation for Pj and P; has a unique solution with P} = 0. We get

P(S = 0, 0
Pll = M1%o0, YoC1
Py = mz1 + y1C1, Y161 + Yoo
Py = mzz +y2Q1 + 1221, Y2C1 + Y12 + M122
Py = mzs+ysC +m222 +y2la, ysCi +y2la + Mz

The resulting base equations are in both cases

0,71C1, M G2 + 1261

In general the quadratic base equations are not uniquely determined. They can
be modified by multiples of the linear lifting equations, if such are present. The
other source of non-uniqueness is the possibility of coordinate transformations
using the pure rolling factors variables.

THEOREM 3.4. Let P =Y prs'@D=0=Ftk 21 define a divisor of type 2H —bR.
It leads to quadratic base equations w1, ..., mp—1. The coefficient prj gives
the following term in m,,. We write 2! = xy and assume that e, > €ey.

I. Ife, < b then for m < k the term is — Zfzm Nk—1+m&1, while for m > k it

1S
min(e; —1,m—1)

> mermb

l=max(k+m—ey+1,k+1)
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II. If e, > b then for m < k+b— e, the term is — Zf=m+ex_b Nik—1+m&l, while
form > k+b—e, it is

min(e, —b+m—1,k+m—1)

S Meerpmb -

l=max(k+m—ey+1,k+1)

Furthermore, if e, > b the e, — b+ 1 pure rolling factors deformations
involving = contribute po&y + -+ + Pe,—bEm+te,—b 60 Ty

Proof. We need explicit equations P,,. The monomial s¢~*+¢v~b=Ftkyy gives

a rolling monomial ;(,,)Y;(m), Where i(m) + j(m) = k + m. Let i(0) = i,
i(b) =1, j(0) = j and j(b) = j'. We have to compute P),. Equation (S) gives

J —J i’ —i
be _ tbPO E Ser—k+]+ltk+b Jj— ll"l] m + § sey—k+1+ntk+b i— nng_n ;
=1 n=1

which we rewrite as

v

j,
sbPl;—tbPé — Z Sem—k+ltk+b—lxnl+ Z sey—k-l-ltk—&-b—ly&.
I=j+1 l=i+1

Case I: e, < b. The condition k+b < e, +e, implies k < e,. We solve for Py:

k k
=— Z T — Z Ye—1&1 -

I=j+1 I=i+1
For the P/ we formally write the formula

i(m) i(m)

k
Z ThtgmM — D Yemtam&l+ D ThotpmM + Y Yn—t4m&i -

l=j+1 I=i+1 l=j+1 I=i+1

This expression can involve non-existing = or y variables: for y this happens
ifk—1l+m>ey orl <m+k—e, The terms in the two sums involving y
cancel. If i(m) < k, then the smallest non-canceling term has I = i(m) + 1 and
im)+1>i(m)+j(m) —e, =k+m—ey If i(m) >k we a sum of positive
terms starting with k4 1. If kK <! < m+k — e, then our monomial contributes
to the lifting conditions, and we can leave out this term. The sum therefore
now starts at max(k +1,m + k — e,). Keeping this in mind we determine the
term in the base equation 7, from the formal formula. To this end we change
the summation variable in the sums containing z-variables and arrive, using
i(m)+j(m) =k +m, at

m+i—1 m+i—1 i(m)
=) Em—tm— Z Mhetem&+ > Elhmtem+ D Metbm& — Ei(m) M (m)
l=m l=i+1 l=i(m) l=i+1
mei—1 k mi—1
> Glheiim = Y Mhetem& Y Mhoim& -
I=m 1=it1 1=it1
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If & > m the terms from [ = m to [ = k occur twice with a minus sign and
once with a plus. Otherwise all negative terms cancel, but we have to take the
lifting conditions into account.

Case II: e, > b. Now there are e, — b+ 1 pure rolling factors deformations
present: we can perturb P,, with poTy, +- -+ pe, —bTm—+e,—b. These contribute
Pobm + -+ + Peu—tbmren—b to the equation 7.

We can roll using only the = variable: z;1,y;, with ¢ +j =k and i + b < e,.
We take i =k if k+b<e, and i = e, — b otherwise. We get

i+b
s'Pl —t'P = Z gl hHlhtb=ly e
I=it1
We solve: .
Po== Y pyi&
I=it1
and
k i+m
P, =— Z Yre—t+m&l + Z Ye—i+m&l -
l=i+1 l=i+1

Again if k <1 < m+k — e, our monomial contributes to the lifting conditions,
and the sum starts at max(k +1,m + k —e,). We get as contribution to m,,

k 1+m—1
- E Mie—1+m&1 + g Nk—1+m&l -
l=i+1 =141

Taking the lifting conditions and our choice of ¢ into account we get the state-
ment of the theorem. O

Example 3.5: Case I. Let b =7, e, = 5 and e, = 4. Consider the equation
P = (pgs® + p1st + pat?)xy. This leads to the following six equations:

o= — p2(&1m2 + &2m1)
T2 = po&1M — p28an2
w3 = po(&1m2 + &am) + p1an2

po(&1ms + &amz) +&m +pi1(§ens +&3m2)  + p28ans
s = po(§ams +&3m2) +&am +pi1(Eans +Eane) 4 palans
= po(&3n3 + &am2) + p1&ams

If we write a matrix with the coefficients of the p; in the columns with rows
coming from the equations 7, we find that the first k¥ + 1 rows form a skew
symmetric matrix. This is due to the specific choices made in the above proof.
One can also get any other block to be skew symmetric by using the lifting
conditions. In this example they are pgn1+p1m2+pans = 0, po1+p1&a+p283 =0
and poé2 + p1&3 + p2&4 = 0. From the skew symmetry we can conclude:
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ProroOsSITION 3.6. If ey, < e, < b then the b — 1 equations m,, coming from
the equation P = (Z?:o p;stTItR)zy, where b+ k = e, + ey, satisfy b—k — 1
. . k .

linear relations  J;_qpjmi+; =0, for 0 <i <b—k.

Example 3.7: case II. Let b =4, e, =5 and e, = 3. Consider the equation
P = (pos* + p153t + pas?t? + p3st3 + pyt*)zy. This leads to the following three
equations:

T = po&i + p1&a — p2&om — p3(ama + E3m1)pa(Esn + Eamn)
T2 = po2 + p1&3 + po&im + p1éem — paanz — paane
w3 = po&3 + p1&a +po(&imz + Eam) + p1(§ama + E3m1) + p2&sne

(3.8) Hyperelliptic cones (cf. [Stevens 1996]). Let X be the cone over a hy-
perelliptic curve C' embedded with a line bundle L of degree d > 2g + 3. Then
dim 7% (—1) = 2g + 2. The curve lies on a scroll of degree d — g — 1 as curve of
type 2H — (d — 2g — 2) R. The number of rolling factors equations is d — 2g — 3,
so we have at least as many equations as variables if d > 4g + 4. In that
case only conical deformations exist, so all deformations in negative degree are
obstructed.
The easiest case to describe is L = ngs. The curve C has an affine equation 3% =
,269;62 prt®, which gives the bihomogeneous equation (Zi‘q:JBQ prs29T2 Rk 2
y? = 0. The line bundle L embeds C' in a scroll S(n,n — g — 1), and there are
2n —2g — 1 rolling factors equations P,,, coming from p(s, t)z? —y%. The lifting
matrix is a block diagonal matrix with the y-block equal to —21,,_;_2, and the
a-block a (n —2g — 3) x (n — 1) matrix, so the dimension of the space of lifting
deformations of the scroll is 2g + 2 if n > 2g + 3. If n < 2g + 3, the x-block is
not present, and all n — 1 £-deformations lift. Furthermore there are 2g+3 —n
pure rolling factors deformations. This shows again that dim 7% (—1) = 2g +2.

PrROPOSITION 3.9. Ifn > 2g + 3 the base space in negative degrees is a zero-
dimensional complete intersection of 2g + 2 quadratic equations.

Proof. We may assume that the highest coefficient pag4o in p(s,t) equals 1.
The lifting equations allow now to eliminate the variables {2443, ...,£,—1. The
base equations m,, involve only the & and are therefore not linearly indepen-
dent. Because pag42 = 1 we can discard all m,, with m > 2g + 2. The first
2g+ 2 equations involve only the first 2¢g+ 2 variables. This shows that we have
the same system of equations for all n > 2g + 3. As we know that there are
no deformations over a positive dimensional base, we conclude that the base
space is a complete intersection of 2g + 2 equations. O

Remark 3.10. The fact that the system of equations above defines a complete
intersection can also be seen directly. In fact we have the following result:

LEMMA 3.11. The system of e = b—1 equations m,, in e—1 variables £; coming
from one polynomial Py_5(s,t)z? is a zero-dimensional complete intersection if
and only if Py_5(s,t) has no multiple roots.

DOCUMENTA MATHEMATICA 7 (2002) 185-226



212 JAN STEVENS

Proof. First we note that there are only b — 2 linearly independent equations.
We put & = s>~1#*. Then

b—2
T = Z(m — k- l)pk52b7k7m72tk+m72
k=0

= gb—mym—2 (Z(b —2 = k)pps® M E - (m+1—b) Zpksb_Q_ktk)

The form P(s,t) has multiple roots if and only if P(s,t) and S%P(S, t) have a
common zero (s :tg). Then & = s§~*~ 't} is a nontrivial solution to the system
of equations.

We show the converse by induction. One first checks that a linear transforma-
tion in (s :t) does not change the isomorphism type of the ideal. We apply a
transformation such that s = 0 is a single root of P, so pg = 0 but p; # 0.
The equations ms, ..., mp—1 now do not involve the variable & and are by
the induction hypotheses a complete intersection in e — 2 variables, so their
zero set is the &;-axis with multiple structure. The equation m; has the form
—p1€2 + ..., so the whole system has a zero-dimensional solution set. O

Remark 3.12. For deg L = 4g + 4 the base space is a cone over 229*! points
in a very special position: there exist 29 + 2 hyperplanes {l; = 0} such that the
base is given by I7 =I5 [Stevens 1996]. We can make this more explicit in the
case L = (2g + 2)ga. Again the y-block of the lifting matrix is a multiple of
the identity, but now there is also one rolling factors deformation parameter p.
More generally, we look the equations coming from p(s, t)z? with degp = b = e.
We get base equations I1,, = p,, + m,,, where 7, is a quadratic equation in
the &-variables only. One solution is clearly & = 0 for all . To find the others
we eliminate p:

T T e Te—1
Rank<§1 & ge_l>§1. (%)

The equations II,, can be changed by changing p, but this system is indepen-
dent of such changes. Write inhomogeneously p(t) = po+pit+...+pe_1t¢ 1+
t® = [](t — o), where the «; are the roots of p(t).

LEMMA 3.13. The e points P; = (1:a;:a?:---:aS"?) are solutions to the

(3 K3
system (xx).

Proof. Let a be a root of p and insert & = a'~! in the system (xx). We
simplify the matrix by column operations: subtract o times the jth column
from the (j + 1)st column, starting at the end. The matrix has clearly rank
1, if mj41(a) — am;j(a) = 0, where 7 () is the result of substituting & = a*~!
in the equation 7;. The coefficient py occurs in 7;(«) in the term Iprad Th=2
for some integer I, and in the term (I + 1)pgad**~1 in 7;41(a). Therefore
mir1(a) —amj(a) = =Y prad Tl = —ai~1p(a) = 0. O
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The remaining solutions are found in the following way. Divide the set of
roots into two subsets I and J. The points P; lie on a rational normal curve.
Therefore the points P; with ¢ € I span a linear subspace L; of dimension
7] - 1.

CrAIM. The intersection point Py := Ly N L is a solution to (k).

The proof is a similar but more complicated computation. We determine here
only the point P;. The condition that the point Ziel A\ P; lies in Ly is that

Z )\1 N Z )\Z-aTQ
-2
1 .. aj;
Rank ) } =|J|.

. e.—2

1 . 01
We find the resulting linear equations on the \; by extending the matrix to a
square matrix by adding |I| — 2 rows of points on the rational normal curve,
for which we take roots. Then only two \; survive, and they come with a
Vandermonde determinant as coefficient. Upon dividing by common factors
we get ([[,z, 4, (i, —@i))Niy + (I, 4, (@in — i) Ai, = 0. We multiply with
a;, — ay,. Noting that Hi?&il(ozi1 — ;) = p'(ay,) (with p/(t) the derivative of
p(t)) we get p/(ail)/\h =p (ai2)/\i2
We write out the equations for e = 5:

pé1 — 1€} — 2pa&i&o — p3&s — 2pabals — p5 (26284 + &3)
pla + ot — pa&s — pals — 2p5€séa
pés + 2poé1&e + p1&5 — p3&s — psés

pEs + po(26183 + €3) + 2p1&2€3 + 283 + 2p3€séa + pads

Let a be a root of pg + p1t + pat? + pst3 +pat* +15, and 3, ..., € the remaining
roots. Write o) for the ith symmetric function of these four roots. Then a
solution is &; = a'~1, p = a* — @30 — a0} — ach + o). Given two roots a and
3 we get a solution & = (y — £)(6 — B)(e — B)a’ + (a — ) (= §) (e — €) 5. To
write p we set pp = (v —5)(6 = B)(e — ), A = (a —y)(a —0)(a —¢) and o}’ the
ith symmetric function in 7, § and €. Then and p = p(a* — o?(a + 28)0y —
a?oll —acl) + M\(B* — B (a + 2a)o) — B%0Y — Bol). The hyperplane through
(1:0:0:0:0), Py, Ps and P is log = o861 — 056 +0{€3 —Eq. In it lie also Py,
P,., Ps. and P,3. The hyperplane containing the remaining points is l;‘ =
p—(a+PB)l, 5+2058+2a885. We put l, = p—204&1 + 20582 + 200183 — 20y,
Then 12 — I3 = 4(o — B)l 5l 1 5.

4. TETRAGONAL CURVES.

An extension of a canonical curve yields a surface with the given canonical
curve as hyperplane section. Surfaces with canonical hyperplane sections were
studied in Dick Epema’s thesis [Epema 1983]. Only a limited list of surfaces
can occur.
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THEOREM 4.1([Epema 1983], Cor. 1.5.5 and Cor. I1.3.3). Let W be a surface
with canonical hyperplane sections. Then one of the following holds:
(a) W is a K3 surface with at most rational double points as singularities,
(b) W is a rational surface with one minimally elliptic singularity and possibly
rational double points,
(¢c) W is a birationally ruled surface over an elliptic curve I' with as non-
rational singularities either
i) two simple elliptic singularities with exceptional divisor isomorphic to
T, or
ii) one Gorenstein singularity with p, = 2,
(d) W is a birationally ruled surface over a curve I' of genus ¢ > 2 with one
non-rational singularity with p, = q+1, whose exceptional divisor contains
exactly one non-rational curve isomorphic to I'.

Case (c) occurs for bi-elliptic curves (see below). If we exclude them and curves
of low genus on Del Pezzo surfaces, then all extensions of tetragonal curves are
of rolling factors type. The surface W has therefore to occur in our classification
of complete intersection surfaces on scrolls. In particular, K3 surfaces can only
occur if by < by + 4. This has consequences for deformations of tetragonal
cones.

PROPOSITION 4.2. Pure rolling factors deformations are always unobstructed.
If e3 > 0 and by > by + 4 the remaining deformations are obstructed.

Proof. The first statement follows directly from the form of the equations.
For the second we note that the total space of a nontrivial one-parameter
deformation of a scroll with es > 0 is a scroll with e4 > 0. O

By taking hyperplane sections of a general element in each of the families of
the classification we obtain for all g tetragonal curves with by < bs + 4 lying
on K3 surfaces (with at most rational double points). To realize the other
types of surfaces we give a construction, which goes back to [Du Val 1933].
His construction was generalized to the non-rational case in [Epema 1983]. In
our situation we want a given curve to be a hyperplane section. A general
construction for given hyperplane sections of regular surfaces is given in [Wahl
1998].

CONSTRUCTION 4.3. Let Y be a surface containing the curve C and let D €
| — Ky| be an anticanonical divisor. Let Y be the blow up of Y in the scheme
Z = CND. If the linear subsystem C' of |C| with base scheme Z has dimension
g, it associated map contracts D and blows down Y to a surface Y with C as
canonical hyperplane section.

Let Z7 be the ideal sheaf of Z. Then we have the exact sequence
0— Oy —>Izoy(0) —_— Oc(c — Z) —0

and by the adjunction formula Oc(C — Z) = K. If h°(Zz0y(C)) = g + 1
then the map H°(Z;Oy(C)) — H°(K() is surjective, a condition which is

DOCUMENTA MATHEMATICA 7 (2002) 185-226



ROLLING FACTORS DEFORMATIONS 215

automatically satisfied if Y is a regular surface. This yields that the special
hyperplane section is the curve C in its canonical embedding.

Suppose that Y is not regular. By Epema’s classification Y is then a bira-
tionally ruled surface, over a curve I' of genus ¢q. Let C' be the strict transform
of C on Y and C its image on Y. Then H°(ZzOy(C)) = H°(03(C)) =
HY(03(C)). We look at the exact sequence

0— Oy — 03(C) — O5(C) =Kc — 0.

We compute H'(Oy) with the spectral sequence for the map Y — Y. This
gives us the long exact sequence

0 — H'(Oy) — H'(O5) — H°(R'7.05) — H?*(Oy) — 0

in which dim H 1((’);) = ¢q. We choose D in such a way that the composed map
H'(Or) — R'm.0y — H'(Op), where D is the exceptional divisor of the
map T, is injective. Then the map H°(ZzOy (C)) — H°(K¢) is surjective.
To apply the construction we need a surface on which the curve C lies. In the
tetragonal case a natural candidate is the surface Y of type 2H — b1 R on the
scroll.

We first assume that e; < by, so there are no pure rolling factors deformations
coming from the first equation on the scroll. The canonical divisor of the scroll
S is —3H + (b1 + b2)R [Schreyer 1986, 1.7]. So an anticanonical divisor on
Y is of type H — baR. Let T = 7o, _p,(8,8)T + Tey—by (8, 1)y + Tey—by (8, 1)z be
the equation of such a divisor. Sections of Zz Oy (C) are @ (which defines C'),
and ;T = s~ '2T, y; T and z;T. With coordinates (t: x; :y; : z;) on P9 we
get by rolling factors by + 1 equations @, from the relation Q(7e, s, (s, )z +
Tea—by (8, )Y+ Tes—by (8,1)2) = (Q1122+- - +Q332%)T. Ast is also a coordinate
on the four-dimensional scroll, which is the cone over S, we can write the
equation on the scroll as

Ql,lx2 +--+ Q3,322 - (7_61—b2x +oeeet Tes—b2z)t :

We analyze the resulting singularities. If Y is a rational surface, we have
a anticanonical divisor D which has arithmetic genus 1, giving a minimally
elliptic singularity on the total space of the deformation.

If Y is a ruled surface over a hyperelliptic curve I', then D passes through the
double locus. This gives an exceptional divisor with I" as only non-rational
curve.

Example 4.4. Let (eq,ea,e3;b1,b2) = (3n—2,2n—2,n—2;4n—4,2n—4). If the
coefficient of zz does not vanish, we may bring the equation P onto the form
xz —y?. The second equation has the form 22 + ¢ 2y + ¢2n 22 + g3nTY + qanx?
from which z may be eliminated to obtain a quartic equation for y. The case
of a cyclic curve y* + qq4,2* is a special instance. The equation P gives a
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square lifting matrix in which the antidiagonal blocks are square unit matrices.
Therefore the only deformations are pure rolling factors deformations, coming
from the second equation, in number (n + 3) +3 = %3 + 6. We have T' =
Tnt2Z + Toy. The section (0:0: 1) is always a component of D. If t5 £ 0 we
have a cusp singularity, but if 75 = 0 the section occurs with multiplicity 2 in
D.

If however the coefficient of xz vanishes, the surface Y is singular. After a
coordinate transformation its equation is 42 + po,22, the other equation being
22 + @302y + qunx?. In this case the lifting matrix has (up to a factor %) the
following block structure

IT 0 0
0 I 0
0 0 O
0 0 I

so there are 2n -deformations, on which we have 4n —5 base equations coming
from the equation P. Of these are only 2n linearly independent, defining a
zero-dimensional complete intersection (see Lemma 3.11). These deformations
are therefore obstructed, leaving us again with only the pure rolling factors
deformations. The curve D consists of the double locus and in general 2n + 4
lines.

The same computation as above works for bielliptic cones. In that case one has
a deformation of weight —2. The total space is a surface in weighted projective
space P(1,...,1,2). Replacing the deformation parameter ¢t by ¢ we get a
surface in ordinary PY. This is a surface with two simple elliptic singularities.
The most general surface of this type is the intersection of our elliptic cone
with one dimensional vertex with the hypersurface given by

Q = 2%+ Q(zi, yi) + tl(wi, yi) + at?

where [(z;,y;) is a linear form in the coordinates z;, y;. If the coefficient a
vanishes, we get a surface with one singularity with p, = 2. The construction
above gives an equation of the form @ = 22 +...4azt, which after a coordinate
transformation becomes 2% + - - — 1a?¢2.

PrOPOSITION 4.5. For bielliptic cones of genus g > 10 the only deformations
of negative weight are pure rolling factors deformations.

Proof. Each infinitesimal deformation of the bielliptic cone induces an in-
finitesimal deformation of the cone over the projective cone over the elliptic
curve. The same holds therefore for complete deformations of negative weight.
It is well-known that the cone over an elliptic curve of degree at least 10 has
only obstructed deformations of negative weight. Therefore the deformation of
the elliptic cone is trivial and the only possibility is to deform the last quadratic
equation. [l

On the other hand, non-scrollar extension do occur for bielliptic curves with
g < 10 and for tetragonal curves on Del Pezzo surfaces.
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Example 4.6. A bielliptic curve of genus 10 lies on the projective cone over
an elliptic curve of degree 9. Such a cone is can be smoothed to the triple
Veronese embedding of P?. Let W be a K3 surface of degree 2, a double cover
of P? branched along a sextic curve. We re-embed W with |3L|, where L is
the pull-back of a line on P2. The image lies on the cone over the Verones
embedding. A hyperplane section through the vertex of the cone is a bielliptic
curve, whereas the general hyperplane section has a g2. This example, due to
[Donagi-Morrison 1989, is the only case where the gonality of smooth curves in
a base-point-free ample linear system on a K3 surface is not constant [Ciliberto—
Pareschi 1995].

Now we look at the case that also the first set of equations admit pure rolling
factors deformations.

LEMMA 4.7. Ife; > by then e; < by +2 and by < by + 4.

Proof. Under the assumption e; > b; we have e +e3 — 2 < by < 2e3 so
es < e3+2and by < 2ey < ey +e3+2 < by + 4. Furthermore e — 1 =
by +by+2—ex—e3 < by + 2. O

It is now easy to list all 18 possibilities, ranging from (2e + 2, e, ¢; 2¢, 2¢) to
(2¢ + 4,e + 2,e;2e + 4,2¢). A look at the table of tetragonal K3 surfaces
reveals that all possibilities are realizable as special sections of K3-surfaces;
e.g., the hyperplane section z.2 = yo of a K3 with invariants (e +2,e+2,e+
2,e;2e + 4, 2¢) yields the last case.

On the other hand, every family of K3 surfaces contains degenerate elements
with singularities of higher genus. Those can be constructed with Epema’s
construction and in fact he gives rather complete results for quartic hypersur-
faces [Epema 1983]. The classification of such surfaces is due to [Rohn 1884]
and is quite involved. In those cases the rational or ruled surfaces on which
the canonical curve lies are not evident. For pure rolling factors extensions the
situation is better; in fact, we can make the following simple observation.

ProrosiTiON 4.8. Let W be a pure rolling factors extension of tetragonal
curve, which is not bi-elliptic. It lies on the cone over the 3-dimensional scroll
S with vertex inp = (0:...:0:1) and the projection from the point p yields a
surface Y C P9~! on which C lies.

Example 4.9. 1f by > ey then X lies on the cone over the surface Y on the scroll
and the projection is just this surface Y, so we get the construction described
above.

Example 4.10. Consider the curve with invariants (8,4,2;8,4). In general a
pure rolling factors extension leads to a K3-surface (with an ordinary double
point). It is the case e =3 of (e+5,e+1,e — 1,e — 3;2e + 2,2¢ — 1) from the
table; the singularity appears because the section (0:0:0:1) is contracted. To
find the equation of Y on the scroll we have to eliminate the last coordinate w.
The deformed equation P is P + axw, while Q@ = Q + byw + ca(s, t)zw with a
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and b nonzero constants. The equation of Y is therefore (by+ca(s,t)x)P —az@,
which defines a divisor of type 3H — (b1 + b2)R on the scroll.

Example 4.11: the case (2e + 2, ¢, e;2e,2¢). We first derive a normal form for
the equations P and ). We start with the restriction to x = 0. We have a
pencil of quadrics so we may choose the first equation as y2? and the second as
22, We get:

P: y2 + Pet2Tz + p26+4x2

Q1 2% + Get2my + qoetax® .

There are 3 + 3 pure rolling factors deformations:

P: P+ (pos® + pist + pat?®)x
Q:Q+ (108% + T8t + otz .

If the polynomials p := pgs? + pist + pot? and T := 7952 + 715t + Tot? are
proportional, so Ap + ur = 0, then the surface Y is the surface AP + pu@ =0
from the pencil. In general the anticanonical divisor D contains the two sections
given by « = 0, Ay?2 + pz2 = 0 and the singularity on the deformation is a cusp
singularity. If p and 7 have 0 < v < 2 roots in common, the projected surface
is a divisor of type 2H — (2¢ — 2 + v)R. In general we get a simple elliptic
singularity.

To describe the remaining deformations we look at the lifting matrix, which is
a block matrix

0 21 0
Meys 00
Ee+2 0 0

0 0 27

of size (de — 4) x (4de — 1). Its rank is 2e — 2 if p.yo and geio both vanish
identically, and lies between 3e — 3 and 4e — 4 otherwise. The solution space
has dimension « > 3 with strict inequality iff the polynomials p.yo and ge4o
have v roots in common. The 1 and { deformations vanish. Therefore the
base equations depend only on poei4 and goerq. They are 2(2e — 1) quadratic
equations on 2e + 1 4 6 variables, which may or may not have solutions.

We now turn to the other deformations in general. A dimension count shows
that the general tetragonal curve of genus g > 15 cannot lie on a K3 surface,
so the deformations are obstructed. For a general tetragonal cone we have that
dim T3 = 9. There are (by — 1) + (bo — 1) = g — 7 quadratic base equations.
Compare this with the dimension of 72

THEOREM 4.12([Wahl, Thm. 5.9]). Let X be a tetragonal cone with ez > 0.
Then dimT%(—k) =0 for k > 2 and dimT%(—k) = g — 7 if by > 0. If by = 0,
then dim T% (—k) = 2(g — 6).

In particular, if ¢ > 15 we have more equations than variables and in general

there are no solutions. For special moduli solutions do exist and one expects
in general exactly one solution.
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(4.13) The case g = 15. Consider the most general situation, of equal invari-
ants: e; = es = eg3 = 4, by = by = 5. In this case there are no pure rolling
factor deformations and no lifting conditions.

PROPOSITION 4.14. The general tetragonal curve with e; = es = ez = 4,
by = by = 5 is hyperplane section of 256 different K3 surfaces.

Proof. We have 8 homogeneous quadratic equations in 9 variables, which
define a complete intersection of degree 28. We give an explicit example. Take
the curve, given by the equations

(83 + t3)2% 4 (83 + 26%)y% + (s — 23) 22
(s> + %) (s — t)z® + > (s + t)y* + 227

on the scroll. The base equations are formed according to Thm. 3.4. One
computes that indeed we have a complete intersection, which is non-singular.
a

It is very difficult to find solutions to such equations, and I have not succeeded
to do so in the specific example. Note that the absence of mixed terms in z, y
and z on the scroll means that the automorphism group of the curve has order
at least eight and it operates on the base space: given one solution one finds
three other ones by multiplying all &; or all {; by —1.

Remark 4.15. Alternatively one can start with a K3 surface and take a general
hyperplane section. Therefore we look at complete intersections of two surfaces
of type 2H — 5R on a scroll of type (3,3,3,3). Such a K3 surface can have
infinitesimal deformations of negative weight (which are always obstructed).
The lifting matrix for the K3 has size 8 x 8. The equations P and @ on the
scroll are pencils of quadrics. In general such a pencil has 4 singular fibres and
by taking a suitable linear combination we may suppose that P has the form

sX2 Y2 4 (s+ )22 4+ (s —t)W?2 .

The polynomial @ is then a general pencil with 20 coefficients, of which one can
be made to vanish by subtracting a multiple of P. This shows that these K3
surfaces depend on 18 moduli. Let Q = (a115 + b11t) X2 + 2(a125 + b1ot) XY +
<o+ (ag48 + bgat)W?2. Then the lifting matrix is

1 0 0 0 O 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 -1

a1 b1 a2 bz aiz bz as by
a1z b1z aze bay asz boz azs by
a1z bz azz bz asz b3z azs b
a4 bia azs bay azs b3y agy by
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For nonsingular K3 surfaces this matrix has at least rank 5, and it is possible to
write down examples with exactly rank 5. Rank 4 can be realized with surfaces
with isolated singularities. An explicit example (with a slightly different basis
for the pencil) is

P=sX24+tY?+ (s+1)2>

Q=sX>—tY? 4 (s—t)W?

with ordinary double points at sX = tY = (s +t)Z = (s —t)W = 0. The
hyperplane section X5 + Zo + Wy + Yy = t3X + s2tZ + st?W + s3Y does not
pass through the singular points and defines a smooth tetragonal curve with
e; = 4. The base space for this curve is still a complete intersection, but the
line corresponding to the singular K3 surface is a multiple solution.

(4.16) The case g = 16. The curves lying on a K3 form a codimension one
subspace in the moduli space of tetragonal curves of genus g = 16. In terms
of the coefficients of the equations of the scroll one gets an equation of high
degree. It makes no sense to write it. We will not study the most general case
(5,4,4;6,5) but (5,5, 3;6,5). These curves form a codimension two subspace in
moduli. The computations will show that the condition of being a hyperplane
section has again codimension one. The lifting matrix need not have full rank.
We have b; = 2e3, and the g} can be composed.

Suppose that the coefficient of 22 in the first equation on the scroll does not
vanish. With a coordinate transformation we may assume that the equation
has the form 22 + Py(s,t;z,y) with P; of degree 4 in (s:t) and quadratic in
(z:y). Then we can take @ to be without z? term. Let go.15% + ...+ gs.1t> be
the coefficient of zz and go,25% + ... + g3.2t® that of yz. The rows of the 3 x 8
lifting matrix come only from the monomial z:

o 0 0 0 |] 0 0 0 0 |10
o 0 0 0 | 0 0 0 0 | o071
Qo1 Qi1 G2 g3 | Qo2 @2 q22 g3z | 0 0

The matrix has rank 3 if some ¢; ; does not vanish, but rank 2 if they all vanish;
then the surface {Q = 0} has a singular line.

The deformation variables (1, (2 vanish. We have two pure rolling factors
deformations p; and ps in the second set of additional equations, and there are
scrollar deformations &1, ..., n4. Between those exist a linear relation given by
the third line of the matrix. The equations for the base can be written down
independently of this linear relation, because the {; vanish.

We give a specific example: 22 + tiy? + (s* + t1)2? and (s° + t°)22 + (s° —
t)y? + qi(s,t)xz + q2(s,t)yz. We get the following nine equations:

—26283 — 26184 — 2mam3 — 214
f% - §§ — 2884 — 77§ — 2m2m4
26182 — 26384 — 21314

DOCUMENTA MATHEMATICA 7 (2002) 185-226



ROLLING FACTORS DEFORMATIONS 221

216+ & — & — 0
28184 + 26283
p1é1+ pamy — €5 — 28264 + 13 + 2m2ma

p1€o + pama + &2 4+ 17 — 263E4 + 21314

p1&€3 + pang + 261&2 + 2mne — €3 + 03

préa + pama + 28165 + €5 + 2mns + 15

Also in general we have 5 equations 7, and 4 equations p1&,, + pP2Mm + Xm-
The pure rolling factors equations are never obstructed. We have as solution to
the equations therefore the (p1, p2)-plane with a non reduced structure. Given
a general value of (p1,p2) we can eliminate say the 7); variables. We are then
left with 5 equations m; depending only on the x;. Their quadratic parts satisfy
a relation with constant coefficients, but even more is true: this relation can
be lifted to the equations themselves. So the component has multiplicity 16.
The general fibre over the reduced component has a simple elliptic singularity
of degree 10.

To find the other solutions we eliminate p; and ps. This gives the condition

X1 X2 X3 X4
Rank | & & & & | <2
m N2 N3 M4

which defines a codimension 2 variety of degree 11. In general the 5 equations
Tm cut out a subset of codimension 7 and degree 352. But if

Rank(51 & & f4)g1 (R)
m T2 7N3 M4

the full equations have only solutions in the (pi, p2)-plane. Even if this rank
condition defines a codimension 3 subspace, there are always solutions. To see
this we set & = s*~'~1¢ and n; = s*~#*~ 1. The equations 7,, are satisfied if
%P;;(s, t;€,m) = 0and %P4(s, t;€,m) = 0. This is the intersection of two curves
of type (2,3) on the scroll S53 = P! x P! and there are 12 such intersection
points. Those points give multiple solutions. One can compute that the rank
of the Jacobi matrix of the system of equations (R) together with the 7, is
five. By taking a suitable general example one finds that the multiplicity is in
fact 4, and 48 is the degree of the solution of the system.

PROPOSITION 4.17. The general tetragonal cone with invariants (5,5, 3;6,5),
which is composed with an involution of genus 4, has 302 smoothing com-
ponents. The base space of a non-composed cone can be identified with a
hyperplane section of the base of the corresponding composed one and only the
smoothing components of lying in this hyperplane give smoothing components
of the non-composed cone.

This means that for fixed polynomials P, @ the existence of smoothings depends
on an equation of degree 302 in the eight variables ¢;,;. For special values the
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number of smoothing components may go down. This happens in the specific
example given, where the condition (R) gives two-dimensional ‘false’ solutions.
Here there are only 238 smoothing components. Besides the hyperelliptic invo-
lution the curve has another automorphism which acts on the base space. The
only solutions I have found are easy to see:

m=m=EG=G=+&E=mp+mu=p+& =p+mu=E—n;=0

We take & =n3 = p2 = § and & = 1y = p1 = —I. The total space is a surface
on a scroll of type (4, 3,3, 3) with bihomogeneous coordinates (W, X,Y, Z; s, t).
We set Y; = y;, X; = x40 and Z; = z; for i = 0,...,3. The hyperplane section
iS0=Wo+Xg+X1 +Yo+Y3,50if § =0 we have X =t%2, Y = 5%y, Z =z
and W = —(s+t)(z+y). The lifting equation is now ¢o;1 —¢1.1 +¢2.2 —¢3;3 = 0.
One computes that the surface is given by

2X2 4 Y2 - 2AX —Y)W(s —t) + W3(s —t)* + Z°
2Y%s — XW(s% — 2st + 2t2) + YW (2% — 2st + t2) + W2(s — t)(s* — st 4+ t?)
— X Z(sq2;2 +tq3,2) — Y Z(sqo;1 +tqun) — ZW (s%qo;1 + st(qo2 — gs2) +1°3:2)

This is a K3 surface with an A;-singularity.

For even more special values of the coefficients there may be higher dimensional
smoothing components. This happens e.g. for P = 22 +t*y?+s*z? and the same
@ as above, where the equations m,, have the solution £&; = & =n3 =n4 =0,
giving rise to an extra component of degree 15, which is the cone over three
rational normal curves of degree 5. Then all tetragonal on Y have smoothings,
but depending on the position of the hyperplane the number may increase.

(4.18) The case (by,b2) = (8,4). In this case there exist five families of K3-
surfaces, three of which have the maximal dimension 18. The general hy-
perplane section of the scroll Sg 42,0 is a scroll Sg 49 while for both S5 432
and Si440 it is S554. One computes that the tetragonal curves of type
(2H — 8R,2H — 4R) on Sg a2 depend on 29 moduli and those on S554 de-
pend on 34 moduli.

PROPOSITION 4.19. The general tetragonal curve of type (8,4,2;8,4) has only
pure rolling factors extensions. If the g} is composed with an involution of genus
3, then there are in general 91 smoothing components not of this type.

Remark 4.20. The tetragonal curve can be a special hyperplane section of
a K3 surface on S74 2.1, 5674,2,27 55,47372 or 5474,472. Therefore the genericity

Y Ey 4y

assumption cannot be dropped.

Proof. After a coordinate we may assume that P has the form pgz?+y2+psx2.
The g} is composed with an involution of genus 3 if and only if po = 0. In that
case Q may be taken in the form ¢io22+gszy+22. That the curve is nonsingular
implies that ps has no multiple roots. If the gj is not composed, the term 22
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may be absent in (), and pg may have multiple roots. For the general curve
this does not occur. We look therefore at curves given by

P:p8x2 + y2 + poxz
Q: q127” + sy + 27 .

The lifting matrix is a block matrix

0 2I 0
I o o0
0 0 2I

with IT giving the equations ps,o&; + pa,1€it1 + pa.s€ipa = 0. There is one pure
rolling factors deformation for the first equation, and 541 for the second. The
equation P leads to 7 base equations m,, in the 8 variables p, &1, ..., &. The
128 solutions are described above. The equations coming from @ are

p1&1 + p2&2 + p3&s + pala + ps§s +x1 =0
p182 + p283 + p38a + pals + ps&e + x2 =0
p1€3 + p28a + p3&s + pade + ps&r + x3 =0

We view this as inhomogeneous linear equations for the p;. The coefficient

matrix
&1 & & & &
M=|& & & & &
& & & & &

is the transpose of the coefficient matrix of the equations ps ¢&; + p21&i+1 +
p2,2€i+2 = 0, viewed as equations for the coeflicients of p. If for a given solution
of the equations 7, the matrix M has not full rank, then there exists a non-
composed pencil admitting the same solution. But then also p2 ox1 + p2,1x2 +
p2,2x3 = 0, an equation which in general is not satisfied. We have 8 solutions
which lie on a rational normal curve and 28 solutions on the secant variety of
this curve. The equations of the secant variety are the maximal minors of M.
Only for 91 solutions the matrix M has full rank. O

In the general case we get components of dimension 3+ 1 (the y-rolling factors
deformation does not enter the equations), for solutions not on the rational
curve, but on its secant variety the component has dimension 5, while we get
a 6-dimensional component if pg and ¢12 have a common root. This does not
contradict the fact that all smoothing components of Gorenstein surface singu-
larities have the same dimension, because we here only look at the restriction
to negative degree.

PRrROPOSITION 4.21. The general hyperplane section of a K3 surface of type
(5,4,3,2;8,4) or (4,4,4,2;8,4) is a tetragonal curve of type (5,5, 4;8,4), which
lies on a rational surface with two double points.

Proof. We use coordinate transformations on the scroll to bring the hy-
perplane section into a normal form, while we suppose the coefficients of
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the equations to be general. Let as usual (X,Y,Z,W;s,t) be coordinates
on the scroll. Let the hyperplane section be agWy + a1Wy + aoWs + -+ =
(aps® + ayst + agt?’)W + ---. By a transformation in (s,t) we achieve that
ag = as = 0, so the equation is Wy + - --. First consider the case (4,4,4,2). By
a suitable transformation w — W+ag(s,t) X +ba(s,t)Y +ca(s,t) Z we remove all
terms with index 1, 2 or 3, leaving W1 4agXo+boYo+coZo+as Xy+bsYs+csZy.
Taking agX + bgY + coZ as new X and a4 X + byY + c4Z as new Y brings us
finally to X4+W1+Yy. With coordinates (z,y, z; s, t) for the scroll S5 5 4 we get
the hyperplane section by setting Z = 2z, X = sz, Y =ty and W = —t3z — s3y.
The equation P does not involve the variable W so we have quadratic sin-
gularities if sx = ty = z = 0, which gives the points s = y = z = 0 and
t=x=2=0.

In the case (5,4, 3,2) we can achieve W7 + Zy + Z3 and we get the curve by
X =ua,Y =2 Z =styand W = —(s3 + t3)y. The equation P:psX? +
p1 XY +poY? 4+ X Z now gives pax? + p122 + poz? + stxy, which for general p;
has singular points at * = z = st = 0. (]

To investigate the sufficiency of these conditions we look at the general cone
of type (5,5,4;8,4). We may suppose that P has the form 2% + Py(z,y). The
equation P (z,y) describes a curve of type (2,2) on S5 5 = P! x P1. If this curve
has a singular point, we may assume that it lies in the point x = s = 0. Under
the assumption that the coefficient of stxy does not vanish we can transform
the equation into the form (as? + bt?)z? + 2stxy + cs?y? and unfolding the
singularity we get the equation
Py = (as® + bt*)z® 4 2stzy + (cs® + dt*)y? .

One can then write out the lifting conditions and base equations coming from
the equation P. The result is that they have only trivial solutions if and only if
abed((ad +be —1)% — 4abed) # 0, if and only if the curve P, is nonsingular. If a
singularity is present we assume it to be in x = s = 0, so d = 0. The equation
gives three base equations, in which 242 pure rolling factors variables can enter.
We analyze what happens if there is a second singularity. For b = d = 0 the
equation P is divisible by s, and we do not find extensions. In case a = d =0
the curve Py splits into two curves of type (1,1); we get two components with
deformed scroll Sy 442. For ¢ = d = 0 we have intersection of a line with a
curve of type (2,1) and we find two components with deformed scroll S5 43 2.

Remark 4.22. For the general tetragonal cone with large g we found
dim 71 (—1) = 9, but all deformations are obstructed. For special curves exten-
sions may exist; also the dimension can be higher. Both conditions seem to be
independent. As the number of base equations we find is always g — 7, having
more variables increases the chances of finding solutions. In the borderline case
studied above this may suffice to force the existence, but in general it does not.
On the other, taking a general hyperplane section of a general tetragonal K3
surface will give a cone with dim 7 (—1) = 9. It would be interesting to find a
property of a canonical curve which gives a sufficient condition for the existence
of an extension.
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