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2 J. N. IYER, S. MULLER—STACH

1. INTRODUCTION

Suppose X is a nonsingular projective variety defined over the complex num-
bers. We consider the rational Chow group CH*(X)g = CH'(X) ® Q of
algebraic cycles of codimension ¢ on X. The conjectures of S. Bloch and A.
Beilinson predict a finite descending filtration { F/CH*(X)g} on CH*(X)g and
satisfying certain compatibility conditions. A candidate for such a filtration has
been proposed by J. Murre and he has made the following conjecture [Mu2],

MURRE’S CONJECTURE: The motive (X, A) of X has a Chow-Kiinneth decom-

position:
2d

A=Y "meCH (X xX)®Q
i=0

such that m; are orthogonal projectors, lifting the Kiinneth projectors in
H??~(X) ® H(X). Furthermore, these algebraic projectors act trivially on
the rational Chow groups in a certain range.
These projectors give a candidate for a filtration of the rational Chow groups,
see §2.1.
This conjecture is known to be true for curves, surfaces and a product of a curve
and surface [Mul], [Mu3]. A variety X is known to have a Chow—Kiinneth de-
composition if X is an abelian variety /scheme [Sh],[De-Mu], a uniruled three-
fold [dA-Miil], universal families over modular varieties [Go-Mu], [GHM2] and
the universal family over one Picard modular surface MMWYK], where a par-
tial set of projectors are found. Finite group quotients (maybe singular) of
an abelian variety also satisfy the above conjecture [Ak-Jo]. Furthermore, for
some varieties with a nef tangent bundle, Murre’s conjecture is proved in [Iy].
A criterion for existence of such a decomposition is also given in [Sa]. Some
other examples are also listed in [Gu-Pe].
Gordon-Murre-Hanamura [GHM2], [Go-Mu] obtained Chow—Kiinneth projec-
tors for universal families over modular varieties. Hence it is natural to ask if
the universal families over the moduli space of curves of higher genus also admit
a Chow-Kiinneth decomposition. In this paper, we investigate the existence of
Chow-Kiinneth decomposition for families of smooth curves over spaces which
closely approximate the moduli spaces of curves M, of genus at most 8, see
85.
In this example, we take into account the non-trivial action of a linear algebraic
group G acting on the spaces. This gives rise to the equivariant cohomology
and equivariant Chow groups, which were introduced and studied by Borel, To-
taro, Edidin-Graham [Bo], [To], [Ed-Gr]. Hence it seems natural to formulate
Murre’s conjecture with respect to the cycle class maps between the rational
equivariant Chow groups and the rational equivariant cohomology, see §4.5.
Since in concrete examples, good quotients of non-compact varieties exist, it
became necessary to extend Murre’s conjecture for non-compact smooth va-
rieties, by taking only the bottom weight cohomology W; H!(X,Q) (see [D]),
into consideration. This is weaker than the formulation done in [BE]. For
our purpose though, it suffices to look at this weaker formulation. We then
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CHOW-KUNNETH DECOMPOSITIONS 3

construct a category of equivariant Chow motives, fixing an algebraic group G
(see [dB-Az], [Ak-Jo], for a category of motives of quotient varieties, under a
finite group action).

With this formalism, we show (see §5.2);

THEOREM 1.1. The equivariant Chow motive of a universal family of smooth
curves X — U over spaces U which dominate the moduli space of curves Mg,
for g < 8, admits an equivariant Chow—Kinneth decomposition, for a suitable
linear algebraic group G acting non-trivially on X.

Whenever smooth good quotients exist under the action of G, then the equi-
variant Chow-Kiinneth projectors actually correspond to the absolute Chow—
Kiinneth projectors for the quotient varieties. In this way, we get orthogonal
projectors for universal families over spaces which closely approximate the mod-
uli spaces Mg, when g is at most 8.

One would like to try to prove a Chow-Kiinneth decomposition for M, and
Mg (which parametrizes curves with marked points) and we consider our
work a step forward. However since we only work on an open set U one has to
refine projectors after taking closures a bit in a way we don’t yet know.

Other examples that admit a Chow—Kiinneth decomposition are Fano vari-
eties of r-dimensional planes contained in a general complete intersection in a
projective space, see Corollary 5.3.

The proofs involve classification of curves in genus at most 8 by Mukai
[Muk],[Muk2] with respect to embeddings as complete intersections in homoge-
neous spaces. This allows us to use Lefschetz theorem and construct orthogonal
projectors.

ACKNOWLEDGEMENTS: The first named author thanks the Math Department of Mainz,
for its hospitality during the visits in 2007 and 2008, when this work was carried out. We

also thank a referee for a useful remark concerning our definition of the weight filtration.

2. PRELIMINARIES

The category of nonsingular projective varieties over C will be denoted by V.
Let CH(X)g = CH*(X) ® Q denote the rational Chow group of codimension
1 algebraic cycles modulo rational equivalence.
Suppose X, Y € Ob(V) and X = UX,; be a decomposition into connected
components X; and d; = dim X;. Then Cort”"(X,Y) = @,CH%"(X; x Y)g
is called a space of correspondences of degree r from X to Y.
A category M of Chow motives is constructed in [Mu2]. Suppose X is a
nonsingular projective variety over C of dimension d. Let A C X x X be the
diagonal. Consider the Kiinneth decomposition of the class of A in the Betti
Cohomology:

[A] = @Fymiom
where 7lom € H2~{(X,Q) ® H (X, Q).

DEFINITION 2.1. The motive of X is said to have Kiunneth decomposition if

each of the classes wh°™ is algebraic, i.e., 7™ is the image of an algebraic

DOCUMENTA MATHEMATICA 14 (2009) 1-18



4 J. N. IYER, S. MULLER—STACH

cycle m; under the cycle class map from the rational Chow groups to the Betti
cohomology.

DEFINITION 2.2. The motive of X is said to have a Chow—Kiinneth decomposi-
tion if each of the classes Th°™ is algebraic and they are orthogonal projectors,
Z'.C., T, O = 5i,j7ri'

LEMMA 2.3. If X and Y have a Chow-Kiinneth decomposition then X XY also
has a Chow-Kiinneth decomposition.

Proof. If m¥ and 7er are the Chow—Kiinneth components for h(X) and h(Y)
respectively then

Y = 3" wX xm) € CHY (X xY x X xY)g

? q

ptHq=i
are the Chow—Kiinneth components for X x Y. Here the product ”z);( X ’/T;/ is
taken after identifying X XY x X x Y 2 X x X xY x Y. g

2.1. MURRE’S CONJECTURES. J. Murre [Mu2], [Mu3] has made the following
conjectures for any smooth projective variety X.
(A) The motive h(X) := (X, Ax) of X has a Chow-Kiinneth decomposition:

2n
Ax =Y meCH"X xX)®Q
i=0
such that m; are orthogonal projectors.
(B) The correspondences mo, 1, ..., Tj—1, T2j+1, ---, T2n act as zero on CH? (X)®

Q.
(C) Suppose

FTCHj(X) ® Q = Kermy; N Kermgj—1 N ... N Kermgj_ry1.

Then the filtration F* of CH’(X) @ Q is independent of the choice of the
projectors ;.

(D) Further, FICH!(X) ® Q = (CHY(X) ® Q)hom, the cycles which are ho-
mologous to zero.

In §4, we will extend (A) in the setting of equivariant Chow groups.

3. EQUIVARIANT CHOW GROUPS AND EQUIVARIANT CHOW MOTIVES

In this section, we recall some preliminary facts on the equivariant groups to
formulate Murre’s conjectures for a smooth variety X of dimension d, which
is equipped with an action by a linear reductive algebraic group G. The equi-
variant groups and their properties that we recall below were defined by Borel,
Totaro, Edidin-Graham, Fulton [Bol,[To],[Ed-Gr], [Fu2].

DOCUMENTA MATHEMATICA 14 (2009) 1-18



CHOW-KUNNETH DECOMPOSITIONS 5

3.1. EQUIVARIANT COHOMOLOGY H((X,Z) oF X. Suppose X is a variety
with an action on the left by an algebraic group G. Borel defined the equivariant
cohomology H{(X) as follows. There is a contractible space EG on which G
acts freely (on the right) with quotient BG := EG/G. Then form the space

EG xg X := EG x X/(e.g,z) ~ (e,g.x).
In other words, EG X X represents the (topological) quotient stack [X/G].

DEFINITION 3.1. The equivariant cohomology of X with respect to G is the
ordinary singular cohomology of EG xXg X :

HL(X) = H(EG x¢ X).
For the special case when X is a point, we have
H (point) = H'(BG)

For any X, the map X — point induces a pullback map H'(BG) — H%(X).
Hence the equivariant cohomology of X has the structure of a H'(BG)-algebra,
at least when H'(BG) = 0 for odd i.

3.2. EQUIVARIANT CHOW GROUPS CHS(X) oF X. [Ed-Gr]

As in the previous subsection, let X be a smooth variety of dimension n,
equipped with a left G-action. Here G is an affine algebraic group of dimension
g. Choose an [-dimensional representation V' of G such that V has an open
subset U on which G acts freely and whose complement has codimension more
than n —i. The diagonal action on X x U is also free, so there is a quotient in
the category of algebraic spaces. Denote this quotient by X¢ := (X x U)/G.

DEFINITION 3.2. The i-th equivariant Chow group CHE (X) is the usual Chow
group CH;y—y(Xg). The codimension i equivariant Chow group CHYL(X) is
the usual codimension i Chow group CH*(X¢).

Note that if X has pure dimension n then
CHy(X) = CH'(Xe)
CHpii1—g—i(Xa)
= CHS—i(X)'

ProproOSITION 3.3. The equivariant Chow group C’HZ-G(X) is independent of the
representation V, as long as V — U has codimension more than n — .

Proof. See [Ed-Gr, Definition-Proposition 1]. O

If Y C X is an m-dimensional subvariety which is invariant under the G-
action, and compatible with the G-action on X, then it has a G-equivariant
fundamental class [Y]g € CHS(X). Indeed, we can consider the product
(YxU) € XxU, where U is as above and the corresponding quotient (Y xU)/G
canonically embeds into X. The fundamental class of (Y x U)/G defines the
class [Y]g € CHSG(X). More generally, if V is an I-dimensional representation

DOCUMENTA MATHEMATICA 14 (2009) 1-18



6 J. N. IYER, S. MULLER—STACH

of G and S C X x V is an m + [-dimensional subvariety which is invariant
under the G-action, then the quotient (SN (X x U))/G C (X x U)/G defines
the G-equivariant fundamental class [S]¢ € CHS(X) of S.

PROPOSITION 3.4. If « € CHS(X) then there exists a representation V. such
that a = 3" a;[Si]a, for some G-invariant subvarieties S; of X x V.

Proof. See [Ed-Gr, Proposition 1]. O

3.3. FUNCTORIALITY PROPERTIES. Suppose f : X — Y is a G-equivariant
morphism. Let S be one of the following properties of schemes or algebraic
spaces: proper, flat, smooth, regular embedding or l.c.i.

ProrosiTioN 3.5. If f : X — Y has property S, then the induced map fg :
Xg — Y also has property S.

Proof. See [Ed-Gr, Proposition 2]. a

PROPOSITION 3.6. Equivariant Chow groups have the same functoriality as
ordinary Chow groups for equivariant morphisms with property S.

Proof. See [Ed-Gr, Proposition 3]. O

If X and Y have G-actions then there are exterior products
CHE(X)® CHE(Y) — CHS ;(X x Y).

In particular, if X is smooth then there is an intersection product on the
equivariant Chow groups which makes ©;CH JG (X) into a graded ring.

3.4. CYCLE CLASS MAPS. [Ed-Gr, §2.8]

Suppose X is a complex algebraic variety and G is a complex algebraic group.
The equivariant Borel-Moore homology HgM,i(X ) is the Borel-Moore homol-
ogy Hpwm,i(Xg), for X = X xg U. This is independent of the representation
as long as V — U has sufficiently large codimension. This gives a cycle class
ma'p)

cl; : CHE (X) — HgMzi(Xa Z)

compatible with usual operations on equivariant Chow groups. Suppose X is
smooth of dimension d then X is also smooth. In this case the Borel-Moore
cohomology Hf )/ »;(X,Z) is dual to H*~(X¢) = H*/(X xg U).

This gives the cycle class maps

(1) cd': CHL(X) — HE(X,Z).

There are also maps from the equivariant groups to the usual groups:
2) HE (X, Z) — H'(X,Z)

and

(3) CHL(X) — CHY(X).

DOCUMENTA MATHEMATICA 14 (2009) 1-18



CHOW-KUNNETH DECOMPOSITIONS 7

3.5. WEIGHT FILTRATION W. ON H(X,Z). In this paper, we assign only the
bottom weight W; of the equivariant cohomology in the simplest situation.
Consider a smooth variety X equipped with a left G action as above.
We can define

WiH&(X,Q) =W, H' (X xU)/G,Q),
for U C V an open subset with a free G-action, where codim V — U is at least
n — 1.
LEMMA 3.7. The group W;H,(X,Q) is independent of the choice of the G-
representation V as long as codim V — U is at least n — 1.

Proof. The proof of independence of V' in the case of equivariant Chow groups
[Ed-Gr, Definition-Proposition 1] applies directly in the case of the bottom
weight equivariant cohomology. O

3.6. EQUIVARIANT CHOW MOTIVES AND THE CATEGORY OF EQUIVARIANT
CHOW MOTIVES. When G is a finite group then a category of Chow motives
for (maybe singular) quotients of varieties under the G-action was constructed
in [dB-Az], [Ak-Jo]. More generally, we consider the following situation, taking
into account the equivariant cohomology and the equivariant rational Chow
groups, which does not seem to have been considered before.

Fix an affine complex algebraic group G. Let Vg be the category whose objects
are complex smooth projective varieties with a G-action and the morphisms
are G-equivariant morphisms.

For any XY, Z € Ob(V¢), consider the projections

X xYxZ25 X xv,
XxYxZ22y x Z,
XxYxZ2E X xZ.

which are G-equivariant.
Let d be the dimension of X. The group of correspondences from X to Y of
degree r is defined as

Corrg(X x Y) := CHL (X x Y).
Every G-equivariant morphism X — Y defines an element in Corr,(X x Y),

by taking the graph cycle.
For any f € Corrg(X,Y) and g € Corr(Y, Z) define their composition

go f € Corrly (X, 2)
by the prescription

go f=pxz«0xy(f)ry2(9)).
This gives a linear action of correspondences on the equivariant Chow groups

Corrf,(X,Y) x CHE(X )g — CHLP(Y)o
(7, @) = py«(Px )
for the projections py : X XY — X, py : X xY — Y.

DOCUMENTA MATHEMATICA 14 (2009) 1-18



8 J. N. IYER, S. MULLER—STACH

The category of pure equivariant G-motives with rational coefficients is denoted
by M{. The objects of M, are triples (X,p,m)g, for X € Ob(Vg), p €
Corr%(X, X) is a projector, i.e., pop = p and m € Z. The morphisms between
the objects (X, p,m)q, (Y,q,n)¢ in /\/lg are given by the correspondences f €
Corrd ™ (X,Y) such that fop = go f = f. The composition of the morphisms
is the composition of correspondences. This category is pseudoabelian and
Q-linear [Mu2]. Furthermore, it is a tensor category defined by

(Xapam)G ® (Ya%n)G = (X X Y,p®q,m+n)g

The object (Spec C,id, 0)s is the unit object and the Lefschetz motive L is the
object (SpecC,id,—1)g. Here SpecC is taken with a trivial G-action. The
Tate twist of a G-motive M is M(r) :== M @ L " = (X, p,m +1)g.

DEFINITION 3.8. The theory of equivariant Chow motives ([Sc]) provides a
functor

h: Vg — Mg
For each X € Ob(Vg) the object h(X) = (X,A,0)q is called the equivariant
Chow motive of X. Here A is the class of the diagonal in CH*(X x X)q,

which is G-invariant for the diagonal action on X x X and hence lies in
Corrd,(X, X) = CHL(X x X)g.

4. MURRE’S CONJECTURES FOR THE EQUIVARIANT CHOW MOTIVES

Suppose X is a complex smooth variety of dimension d, equipped with a G-
action. Consider the product variety X x X together with the diagonal action
of the group G.

The cycle class map

(4) d?: CHYX x X)g — H*(X x X,Q).

actually maps to the weight 2d piece Waq H?¥(X x X, Q) of the ordinary coho-
mology group.

Applying this to the spaces X x U, for open subset U C V as in §3.2, (4) holds
for the equivariant groups as well and there are cycle class maps:

(5) cd: CHEL(X x X)g — Wag HZ (X x X, Q).

LEMMA 4.1. The image of the diagonal cycle [Ax] under the cycle class map
cld lies in the subspace

P Waa— i HZ'~(X) @ WiH (X)

of Wag H24(X x X, Q).

Proof. First we prove the assertion for the ordinary cohomology of non-compact
smooth varieties and next apply it to the product spaces X x U, which is
equipped with a free G-action and the quotient space Xg.
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CHOW-KUNNETH DECOMPOSITIONS 9

If X is a compact smooth variety then we notice that the weight 2d piece
coincides with the cohomology group H2?4(X x X,Q) and by the Kiinneth
formula for products the statement follows in the usual cohomology. Suppose
X is not compact. Using (4), notice that the image of the diagonal cycle [Ax]
lies in WaaH?4(X x X,Q). Choose a smooth compactification X of X and
consider the commutative diagram:

@ H** ' (X)@ H(X) = H*X xX,Q)

| !
P Woa i H*H(X) @ WHI(X) = WaH*(X x X,Q).

The vertical arrows are surjective maps, defined by the localization. Hence
the map k is surjective. The injectivity follows because this is the Kiinneth
product map, restricted to the bottom weight cohomology. This shows that &
is an isomorphism.
In particular, the isomorphism k can be applied to the bottom weights of the
ordinary cohomology groups of the smooth variety X x U, for any open subset
U C V of large complementary codimension and V is a G-representation. But
this is essentially the bottom weight of the equivariant cohomology group of X.
To conclude, we need to observe that the diagonal cycle [Ax] is G-invariant.
|

Denote the decomposition of the G-invariant diagonal cycle
(6) Ax = @2 n¢ € WaaHZ (X x X, Q)

such that 7riG lies in the space ng_iHéd_i(X) @ W;HEL(X).

We defined the equivariant Chow motive of a smooth projective variety with a
G-action in §3.6. We extend the notion of orthogonal projectors on a smooth
variety equipped with a G-action, as follows.

DEFINITION 4.2. Suppose X is a smooth variety equipped with a G-
action. The equivariant Chow motive (X,Ax)c of X is said to have an
EQUIVARIANT KUNNETH DECOMPOSITION if the classes 7 are algebraic, i.e.,
they have a lift in the equivariant Chow group C’Hg;(X x X)q. Furthermore, if
X admits a smooth compactification X C X such that the action of G extends
on X and the Kiinneth projectors extend to orthogonal projectors on X then

we say that X has an EQUIVARIANT CHOW—KUNNETH DECOMPOSITION.

REMARK 4.3. When G is a linear algebraic group, using the results of Sumihiro
[Su], Bierstone-Milman [Bi-Mi, Theorem 13.2], Reichstein-Youssin [Re-Yol,
one can always choose a smooth compactification X O X such that action
of G extends to X. Since any affine algebraic group is linear, we can always
find smooth G-equivariant compactifications in our set-up.

Suppose X is a smooth variety with a free G-action so that we can form the
quotient variety Y := X/G. Using [Ed-Gr], we have the identification of the
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rational Chow groups
CH*(Y)q = CHg(X)o
and
CH*(Y xY)g = CHL(X X X)g.
Furthermore, these identifications respect the ring structure on the above ratio-
nal Chow groups. A similar identification also holds for the rational cohomology
groups. In view of this, we make the following definition.

DEFINITION 4.4. Suppose X is a smooth variety with a G-action and G acts
freely on X. Denote the quotient space Y = X/G. The absolute Chow—
Kinneth decomposition of Y is defined to be the equivariant Chow-Kinneth
decomposition of X .

We can now extend Murre’s conjecture to smooth varieties with a G-action, as
follows.

CONJECTURE 4.5. Suppose X is a smooth variety with a G-action. Then X
has an equivariant Chow-Kinneth decomposition.

In particular, if the action of G is trivial then we can extend Murre’s conjec-
ture to a (not necessarily compact) smooth variety, by taking only the bottom
weight cohomology W; H(X) of the ordinary cohomology. This is weaker than
obtaining projectors for the ordinary cohomology. We remark a projector m;
in the case of quasi—projective varieties has been constructed by Bloch and
Esnault [BE].

5. FAMILIES OF CURVES

Our goal in this paper is to find an (explicit) absolute Chow—Kiinneth decom-
position for the universal families of curves over close approximations of the
moduli space of smooth curves of small genus. We begin with the following
situation which motivates the statements on universal curves.

LEMMA 5.1. Any smooth hypersurface X C P™ of degree d has an absolute
Chow-Kiinneth decomposition. If L C X is any line, then the blow-up X' — X
also has a Chow-Kiunneth decomposition.

Proof. Notice that the cohomology of X is algebraic except in the middle di-
mension H" 1(X,Q). By the Lefschetz Hyperplane section theorem, the alge-
braic cohomology H% (X, Q), j # n— 1, is generated by the hyperplane section
HJ. So the projectors are simply

1 : :
Ty 1= E.Hn—l—T x H € CH" (X x X)g

for r #n —1. We can now take m,_1 := Ax — ), rtn—1Tr This gives a com-
plete set of orthogonal projectors and a Chow—Kiinneth decomposition for X.
Since X’ — X is a blow-up along a line, the new cohomology is again algebraic,

by the blow-up formula. Similarly we get a Chow—Kiinneth decomposition for
X' (see also [dA-Mii2, Lemma 2] for blow-ups). O
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The above lemma can be generalized to the following situation.

LEMMA 5.2. Suppose Y is a smooth projective variety of dimension r over C
which has only algebraic cohomology groups H(Y) for all 0 < i < m for some
m < r. Then we can construct orthogonal projectors

TOs Ty eees Ty T2r—mmy TT2r —m+1y «ooy T2
in the usual Chow group CH"(Y xY)q, and where ma; acts as 8, on H*(Y')
and mo;—1 = 0. Moreover, if there is an affine complex algebraic group G

acting on Y, then we can lift the above projectors in the equivariant Chow
group CHL(Y xY)q as orthogonal projectors.

Proof. See also [dA-Miil, dA-Mii2]. Let H?(Y) be generated by cohomology
classes of cycles C1, . ..,Cs and H?>"~2P(Y') be generated by cohomology classes
of cycles Dy, ..., Ds. We denote by M the intersection matrix with entries

Mij:Ci-DjEZ.

After base change and passing to Q—coefficients we may assume that M is diag-
onal, since the cup—product H??(Y,Q)® H?>"~2P(Y,Q) — Q is non—degenerate.
We define the projector ), as

L1
Top = Z M—kka X Ck.
k=1

It is easy to check that mgp.(Cx) = Dj. Define ma,_o, as the adjoint, i.e.,
transpose of map,. Via the Gram-Schmidt process from linear algebra we can
successively make all projectors orthogonal. O

Suppose X C P" is a smooth complete intersection of multidegree d; < dy <
... <ds. Let F.(X) be the variety of r-dimensional planes contained in X. Let
§ ==min{(r + 1)(n —7) — (“I"),n — 2r — s}.

T

COROLLARY 5.3. If X is general then F.(X) is a smooth projective variety of
dimension 6 and it has an absolute Chow—Kiinneth decomposition.

Proof. The first assertion on the smoothness of the variety F,.(X) is well-
known, see [Al-K]1], [ELV], [De-Ma]. For the second assertion, notice that F,.(X)
is a subvariety of the Grassmanian G(r,P") and is the zero set of a section of
a vector bundle. Indeed, let S be the tautological bundle on G(r,P™). Then
a section of ®3_,;Sym HO(P", O(1)) induces a section of the vector bundle
®5_1SymdiS* on G(r,P"). Thus, F,.(X) is the zero locus of the section of the
@le Sym® S* induced by the equations defining the complete intersection X.
A Lefschetz theorem is proved in [De-Ma, Theorem 3.4]:

HY(G(r,P"),Q) — H'(F.(X),Q)

is bijective, for i < § — 1. We can apply Lemma 5.2 to get the orthogonal
projectors in all degrees except in the middle dimension. The projector cor-
responding to the middle dimension can be gotten by subtracting the sum of
these projectors from the diagonal class.
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O

COROLLARY 5.4. Suppose X C P" is a smooth projective variety of dimension
d. Let r = 2d — n. Then we can construct orthogonal projectors

TOs TLy eees Ty T2d—1rs T2d—r+1y «++y T2d-

Proof. Barth [Ba] has proved a Lefschetz theorem for higher codimensional
subvarieties in projective spaces:

HY(P",Q) — H'(X,Q)

is bijective if 7+ < 2d —n and is injective if i = 2d —n+ 1. The claim now follows
from Lemma 5.2. O

REMARK 5.5. The above corollary says that if we can embed a variety X in a
low dimensional projective space then we get at least a partial set of orthogonal
projectors. A conjecture of Hartshorne’s says that any codimension two subva-
riety of P for n > 6 is a complete intersection. This gives more examples for
subvarieties with several algebraic cohomology groups.

5.1. CHOW—KUNNETH DECOMPOSITION FOR THE UNIVERSAL PLANE CURVE.
We want to find explicit equivariant Chow—Kiinneth projectors for the universal
plane curve of degree d. Let d > 1 and consider the linear system P = |Op2(d)]
and the universal plane curve

C Cc P’xP

|
P.

Furthermore, we notice that the general linear group G := G L3(C) acts on P?
and hence acts on the projective space P = |Op2(d)|. This gives an action on
the product space P? x P and leaves the universal smooth plane curve C C P2 xP
invariant under the G-action.

LEMMA 5.6. The variety C has an absolute Chow—Kiinneth decomposition and
an absolute equivariant Chow-Kiinneth decomposition.

Proof. We observe that C C P2 x P is a smooth hypersurface of bi-degree
(d,1) with variables in P? whose coefficients are polynomial functions on P.
Notice that P2 x P has a Chow—Kiinneth decomposition and Lefschetz theorems
hold for the embedding C C P? x P, since O(d,1) is very ample. Now we
can repeat the arguments from Lemma 5.2 to get an absolute Chow—Kiinneth
decomposition and absolute equivariant Chow—Kiinneth decomposition, for the
variety C. O
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5.2. FAMILIES OF CURVES CONTAINED IN HOMOGENEOUS SPACES. We notice
that when d = 3 in the previous subsection, the family of plane cubics restricted
to the loci of stable curves is a complete family of genus one stable curves. If
d > 4, then the above family of plane curves is no longer a complete family
of genus g curves. Hence to find families which closely approximate over the
moduli spaces of stable curves, we need to look for curves embedded as complete
intersections in other simpler looking varieties. For this purpose, we look at
the curves embedded in special Fano varieties of small genus g < 8, which was
studied by S. Mukai [Muk], [Muk2], [Muk3], [Muk5] and Ide-Mukai [I[dMuk].
We recall the main result that we need.

THEOREM 5.7. Suppose C' is a generic curve of genus g < 8. Then C is a
complete intersection in a smooth projective variety which has only algebraic
cohomology.

Proof. This is proved in [Muk], [Muk2], [Muk3], [IdMuk] and [Muk5]. The
below classification is for the generic curve.
When g < 5 then it is well-known that the generic curve is a linear section of
a Grassmanian.
When g = 6 then a curve has finitely many g} if and only if it is a complete
intersection of a Grassmanian and a smooth quadric , see [Muk3, Theorem 5.2].
When g = 7 then a curve is a linear section of a 10-dimensional spinor variety
X C P if and only if it is non-tetragonal, see [Muk3, Main theorem].
When g = 8 then it is classically known that the generic curve is a linear section
of the grassmanian G(2,6) in its Pliicker embedding.

O

Suppose P(g) is the parameter space of linear sections of a Grassmanian or of a
spinor variety, which depends on the genus, as in the proof of above Theorem
5.7. P(g) is a product of projective spaces on which an algebraic group G
(copies of PGLy) acts. Generic curves are isomorphic, if they are in the same
orbit of G.

PROPOSITION 5.8. Suppose P(g) is as above, for g < 8. Then there is a uni-
versal curve

Cy — P(g)

such that the classifying (rational) map P(g) — M, is dominant. The smooth
projective variety Cq has an absolute Chow—Kiinneth decomposition and an ab-
solute equivariant Chow-Kiinneth decomposition for the natural G—-action men-
tioned above.

Proof. The first assertion follows from Theorem 5.7. For the second assertion
notice that the universal curve, when g < 8, is a complete intersection in P(g) x
V where V is either a Grassmanian or a spinor variety, which are homogeneous
varieties. In other words, C,4 is a complete intersection in a space which has
only algebraic cohomology. Hence, by Lemma 5.2, C4 has orthogonal projectors
Oy Ty ey Tms T2r—m T2r—m41y -y T2r, Where 7 := dimC, and m = dimC, — 1,
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using Lefschetz hyplerplane section theorem. Taking 7,41 = Ac, =, Zm+1 T
gives an absolute Chow-Kiinneth decomposition for C,. Now a homogeneous
variety looks like V' = G/P where G is an (linear) algebraic group and P is a
parabolic subgroup. Hence the group G acts on the variety V. This induces
an action on the linear system P(g) and hence G acts on the ambient variety
P(g) x V and leaves the universal curve C4 invariant. Hence we can again apply
Lemma 5.2 to obtain absolute equivariant Chow-Kiinneth decomposition for
Cgy. |

Consider the universal family of curves C;, — P(g) as obtained above, which
are equipped with an action of a linear algebraic group G.

Suppose there is an open subset U, C P(g), with the universal family Cy, — Uy,
on which G acts freely to form a good quotient family

Y, :=Cy,/G — Sg:=Uy/G.
Notice that the classifying map S, — M, is dominant.

COROLLARY 5.9. The smooth variety Yy has an absolute Chow-Kiinneth de-
composition.

Proof. Consider the localization sequence, for the embedding j : Cy, X Cy, —
Cy x Cy,

CHE(Cy x Cy)g & CHE(Cy, x Cu,)g — 0.
Here d is the dimension of C4. Then the map j* is an equivariant ring ho-
momorphism and transforms orthogonal projectors to orthogonal projectors.

Similarly there is a commuting diagram between the equivariant cohomologies:

~

D uEc) e HeC) = HE(C,Q)

! !
D Waa—iHE - (Cu,) © Wil (Cu,) = WaaHE(Cp,. Q)

The vertical arrows are surjective maps mapping onto the bottom weights of
the equivariant cohomology groups. By Proposition 5.8, the variety C, has an
absolute equivariant Chow—Kiinneth decomposition. Hence the images of the
equivariant Chow-Kiinneth projectors for the complete smooth variety C,, un-
der the morphism j* give equivariant Chow—Kiinneth projectors for the smooth
variety Cy, .

Using [Ed-Gr], we have the identification of the rational Chow groups

CH"(Yg)o = CHg(Cu,)o
and
CH*(Yy x Yy)g = CH(Cy, x Cy, ).
Furthermore, this respects the ring structure on the above rational Chow

groups. A similar identification also holds for the rational cohomology groups.
This means that the equivariant Chow—Kiinneth projectors for the variety Cy,
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correspond to a complete set of absolute Chow-Kiinneth projectors for the
quotient variety Y. O

REMARK 5.10. Since Mukai has a similar classification for the mon-generic
curves in genus < 8, one can obtain absolute equivariant Chow—Kinneth de-
composition for these special families of smooth curves, by applying the proof
of Proposition 5.8. There is also a classification for K3-surfaces and in many
cases the generic K3-surface is obtained as a linear section of a Grassmanian
[Muk]. Hence we can apply the above results to families of K3-surfaces over
spaces which dominate the moduli space of K3-surfaces.
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ABSTRACT. Let G be a connected reductive complex algebraic group.
This paper and its companion [GN] are devoted to the space Z of
meromorphic quasimaps from a curve into an affine spherical G-
variety X. The space Z may be thought of as an algebraic model
for the loop space of X. The theory we develop associates to X a
connected reductive complex algebraic subgroup H of the dual group
G. The construction of H is via Tannakian formalism: we identify
a certain tensor category Q(Z) of perverse sheaves on Z with the
category of finite-dimensional representations of H.

In this paper, we focus on horospherical varieties, a class of varieties
closely related to flag varieties. For an affine horospherical G-variety
Xhoro, the category Q(Znoro) is equivalent to a category of vector
spaces graded by a lattice. Thus the associated subgroup Hporo iS
a torus. The case of horospherical varieties may be thought of as a
simple example, but it also plays a central role in the general theory.
To an arbitrary affine spherical G-variety X, one may associate a
horospherical variety Xyoro. Its associated subgroup Hioro turns out
to be a maximal torus in the subgroup H associated to X.
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1. INTRODUCTION

Let G be a connected reductive complex algebraic group. In this paper and
its companion [GN], we study the space Z of meromorphic quasimaps from a
curve into an affine spherical G-variety X. A G-variety X is said to be spherical
if a Borel subgroup of G acts on X with a dense orbit. Examples include
flag varieties, symmetric spaces, and toric varieties. A meromorphic quasimap
consists of a point of the curve, a G-bundle on the curve, and a meromorphic
section of the associated X-bundle with a pole only at the distinguished point.
The space Z may be thought of as an algebraic model for the loop space of X.
The theory we develop identifies a certain tensor category Q(Z) of perverse
sheaves on Z with the category of finite-dimensional representations of a con-
nected reductive complex algebraic subgroup H of the dual group G. Our
method is to use Tannakian formalism: we endow Q(Z) with a tensor product,
a fiber functor to vector spaces, and the necessary compatibility constraints so
that it must be equivalent to the category of representations of such a group.
Under this equivalence, the fiber functor corresponds to the forgetful functor
which assigns to a representation of H its underlying vector space. In the pa-
per [GN], we define the category Q(Z), and endow it with a tensor product
and fiber functor. This paper provides a key technical result needed for the
construction of the fiber functor.

Horospherical G-varieties form a special class of G-varieties closely related to
flag varieties. A subgroup S C G is said to be horospherical if it contains
the unipotent radical of a Borel subgroup of G. A G-variety X is said to be
horospherical if for each point z € X, its stabilizer S, C G is horospherical.
When X is an affine horospherical G-variety, the subgroup H we associate to
it turns out to be a torus. To see this, we explicitly calculate the functor which
corresponds to the restriction of representations from G. Representations of G
naturally act on the category Q(Z) via the geometric Satake correspondence.
The restriction of representations is given by applying this action to the object
of Q(Z) corresponding to the trivial representation of H. The main result of
this paper describes this action in the horospherical case. The statement does
not mention Q(Z), but rather what is needed in [GN] where we define and
study Q(Z2).

In the remainder of the introduction, we first describe a piece of the theory
of geometric Eisenstein series which the main result of this paper generalizes.
This may give the reader some context from which to approach the space Z
and our main result. We then define Z and state our main result. Finally, we
collect notation and preliminary results needed in what follows. Throughout
the introduction, we use the term space for objects which are strictly speaking
stacks and ind-stacks.

1.1. BACKGROUND. One way to approach the results of this paper is to in-
terpret them as a generalization of a theorem of Braverman-Gaitsgory [BG,
Theorem 3.1.4] from the theory of geometric Eisenstein series. Let C' be a
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smooth complete complex algebraic curve. The primary aim of the geomet-
ric Langlands program is to construct sheaves on the moduli space Bung of
G-bundles on C' which are eigensheaves for Hecke operators. These are the
operators which result from modifying G-bundles at prescribed points of the
curve C. Roughly speaking, the theory of geometric Eisenstein series constructs
sheaves on Bung starting with local systems on the moduli space Buny, where
T is the universal Cartan of G. When the original local system is sufficiently
generic, the resulting sheaf is an eigensheaf for the Hecke operators.

At first glance, the link between Buny and Bung should be the moduli stack
Bunpg of B-bundles on C, where B C G is a Borel subgroup with unipotent rad-
ical U C B and reductive quotient 7' = B/U. Unfortunately, naively working
with the natural diagram

Bung — Bung

!

Bunr

leads to difficulties: the fibers of the horizontal map are not compact. The
eventual successful construction depends on V. Drinfeld’s relative compactifi-
cation of Bung along the fibers of the map to Bung. The starting point for
the compactification is the observation that Bung also classifies data

G
(P € Bung, Pr € Bung, o : Pr — PexG/U)

where o is a T-equivariant bundle map to the Pg-twist of G/U. From this
perspective, it is natural to be less restrictive and allow maps into the Pg-twist
of the fundamental affine space

G/U = Spec(C[G]Y).

Here C[G] denotes the ring of regular functions on G, and C[G]Y C C[G] the
(right) U-invariants. Following V. Drinfeld, we define the compactification
Bunp to be that classifying quasimaps

aG—
(P € Bung, Pr € Bunp, o : Pr — PexG/U)
where ¢ is a T-equivariant bundle map which factors
G G—
0'|C’ : fPT|C/ — fPGXG/U|C/ — iPGxG/U|c:,
for some open curve C' C C. Of course, the quasimaps that satisfy
G
o:Pr — PexG/U

form a subspace canonically isomorphic to Bung.

Since the Hecke operators on Bung do not lift to Bung, it is useful to introduce
a version of Bunpg on which they do. Following [BG, Section 4], we define the
space o Bung to be that classifying meromorphic quasimaps

G
(ce C,Pg € Bung, Pr € Buny, 0 : Prlc\e = PaxG/U|c\c)
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where ¢ is a T-equivariant bundle map which factors

G G—
0'|C’ : fPT|C/ — fPGXG/U|C/ — iPGxG/U|c/,

for some open curve C' C C'\ c. We call ¢ € C the pole point of the quasimap.
Given a meromorphic quasimap with G-bundle P& and pole point ¢ € C, we
may modify Pg at ¢ and obtain a new meromorphic quasimap. In this way,
the Hecke operators on Bung lift to o Bung.

Now the result we seek to generalize [BG, Theorem 3.1.4] describes how the
Hecke operators act on a distinguished object of the category P(,,Bung) of
perverse sheaves with C-coefficients on o Bunp. Let Ag = Hom(C*,T) be the
coweight lattice, and let Ag C A be the semigroup of dominant coweights of
G. For A € AE, we have the Hecke operator

H} : P(oBung) — P(,,Bung)

given by convolving with the simple spherical modification of coweight A. (See
[BG, Section 4] or Section 5 below for more details.) For u € Ag, we have the
locally closed subspace OoBun% C ~Bung that classifies data for which the
map

o G——
Pr(p-c)leve = PaxG/Ulo\.
extends to a holomorphic map
o G——
Pr(p-c) = PexG/U
which factors

G G—
Pr(p-c) 5 PexG/U — PaxG/U.

< - - -
We write OoBungu C soBung for the closure of OOBun%» C sBung, and
<w Run
ICwBunB € P(Bung)

/

< R
for the intersection cohomology sheaf of . Bung ' C Bun B

THEOREM 1.1.1. [BG, Theorem 3.1.4] For A € Af, there is a canonical iso-
morphism

< L
Hg(lciﬁmB) ~ Z ICO—O*];HHB ® Homy (VE, V)
HEAT

Here we write VG3‘ for the irreducible representation of the dual group G with

highest weight A € A, and VTf‘ for the irreducible representation of the dual

torus T of weight ;€ Ag.

In the same paper of Braverman-Gaitsgory [BG, Section 4], there is a general-
ization [BG, Theorem 4.1.5] of this theorem from the Borel subgroup B C G
to other parabolic subgroups P C G. We recall and use this generalization in
Section 5 below. It is the starting point for the results of this paper.
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1.2. MAIN RESULT. The main result of this paper is a version of [BG, Theorem
3.1.4] for X an arbitrary affine horospherical G-variety with a dense G-orbit
X C X. For any point in the dense G-orbit X C X, we refer to its stabilizer
S C G as the generic stabilizer of X. All such subgroups are conjugate to each
other. By choosing such a point, we obtain an identification X~G /S.

To state our main theorem, we first introduce some more notation. Satz 2.1
of [Kn] states that the normalizer of a horospherical subgroup S C G is a
parabolic subgroup P C G with the same derived group [P, P] = [S,S]. We
write A for the quotient torus P/S, and A4 = Hom(C*, A) for its coweight
lattice. Similarly, for the identity component S° C S, we write Ag for the
quotient torus P/Sp, and Ay, = Hom(C*, Ay) for its coweight lattice. The
natural maps T'— Ay — A induce maps of coweight lattices

Ar L Ay, = Ay,

where ¢ is a surjection, and 7 is an injection. For a conjugate of S, the associated
tori are canonically isomorphic to those associated to S. Thus when S is the
generic stabilizer of a horospherical G-variety X, the above tori, lattices and
maps are canonically associated to X.

For an affine horospherical G-variety X with dense G-orbit XcX , we define
the space Z to be that classifying mermorphic quasimaps into X. Such a
quasimap consists of data

G
(ce C,Pg € Bung,0: C\ c — PaxX|c\c)

where o is a section which factors
, G . G
0‘|CIIC —>ng><X|C/—>iPG><X|C/,

for some open curve C' C C'\ c.
Given a meromorphic quasimap into X with G-bundle P and pole point ¢ € C,
we may modify Pg at ¢ and obtain a new meromorphic quasimap. But in this
context the resulting Hecke operators on Z do not in general preserve the
category of perverse sheaves. Instead, we must consider the bounded derived
category Sh(Z) of sheaves of C-modules on Z. For X € AE, we have the Hecke
operator

H} : Sh(Z) — Sh(Z)
given by convolving with the simple spherical modification of coweight A. (See
Section 5 below for more details.) For x € Aa,, we have a locally closed
subspace Z" C Z consisting of meromorphic quasimaps that factor

G o G
0:0\c— PoxX|o\. — PaxX|e\e

and have a singularity of type x at ¢ € C. (See Section 3.5 below for more
details.) We write Z<% C Z for the closure of Z* C Z, and

IC3" € Sh(Z)
for its intersection cohomology sheaf.

Our main result is the following.
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THEOREM 1.2.1. For )\ € Ag, there is an isomorphism

BC =~ 3 S 165 © Homy (VL V2)[(2iar. ).
KEAAy pEAT q(1)=K

Here the torus Ap and its coweight lattice A4, are those associated to the
generic stabilizer S C G. We write M for the Levi quotient of the normalizer
P C G of the generic stabilizer S C G, and 2pys for the sum of the positive
roots of M.

In the context of the companion paper [GN], the theorem translates into
the following fundamental statement. The tensor category Q(Z) associated
to X is the category of semisimple perverse sheaves with simple summands
IC%”, for k € Aa,, and the dual subgroup H associated to X is the subtorus
Spec C[A4,] C T.

1.3. NoTATION. Throughout this paper, let G be a connected reductive com-
plex algebraic group, let B C G be a Borel subgroup with unipotent radical
U(B), and let T'= B/U(B) be the abstract Cartan.

Let Ag denote the weight lattice Hom(T, C*), and [\E C Ag the semigroup of
dominant weights. For \ € [\E, we write VG)‘ for the irreducible representation
of G of highest weight .

Let A denote the coweight lattice Hom(C*, T), and AE C Ag the semigroup of
dominant coweights. For A € AJCS, let Vé‘ denote the irreducible representation
of the dual group G of highest weight .

Let A%”® C A denote the semigroup of coweights in A which are non-negative
on A}, and let R C AP denote the semigroup of positive coroots.

Let P C G be a parabolic subgroup with unipotent radical U(P), and let M
be the Levi factor P/U(P).

We have the natural map

T AM/[M,M] — AG

of weights, and the dual map

r: AG — AM/[M,M]

of coweights.

Let AJGryP C Awnyaan denote the inverse image #'(Af). Let AGH C
Anryar v denote the semigroup of coweights in Aps/ar,a) which are non-
negative on Aj, p. Let RS, C AP, denote the image r(RE™).

Let W), denote the Weyl group of M, and let \/\71\/1]&&r C A¢ denote the union
of the translates of A, by Wys. Let AZS C AL den(zte the semigroup of
dominant coweights of M which are nonnegative on 'W MAJGF.

Finally, let (-,-) : Aq¢ X Ag — Z denote the natural pairing, and let py; € Ag
denote half the sum of the positive roots of M.
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1.4. BUNDLES AND HECKE CORRESPONDENCES. Let C' be a smooth complete
complex algebraic curve.

For a connected complex algebraic group H, let Buny be the moduli stack of
H-bundles on C'. Objects of Bung will be denoted by Py.

Let Hy be the Hecke ind-stack that classifies data

(C € Ca :P}-IviP%—I € BunHva : :P}-I|C\c = iJ%—HC\C)

where « is an isomorphism of H-bundles. We have the maps

— —

h h
Bung << Hy =2 Bung

defined by
Wi (e, P, i) =Py hig (e, Py, Ph.a) = Ph,
and the map
T:Hyg —C
defined by

7(e, P, P4, ) = c.

It is useful to have another description of the Hecke ind-stack H g for which we
introduce some more notation. Let O be the ring of formal power series C[[t]],
let K be the field of formal Laurent series C((¢)), and let D be the formal disk
Spec(0). For a point ¢ € C, let O, be the completed local ring of C at c,
and let D, be the formal disk Spec(OQ.). Let Aut(O) be the group-scheme of
automorphisms of the ring O. Let H(O) be the group of O-valued points of H,
and let H(X) be the group of K-valued points of H. Let Gry be the affine
Grassmannian of H. It is an ind-scheme whose set of C-points is the quotient
H(X)/H(0).

Now consider the (H(Q) x Aut(0O))-torsor

Bung xC — Bung xC
that classifies data
(ce C,Py € Bung,B: D x H= Pylp,,v: D = D)

where ( is an isomorphism of H-bundles, and v is an identification of formal
disks. We have an identification

_— (H(0)xAut(0))
X

Hyg ~ Bung % rH

such that the projection hz corresponds to the obvious projection from the
twisted product to Bung.

For H reductive, the (H(O) x Aut(0))-orbits Gry; C Gry are indexed by
A € Aj;. For A € A, we write H}y C Hy for the substack

 (H(O)xAut(0))
HY ~ Bung xC X Gr}\{ .
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For a parabolic subgroup P C H, the connected components Spgy C Grp are
indexed by 6 € Ap/A(p pjse, where [P, P]*¢ denotes the simply connected cover
of [P, P]. For 0 € Ap/A(p pjse, we write 8py C Hp for the ind-substack

_—  (P(O)xAut(0))
Sp,g ~ Bunp xC X P,o-

For 0 € Ap/Ap pjsc, and X € A};, we write 8)1‘379 C Hp for the ind-substack

— (P(0)xAut(0))
83\379 ~ Bunp xC X 1’\3’9

where Sj\gﬂ denotes the intersection Sp g N Gry;.
For any ind-stack Z over Buny xC, we have the (H(O) x Aut(O))-torsor

Z—2
obtained by pulling back the (H(O) x Aut(O))-torsor
BufH\xC — Bung xC.

We also have the Cartesian diagram

he
Hyg x 2 &8 Z
Bungyg xC
hy
g‘CH — BunH

and an identification

_ (H(0)xAut(0))
Hy  ox 2~k

Bung xC

'y

such that the projection hy; corresponds to the obvious projection from the
twisted product to Z. For F € Sh(Z), and P € P(y(0)xaut(0))(Gra), we may
form the twisted product

(FRP)" € Sh(Hy  x  2).

Bungy xC

with respect to the map hyz. In particular, for A € A};, we may take P to

be the intersection cohomology sheaf A of the closure @?{ C Grpy of the
(H(O) x Aut(0))-orbit Gry; C Gry.

2. AFFINE HOROSPHERICAL (G-VARIETIES

A subgroup S C G is said to be horospherical if it contains the unipotent
radical of a Borel subgroup of G. A G-variety X is said to be horospherical if
for each point x € X, its stabilizer S, C G is horospherical. A G-variety X
is said to be spherical if a Borel subgroup of G acts on X with a dense orbit.
Note that a horospherical G-variety contains a dense G-orbit if and only if it
is spherical.
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Let X be an affine G-variety. As a representation of G, the ring of regular
functions C[X] decomposes into isotypic components

C[X]~ Y C[X]x.
AL

We say that C[X] is graded if

CIXACIX ] € ClX]ape
for all A, € Af,. We say that C[X] is simple if the irreducible representation
V of highest weight A occurs in C[X], with multiplicity 0 or 1, for all A € AZ.
PRrOPOSITION 2.0.1. Let X be an affine G-variety.
(1) [Pop, Proposition 8, (3)] X is horospherical if and only if C[X] is graded.
(2) [Pop, Theorem 1] X is spherical if and only if C[X] is simple.
We see by the proposition that affine horospherical G-varieties containing a
dense G-orbit are classified by finitely-generated subsemigroups of AJGF. To
such a variety X, one associates the subsemigroup

AL c AL

of dominant weights A with dim C[X]y > 0.
2.1. STRUCTURE OF GENERIC STABILIZER.

THEOREM 2.1.1. [Kn, Satz 2.2] If X is an irreducible horospherical G-variety,
then there is an open G-invariant subset W C X, and a G-equivariant isomor-
phism W ~ G/S xY, where S C G is a horospherical subgroup, and Y is a
variety on which G acts trivially.

Note that for any two such open subsets W C X and isomorphisms W ~
G/S x Y, the subgroups S C G are conjugate. We refer to such a subgroup
S C G as the generic stabilizer of X.

LEMMA 2.1.2. [Kn, Satz 2.1] If S C G is a horospherical subgroup, then its
normalizer is a parabolic subgroup P C G with the same derived group [P, P| =
[S,S] and unipotent radical U(P) = U(S).

Note that the identity component S° C S is also horospherical with the same
derived group [S?, S°] = [9, S] and unipotent radical U(S%) = U(S).

Let S C G be a horospherical subgroup with identity component S° C S, and
normalizer P C G. We write A for the quotient torus P/S, and A4 for its
coweight lattice Hom(C*, A). Similarly, we write Ay for the quotient torus
P/S% and A4, for its coweight lattice Hom(C*, Ag). The natural maps

T— Ay — A
induce maps of coweight lattices
Ar % Mg, 5 A,

where ¢ is a surjection, and ¢ is an injection. For a conjugate of S, the associated
tori, lattices, and maps are canonically isomorphic to those associated to S.
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Thus when S is the generic stabilizer of a horospherical G-variety X, the tori,
lattices and maps are canonically associated to X.

We shall need the following finer description of which subgroups S C G may
appear as the generic stabilizer of an affine horospherical G-variety. To state it,
we introduce some more notation used throughout the paper. For a horospher-
ical subgroup S C G with identity component S° C S, and normalizer P C G,
let M be the Levi quotient P/U(P), let Mg be the Levi quotient S/U(S), and
let Mg be the identity component of Mg. The natural maps

SO -8 —P
induce isomorphisms of derived groups
We write App/ar,a for the coweight lattice of the torus M/[M, M], and
Anrg /s, ms) for the coweight lattice of the torus M?/[Ms, Mg]. The natu-
ral maps
Mg/[Ms, Ms] — M/[M, M] — Aq
induce a short exact sequence of coweight lattices

0 = Aarg/nas,ns) = Anyppa,na) — Aap — 0.

PROPOSITION 2.1.3. Let S C G be a horospherical subgroup. Then S is the
generic stabilizer of an affine horospherical G-variety containing a dense G-
orbit if and only if

Anro s s VG = (0).

Proof. The proof of the proposition relies on the following lemma. Let V be a
finite-dimensional real vector space, and let V* be an open set in V which is
preserved by the action of R®%. Let V be the dual of V, and let VP° be the
closed cone of covectors in V' that are nonnegative on all vectors in V*. For a
linear subspace W C V, we write W+ C V for its orthogonal.

LeEMMA 2.1.4. The map W — VV} provides a bijection from the set of all
linear subspaces W C V such that WNV+ #£ () to the set of all linear subspaces
W C V such that W N VP = (0).

Proof. W NV # 0, then clearly W+ NVP° = (0). Conversely, if WNVP =
(0), then since V't is open, there is a hyperplane H C V such that W C H, and
HNVP = (0). Thus H- ¢ W+, and H-NV*t # (), and so WAnNV+ #£ 0. O

Now suppose X is an affine horospherical G-variety with an open G-orbit and
generic stabilizer S C G with normalizer P C G. Then we have A} C /V\ap,
since otherwise [S, 5] would be smaller. We also have that A% intersects the
interior of AE’ p» since otherwise [S, S] would be larger. Applying Lemma 2.1.4,
we conclude
A s vs) VAGTp = (0).

Conversely, suppose S C G is a horospherical subgroup with normalizer P C G.
We define X to be the spectrum of the ring C[X] of (right) S-invariants in the
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ring of regular functions C[G]. Then C[X] is finitely-generated, since S contains
the unipotent radical of a Borel subgroup of G. We have A} C Ag p, since
otherwise [S,.S] would be smaller. Suppose

A9 s, ms) NV AG p = (0).

Applying Lemma 2.1.4, we conclude that A intersects the interior of AJGr I
Therefore S/[S, S] consists of exactly those elements of P/[P, P] annhilated by
A}, and so S is the generic stabilizer of X. O

2.2. CANONICAL AFFINE CLOSURE. Let S C GG be the generic stabilizer of an
affine horospherical G-variety X containing a dense G-orbit. Let C[G] be the
ring of regular functions on G, and let C[G]® C C[G] be the (right) S-invariants.
We call the affine variety
G/S = Spec(C[G]")
the canonical affine closure of G/U. We have the natural map
G/S — X
corresponding to the restriction map
C[X] — C[G/S] ~ C[G)°.

Since S is horospherical, the ring C[G]® is simple and graded, and so the affine
variety G—/S is spherical and horospherical.

Although we do not use the following, it clarifies the relation between X and
the canonical affine closure G/S.

PROPOSITION 2.2.1. Let X be an affine horospherical G-variety containing a
dense G-orbit and generic stabilizer S C G. The semigroup A+ s C A is the

intersection of the dominant weights A+ C Ag with the group genemted by the
semigroup AY C Ag.

Proof. Let P C G be the normalizer of S C G. The intersection of AJGF and the
group generated by [\} consists of exactly those weights in AJGFV p that annhilate
S/[S, S]. |

3. IND-STACKS
As usual, let C' be a smooth complete complex algebraic curve.

3.1. LABELLINGS. Fix a pair (A, AP%) of a lattice A and a semigroup AP°® C A.
We shall apply the following to the pair (Aar/ar, a1, Ay p)-
For 6P°% € AP°s| we write $4(6P°%) for a decomposition

gros — aneglos
m
where 6P°% € AP\ {0} are pairwise distinct and n,, are positive integers.
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For P°% € AP and a decomposition (8P, we write C*("") for the partially

symmetrized power [] . C(m) of the curve C. We write Cu(e ) oo

for the complement of the diagonal divisor.

For © a pair (0, 4(6P°%)) consisting of § € A, and LU(P°%) a decomposition of
6P € AP we write C'© for the product C' x C*(O"™) We write C§ c C® for
the complement of the diagonal divisor. Although C® is independent of 6, it
is notationally convenient to denote it as we do.

3.2. Ind-stack ASSOCIATED TO PARABOLIC SUBGROUP. Fix a parabolic sub-
group P C G, and let M be its Levi quotient P/U(P). For our application, P
will be the normalizer of the generic stabilizer S C G of an irreducible affine
horospherical G-variety.

Let oBunp be the ind-stack that classifies data

(c € C,Pg € Bung, Par/iar,m) € Bunag/ar, vy
G
o Puyivanlone = PaxG/[P, Plloy.)
where o is an M/[M, M]-equivariant section which factors
G G
U|C/ : fPM/[M,M]lC’ — TGXG/[P, P]|C/ — TGXG/[P, P]|C/

for some open curve C’' C C'\ c.

3.2.1. Stratification. Let © be a pair (6,U(6P°%)), with 6 € Apgiarag, and
0P € Ag'p. We recall that we have a locally closed embedding

jo : Bunp XC’(? — s Bunp

defined by

P P
o(Pp, (¢ Zep% Cmn)) = (¢, Pp X G, Pp X [P,P(—0-c—> 05 cpn),0)

where o is the natural map

P
prX[P,P —0- C—Zep *Cm,n |C\c_>iPPXGXG/[P PHC\C

induced by the inclusion

] ) P G—
Pp x PJ[P,P] C Pp x GJ[P,P| ~ Pp x GxG/[P, P).

The following is an ind-version of [BG, Propositions 6.1.2 & 6.1.3], or [BFGM,
Proposition 1.5], and we leave the proof to the reader.

PROPOSITION 3.2.2. Let © be a pair (6,4(0°%)), with 0 € Anar,v, and
0P € AP

Every closed point of .oBunp belongs to the image of a unique jo.
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For © a pair (6,8(6°)), with 6 € Aprarar, and 0P € A%, we write
OoBun?g C ~Bunp for the image of jg, and OoBunlgge C soBunp for the closure
of ooBung C soBunp.

For © a pair (6,4(0)), with 6 € Apz/iar,a, the substack ooBung C «Bunp
classifies data (c, Pa, Par/ar,a, o) for which the map

. G
Paryinaan) (0 - &)leve = PaxG/[P, Plloye
extends to a holomorphic map

- G
TM/[M,M](G . C) — TGXG/[P, P]

which factors

o G Ge—
Potjivan (0 - ¢) 5 PaxG/ [P, P| — P xG/[P, P].
In this case, we write jy in place of jg, OOBun?; in place of OoBun?g, and OOBunISDe

) —<© ——<0 = .
in place of cBunp . For example, . cBunp C Bunp is the closure of the
canonical embedding

jo : Bunp xC' — Bunp.

3.3. Ind-stack ASSOCIATED TO PARABOLIC SUBGROUP. Fix a parabolic sub-
group P C G, and let M be its Levi quotient P/U(P). As usual, for our
application, P will be the normalizer of the generic stabilizer S C G of an
irreducible affine horospherical G-variety.

Let oBunp be the ind-stack that classifies data

G
(C € C,Pqg € Bung, Py € Bunyy, o : TM|C\c — iPGxG/U(P)|C\C)

where ¢ is an M-equivariant section which factors

G G
O’|C/ : fPM|C/ — TGXG/U(P”C/ — TGXG/U(PHC/

for some open curve C' C C'\ c.

3.3.1. Stratification. For 6°° € AR, we write $£1(§P°) for a collection of (not

necessarily distinct) elements 2% ¢ Ag‘?; \ {0} such that
PO = " r(65).

m

We write r(£4(6P>)) for the decomposition such a collection defines.
Let © be a pair (6, U(0P°)) with § € A},, and P°° € Ag’p, and let © be the
associated pair (r(6),r(£(6°°))). We define the Hecke ind-stack

) )
Hiro — Co

DOCUMENTA MATHEMATICA 14 (2009) 19-46



32 GAITSGORY AND NADLER

to be that with fiber over (c, cygrosy) € C®, where CU(OPos) = D m r(éﬁ’,{’s) “ Crms
the fiber product
= gros
Hle x ] 3
BU.I]]\/I BunM

The following is an ind-version of [BG, Proposition 6.2.5], or [BFGM, Propo-
sition 1.9], and we leave the proof to the reader.

Cm*

PROPOSITION 3.3.2. Let © be a pair (8, 4(6°°%)) with 6 € AL,, and 67 € ALTp.
On the level of reduced ind-stacks, there is a locally closed embedding

jo : Bunp x HS, o — ooBunp.
BunM ’

FEvery closed point ofoo]?u/np belongs to the image of a unique jg .

~ ~ - ~ — 6
For © a pair (0, U(6°°%)), with § € A, and 6P € A%, we write o Bunp C

_ <6 —
OoBun{a for the image of jg, and Bunp C Bunp for the closure of

6 __
coBunp C Bunp.
~ ~ - ~ —§
For © a pair (6,8(0)), with § € A},, we write j; in place of jg, «oBunp in
— 6 —~ <0 —— <6 —— <0,
place of o Bunp, and oBunp in place of .. Bunp For example, o Bunp is

the closure of the canonical embedding
Jg : Bunp xC' — m]é:l;lp.

3.4. Ind-stack ASSOCIATED TO GENERIC STABILIZER. Let X be an irreducible
affine horospherical G-variety with generic stabilizer S C G. Recall that the
normalizer of S is a parabolic subgroup P C G with the same derived group
[P, P] =[S, S] and unipotent radical U(P) = U(S). Let M be the Levi quotient
P/U(P), and let Mg be the Levi quotient S/U(S).

Let Zcan be the ind-stack that classifies data

(ce C,Pq € Bung, Prg/(ms,m5) € Bunpsg (arg s

G
0 Prsyms,msllone — PaxG/1S, S]lene)

where o is an Mg/[Mg, Mg]-equivariant section which factors

G G
olor: Puss /s msilor = PaxG/[S, Sllor — Pax G/[S, Sller
for some open curve C’ C C'\ c.

The following is immediate from the definitions.

ProprosITION 3.4.1. The diagram

ann - ooBunP
! !

Bunysg /ias,ms) —  Bunagar,ag

is Cartesian.
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3.4.2. Stratification. Let © be a pair (6,U(6P°%)), with 6 € Apg/iarag, and
oros e Ag‘?}.

.. 59 = . . .
We write Z,, C Zcan for the substack which completes the Cartesian diagram
- =—6
ann - OOBunP
l !

Bunyg s, i) = Bunag v,

—<0  —= —0 —
and Z_,, C Zcan for the closure of Z_,,, C Zcan.

For © a pair (0,4(0)), with 0 € Apgiar,ar, We write Zi
and 7C§:n in place of 75;3.
embedding

©

can?’

in place of Z,

n

For example, Z_., is the closure of the canonical

can

Bung XC C Zean.

3.5. NAIVE IND-STACK ASSOCIATED TO X. Let X be an affine horospherical
G-variety with dense G-orbit X C X and generic stabilizer S C G.
Let Z be the ind-stack that classifies data

e
(ce C,Pg € Bung,0: C'\ ¢ = PaxX|e\.)

where o is a section which factors
, G o G
0‘|CI :C —>iPGxX|C/—>ng><X|C/

for some open curve C’' C C'\ c.

For the canonical affine closure G—/S, we write Zgay for the corresponding ind-
stack.

We call the ind-stack Z naive, since there is no auxilliary bundle in its definition:
it classifies honest sections. Let *Z be the ind-stack that classifies data

G
(C c C, Pa € Bung,fPM/MS S BunM/MS,o : TM/M5|C\C — TGxX|C\C)

where o is an M /Mg-equivariant section which factors

G o G
0'|C’ : iPM/MS|C’ — ng><X|C/ — fPGXX|C/

for some open curve C/ C C'\ c. Here as usual, we write M for the Levi quotient
P/U(P) of the normalizer P C G of the generic stabilizer S C G, and Mg for
the Levi quotient S/U(S).

For the canonical affine closure G/S, we write *Z.,, for the corresponding
ind-stack.

The following analogue of Proposition 3.4.1 is immediate from the definitions.

ProrosiTiON 3.5.1. The diagram
Z — *Z
l l

Bungy —  Bunpgg

is Cartesian.
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3.5.2. Stratification. We shall content ourselves here with defining the sub-
stacks of the naive ind-stack Z which appear in our main theorem. (See [GN]
for a different perspective involving a completely local definition.) Recall that
we write A for the quotient torus P/S, and A4 for its coweight lattice. Sim-
ilarly, for the identity component S° C S, we write A for the quotient torus
P/S% and A4, for its coweight lattice. The natural map Ay — A provides an
inclusion of coweight lattices Aa, — Aa. For k € A4, we shall define a closed
substack Z<% C Z. When x € A4, the closed substack Z<* C Z appears in
our main theorem.

For k € Ay, let *Z" C *Z be the locally closed substack that classifies data
(¢,Pa, Par/nag, o) for which the natural map

e
Poarys (k- 0)lene = PaxX]ene

extends to a holomorphic map

o G
fPM/Ms (Ii . C) — fPG x X
which factors
- G . G
TM/MS(K . C) — TGXX — TGXX.

We write *Z=" c *Z for the closure of *Z" C *Z.
For k € A4, let Z" C Z be the locally closed substack completing the Cartesian
diagram

ZI{ N *ZI{

1 1

Bungy — Bunpyyng -

We write Z<* C Z for the closure of Z" C Z.

4. MAPS

4.1. THE MAP t: Ooé{l/np — o Bunp. Let © be a pair (0,4(6P°%)), with 6 €
Anryiaan, and 0P € AL, and U(6P°%) a decomposition 9P = 3 n,, 05,

——© - . . -0 —
Let .oBunp C Bunp be the inverse image of . Bunp C Bunp under the
natural map

T: Oo]é;;lp — ooBunP-
‘We wo@uld like to describe the fibers of the restriction of t to the substack

coBunp C oo Bunp.
First, we define the Hecke ind-substack

30 3
to be the union of the spherical Hecke substacks
j‘fll\t/l C H,

for € A}, such that r(u) = 6.
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Second, if there exists P € ]\%‘:; such that r(iP°®) = 6P°%, we define the
Hecke substack ,
HO)
M M
to be the union of the spherical Hecke substacks

:H%;os C Hyy,
for fiP € AR, such that r(fiP*) = 8.
Finally, we define the Hecke ind-stack
b(© o)
Moo — Cf
to be that with fiber over (c, cygros)) € CS, where Cyi(grosy =

the fiber product
b(QPOs
G0l < T 967 e,

BunM
The following is an ind-version of [BG, Proposition 6.2.5], or [BFGM, Proposi-
tion 1.9], and we leave the proof to the reader. It is also immediately implied
by Proposition 3.3.2.

Oros . .
m,n - m m,ns

PROPOSITION 4.1.1. Let © be a pair (0, L(6P)), with 0 € Apriar,n, 0P €
AGp, and U(6P*) a decomposition 9P = > RS,
If for all m there ewists fiby® € A such that r(fihy®) = 05°°, then on the level

of reduced stacks there is a canonical isomorphism
——© b(©
coBunp ~ Bunp X 9{]\(470)

Bunjs

such that the following diagram commutes

Bun, ~ B 30(©)
coBunp o~ unp X M0
BunM
l l
Fo T )
oBunp o~ Bunp xCj

where the right hand side is the obvious projection. B
If there is an m such that 05° is not equal to r(fiP°®), for any P> € AZp,

—©
then ~Bunp is empty.

4.2. THE MAP 9 : Zean — Zean. Let X be an irreducible affine horospherical
G-variety with generic stabilizer S C G. Recall that the normalizer of a horo-
spherical subgroup S C G is a parabolic subgroup P C G with the same derived
group [P, P] =[5, S] and unipotent radical U(P) = U(S). We write M for the
Levi quotient P/U(P), Mg for the Levi quotient S/U(S), and M3 for the iden-
tity component of Mg. We write A for the quotient torus P/S, and A 4 for its
coweight lattice. Similarly, for the identity component S° C S, we write Ay for
the quotient torus P/S°, and A4, for its coweight lattice. The natural map
M/[M,M] — Aq induces a surjection of coweight lattices Apr/iarag — Aa,
which we denote by p. The kernel of p is the coweight lattice AMg/[Ms,Ms}-
(Note that the component group of Mg is abelian.)
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Associated to the canonical affine closure G—/S, we have a Cartesian diagram
of ind-stacks

7can - oomP

pl Lp

*
Lean — Zecan

We would like to describe some properties of the vertical maps.

PROPOSITION 4.2.1. The map p : coBunp — *Z.., is ind-finite.

=0
For 0 € A/ ), its restriction to oo Bunp is an embedding with image *Zf:’éfl),

. L =<6 . G
and its restriction to - Bunp is finite with image * Z=P®).

Proof. For a  point  (c,Pq, Par/ar,m1,7) € wBunp, we write
(¢,Pc,Prjms,0) € *Zean for its image under p.  Observe that for
0 € A, the point (¢, P, Parjaran (0 - ¢),7) € Bunp maps to
(¢,Pa, Parjms (p(0) - ¢),0) € *Zean under p. Therefore to prove the proposi-
tion, it suffices to show that the restriction of p to the canonical embedding
Bunp C Bunp is an embedding with image the canonical embedding
Bunp C *Zcan, and its restriction to ooBunlgpo is a finite map with image *Zfaon.
The first assertion is immediate from the definitions. To prove the second,
recall that by [BG, Proposition 1.3.6], .cBunp is proper over Bung, and so the
map p is proper since it respects the projection to Bung. Therefore it suffices
—<0
to check that the fibers over closed points of the restriction of p to .Bunp
are finite. o
Let © be a pair (0,4(6°*)), with 6°° € A’ The stack o Bunp classifies
data

(c,Pp,co,Pryinn)

together with an isomorphism

P
a:Ppx P/[P, P] ~ fPM/[M,M](CG))-
The fiber of p through such a point classifies data

(TP, cb/a :PGM/[M,M])

together with an isomorphism

P
Oé/ : ‘:PP X P/[P,P] =~ iP/Z\/I/[M,M](C/@’)

such that the labelling co = co — cg, takes values in AMg/[MS’MS]. Therefore
we need only check that for P € AZ’p, there are only a finite number of
¢ € Apjojiais, ms) Such that 0P + ¢ € A&’ By Proposition 2.1.3, the lattice
Anro /ius ) intersects the semigroup Ag”p only at 0. Since Agp is finitely-
generated, this implies that for 0 € Ay (ar a1, the coset 0P + AMg/[M&MS]

intersects AY% in a finite set. O
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COROLLARY 4.2.2. The map P : Zean — Zean 15 ind-finite.
ZZ’(G)

is an embedding with image Zcan' ,

is finite with image Z=E®).

. - =0
For 0 € Angjiar,, its restriction to Z,,

. i =<0
and its restriction to Z,,

4.3. THE MAP § : Zcan — Z. Let X be an affine horospherical variety with
dense G-orbit X C X and generic stabilizer S C G.

Associated to the natural map G/S — X, we have a Cartesian diagram of
ind-stacks

*
Zean — Zcan

5] ls
zZ - *Z.

We would like to describe some properties of the vertical maps.

PROPOSITION 4.3.1. The map s : *Zcan — *Z is a closed embedding.

For k € A4, its restriction to *Z7,  is an embedding with image *Z", and its

restriction to *Z=" is a closed embedding with image * Z=".

Proof. First note that s is injective on scheme-valued points since for
(¢,PG, Prr/nis0) € *Zean, the map

G
(o2 :PM/MS|C\c — fPG X G/S|C\C
factors
G G —
O’|C/ : TM/MS|C/ — fPG X G/S|C/ — fPG X G/S|C/,

for some open curve C' C C'\ ¢, and the map G/S — X restricted to G/S is
an embedding.

Now to see s is a closed embedding, it suffices to check that s satisfies the
valuative criterion of properness. Let D = Spec C[[t]] be the disk, and D* =
Spec C((¢)) the punctured disk. Let f: D — Z be a map with a partial lift
F* : D* — Zcan. Let iPé be the D-family of G-bundles defined by f, and let
Tf\} /M be the D-family of M/Mg-bundles defined by f. We must check that
any partial lift

G

X ::P§\04/MS|(C\C)><D>< — PL % G/S|(c\e)x D
of a map

f f ¢
o Paynaslievaxp = P X Xlevexp

which factors

. pf T ;¢

olexn : Pymglexn = Pg x G/S|orxp — P x Xlerxp,

for some open curve C! C C'\ ¢, extends to (C'\ ¢) x D. Since G/S — X
restricted to G/S is an embedding with image G/S, we may lift o|c'xp to
extend X% to C’ x D. But then X* extends completely since T&/Mskc\c)xp

is normal and the complement of Tf\} /M |c'xp is of codimension 2.
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FinaHY7 for a pOiIlt (C, TGa TM/Msagcan) € *ann; we write (Ca TG; :PM/MS ) 0) €
*Z for its image under s. Observe that for x € A4, the point (¢, Pa, Pas/arg (k-
€);0can) € *Zean maps to (¢, Pa, Prrjnis (k- ¢),0) € *Z under 5. Therefore to
complete the proof of the proposition, it suffices to show that the restriction
of s to the canonical embedding Bung xC C *Z.., has image the canonical
embedding Bung xC C *Z. This is immediate from the definitions. O

COROLLARY 4.3.2. The map s : Zcan — Z is a closed embedding.
For k € Ay, its restriction to Z£,, is an embedding with image Z*, and its

restriction to ZS% is a closed embedding with image Z<".

5. CONVOLUTION

Let X be an affine horospherical G-variety with dense G-orbit X C X and
generic stabilizer S C G.

The following diagram summarizes the ind-stacks and maps under considera-
tion

ooBH;lP ; ooBunP L *ann
Te TE
Zeaw 2 Zean > 2.

Each of the ind-stacks of the diagram projects to C' x Bung, and the maps of

the diagram commute with the projections.
Let Z be any one of the ind-stacks from the diagram, and form the diagram

hg hg
Z < He X z = Z
Bung xC
= hg
Bung << Ha < Bung

in which each square is Cartesian.
For \ € Ag, we define the convolution functor

H} : Sh(Z) — Sh(Z)
on an object ¥ € Sh(Z) to be
HG(F) = hz (AZRF)"

where (Ag@&")r is the twisted product defined with respect to hg, and A
is the simple spherical sheaf on the fibers of hg corresponding to A. (See
Section 1.4 for more on the twisted product and spherical sheaf.)

5.1. CONVOLUTION ON Oo}il/np. Recall that for a reductive group H, and
S A};, we write Vg for the irreducible representation of the dual group H of
highest weight .

We shall deduce our results from the following.
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THEOREM 5.1.1. [BG, Theorem 4.1.5]. For A € A, there is a canonical iso-
morphism

HAIC= _

scBunp

)~ > ICSE_ @Homy (Vi V).

‘ scBunp
nEAT,

5.2. CONVOLUTION ON Bunp. Recall that r : Ay — Apg(as,01) denotes the
natural projection, 2y the sum of the positive roots of M, and (297, 1) the
natural pairing, for pu € Ajpy.

THEOREM 5.2.1. For \ € AJGF, there is an isomorphism

HYICS) )~ ) > 1050 @Homg(VE, VE)[(20a, w)].

scBunp ~cBunp
OEAN /[0, 01) LEA N, (1) =0
Proof. Step 1. For the projection
t: oBunp — o Bunp,
we clearly have

(1) H(e 1050 )~ HG(IC<?3un ).
oo P

Let us first analyze the left hand side of equation 1. We may write the push-

forward t IC=°_  in the form
s Bunp

uICS% . ~ 1St gg=0

scBunp oo Bunp

where J<0 € Sh(.,Bunp) is isomorphic to a direct sum of shifts of sheaves of
the form

<o
IC °5

» for pairs © = (0,44(6P%%)), with 6P € A% \ {0}

The asserted form of J<0 follows from the Decomposition Theorem, the fact
that the restrictions of IC=° b, 0 the strata of ., Bunp are constant [BEGM,

P
Theorem 1.12], and the structure of the map t described in Proposition 4.1.1.
For any 7°* € Ag% \ {0}, and decomposition $(7P°*), we have the finite map

Tg((mpos) - C*1™) . Bunp — o Bunp
defined by

Ty (npos) ZHPOS cmns (6, Pa, Paryiae, > o))
= (¢, P, Parypaa iy (— anos Cmn)s ).

Note that for n € Apz/ar,m], and © the pair (n,il(npos)), the restriction of
Tg((npos) Provides an isomorphism

Tgi(mpos) - (CHO™) % Bunp)y = Bung

DOCUMENTA MATHEMATICA 14 (2009) 19-46



40 GAITSGORY AND NADLER

where the domain completes the Cartesian square
(Cu(nr)os) « OO—BUH?D)O N CLI(UDOS) % OO—Bun;]D

pos

|
(CHOP) s @)y M)

where as usual
(CHO") 5 Yy € OO

denotes the complement to the diagonal divisor.
We define the strict full triangulated subcategory of irrelevant sheaves

IrrelSh(soBunp) C Sh(s,Bunp)
to be that generated by sheaves of the form
§{(nPOS
Tugposy, (IC" ) RF)
where 7P runs through Ag’p \ {0}, 4(nP**) runs through decompositions of

nPos, ICg(npos) denotes the intersection cohomology sheaf of C*(""™) and F
runs through objects of Sh(,,Bunp).

LEMMA 5.2.2. The sheaf I=0 is irrelevant.

Proof. Let © be a pair (6, 4(6°°%)), with 6 € Apr/iar,ar, and 6°°° € AZ™S \ {0}

Then we may realize the sheaf ICS% as the pushforward
np

oo

ICS0 = Tyoren), (IC" RICY 5 )

o Bun ~Bunp
To see this, we use the isomorphism
. $1(OPOS ——0 ~ —0
Ty(grosy : (C (0) « coBunp)g — «Bunp,

and the fact that 7y (gros) is finite. |

LEMMA 5.2.3. If € is an irrelevant sheaf, then H)(E) is an irrelevant sheaf.
Proof. Clearly we have a canonical isomorphism
(o8 (o8
H) (ry(gposy, ICE™ ) BF)) 2 1ypos), (ICH" ) RHM(F)).
O

By the preceding lemmas, we may write the left hand side of equation 1 in the
form

A <0
(2) HE (v ICOQELT

<0

np) = Hé\:(lc;mp) @ Ha(9=")

where H)(J=) is an irrelevant sheaf.

Let us next analyze the right hand side of equation 1. By Theorem 5.1.1, we
have

’C!Hé(ICSON ): Z T ICS%V @HomM(VX;I,VC/})-
co Bunp

o Bunp
¥
HEAY,
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LEMMA 5.2.4. For u € A, we have

nlICst_ ~ 3 (Iciggip ®I=") @ Homg (VE, VE) (250, V)]

scBunp
veEAum

where ISF 4s isomorphic to a direct sum of shifts of sheaves of the form

<e . _ os
CmBunP, for pairs © = (0,44(6P°%)).

Proof. We may form the diagram
Ry — Ry

woBunp & Hyy X  soBunp ¥ Bunp
Bunjy; xC
hY; hy
Bung & He X Bung

in which each square is Cartesian. We define the convolution functor
Hyy Sh(Bunp) — Sh(sBunp)
on an object F € Sh(soBunp) to be
HY (5) = hiypy (A5, 25)"

where (A‘&@S’)T is the twisted product defined with respect to hy;, and A%,

is the simple spherical sheaf on the fibers of h}; corresponding to p. Theorem
4.1.3 of [BG] provides a canonical isomorphism

Iz <0 ~ TOSH

HM(ICxﬁlp) o~ ICOOEEP .

We also have a commutative diagram

—_— — —_—

o Bunp M Hus X coBunp
Buny, xC
vl R4
— hiypean -
o Bunp — Hnry, v X o Bunp

BunM/[]\/jJ\/j] xC

where the modification map hj; /M, M] is given by

Wty (05 (e Pa, Paayine vy, 0)) = (¢ P Paryina, i (=6 - €), 0).
We conclude that there is an isomorphism

< - - <0 T
] IC;‘]%E;]P ~ hM/[M,M]‘t{(‘A;&gIC;ﬁ;qP) .

Now the map t’ factors into the projection of the left hand factor
Hur X meH%M/[M,M] X ooﬁ{l/np
Bunjys xC Bun}w/[M,M] xC

followed by the projection of the right hand factor

—— t ES T
J{M/[M,M] X OoBunp — J{M/[M,M] X OOBUHP.
BunM/[IW,IW] xC Bun}w/[M,M] xC
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Thus we have an isomorphism

v (A4, xlc“]; ) > (Icfjm}) @9=0) ® Homyp (VX VE) (260, V)]

vEANM
where as before
qIC=0_  ~ 102 =0
~Bunp Bunp
where J=0 is isomorphic to a direct sum of shifts of sheaves of the form

ICS% , for pairs © = (0, 4(6P>)), with 67> € AZ’L \ {0}
cobunp

Finally, applying the modification hj, JIMM)! with twist 7(u) to the above iso-
morphism, we obtain an isomorphism
nICS o N (ICS @35 @ Homg (VY VE) (260, v)].

s Bunp o Bunp
veAum

Here we write J<* for the result of applying the modification hy J[M,M]! with
twist 7(u) to J=Y. Clearly the modification hﬁ/[M M]! takes strata to strata so

we conclude that J=# is isomorphic to a direct sum of shifts of sheaves of the
form

for pairs © = (6, U(P°%)).

<e
I(lmBunp’
(|

Note that the proof actually shows that J<* is isomorphic to a direct sum of
shifts of sheaves of the form

ICS% , for pairs © = (0, U(6P*)), with 6P € AZ™, \ {0},
cobunp

and so in particular is irrelevant, but we shall have no need for this.
Combining the formulas given by Theorem 5.1.1 and the preceding lemma, we
may write the right hand side of equation 1 in the form
(3)

<6 " «
nHIC _ )~ " Y 10T @Homg(VE, V) [(20m, 1) @8

OE€Ap v, ) LEAN T (1) =0

Bunp

where J is isomorphic to a direct sum of shifts of sheaves of the form

IC=2_ | for pairs © = (6, 1(67°)).
co Bunp

Finally, comparing the left hand side (equation 2) and the right hand side
(equation 3), and noting that ICS% is not irrelevant, we conclude that
oo P

DY > 10— ®Homg (VL V)[(20m, &M

O0E€A N (e, ) LEAN T (1) =0

H)A(1CSY

o Bunp

where M is is isomorphic to a direct sum of shifts of sheaves of the form

ICS(;un , for pairs © = (6, 4(07°%)).
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Step 2. Now we shall show that M is in fact zero. To do this, we shall show
that its restriction to each stratum of .Bunp is zero.
Let ® be a pair (¢, U(¢P%)), with ¢ € Aprarng, and ¢P% € AZH. Let

H) (ICSO—n )& be the restriction of HG(ICSO—D ) to the stratum OOBun;‘I;. For

0 € Anr/iar,ng, let Aq) be the restriction of IC*Bun to the stratum mm}‘i,
and let Mg be the restriction of M. Note that by step 1, [BFGM, Theorem
7.3] and Lemma 5.2.5 below, all of the restrictions are 1oca11y constant.

We shall calculate Hé(ICS(I)Bm )o in two different ways and compare the re-
sults. s

On the one hand, by Step 1, we have

(4)
H) (IC

1R

Jo S A% @Homg (VA V)20, 1)) & Ma

O€ AN (n,00) REA M T (1) =0

~cBunp

On the other hand, let us return to the definition of the convolution, and
consider the diagram

——  hG ——<0 hg ——<0
wBunp < Hg x  Bup 2 Bunp
Bung xC
he he
Bung < Hea 5 Bung

Recall that by definition
HAYICSL _ ) = hg (AARICSY

s Bunp ~Bunp

)r

where (Agg ICS%H )" is the twisted product defined with respect to h;, and
oo P

AE\: is the simple spherical sheaf on the fibers of A corresponding to A.

1, %
To calculate Hé(ICS(I)Bm ), consider the inverse image h& ™' (s Bunp). Pro-
oo P

jecting along hg, we may decompose the inverse image into a union of locally

closed substacks
(&, Ll(<z5"°“))
hs " (oBunp) ~ | ] SP¢§BX ~Bunp
§€RP°° u

Projecting each piece back along hg, we arrive at a spectral sequence for
Hé(ICSL )o with Ey term
scBunp

> > Ale st grony) © Home (VI VE) (2001, 1)
EERY nEAM T (1)=¢—¢

In fact, the spectral sequence degenerates here for reasons of parity, but we
shall not need this. What we do need is the following cyclicity.

LEMMA 5.2.5. Let ¥ be a pair (¢, U(yP*)), with ¢ € Ang/iar,na), and PP €

A%Oj:) Let 0 c AM/[M M]- Then A(w $U(apPos)) — A(’l[)'ﬁg (eppos))”
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Proof. The modification
(¢, Pa, Paryina,vys @) = (e, Pa, Paaypae,an (6 - ), 0).

defines an isomorphism o Bunp — o Bunp which restricts to an isomorphism

OOB—mgb,u(wp“)) ~ OOB—ungb+97il(wP°S)).

O

We apply the lemma with ¢ = £, P = ¢P°°, and make the substitution
0 = ¢ — &, to write the E5 term

(5) > Y Alsugerey) @ Homp (VA VA (2601, )]
¢—0E€ R, n€An 7 (1)=0

Comparing our two calculations (equations 4 and 5), we conclude by a dimen-
sion count that Mg must be zero. O

5.3. CONVOLUTION ON Zcan.

THEOREM 5.3.1. For )\ € AE, there is an isomorphism

HIC3" )=~ ) > IC%in®H0mT(VTf‘,VG3‘)[<2pM,u>].
OCA N ar, 0] WEAN (1) =0

Proof. By Proposition 3.4.1, for 6 € Apz/(as,ar), we have

et ~1c’

?
coBunp Z can

Clearly the pullback £* commutes with convolution

HA(E Ici“jmp) ~ E*Hg(lcifmp).

Thus by Theorem 5.2.1, we conclude

Hg(Icgin)
~ A (p* <0
~ H3( 1050 )

P

~ ¢ HMICSY )

s Bunp
~ ) S eICTl @ Homg (VE, V)26 )]
OCA N e, 0] WEA N (1) =0
~ > 1657 @Homp(VE, VA)[(2par, 1)

can

OCA N ar, 0] WEA N (1) =0
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5.4. CONVOLUTION ON Z. Recall the map of coweight lattices
q: At = Aaryar L A,
THEOREM 5.4.1. For \ € AJCS, there is an isomorphism
HAICEY) ~ > > ICE" @Homg (VE, V) (26, 1)].
KEAA pEAT q(p)=kK

Proof. By Corollary 4.2.2, for 6 € Apz/iar,a1), We have

<0 <p(0
pIcs’ ~103"%,

By Corollary 4.3.2, for k € Ay, ec?llave
s 105" ~1C3"
Clearly the pushforwards p; and s, commute with convolution
H) (sipy Icffai) ~ 5!ngé(ICZ§£]).
Thus by Theorem 5.3.1, we conclude |
H3(1C3°)
~ Hy(sip 1C35° )

~ BQP!HG(IC;O )

~ Y S s IC% ® Homy (VE, V) (200 1)

OEAN /[0, 0a) EA N, (1) =0

> >, ICF @ Homu(VE,VE)(26m, 1)).

KEAAy pEAT,q(H)=K

1R

6. COMPLEMENTS

For our application [GN], we need a slight modification of our main result. As
usual, let X be an affine horospherical G-variety with dense G-orbit XcX
and generic stabilizer S C G. Let S° be the identity component of S, and let
mo(S) be the component group S/S°.

For a scheme 8, we write Cs for the product 8§ x C. For an 8-point (¢, Pg, o)
of the ind-stack Z, the section ¢ defines a reduction of the G-bundle P to
an S-bundle P over an open subscheme C§ C Cg which is the complement
Cs \ D of a subscheme D C Cg which is finite and flat over 8. By induction,
the S-bundle P defines a mo(S)-bundle over Cg. We call this the generic
mo(S)-bundle associated to the point (¢, Pg, o).

We define 'Z C Z to be the ind-substack whose 8-points (¢, P, o) have the
property that for every geometric point s € §, the restriction of the associated
generic mo(S)-bundle to {s} x C C Cs is trivial. It is not difficult (see [GN])
to show that ’Z is closed in Z. Observe that we have a short exact sequence

0—>AA0—>AA—>S/SO—>O.

DOCUMENTA MATHEMATICA 14 (2009) 19-46



46 GAITSGORY AND NADLER

Thus for k € A 4,, it makes sense to consider the locally closed substack 'Z* C
'Z and its closure 'Z<* C 'Z. Observe as well that from the fibration S —
G — G/S, we have an exact sequence

m(G) — m(X) — 70(89).
Thus for A\ € AJGF, we have the convolution functor
H :Sh('Z) — Sh('Z).

The same arguments show that our main result holds equally well in this con-
text.

THEOREM 6.0.2. For \ € AJCS, there is an isomorphism

HAICT) ~ > > ICT @ Homg (VE, V) (26, ).
KEAAG pEAT q(p)=kK
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ABSTRACT. We will consider an explicit birational map between a
quadric and the projective variety X (J) of traceless rank one elements
in a simple reduced Jordan algebra J. X(J) is a homogeneous G-
variety for the automorphism group G = Aut(J). We will show that
the birational map is a blow up followed by a blow down. This will
allow us to use the blow up formula for motives together with Vishik’s
work on the motives of quadrics to give a motivic decomposition of
X(J).
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Recently Totaro has solved the birational classification problem for a large class
of quadrics [To08]. In particular, let ¢ be an r-Pfister form over a field k of
characteristic not 2, and b = (by,---b,) be a non-degenerate quadratic form
with n > 2.

PROPOSITION 0.1. [To08, Thm. 6.3] The birational class of the quadric defined
by

g=9® <b1a"' 7bn—1> 1 <bn>
only depends on the isometry classes of ¢ and ¢ ® b, and not on the choice of
diagonalization of b.

The Sarkisov program [Co94] predicts that any birational map between
quadrics (in fact between any two Mori fibre spaces) factors as a chain of
composites of “elementary links”. In 2.16 we will explicitly factor many of
Totaro’s birational maps into chains of elementary links, and also prove the
following theorem.
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THEOREM 0.2. Forr =0,1,2 andn > 3, orr = 3 and n = 3, for each of the
birational equivalences from Prop. 0.1, there is a birational map which factors
into two elementary links, each of which is the blow up of a reduced subscheme
followed by a blow down. Furthermore, if 1 # 1 or ¢ is not hyperbolic, then
the intermediate Mori fibre space of this factorization will be the projective
homogeneous variety X (J) of traceless rank one elements in a Jordan algebra

J.

The birational map from a quadric to X (J) will be the codimension 1 restriction
of a birational map between projective space and the projective variety Vj of
rank one elements of J, first written down by Jacobson [Ja85, 4.26].

0.3 MOTIVIC DECOMPOSITIONS. Let G a semisimple linear algebraic group of
inner type, and X a projective homogeneous G-variety such that G splits over
the function field of X, which is to say, X is generically split (see [PSZ08, 3.6]
for a convenient table). Then [PSZ08] gives a direct sum decomposition of the
Chow motive M(X;Z/pZ) of X. They show that it is the direct sum of some
Tate twists of a single indecomposable motive R,(G), which generalizes the
Rost motive. This work unified much of what was previously known about
motivic decompositions of anisotropic projective homogeneous varieties.

In the non-generically split cases less is known. Quadrics are in general not
generically split, but much is known by the work of Vishik and others, especially
in low dimensions [Vi04].

THEOREM 0.4. (See Thm. 3.6) The motive of the projective quadric defined by
the quadratic forms in Prop. 0.1 may be decomposed into the sum, up to Tate
twists, of Rost motives and higher forms of Rost motives.

In the present paper we will use this knowledge of motives of quadrics to pro-
duce motivic decompositions for the non-generically split projective homoge-
neous G-varieties X (J) which appear in Thm. 0.2. The algebraic groups G are
of Lie type 24,,_1, C,, and Fy, and are automorphism groups of simple reduced
Jordan algebras of degree > 3. These varieties X (J) come in four different
types which we label » = 0,1, 2 or 3, corresponding to the 2" dimensional com-
position algebra of the simple Jordan algebra J (see Thm. 2.4 for a description
of X(J) as G/P for a parabolic subgroup P).

THEOREM 0.5. (See Thm. 3.12) The motive of X(J) is the direct sum of a
higher form of a Rost motive, F), together with several Tate twisted copies of
the Rost motive R".

The r = 1 case of this theorem provides an alternate proof of Krashen’s motivic
equivalence [Kr07, Thm. 3.3]. On the other hand, the r = 1 case of this theorem
is shown in [SZ08, Thm. (C)] by using Krashen’s result (See Remark 3.14).

0.6 NOTATIONAL CONVENTIONS. We will fix a base field k of characteristic 0
(unless stated otherwise), and an algebraically closed (equivalently, a separably
closed) field extension k of k. We only use the characteristic 0 assumption to
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show the varieties X (J) and Z; are homogeneous. We will assume a scheme
over k is a separated scheme of finite type over k, and a wvariety will be an
irreducible reduced scheme.

For a scheme X over k, X = X X k.

G denotes an algebraic group over k.

a; are coefficients of the r-Pfister form ¢ over k.

b; are coefficients of the n-dimensional quadratic form b over k.

q denotes a quadratic form over k, and @ is the associated projective quadric.
iw (q) is the Witt index of the quadratic form g.

C' is a composition algebra (not to be confused with the Lie type C},), and ¢;
are elements of C.

J is a Jordan algebra, x is an element of J, and u is an idempotent in J.
X(J), Q(J,u), Z; and Zs are complete schemes over k defined in Section 2.
F and R" are motives defined in Section 3.1 (not to be confused with the Lie
type Fy).

M(X) denotes the motive of a smooth complete scheme X, and M{i} denotes
the " Tate twist of the motive M.

The paper is organized as follows. In Section 1 we will recall the terminology
and classification of reduced simple Jordan algebras. In Section 2 we describe
the variety X (J) and show it is homogeneous. Also we will define the birational
map v from a quadric to X (J) and show that it is a Sarkisov link by analyzing
its scheme of base points. In Section 3 we deduce motivic decompositions for
a class of quadrics, as well as for the indeterminacy locus of vs introduced
in Section 2. Finally we put these decompositions together to give a motivic
decomposition of X (J).

1 JORDAN ALGEBRAS

A Jordan algebra over k is a commutative, unital (not necessarily associative)
k-algebra J whose elements obey the identity

22 (zy) = x(z?y) for all z,y € J.

A simple Jordan algebra is one with no proper ideals. An idempotent in J is
an element v = u # 0 € J. Two idempotents are orthogonal if they multiply
to zero, and an idempotent is primitive if it is not the sum of two orthogonal
idempotents in J. For any field extension I/k, we can extend scalars to I by
taking J; = J ®y [, for example J = J ® k. A Jordan algebra has degree n if
the identity in J decomposes into n pairwise orthogonal primitive idempotents
over k. A degree n Jordan algebra is reduced if the identity decomposes into n
orthogonal primitive idempotents over k.

The classification of reduced simple Jordan algebras of degree > 3 is closely
related to the classification of composition algebras. A composition algebra
over k is a unital k-algebra C together with a non-degenerate quadratic form
¢ on C (called the norm form) such that for any c¢i1,ca € C we have that
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d(c1c2) = ¢(c1)@(c2). Two composition algebras are isomorphic as k-algebra
iff their norm forms are isometric. Every norm form is an r-fold Pfister form,
which is to say

¢ = <<a17 T ,a,.)) = (L —CL1> ®--Q <1, —a,.>.

Furthermore, r must be 0, 1, 2 or 3, and for any such r-fold Pfister form ¢, there
is a composition algebra with ¢ as its norm form and a canonical conjugation
map ~— : C — C.

Let C be a composition algebra with norm form ¢ = {{a1,--- ,a.)), and let
b = (b1, -+ ,bn) be a non-degenerate quadratic form. Then we can define a
reduced Jordan algebra in the following way. Let T' = diag(by,---,b,), and
let op(z) := I'"1Z'T define a map from M, (C) to M,(C). Then o} is an
involution (i.e. an anti-homomorphism such that of = }), so we can define
Sym(M,,(C), o) to be the commutative algebra of symmetric elements (i.e.
elements x such that op(2) = ). The product structure is defined by z oy =
1(xy 4 yz), using the multiplication in C. When C is associative (i.e. r =0,1
or 2) we know Sym(M,(C),op) is Jordan. For r = 3, it is only Jordan when
n < 3, so in what follows we will always impose this condition in the r = 3
case.

The Jordan algebra isomorphism class of Sym(M,,(C), op) only depends on the
isomorphism classes of b and C, and not on the diagonalization we have chosen
for b. The following theorem states that in degrees > 3 these make up all of
the reduced Jordan algebras up to isomorphism.

THEOREM 1.1. (COORDINATIZATION [Mc04, 17],[Ja68, p.137]) Let J be a re-
duced simple Jordan algebra of degree n > 3. Then there exists a composition al-
gebra C' and an n-dimensional quadratic form b such that J = Sym(M,,(C), o).

2 THE SARKISOV LINK

We will define a birational map from a projective quadric to a projective homo-
geneous variety, X (J), and show it is an elementary link in terms of Sarkisov
(see 2.17).

Let r = 0,1,2,3 and n > 3, and if »r = 3 then n = 3. Throughout we
will fix a composition algebra C' of dimension 2" over k, and elements b; €
k* such that b = (b1, - ,b,) is a non-degenerate quadratic form. Let J =
Sym(M,,(C),0p) (see Section 1). Then J is a central simple reduced Jordan
algebra. Jacobson defined the closed subset V; C PJ of rank 1 elements of J
(he used the terminology reduced elements) and showed it is a variety defined
over k [Ja85, §4].

2.1 THE VERONESE MAP. The following rational map is a generalization of the
r = 0 case where it is the degree 2 Veronese morphism [Ch06, 3] [Za93, Last
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page].

v : P(C™) --» PJ

[c1,- -, en] = [biciGg].

If the composition algebra is associative (so r # 3), then the set-theoretic image
of vy (where it is defined) is precisely V. If r = 3, then the set-theoretic image
of vy isn’t closed, but its closure is V; [Ch06, Prop. 4.2]. Note that this map
specifies a choice of n orthogonal primitive idempotents, v2([0,---,1,---,0]),
so it depends on more than just the isomorphism class of J.

Let us restrict the map vs to the projective space defined by ¢,, € k1, and abuse
notation by sometimes considering vy as a rational map from P(C"~! x k) --»
V. This map is an isomorphism on the open subset U = (¢, # 0) C P(C"! x
k) [Ja85, Thm. 4.26], and hence birational. The projective homogeneous variety
we will be interested in is X(J) C V; the hyperplane of traceless matrices,
which has dimension 2"(n — 1) — 1.

2.2 THE QUADRIC Q(J,u). Define the quadric Q(J,u) C P(C"~! x k) by

n—1
$® (b1, bn1) L (bn) = (O bicics) + bncl = 0.
=1

Here ¢ is the norm form of C'. The right hand side is simply the trace in Vj,
so the restriction of the birational map vs to Q(J,u) has image in X (J). We
will often further abuse notation and consider vy to be the birational map from
Q(J,u) to X(J).

Although the definition of Q(J,u) depends on the diagonalization of b, the
isomorphism class of Q(J,u) depends only on the isomorphism class of J to-
gether with a choice of primitive idempotent u, which we will usually take to
be u = diag(0,---,0,1) € J, as we have done above.

REMARK 2.3. Since the birational class of Q(J, u) is independent of u € J, we
have another proof of Prop. 0.1 when r < 3, and if » = 3 then n = 3. For more
on this, see 2.16.

For connected algebraic groups G over k, projective homogeneous G-varieties
G/ P are classified by conjugacy classes of parabolic subgroups P in G. Further-
more, the conjugacy classes of parabolics are classified by specifying subsets 6
of the set A of nodes of the Dynkin diagram of G, as in [Ti65, 1.6]. In fact we
will use the complement to his notation, so that # = A corresponds to a Borel
subgroup Pa = B, and 6 = () corresponds to Py = G. We use the Bourbaki
root numberings. G° denotes the connected component of the identity in G.

THEOREM 2.4. V; is the union of two Aut(J)-orbits: X(J) and Vy — X (J).
Furthermore, we have:

(r=0): X(J) = G/Py, for G = Aut(J) = SO(n), if n # 4 then 0 = {1}, and
if n =4 then the Dynkin diagram is two disjoint nodes, where 6 is both nodes.
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In all cases, these varieties are quadrics.

(r=1): X(J) =2 G°/Py, for G = Aut(J) 2 Z/2 x PGL(n) and § = {1,n — 1},
this is the variety of flags of dimension 1 and codimension 1 linear subspaces
m a vector space.

(r=2): X(J) = G/Py, for G = Aut(J) = PSp(2n) and § = {2}, this is the
second symplectic Grassmannian.

(r=3): X(J) = G/Py, for G = Aut(J) = Fy and 0 = {4}, this may be viewed
as a hyperplane section of the Cayley plane.

Proof. Aut(J) acts on Vj, since the rank is preserved by automorphisms. So it
is sufficient to prove this theorem for k = k. Every element of V; — X (J) is [u]
for some rank one idempotent u [Ch06, Prop. 3.8], and Aut(.J) is transitive on
rank one idempotents by Jacobson’s coordinatization theorem, since the field
is algebraically closed [Mc04, 17].
Clearly X (J) is preserved by Aut(.J), since the trace is preserved by automor-
phisms. All that remains is to show that Aut(J) is transitive on X (.J), which
we will do in cases. Consider the 2" !n(n — 1) + n dimensional Aut(.J) repre-
sentation J = k & Jy, where Jy is the subrepresentation of traceless elements
in J. In all cases we will show that Jy is an irreducible Aut(.J) representation,
find the highest weight, and show that there is a closed orbit in P(.Jy) which is
contained in X (J) and is of the same dimension. Therefore, by uniqueness of
the closed orbit, which follows from the irreducibility of Jy, X (J) is the closed
orbit.

Case r = 0: For simplicity, we will modify the definition of J. Instead
of taking n x n matrices such that z' = x, we will take matrices such that
M1zt M = z where

0 In

M:[Im 0

]foranm,andM: L, 0 0| forn=2m+1.
0 0 1

This change is justified by recalling that any two orthogonal involutions in the
same matrix algebra over an algebraically closed field are isomorphic. Now
the Lie algebra of derivations Der(J) = so(n) is in the more standard form,
and we can choose elements of the Cartan subalgebra h as diagonal matrices
H; = E;; — Epmtim+i as in [FHI1, 18]. Following the conventions of [FH91],
we have a dual basis L;(H;) = d;; of h*, and we wish to find the highest weight
of the representation Jg.

For n = 2m, the roots of so(2m) are +L; =+ L; for 1 < i # j < m. One can
check that the non-zero weights of Jy are +L; + L; for all ¢,5. In particu-
lar, the element Ej ., is a weight vector in Jy for the weight 2L, and the
irreducible representation with highest weight 2L, is of the same dimension
as Jy. Therefore Jy is the irreducible representation with highest weight 2L,
and since Aut(J) is simple, there is a unique closed orbit in P(.Jy), and it is
the orbit of Eq ,,+1. To determine the dimension of the orbit, we ask which
root spaces g_, in the Lie algebra for the negative simple roots —a;, kill the
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weight space of 2L;. For n = 4, neither root space, for —a; = —L; — Lo nor
a9 = —L1 + Lo, kills this weight space. For any n > 6 even, all of the negative
simple root spaces kill the weight space 2L, except for the one for —L; + L.
In either case the dimension of the parabolic fixing Ey 41 is 2m? —3m+2, so
the dimension of the orbit is m—2. This is the dimension of the closed invariant
subset X (J), which must contain a closed orbit. Since there is only one closed
orbit, X (J) must be the entire orbit.

A similar analysis may be carried out in the n = 2m + 1 case, where again
E1,m+1 is a weight vector for the highest weight 2L,.

Case r = 1: We have the action of the connected component Aut(J)" =
PGL(n) on J = M,(k), acting by conjugation. The induced action of the
Lie algebra of derivations Der(J) = sl(n) on Jy is just the adjoint action on
sl(n). With the standard diagonal Cartan subalgebra, and choice of positive
roots dual to H; = E;; — F;11,+1, the highest weight is in the representation
Jo is 201 + Lo + -+ - 4+ L1 with multiplicity 1. A dimension count shows
this representation is irreducible, and the dimension of the parabolic fixing a
highest weight vector is n? — 2n 4+ 2. So the dimension of the unique closed
orbit is 2n — 3, which is the dimension of X (J). Therefore X (J) is the closed
orbit.

Case r = 2: As in the r = 0 case, we will change our symplectic involution
o(x) =z to op(x) = M~ 12t M for

Then the Lie algebra of derivations Der(J) = sp(2n) is in the standard form, by
choosing a Cartan subalgebra of diagonal matrices, with H; = E; ; — Ey 1 nti
and dual basis L; € h*. The roots of sp(2n) are £L; £ L; for all ¢,j, and
the non-zero weights of Jy are +L; £ L; for ¢ # j. In particular, the highest
weight is Ly + Lo in the standard weight ordering of [FH91, p.257]. Comparing
dimensions shows that Jy is irreducible, and the parabolic fixing a highest
weight vector is of dimension 2n? — 3n + 5. So the unique closed orbit in P(.Jp)
is of dimension 4n — 5, which is the same as the dimension of X (.J). Therefore
X (J) is the unique closed orbit.

Case v = 3: First notice that Jj is a 26-dimensional non-trivial represen-
tation of Fy = Aut(J). It is well-known that such a representation is unique,
and has a 15-dimensional unique closed orbit in P(Jp). Since X (J) is a 15-
dimensional closed invariant subset, it must be equal to the closed orbit. [

REMARK 2.5. Over the complex numbers the varieties with exactly two G-
orbits for some semisimple algebraic group G, one of which is of codimension
one, have been classified by [Ah86]. The varieties V; account for most of these.
2.6 BLOWING UP THE BASE LOCI

Any birational map of projective varieties over a field can be expressed as a

blow up followed a blow down of closed subschemes (Prop. 2.7). In this section
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we will show that these closed subschemes, for our birational map from Q(J, u)
to X (J), are (usually) smooth varieties, and hence see that the map is an
elementary link in terms of Sarkisov.

Given a rational map between projective varieties f : Y --+ X, we can define
the scheme of base points of f as a closed subscheme of Y [Ha77, II. Example
7.17.3].

PROPOSITION 2.7. Let f:Y --+ X be a birational map of projective varieties
over a field k with g : X --+Y the inverse birational map. Let Zy and Zx be
the schemes of base points of f and g respectively. Then the blow up Y of Y
along Zy is isomorphic to the blow up X of X along Zx.

Proof. Let U C Y be the open subset on which f is an isomorphism. Then
the graph I'y of f|y is a subset of U x f(U) C Y x X. The closure of I'y in
Y x X, given the structure of a closed reduced subscheme, is the blow up Y
[EHO00, Prop. IV.22].

Similarly, X is the closure of I'y C U x f(U). Since the inverse of f on U is
g, we have that X and Y are both closures in Y x X of the same subset of
U x f(U). So they have the same structure as reduced schemes, and hence
X=2Y. O

2.8 INDETERMINACY LOCUS OF va. Let Z; be the closed reduced subscheme
associated to the scheme of base points in Q(J, u) of the birational map vy. We
will show that Z; is isomorphic to the scheme of base points. We denote by
Aut(J, u) the subgroup of automorphisms of .J that fix the primitive idempotent
U.

THEOREM 2.9. Z7 is homogeneous under an action of Aut(J,u).

~

Proof. To describe the action we will use the vector space isomorphism C™~!
Ji(u)={z e Jlz-u= 1z}. Here, as above, we take u = diag(0,---,0,1) =
E,.. This isomorphism is given by sending an element ¢ € C" 1 to the matrix
element in J1 (u) C My (C') with nt* row equal to [c, 0].

So we have an Aut(J,u) action on P(C"~1). By considering the defining equa-
tions, one see that Z; is isomorphic to the reduced subscheme of P(J1(u))
defined by the matrix equation z? = 0. So it is clear that the underlying closed
subset is stable under Aut(J, u).

Finally, to show the action is transitive, it is enough to show it after extending
scalars to an algebraically closed field k. We will use similar arguments as in
the proof of Thm. 2.4.

Case v = 2: Using the notation from the proof of Thm. 2.4, the roots
of the Lie algebra of Aut(J,u) are £L; = L; for 4,j < n — 1 together with
4+2L,. One can check that the non-zero weights of the representation J% (u)
are £L; &+ L,, for i <n — 1. A dimension count reveals that J 1 (u) is therefore

IThey assume Y is affine, but we can drop this assumption since the blow up is determined
locally.
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an irreducible representation with highest weight L; + L,,. The only negative
simple roots that don’t kill a highest weight vector are Lo — Ly and —2L,, so
the dimension of the parabolic subgroup that fixes a point in the unique closed
orbit in P(Jy (u)) is 2n? — 5n + 6. So the dimension of this orbit is 2n — 2.

To see this is the same as the dimension of Z7, consider the affine cone Zl over
Zy inside J1 (u). Then consider the Jacobian matrix of the equations given
by {z;Z; = 0} with respect to the 4(n — 1) variables: 4 variables for each
coordinate x; € C. The rank of this matrix at any point in the affine cone over
Zyis < dim(Jy (u)) — dim(Z,), where equality holds if the ideal spanned by the
polynomials {x;Z;} is radical. By choosing a convenient point, we see that the
dimension of Z; is at most 2n—2, which is the dimension of the closed orbit. So
if Z; contained another Aut(J, u)-orbit, then it would contain another closed
orbit. But the closed orbit is unique, and therefore Z is the closed orbit.

Case r = 3: It is well known that the Aut(J,u) = Spin(9) representation
given by J 1 (u) for u = Ej33 is the 16-dimensional spin representation. The
unique closed orbit in P(J 1 (u)) is therefore the 10-dimensional spinor variety.
Using a similar argument to the r = 2 case, we can show the dimension of 7
is at most 10, so by the uniqueness of the closed orbit we can conclude that Z;
is the closed orbit.

Case 7 = 1: This case is slightly different from the other two because
Aut(J,u) = Z/2 x GL(n — 1) is a disconnected group, and the connected
component has two closed orbits in IP’(J% (u)). The argument is similar to the
r = 2 case, except we find that the sl(n — 1)-representation J1 (u) is the direct
sum of the standard representation V with its dual V*. So the two closed
orbits in IP’(J% (u)) are the orbits of weight vectors for the weights Ly — L,, and
L,, — L1, which are the respective closed orbits in PV and PV*. Each sl(n —1)-
orbit has dimension n — 2. Furthermore, the Z/2 part of Aut(J,u) swaps these
two representations, since it acts on matrices as the transpose. So there is a
unique closed Aut(.J, u)-orbit, and it is of dimension n — 2.

As in the r = 2 case, by considering the rank of the Jacobian at a closed
point in Z;, we see that the dimension of Z; is at most n — 2. Since Z; is
Aut(J, u)-stable, we can conclude that it is the closed orbit. O

COROLLARY 2.10. The reduced scheme Zy is isomorphic to the scheme of base
points of vy in Q(J,u).

Proof. The r = 0 case is trivial, since v is a morphism and hence Z; is empty.
It is sufficient to assume k is algebraically closed.

The other cases follow from the proof of Thm. 2.9, as follows. We can choose a
convenient closed point in the scheme of base points, and show that the rank of
the Jacobian of the defining polynomials given by {va(x) = 0} is equal to the
codimension. This implies the scheme is smooth at that point (and therefore
at all points), so in particular, it is reduced. O
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COROLLARY 2.11. Owver k, the smooth subscheme Z; is isomorphic to the fol-

Proof. This follows from our representation theoretic understanding of Z; from
the proof of Thm. 2.9.

There are much more explicit ways of understanding the r # 3 cases. For
example, in the r = 2 case, if ¢ = [c1, -+ ,cn1] € P(Ma(k)"™1) is in Z,
then the ¢;’s are rank 1 matrices that have a common non-zero vector in their
kernels. This can be used to get an explicit isomorphism with P! x P27=3. [

REMARK 2.12. These varieties are written in [Za93, Final pages], where it is
implicitly suggested that they are the base locus of the rational map wvs.

REMARK 2.13. Tt is shown in [Kr07] that Z; = Spec(k(y/a1)) xx P"~2, where
({a1)) is the norm form associated to C. So the above corollary shows that Z;
is irreducible over k except for the single case when r = 1 and C' is split.

2.14 INDETERMINACY LOCUS OF v2_1. Let Z5 be the scheme of base points of
the inverse birational map vy ' : X (J,,) —-» Q(J,u). We have that vy ' ([z;]) =
[®n,15° ", Tn,n), where this is defined.

We will use the notation J, 1 = Sym(M,,_1(C), 04, ... p,_,)), and sometimes
Jn = J for emphasis. The isomorphism class of J,_; depends on the choice
of primitive idempotent v = E, , € J, but is otherwise independent of the
diagonalization of (by, - ,bp_1).

LEMMA 2.15. The scheme of base points Zs is isomorphic to the smooth sub-
variety X (Jp—1).

Proof. The indeterminacy locus of v, ' is simply the closed subset of matrices
in X (J,,) whose bottom row (and therefore right-most column) is zero. In other
words, Zo is defined by linear polynomials. The ideal of these polynomials is
radical, and therefore the scheme Z5 is reduced. For n > 4, one sees that Zs is
isomorphic to X (J,_1). For n = 3, by considering the matrix equation 22 = 0,
we see that the base locus of Z; is the quadric defined by ¢ ® (b1) L (b2) = 0.
We will define X (.J2) to be this quadric. O

2.16 THE CHAIN BETWEEN TWO QUADRICS

The Sarkisov program [Co94] predicts that any birational map between two
Mori fibre spaces X and Y factors into a chain of elementary links between
intermediate Mori fibre spaces. An example of such a link (of type II [Co94,
3.4.2]) would be X « W — V where both morphisms are blow ups of smooth
subvarieties, and X and V are projective homogeneous varieties with Picard
number 1 (and hence Mori fibre spaces).
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THEOREM 2.17. Forr # 1 or C non-split, the birational map va from Q(J,u)
to X(J) is an elementary link of type II.

Proof. We have that Z; is irreducible (see Remark 2.13). The blow up of an
irreducible smooth subscheme increases the Picard number by 1, and a blow
down decreases it by 1. So in this situation, by Lemma 2.15 and Lemma 2.10 we
see that X (J) has Picard number 1. So by Prop. 2.7 we have that vq is a blow
up of a smooth subvariety followed by a blow down to a smooth subvariety,
and therefore it is an elementary link of type II. O
Let v/ = (b),---,b),), and ¢ = ¢ ® (b}, --,bl,_1) L (b)). Then Totaro’s
Prop. 0.1 states that if ¢ ® b = ¢ ® V', then the quadrics defined by ¢ and ¢’
are birational. By defining the Jordan algebra J’ using ¢ and V', we have a
birational map v} from Q(J',u’) to X (J').

Proof of Thm. 0.2. If ¢ @ b = ¢ @ V', then the Jordan algebras J = J' are
isomorphic as algebras ([KMRT98, Prop. 4.2, p. 43], [Ja68, Ch. V.7, p. 210]),
and therefore the varieties X (J) = X (J') are also isomorphic. So, as noted in
Remark 2.3, Q(J, u) is birational to Q(J’,«’), and moreover by Thm. 2.17 this
map is the composition of two elementary links, with intermediate variety X (J).
Notice that if C' is a split composition algebra (equivalently, ¢ is hyperbolic)
then Q(J,u) and Q(J',u’) are already isomorphic. O

2.18 TRANSPOSITION MAPS. Now we will explicitly factor the birational maps
of Roussey ([Ro05]) and Totaro ([To08]), which in general have more than
two elementary links. The most basic case they consider, though, is that of
transposition. This corresponds to finding a birational map between quadrics
q and ¢', where b, = b; for 1 <i<n—2 and b},_; = by, b, = b,—1. So b and
b’ differ by transposing the last two entries. Totaro proves Prop. 0.1 by finding
a suitable chain of such transposition maps.

PROPOSITION 2.19. Forr =0,1,2 andn > 3, and if r = 3 thenn = 3, Totaro’s
transposition map factors as the composite of two elementary links.

Proof. Let g and ¢’ be as above, and let J = Sym(M,(Cs),0s). Then the
quadric (¢ = 0) = Q(J, u) is defined using the idempotent v = diag(0,---0,1) €
J (see 2.2). General rational points on this quadric are elements in P(C" ! x k)
such that va([e1,-- - ,¢n]) € PJ has trace zero. Here ¢; € C for i # n, and
cn, € k. The inverse birational map v, ! simply takes the n'" row of the matrix
in J.

Then the quadric for (¢’ = 0) = Q(J,u’) can be defined using the idempotent
u’ = diag(0,---,1,0) € J. General rational points on this quadric are elements
in P(C"2 x k x C) such that v5([c}, -+ ,c,]) € PJ has trace zero, where we
use the same Jordan algebra J. Here ¢, € C for i #n — 1, and ¢,,_; € k. The
inverse birational map (v5)~! takes the n — 1*" row of the matrix in J.

So the composition (v4) ™! owvy defines a birational map from Q(J, u) to Q(J,u’).
From Thm. 2.17 this is the composite of two elementary links. So it remains
to show this composite is the same as Totaro’s transposition map.
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To see this, consider the map (vh)~! o vy over k, and observe where it sends
a general point from Q(J,u). Recall that ve sends [c1,- - ,¢,] to the matrix
[bicicj] € X(J), and then taking the n — 1'* row of this matrix gives us

[bnflcnflaa e ,bn710n71m, bnflcnflq] € Q(J; U/) C P(Cn72 X ];3 X C)

After using the isomorphism P(C"~2 x k x C') 2 P(C™~! x k) to swap the last
two coordinates, we can now recognize that this is exactly a map from [To08,
Lemma 5.1], where the “multiplication” of elements in C, is x * y := x7. O

REMARK 2.20. We may also view this chain of birational maps as a “weak
factorization” in the sense of [AKMWO02]. They prove that any birational map
between smooth projective varieties can be factored into a sequence of blow
ups and blow downs of smooth subvarieties. But a chain of Sarkisov links (of
type II) is stronger, because then each blow up is immediately followed by a
blow down, and the intermediate varieties are Mori fibre spaces.

3 MOTIVES

For a smooth complete scheme X defined over k, we will denote the Chow
motive of X with coefficients in a ring A by M(X; A), following [EKMOS] (see
also [Vi04], [Ma68]). We will briefly recall the definition of the category of
graded Chow motives with coefficients in A.

Let us define the category C(k,A). The objects will be pairs (X,i) for X
a smooth complete scheme over k, and i € Z, and the morphisms will be
correspondences:

Home s, 0) ((X, 1), (Y, 5)) = |_| CHaim(X)+i—j (Xm X& Y, A).

Here {X,,} is the set of irreducible components of X. If f : X —
Y is a morphism of k-schemes, then the graph of f is an element of
Home s, ) ((X,0), (Y,0)). There is a natural composition on correspondences
that generalizes the composition of morphisms of schemes.

We denote the additive completion of this pre-additive category by CR(k, A).
Its objects are finite direct sums of objects in C(k, A), and the morphisms are
matrices of morphisms in C(k,A). Then CR(k,A) is the category of graded
correspondences over k with coefficients in A.

Finally, we let CM(k,A) be the idempotent completion of CR(k,A). Here
the objects are pairs (A,e), where A is an object in CR(k,A) and e €
Home gx,a) (A, A) such that e o e = e. Then the morphisms are

HomCM(k,A)((Aa 6), (Ba f)) = f © HomCR(k,A) (Aa B) oe.

This is the category of graded Chow motives over k with coefficients in A. For
any smooth complete scheme X over k, we denote M(X) = ((X,0),idx) its
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Chow motive, and M(X){i} = ((X,i),idx) its i'"* Tate twist. Any object in
CM(k,A) is the direct summand of a finite sum of motives M (X){:}.

In this section we will describe direct sum motivic decompositions of Q(J, u), Z;
and finally X (J). A non-degenerate quadratic form ¢ of dimension > 2 defines
a smooth projective quadric @), and we will sometimes write M(q) = M(Q).

3.1 MOTIVES OF NEIGHBOURS OF MULTIPLES OF PFISTER QUADRICS

In this section until 3.8 we can assume our base field k is of any characteristic
other than 2, and » > 1 may be arbitrarily large. Given an r-fold Pfister form
¢ and an n-dimensional non-degenerate quadratic form b = (by,--- ,b,) over k
we will describe the motivic decomposition of the projective quadric ) defined
by

q= ¢® <b1a T abn*1> 1 <b’ﬂ>

This quadric is dependent on the choice of diagonalization of b. The following
is Vishik’s motivic decomposition of the quadric defined by ¢ ® b.

THEOREM 3.2. ([Vi04, 6.1])
Forn > 1, there exists a motive F} such that

271 PR
if n is even

. 0
M(p@b) = G:% RAUE { M@{2 L~ 1)} if nis odd.

Vishik uses the notation Fy(M (b)) for F), and calls it a higher form of M(b).
It only depends on the isometry classes of ¢ and b.

If ¢ is anisotropic, Rost defined an indecomposable motive R" such that M (¢)
is the direct sum of Tate twists of R”. This is called the Rost motive of ¢. If
¢ is split, then this motive is no longer indecomposable, but we will still call
R" =7 ®Z{2"~' — 1} the Rost motive. In fact, Fj is just the Rost motive of
¢ ® b (which is similar to a Pfister form). Also note that F] = 0.

In particular, for n > 1, by counting Tate motives one sees that

lz]-1
Filp= @ @{2i} @ Z{2"(n — 1) — 2"i — 1}).
i=0
So the summand has 2| 5 | Tate motives, which is the same number that M (b)|z
has.
A summand M is said to start at d if d = min{¢|Z{i} is a summand of Mz}.
Similarly, a summand M ends at d if d = max{i|Z{i} is a summand of Mj}.
We will use the following theorem of Vishik. Here iy (¢) denotes the Witt index
of the quadratic form ¢. This is the number of hyperbolic plane summands in
q.
THEOREM 3.3. ([Vi04, 4.15]) Let P,Q be smooth projective quadrics over k,
and d > 0. Assume that for every field extension E/k, we have that

iw(ple) > d<iw(qg) > m.

DOCUMENTA MATHEMATICA 14 (2009) 47-66



60 MARK L. MACDONALD

Then there is an indecomposable summand in M(P) starting at d, and it is
isomorphic to a (Tate twisted) indecomposable summand in M(Q) starting at
m.

With this theorem, it becomes straight forward to prove the following motivic
decomposition (Thm. 3.6), by translating it into some elementary facts about
multiples of Pfister forms. First we will state two lemmas for convenience.

LEMMA 3.4. Let ¢ be an r-fold Pfister form (r > 1) and let b be an n-
dimensional non-degenerate quadratic form (n>2). For any 0 <d < [§]| -1,
we have iw (¢ ® b) > 2"d implies iw (p @ b) > 2"(d+1) — 1.

Proof. This follows from the fact that if ¢ is anisotropic then 2" divides iy (¢ ®
b) [Vi04, Lemma 6.2] or [WS77, Thm. 2(c)]. O

LEMMA 3.5. If Q is a smooth projective quadric of dimension N, then for any
0 <d < N, an indecomposable summand of M(Q) starting at d is isomorphic
(up to Tate twist) to an indecomposable summand of M(Q) ending at N — d.
The same is true for indecomposable summands of F) for anyr > 1 andn > 1.

Proof. This is proved in [Vi04, Thm. 4.19] for anisotropic @, but it is also true
for isotropic @ by using [Vi04, Prop. 2.1] to reduce to the anisotropic case. The
statement for the motive F; follows easily from its construction. O

THEOREM 3.6. Let ¢ be an r-fold Pfister form (r > 1), and for non-zero b;
andn > 2 welet q=¢ & (b1, - ,bp_1) L (bn) over k of characteristic not 2.
Then we have the following motivic decomposition.

271 f noi
i o 0 if n s odd
M(q)=F'& 162 Fn_l{Z}GB{ @5:11—1 R{2r"Yn—1)—j} ifn is even.

Proof. We will split the proof into steps, including one step for each of the three
summands. We will use the notation b = (b1, -+ ,bp—1) and b = b L (by).
Note that we can assume that ¢ is anisotropic, because when it is isotropic both
sides split into Tate motives, and we get the isomorphism by checking that on
the right hand side there is exactly one copy of Z{i} for each 0 <i < 2"(n—1).
Step 1: The first summand. To show that F} is isomorphic to a summand of
M(q), we need to show that given an indecomposable summand in F starting
at d, then there is an isomorphic indecomposable summand in M(q) starting
at d. In fact, by Lemma 3.5 it is enough to only consider indecomposable
summands starting in the ‘first half’, which is to say starting at i < 2" ~!(n—1).
Since the only Tate motives in the first half of F|; are Z{2"d} for some 0 <
d < [5] — 1, by Thm. 3.3 it is enough to show that for each such d and E/k
field extension we have iw (¢ @ b|g) > 2"d iff iw (p @Y L (by)|g) > 27d.
The “if” part is clear. So assume iy (¢ ® b|g) > 2"d. Then by Lemma 3.4 we
know iw (¢ ® blg) > 2"(d + 1). So the 2"(d + 1)-dimensional totally isotropic
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subspace must intersect the 2" — 1-codimensional subform ¢®b" L (b,) C ¢ ®b
in dimension at least 2"d + 1. In other words, iy (¢ @ b" L (by)|g) > 27d.
Step 2: The second summand. Fix a1 <i < 2" — 1. As argued in Step 1,
we want to show that if 0 < d < L%J — 1, and if there is an indecomposable
summand of F}_, starting at 2"d, then there is an isomorphic indecomposable
summand of M(q) starting at 2"d 4+ ¢. By Thm. 3.3 it is enough to show that

for any E/k we have iy (¢ @ b'|g) > 2"d iff iw (¢ @b L (bn)|g) > 2"d +i.

iw(p@b|E)>2"d=iw(p@b L (by)|g)>2"(d+1)—1 Lemma 3.4
= iw (@b L (by)|g)>2"d+i
= iw(ped)>2"d See below

The last implication follows since the > 2"d + 2 dimensional totally isotropic
subspace must intersect the codimension 1 subform in dimension at least 2"d+1.
So, by Lemma 3.5, we have shown that F_;{i} is isomorphic to a summand
of M(q) for 1 <4 <2"—1.

Step 3: The third summand. Assume n is even. Since the summand is
empty for r = 1, we can assume r > 2. Fix an 2" 1(n —2) <i < 2" }(n —1).

iw(9) > 0= iw(p)=2""" Property of Pfister forms
= iw(d@b L (b)) >
=iw(¢) >0 See below

For the last implication, we have that the hyperbolic part of ¢ @ b’ L (b,) is of
dimension > 2"(n—2)+4. So the anisotropic part is of dimension < 2"—2. So by
the Arason-Pfister hauptsatz, ¢ ® b’ is hyperbolic. Now if ¢ were anisotropic,
then 2dim(¢) would divide dim(¢ ® b') [WS77, Thm. 2(c)]. But this says
271127 (n — 1), which is impossible for n even. Therefore ¢ is isotropic.
To finish Step 3, we use Thm. 3.3 to get the isomorphism of motivic summands.
Step 4: Counting Tate motives. To finish the proof, one needs to show
that the summands we have described in these three steps are all possible
summands. This can easily be checked by counting the Tate motives over k.
For a visualization of this, see Example 3.7 below.
We have implicitly used [Vi04, Cor. 4.4] here. Note also that for the n = 2 case
the second summand is zero. O

EXAMPLE 3.7. As an illustration of the counting argument in Step 4 above,
consider r = 2 and n = 4. Then Thm. 3.6 says that M ({{a1,a2))® (b1, ba, b3) L
(bs)) has 5 motivic (possibly decomposable) summands in this decomposition.
We can visualize this decomposition, as in [Vi04], with a node for each of the
12 Tate motives over k, and a line between the nodes if they are in the same
summand. Then the motive of the 11-dimensional quadric, M(q), is as follows,
with each summand labelled:
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FF{2}

F3{1} F3{3}
.\M/.

Ff

Notice that these summands might be decomposable, for example if the Pfister
form ({a1,a2)) is split. So this differs slightly from Vishik’s diagrams, since
he used solid lines to denote indecomposable summands, and dotted lines for
possibly decomposable ones.

3.8 THE MOTIVE OF THE BASE LOCUS Z;

Now we will use our understanding of Z; from Thm. 2.9 and its proof, to
decompose its motive into the direct sum of Tate twisted Rost motives.

PROPOSITION 3.9. (1) For r =1, we have that M(Z1,Z/2) = o RYi}
(2) For r = 2, we have that M(Zy,7/2) = @ 3 R?{i}.
(3) For r =3, we have that M(Z1,7/2) = &7_,R3{i}.

Proof. For r = 1, it is shown in [Kr07] that Z; = P"~2 x,, Spec(k/a1). We
know that M (Spec(k[\/a1])) = R, so the result follows because the motive of
projective space splits into Tate motives.

We have seen that in all cases Z; is a smooth scheme that is homogeneous for
Aut(J,u). Moreover, for r = 2 or 3, we know that Z; is a generically split
variety in the sense of [PSZ08]. So by their theorem [PSZ08, 5.17] we have
that M(Z1,Z/2) is isomorphic to a direct sum of Tate twisted copies of an
indecomposable motive Ra(Aut(J, u)).

Now let V' be the projective quadric defined by the r-Pfister form ¢, the norm
form of the composition algebra C. It is a homogeneous SO(¢) variety. Since
C splits over the function field k(V'), by Jacobson’s coordinatization theorem
J must also split over k(V'), and therefore so does the group Aut(J,u). Fur-
thermore, over k(Z71), we have a rational point in Z;. Then for any non-zero
coordinate ¢; € C of such a point, there exists 0 # y € C such that ¢;y = 0 in
C'. But then ¢(c;)y = (Gici)y = & (cy) = 0, and so C has an isotropic vector,
and is therefore split. Therefore SO(¢) splits over k(Z1).

Now we may apply [PSZ08, Prop. 5.18(iii)] to conclude that Ro(Aut(J,u)) =
R2(SO(¢)). Finally, observe that R2(SO(¢)) is isomorphic to the Rost motive
of ¢ ([PSZ08, Last example in 7]), which is the motive R". The proposition
can be deduced now by counting the Betti numbers of Z; (see [K691]). O

3.10 MOTIVIC DECOMPOSITION OF X (J)

We are ready to decompose the motive M (X (J)) for any reduced simple Jordan
algebra J. Recall that X (J) is a homogeneous space for Aut(J) (Lemma 2.4).
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ProrosiTiON 3.11. Let r = 0,1,2 or 3 and n > 3, and if r = 3 then n = 3.
We have the following isomorphism of motives with coefficients in Z.

di—1 da—1

M(Q(Jn, ) @le {i} = M(X @@M )i}

Here d; are the respective codimensions of the subschemes Z;. In particular,
forr#0,d, =2""'n—2 and dr = 2".

Proof. If n is the degree of J,, we have by Section 2.6 that the blow up of
X (J) along the smooth subvariety X (.J,—_1) is isomorphic to the blow up of
Q(Jn,u) along the smooth subscheme Z;. So by applying the blow up formula
for motives [Ma68, p.463], we get the above isomorphism. O

THEOREM 3.12. Letr =0,1,2 or3, andn > 3 (and if r = 3 thenn = 3). And
let J = Sym(M,,(C), op) where C is a 2"-dimensional composition algebra over
k, and b = (by,--- ,by) is a non-degenerate quadratic form over k. Then
(r=0):

1252) [213]

MX()),Z/2)=Fyo @ | P rR'i+2i} |,

=1
(r=2)
52 falm5t)+1
M(X(]).2/2) = Fls P P RHi+45}],
§=0 i=1
(r=3):

M(X(J),Z/2) = F} & @ R*{i}.

=1

Proof. The motive of Q(J,u) may be decomposed in terms of the motives F.,
Fr_, and R" (Thm. 3.6). The motive of Z; with Z/2 coeflicients may be
decomposed in terms of R" (Prop. 3.9). The subvariety X (.Jz) is isomorphic to
the quadric defined by ¢ ® (b1) L (b2) (see proof of Lemma 2.15), so we have
already decomposed its motive in terms of F} and R" (Thm. 3.6).

So the last ingredient we need is the cancellation theorem. It gives conditions
for when it is true that an isomorphism of motives A @ B =2 A & C implies
an isomorphism of motives B = C. This does not hold in general; there are
counter-examples when A = Z [CPSZ06, Remark 2.8]. But if we take A to be
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any field, then the stronger Krull-Schmidt theorem holds, which says that any
motivic decomposition into indecomposables is unique [CM06, Thm. 34]2.

When we put these pieces into the isomorphism from Prop. 3.11, we may pro-
ceed by induction on n. One sees that we can cancel the F)_; terms in the
decomposition, leaving us with the motive M(X(J)) on the right hand side,
E7 on the left hand side, and several Tate twisted copies of R” on both sides.
To finish the proof one just needs to count the number of copies of R” remain-
ing after the cancellation theorem, and verify that the given expressions are
correct. We leave this induction argument to the reader. o

REMARK 3.13. When ¢ is isotropic, the above motives split. When ¢ is
anisotropic, R" is indecomposable, but the motive F} could still be decom-
posable, depending on the quadratic form b.

REMARK 3.14. The r = 1 case of the above theorem may be used to prove
Krashen’s motivic equivalence [Kr07, Thm. 3.3]. To see this, notice that a
1—Pfister form ¢ defines a quadratic étale extension I/k, and any hermitian
form h over l/k is defined by a quadratic form b over k. So in Krashen’s
notation, V(h) = X(J). Furthermore, his V(gy) is the projective quadric
defined by ¢ ® b, and his Py, (V) is isomorphic to the base locus Z;. So in the
notation of this paper, his motivic equivalence is

M(6 @) & @) M(Z){i) = MX (7)) & MX(){1}.

i=1

Since we have motivic decompositions of all of these summands in terms of F}!
and R! (see Thm. 3.2, Prop. 3.9 and Thm. 3.12), it is easy to verify his motivic
equivalence, at least for Z/2 coefficients.

On the other hand, the r = 1 case of Thm. 3.12 follows from Krashen’s motivic
equivalence, together with the r = 1 cases of Thm. 3.2 and Prop. 3.9; this is
pointed out in [SZ08, Thm. (C)].
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ABSTRACT. This paper proves some properties of the big Chern
classes of a vector bundle on a smooth scheme over a field of charac-
teristic 0. These properties together with the explicit computation of
the big Chern classes of universal quotient bundles of Grassmannians
are used to prove the main Theorems (Theorems 1,2 and 3) of this

paper.

The nonexistence certain morphisms between Grassmannians over a
field of characteristic 0 follows directly from these theorems. One of
our theorems, for instance, states that the higher Adams operations
applied to the class of a universal quotient bundle of a Grassmannian
that is not a line bundle yield elements in the K-ring of the Grassman-
nian that are not representable as classes of genuine vector bundles.
This is not true for Grassmannians over a field of characteristic p.

2000 Mathematics Subject Classification: 14M15, 14F99, 19A99
Keywords and Phrases: Chern character, big Chern classes, Grass-
mannian, universal quotient bundle, Adams operations.

1 INTRODUCTION

1.1 MOTIVATION

Problems regarding the constraints that morphisms between homogeneous
spaces must satisfy have been studied by Kapil Paranjape and V. Srinivas [7],
[8]. In [7], they characterize self maps of finite degree between homogeneous
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spaces and prove that finite surjective morphisms from Grassmannian to Grass-
mannian are actually isomorphisms. In [8], they prove that if S is a smooth
quadric hypersurface in P"*1 where n = 2k + 1, and if 2¥|d, then there exist
continuous maps f : P — S so that f*(Og(1)) = Opn(d). Let G(r,n) denote
the Grassmannian of r-dimensional quotient spaces of an n-dimensional vector
space over a field of characteristic 0. In the same spirit, given an integer p > 2,
one can ask questions like whether there exists a map from a Grassmannian
G(r,n) to another Grassmannian G(r, M) so that f*[Qc(ran] = VP [Qc(rn))
where [V] denotes the class of a vector bundle V' in K-theory and Qac(rn)
and Qg(r,ar) denote the universal quotient bundles of G(r,n) and G(r, M)
respectively. Another question in the same spirit would be whether there
exist morphisms f : G(r,n) — G(r — 1, M) so that f*(ch;(Q)) = chy(Q). The
answers to the first question is in the negative for all » > 2,n > 2r + 1 and
the answer to the second question is in the negative for infinitely many r, with
n assumed to be large enough. It may be noted that in these questions, our
attention is not restricted solely to dominant/finite morphisms unlike in the
results in [7] and [8]. Indeed, the results proven here are not obtainable by the
methods of [7] and [8] as far I can see.

1.2 STATEMENTS OF THE RESULTS

The following theorems contain the answers obtained for the above questions.
These theorems are proven in this paper. Before we proceed, we state that all
varieties in this paper are smooth projective varieties over a field of charac-
teristic 0. For any smooth projective variety X, let K(X) denote the K-ring
of X. For any vector bundle V on X, let [V] denote the class of V in K(X)®Q.

THEOREM 1. Let () denote the universal quotient bundle of a Grassmannian
G(r,n). Suppose that v > 2 and that n > 2r + 1. Then, for all p > 2, the
element YP[Q] of K(G(r,n)) @ Q is not equal to [V] for any genuine vector
bundle V on G(r,n).

COROLLARY 1. If f : G(r,n) — G(r,00) is a morphism of schemes with r > 2
and n > 2r + 1, then f*[Qc¢(r,00)] 7 VP[Qc(r,m)] for any p > 2.

Let X be a smooth variety, and let F,«CHl(X ) ® Q denote the subspace of
CH'(X) ® Q spanned by {ch;(V)[V a vector bundle of rank < r}. Then, this
filtration is nontrivial as a theory. Let Qg(rn) denote the universal quotient
bundle of G(r,n), and let ch denotes the Chern character map, with ch; denot-
ing the degree [ component of ch.

THEOREM 2. Given any natural number | > 2, there exist infinitely many
natural numbers r > 0, and a constant C' depending on | so that whenever
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n>Cr?+r,
hi(Qg(rny) € FrCH(G(r,n)) ® Q\ Fr_1 CH(G(r,n)) ® Q.

COROLLARY 2. Given any natural number | > 2, there exist infinitely many
natural numbers r > 0, and a constant C' depending on l so that whenever
n>Cr?+r, and f: G(r,n) — G(r — 1,00) is a morphism of varieties, then

f*(Chl(QG(r—l,oo))) 7& Chl(QG('r‘,n))'

COROLLARY 3. There exist infinitely many r so that if f : G(r,n) — G(r —
1,00) is any morphism of schemes with n > Tr? +r + 2, then

f* Ch2(QG(7‘—1,oo)) = rchy (CQG('r',n))2
for some constant k € K that possibly depends on r.

THEOREM 3. If f: G(3,6) — G(2,00) is a morphism, then

F(ch2(Q2,00))) = rich1(Qaae)

for some constant k € K.

1.3 AN OUTLINE OF THE SET UP OF THE PROOFS

All these results are proven using certain facts about certain characteristic
classes. These characteristic classes were discovered by M. Kapranov [6] (and
independently by M.V. Nori [1]) as far as I know. In this paper, I shall
show that these objects are characteristic classes that commute with Adams
operations (Lemma 9 and Lemma 13 of Section 4.2 in this paper). These
characteristic classes are defined as follows.

Let X be a smooth projective variety and let V' be a vector bundle on X.
Consider the Atiyah class

Oy € HY(X,End(V) @ Q)

of V. Denote the k -fold cup product of 6y with itself by 6%. Applying
the composition map End(V)®* — End(V), followed by the trace map tr :
End(V) — Ox to 6%, we obtain the characteristic class

tx(V) € H* (X, Q%F).

Note that the projection Q®* — AFQ when applied to tx (V) gives us k! chy (V)
where chg (V) denotes the degree k part of the Chern character of V. The
classes ty, are referred to in the paper by Kapranov [1] as the big Chern classes.
These classes and their properties are discussed in greater detail in Section
4 of this paper. The big Chern classes together give a ring homomorphism
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@ty K(X)®Q — @H"(X, Q%F) where the right hand side is equipped with
a commutative product that shall be described in the Section 2. The com-
mutative ring @ H* (X, Q®*) shall henceforth be denoted by R(X). Both this
product and the usual cup product in addition to some other (A-ring) structure
on this ring are preserved under pullbacks. Moreover, the two products are
distinct and the Adams gradation on R(X) is distinct from the obvious one
(unlike in the case of the usual cohomology ring). These facts place serious
restrictions on what pullback maps f* : R(X) — R(Y) corresponding to
morphisms f : Y — X look like. An important subring of the ring R(X) will
be calculated explicitly for the Grassmannian G(r,n) at the end of Section 3.

NoOTATION: Throughout this paper, K shall be used to denote the base field.
We assume throughout this paper that the characteristic of K is zero.

1.4 BRIEF OUTLINES OF THE PROOFS
1.4.1 OUTLINE FOR THEOREMS 2 AND 3

The basic idea behind the proofs of Theorem 2, Corollary 2 and Theorem 3 is
the same.

If o € Sk is a permutation of {1,...,k}, and if F is a vector bundle on X, then
o gives us a homomorphism o : F&F — FO% of Ox modules. If fi,..., fi are
sections of F over an affine open subscheme Spec(U) of X, then

o(f1® @ fr) = fo) @ @ fo)-

This gives us a right action of S, on F®*. If F = (, the cotangent bundle
of X, then o : Q%% — Q®F induces a map o, : H (X, Q®F) — HF (X, Q®F).
Extending this action of Sy on H* (X, 0Q%F) gives us an endomorphism 3, of
H* (X, Q%F) corresponding to each element 3 of the group ring KS of S.

To prove Corollary 2, it suffices to show that for [ fixed, there exist infinitely
many r such that there is some natural number k with the property that there
exists an element 8 of KSg such that

ﬁ* tk(al(QG(r,n))) 7é 0

and
B tr((Qa(r—1,00))) = 0.

Here a;(V) = ch™' chy(V) for any vector bundle V. This is enough because
tr,cq and B, commute with pullbacks. If Corollary 2 were to be violated with
the above situation being true, we would have something that is 0 [ in this
case, Bx tr((Qc(r—1,00))) ] pulling back to something that is nonzero [ in this
case, (s tg((Qa(rny)) |- This gives us a contradiction. A little more work is
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required to prove Theorem 2.

1.4.2 OUTLINE FOR THEOREM 1

The proof of Theorem 1 is in the same spirit, though much more complicated.
We will define a functor of type (k,1) (or a functor of “Adams weight {”) to be
a map ( not necessarily a ring homomorphism/abelian group homomorphism )
from K(X) ® Q — Ri(X) which takes an element z € K(X) ® Q to a linear
combination of expressions of the form

Bu (tx, (cu, () U -+ - Uty (a, (2)))

where 8 € KSj. If v; is a functor of type (k, 1) then v; commutes with pullbacks
and

u(yPe) = plu(z).

Corollary 1 will be proven by showing that there is a linear dependence relation

Z av(Qa(rmy) =0
]

for all n > 2r 4 1, with v/(Qg(rn)) # 0, where v;’s are functors of type
(2r,1). We will pick a linear dependence relation of this type of shortest
length. If Corollary 1 is false, we will obtain yet another linear dependence
relation ), plalvl(Qg(,m)) = 0, contradicting the fact that the chosen linear
dependence relation is of shortest length. A little more work will give us
Theorem 1.

Detailed proofs are given in Sections 6 and 7, but the previous sections are
required to understand the set up for the proofs. An important ingredient
required to flesh-out the proof outlined above is the explicit calculation of
tr(Qc(r,n))- This is done in section 5.

1.5 REMARKS ABOUT POSSIBLE FUTURE EXTENSIONS

It can be easily shown that any linear dependence relation between functors of
type (k,l) applied to the universal quotient bundle of G(r,n)

Z av(Qa(rny) =0
]

that holds for all n large enough will apply to a vector bundle of rank r on
a smooth projective variety X. Thus, if we are able to prove that we have a
linear dependence relation

Z av(Qa(rny) =0
]
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for all n large enough with v;(V) # 0 then we will be able to apply the
same argument to show that in K-Theory, higher Adams operations applied
to [V] give us elements not expressible as the class of any genuine vector bundle.

One can try doing this for other homogenous vector bundles in the Grass-
mannian, and in general, other vector bundles on a G/P space arising out of
P-representations, where G is a linear reductive group and P is a parabolic
subgroup. This could lead to further progress towards finding the P represen-
tations that give rise to vector bundles satisfying Theorem 1. More intricate
combinatorics than was used here in this paper may be required for further
progress along these lines.

At first sight, it may look that theorem 2 needs to be strengthened. In-
deed, on going through the proof, one feels strongly that the filtration F..
of CHl() ® Q, which theorem 2 says is nontrivial as a theory, is in fact,
strictly increasing as a theory. More specifically, I feel that given any [ > 2
fixed, and r > 2, there exists some Grassmannian G = G(r,n) so that
chy(Q) € F,.CH(G) ® Q\ F,_1CH(G) ® Q.

One approach to this question is entirely combinatorial (along the lines of the
proof to theorems 2 and 3). Let V) denote the irreducible representation of
Sk corresponding to the partition A of k. Let |A\| denote the number of rows
in the Young diagram of A\. The combinatorial approach to this question is
to try to show that for some k and a particular 8 € KSy depending on [ and
k only, the subspace spanned by the conjugates of (5,_1 is of strictly smaller
dimension than that spanned by conjugates of 3,.. Here, §; is the image of 3
under the projection KSy — @©|yj<;E£nd(Vy). Approaching this question along
these lines would indeed involve algebraic combinatorics extensively.

ACKNOWLEDGEMENTS. This work would not have been possible without the
many useful discussions I had with my advisor, Prof. Madhav Nori. It is
difficult to convey my gratitude to him. I also received a lot of encouragement
(as well as many useful suggestions) from Prof. Spencer Bloch, to whom I am
deeply grateful. I am also very grateful to Prof. Shrawan Kumar for pointing
out a theorem of Bott [4] used in this work and to Prof. Victor Ginzburg for
making me aware of the paper by M. Kapranov [6] where the characteristic
classes used are introduced. I thank my friend and colleague Apoorva Khare
for helping me LaTeX this work and Dr. Victor Protsak, Prof. Kaan Akin and
Prof. Mohan Ramachandran for useful suggestions.

2 THE A-RING R(X)

We recall that a (p, ¢)-shuffle is a permutation o of {1,2,...,p + ¢} such that
o(l) < - <olp)and o(p+1) < --- < o(p+ q). We denote the set of all
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(p, g)-shuffles by Shy, , throughout the rest of this work. Also, for the rest of
this work, the sign of a permutation o shall be denoted by sgn(o).

If 0 € S is a permutation of {1,...,k}, and F a vector bundle on X,
then o gives us a homomorphism o : F® — F®F of Ox modules. If
f1,--., fx are sections of F over an affine open subscheme Spec(U) of X, then

o(f1® @ fr) = fo1) @ @ for)-

This gives us a right action of S, on F®*. If F = Q, the cotangent bundle of
X, then o : Q®F — Q®F induces a map o, : Hk(X, %k — Hk(X7 Q@F).

If f:Y — X is a morphism of varieties, we have a natural pullback map
f* Hk(X, QX®k) — Hk(Y, f*QX®k). This can be composed by the map (2%, :
HY(Y, f*Qx®%) — HF (Y, Qy®%) to define the pullback f* : H*(X,Qx®*) —
Hk(Y, Qy®k), where ¢ : f*Qx — Qy. We note that

ffoo.=o0.0f".
If o € H(X,Qx®") and 8 € H™(X, Qx®™), define
a®f:= Z sgn(o)o, H(a U p).
o€Shy
® gives us a product on @ H* (X, Q®¥). Moreover,

PROPOSITION 1. If a and 3 are as in the previous paragraph, then a®f = Oa.
In other words, ® equips R(X) with the structure of a commutative ring.

Proof. If 7 is the permutation of {1,...,k+ 1} where y(i) =l+ifor 1 <i<k
and v(i) =i —k for k =1 <14 <[+ k, then sgn(y) = (—1)“. Also, 0 — o o7
gives us a bijection between Sh; ; and Shy ;.

Thus
a©f= 3 sen(@)o@Uf) = > sen(m)seu(r)(re7), (@Uf)
o€Shy; T€Shy
= > sen(m)(y oY), sen(7)(@UB) = > sen(r) (sgn(v)vs (aUB))
T€EShy T€Shy
= Y s (Fua) =foa
T€Shy

(Note that (y~' o7~ 1), = 7.1 0 47! since the action of Siy; on Q®F*! is a

*

right action). O

We recall from Fulton and Lang [9] that a special A-ring A is a commutative
ring together with operations ¥ : A — A indexed by the natural numbers so
that

DOCUMENTA MATHEMATICA 14 (2009) 67-113



74 Ajay C. RAMADOSS

a) YP is a ring homomorphism for all p.
b) %P 0 1 = yra,
c) ¢! =id.

Here, we show that R(X) has a special A-ring structure (i.e, has Adams opera-
tions). This is done in Lemma 2. It will be clear from their definition that the
Adams operations commute with pullbacks. The graded tensor co-algebra T*)
of the cotangent bundle Qx is a sheaf of graded-commutative Hopf-algebras on
X. The product on T*Q and the Adams operations on T*Q therefore induce
corresponding operations on the cohomology ring of T*S). Proposition 1 in fact,
proves that the ring R(X) is a subring of the cohomology ring of T*Q. It turns
out that the Adams operations on the cohomology of T*Q restrict to Adams
operations on R(X) as well. The rest of this section is devoted to explaining
the details of the outline we have just highlighted. We begin with a digression
on Hopf-algebras.

2.1 ADAMS OPERATIONS ON COMMUTATIVE HOPF-ALGEBRAS

We recall that a Hopf-algebra over a field K of characteristic 0 is a vector
space H together with maps p: H ® H — H (multiplication), A: H - H® H
(comultiplication), u : K — H (unit) and ¢ : H — K (counit) such that the six
properties listed below are satisfied.

1. Multiplication is associative and comultiplication is coassociative.

2. Multiplication is a coalgebra homomorphism and comultiplication is an
algebra homomorphism.

3. po(u®id) =po(ideu)=id: H — H.

4. (id®c)oA=(c®id)oA=id: H— H.

5. u is a coalgebra map and c is an algebra map.

6. cou=id: K - K.

One can define a Hopf algebra in the category of Ox modules in the same spirit.
It is an Ox module H together with maps of Ox modules p: HQH — H
(multiplication), A : H — H ® H (comultiplication), v : Ox — H (unit) and
¢: H — Ox (counit) such that

1. Multiplication is associative and comultiplication is coassociative.

2. Multiplication is a coalgebra homomorphism and comultiplication is an
algebra homomorphism.

3. po(u®id)=po (ideu) =id : H — H.

4. id®c)oA=(c®id)oA=id: H — H.

5. u is a coalgebra map and c is an algebra map.

6. cou=1id: Ox — Ox.

The Hopf algebra H is said to be (graded) commutative if po7 = p where
7 is the (signed) swap map from H ® H to itself. In the graded case

T(a®b) = (—1)|allb‘b ® a, where a and b are homogenous sections of H over
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an affine open subset of X. |a| and |b| denote the degrees of a and b respectively.

The following four facts are completely analogous to statements in section 4.5.1
of Loday [2]. The checks Loday [2] asks us to do to make these observations
for the case of a commutative Hopf algebra over a field also go through in
our case, that of a graded commutative Hopf algebra in the category of Ox
modules. These checks are left to the reader as they are fairly simple.

Fact 1. If H is a (graded) commutative Hopf algebra in the category of Ox
modules, we can define the convolution of two maps f, g € Ende, (H) by

frg=po(f®g)oA.

The convolution product # is an associative product on Endp,, (H).

Fact 2. If f is an algebra morphism, then if g and h are any Ox linear maps,
folgxh)=(fog)«(foh)

Fact 8. If H is (graded) commutative and f and g are algebra morphisms,
then f x g is an algebra morphism.

Fact 4. Tt follows from Fact 3 that
Yk :=idx---xid € Endo, (H)

is an algebra morphism for all natural numbers k. It also follows from Fact 2
that

PP o h? = P4

for all natural numbers p, q.

Further, the following proposition, which is an extension of Proposition 4.5.3
of Loday [2] to graded commutative Hopf algebras in the category of Ox
modules, holds as well. Since the proof of Proposition 4.5.3 of [2] given by
Loday [2] goes through in this case with trivial modifications, we omit the
proof of the following proposition.

PROPOSITION 2. If H = @,>0Hy s a (graded) commutative Hopf algebra in
the category of Ox modules, then
a) YP maps H,, to itself for all p and n.

b) There exist elements el of Endo, (Hn) such that
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Further,
el oeld) = §;5eld)

where §;; is the Kronecker delta.

An immediate consequence (when k = 1) of this proposition is that
id=eM ... e,

The Hopf algebra that is relevant to us is the (graded) tensor co-algebra of a
vector bundle F. Here,
T*(F), = Fo"
AL @ @fa)= > [0 @ fit1 @ @ fu €T (F)@T(F)
0<i<n

(cut coproduct) and

N(f1®“‘®fp®fp+1®"‘®fp+q)

= Z sgn(o)fa_l(l) K fcr‘l(erq)
o€Shy, 4

where f; is a section of F over an affine open subscheme U of X for each 3.

We note that in this case,

Vo)=Y > sen0)for11) @ ® foi(n)-

p+a=n o€Sh, 4

In this particular case, we also want to find out about the idempotents
eﬁf ) e Endep, (F)®". The following extension of Proposition 4.5.6 from Loday
[2] is what we want. Again, since the proof given in [2] extends with trivial
modifications to our case. We therefore, leave the proof of the following

proposition to the reader.

LEMMA 1. .
9 = ai
=1
where .
L X—7+n
,] v
> aix' = < J )
=1
and

I = Z (sgno)o. ',

ocESn,j
Here, Sy ; = {0 € Splcard{ilo(i) >o(i+1)} =j —1}.

(n) _

For example, e, =3 g sgn(o)o. "
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2.2 DESCRIPTION OF A-RING STRUCTURE ON R(X)

Consider the tensor co-algebra 7). Consider the Adams operations 1/* on
T*Q) as described in the previous subsection. Note that wk|g®n induces a
map ¥ : R,,(X) — R,,(X). Thus the Adams operation ¥* induces a map ¥* :
R(X) — R(X) that is K-linear. That 1)? o1)4 = ¢)P4 implies that 1} o9pd = 9.
Define the k-th Adams operation on @ H" (X, Q®") to be ¢¥. That the Adams
operations so defined are ring endomorphisms of R(X) follows from the fact
that the product in R(X) is induced by the product in 7*Q. We have therefore,
proven the following Lemma.

LEMMA 2. R(X) is a special A\-ring with Adams operations P given by ¥.

REMARK. The Adams operations on R(X) are thus seen to be defined combi-
natorially.

3 THE RING R(G(r,n))c!™

In this section we explicitly compute an important part of R(G(r,n)), where
G(r,n) is the Grassmannian of r dimensional quotients of an n-dimensional
vector space. G(r,n) is a homogenous space Gl(n)/P where P is the appropri-
ate parabolic subgroup of Gl(n). Let N denote the unipotent normal subgroup
of P.

All the vector bundles that arise during the course of stating and proving
the main theorems are Gi(n)- equivariant. Thus, the big Chern classes of
these vector bundles lie in the part of R(G(r,n)) fixed by Gl(n). If V is an n
dimensional vector space, let S be the subspace of V' preserved by P and @
the corresponding quotient. The cotangent bundle Q of the G(r,n) is the vec-
tor bundle arising out of the P-representation Q* ® S on which IV acts trivially.

CONVENTION. When we refer to 2 in the category of P-representations, we
shall refer to the P representation giving rise to the cotangent bundle of G(r, n).

We are now in a position to make the following four observations. Together
with the step by step justifications that follow them, these observations
describe the method we will use to compute R(G(r,n))%"™) while rigorously
justifying our computations at the same time. Observation 1 that follows is a
serious statement. We devote the appendix of this paper to sketch its proof.
Observations 2 and 3 are first stated ”proposition style” and then followed up
with proofs. Observation 4 is a sequence of four computations that is crucial
to the explicit description of R(G(r,n))%"™) that we provide.

OBSERVATION 1. Let SV denote the vector bundle on G/P arising out of a
P-representation V. Then, H*(G/P, SV)G is isomorphic to H*(P, V).
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Here, H” (P, V) is in the category of P-modules. This statement follows from a
theorem of Bott [4]. Though the base field is the field of complex numbers in
[4], an extension of this result to an arbitrary base field of characteristic 0 can
be shown using the method of flat descent [11] (Theorem 6 in the appendix to
this paper). We sketch a proof of this fact in the appendix to this paper.

OBSERVATION 2. In the case of a Grassmannian,

H(a/p.sv)< = uE (v, v)"N.

Proof. We have the Lyndon-Hochschild-Serre spectral sequence
EyP1 = HP(P/N;HY(N; A)) = HPTI(P; A)

where A is any P-representation. In the case of a Grassmannian, P/N is iso-
morphic to GI(Q) x GI(S). The category of P/N -representations is semisimple,
and all but the bottom row of the spectral sequence vanish. Thus in the case
of a Grassmannian,

ut(a/p,sv)< =ut v, v)"N.

O

OBSERVATION 3. From now on G = Gl(n) and P is a parabolic subgroup
such that G/P is the Grassmannian G(r,n). Let N denote the category of
N -representations. For any P-representations V. and W on which N acts
trivially,

Exti (W, V) = Homg (W @ AFQ, V).

Proof. We prove the above assertion as follows.

Step 1: Note that N is a Lie group, and in our case (that of a Grassmannian)
the exponential map gives a bijection between the Lie-algebra 7 associated to
N and N itself. The category of (finite dimensional) n representations is thus
equivalent to a full subcategory of N in which all our N representations lie.
Note that characteristic 0 is needed to formally define the exponential map and
its inverse. Also, the category of n-representations is equivalent to the category
of U(n)-representations, where U(n) is the universal enveloping algebra of 7.
Since 7 is abelian, (in the case of the Grassmannian) U(n) = Sym* n. In what
follows, we shall work in the category of Sym™ n-modules.

Step 2: Consider the Ad action of P on 7. The resulting P representation is
the P-representation Q*®.S on which N acts trivially. Since co-tangent bundle
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Q of G(r,n) arises out of this P-representation, we abuse notation and denote
this P-representation by ). For the rest of this section as well as in Sections 5.2
and 5.3,  shall denote this P-representation from which the cotangent bundle
of G(r,n) arises. As vector spaces, n >~ (). As algebras,

U(n) ~ Sym*(Q).

Step 3: Note that Sym*(Q) acts trivially on W. In other words, y.w = 0 for
any w € W and any y in the ideal of Sym*(Q2) generated by Q. Therefore,
a projective Sym™(€2)-module resolution of W can be obtained by taking the
Koszul complex

.. HW®/\kQ®Sym*QHW@Akilﬂ@)Sym*QH o= WRSym" Q — W — 0.

It follows that if V is any other Sym* Q-module, then Ext*(W, V) is just the
k-th cohomology of the complex

0 — Hom(W @ Sym* Q, V) — ... — ...Hom(W @ A*Q @ Sym* Q, V) — ....
If V is also a trivial Sym* Q2-module, then we see that
Hom(W ® A"Q ® Sym* Q, V) = Homg (W @ AFQ, V)
and the Koszul differential in the previous complex is 0. Thus,
Exth (W, V) = Homg (W @ AFQ, V).
O

OBSERVATION 4. R(G(r,n))"™ is isomorphic to a quotient of the group ring
KSy as a K-vector space. For the rest of this paper we identify R(G(r,n))¢H™)
with this quotient via a particular isomorphism. An explicit step by step
construction of this isomorphism is provided in paragraphs A).-D). below.

A). It follows from Observation 3, Observation 2 and the fact that P/N =
Gl(Q) x GI(S) that

Hk(G(Ta n), Q®k)Gl(") = HomK(/\kQ, Q®k)Gl(Q)XGl(S)_
We recall from Weyl [10] that if V' is any vector space, the map
pv : KSj, — Endg (VOF)FV)

U1®"'®vn}_)Uo'(l)®"'®va(n)

is a surjection. It follows from this that

0o @ s : KSp @ KSy — (Endg (Q*®") @ Endg (§€F))GH@*GUS)
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is surjective.

B). Let i : AFQ — Q®F denote the standard inclusion. Let p : Q®% — Q®k de-
note standard projection onto the image of . Note that p = % ZwGSk sgn(w)w.

If a € (Endg (Q*®%) @ Endg (S®%))GURIXGIS) then avoi = 0 iff a«op = 0. Re-

call that Q = Q* ®S. Therefore, every element in Homy (A*S2, Q®k)Gl(Q)XGl(S)
is the image of a linear combination of elements of the form

1
(T®o0)o o Z sgn(w)(w @ w).
wEeSk
Also, since we are using the right action of Si x Sy on Q*®k @ SOk,

% Z sgn(w)(w @ w) = % Z sgn(w)(w @ w)(r ® o)

wES wES

(r®o)o

= % > sen(wo)sgn(o ) (wo @wo) (0T @ id)
’ wEeSk

= % sgn(o) Z sgn(w)(w @ w) (o7 ®id).

w€eSk

). Identify Endg (Q®*%) with (EndK(Q*®k) ®@Endg (S®*)) and think of S, x Sy,
as acting on this with the left copy of S; permuting the @* and the right copy
permuting the S. Then, the map p is identified with 7 > wes, S8n(w)(w @ w).
It follows from the above computation that if o,7 € Si then

(c®@7)op=sgn(o)(c T ®id)op.

Therefore, every element in Homy (AFS2, Q®k)Gl(Q) xGi(S)

combination of elements of the form

is the image of a linear

(o7 r ®id) o p.

It follows that as a K-vector space, Homy (AFQ, Q®k)Gl(Q)XGl(S) can be iden-

tified with a quotient of the group ring KSy. We shall shortly determine this
quotient precisely — but not before making a final computation.

D). Identify 2 with @*®S. With this identification, if o € Sk, the right action
of o on Q®* corresponds to the right action of o ® o on Q*®* @ S®*. Also, if
8 € KSg, then

% Z sgn(w)(w @ w)(B@id)(0 ® o)

’ wESk

= % Z sgn(wo) sgn(o)(wo @ wo)(o~ ! fo ®id)
" wESK

DOCUMENTA MATHEMATICA 14 (2009) 67-113



ON THE NONEXISTENCE OF CERTAIN MORPHISMS FROM ... 81

- %Sgn(a) > sen(w)(wew)(o ! fo @id).
' WESk

THE MAIN RESULT OF THIS SECTION. Henceforth B(G(r,n)) shall denote
R(G(r,n))%" ™. Observations 1-4 above enable us to conclude that B(G(r,n))
is isomorphic to a quotient of KSy as a K-vector space.

We need to specify which quotient of KSy gives B(G(r,n)). Recall that the
irreducible representations of S; over C can be realized over Q and hence over
any field of characteristic 0. We also recall that the irreducible representations
of Sy are indexed by partitions A of k. They are self-dual, and V) ® Alt = V5,
where ) is the partition conjugate to A. Note that KSj is isomorphic to
D End(V)\)

NOTATION. Let |A| denote the rank (number of summands) of the partition
A. Let P. denote the projection from KSj. to @<, End(Vy) for 1 < r <k,
and let P, denote the projection from KSk to &<, |x End(Vy). If n is
large enough, P, ,, = P;.

|<n—r

The main result in this section is the following.
LEMMA 3. 1. As a vector space,
B(G(r,n)) & @ P n(KSk).
2. If o € Sk, then
0+ Prn(B) = P,«,n(sgn(a)aflﬁa) V B € KSy.
8. Ifa € Sy and B € S; then
P () U P (8) = Prn(ax )
where a X (3 is thought of as an element of Sk in the obvious fashion.

The second part of this lemma follows from the paragraph D). of Observation
4 in this subsection. The following sequence of lemmas proves the remaining
parts of the above lemma.

3.1 A LEMMA AND SOME COROLLARIES

LEMMA 4. Let G be a finite group and let x : G — C* be a 1-dimensional
representation of G. Then, if B € C(G), 3 ,cqax(9)(g® ¢)(8 ®id) = 0 in
C(GxG)=C(G)aCG) ifg=0.
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Proof. 1f 3 = 0 then clearly > ., x(9)(9® g)(8®id) = 0. For the implication
in the opposite direction, let us see what > 5 x(9)(9®g) does to C(G'x G) =
@ End(V, ®V,) where the V, are the irreducible representations of G. Let e; be

a basis for V, and let f; be a basis of V. Suppose that g(e;) = ZJ dim(Vz) giiej
and that g(fx) = ﬁ (lhm(v) 2fi for all i e {1,...,dim(V,)} and for all k €

{1,...,dim(V})}. Then,

Zx (9®g)(e: @ f) Zngggzx (ex ® fi)
g

= (e @ O x(@gin"gi") =Y (ex ® )OO gix”951")
k,l g k,l g

where V, =V, ® x.

Note that > (9®g) € End(V, ®V})) is a G-module homomorphism. In fact, G
acts trivially on (3, g ®g).(V. ®V,). Thus, ﬁ >-,(9®g) acts as a projection
to the trivial part of V, ® V,,. Note that V; ® V, has a contains precisely
(Xz, Xy) copies of the trivial representation of G. In particular, it contains one
copy of the trivial representation of G iff V, and V), are dual representations.
In that case, the projection to that copy of the trivial representation is given
by v ® w — Tw(v) Y e; ® f; where d is the dimension of V.. Here, {e;} is
a basis for V, and {f;} is the basis for V, dual to {e;}. This tells us that

>y 9ik g = %%25@'51@#

Therefore, in End(V, ® V), if V. is not dual to Vy, then 3 o x(9)(g®g) = 0.
Assume that V, is dual to V. Let {e;} be a basis for V, and let {f;} be the
basis of V,, dual to {e;}. If {&;} is the basis of V, corresponding to {e;}, then
with respect to the ordered basis €1 ® f1,€2® f1,...,64® f1,61 R fa,...,64®
fo,..,e1® fa,...,€a® faof Vo @V, %‘ dec x(9)(g ® g) corresponds to the
matrix M such that M;; =1ifé,j € {kd+k+1/0<k <d—1} and M;; =0
otherwise. On the other hand, 8 ® id in End(V, ® V},) is given by a block
diagonal matrix each of whose diagonal blocks is the matrix representing 3 in
End (V). This proves the desired lemma.

O

In fact, in the above proof, we have also proven the following lemma.

LEMMA 5. Let G be a finite group, and let x : G — C* be a 1-dimensional
representation of G. Let V; and V, be irreducible representations of G such
that Vo ® x is dual to Vy. Then, if B € C(G), 3 ,cqx(9)(g®g)(B®id) =0 in
End(V, ® V) iff 5 =0 in End(V;).

In our problem, the group in question is Sx. We note that these lemmas give
us the precise description of B(G(r,n) when K = C. Let Sy denote the Schur-
functor associated with the partition A of k. In other words, if V' is any vector
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space Sy(V) = ek ®Ks, Va where V) is the irreducible representation of Sy
corresponding to the partition \. We know that if V' is a vector space of rank
m, Sx(V) = 0 iff A has more than m parts. Therefore, if Q has rank r, then
SA(Q) = 0 iff [A\| > r and S5(S) = 0 iff |\| > n — 7. Moreover, if A and p are
two partitions of k, then VE* @ W& @y (g, xs,) Va ® Vi = SA(V) ® Su(W).
If v € K(Sk x Sk) # 0 in End(Vy ® V,,), then K(Si x Si).v contains Vy ® V,.
Therefore, VE*@W ®* @ s, x 5,)7 contains Sy (V)®S,,(W). Lemma 5 therefore
says the following when K = C.

LEMMA 6. If the rank of Q is r and that of S is n —r, then

> sen(0)(e @ 0)(F®id) =0

as an element of Homy (Q%F Q®k)7iﬁﬁ =0 as an element of End(Vy) for all
partitions \ such that |\ <r and |\| <n—r.

Proof. Let v = 3 _sgn(o)(c ® o)(f ®id). Then, by Lemma 5, v = 0 in
End(Vy ® V,,) if p # A. Therefore, 7 kills S)(Q*) ® S,,(S) whenever u # .
On the other hand, if v # 0 in End(Vy ® V3), then Q®* . contains a copy of
SA(Q*) ® S5(S). The desired lemma follows immediately.

(]

Since the irreducible representations of S; over C can be realized over Q and
hence over any field of characteristic 0,Jlemmas 4,5 and 6 thus hold for KSy
where K is any field of characteristic 0. This proves the first part of Lemma
3 specifying the vector space structure of B(G(r,n)). We have so far also
identified the right Sy module structure of B(G(r,n)). To describe the ring
structure completely, we need to be able to compute cup products explicitly
under this identification.

We now show how one computes the cup product of two elements
X, € Homg(AFQ, Q%) ¢ H¥(G(r,n),2%%) and ¥; € Homg(A'Q,Q%)) C
H (G(r,n),0%"). Let Xj, = (m ®id) 0 i, € Endg(Q*®*) @ Endg(S®*) and
Y=, ®id) o € EndK(Q*®l) ® Endg (S®!) where i and i; are the standard
inclusions A*Q — Q®% and AlQ — Q%! respectively. Endg(Q®*) is identified
with Endg(Q*®*) ® Endg(S®*) as usual. The following Lemma explicitly
computes X UY].

LEMMA 7.
[("}/k ® ld) o Zk] @] [(51 ® 1d) o il] = [(("}/k ® 51) ® ld) o ik+l]-

The element (v ® 6;) € K(Sk x Si) C K(Sk+1) where Sk x S; is embedded in
Sk+1 in the natural way.

Before proving this Lemma, we note that part & of Lemma 3 follows immedi-
ately from the above lemma.
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Proof. Let W be any K-vector space Sym* Q acts trivially. In other words,
yw = 0 for any w € W and any y in the ideal of Sym*(Q2) generated by €.
Let ¢ € End(W). Let ¢ : W ® Sym*(Q) — W denote the map ¢ ® 1 where
n : Sym*Q — K canonical map from Sym* Q to its quotient by the ideal
generated by €.

Let o : Q%7 ® Sym* () — Q% @ Sym™* () denote the map
w1®~'®wj®YHw1®~~®wj,1®ij
for wy,...,w; € Qand Y € Sym*(Q).
Let d: NVQ ® Sym*(2) — AV71Q @ Sym* () denote the Koszul differential.
Note that the following diagram commutes.
0% ® Sym* () —2— Q®i~1 @ Sym*(Q)
15 ®idsym* () l lij,l ®idsym* ()

NQ® Sym*(Q) —L— A0 ® Sym*(Q)

We have the following commutative diagrams.

0 —— Ok — Z — ...

3 3 w

L —— Q%P Sym* ) — 5 Q%1 @ Sym O — ...

L — I K 0
| | Jia
. —— Sym* Q) K 0
0 —— 08! —_ W, —_—

L —— 0¥ Sym O —— Q1@ Sym* Q) —— ...

. — W K 0
| | Jia
. — Sym* Q K 0

The top rows of the two commutative diagrams are exact sequences representing
X and Y] respectively. To compute the cup product X UY; we only need to
find vertical arrows making all squares in the following diagram commute.
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0 —— Qek+l — 71 @ Q% —_— ...

I I I

L QO g Sym* Q) L, Q@R @ Qym* Q) ——— .

L Zk®Q®l R Wi L

I I Je I
. — Q% ® Sym* Q — Q91 ®Sym* Q) —— ...

. —— W K 0
| | Ji
. —— Sym* K 0

Note that the diagrams below commute.

0 —— Qek+l e Z; @ Q! —_— ...

’Yk@&T 91®51T T

S Q®FH g Sym* Q L, Q@R @ Sym* Q) ——— ..
L — 7, @ Q®!

| I
. — Q%' ® Sym* Q

Zk R Q@l SN Q@l

_®51T Tél

O®! Q Sym* O — Q%!

These diagrams prove the desired lemma.

3.2 AN EXAMPLE.

Lemma 3 tells us that if X = G(co,00) = lim G(r,00) then R(X) = ©,KSj
with o.a = sgn(o)o~tao for all ¢ € Sg,a € KSg. Thus, by Lemma 3 and
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Proposition 1, if « € Sk, and 5 € Sj, then a ® 5 = ZUeShk.l o(ax B)ot. In
other words, R(X) is the commutative algebra generated by symbols 2 for all
v € Sk, for all kK modulo the relations z x5 = ZaeShw To(axp)o—1- This can
be seen to be larger than the usual cohomology ring of this space.

4 THE BIG CHERN CLASSES t; AND A RING HOMOMORPHISM FROM K (X)®
Q 1O R(X)

Let V' be a locally free coherent sheaf on a scheme X /S with X smooth over S.
An algebraic connection on V is defined as an Og linear sheaf homomorphism
D:V = Qx/s Qp, V satistying the Leibniz rule, i.e,

D(fv)=df@v+ fDvV f eT'(U,0x), vel'(UV),

for every U open in X. Note that a connection on V by itself is not Ox linear.
However, if Dy and Dy are two connections on V|y with U C X open, then
D1 — Dy € F([]7 End(V) & Qx/s)

For each open U C X , let Cy(U) denote the set of connections on V|y. This
gives us a sheaf of sets on X on which End(V) ®o, Qx,5 acts simply transi-
tively. Consider a covering of X by open affines U; such that V is trivial on
Ui, and pick an element D; € Cy(U;) V i (D; exists as d" : O% — Q% is a con-
nection and thus gives a connection on V|y, = O%, where n is the rank of V).
The D; together give rise to a well defined element 6y € H'(X,End(V) ® Q).

LEMMA 8. Oyew = Ay + Bw, where Ay and By are the elements in
HY(X,End(V) @ End(W) @ Q) induced from 6y and Oy respectively by the
maps End(V) — End(V) ® End(W) (m — m ® idw) and End(W) —
End(V) @ End(W), (m’ — idy @m') respectively.

COROLLARY 4. Oy gy is induced from Oy by the map End(V) — End(V) ®
End(V), (m — m®idy +idy @m).

Proof. Since V and W are locally free, we can cover X by open sets U; so that
V and W are free over U; for each i. Let D; € Cy (U;), and E; € Cw (U;) for
each i. The desired result follows from the fact that idy ®F; + D; ® idy €

4.1 THE BIG CHERN CLASSES tj

Given any two locally free coherent sheaves F and G on X, one has a cup
product U : H'(X, F) ® B/ (X,G) — H"/ (X, F ® G). Hence, we can consider
the cup product of 6y with itself k£ times -

Oy U---Uby =: 0 € H*(X, End(V)®* Q) Q%F).
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The composition map ¢ : End(V)®* — End(V) induces a map

¢, @ HY(X,End(V)®* @ Q%) — HF(X End(V) @ Q). Let t,(V) =
@*9(3. The trace map tr : End(V) — Ox is Ox -linear and induces
tr, : H*(X,End(V) ® Q®*) — H*(X,Q®F). By definition, t5(V) 1= tr.ti(V).
The classes tj are referred to in Kapranov [6] as the big Chern classes. The
projection Q®* — A¥Q when applied to tx (V) gives us k! chy (V) where chy (V)
is the degree k part of the Chern character of V. The appropriate reference for
the construction of the Atiyah class and the construction of the components
of the Chern character as done here is Atiyah [12].

4.2 BASIC PROPERTIES OF THE BIG CHERN CLASSES

Firstly, t; is a characteristic class. In other words,

LEMMA 9. If 0 — V! — V — V" — 0 is an ezact sequence of locally free
coherent sheaves on X, then ty (V) =t (V') + t(V").

Proof. Let V.V’ and V" be as in the statement of this lemma. We first prove
this lemma for the case when k = 1. Consider a cover of X by affine open
sets U; such that V and V' are trivial over the U;. On each U;, choose a
connection D;, so that the restriction D;|V’ of D; to V' is a connection on V”.
In other words, D;(T'(U;, V")) € T'(U;,2 ® V'). On the other hand for each
U C X open, one can consider the K-vector space Cy,y(U) of connections on
V|U that give rise to a connection on V/|U. Note that the difference between
any two elements of Cy v/ (U) is an element of I'(U, P ® ), which acts simply
transitively on Cy v/ (U). Here, P is the subsheaf of sections of End(V') that
preserve V.

Let Cy (U;) denote the space of connections on V|U;. Thinking of the II; D; as
an element of IL;Cy(U;) we see that the Cech 1-cocycle IIi«;(D; — Dj)
of ILi;I'(U; N U;,End(V) ® Q) yields the Atiyah class 6y of V in
H'(X,End(V) @ Q). On the other hand, when the D; are thought of
as elements of Cyy/(U;), they similarly give rise to an element 6y - of
HY(X,P® Q). Ifi : P — End(V) is the natural inclusion, then clearly,
(i ® id)+byv,y» = Oy. We shall denote (i ® id) by i henceforth. Note that
tr o4 = tr. Hence, tr.0y,yv: = tr.0y = t1(V). On the other hand, restriction
to V' gives us a map p; : P — End(V’). Then p1.0y,y+ is the cohomology
class obtained by looking at D;|V’ as elements of Cy/(Ui) which is 6Oy.
We also have a projection po : P — End(V"”). Note that since the D; are
connections on V that restrict to connections on V', they induce connections
on V" (all restricted to U;) which we will again denote by D;. Note that
p2+0y,y is the cohomology class obtained by thinking of D; as elements of
Cy(U;), i.e, Oyr. Now, tr|p = trop;+trops. This proves the lemma for k = 1.
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Let 9"3,‘,, =0y U---Ubyy € Hk(X, Pk R Q%F). Let ¢ : P®* — P denote

the composition map. Let ty(V, V') := 0,05V, V') € H*(X,P ® Q®F). The
following observations prove the lemma in general.

—_~

1. ist,(V, V') = t,(V). This follows from the commutativity of the following
diagram.

P —'— End(V)
2. putkﬁ—/\,_I//’) = tx(V’) and pg*tkﬁ/\:‘//’) = t;(—\ﬁ) This is because the two
diagrams below commute.

Rk p2®* N\ Rk
pok 22 gLy

I d
P —2— End(V")
From this and the additivity of trace, we see that t,(V) = tx (V') + tx(V").

o
LEMMA 10. If f : Y — X is a morphism of varieties and V' is a vector bundle
on X, then tp(f*V) = f*tp(V).
LEMMA 11. If V. = V' ® V" as Ox-modules and p; and ps are the natural
projections End(V) — End(V’) and End(V) — End(V") respectively, then

p1*tk(V) = k(V’) and pg*tk(V) = tk(V”).

Lemmas 10 and 11 are fairly straightforward to verify and we shall skip their
verification. Another important property that we prove here is that @ty :
K(X)®Q — R(X) is a ring homomorphism.

LEMMA 12. If V and W are two locally free coherent sheaves on X, then,

(VOW)= > t(V)Otn(W)
I+m=k
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where ® is the product H'(X, Q%) @ H™ (X, Q®™) — H*(X, Q®%) appearing in
Proposition 1. In other words, ©ti : K(X)® Q — R(X) is a ring homomor-
phism.

Proof. We know that 0y gw = 0y ® idy + idy ®0y,. Therefore,
Ovew" = (Av + Bw)U---U (Ay + Bw)

where Ay = 0y ® idw and By = idy ®0y,. Thus,

Ovew" = (Av + Bw)" = > > sen(o)o L (Av' UBy™).
I+m=Fk oc€Shy m

Here, a given permutation p € Sy, acts on End(V @ W)®k @ Q®F by

'Ul®"'®Uk®w1®"'®wk'_>vy(1)®"'®Uu(k)®wu(1)®"'®wu(k)
and therefore induces a map from H*(X, End(V @ W)®* @ Q®F) to itself.
To verify that

(Av +Bw)" = > > sgn(o)ou(Av' UBw™),

I+m=Fk oc€Shy

note that in (Ay + By )", terms having [ Ay-’s cupped with m By ’s are in one-

one correspondence with sequences by < --+ < by, b; € {1,2,3,...,1 +m} Vi
(the b;’s being the positions of the By/’s). Such sequences are in 1 — 1 cor-
respondence with (I,m) shuffles. The sequence B := by, ..,b,, corresponds

sgn(op)op ;1Avl U By™ is exactly the term in (Ay + By )* where the By’s
are in positions by,...,b,,. The lemma is now proven by recognizing that
try o .o (Ay UBw™) = 07 t)(V) Uty (W) if o is any (I, m)-shuffle. This is
because the inverse of an (I, m)-shuffle does not change the order of composition
among the End(V)-terms and among the End(WW) terms respectively. O

to the (I, m)-shuffle og such that og(l + i) = b;,1 < i < m. Note that

Not only that, the ring homomorphism @ty is also a homomorphism of
special A-rings. In other words, the big Chern classes commute with Adams
operations. Indeed, the following lemma proves this fact. Note that in any
special A-ring A, the eigenspace corresponding to the eigenvalue p! of the
Adams operation 1P coincides with that corresponding to the eigenvalue 2! of
the operation 12 for any p > 1. Therefore, to verify that @ t; commutes with
the Adams operations, it suffices to verify that @ t, commutes with 2. This
is done in the lemma below.

LEMMA 13. t,(¢2V) = % t5(V).
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Proof. By the corollary to Lemma 8 (Corollary 4), 8y gy is induced from 6y
by the map § : End(V) — End(V) given by m — m ® idy +idy @m i.e,
Ovgv = B«0v. Therefore,

Ovev® = B0y U - UBOy = (B2 @ B).0v".

By abuse of notation, we shall refer to f ® --- ® 3 as 8. Then, 9?/@\/ = 6*9{3,
where 3 : End(V)®* — End(V)®* is given by

k . .
m1®"'®mk'—>® (mi®1dv+1dv®mi).
=1

Further, a direct computation shows that if W is a vector space over a field F,
with charF # 2, W@ W = Sym? W & A2W. Let p; and ps denote the resulting
projections from End(W) ® End(W) = End(W ® W) onto End(Sym? W) and
End(A2W) respectively. If M, N € End(W), then

tr(p1(M ® N)) —tr(p2(M ® N)) = tr(M o N).

By this fact, and Lemma 11, we see that

tr(1?V) = t1(Sym? V) — tx(A%V) = truprate(V @ V) — troposte(V @ V)

—_~—

=tr.aty (Ve V)
where a : End(V) ® End(V) — End(V) is the composition map.

Let ¢ : End(V ® V)®¥ — End(V ® V) be the composition map. Observe that
aogoB:End(V)® — End(V) is the map given by

M@ @M Y Y M) 00 Mo
p+q=k 0€Shy 4

(o denoting the usual matrix multiplication on the right hand side of the last
equation). Consider the map v : End(V)®* — End(V)®* given by

MG @M Y Y M) @ @ M.
p+q=k c€Sh, 4

Then, we see that

174 0 Py 0 YOy =11, 0t (V @ V) = tg (2V).

Also observe that ¥? tx (V) = tr*ga*wf&/k since the following diagram com-
mutes.

. 2
End(V)®F @ Q8F 8V phq(v)ek g ek
t'ro(w@id)l ltro(ap@id)
Ok v Ok
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Here, 12 on H*(X,End(V)®* @ Q®*) is by definition induced on co-homology
by the endomorphism id ®? of End(V)®* @ Q®k. Thus, the following lemma
remains to be proven.

O
LEMMA 14. v,0yF = 26,*
Proof. Note that the cup-product is anti-commutative. Therefore, if o € S ,
then the map given by
oM -Qmp ® V1®- - QU = SgN(0) Mg (1) @+ - - @M (k) ® V(1)@ Vg (k)

preserves 0y ".
If o € Sy let 0 ® id denote the endomorphism of End(V)®* @ Q®* such that

m1®...®mk_®fvl®...®vk }_)mo(l)®"'®ma(k)®vl®"'®vk'
Similarly, let id ®c denote the endomorphism of End(V)®* @ Q®* such that

Mm@ @m QUi @ @ =My @ @My Q) Uo(1) @ - @ V(-

It now suffices to note that

v = Z Z oc®id = Z Z sgn(o)(id®o 1) o (0)

p+q=k o€Shy 4 p+qg=k o€Sh, 4

— %0 =Y > sen(o)(ido ). 0 (0).67
p+q=k c€Shy 4

= Z Z sgn(o)(id @0 1), 0%

p+q=k 0€Shy 4

=20y

O

Recalling that a;(V) = ch™*(ch;(V)), where ch is the Chern character map,
we now have the following corollary of Lemma 13 below.

COROLLARY 5. tg(aq(V)) = el tr (V) where ex ) is the idempotent described

i Lemma 1.

Proof. Note that ¢? = eW2!. The fact that the e,!) are mutually orthog-
onal idempotents adding upto id tells us that 1% o e, = 2l (. Therefore,
P2 ep(V) = Y2l (V) = th(0?V) = th(D2a(V)) = X2 th(au (V).
Since eigenvectors corresponding to different eigenvalues of a linear operator
on a finite dimensional vector space over a field of characteristic 0 are linearly
independent, the desired result follows. o
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REMARK. More conceptually, if TV is the graded tensor algebra over a vector
space V, (with usual tensor product giving the multiplication, and coproduct
dictated by the fact that V' C TV are primitive elements), then T*V is the
graded Hopf algebra dual to TV. The map 92 = po A : T*V — T*V has
as its dual the map po A : TV — TV. The 2'-eigenspace of this map is
seen to be ” Sym!'(L(V))”. Thus, the 2-eigenspace of 12 : T*V — T*V is
dual to the space ” Sym'(L(V))". Thus, t(a;(V)) lands in k-cohomology with
coefficients in a space dual to ” Sym'(L(Q))”. Moreover, the last corollary
explicitly describes the projector that gives t (o (V') from t (V) as the action
on tx(V) of a certain idempotent in K(Sg). Thus, one can recover ty(a;(V))
from t; (V') combinatorially.

5 CALCULATING tx(Q), Q THE UNIVERSAL QUOTIENT BUNDLE OF A GRASS-
MANNIAN G(r,n)

We remark that Qg ) is often denoted by just @ in this and subsequent
sections. The Grassmannian whose universal quotient bundle we are referring
to is usually clear by the context.

—_~—

5.1 ALTERNATIVE CONSTRUCTION FOR t;(V) AND t5(V)

Let V be a locally free coherent sheaf on a (separated) scheme X/S. It is a fact
that 0y is the element in Ext*(V,V ® Q) = H'(X,End(V) ® Q) corresponding
to the exact sequence 0 — V@ Q — J1(V) — V — 0 where J; (V) is the first
jet bundle of V. Suppose that o € H (X, F) = Ext'(Ox,F) is given by an
exact sequence

0O—-F—-Y1—...2Y, —>0x—0

and that 8 € H/(X,G) = Ext/(Ox, G) is given by an exact sequence
0—-G—-2—...—Z; — 0Ox —0.

Let a3 be the element in H" (X, F®G) = Ext"™ (Ox, F®G) defined by the
exact sequence which is the tensor product of the exact sequences representing
«a and  respectively. We note that the product

+:H'(X,F) @ H(X,G) — H (X, F© G)

a®@pPr—axf

has the linearity and anticommutativity properties required of the cup product.
Since all the cohomology classes we are dealing with are represented by exact
sequences of Ox-modules, we can define the cup product to be the product x.

With this definition of the cup product, it will follow that t(V) € Ext®(V,V ®
Q%) is given by (fy ®ide" ') o--- 0 fy where o denotes the Yoneda product
and Oy is treated as an element in Ext'(V,V ® Q).
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5.2 COMPUTATION OF t1(Q)

Recall that € is identified with Q* ® S. Let A : S —  ® 2 be the map whose
dual A* : Q* ® Q ® §* — S* is ev ® idg«, where ev : @* ® Q — K is the
evaluation map. Also, ev ® idg is a map from Q ® Q to S.

LEMMA 15. The element of Endg(Q ® Q) representing g is A o (ev @ idg).

Proof. We note that the following diagram commutes.

0 —— S L Ve <. Q 0
Al l lid
0 —— QeQ*®S —— J1(Q) —— Q 0

The bottom row of this diagram is the exact sequence giving 0y . By the uni-
versal property of push-forwards, we see that the following diagram commutes
(F denotes the pushforward V IIs @* ® Q ® 5).

0 —— S S N <. Q 0
Al l lid

0 — Q*®Q®S —— F Q 0
[1a | al

0 — Q*®Q®S —— J1(Q) Q 0

Therefore, 6g can be represented by the second row of the above diagram in
Extl(Q,Q ® Q). Observe, however, that every arrow in this exact sequence
is a P-module homomorphism (of course, @* ® Q@ ® S, V and therefore, F
are all P-modules). Thus g can be represented by an exact sequence in the

category of P-representations. It follows that for all £ > 1, t4(Q) and tx(Q)
can be represented by exact sequences in the category of P-representations.
Therefore, to find 0g, we need to find arrows o and 3 so that all squares in the
following diagram commute.

0 — 'S —— F Q 0
AT T }d

0 —— S L N 1% ) 0
| 1 I

L —— QRO2®Sym" Q) —— Q ® Sym* Q Q 0

Observe that Q@ = Homg(Q,S) C End(V) (here, we have chosen a K-vector
space splitting 0 — S — V = @Q — 0. Choosing such a splitting describes
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Q as the subspace of elements in End(V') consisting of matrices whose “upper
right block” is the only nonzero block. Note that the product of two such
matrices is 0. Thus, any element of Sym* ) can be thought of as an element
of Hom(®,V) C End(V). In this scheme of things, we choose § to be the
natural evaluation map, and « the restriction of 3 to Q ® 2 ® Sym™ Q. Note
that 8 and a are Sym™* 2-module homomorphisms by construction. Note that
a:Q®Q®Sym*Q is the Sym* Q-module homomorphism induced by & :=
ev € Homg (Q ® ©, S), where ev is the natural evaluation map. It follows that
as an element in Homg(Q ® ,Q ® ), 6 is given by A o (ev ® idg).

O

Let {e;},1 < i <r be a basis for Q. Let {f;} be the basis of @* dual to {e;}.
Let {u;},1 <i <m—r be a basis for S, and {v;} the basis for S* dual to {u;,}.
The following is a restatement of Lemma 15.

LEMMA 16. With the notation just fized, as an element of Endg(Q ® Q) =
End(Q) ® End(2) = Q* 9 QQQ® S QQ* ® S,

GQ = Z fm1 K ey ®em1 & Ury ®fll & Upy

l1,m1,r1
(I1, m1 running from 1 to r, 11 running from 1 ton —r).
Proof. ev(e; ® fj @ ug) = ;ju and A(ug) = >.,_; e ® fi ® ug. Therefore,
Oo(e; @ fj @ug) =6i5 > 1 € @ fi @ ug. On the other hand,

fm, ®eyy ®em1 & Ury ®fl1 ®ur1(ei®fj®uk) = 6im16jm15leell ® fi, @ Ur,.

This is nonzero iff i = j = my and k = r1. This proves the desired result. O

—_~—

5.3 COMPUTING t(Q) FOR k > 1

This is done inductively. The method by which Yoneda products are computed
is very similar to the cup product computation in the previous section. We
therefore omit the details and state the key results.

If i : AFQ — Q®F is the natural inclusion, t;(Q) is given by 7% o i where
Y € Endg (Q @ Q%F) is as described in the following lemma.

LEMMA 17. Identifying Endg (Q@Q®*) with Endx (Q) @ *“* Q Q% , we have

- ((fm1®el1)o"'o(fmk®elk) ®(em1®vrl)®"'®(emk®v7'k))
’Yk o ! Zl ®(fll®u’l“1)®'“®(flk®u’l“k) ’
1y--5bk
i

Here, the l;,1 < i < k and the m;,1 < i < k run from 1 to r , while the
ri, 1 <i<krun from1 ton—r.
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Having computed tx(Q) we compute t;(Q). For this, we note that t5(Q) =

(tr®id).tx(Q) where t;(Q) € End(Q)®Homg (AFQ, Q®F) and tr : End(Q) — K
is the trace map. Calculating t;(Q) is then easy. In the formula in the previous
lemma, we see that

(fm1 ® el1) O---0 (fmk ® elk)(ei) = 5imk6lkmk—1 s 6l2m1el1'

From this, we see that (fm, ® e;;) o -+ 0o (fm, ® e1,,) has trace 1 iff my, =
li,lg. = mg_1,...,lo = mq and has trace 0 otherwise. From this it follows
that if i : AFQ — Q®* is the natural inclusion, t(Q) is given by uy o where
pr. € Homg (%%, Q%k) is as described in the following lemma.

LEMMA 18. Identifying Endg (Q®F) with *®* Q Q®F we have

ke =
D (@)@ @ (e, ®vn_y) @ (e, @ vr) QUi @ ury) @+ @ (fiy, @ ury,)

folk

= Z(eml ®U7"1)® ®(emk ®Urk)®(fmk ®ur1) (fm1 ®ur2)® ®(fmk 1®urk)
M ,.nny my
TLyenns Tk

As a consequence, the basis element f;, ® -+ ® fi, Quj, ® -+ @ u;, of Qek
is mapped by tx(Q) to fi, @ fi, ® - @ fi,_, Quj, ® --- @ uj,. Therefore,
if we identify Endg(Q®F) with Q*®* @ S®* t,(Q) can be thought of as
(kk—1k—2.21)®idger where (k k—1k—2..21) is the k-cycle acting
on Q*®k by the usual action of Sy on V®* for a vector space V. We denote
this k-cycle by 7.

Let P, , be as in Lemma 3. By Lemma 18 and the above paragraph,

LEMMA 18’°.

tk(Q) = Pr,n(Tk)'

6 PROOFS OF THEOREMS 2 AND 3

We recall that Sk ; denotes the set Sk ; = {U € Skleard{ilo(i) > o(i+ 1)} =
j — 1}, i.e, the set of permutations of {1,...,k} with j — 1 descents. By part
2 of Lemma 3, if Y a, sgn(o)o € K(Sk), we have

Z assgn(o)o. (tx(Q)) = Prp Z ago o).

The following lemma now follows immediately from Corollary 5.

LEMMA 19.

tr (ay = 7"2 Z ak oo )

j=1o€Sk;
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A REMARK AND SOME NOTATION. Z?zl desw sgn(a)a;’ja*1 is the operator
e](cl) for the graded commutative Hopf-algebra T*V. In fact, Z?Zl D oesi, aiio
is the operator e,(f) for the co-commutative ordinary Hopf-algebra TV. We

henceforth denote this idempotent by ég). Let * denote the conjugation action

of KSy, on itself. If a € Sy and b € KSy, then a b= aba™! and (3 cy9) x h =
> egghg™t, h € KSk. Then, Lemma 19 can be concisely restated as

tr(r(Q)) = Prp(8V 7).

Note that * is a left action.

6.1 PROOFS OF COROLLARY 2 AND COROLLARY 3

Recall the definitions of the projections P, and P, , from Section 3. Assume
for now that n is large enough so that P. = P, , for all values of k£ that we
shall use. Let I(k,r,1) denote the annihilator in KSy of t;(c(Q)). By Lemma
3 and Lemma 19 this is precisely the subspace

Ik, 1) = {> " csen(g)glPr (Y cg™t) % &) 5 7.) = 0}

If (o) denotes the subspace of KSj, spanned by conjugates of o by elements of
Sk where a € KSj, then

dim(I(k, 1)) = dim((@" 7)) — dim((P, (6" % 71,))).

Note that since P._; factors through P,., I(k,r,1) C I(k,r — 1,1). It follows
that this inclusion is strict if

dim((P, (& % 7)) > dim((P,_1 (8" 7).
We will prove the following lemma.

LEMMA 20. For a fixed l, there exists a constant C' and infinitely many r such
that there exists a k < Cr? so that

dim((P. (e % 7)) > dim((P,_1 (8 5 74))).

Note that in such a situation, if n > Cr? + r then P. = rn @S Pro-
jection operators on KS;. We can then pick an element § in KSj such

that [, tk(al(QG(r—l,oo))) = 0 and [, tk(al(QG(r,n))) # 0. If Corollary 2
were false there would be a morphism f : G(r,n) — G(r — 1,00) so that

I (ﬁ* tk(al(Qg(T,Lm)))) = Bitr((Qg(r,n)))- This gives us a contradiction.
Therefore, Corollary 2 follows immediately from Lemma 20.

We will prove Lemma 20 by a simple counting argument. We however, need
the following lemma.
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LEMMA 21.

~(1 ~(l—1
62)*7']@:62 1)*Tk

where Sk—1 C Sk is embedded as the subgroup fixing k.

Proof. Let a be a permutation of {1,2,3,...,k— 1} with j — 1 descents. Then,
among the permutations o, a7y, . .., a7, we see that j of the permutations
have j — 1 descents, while the remaining k — j have j descents. For, a7’ has j
descents or j —1 descents depending on whether a(k —i) < a(k —i+1) or not,
for 2 <¢ <k —1. For j — 1 such i, a(k —i) > a(k — ¢ + 1) (corresponding to
the descents of «). These j — 1 elements together with « have j — 1 descents.
The remaining k — j permutations have j descents. As 74'7,7, "% = 7, the
coefficient of ampa™! in é,(f) ai’jﬂ

* Tj, 18 given by jai’j +(k—13) , since among

the elements a, aty, ...,ar:* !, those with j — 1 descents contribute a;’j and

those with j descents contribute a;’j 1 t6 the coefficient of ama” ! in ég) * T

. . 1 NN NS Ay W
The desired lemma follows from observing that jay” + (k — j)ay’™ = ja,_77,

since j(Xfngrk) + (k _j)(ij;lfk) _ X(Xflzjllfk),
O

Proof. (Proof of Lemma 20). Suppose we have shown that there exists a con-
stant C' such that for a fixed [ and r,

dim((& + 7)) > dim((P, (¢}, * 7))
if k > Cr?. Then,
there exists s > r so that dim((Ps('é,(j) * 7)) < dim((PsH(é,(j) *T))).
Therefore, for any [ and r, there exists s > r so that
dim((Py(f 7)) < dim((Poa (2 7).

With [, and s as above, pick k = Cr2. Then k < C(s+1)* as well. This
proves the lemma provided we actually show that there exists a constant C
such that for a fixed [ and r,

dim((8\ 7)) > dim((P (6" % 7))

whenever k > Cr2. This is what we will do now.

1. Observe that the stabilizer of 74 under conjugation is the cyclic subgroup
generated by 7. Thus, Sx_1 acts freely on the conjugates of 7, and %71, =0
for some 3 € KS,_; iff 8 = 0. It follows from this remark and the Lemma
21 that dim((ég) * 7)) is the dimension of the representation KSk,l.éff__ll) of
KSk—1. By exercise 4.5 in Loday[2] that this space has dimension equal to the
coefficient of ¢~ in q(g+1)...(¢ +k —2).

DOCUMENTA MATHEMATICA 14 (2009) 67-113



98 Ajay C. RAMADOSS

2. On the other hand, look at dim(®y <, End(Vy) for a fixed r. Note that if
A k=AM +4---4 A\ is a partition of k, and if II denotes the product of the

hook lengths of the Young diagram corresponding to A, then dim(V}) = % <
. 2
/\1!)\21?.!../\,./!' Thus, dim(End(Vy)) < (Al!/\j.!..)\,,/!) - Hence,

| k! 2
dim(@pe, Brd(B) < Y (i)
At A=k

Xi>0

k' 2 2k
< _— = .
<2 k>\1!)\2!...>\r!) "

Aot Ar=
>0

Therefore, for a fixed r,
dim((P, (& % 7)) < dim(@)5j<, End(V3)) < r?.

On the other hand,

dim((ég) % 1p)) = coefficient of ¢~ in q(g+1)... (¢ +k—2) >

We need to find k large enough so that ((];:22))!! > r2k. To see this we need to

find k large enough so that

In((k —2)!) —In((I — 2)!) > 2k1nr.

Note that
In((k —2)!) > (k—2)In(k — 2) — (k — 3).

We therefore, only need to find &k large enough so that
(k—2)In(k —2) >k —3+1In((l —2)) + (k — 2)In(r?) + 21In(r?).
Put D = In(r*(l — 2)!). We then need k so that
(k—2)In(k —2) >k -3+ D+ (k—2)In(r?).

Certainly, there exists N € N so that N(k — 2) > (k — 3) + D To see this,
note that we can pick N > D 4+ 1 if £ > 3 for instance. In fact, picking
N > 5+ 1In((I —2)!) works as well. The latter choice of N is independent of r.
If K —2 > eNr2, then we see that

(k—2)In(k —2) >k -3+ D+ (k —2)In(r?).

N+17,,2

Certainly, k > e would do for our purposes.
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Thus, if [ and r are fixed, we have shown that there is a constant C' so that
when k > Cr?, then

dim (6"« 71,)) > dim((P, (6 % 7.))).
If I = 2, in particular, we need
(k—2)In(k —2) >k — 3+ (k — 2)In(r®) + 2In(r?)
We see that this happens if & — 2 > 7r2.

O

This completes the proof of Corollary 2. In addition, we have shown in Lemma
20 and hence in Corollary 2 that if | =2, C' = 7 works.

To complete the proof of Corollary 3, we make some observations.

OBSERVATION 1. By Lemma 21,

T = Zé,(jjll) * T = Zég) * Th

1>2 1>2

= t(Q) = Ztk(al(Q)) = tr(a1(Q)) =0 Vk > 2.

1>2

OBSERVATION 2. Since $ty : K(X)®@Q — @ H* (X, Q%) is a ring homomor-
phism, is follows that ,
te(a1(@)7) =0

if k# 2.
If f:G(s+1,N)— G(s,M) is a morphism, then one sees that

F(a2(Q") = A1 (Q)* + Baz(Q)

where @ and Q' are the universal quotient bundles of G(s+ 1, N) and G(s, M)
respectively. By Observation 2,

te (f* (a2(Qa(s,an))) = Btr(a2(Qa(s+1,n)))-

If B # 0, one sees that I(k,s,2) C I(k,s+ 1,2) (a contradiction). This finally
proves Corollary 3.

To prove Theorem 2, we need the following lemma.

LEMMA 22. X a smooth (projective) scheme. Suppose that [V] € K(X) is
gwen by [V] = 3" a;[Vi], where V;’s are of rank < r. Then, I(k,r,1) annihilates
tr(ai([V])).
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Proof. There exists N € N so that for each m > N there exist surjections
G; — Vi(m) where G; is a free Ox module for each i. Let K; denote
the rank of G;. This is equivalent to saying that for each i there exists a
morphism f; : X — G(rank(V;), K;) so that V;(m) = f;*Q;, Q; being the
universal quotient bundle of G(rank(V;), K;). Thus for each 4, I(k,r, 1) kills
tx (a;(V; ® O(m))) for each m > N.

To prove this lemma, it suffices to show that I(k,r,!) kills tx(c;(V;)) for each
i. For this, we note that ®t,(O(1)) = e(®1(®1)) with the understanding
that t1(ay(01))”™ = 0 where D is the dimension of the ambient projective
space. Thus, @ t;(O(m)) = ™41 (21(01)) " Since the Vandermonde determinant
A(N+1,.,N+ D+ 1) # 0, we can find a linear combination W of O(N +
1),...,O(N + D + 1) so that t,(W) = 0 for every k& > 1 and to(W) = 1.
Clearly, ty(ay(V; @ W)) = tg(au(V;)) is killed by I(k,r,1).

O

PROOF OF THEOREM 2. Lemma 20 implies that given any fixed [ > 2, there
exists a constant C' such that there exist infinitely many r such that given any
n>Cr? +r,

I(k,r, 1) C I(k,r —1,1).
Lemma 22 implies that I(k,r — 1,1) annihilates ty(z) for any element = of

FT,lCHl(QG(T,n)) ® Q. Theorem 2 now follows immediately from the fact that
I(k,r,1) is the annihilator of t(cu(Qg(rn))) by definition.

6.2 OUTLINE OF PROOF OF THEOREM 3

Originally, the hope was for a stronger result saying that for fixed [ and r, there
exists a k satisfying I(k,r,1) € I(k,r — 1,1). In fact, there was the hope of
being able to show that I(2r,r,1) C I(2r,r —1,1). This would have shown that
there is no morphism f : G(r,2r) — G(r — 1, M) so that f*((Q")) = «;(Q).
We have so far been unable to do this in general. However, we have found (by
means of a computer program) that I(6,3,2) C I(6,2,2) thus proving that if
f:G(3,6) — G(2, M) is a morphism, then f*(a2(Q’)) = Coy(Q)*. This we
do by showing that @y —3 End(V)) contains an irreducible representation V,
of Sg not contained in @<z End(Vy), and that if 7, denotes the projection
from K9S}, to V,,, then 7, * éé2) x 7g 7 0. This is achieved using a Mathematica
program.

7 PROOF OF THEOREM 1

7.1 A CERTAIN DECOMPOSITION OF KS}

Observe that KS, = W), where W), is the K-span of elements of Sy in the
conjugacy class corresponding to the partition \. We shall break each of the
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spaces W) further into a direct sum of K-vector spaces in a specific manner.
The significance of the new decomposition shall become clear as we proceed.
First, let us decompose the conjugacy class C(y) which is the conjugacy class
of the cycle 7. Note that 7, = Zl>2 ég) * 73, and that é,(f)é,(f/) = 5”/61(:). Define
operators II; on Cy, by 0, (B~ 1Y) = B (é;ﬂl) x1y;) for B € Sy, and extend this
by linearity to C(zy. Note that ) -, IIj(B*7x) = B+ 7. First, we need to check
that we actually have a well defined operator here. It suffices to show that if
B,y € Sk with 8 7, = v * 7 then II;(8 * 71,) = II;(y * 7% ). In other words, we
need to show that 3 * (é,(f) *Tp) = Y % (éff) * 7)) which is equivalent to showing
that (B717) * (éff) *Tp) = éff) * Ty But B = y*7y iff 71y = 7 for some s.
Therefore, the fact that II; is well defined follows from the following lemma.
LEMMA 23.

Th * (ég) * T)) = é;ﬁl) * T,
for any integer s.

Proof. This really follows from the fact that for any smooth scheme X, and for
any vector bundle V on X,

Sgn(Tk)Tk* tk(V) = tk(V).
After all, sgn(Tk)Tk*ka =0y (by the properties of the cup product). Hence,
I s sgn(Tk)Tk*ka = trop Oy

where ¢ : End(V)®* — End(V) is k-fold composition. The right hand side
of this equation is t; (V') by definition. The left hand side is sgn(7x )7k, tr (V)
since

tropoT, =T otrop.

This tells us that sgn(7)7;, tx(V) = tx (V). To finish the proof of the lemma,
we observe that by Lemma 19,

75 (80 x7.) = sgn(ri) 7, te((Q"))

and that l
&l = tr(a(Q)

where @' is the universal quotient bundle of the Grassmannian G(r’, 2r’) with
r’ chosen to be greater than k. O

The other detail to be verified is the fact that the operators II; are mutually
orthogonal projections. For this, we see that

IL (B * 1) = B * (é,(cl) *T)) = (5é’,(€l)) x 7, = 11 oI, (8 * %)
= (B DY w1y, = (BO1mel) % 7.

DOCUMENTA MATHEMATICA 14 (2009) 67-113



102 Ajay C. RAMADOSS
We therefore, have a direct sum decomposition W) = @lZQHl(W(k)).

We now proceed to breakup W) into a direct sum of K-vector spaces in an anal-
ogous manner. Note that C'y is the conjugacy class of 7y := 7\, Ty, ... T, Where
the partition A is given by A : kK = A1 +.. + A, the \; ’s arranged in decreasing
order and where 7y, is the cycle (A1 +- -+, A+ -+ N =1, . A+ -+ XN—1)
which is after all the cycle 75, embedded in Sy under the composition
Sy, TSy X---x8y, CSk. Call the map Sy, x---xSy, C Sk as ¢. Note that ¢
extends to a K-algebra homomorphism ¢ : K(Sy, x---xSy,) — K(Sk). Identify

K(Sy,)®- - -®@K(Sy,) with K(Sy, x---x S),) and consider (ef\l)® ®e(l ))*T)\.

By this we mean that we are looking at eg\ Vg...® e(l *) as an element of KSk

through the homomorphism ¢. We now make the following observations that
give a step by step, explicit construction of the decomposition of KSy that we
are interested in.

OBSERVATION 1. The elements ég\lll) @ ® 'é(Al:) are mutually orthogonal
idempotents in K(Sg) adding up to id. This follows from the fact that the
above statement is true in K(Sy, x --- x Sy, ).

OBSERVATION 2. As Ty =T, Q@+ Q@ Tx,,
(eg\lll)® ®e(l ))*T)\ (ef\ll)*T,\l)(@"'@(ég\l:)*T)\S)
It follows that if for some i, \; > 2 and l; = 1, then

@) @ @e)) xm =0,

OBSERVATION 3. Let

(). _ 5(l1) 5(s)
&= > ale--we
Li+-+ls=l

Then 'é(Al) is an idempotent with
(1 I ~(Is l ~(Is
D&V va)) =@V 08
ifli+---+1ls=10and
A 0 8) =0
otherwise.

Let II; be defined by II;(3 % 75) = (ﬁé&l)) x 1) for every 8 € Cy . We then have

LEMMA 24. The II; are well-defined mutually orthogonal projection operators
on Wy.
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Proof. Note that it suffices to show that if v is a permutation in the stabilizer
of 7, under conjugation, then ~ x* (é&l) K Ty) = ég\l) x Tx. Note that if v stabilizes
7x under conjugation, then v is of the form {(7}! ®---®7,°) where { permutes
blocks of equal lengths among [1,..., A1 ],[AM +1,.. ., A1 + Xo], ooy [Ar + -+ +

As—1 + 1,...,k] while preserving order within such blocks. Now we need to
show that ~y * (ég\l) *Ty) = éE\l) * 7). Observe that

(1) (L)

(T @@ )« (6 @ - ®ey” _(l1) )

JRTA = (Tl % €3 % T, )@@ (T3 %€, " % Ty)

s

— @ od)en
(the last equality by Lemma 23). So, we only need to show that

(*ég\l)*n:ég\”*ﬁ\.

But this is true since ¢ induces a permutation ¢’ of 1,2,..,s and we see that

() o o sy o slem) o o slers)
C(6), ® - ®éy )f(e/\cl(l) ®---@ey, " ). O

OBSERVATION 4. It now follows from this and the fact that the I1; are mutually
orthogonal idempotents adding upto id that

Wy = @Hl(W,\).

Also, Observation 2 tells us that II;(Wy) = 0 and that TIo(Wy) = 0 if A # (k).
Therefore, this direct sum decomposition runs over I > 2. Combining this with
the decomposition KSy = @ W, we see that

KSy = @) ®1>2 I;(Wy) = @211 (KSy).

7.2 PROOF OF COROLLARY 1

DEFINITION :Define an elementary functor of type (k,l) to be a map v (not
necessarily linear) from K(X) ® Q to Ri(X) such that

w(z) = Bty (au, () U--- Uty (ar,(z))

for some 8 € KSj, some s-tuple (Ay, .., As) of non-negative integers adding up
to k and some s-tuple (l1,...,ls) of non-negative integers adding up to .

Define a functor of type (k,1) to be a map from K(X)® Q to Rx(X) given by
a ”linear combination of elementary functors of type (k,1)”. In other words, a
functor of type (k,1) is a map v from K(X) ® Q to Ri(X) such that

v(r) = icjwj(w)
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where p € N, and wy, .., w, are elementary functors of type (k,1).

Define a vector of type (k,l) in P, ,,(KSy) to be an element of the form v(Q),
where v is a functor of type (k,1) and @ is the universal quotient bundle of the
Grassmannian G(r,n).

Note that if v is a functor of type (k,1), then
v(yPz) = plo(z)
for any © € K(X)® Q. Also note that functors of type (k,[) respect pullbacks.

We now try to understand what the decomposition of KSi given in the Section
7.1 means. Lemma 19 together with Lemma 3 part 3 tells us that

t/\l (all (QG(r,n))) U t)‘s (OL[S (QG(TJI))) = Pr,n(ég\l) * T/\).

Also, by Lemma 3 part 2

sgn(8)8; ! ta, (1, (Qcrm)) U+ - Ut (a1, (Qa(rmy) = Prn(B %) % 73).
Let [ = )", ;. Thus the space spanned by

{8 ta (a1, (Qarny) U=+~ Ut (a1, (Qarm)) 1Dl =1, ) X =k},
which is P, ,, (II;(KS)), is precisely the space of vectors of type (k,1).

If both » and n — r are larger than k, then P,., = id. What we did in
Section 7.1 shows that in this case, KSj decomposes into the direct sum of the
spaces II;(KSg). The space II;(KSy) is stable under conjugation and is the
space of vectors of type (k,1). However, if k is not too large, something very
interesting happens primarily because the projection P, , ”behaves badly”
with the projections II;. Let n > 2r + 1 and let k¥ = 2r. Then, P, = P,.
Also, t;(Qg(r,n)) = tj(Qa(ray) for every M > n and every j < k. It follows
that vi(Qa(r,n)) = Vi(Qa(r,ar) for all M > n if vy is any functor of type (2r,1).
Let @ denote Qg(r,n)- The following claim holds in this situation.

Claim: There exists a nontrivial linear dependence relation of the form
> u@) =0
1

such that vy is a functor of type (2r,1) for each l.

The above claim is proven in Section 7.3. This leads to Corollary 1 as follows.
Choose a shortest nontrivial linear dependence relation of the form

> u@) =0

l
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with v; a functor of type (2r,1). Then, suppose that there exists a map f :
G(r,n) — G(r, M) with f*([Qa(r)]) = YP[QG(rn)], We can assume without
loss of generality that M > n. Thus,

0=7r"Q_uQacwan) = D> ulf Qapan) = Y urQ) =Y p'u(Q).
. . .

l

Since p > 2, comparing this linear dependence relation with the previous one
would enable us to extract a linear dependence relation of the same form but
of shorter length than the one we began with. This yields a contradiction.

The proof of theorem 1 requires a little more work which we do in Section 7.4.

7.3 A LINEAR DEPENDENCE RELATION BETWEEN FUNCTORS OF TYPE (2r,1)

First, we observe that if V' is a vector space with V- = V1@V, and also V = W,
with p; being the projections to V; and m; being the projections to W;, then

dim p(W1) + -+ +dim p;(W,,) > dim V.
To see this, suppose that equality holds. Then,
dim p;(W;) = dim W; — dim W; N V4

= dim WiNVo+---+dim Wy, NV, =dim V5.

From this, we see that 7;(Va) = W; NV, for all i € {1,2,..,, }. In particular, if
mi(Va) # Wi N Va, then

dim p;(Wh) + -+ +dim py(Wy,) > dim V4.

Having said this, we will prove that for V.= KSy,. ( V = V; & Vo where
Vi = @\<r End(Vy) and Vo = @5, End(V)) also V' = @011 (V)

(V) # To(V) N Va.
This will prove that

> dim P(IL(V)) > dim V4.
1>2

Observation 4 of Section 7.1 tells us that Iy (V') = z(W(2,). Any element in
this space is a linear combination of conjugates of 7o,.. It follows that if such
a linear combination is nonzero in End(V)) it is also nonzero as an element of
End(V3), where X is the partition conjugate to A. Thus II(9, (V) N V2 = 0. It
therefore, suffices to prove that Iz (V2) # 0.
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LEMMA 25. To prove that II5(Va) # 0, it suffices to show that

mo((12r) 3 9) #0

geCy

where (1 2r) is the transposition interchanging 1 with 2r and p is some partition
among {(2r — 1,1),...,(r,7)}.

Proof. Consider the matrix M = (x»(Cy)) where X runs over all partitions of
2r that satisfy A > (r,r) (recall that there is a lexicographic ordering among
the partitions,enabling one to compare them), and p € {(2r —1,1),...,(r,7)}.
Note that if A is such a partition and A # (r,r) then A; > r+1. We claim that
M is of rank r. To prove this, it suffices to show that N is of rank r where
N = ((C,)), where

Y = IndgiT(triv) =xx+ Z KoXu-
u>A

However,

w)\(cu) So, :S,\]|CHQS,\|.

1
lem

Therefore, 1»(Cy,) = 0 if p > X. This lexicographic order is a total or-
der. Consider the restriction of N to the rows given by the partitions in
{(2r—1,1),...,(r,7)}. This restriction of N is then a lower triangular matrix
with nonzero diagonal entries if the rows are arranged in the correct order
(since A (Cy) # 0). It follows that N and therefore, M are matrices of rank 7.

We further claim that if we restrict M to rows corresponding to A > (r,r), we
still get a matrix of rank . To see this, we need to show that for some scalars
ay,

X(rr) (Cp) = Z axxx(Cy)

A>(r,r)

for all p € {(2r —1,1),...,(r,7)}. For this, it is enough to show that

w(r,r)(cu): Z b)\w)\(c;t)

A>(r,r)

for all p € {(2r —1,1),...,(r,r)}, for some scalars by. In fact, we claim that
there are scalars b;,0 <i < r — 1, so that

Yy (Cu) = > bithar—ip)(Cu).

0<i<r—1

Note that |C(27'—s,s) N 5(27‘—t,t)| =0ifs 7£ t and both are nonzero. Also note
that ¥(9,y(Cir,ry) # 0. Thus the vector (¢(2,)(Cy)), u € {(2r = 1,1),...,(r,7)}
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is given by (ai,..,a,), where a, # 0. The vector 1o, ) (Cp), p € {(2r —
1,1),...,(r,r)} is given by (0,..,0,ds,...,0), ds #0 for 1 < s <r — 1. Thus,

1/)(27‘) (CAL) - Z Z_:w@r—s,s)(cu) - (Oa - 0, aT)

which is a nonzero multiple of w(m)(CM). This shows that the matrix
M = x\(C,) where A > (r,7) and p € {(2r — 1,1),...,(r,7r)} is of rank r.
Since x3 = xa.sgn, and [A| > r + L iff A > (r,7), the matrix M’ = x,(C,,)
where |A\| > r+ 1 and p € {(2r — 1,1),...,(r,7)} is obtained from M by
multiplying some columns by —1 and is therefore of rank r.

Now suppose that I3 ((1 27) decm_s N g) # 0for some 1 < s < r. Since M’ is

of rank 7, we can find a linear combination of rows of M’ that gives us the vector
es 1€, D\ spp1 @XA(Cu) = 0f p# (2r —s,8) and 32 55,14 axxa(Cu) = 1if
w=(2r—s,s). So,

I ((1 2r)( Z axxx(9)g)) = 2((1 2r) Z g9) #0.

gESay 9€C (2r—s,s)
[A|>r+1

The first equality is because only the 2r cycles contribute to Il (V). Note that
since Y xa(g)g € End(Vy) it follows that

(D axnalgg) € Ve

gESar

[A|>r+1
and hence
(12)( Y aaxalg)g) € Va.
gESar
[A|>r+1
It follows that IIz(V2) # 0. O

LEMMA 26. For some s, 1 < s <, we have II3((1 2r) deC@ . g) #0.

Proof. Every 2r cycle that arises in (1 2r) deC@,,,S.
1. We therefore need to identify the 2r cycles that do arise. They are those
of the form (1 ag .. as 2r as4o ...) or (1 ag ... ag.—s 2r...). For this proof,
denote the subgroup of So, fixing the elements 7 and j by S(4,7) for any 1 <
1 < 7 < 2r. We note that

(12r) > g

9€C (2r—s,s)

)9 arises with coefficient

= > ax(@r2r—s2r—s—1.12r—12r—2... 2r—s+1)
aeS(1,2r)

+ax(2rss—1...12r—1.s+1)

DOCUMENTA MATHEMATICA 14 (2009) 67-113



108 Ajay C. RAMADOSS

s—1 2r—s—1
= E o (T5, 0y + T3, 1 ) * Ty
aeS(1,2r)

= (0 Y. B x () ey
BeS(2r—1,2r)

(o D> B (T o) * T
BeS(2r—1,2r)

Therefore,

((12r) > g =(mly Y B x ey + 1)+ @)+ )

9€C (2r—s,s) BES(2r—1,27)

_ —sy L (1
=l Y B I @ ),
BeS(2r—1,2r)
the last equality following from Lemma 21.

For this proof, denote the subgroup of Sa,_; fixing the element i by S(i) for
any 1 < ¢ < 2r — 1. It therefore, suffices to show that

— s r—sy\ /(1
(T2’l“171 Z 6)(7_27"71 + 7_227"71 )(eér)fl) 7é 0
BeS(2r—1)
for some s, 1 < s < r. It therefore, suffices to show that
] r—sy\ /(1
We=( D B)ms 1+l 7)(E ) #0
peSs(2r—1)

for some s, 1 < s < r. Consider a vector space V of finite dimension, and let u
and v be two basis vectors of V. We will show that the right action of Wy on
u®?""2 @ v is nonzero. Note that

1 — — ; r—sy\~(1
G OV = W @ ) + DA,

_ (u®sfl RV u®2r7175 4 u®2r7175 RV ® u®571)é$¢)71.
Therefore, it is enough to show that

(u®sfl ®RUv® U®2T7175 + u®2rflfs RV ® u®5*1)é$)71 7& 0
for some s, 1 < s < r. For this, we note that

0 # ad(*2(v) = (lu — 1) () = 3 (

%

2r — 2

)u®i ®RU® u2r727i'
(3

Now, ad(u)?"~2(v) is an element of the free Lie algebra generated by V. The
idempotent éélr)ﬂ therefore acts as the identity on this vector, which is a linear
combination of (u®*~! @ v @ u®?" 7175 4 y®~1-5 @ v ® u®*~1) where s runs
from 1 to r.

O
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7.4 FINAL STEP TO THE PROOF OF THEOREM 1

Suppose that [¢PQ] = [Y] for some genuine vector bundle Y. Then Y is of
rank r, and for all sufficiently large m, Y ® O(m) is a quotient of Og* for some
s. Tt follows that Y ® O(m) = f*Q’ for some morphism f : G(r,n) — G(r,n’),
where @)’ is the universal quotient bundle of G(r,n’). Without loss of generality
we may assume that n’ > 2r + 1. Let @ denote the universal quotient bundle
of G(r,n). As in Section 7.2, choose a shortest linear dependence relation of

the form
> ul(@) =0

l

where vy is a functor of type (2r,1).

Then, Y, v(Q") = 0. Since the v;’s respect pullbacks,
> (Y @ 0(m) =0
1

for all sufficiently large m. Note that @ t5(O(m)) = exp(t1(a1(O(1)))). There-
fore,

ta; (a1, (Y @ O(m))) = ta, (a1, (V) + mar, -1 (Y)ar (O(1)) +.....).
Therefore,
¥ @0m))=v(Y)+mA(Y)+ -+ m A, (Y)

for all I with 4;(Y) € R(G(r,n)). In other words, v;(Y ® O(m)) is a polynomial
in m with coefficients in R(G(r,n)) whose constant term is v;(Y"). It follows
that >, v(Y ® O(m)) is a polynomial in m with coefficients in R(G(r,n))
whose constant term is >, v;(Y"). The fact that ), v;(Y ® O(m)) vanishes for
all sufficiently large m implies that ), v;(Y") = 0. Thus,

Do u@rQ) =Y pu(@) =0
l l

as well. As in Section 7.2, since p > 2, this together with the linear dependence
relation ), v;(Q) = 0 yields a linear dependence relation of the same form but
of shorter length, thereby giving a contradiction. This finally proves Theorem 1.

APPENDIX

This appendix if for sketching a proof of Observation 1 of Section 3. This
material is by and large reproduced from notes by Jinhyun Park [13] of a
course taught by Madhav Nori at the University of Chicago in Fall 2004.
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Recall that given a morphism f : Y — X of schemes, a sheaf 7 on Y is said
to have descent data if it satisfies the following three properties.

[D1]. Given any two morphisms gi, g2 : Z — Y such that fog; = f o ga, there
is an isomorphism ¢(g1, g2) : g7 F = g3 F.

[Ds]. (Functoriality). Given any morphisms h: W — Z and ¢1,¢92 : Z = Y
such that f o g; = f o go, the following diagram commutes.

h*o giF ~——%h*c(ghgz) h*o g3 F

=| B

(91 o h)*]_- c(g10h,g20h) (92 ° h)*j_—

[Ds3]. Given any three morphisms g1, 2,93 : Z — Y such that fogy = fogs =
f o g3 the following diagram commutes.
G F c(91,92) GF
C(gl,ga)l l0(92793)
* id *
93F —— 93F
We now recall a theorem of Grothendieck [15].

THEOREM 4. Let f:Y — X be a flat surjective morphism of schemes. There
s an equivalence of categories

{ Quasicoherent sheaves on X} «——

{quasicoherent sheaves on Y with descent data}

g f'g.

The following construction due to Grothendieck [15] gives the inverse to the
above equivalence of categories.

CONSTRUCTION 1. Let F be a quasicoherent sheaf on Y with descent data.
Note that for every open U C X, F|;-1(p) is a quasicoherent sheaf with descent
data for the morphism f|;-1(y) : f~1(U) — U. Let F denote the sheafification
of the presheaf

U {s € D(F~1(U), F) | elgr go)gis = gas for all gi,g2: Z — f(U)}.

The inverse to the equivalence of categories in Theorem 4 is given by F — F.
For example, Oy = Ox.

Let P be an affine group scheme over K. Let f : Y — X be a principal P-
bundle on X. Then, descent data for f on a sheaf F is indeed equivalent to a
P-action on F. Theorem 4 therefore implies the following theorem.
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THEOREM 5. Let f:Y — X be a principal P-bundle. There is an equivalence
of categories

{ Quasicoherent sheaves on X} «—

{ Quasicoherent sheaves on Y with P action}

G [G.
COROLLARY 6. The functor

F : { P-representations} — {locally free Quasicoherent sheaves on X}

F(V) =0y @V
is an exact functor commuting with .

Proof. Oy is naturally a P-sheaf on Y. A representation V of P is a H-sheaf
on Spec K. Therefore, Oy ®x V is a P-sheaf on Y =Y Xgpec k Spec K. By
Theorem 5, F(V) is a quasicoherent sheaf on X. Clearly, F (V) is locally free.
It can also be verified without difficulty that V — Oy ®g V is an exact functor
commuting with ®. Since the functor from Theorem 5 is an equivalence of
categories, the desired corollary follows. O

We can now sketch the proof of the following theorem. Let G be a affine
algebraic group and let P be a closed subgroup of G. Let P denote the category
of P-representations. With these assumptions, we have the following theorem
of Bott [4]. This theorem has been referred to in Section 3 as Observation 1.

THEOREM 6. Let G be reductive. If K is regarded as the trivial P-
representation, . 4
H'(G/P,F(V))¢ ~ Ext>(K, V).

Proof. Forany V € P, let T*(V) = H'(G/P, F(V))%. We shall show that in the
language of Grothendieck [14], T°(V) = Homp(K, V) and T¢(V) = R‘TO(V).
This will prove the desired theorem. To do this, we need to verify the following
list of properties.
(a) T": P — K — vector spaces is a functor.
(b) Given a short exact sequence 0 — V! — V — V" — 0 in P, there is a long
exact sequence

L TV —— THV) —— TV —L ity
The given short exact sequence gives a long exact sequence Hi(G /P,—). Now,
for any exact sequence W' — W — W of G-representations, the sequence
W% - WS — W€ is exact. This verifies (b).
(c) The data in (b) is functorial.
(d) T°(V) = VP,
(e) (effaceability) For all i > 0, for all @ € T%(V), there is a monomorphism

DOCUMENTA MATHEMATICA 14 (2009) 67-113



112 Ajay C. RAMADOSS
j:V — W in P such that T(j)(a) = 0.

We check (e), the only nontrivial assertion above. Put W = T'(P,Op). Then,
F(W) = f.O¢g where f : G — G/P is the natural morphism. Note that G
is affine and f ia an affine morphism. Therefore, for any quasicoherent sheaf
F on G, H(G,F) = 0 for every i > 0 and R'f,F = 0 for every i > 0. The
Leray spectral sequence then tell us that H'(G/P, f,F) ~ H'(G,F) = 0 for
all i > 0. In particular, H'(G/P, F(W)) = 0 for every i > 0. Let V be any
P-representation. We have an isomorphism

Homp(V,I'(P,Op)) ~V* (1)
L+ evigoL.

Here, eviq o L is the composite

Vv L I(P,0p) 4. K-

Denote the inverse of the isomorphism (1) by S. Choose linear func-
tionals wuq,...,u;,... on V such that NKer(u;) = 0. Then, S(u;) €
Homp(V,I'(P,Op)). Clearly, the morphism &;S(u;) : V. — &, I'(P,Op) is
a monomorphism in P. Further, 77(®;I'(P,Op)) = 0 whenever p > 0 since
we just showed that TP(I'(P,Op)) = 0 whenever p > 0. This completes the
verification of (e) and therefore, the proof of the desired theorem.

O
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ABSTRACT. This is the the second part of a series of two papers,
which investigate spectral properties of Dirac operators with singular
potentials. We will provide a spectral analysis of a relativistic one-
electron atom in interaction with the second quantized radiation field
and thus extend the work of Bach, Frohlich, and Sigal [5] and Hasler,
Herbst, and Huber [19] to such systems. In particular, we show that
the lifetime of excited states in a relativistic hydrogen atom coincides
with the life time given by Fermi’s Golden Rule in the non-relativistic
case. We will rely on the technical preparations derived in the first
part [25] of this work.
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1 INTRODUCTION

We continue our study of resonances for relativistic electrons and apply the
results about one-particle Dirac operators with singular potentials in [25] to
a relativistic Pauli-Fierz model. We prove upper and lower bounds on the
lifetime of excited states for a relativistic hydrogen (-like) atom coupled to
the quantized radiation field and show that it is described by Fermi’s Golden
Rule and coincides with the non-relativistic result in leading order in the fine
structure constant a.

The spectral analysis of non-relativistic atoms in interaction with the radia-
tion field was initiated by Bach, Frohlich, and Sigal [4, 5]. It was carried on
by Griesemer, Lieb and Loss [16], by Frohlich, Griesemer and Schlein (see for
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example [15]) and many others (see for example Hiroshima [22], Arai and Hi-
rokawa [3], Derezinski and Gérard [12], Hiroshima and Spohn [21]), Loss, Miyao
and Spohn [32] or Hasler and Herbst [18, 17]). Recently, Miyao and Spohn [35]
showed the existence of a groundstate for a semi-relativistic electron coupled
to the quantized radiation field.

Bach, Frohlich, and Sigal [5] proved a lower bound on the lifetime of excited
states in non-relativistic QED. Later, an upper bound was proven by Hasler,
Herbst, and Huber [19] (see also [24]) and by Abou Salem et al. [1]. Asin [4, 5,
19] we use the method of complex dilation. Since the corresponding operators
are not normal, we are going to apply the Feshbach projection method, which
was introduced in non-relativistic QED by Bach et al. [4, 5].

We describe the electron by the Coulomb-Dirac operator, projected onto its
positive spectral subspace. Note that this choice is not gauge invariant. Our
analysis will work for other potentials as well, as long as condition (26) holds
for the difference between fine structure components, and as long the eigen-
functions have a exponential decay uniform in the velocity of light.

On a technical level the relativistic model is more difficult to handle than the
nonrelativistic Pauli-Fierz model. One reason is the fine structure splitting
of the eigenvalues. Moreover, due to the use of complex dilation one has to
make sense of the notion of a positive spectral subspace for a non-selfadjoint
operator. Finally, a factor of « is missing in front of the radiation field.

We would like to mention that the Feshbach method is named after the physicist
Herman Feshbach, which used the method to deal with resonances in nuclear
physics [14, Equation (2.14)]. Also Howland [23] used the Feshbach operator
calling it “Liv8ic matrix”, since Livsic [31, 30] used the method in scattering
theory. Moreover, the method is known under the name “Schur complement”.
This name is due to Haynsworth [20], who used it in honor of the Schur determi-
nant formula. Also Menniken and Motovilov [34, 33] use the Schur complement
to treat resonances of 2 x 2-operator matrices. They call it “transfer function”,
however. For a detailed overview over the history of the Schur complement, we
refer the reader to [40]. For some more references about resonances in general
and the spectral analysis of (non-relativistic QED) we refer the reader to [25].

2 MODEL AND DEFINITIONS

The (initial) Hilbert space of our model is H' := He ® F, where Heo :=
L2(R3;C*) is the Hilbert space for a relativistic electron and

F = é SnL?[(R? x Zy)]N
N=0

is the Fock space (with vacuum ) of the quantized electromagnetic field taking
into account the two polarizations of the photon. Sy is the projection onto the
subspace of functions which are symmetric under exchange of variables.
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The Coulomb-Dirac operator with velocity of light ¢, Planck constant A, elec-
tron mass m, elementary charge e, atomic number 3 and permittivity of the
vacuum e¢gp is in SI units

e23 1

D' := —ihecar - V + Bmc? — )
dmeq | - |

This operator is self-adjoint on the domain H!(R3; C*) for f;; < @c. In the
following, we will always assume that this condition is fulfilled. Actually, for
technical reasons, we are even going to impose some more restrictive conditions
later on (see for example Theorem 3).

We denote the positive spectral projection of this operator by A’H). We will
restrict the operator to its positive spectral subspace and couple it to the quan-
tized radiation field A, (z) := AL, (z)+ + AL, (z)—, where A’,(z)+ and A, (z)_
are defined as in the non-relativistic case by

h .
A:{/ x = / dkn kj S— 5 e—zkwa/* k 1
( )Jr ;LZIQ kERS | | 2€0C|k’|(2ﬂ')3 “( ) © ( ) ( )

M) =Y /k dk #(|k]) mg;(m@ima;(m. @)

n=1,2 €R3

Here EL(kz), 1 = 1,2 are the polarization vectors of the photons, which depend
only on the direction of k.
If we add the operator Hf for the kinetic energy of the photons

Hj} _th/ dk |k|a); (k)al, (k) (3)

n=1,2 keR3
we obtain (cf. [11, B-V.1., Formula (35) through (39), page 431])
e23 1

dmeq | - |

H' == NPlea- (-1hV — eAl, () + fme® — — A+ HY

In principle, one could define the operator without restriction to the positive
spectral subspace. For this case it is at least known that selfadjoint realizations
exist [2, Theorem 1.2], which are, however, not explicitly known. Moreover the
expression for the inverse life lifetime (see equation (21)) without UV cutoff
would diverge in this case so the investigation of this operator with regard to the
lifetime of excited states would not make any sense. We would like to mention
that for a certain class of potentials — which does not include the Coulomb
potential — it is known that the operator without projections is essentially
self-adjoint on a suitable domain. (see Stockmeyer and Zenk [38] and Arai [2]).

Similar to the non-relativistic case [19, 5] we set ag := o~ !(-) (Bohr radius),

¢ := ag and &1 = aa—o and scale the operator according to x — (x and
k — & 'k. We denote the corresponding unitary transformation by U. In
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this scaling we can expect to be able to treat the operator similarly as in the
non-relativistic case. We have to make the replacements

hV — amcV eAl,(z) — o®?mcA, (ax)

21 1
£ 2me— Hf — o*mc*Hy
e | - | |-

and obtain

i, 5= UH'U" =a*mé [A), [ (Do 5 — Vaa- A, (ax)]AiJ[)173+Hf}. (4)

Here

Dy-13:= —ioala-V+a 26— |3—|
with a3 < \/3/2 is the scaled version of the Dirac operator D’. A(t)l 31
the positive spectral projection of the operator D,-1 3, where a~! plays the
role of the velocity of light after the scaling and 3 the role of the coupling
constant. We denote the eigenvalues of this operator by Eml(oz_l, 3), where n
is the principal quantum number and [ numbers the eigenvalues belonging to
the principal quantum number n by size not counting multiplicities. We have
ne€Nandl €N with I <n. We set

32

2n2’

Eni(a™1,3) = E, (™ ,3) = ¢, En(00,3):=— (5)
where E,, (00, 3) is the n-th eigenvalue (not counting multiplicities) of the Schro-
dinger operator which we obtain in the limit & — 0 (see [25, Section 8]). We
abbreviate E,, := E,(c0,3) and E, ;(«) := E,;(a™!,3) for n € N and for
1<l <n.

H; and A, (x) are given by

-y / dk [k|a7, (K)a (k) (6)

n=1,2 €R3
and A, (z) := Ax(x)4 + Au(x)— with

Ay = 3 [ YEED yemimean k) )

u—1,2 7 kER3 \/47T2|k

A= S [ LD yeinea, i) 8)

p=1,2 7 kER? \/47T2|k

as in the non-relativistic case.
In the following, we will consider the operator

_ A(+)

a1 3Da-13 = a? —Vao- Aﬁ(ax)]ASr) + H (9)

-3
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on H := A((;:)I,BL2 (R3; C*) ® F, where we omit trivial factors ®@1¢ or 15®.

In order to apply the methods of the non-relativistic case (see Bach, Frohlich,
and Sigal [5] and Hasler, Herbst, and Huber [19]) with a minimal amount
of changes, and in order to apply the results about the non-relativistic limit
obtained in [25], we subtract the rest energy a~2. As in the non-relativistic
case we define the perturbation parameter g := /2 > 0 and the perturbation

operator

W = \/aAét)l,g)a : A,{(aac)A;t)173

as well as the free operator

Ha 0= A(Jr)

a3

D1 3A) 5+ Hy —a™?
and the electronic operator

+ —21 A (+
He(la) = A((X—)173[Da*1,3 —Q Q]A&7)173'
We will always assume 3 > 0.

We will prove the self-adjointness of these operators in Section 3. Note that
contrary to the non-relativistic case also the free operator depends on o. We

) on the atomic

suppress the dependence of the operators H,, Hyo and H, éla
number 3, since we will treat it as a fixed parameter.

Note that the prefactor of the photonic field in (9) is /o only and not /2
as in the non-relativistic case. Moreover, D, 3 depends on the fine structure
constant. The limit « — 0 corresponds in this scaling to the non-relativistic
limit. In the treatment of the resonances for this operator the distance of
neighbouring eigenvalues may vanish as o — 0 so that the estimates on the
Feshbach operator (see below) have to be improved. Nevertheless we will use
the perturbation parameter g = a3/2.

As in [5, 19], we will make use of (complex) dilations of the above operators:
We define

H(0) - = Ua(0) HS U (0) L, Hy(6) == UO) HgU(9) P and  (10)
W,(0) : = UOYW,U(O)

for real 6, where U(0) is the unitary group associated to the generator of di-
lations. It is defined in such a way that the coordinates of the electron are
dilated as z; — e%j and the momenta of the photons as k — e k. In this
way we obtain the operator

H (0) 1= Ua(O) HUea(0) ™ = ASD 5 (0)[Da1.5(0) — 0 2JASE 5(0)

81 El [ kl

on AS[)I 5(0)L?(R?;C*), which is selfadjoint on Dom(Héla) 0)) =
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= A((;’:)l ()H'(R3;C*), as well as the operators

Ho(0) == A 5(0)[Da-1,3(0) — a7 ao AD (ax)| AL, 5(0) + eV H
W (0) = Var't, 0o AD (ax)A, 5(0)

Hao(0) = ALY, 5(0)Dy-1 5(0)ALY, 3( )+ e H; — a2

on A(Jr (H)LQ(R3 C*)® F, where A ,1 3(0) has been defined in [25] even for
non—real 6. Here A(e)( ) = A,(f)( )+ + A,(f)( )—, where

AV = Y [ akGO e b
p=1,2 keR3

and

AO@) =Y / dk GO (k, 1)a(k)
u=1,2 keR3
with
679”(679“‘4) ik

eu(k).
A2k *)

We will show in Section 3 that these operators admit a holomorphic continua-
tion to certain values of 6. Moreover, we define

Wf“> <9> = Var("5(0) [a- AD (aw) i | ALY, 5(0)

s

(
= vanl" 50) [e- AP (ax) | AL, 5(0) (

wo,1<k,u;e> = ao GER(k,u) (13)
wy o(k, 13 0) = wo 1 (k, p1;0)". (

Using the notation from [25, Section 5] we define the projections

GOk, p) =

P (8) = Pog(a™!,3:0) P = Paa(a™,3;0)
PS)(0) = Pu(a”,3;0) P = Pa(a™!,3;0)

P 0) == A () - PS)(9) Po, =A% 5 - P
P (6) : :Pehx )= P (6) P = PS5 — P
P 0)=A0 50 - P o) P =AY - RS

as operators on AT o1 3(9)L2 (R3;C*) and A J[)l BLQ(R3; C*), respectively. More-
over, we need for a n > 0 such that Ej aalae™,3) < a7 — n and
Eit11(a™,3) > a=2 — ) for some € N (see [25, Section 7]) the projec-
tions

Puise(a; 0) := Paise.n(a™,3;0) = Z Pu(a™t,3;0) (15)

1<n’/<#
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and -
Pdisc(oﬁ 9) = A(J’;)l 3(9) - Pdisc(a; 9) (16)

as operators on Ran Agji)l 3(6’)L2 (R3;C*) as well. 7 is chosen in such a way
that n > n, where n is the principal quantum number whose life-time we are
interested in.

For p > 0 (to be specified later) we define the projections

Pnyl(ﬁ) = Pe(l n,l & XH<p) Pn,l(o) =1- Pn,l(e)
and for R >0
ni(0; R) = Pe(lar)z 1(0) ® Xt +R>p + BSZL,I(O) ® ¢

AP S(0) L2 (R CYH © F.

As in [5, 19], the main technical tool in our analysis is the Feshbach operator

as operators on

an,z(O)(Ha(e) —2) = Ppi(0)(Ha(0) — 2)Pni(0) — (G)W(a) (9) n1(0)
X [Fn,z(9)(Ha(9)*Z)Fn,zw)]*lﬁn,l(@)w( (0)Pna(0), (17)

which we define as an operator on Ran P, ;(6). Note that we need the Feshbach
operator for each fine structure component of the considered principal quantum
number n, i.e. for all 1 < [ < n. Note moreover that we do not distinguish
between the operators PAP and PAP|ray p when we write PAP, where A is a
closed operator an P a projection with Dom A C Ran P. The meaning of this
expression will be clear from the context.

We will show below that the Feshbach operator can be approximated in a
certain sense by the operators

an:t 71611101 Z /k elnleI(k Nao)

pn=12 €R3

(@) [pla) g @ ()
x Pl {P“ H) — Eogla) + k| £ie] P ok, is0)PS), (18)

=el,n,l |=—el,n,l =el,n,l el,n,l

dk « (0%
Zg,z(a) = Z /k s || Pe(l'r)zle 1(k, )Pe(l,r)z,lwl,O(ka:U’;O)Pe(l,'r)z,l (19)
pn=1,2 €

as well as
Znpx() = Zg (@) + 225 L (a), (20)

defined as operators on Ran Pe(1 T)L ;- These operators are the relativistic analoga

of [19, Equations (3) and (4)]. Note that Uei () restricted to RanPh)ll is a
similarity transformation ([25, Lemma 9]).
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It is easy to see that the imaginary part of Z, ; 1 («) is given by (cf. Equation
(11) in Remark 1 in [19])

Im Zn,l,:l:(a) =F7 Z Z / dw (En/,l/ (Oé) - Enyl(a))Q
n/,l/: u=1,2 \w\:l

E, 1 (a)<En,i(a)

x PS) w01 (B (@) = B () ), 3 0) P

el,n, el,n’ 1’

x w1,0((Bni() = Eurr(@))w, 113 0) P

el,n,l*

It will turn out that the lifetime in lowest order in the fine structure constant
« is given by the same expression as in the non-relativistic case (see Lemma
10). Therefore, we define (cf. [19, Equation (12)])

2
Zntin = 95 D CBuw+E)*X w(|= B+ E?PY), @PS, aP), (21)

el,n el,n,l
1<n’<n
i<i<n
and
Yo+ (@) :=Usr(e",3;0) " Re Zy (a)Unr (@', 3;0) FiZniim  (22)
as operators on Ran Pe(logl ;» Where we defined Ran Pe(lozll = Unr(a™ 1, 3;0)7t

x P\ Unr (a1, 3;0). Unr (a1, 3;0) is the unitary transformation which cor-

el,n,l
responds to taking the non-relativistic limit (see [25, Section 8]). We set

Znyl(Oé) = n’lyf(Oé), Ynyl(a) = n,ly,(a).

Note that contrary to [19] the coupling constant g is contained in the definition
of the objects Z, i(c), Y, () and so on. We see from Equation (21) that
transitions between fine structure components of a principal quantum number
do not play a role in lowest order in a.

Note that we remove the dependence on « only from the imaginary part, since
a discussion of the real part, which yields the Lamb shift [28, 6], does not
make sense without an UV renormalization. Moreover, the Lamb shift is not
important for lifetime measurements using the so called “beam-foil”-method
[10, 13, 7, 8§].

We can now formulate our main result: Fix n > 2. Since Z, ;im is obtained
from the corresponding matrix in the nonrelativistic case by restricting the
corresponding quadratic form to Ran Pe(l? L,l’ we see immediately that in this
case Zy1im is strictly positive for all 1 < I < n (see [19, Appendix B.3]).
Note that this is not the case for n = 2 due to the metastability of the 2s-
sates of hydrogen. Indeed we will need in our proof the Feshbach operator and
the matrices Z,; +(a) and Yy, ;4 (a) for all fine structure components of the
corresponding principal quantum number and not only for the fine structure
component, whose lifetime we are interested in.
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THEOREM 1. Let n > 2 and ¢(a) a normalized eigenvector of Héla) with eigen-
value B, (), () := ¢(a)@Q and ¢(0) := Unr (o™, 3;0) " 2é(a). Then there
is a C' > 0 such that for all o > 0 small enough and all s > 0

(), e Hogp(a)) = (§(0), e~ Ent D=0l g(0)) +b(g, 5)
holds, where |b(g, s)| < Cy/a.
We will prove Theorem 1 in Section 7.

REMARK 1. If we compare Definition (22) of Yy (o) with [19, Formula (12)]
we see that the lifetime of an excited state in the relativistic model is the same as
in the Pauli-Fierz model. Thus relativistic effects play a minor role for electric
dipole transitions. But there seems to be a small relativistic contribution for
the decay of the metastable 2s-state of hydrogen (see Breit and Teller [9]).

3 SELFADJOINTNESS AND DILATION ANALYTICITY

Before we can turn to the operator H, in the following sections we have to
prove its selfadjointness and the holomorphicity properties of the operators
H,(0).

THEOREM 2. Let 0 < a3 < \/§/2 Then the following holds: The operator

H, :D c (ALY, SLA(R%CY) ® Dom(Hy) — (ALY, sLA(R*CY) © F
is on D := A((;)l JH'(R?;C*))& Dom(Hy) essentially selfadjoint, where & de-
notes the algebraic tensor product.

Proof. Because of [39, Theorem 4.4] the operator Héla) + a2 is selfadjoint
and positive on the domain Dom(H ") = AS[)I JH'(R*C*Y). Since Hy is
selfadjoint and positive on a suitable domain DOI’H(Hf), it follows from [36,
Theorem VIIL.33] that H, o+ a2 is essentially selfadjoint and positive on the

(algebraic) tensor product D = Agji)l JH'(R?* C*)&@ Dom(Hy). We have for all
¢ € D and all € > 0 with a C' > 0 (see for example [5, Proof of Lemma 1.1])

IW | < Cval(H +1)"29l| < Cvallel + TRTTHR)
1 1
< OVal(t+ o)l + I Hrll] < CVal(t+ )l + 51l (Hao + o))

Thus W(®) is infinitesimally (Ha,0+a~?)-bounded, and in turn H, +a~2 (and
thus also Hy) is essentially selfadjoint on Dom(H, o). O

We denote the operators defined in Theorem 2 again by H, and H,, o respec-
tively.

DOCUMENTA MATHEMATICA 14 (2009) 115-156



124 MATTHIAS HUBER

We turn to the operators H,(6) and H, o(¢) on the domain Dom(H,(0)) =
Dom(Hay0(0)) = A +) (0)H'(R?;C*)® Dom(Hy). In the following theorem

a"1.3
we show that the families of operators

UpL(a™,3;0)Ho (0)UpL(a™t,3;0) 77,
UpL(a™t,3;0)Ha0(0)UpL(a™t,3;0)"", (23)

defined on the Hilbert space Agi)l 3LQ(R3; C*)® F with domain Upy,(a~t, 3;6)
x AP (0)H'(R3; C*)® Dom(Hy), are holomorphic families of type (B) on a

a=1.3
suitable domain. Here Upy, (a’l,S; 0) is the transformation function between
positive spectral projections of D,-1 3 and D,-1 3(6) defined in [25, Theorem

6]. We will write Upp,(a™1, 3;0) for the operator Upr(a~!,3;6) @ 1;.

THEOREM 3. Let 0 € S;/4, 203C(Imf) < 1, Cpi|f| < q and Cprs|f| < ¢
for some 0 < q < 1, where the constants Cpy, and Cprs are defined in [25,
Section 6] and C(Im@) is defined in [25, Section 4]. Then there is a 6y > 0
independent of 0 < a < 1 such that for all |0] < 6y the operators (23) define
holomorphic families of operators Hy(6) bzw. ﬁayo(Q) of type (B) on a suitable

domain Dom(H,(0)) = Dom(Ha,0(0)). These operators are m-sectorial.

Proof. The expression q,-10(¢) := (¢, (Da-1,3 ® 1 + 1 ® Hy)y) for p € D
is a positive closable quadratic form whose closure ¢,-: ¢ defines a selfadjoint
operator which coincides with the operator H, o defined in Theorem 2. We have
Dom(Gy-1,0) = Dom((Ha,o + a~2)Y/2). In particular, for ¢ € Dom(g,-1,0) the
estimate

[1Da-13120] = (ALY, Do1 3450, )V20|

a—13 a=1,3
< IAGE: 5Dam1 3800 5 © 1+ 1@ H) V2] <o

holds, and in the same way we see ||(H; 4+ 1)'/%¢|| < oo.
Thus, we find for ¢ € Dom(g,-1,9)

(¥, Upr(a™;0) Do 5(0)Upr (a5 0) ") (24)
=(IDa-1 3", Do 37| D1 o] ?
X |Dg-1,0| "V 2Upr,(a™0)Dy-1 3(0)Upr(a1;0) [ Dy-1 o 7/2
X |Do-1,0["?[Dg-1 31712 Do 3 24)).

[25, Lemma 5 and Lemma 6] imply
(¢, Upr(a™';0) Da-1 5(0)Unr(a™50) " 40) = (0, D1 39)| < C60|(¢), D1 39)

with some C' > 0 independent of e and 6. Moreover, |e=% (¢, Hpap) — (1, Hy)| <
B|0|(x, Hetp) with B := e™/*. Since ||W(®)(0)(Hs +1)"/?|| < \/aC; with some
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C7 > 0 independent of § and « (see for example [5, Proof of Lemma 1.1]) we
obtain for all € > 0

(¥, UpL (5 0)W ) (0)Upr (a3 0) )|
< VaCi(1+ Cpr|0))?[(1/€ + )|9]1* + (v, Hr)].  (25)

It follows that the quadratic form p,-1.4(¢) = (¢, (Ha + o 2)¢) for ¢ €
Dom(g,-1,0) is well defined for sufficiently small |f|. If we choose || so small
that (C' + B)|f] < 1 holds, and then in (25) € > 0 small enough (depending on
6), we see that the quadratic form p,-1.9 — Ga 0 is relatively Gn o-bounded with
form bound smaller than 1.

Because of [27, Theorem VI-1.33] the quadratic form p,-1.4 is closed with
Dom(pa-1.9) = Dom(G,-1,9) and sectorial. Moreover,

|Da7170|71/2UDL(a71; G)Da—1’3(9)UDL(a71; 9)71 |l)a—170|71/2
=|Dy-1 0|7 2Upr (a7 0)| D1 02| D1 0| 7 * Dy 3(6)| D1 o 712
X |Da-1,0]"?Upr(@;0) 7 | Dy-1 9| 712
Using Equation (24) and [25, Theorem 6 c)] we see that the expression
(¥, UpL(a™10)Dy-1 5(0)Upr (a5 0) 1) for all ¢ € Dom(p,-1,9) is a holo-
morphic function of 6. It is easy to see that
(Hf + 1)_1/2UDL(04_1§ H)W(a) (G)UDL(()&_I; 9)_1(Hf + 1)_1/2

is bounded-holomorphic. ~ Thus (¢, Upr,(a™t;0)W () (9)Upy,(a™t;0)~ 1) is
holomorphic function of 6. It follows that p,-1.4(¢) is a holomorphic func-
tion of @ for all ¥ € Dom(p,-1.,9) = Dom(gy-1,). The family of m-sectorial
operators defined by these quadratic forms is a holomorphic family of type (B)
(see [27, Chapter VII-4.2]). The proof for the operator without interaction
works analogously. Since ||[W(®)(0)(Hy 4+ 1)~'/2| < \/aC} (see above), is in-
finitesimally operator bounded with respect to the free operator which implies
the equality of the domains. O

REMARK 2. The above proof also shows that the operators
UpL(a™%; H)Da7173(9)UDL(oF1; 0) on the space A;J[)l 3[,2(R3;((34)

are sectorial for sufficiently small |0|. In pdrtz'cular, the assumptions of the
Ichinose Lemma (see [37, Corollary 2 on page 183] or [26]) are fulfilled so that

—1
|Ran A((xt)l

(Dot 3O)lpan ), 9 @1+ e ’1a ® Hy) =

= 0(Dy-1,3(0) )+ e Yo (Hy)

|Ran Af:i)l s 0)
holds.

In the following, we will consider UDL(a_l,S;9)_1ﬁa(9)UDL(a_1,3;9) and
Upr(a~',3;0) " H, o(0)Upr(a™", 3;6) on the respective domains
Upr(a™t,3;60) "' Dom(H,(0)) and Upr(a~',3;0)"! Dom(Ha0(0)). We will
denote these operators by H, () and H, o(0) again.
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4 TECHNICAL LEMMATA

In this section we will formulate and prove all technical statements which we
will need to show the existence of the Feshbach operator and in order to ap-
proximate it by suitable operators.

Using the dilation analyticity we can restrict to § = i¢ with 0 < ¢ < 6.
We choose 6y so small that the statements of Theorem 3 as well as the state-
ments in [25, Appendix A] hold. Moreover, we choose for this 8y a ag > 0
so small that the statements about the “nonrelativistic limit” of the operator
D, -1 5(0) (proven in [25, Section 8]) and inequality (26) hold. In particular,
all projections occurring in the following are uniformly bounded in « and 6.
We put

|Epi(@) — Enpgz1(a)|/2 1<l<n

On1,+ (@) = 4 [Eng(a) = Engra(e)]/2 1=1
|Eni(@) = Epg—1(a)|/2 1=n
5n,l(04) = min{an,l,Jr( ) n,l, 7( )}7 5n,:|: = |En - En:l:1|/27

Op, = min{dp 4+, 0n _}.

Note that 6, ;(a) = d,,+(c) holds for [ = 1 or I = n. We will suppress
the dependence of these quantities on « in certain places in order to simplify
notation. It follows from the explicit form of the eigenvalues (see [29]) that for
all a < ag with ag > 0 small enough the inequality

c10? < 611 (a) < c2a? (26)

holds with two constants 0 < ¢; < ¢y independent of o and .
We choose p,o > 0 and define the sets (see Figure 1)

o S (,0) = [Ep (@) = 0p i~ (), Engla) + 64 ()] +i[—0,00), 1<1i<n
and

[Eni(a) = 0pg—(a), Epi(@)+0n+ ()] +i[—0,00) 1<l<n
Ani(o,0): =1 [Ey — 6, En (@) + 0+ ()] +i[—0,00) =1
[En — Oni,— (), Ep +p 4] +i]—0,00) l=n

Note that for 1 < I < n the identity A5 ,(a,0) = A, (a,0) holds. More-
over, following [5] we define By(p) := A((j)l 5(0 )[H(a) (0) — Epi() + e 9(Hy +
p)]AS[)l 5(0) as an operator on the Hilbert space A(Jr) S(OL*(R*CY) @ F

with domain Dom(By(p)) = Upr(a™t,3;6)~ lDom(Hayo(G)). The operator is
a densely defined and closed operator (cf. Theorem 3 and the remarks fol-
lowing it). It follows that By(p)* is densely defined as well and we have
By(p)*™ = Bg(p). Note that the adjoint is to be taken with respect to the
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scalar product on the Hilbert space A a1 3( )L2(R?;C*) ® F. In particular,

By(p)* # Bz(p). As in the Pauli-Fierz model By(p) is only an auxiliary object,
which saves some combinatorics. In principle, one could prove all statements
without using By(p). Note that all norms, scalar products and adjoints are to

be understood in the sense of A(tl 3(9)L2 (R3;C*) or Afj 1 5(0 VL2 (R3;CH e F.
We will choose p and o later on as suitable functions of the coupling constant
g. At the moment, we assume only that o and p are nonnegative and bounded
by some constant from above.

In the proofs in this and the following section, C' denotes a generic, positive
constant, which does not depend on « and z, but perhaps on 9.

In the following lemmas we will prove some estimates on the resolvents of the
free operator Hy o and of the electronic operator H, éla ). The lemmas generalize
similar statements and their proofs [5]. Due to the fine structure splitting and

the missing power of o some additional difficulties have to be addressed.

LEMMA 1. Let 0 < 9 < 8. Then the following statements hold:

a) There is a C > 0 such that for all o < g, all o < % all R >0
and all z € A, 1(a, 0)

| [P 1(6) @ 1e(HEV(0) + e (Hi + R) = )Pyt 1(6) @ 14]

()(

el,n,l

-1

x P ) ® 1 27)

B orrll
holds.

b) There is a C > 0 such that for all p > 0, all 0 < #, all R > p and
all z € Ay, (a, 0)

| Pa0(0) @ 1e(HE (0) + e~ (Hr + R) = )P, (0) @ 1)

—(a) C
« P (0 1H<— P
elnl()® f _RSil’lﬁ (8)

holds.

¢) There is a C > 0 such that for all a < ag, all 0 < %n Smﬁ, all R >0 and
all z € Ay, (a, 0)

(@) P

| P (6) @ 14(HSV(0) + e~ (H + R) = )P (0) @ 1)

(29)

(@) C
XPE]”( ®1fH - 5 sind’
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Proof.
a) We split the projection and the resolvent according to the formula

fiﬁ’l(ﬁ) = D i<r<n U4l Pe(fl,)L »(0) and use the representation (spectral theo-
rem) in which Hy is the multiplication with the variable 7. In order to simplify
the notation we will suppress the dependence of the eigenvalues E,, ;/(a) on a.

Note that for £, < Ep;

|Eny —z+e (r+R)| >Im (e (z — Epp)) >
sin 99, ()

> —(cosV)o +sin(Rez — Ep ) > 5

(30)
and for B, ;» > B,

|Eny — 2 + e_e(r + R)| > Re(Epp — 2 + e_e(r + R)) > 0nu(a) (31)

holds, which proves the claim together with [25, Corollary 5]. For [ = 1 and
I = n the estimates (30) and (31) respectively are not needed. We used in the
first estimate that (cosd)o < W.

b) We estimate Im (—E, v + 2z — e ’(r + R)) > —o +sind(r + R) > Snifi,

where we used o < %.

c) We split the projection ﬁf;il = Puisc(;0) + Y 1< <t pl) (0) according to

el,n’/
n'#n

(15) and obtain analogously to the proof of a) the estimate |m| <
s ¢ and with [25, Corollary 4]
| [Paisele: 0) (S 0) + e~ (H + R) = 2) Passe(050) © 1] ™' Pasac(0)|
¢ c
<su <=
N r>I()) —n—(Rez—(r+R)) ~ 0,
O

LEMMA 2. Let 0 < 9 < 8. Then the following statements hold:

a) There is a C > 0 such that for all « < ap, all R > 0, all 0 <

s [ 0n ind §,sind .
min{ ’g(g)):én , GEns 1/2psind} and all z € Ay i, 0)

1=

| Pra0: RIS (0) + € (H 4+ B) = 2)Poa(0: R))~ Pra(0: )| <
c
<
~ min{d,, dn (), p} sin?d

(32)

b) There is a C > 0 such that for all @ < ap, all 0 < min{%7
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%ﬁ:g, 1/2psind} and all z € Ay (a,0)

| Pra®)(Heo(®) = 2Pua(®)] " Pus®)Bolp)| <

m§ﬂ<1+}5§7g?gjg;> (33)
{0n.1(a), 0n}

<

holds.

Proof.
a) We split the projection

P.(0;R) = Pil 2 (0) @1 + Pil L [(0) @ 1¢ + P(l 71 1(0) @ XHe+ R>p-

For r + R > p we estimate as follows: Im (—E,; + 2z —e ?(r + R)) > —0 +
sind(r + R) > %. We used here o < 1/2psind and r + R > p. This shows
the claim together with (27) and (29) in Lemma 1.

b) As before, we split P, ;(0) = ﬁiﬁ;(@)@lf—i—]); L (0)®1¢ —|—P(1 71 10X H>p-

We start with

o -1 5(a
| (PS2.0) @ Xtz (Hao0) = )] ' P10) @ X125 Bo <p>H

e O(r+p)

= R S A — P(a
supl LIPS O < g IPE O]
where we used the inequality
_o , sin ¥r
Im(—FE,;+z—e"r)> —0+sindr > 5 (34)

which follows from o < % and p <.

Using Equations (30) and (31) from the proof of Lemma 1 as well as Equation
(34) we obtain with some C' > 0 (independent of «)

Eml’ - E",l + e_a(r + p) ’ < En,l’ - En,l + e_ep e Ir
E,p—z+efr | Eyy—z+efr E,p—z+efr

sin 99, 1 () 2r r>p

sin ¥r?

9 __2p
cﬁ@jil+{m%wm’r§p

p
(1+ 5%1(0{)).

sin ¢

B, —=Eni+e”? (r+p) |
E,y—zte

Analogously, we obtain for n’ # n the estimate |
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Cang(1+ #£). Eventually we find
| [Passe(@36) (Hao (6) = 2)] ™" Pasecl@3 0) Ba)|

z = En,l - eiep

Pyisc(v:0)(HS (0) — 2+ e=0(r + po))

_ max{d,, _,0n+}+p _C
< Pis ;9 ) 7 S 5y
_|| d C(a )H +§glg Re (777—Z)+C08197" 5n

< Pasc(: )] + sup | Pac(e)

using [25, Corollary 4]. O

Part b) of the above lemma and the following lemmas are preparations for the
proof of relative bounds on the interaction.

COROLLARY 1. LetQ < ¥ < 0g. Then there is a C > 0 such that for all a < ay,
all o < min{ Sn(@)sin® 5, sin g 1/2psind} and all z € Ay (o, 0)

2cos?¥ ’ 2cos??
/215 - -1 *1/2 c
11Bo(p) "~ [Pt (0) (Ha,0(8) = 2) Pra(0)] " Pni(60)|Bo (p)" |7l < ——5
holds.
Proof. We find
S p— _1_
1B0(0)| [Paa(0)(Ha0(8) = 2)Pus(8)] " Poa(6)
= || Pra®)(Ha0(8) = 2P () Pra(®)] Bolo)'|

The claim follows by complex interpolation and using Lemma 2 b). O

LEMMA 3. Let 0 < ¢ < 0y. Then there is a C' > 0 such that for all 0 < a < g
and all p > 0 the following statements hold:

y
[P0, @Bs0) | < = (3)

b)
I200) ) < 55 (147) (36)

)
|HeBo() | < = (37)
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Proof.
a) We estimate using [25, Corollary 4]

| Paisc(c: 0) Bo (p) " |
C _C
<5

<su
N @% —1 — Epny + cosd(r + p)

and note that analogously to the Formulas (30) and (31) we find for n’ < n
|Enir — Eng+e7(r +p)| > Im (e (2 — Eny))
> —(cosV)o +sin(Eyn,; — Epr ) > sindd, (38)

and for n’ > n

|En’,l’ — En,l + 679(7" + p)| Z Re (En’,l’ - En,l + 679(7" + p)) 2 5”’ (39)

which proves the claim.

b) In view of part a) it suffices to show the estimate on Ran Pe(la 7)1(9) We find
forall1 <n’ <nandalll<!<n/,in particular for n’ = n,

| B (@) = Eng(@) + e (r 4 p)| > sind(r + p) > psind, (40)

which proves the claim.
¢) Using Formula (40) we obtain for all 1 <n' <n andall 1 <1 <n/

r r 1
< <
|y (@) = Eng(a) +e7(r+p)| = sind(r+p) ~ sind’

which prove the claim on Ran Pyisc(c; 0). Using [25, Corollary 4] we find on
Ran Pyisc(c; 6)

_ T 1
H;iBy(p) ™ Paise(a; 0)|| < C <O—.
H tBo(p)™ Faisc(a )H_ iglgn—En,z—i-cosﬂ(r—i—p) ~ cos?

Note that |sind| < cos® for || < /4. O

COROLLARY 2. Let 0 < ¢ < 60y. Then there is a C' > 0 such that for all
0 < a<ay and all p > 0 the following estimates hold:

a)
-(@) ~1/2 ¢ #=1/2p) L
P o)B < ., B PanOll < =
|| el,n( )| G(p)| || = \/m H| 9(/)) | el,n( )” sin ¥
b)

—-1/2 c L *|—1/2 C i
11Bo(p) ”S\/M<Hﬁ)’ 11Ba(p)" 'S—rm(”ﬁ
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C c
HY?\ B —1/2) « ’ H2| B “-1/2) <
11 Bo (o)l < == [ Bo(p)| H_\/m
Proof.
() (@) () _
8) We find [P (0)[Ba(o)| /22 < [P, (0) 1P h(0)Bo(p) | as well as

1Balp) PO < [PSAGY [1Bo() Py )] The claim follows
now from Lemma 3.

b) This follows immediately from the spectral theorem for self-adjoint opera-
tors.

¢) From Formula (37) in Lemma 3 we obtain for all ¢ € Dom(By(p)) the
estimate || Hr| < WHBG(P)UJH . Taking the square root of this op-
erator inequality, the claim follows. The second inequality follows analogously
using the identity ||H;By(p) || = |[Bo(p)*]" Hill = || H[Bo(p)*] |- O

In the last two lemmas in this section, we prove relative bounds on the in-
teraction. In comparison to the non-relativistic case, we have the additional
difficulty that the factor in front of the interaction is y/a only. To circumvent
this problem, we use the statements about the non-relativistic limit shown in
[25].

LEMMA 4. Let 0 < ¢ < 0y. Then there is a C' > 0 such that for all 0 < a < g
and all p > 0 the estimate

1
1/2y17(e) 1/2
H'B" |THEW N (0)| B (p)| H<Smﬁ\/a[1+a<1+—l/2>}

holds.

Proof. We split the projection according to A'T ,1 3(0) = Pi(0) + P»(0), where

Pi(9) = pi) 0)®1¢, Py(0) = PS‘ZI(G) ® 1¢. Since the estimate with A,(f)(ax)+

el,n

works analogously, we consider A(a)(aac) only. We find for ¢, ¢’ €
AD S(0) L2 (B3 CY @ F and i, € {1,2}

V%me”%@wAMMJMWWWWM
dk |k(e

<
1;¥%w.ﬂﬁw

WH@w%ww“a@M%wa@wmwmw-

We have to make a case distinction:
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Case 1: i = j = 2. Using Corollary 2 a) we find ||| By(p)*|~"/2P;(0)| < C.
Moreover || P;(0)c - €,(k)e' **®P;(6)|| < C. The r.h.s. of Formula (41) can be
estimated by

Cl NI 1Ba(p)] 2] < —==IIv'llI1¥ (42)

\/_

with a generic C' > 0, where we used Corollary 2 c) in the last step.

Case 2: All other combinations of i and j. ;jFrom [25, Lemma 10 or Theo-
rem 11] it follows that | Pi(0)c - ,,(k)e' “F = P;(0)] < C’a(l + a|k|) and from
Corollary 2 a) and b) that |||Bg(p)*|~'/2Pi(0)| < =+ 1/2) The r.h.s.

of Formula (41) can be estimated by

lIl

C / dk |k(e=)k|)12(1 + alk])?
o 43
— (1 = ) W) JZ i (13)
| [ aklkllap @) B 20l < o= (142 ) 1wl
" o ~ “sind pl/2
pn=1,2
in this case with a generic C' > 0. O

LEMMA 5. Let 0 < ¢ < 0y. Then there is a C' > 0 such that for all 0 < a < g
and all p > 0 the following estimates hold:

a)

1Bo (o) 172 (0) Paat0) | <

C
v/sin 199

C
Vsin ﬂg

Pad @)W (0)|Ba(p)| /2| <

b)

| 1Bty 177253 0P a(6) | <

o
— 7jlgpl/ 2 (45)

C
V/sin ﬁgp

PorO)WL3 0)1Bs(p) /2| <

Hwéﬁ) (9)Pn,z(9)H < Cyp, ‘

WOW @) <co (6)
Proof. We begin with
o v

< va 1Bo(p) 12| |7 50 - AP (a2) - Pa(6)|
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and find with [25, Theorem 11] similarly as in [4, Lemma IV.9.]

‘ <¢’, Ag:i)lhg @) - A9 (azx)_ P, (9)w> ‘
2 —0
<3 [ T (0 A 5000 i)™ P 0 ins,)|

=1 kere (/AT
2

e~k 12(1 + alk])
gayzﬂqﬁ“ DN LIt

pn=1 pn=1,2

< apl¢llI¢'ll. (47)

For ||Pn,l(9)W1(%) (0)|Ba(p)|~'/?|| one shows a similar estimate such that the
claim in b) follows from Corollory 2. Formula (47) and an analogous calculation

for Wl(%) (0) prove the claim in c).
To show a) we estimate similarly as in Formula (47)

(W', Paa(O)WS3(8)Bo (p)| /20

< Cvaally' ||| H?|Bo (o) "2l 0] <

c /
gl
The estimate on |||By(p)*|~ 1/2W1(06) (0) P, 1(8)] follows analogously. O

5 EXISTENCE AND APPROXIMATION OF THE FESHBACH OPERATOR

We set now pg = ¢*/3 = a2 and oy = ¢°/® = a®/? and use the estimates from

Section 4 for p = pg and o = oy.

We apply the strategy from [5], but have to overcome additional difficulties.
First, we generalize [5, Lemma 3.14] to the relativistic case and show the exis-
tence of the inverse [Py, ;(0)(Hu(6) — 2)Pn.1(0)] L.

LEMMA 6. Let 0 <9 < 60y. Then there is a C > 0 such that for all sufficiently
small o > 0 the following holds: The operator Py (0)(Ha(0) — 2)Pp(0) is for
all z € Ay, (o, 00) invertible on Ran P, 1(0), and we have

P (0)(Ha0) — 2P0 Pr@)] < —5 -
sin“ 9pg

Proof. The claim follows from the series expansion

wi®)]

|

H [Fn,l(e)(Ha (9) - z)?nyl(Q)] -1
= 3 PriO)(FHeo(0) = £)Pra(0)] " Pra(6)
n=0

—1—=

% [~W O (O) [P (0)(Hao(0) — )P (6)] Pn,l(e)}"
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= ffowe(pon”?
< |Bo(p0) /2 [Pra(6) (Ho0(8) = 2P (8)] ~ Praa(0)] Ba(po) |
x| = 1Bolpo)"[7/2W ) (6) By (po)|
< [Bo(po)| /2 [Pra(8) (oo (6) = 2)Pra(6)]~ Paa®)lBolpo)'|'/2]"
x |Bo(po)| 72|
< [1Booo) 72 || 1B (o)1 72|

% || 1Ba(p0) /2 [Paa(8) (a0 (6) = 2)Poa ()]~ Pra(®)]Bo(p0)" |2

3 [ 1Baton 12w @ @Bt |
n=0

% [ 1Bo(p0) [F172 [P (0)(Ha(68) = 2)Paa(8)] ' Pra(®)1Bolpo)* 2] |
Ssin2 9/po+/pPo T;) [sin219\/a(1 * a(l * ﬁ))}
C X[ C "
Ssin2 Ipo Z <sin2 9 \/a)

n=0
with a generic C' > 0 independent of z and «. We used Corollary 2 b),
Corollary 1 and Lemma 4. O

We turn now to the existence of the Feshbach operator and generalize [5,
Lemma 3.15].

LEMMA 7. Let 0 < 9 < 0y small enough. Then there is a C' > 0 such that for
all sufficiently small o > 0 and all z € Ay (v, 00) the following estimates hold:

a)

|2 @W O P (Ho0) 2 Pos @) Prs®)] < =
(18)
[P @)t1200) = 2PsO) PrsW @ PO < 9=
(19)
b) For all 1 <1,I',1” < n we have
| P OYW 6)P1(6) (P s(O) Ha0) — )P (0)]
x P a(0)W(0) P ()| < ﬁg (50)
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¢) The Feshbach operator, defined in equation (17), exists for all z €
Ay (o, 00) and fulfills the equation

(Ho(0) —2)7" =
= [ Paa(0) = Pat(0) (Pua(0) Ha(0)Prna(0) = )~ Pra(O)W ) (0) P (6)]
[ ,Ll(é))(Ha( ) )]71
X [ Poi(6) = Paa(0)W ) (0)P01(6) (P (0) Ha (0P s(6) = 2) " Pra(9)]

+Fn,l<e> (ﬁn,mema(e)ﬁn,l(e) —2) " Pa(0), (51)
where the L.h.s. exists if and only if the r.h.s. exists.

Proof.
a) We obtain as in the proof of Lemma 6

| (@)W (0)P1(8) [Prt(6) (Ha(8) — 2)Pus(8)] " Pra(6)

<|[ Pt @ @)1Bs () 72|
< [[1Bo (o) 172 [Pt0) (Hao0) = 2)Prs(8)] " Pra(8)| Boo)' |
x Z [1Ba(p)* 1772w ) (0) Ba ()] 72|

><HlBe<p>l+”2Pn,zw)(Ha,o(e)—z)ﬁn,lw)]‘l 10)1Bo () []|]
% 1Bs(p)*| 72|

c = c "
<
=9 i 9\/po ;::o (sin2 19\/&> ’

where we used additionally Lemma 5 a) and b). The other estimate follows
analogously.

b) Follows similarly as in a).
c¢) This follows from Lemma 6 and Part a) of [4, Theorem IV.1]. O

Having shown the existence of the Feshbach operator, we can turn now to its
approximation by suitable other operators. The aim is to control its numerical
range and gain thus information about its invertability.

We define the operator

QN (50 =3 / ke P (6)[wo.1 (k. 13 6) 1]
u=1,2 keR3

. P1(6; 1K)
HS(0) + =19 (Hy + |K]) —

[wi,0(k, ; 0) @ L¢Py, 1(6)
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as operator on Ran P, ;(0) for z € A, ;(a,00). Futhermore, we define 6-
dependent versions of the operators Z,;+(a) (cf. [19, Equation (8)]). We
set for Im @ #£ 0

Zusleit)i= 3 [ Ak Gwoalkm LS, (6)
pu=1,2 kERS3

—1
x [pw) (G)Héf‘)(e)—En7l(oz)+e*9|k;|} P (0)wi ok, 1:0)PS) (6)

=—el,n,l

dk' le% (e} [e3%
s /k RS eTmpél,i,zW)WO,l(k,u;H)Pe(l,i,l(@)wl,o(k,u;9)P§1,2L,z(9)-
pu=1,27k€

We have Z,;(a;0) = Ue1(0)Zn 1, ()Uer(0)~F for Im6 > 0 and Z, (o 0) =
U (0) Z 1+ (@)U ()71 for ImO < 0. Moreover, we define the following re-
mainder terms:

Remg :=
Poi(O)W @ (0) P,
- n,l(e)W(a)(e)ﬁn,l(@[ﬁn,l(9)(Ha,0(9)_Z)ﬁn,l(9)]_lﬁn

1(0)[ P (0)(Ho (0) = 2) Pyt (0))~ Pr i ()W) (0) Py 1 (6)
1H(O)W ()P, 1(6)

Rem; :=

Py ()W @ (0) P 1(0) [Pt (0) (Ha0(0) — 2) Py ()]~ P (0) W) (6) Py (6)

— Pt (0)WSY () Prt(8)[Pr(0) (Hao(8)—2)Pri(8)] " Pra(O)WLS) (8) P (6)

Rems :=

= P ()WY (0)Pru(0)[Pri(8) (Hao(0) — 2)Pra(8)] " Pra(0) W) (8) Pt ()

Remg := P, /()W () (0) P, 1(6)
We generalize Lemma [5, Lemma 3.16] (see also [19, Lemma A.7]).

LEMMA 8. Let 0 < ¥ < 6y. Then there is a C > 0 such that for all sufficiently
small @ > 0 and all z € A, (a0, 00) the estimate

gV

11, 1t0) (Ha0) =2) = (H (6)—z+e* He = Q1) (2:0)) Paa(B)]]| <
holds.

Proof. We begin with the estimate on Remy:

IRemoll < 3~ || P @)W ) (0)] B (po)| /2
n=1
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—1—=

% By (po)| 2 [Pr,i(6)(Ha0(8) = 2)Pri(8)] ™ Prt(8)|Bs(po)*|"?

| = 1Bolo)*[7/2W () By (po) |
% |Bo(po) [ /2 [P t(6) (Ha0(60) — 2)P(6)) ™ Pna(6) Bolpo)*[ 2]
X | Bo(po)” |2 W (0) Pi(0)
<[| Pua @)W O)] Bo(po)] ~72|[[1Bolpo)* |~/ W) (6) Pon(6)
[Bo(00)] ™72 [Pra(60) (Ha0(6) — )P (6)] ™ Praa(0) Ba(po) "2

% 3 [[[1Ba(po)*|~/2W () (8)| By (o) /2|

— 1=

x H|Be po)l 2 [Pri(8)(Ha0(8) =) Pt (6)]~ P (6) Bo (o) 2]

C
sm 19 QZ (sm i, ) = sin41992\/a

We used here Lemma 5 a) and b), Lemma 4 and Corollary 1. For Rem; we
find

[Rems | <1 Ba(p) /2 [P (6) (Ho0(6) = 2 Pns(8)] ' Poa®)|Botpo)" 2
% (12O (0)] Ba(po) |1/2HH|Ba o)~ 1/2ch5> (6)Pn1(6)
+ [| P (OWLG () Bo(p0) | =72 [[[1Bopo)"| /> W57 (6) P ()
[P OWG 0)1Bo(p0) /2 [[1Botoo)* /W57 (0) P (0)])

C 512 c
< p— a
~ sin? 199 Po sin® 199

using Corollary 1 and Lemma 5 a) and b).
For Rems we use the pull-through formula [4, Lemma IV.8]: We have

Rems =« / dk/ dk'P, 1 (0)a - GO (K, w)ay, (k')
keR3 '€R3

Hop'=1,2
Pil Zz g P(l 7)z | ® XHf+|k|+\k’|>po
HSY(0) + e=O(Hy + |k| + |K]) — =

CGOUK 1 )ay (k) P (0).

Using Lemma 2 (for the resolvent) and [25, Theorem 11] (for the expectation
values of the Dirac matrix) we obtain

(e Pk [K(e K]
|(1, Remyt)')| < Cox Z /<p0 /k/<p0 dk N o

pop' =1
<R O e, (B EAL SO AL 5 0)a - euk)e o P (0)]

elnl

a13
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HPiT“m) ® 1f+P1nz(9) ® X He+|k|+|k'|>po
HSY(0) + e (He + k] + [k']) — 2

X Ha/t(k)XHfSpowwau’ (k’l)XHf<p0¢H

Cg? 2

|k(e kD) (1 + alk|)
<- dk ,/ X "
sin ¥pg uuz’=1 /|k|<p0 /|k /_|k H au (k)X He<po ||

r(e 1K |)|(1 + ofk'])
X /|k’<p dk/| (e ||k/ NG | /K| /Hau VX <ol H
0 \/

C 2
<Gng (/k< dk —>HH1/2XHf<Po¢ HHHI/QXHfSpWH
PO

sin 19p0 |k|2

C 2. 2 /
s1m9p ol Il = g% ([ [l

with a generic C' > 0.
Finally, we consider Rems := P, ;(0)W(*) ()P, ;(#), where we show the esti-

mate with A,(f)(ozx)_ only. The other estimate works analogously. We find
using [25, Lemma 10]

Va| (W', P (0) © xa<peer - AP (az) P (0) © X1y<pot)|
2
k(e k)]
ga dk ———~—
#;1 Ik <po VIE|

% ||BS) (0)a - eu(k)e = P (0)][][9 Il an (k)X by <p0 |

=Cy /|k|< d’“Wllw EH 2\ <] < Capoll/Ill6] = Cv/ag?l4 ]
S pPo

o
Note that the following Lemma 9 holds only for z € AS (v, 00), contrary to
Lemma 8. It generalizes [5, Lemma 3.16] (see also [19, Lemma A.8)).

LEMMA 9. Let 0 < ¥ < 6y. Then there is a C > 0 such that for all « > 0
sufficiently small and all z € A;l(a, 0o) the estimate

Hfo,z) (2;0) — Zn,z(a;H)H < g

sin® 9
holds.
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Proof. We split QESl)(Z; 0) — Z1(a; 0) = Remy, + Remyy, with

Remy, 1= Z / dk P, 1(8)[wo 1 (K, 13 0) @ 14
pu=1,2 kER3

Péﬁ“}z’l(e) @ X H+|k|>po
H(0) + e~ (Hy + |k|) — 2

Ak X )
- Z /k 25 679|k|Pe(l,r)z,z(e)wm(kw;G)Pély,)z,l(é’)wm(k,,u;H)Pe(M)M
pn=1,2 €

[w1,0(k, 15 0) @ 1¢] P 1(0)

and

Remyy, 1= Z / dk Py,1(0)[wo,1(k, i; 0) @ 1¢]
=12 keR3

y Piina(0) @1
H(0) + e=0(H + |k|) — 2

- Z /k - dk Pe(l(,)(r)z,l ® XHr<poWo,1 (K, 13 0)
p=1,2 €

] [w1,0(k, 1; 0) @ 1¢] P 1(0)

[ P (0)
X

H(a) (9) E o+ e_9|k’|‘| wl,O(ka s G)Pe(lofr)z,l(o) & XHi<po-
el — Ll

We start with Remy,: As in the proof of Lemma 2 a) one shows for py < r+ |k
the inequalities

|k| sind

|Eni(a) + 6_9(7“ + |k|) — 2)| = —oo + sind(r + |k|) > (52)

and

po sin ¢
2 )

|Eni(a) + efe(r + |k|) — 2)| = —oo +sind(r + |k|) > (53)

since we have oy < 22 5211”9 < (H'lké) sind for sufficiently small a > 0.
As in the proof of Lemma 4 one obtains using [25, Lemma 10] the inequality

(e " |k])]

VI

1PS) (0)wo 1 (k, ;) S (0)]] < Cg

el,n,l el,n,l

(54)
We find after a little transformation of Remy,

[Remu|| = | > /k dk P 1(8)[wo,1 (k, 11:6) ® L] P (6)

pn=12 E€R3

(e7PHi + Eni() = 2) X+ 1k]> po X H: <po
(Eni(o) +e=?(Hy + [K]) — z) e~ 0|k
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x P (0)[wi o (k, 1:.0) © 1¢] P g(6)
- Z/ dkpe(ln1(9)1”0,1(1477#59)%(12”(9)
u=1,2 kERS3

XHe<po X He+|k|<po ’
<

e 91k|
C 5 5 1/ RICLDIE RICLDIE
< g2+ po)(— dk7+/ A 1 1RUT
g 0)(P0 IK|<po || LE K[ )

—0 2
[ e
k| <po |k|

¢ 5 2P0 ¢ -
< 1 .
<ingd @ o +a®Inpgt 4 po) < od @

wi o(k, 1; 0) P

el,n,l

Here, we split the integration in the first summand in the regions |k| < py and
|k| > po. We use inequality (53) in the first region, and inequality (52) in the
second region.

The estimate on Remy; is more difﬁcult. We split the projection Bgi;yl =
P + 2% ; and obtain for P = Pel as well as for P = P,

el,n eln el,n,l

H > / dk Pe(1 1 (0) @ X <po [wo,1 (K, p; 0) @ 1]
=12 keRS3
l P®1;
H(6) + =0 (H + |k|) —

] [wi0(k, 15 0) ® 1P (0) © Xr1,<p
z

=3 [ ARREL0)© a0
pn=12 €

P®1;
HE(0) = Bng + e~k

S / 4 5 RDI?
N u=1,2 7 keR? |k|

1 wl,O(lﬁ 5 H)Pe(la’r)l 1(9) ® XHe<po

X [|P5) (0)e - eu(R)er o AL, S@)][[[AL 5(0)e - eu (ke o= PE) ()]
P® 1 P
L +e9(H; + [k|) — ””H@ e>—En,l+e—0|k|”

% (|Bna = 2| + | x|

“O1kD12(1 k[)?
SCQQQQ/ 4 IR IRDP(1L + alk])
kER3 |k
H P®1 P

HV(6) + e~ (Hy + [k]) — 2 I H(6) — Eny + |k
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We used [25, Theorem 11]. Note that all estimates on || —m——L2 I
H " (0)+e 9 (Hi+|k|)—=

in Lemma 1 hold also for H[PHéla) (0) — Epny + e 9Kk|]~LP||, since the operator
under the norm in the second expression is the projection of the operator in

the first expression on the vacuum sector with z = £, ;.
Case 1: P = ﬁiﬁ” We split the integration in the regions By := {k €
R3||k| < po} and Bs := {k € R®||k| > po}. Using Formula (27) in Lemma 1 a),

the integral over B; can be estimated by

C 5,5 1 / 1 2 29 C 5
« dk — < ——g°« = a”.
sin29? Oni()? Jren, |k — sin29? Po= iz o?

With Formula (28) in Lemma 1 b) we estimate the integral over By by

C kD 12(1 k|)?
I g2a2/ dk k(e |kD*(1 + afk]) <— g20421np61.
sin” 4 keBsy |k|3 sin” ¢

Case 2: P = FS‘ZL We estimate the resolvents with Lemma 1 ¢) and obtain

the estimate

c g2a2/ dk (e ?lkDI* (A + alk]) <_ ¢ 2,2 _ c Pa?.
62 sin? 9 kER? k| ~ 62sin? 9 62 sin® ¥

The following Lemma generalizes [19, Corollary A.9]. Note, however, that we
do not remove the a-dependence of the real part.

LEMMA 10. There is a constant C' > 0 such that for all sufficiently small o > 0
the estimate

[Unr(a™t,3;0) 71 Z, 1+ (@Unr (@, 350) — Vg1 ()] < Cg’a
holds.
Proof. We consider the case with the minus sign only. It suffices to show
[Unr (™!, 3;0) " m Zml,_(oz)UNR(ofl,S; 0) = Zn1,imll < Cq’a.

1

Because of [:c,He(la)] =iala and |el®*® — 1] < alk||z| we obtain from [25,

Lemma 10 and Lemma 12]

|tm Z,1— () — g°x > > / . dw (B (@) — En ()

n',l: p=1,2
En’,l’ (Dt)<Enwl(Ot)

Enlyl/ « *En,l « 2
(| ( ) ( )|) P(la'r)z lel“(w) . l’Pe(la)/J/ey,(w) ! I.P(a) lH § g20t.

K
X
A2 el,n, 50 eln,
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The integral over w and the sum over the polarizations can be done in the same
way as in the non-relativistic case (see [19, Remark 1]). If we take additionally
into account that |E, ;r(a) — B, 1(a)| < Ca?, we obtain

M Zng— (@) =¢°5 D (Buw(@) = Enila))

n’Jl":n'<n

(| Enr i (@) = B a()])?
X ) Péﬁrz,lxpéfr)z’,l’xpélc,?z,l" < g’a.

[SVRN )

[25, Lemma 8] implies Uxr(a~,3;0) "B, = P tnr(a~?,3;0). The

claim follows together with [25, Lemma 7], [25, Equation (76) in Lemma 8§]
and [25, Lemma 11]. Note that x admits an analytic continuation. (]
6 ESTIMATES ON THE NUMERICAL RANGE
The estimates in Section 5 allow us to control the numerical range of the
Feshbach operator. But since Re Z, ;1 («) depends on «, we have to prove
that Z, +(a) is of order g*:
LEMMA 11. Let 0 < 9 < 6y and n > 2. Then the following holds:
a) There is a C' > 0 such that for all sufficiently small o > 0 the estimate
1 Zn s (@)l < Cg?
holds.

b) There is a ¢ > 0 such that for all sufficiently small o > 0 the estimates

Im Z,;—(a) > cg* + O(g*a)
I Zy1,4 () < —cg? + O(g°a)

hold.

Proof.

b) follows immediately from Lemma 10, since by [19, Theorem B.1] there is a
¢ > 0 such that the estimates ImY,,; _(a) > cg® and ImY,,; 1 () < —cg? hold
(cf. the Definition (22) of ImY,, ; + () as well as the remark before Theorem

1).

a) As in the estimates on Remy, in the proof of Lemma 9 we find

dk
I Z /k R36T|]€|Pe(l?r)z,l(9)w0,1(kvu;Q)Pe(l(,xr)z,l(o)wl,o(ka,LL;G)Pe(l(,X%,l” <Cg?.
pn=12 €
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Moreover, we obtain
1SS [ bR 0) @ iz una . pis6)
p=1,2 keR?

x PO (0P (O H (0) — By + e O lk|) !

=—el,n,l el,n,l
x PSO ((0)wr ok, 10) P 1(0) @ X1 <p0 | < Cg™.

To see this, we proceed as in the estimate on Remy;, in the proof of Lemma 9:
In Case 1 we can estimate the integral over By by

€t [ g MTMPOr ol € C
sin®” 8,(a) Jren, |k| sin ¢

and the integral over By by

B L G (2.
—g 5 < ——g°
sin?”  Jiep, |k| sin ¢

In Case 2 we obtain the estimate

C [ B ab O
Opsind”  Jpcps || = dpsing”

[25, Lemma 9] yields the claim. O

This lemma implies in particular that the numerical range of Z,, ; 1 () is con-
tained in a ball around 0 with radius O(g?). In particular, this holds for the real
part Re Z,,; +(a) = ReY,,; + (). Asin [19], there are constants a,b > 0 such
that NumRanY,, ; 4+ () C g?A(c, a,b) with A(c,a,b) = ic + ([—a,a] +1][0,b]).
As in the non-relativistic case, we set v := min{¥, arctan(c/(2a))}. Since we
are interested only in n < n, we can choose the set A(c,a,b) and the angle v
independent of n and .

Thus, we can control the inverse of the Feshbach operator Fp, ,g)(Ha(0) — 2)
for z € A5 (@, 09) analogously to the non-relativsitic case (see [19, Lemma 6])
as follows (see Figure 1):

LEMMA 12. Let 0 < ¥ < 6y and 0 < g < ¥ small enough. Then the following
estimates hold:

a) There are constants C1,Cy > 0 such that Fp, 0)(Ha(0) — 2) has
bounded inverse for all z € Ay (a, 00) \ D(NumRan(E,, i(a) — Y,(a)
]-f + eielel & Hf) 701 . 92\/a) ) and fO?" A€ [En,l(a) -

5n,l,7(a); En,l(a)
+ On1,4 ()] the esimate

X o

(0)
|Ran Pel,n,L

[F e, 10y (Ha(0) = N) 7| <

holds.
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b) There are constants C1,Co > 0 such that for all z € C \
D(NumRan(E,, ;(a)

- anl(a))lRanPﬁ”(o)’

Zn1(a50)) | pleo ©) defined on RanPe(ﬁ)Ll(H) has a bounded inverse
el,n,l (A

which fulfills the estimate

Cy - g*a) the operator (En () — 2z —

N(En (@) = 2 = Z(050)) g o> (o))"
C

< ?
- dist(,z7 NumRan(En,l(a) - anl(a))lRan P(la) L(O))

(56)

and in particular (55).

Proof. This can be shown using Lemmas 8, 9 and 10 exactly as in the proof of
[19, Lemma 6]. O

For | =1 or | = n, the set A5, (a, 0¢) is strictly interior of the set A, ;(a, o),
such that we need a relativistic analogon of [19, Lemma 7] in this case.

LEMMA 13. Let 0 < 9 < g and 0 < g < ¥ small enough. Let moreover
Il =1 orl=n. Then the following statements hold: The Feshbach operator
Fp, 1(0)(Ha(0) = 2) is bounded invertible for all z € Api(a, 00)\ Ay, (@, 00) and
there is a C' > 0 such that for A\ € [Ep, — 0p,—, En1(a) — 0n,1,— ()] respectively
A € [Enn(@) +0pn+(@), En + 0n 4] the estimate

C
sint|A — B, 1(a)] — Cg?

1 Fp, 0y (Ha(0) = A) 71| <

holds with | = 1 or I = n, respectively. The same estimate holds for [E, (o) —
A= Q0
Proof. This follows analogously to the non-relativistic case (see the proof of [19,

Lemma 7]) from Lemma 7 b). For the claim on [E, ;(a) — X — Q(a)()\; 0)]71,

n,l

note additionally Lemma 8 and the proof thereof. O

COROLLARY 3. Let 0 < ¥ < 0y and 0 < g < ¥ small enough. The for all
1 <1 < n the following holds:

o(H(0)) N Ap (e, 00)
C D(NumRan(E, () — V(o) @ 1t + e 19 ® Hf)|RanP(10) ; Cy - g*Va),

where C1 was defined in Lemma 12. In particular, [En — 0p,—, Ey + 0p 4] C
p(Ha (9))

Proof. This follows because of Lemma 7 c¢) immediately from Lemma 12 and
Lemma 13. U
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REMARK 3. The estimates above hold as in the non-relativistic case (cf. [19,
Remark 5]) also for —0y < ¥ < 0, if one reflects the sets Ap (o, 00) and
A (a,00) about the real azis and replaces Yy, () = Y1, — (@) by Yo 1 (@) for
the localization of the numerical range.

E, -0,
. 20,0 ()= >
EfS, E.8.{0) E -ga E, E +ga E +é “) B g, a E,E tga E, +S 03 o Etga B (@) EfS,

g

o
LS5

*c

4 ¢ Co

A (ao) | A, (06, A,z(ﬂ,6:)= A (0,0) Ao | A(a0)

Figure 1: The integration contour in the relativistic model for the principal
quantum number n = 3.

7 LIFETIME OF EXCITED STATES

We are now able to prove Theorem 1 similarly as in the non-relativistic case.
The fine structure splitting induces some differences, however: Since a spectral
cutoff around the fine structure component considered would converge to zero
as o2, we introduce a spectral cutoff around all the fine structure components of
the corresponding principal quantum number so that additionally contributions

of the other components have to be estimated.

Proof of Theorem 1.

Step 1: We pick a function F € C$°(R) with F(x) = 0 for |z| > 1 and F(z) =

for || < 1/2 and define a cutoff function F(z) := F(6; (x — E,)). As in the
non-relativistic case (see step 1 in the proof of [19, Theorem 1]) one shows

(@), e i*Ha F(Ho)(a)) — {(a), e~ (a))| < C/a uniformly in 5 > 0.
Step 2: We write

((a),e™ M F(Ha)t(a))

_ = —iAs . o .
_ 2ml€1ﬁ)1/d)\e FOVFO N —i€) — F(0,A+ie)

=—— [dxe "M FW[f(B,)) — f(6,N)],

2mi

where f(0,)) := (zb(a;?),mw(a;@)) with ¥(a;0) = ¢(o;0) @ Q and
d(a;0) := Ua(0)p(a). (We choose Im6 > 0.) In the first step, we used [36,
Theorem VII 13]. In the second step, we used the dilation analyticity of H,(6)
(see Theorem 3) and the fact that H,(6) has no spectrum in the interval
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[Ep, —6n,—, Ep +dpn,+/2] (see Corollary 3). We split the integration into several
intervals:

—5 [ AeTEVFO,A) = £(0,))]

1 [ On [ Prw(@F8,0 4 (a) , .
= —— dx —iAs 9. )\) — 0.\
{Z/E eTN[FB.0) ~ £(0.0)]

27r1 I’'=1 n,l’(a)ftsn’lly_(a)

1 (0) =61, (@)
+/ A e PN EOF@,N) — £, )]

En—b6n,—

E,+6n,+ . _
v e NFOF(E,A) - (6, A)]}

Enn(0)+0n,n,+(a)

We used here F(A) =1 for A € [Ep1(a) — 0n,1,— (), By n(@)

+ 6nn,+ ()] C [En —6n/2, En + 0n/2].

Step 8: For X € [E,, (&) — 01— (@), Ep () + 0p 1+ ()] we observe that Equa-
tion (51) in Lemma 7 implies

(0(0:0), g5 00 0)) = (03 7). 0 (H(6) = X))
and find
F(0,0) = ((a;0), Fp, (o) (Ha(0) — \) " (e 0))
=((0;0), [Eni(c) = X = Zyn1(c;0)] " b 0))
- <w(a§§)7 [En,l( ) -\—2Z, l( §9 ]_1
X [an,z(e)(Ha(e) - )‘) (En (04 - A+ 1e1 ® He — Zn,l(OG 9))Pn,l(9)]
X Fp, 10y (Ha(0) — X) "0 0)) =: £ (0, A) + Bi(6,\)

using the second resolvent equation. Here f(0,\) is the first term in the sum.
Using the dilation analyticity and the resolvent identity once again, we obtain

F0,0) = (), [Ena(a )*A*Zn,z,f(a)]_lsf)(a»
=(@(0), [En(a) = X = Unr(a™", 3;0) 7" Zn 1~ (a)UUnr (", 3;0)] 7 ¢(0))
=(#(0), [Eni(a) = X = Yo~ ()] 71 6(0))
[

—(9(0), [Eni(@) = A = Ypu ()]

Unr (o™ 17 3;0) " Zn - (@Unr (a1, 350) = Yo - (a)]
[Eni(@) = A —Usr(t,3;0) " Zn g (a)Usr (e, 350)]16(0))
(A) + Ba, (),

X X

=: /-
where f_()\) is the first term in the sum. We set B(6, \) := By (6, \) + By, ()\).
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Accordingly we obtain

) = (), [Eni(@) = A= Zn i1 ()] ()
(0), [Eni(a) = A = Y14 ()]~ 9(0))
—(¢(0), [Eni(@) = A= Yo (a)] !

Unr(a™",3;0) 7 Zp g (@)Unr (e, 3;0) — Vi (a)]

(@) = A = Unr( ", 3;0) " Zp 4 ()Unr (7, 3;0)]716(0))

where f, ()\) is the first term in the sum. We set B(6, \) := By (6, \) + Ba.4 (\).
As in the non-relativistic case, we move the contour for It (M) and estimate the
terms B(6,\) and B(6, \) on the real axis. We find

n,1(0)+0n,1,4 () . _
/ dA 71/\5[]0(9’ )‘) - f(@, )‘)]

nl(a nl—a)

n,1(Q)+0n,1,+ () .
/ d\e 1*[B(0,\) — B(6, )]
E

nla) 67117(0‘

+ /C ) - )

5

v @
Ca+C3+Cy

where C' := C1 4+ Cy+ C5 + Cy + C5 with Cy := [Ey () — I 1,— (@), Ep (o) —
St—(0)/2), Co = [Bni(@) = 6t—(0)/2, Bt (@) = 61— (0)/2 — 180(a)],
Cs = [Bua(@) = Gni(0)/2 = 100(0), Ena (@) + 01+ ()/2 = id,u(a)],
Cy = [Eni(a) + 0ni4()/2 = i0ng(@), Eni(a) + 0ny4(a)/2] and Cs =
[Eni(a) + 0n1+()/2, By (@) + 65,4+ (cr)]. Note that this contour lies par-
tially outside A, (o, 00) , which is possible since we do not consider any

~—
|
™
&
|
S
o
o
I3
(9]
L
IS
»
~
O
|
™
—~
I3
=

integrals which contain lea’l) (2;0). Cp is a suitable contour to pick a pole

contribution of f(#,z). We choose as in the non-relativistic case Cp =
[Eni(@) + g°(=(a + ¢/2) = ic/2), Bni(e) + ¢*((a + ¢/2) = ic/2)] + [En () +
g*((a+¢/2) —ic/2), Epi(a) + g*((a+¢/2) =i (b+3¢/2))] + [Eni(@) + g*((a+
¢/2) =i (b+3¢/2)), Eni(@) + g% (= (a+c/2) =i (b+3c/2))]+ [Eni(a) +*(—(a+
¢/2) —i(b+3¢/2)), Eni(@) + g*(—(a+¢/2) —i(c/2))].

Estimates on the real axis: We show the estimate on By(#, A). Using Lemma

8, Lemma 9 and Lemma 12 we obtain |B;(#,)\)] < Cv~—2- (Ew(ag;%. It

is easy to see that [dA (En’l(agf_% is O(y/«@). The same estimates hold

for B1(6,\). The estimates on Bs +(\) work analogously using Lemma 10 and
Lemma 12.

Estimates on the contour C: We estimate the integral fc|e_isz||f+(z) -
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f—(2)||dz|: Note that

1
Eni(a) —z—Yn:_(a)

+((0), ¢(0))

— Y-
Epi(a)—2z ni-(@)
holds. Accordingly, the leading terms of f_ (z) and f~+(z) cancel, and it suffices

to show that the remaining terms are at least of order /. It follows from
Equation (22) and Lemma 11 that ||Y,,; +(a)|| < Cg? Thus we can estimate

1
|<¢(0)5 En,l(a) _ ()\ _ ign,l(a))YnJ’_(a)
1 g2

 Bol@) — = 1m(a)) — Yor—(@) "N = O @ A T (e

Since the contour C3 has length O(a?), we estimate the integral over the ex-
pression above by Ca. Similar estimates hold on C;, C5, Cy and C5. The
integral over f+(z) can be estimated analogously.

Pole-Term: The integral along Cy over f_(z) yields the claimed leading term,
the integral over f(z) is zero.

Step 4: For A € [Enp(a) — dpp,—(a), Eny(a) 4+ 0pp +(a)] with I # 1 we
observe that ¢(a) € Ran P(l 7)L , implies

P (0)0(a50) = (P 1/(0) ® Xt1,2po + PS5 1 (8) © 1e)(0:0) = (0 6)

and P, 1 (0)1(a; 6) = 0, which in turn shows

x [J’”P y<e>( ( ) — ﬂ

% Pt ()W) (0P (0) (Pt (O)Ha ()P (6) — A) P

- ((028), P o (0) (P (0) Ho (9P 1 (6) — )~ P (B0 ))
=: f1(0,\) + f2(6, )

using (51) in Lemma 7, where f1(6, A) is the first summand. Using the resolvent
identity we find f1(6,A) = f1.4(0,\) + f1,5(0, A) + f1,c(0,A) with

fl,a(ea)\) = <¢(a79) ﬁn l’( )( nl’(e)Hoz,O( F (9) A
X P (O)W ) (0) Pyt (0)Fp, 0 (Ha(0) = N) ™ P s (0)W ) (0) P, 1 (6)
X (Pt (0)Ho o (0) Pt (0) — \) P is (0)90(; 0)),
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F10(0,2) = =((03 0), P s (0) (Prr () a0 (0) P (6) = 2) ™
X P (O)W @ ()P, 11 (0)(Pris (0) Ho(0) Pry () ) !
X P ()W (0) Py 1 (6) [ F, N))( a(0) = N)] " P (O)W ) (0)P,, 1 (0)
X (P, (0)Ha,0(0)Pry (0) — ) P (0)(a; >

X P (O)W ) (0) P10 (0 )[fp l,w)(H (0) = N)] " Po (O)W @ (0)P,. 0 (6)
X (Pt (0)Ha(0)Prr(0) = X) ™ P s (O)W ()P, 1(6)
% (P (0)Ha o (0) Py (0) = N) Py (0)0(0s0))

fl,c(ea >‘) = <1/1(04, 9_); Fn,l/(o) (Fn,l’ (G)HQ,O(Q)Fn,l’ (9) - )\) !

Py (0)(Pry (0)Ho Pry (6) — X)
P (0)[Fp, 0y (Ha(0) = N)] ' P ()W (0)P,,1(6)
TP ()W (0)
TP (0)9 (e 0)
‘We obtain

Fra(0.2) =

<Fp, . 0)(Ha(0) = NP, ()WL (0)1 (0 0)).

Lemma 5 ¢) and Lemma 12 a) imply

1 9203

a(0,0)] < ,
e < E ToF g2

which shows
o (@) +0,, 17 4 (@) p2
/ AN [fra(0,0)] < 28 = O(a?).
En,l’(a)izsn,l’,—(a) @

In order to estimate f15(0, A) it suffices to consider the first summand, which
can be estimated according to

1 —
TBoa(a) — (Vs 0),

X Pt (@)W (0) Py (0) (P (0) Ha (8) P (6)— )
) —

% [Fr, )(Ha(0) = N)] " Py (O)WL (0)i(050))]

< C 9%9po
T Eni(a)=A2 g%

TP (O)W O (0) Py (6)
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where we used Lemma 5 c), Lemma 12 a) and Lemma 7 b) in the last step. It
follows that

o (@) +0,, 17 4 (@) )
/ AN [ fr0(0,\)] < 09”0 — O(g) = O(*/?).
En,zl(a)—‘sn,z',—(a)

Eventually, we obtain by Lemma 12 a) and Lemma 7 b)

N ST @) (),

x (P (0)Ha (e)ﬁ (0) — )\)_1ﬁn7l/(G)W(O‘)(H)Pm/(e)
% [Fr, o) (Ha(0) = V]
X Py ()W @ (0)P,, 11(0)
% (Pt (0)Ha P (6) = X) ™ Prus ()W) (6) Py 1 (0)1(cx; 0))]
1 g*
<O I
=B e
Integration yields
i (@) +6,, 1 4 () 92
/ A If1e(0. 0] < €2 = ().
B, 1r(a)=6, 11, _(c) o

Now, we have to treat the term f2(6, ). Using the resolvent identity we find
K

f2(0,N) = f2,4(0,N) + f2.5(0,A) + f3..(0,\), with
Fo.a(0,2) :=(0(; 0), P s () (P (0) Hor 0 (0) Pris (0) — N) ' Proir (0)(e; 0)),
Fan(0,0) = < (58), Py (0) (P (0)Hao () P (6) — A)

) v (0
n () (a)( nl’(e)

X (Pn,l’(o)Ha,O(e)Fn,l’(G) —A) Por(0)¢(as0))

and

f2,e(0,0) := (¥(;0), Pp () (P (0) Hao(0) Proir () — X)
X Pryr ()W (0) P,y 11 (0) (Pr (0) Ho () Py (6) — A) ™
X Pry (O)W ) (0) Py, (0) (P (0) Ho 0 (0) P e (8) — X) ™ P () (013 0)).

)

-1

Using the dilation analyticity we obtain

1

f2.a(0,\) = m(

P(;0),9(; 0)),
which implies fa (6, \) — f2..(f,\) = 0. Moreover, we have

. = (¥(0;0), W (0)(a; 0)) = 0

fau(0,0) = B =)
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and
L e @) 9\, ,
[F2e® )] = 5l (e 10), Py (0)W ) (0)P,,.1/(0)
X (P (0)Hao (0)Poyr (0) — X) " P i ()W (0) P, 1 (0)(c; 0))|
92
=By

where we used Lemma 7 b) in the last step. Integration yields

E, y(@)+6, 1/ 4 (a) 92
/ A [f2.0(0.3)] < CL = O(a).
En,z'(a)*‘sn,w,f(a) a

Step 5: For A € [Epn(a) + dpn+(a),En + 6, 4] and also for A € [E,, —
On,—y En1(a)—=dp,1,— ()] we have to proceed somewhat differently: We consider
the first case only and make a case distinction.

1st Case: 1 <1< n. Lemma 13 with " = 1 implies || Fp, ,, (9)(Ha(0) -2 <
Sinﬁl)\_Eﬁ,(a)‘_CgQ < aQ, which we use to estimate f1(9 A). f2(0,)) can be
estimated as in Step 4. Note that for both the estimates on f1(6,\) and on
f2(6, \) the integration limits have to be changed accordingly. Thus, we obtain
as in Step 4

nl(a) 67117(0‘) . _
| / e N O£, N) — 16, V)] = O(a).

2nd case: | = 1. Using the resolvent identity we find

F(0,0) = (¥(c;8), F, o) (Ha(0) = )7 05(;0))

=(p(0:0), [Eni(0) = X — QW) (3 0)] " (a; 0))

— (1 0), [Ena(a) = X — QL (X 0)] !

% [Fpy1(0)(Ha(0) = X) = (Ena(c) = A+ e La @ He — QL) (3;0)) Pt (0))
% [Fr, 10)(Ha(0) = V)] '90(0:0)) =: F(0,)) + B(6, ),

where f(A,)\) is the first summand. Lemma 13 yields the estimate

| Fp, .0y (Ha(8) — N7 < sinm,\_EnC,z(a)\—Cf and the same estimate for

[Eni(e) = A—Q a)()\ 0)]~!. Thus, Lemma 8 implies

Cg*Va
B0, )\)] <
[B(6 )] < (sind|\ — Ey (o) — Cg?)?

and finally

n 1(04) 57%1,*(0‘)
/ AFO|B6.N)] = O(g) = O(a®?)
Ep—0n,—
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with the same reasoning as in the non-relativistic case (Proof of [19, Theorem
1], Step 2). The same holds for B(6, \).
To estimate f(0, \),we use

f(oa )‘) - <1/)(O‘; 9_)7 [En,l(a) - A]_ll/f(a; 9)>+
+ ($(50), [Bn(@) = N QT (A 0)[Ena (@) = A = Q1% 0)]~"4i(:0)).
The first summand cancels with the corresponding summand of f (6,)). The
c

second summand can be estimated by g2 A 7y which
implies

1(a)=Al (sin 3| A—Ey 1 ()| -Cg

En1(a)=6n,1,—(a) - ~ _
/ AANFO)[F(6,)) — F(B.3)] = 0(¢*?) = O(a)

Ep—6n._
as above. O
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ABSTRACT. In this short note we study foliations on surfaces with
rationally connected leaves. Our main result is that on a surface there
exists a polarisation such that the Harder-Narasimhan filtration of the
tangent bundle with respect to this polarisation yields the maximal
rationally connected quotient of the surface.
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1 INTRODUCTION

Let X be a smooth projective variety over the complex numbers. In this note
we are interested in foliations with rationally connected leaves. In [KSCTO07] it
is shown how to construct such foliations from the Harder-Narasimhan filtra-
tion of the tangent bundle of the variety. This construction depends heavily
on a chosen polarisation, and therefore the question arises how this foliation
varies with the polarisation.

There is another way to construct a fibration with rationally connected fibers,
the mazimal rationally connected quotient. This is a rational map whose fibers
are rationally connected. Almost every rational curve in X lies in a fiber of
this map.

We can ask if the Harder-Narasimhan filtration of the tangent bundle always
induces the maximal rationally connected quotient with respect to any polari-
sation. The answer is negative already on surfaces as shown by an example of
Thomas Eckl [Eck08].

In this note we will prove that on surfaces there always exists a polarisation such
that the Harder-Narasimhan filtration yields the maximal rationally connected
quotient.
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2 PRELIMINARY RESULTS AND NOTATION

Let X be an n-dimensional projective variety over the complex numbers with
an ample line bundle H. Given a torsion-free coherent sheaf F on X, we define
the slope of F with respect to H to be

Cc1 (]:) - H1

rk(F)
We call F semistable with respect to H if for any nonzero proper subsheaf G of
F we have pup(G) < pn(F).
If there exists a nonzero subsheaf G C F such that pum(G) > pu(F), we will
call G a destabilizing subsheaf of F.

pr (F) =

THEOREM 2.1 ([Mar80, Proposition 1.5.]). Let F be a torsion-free coherent
sheaf on a smooth projective variety and H be an ample line bundle on X.
There exists a unique filtration

O=FgCH C...CFr=F

of F depending on H, the Harder-Narasimhan filtration or HN-filtration, with
the following properties:

(i) The quotients G; := F;/Fi_1 are torsion-free and semistable.

(ii) The slopes of the quotients satisfy pr(G1) > ... > p(Gr).

DEFINITION 2.2. Let F be a torsion-free coherent sheaf on a smooth projective
variety. The unique sheaf F; appearing in the Harder-Narasimhan filtration of
F is called the mazimal destabilizing subsheaf of F.

DEFINITION 2.3. Let F be a coherent torsion-free sheaf on a smooth projective
variety with Harder-Narasimhan filtration

O=FoC...CF=F

with respect to an ample line bundle H. If the slope of the quotient F;/F;_1
is positive with respect to H, then F; is called positive with respect to H.
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REMARK 2.4. Note that the construction of the Harder-Narasimhan filtration
naturally extends to Q- and R-divisors, i.e. we do not need to assume that the
chosen polarisation is integral.

Obviously, the Harder-Narasimhan filtration depends only on the numerical
class of the chosen ample bundle. In particular it makes sense to ask how the
filtration of a given sheaf depends on the ample bundle sitting in the finite
dimensional vector space of all divisors modulo numerical equivalence.

We can now state an important result originally formulated by Miyaoka and
explicitly shown in [KSCTO07]. For a survey on these and related results we
refer the reader to [KSCO06].

THEOREM 2.5 ([KSCT07, Theorem 1]). Let X be a smooth projective variety
and let
O0=FoCF C...CF,=TX

be the Harder-Narasimhan filtration of the tangent bundle with respect to a po-
larisation H. Write p; := up(F;/Fi—1) for the slopes of the quotients. Assume
w1 >0 and set m := max {i € N|u; > 0}. Then each F; with i < m is a folia-
tion, i.e. a saturated subsheaf of the tangent bundle closed under Lie bracket.
Furthermore the leaves of these foliations are algebraic and for general x € X
the closure of the leaf through x is rationally connected.

Let X be a smooth projective variety and assume the conditions of Theorem
(2.5) are fulfilled. Thus we obtain foliations Fi,...,F) with algebraic and
rationally connected leaves. By setting

¢i: X --» Im(g;) C Chow(X)
x +—  F;-leaf through =

we obtain a rational map, such that the closure of the general fibre is rationally
connected, see [KSCTO7] Section 7.

There is another map with this property called the mazimal rationally con-
nected quotient, or MRC-quotient, for short based on a construction by Cam-
pana [Cam81] [Cam94]| and Kollar-Miyaoka-Mori [KMM92], see also [Kol96,
Chapter IV, Theorem 5.2].

THEOREM 2.6 ([KMM92, Theorem 2.7.]). Let X be a smooth projective variety.
There exists a variety Z and a rational map ¢ : X --+ Z with the following
properties:

e the fibers of ¢ are rationally connected,

e a very general fiber of ¢ is an equivalence class with respect to rational
connectivity and

e up to birational equivalence the map ¢ and the variety Z are unique.

In this paper we ask if the Harder-Narasimhan filtration with respect to a
certain polarisation yields the MRC-quotient. We will give a positive answer
for surfaces in the next section.
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3 RaTioNALLY CONNECTED FOLIATIONS ON SURFACES AND THE MRC-
QUOTIENT

In this section X denotes a smooth projective surface over the the field of
complex numbers.

We want to investigate the regions in the ample cone which induce the same HN-
filtration. More precisely we divide the ample cone into parts, so that in each
part we get the same HN-filtration of the tangent bundle. With this at hand we
are able to show that the MRC-quotient comes from the Harder-Narasimhan
filtration of the tangent bundle with respect to a certain polarisation.

In order to compute the HN-filtration of the tangent bundle on surfaces, we
only have to search for a destabilizing subsheaf whose quotient is torsion-free.
This is formulated in the next lemma.

LEMMA 3.1. Let X be a smooth projective surface. If F C TX is a destabilizing
subsheaf with respect to a polarisation such that TX/F is torsion-free, then the
Harder-Narasimhan filtration is given by 0 C F C TX.

Proof. Let H be a polarisation and F a destabilizing subsheaf of TX with
respect to H. Consider the exact sequence

0— F —TX — TX/F — 0.

Using that the rank and the first Chern class are additive in short exact se-
quences, we obtain

1 1
pr(TX) = Suu(TX/F) + Spm (F).
Since pg (F) > pp(TX), we therefore have pg (F) > py(TX/F). That is,

0CFCTIX

satisfies the properties of the Harder-Narasimhan filtration and by the unique-
ness of the HN-filtration we are done. O

NOTATION 3.2. We write N''(X) for the Néron-Severi group and N¢(X) (resp.
Ni (X)) for the vector space of Q—divisors (resp. R—divisors) modulo numerical
equivalence on X. The convex cone of all ample R—divisors in N3 (X) is denoted

by Ampg (X).

Now we define the regions in Ampg(X) we are interested in. Let H € N(X)
be an ample bundle. If TX is not semistable with respect to H, let F be
the maximal destabilizing subsheaf of TX with respect to H, i.e. the Harder-
Narasimhan filtration of TX with respect to H is given by 0 C F C TX. We
call

. 1 .
Ay = {H S AmpR(X) | (Cl(]:) — 501(TX)) -H > O}
the destabilizing chamber with respect to H.
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REMARK 3.3. By Lemma (3.1) the condition (c1(F)— 3¢1(TX)) -H > 0 ensures
that for all polarisations in Ay we get the same HN-filtration, namely 0 C F C
TX. So we have indeed defined the regions in the ample cone, in which the
Harder-Narasimhan filtration of the tangent bundle remains constant.

Note that if the tangent bundle is semistable with respect to a certain polar-
isation, then we get a chamber such that for all polarisations in this chamber
TX is semistable. This region is called the semistable chamber.

Concerning the structure of these chambers we prove the following lemma.

LEMMA 3.4. Let X be a smooth projective surface. We have:

(i) The destabilizing chambers and the semistable chamber are convex cones
in Ampg(X).

(ii) The semistable chamber is closed in Ampg(X).
(i1i) The destabilizing chambers are open in Ampg(X).

(iv) The destabilizing chambers and the semistable chamber give a decompo-
sition of the ample cone, i.e. the union of all chambers is the ample cone
and the chambers are pairwise disjoint.

Proof. The convexity property of both the semistable chamber and the desta-
bilizing chamber follows directly from the linearity of the intersection product.
Statement (i47) is a direct consequence of the continuity of the intersection
product, since for a maximal destabilizing subsheaf F C TX the condition

(ar(F) - %cl(TX)) “H>0

is an open condition.

To prove (iv) note that by definition of the chambers, each polarisation appears
in at least one chamber. Since for a given polarisation the associated maximal
destabilizing subsheaf of T'X is unique, the polarisation appears in exactly one
chamber.

Statement (i¢) is a direct consequence of (#i7) and (iv). O

In the proof of our main result, we will use the following corollary.

COROLLARY 3.5. Let X be a smooth projective surface. Let £ be a line segment
in Ampg (X)), such that ¢ does not intersect the semistable chamber. Then ¢ is
contained in a single destabilizing chamber.

Proof. Assume / intersects at least two destabilizing chambers. By Lemma
(3.4) we get a partition of ¢ into disjoint open sets. This is impossible because
¢ is connected. O
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To prove semistability of the tangent bundle on certain surfaces having many
automorphisms, we will give a useful lemma. Let o0 € Aut(X) and F C TX.
By means of the differential of o, we can identify TX and ¢*7X. Thus we can
interpret o*(F) as a subsheaf of TX. For instance, if p € X and F := TX ® 7,
then o* (.7:) is identified with TX ® Io-—l(p) cTX.

LEMMA 3.6. Let X be a smooth projective surface and let o € Aut’(X). Let
F be the mazimal destabilizing subsheaf of TX with respect to some polarisa-
tion. We then have o*F = F. In particular: If F is a foliation then the
automorphism o maps each leaf of F to another leaf of F.

Proof. Let H € Ampg(X) and let F be the maximal destabilizing subsheaf of
TX with respect to H. We compute the slope of o*(F) C TX:

pr (0*(F)) = H-(a(o"(F)))
= H-o0%(a(F))
= H'Cl(]:)
> 1c(TX) - H.

We give an explanation of the third equality. Recall that the group of auto-
morphisms acts on the Néron-Severi group. Since N'(X) is discrete, Aut’(X)
acts trivially on N*(X), i.e. o*(c1(F)) = c1(F).

We therefore have shown that o*(F) is a destabilizing subsheaf of TX. By
Lemma (3.1) and the uniqueness of the maximal destabilizing subsheaf of TX,
we conclude that o*F = F. O

EXAMPLE 3.7. Hirzebruch Surfaces

Let ¥, be the n-th Hirzebruch surface and let 7 : ¥,, — P! be the projection
onto the projective line. We denote the fiber under the projection by f and
the distinguished section with selfintersection —n by Cjy. Recall (see [Har77],
chapter V.2) that N(¥,) =< Co, f > and a divisor D =, aCp + bf is
ample if and only if @ > 0 and b > an. The canonical bundle is given by
—Ks,, = 2Cp+(2+n)f. The relative tangent bundle of 7 is a natural candidate
for a destabilizing subbundle. We have the sequence

0—Tsg, p —T%, — TP — 0
Let H := 2Cy + yf be a polarisation. Then one can compute that Ty /p: is
destabilizing if and only if —2z — nx 4+ 2y > 0. In particular we compute for
n > 2:
—2x—nx+2y > -2z —nx+2nr=-—-2x+nx >0.

Therefore, for n > 2 the HN-filtration is given by

0C TX/PI cTX
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Figure 1: The ample cone of X = ¥y and the chamber structure. Here T)l( /p1
and T)Q( /p1 denote the relative tangent bundle of the first and second projection.

for all polarisations. In other words we obtain only one destabilizing chamber.
For n = 0 we have ¥y = P! x P! and we get three chambers. The two destabiliz-
ing chambers correspond to the two relative tangent bundles of the projections.
They are cut out by the inequalities x > y and x < y. There is a chamber of
semistability, which is determined by the equation z = y.

For n = 1 we see that for z > %y the relative tangent bundle is destabilizing.
Since Y7 is the projective plane blown up at a point p, the group of automor-
phisms is the automorphism group of the projective plane leaving p fixed. The
destabilizing foliation corresponds to the radial foliation through p in the plane.
So if there were another foliation F coming from the Harder-Narasimhan fil-
tration of T'31, we could deform the leaves with these automorphisms. Then
we would again obtain leaves of this foliation by Lemma (3.6). So unless F is
the foliation given by the relative tangent bundle of the projection morphism,
we could deform each leaf of F while leaving a point on the leaf not lying on
Cy fixed. Thus the foliation induced by F would have singularities on a dense
open subset of ¥; which is absurd. So the tangent bundle is semistable for
< %y

Now we want to answer the question if there always exists a polarisation, such
that the Harder-Narasimhan filtration gives rise to the MRC-quotient.

THEOREM 3.8. Let X be a uniruled projective surface. Then there exists a
polarisation, such that the maximal rationally connected quotient of X is given
by the foliation associated to highest positive term in the Harder-Narasimhan
filtration with respect to this polarisation.

Proof. To start, observe that there is always a polarisation A such that ¢; (TX)-
A > 0. Indeed, there exists a free rational curve f : P* — X. See [Deb0l,
Corollary 4.11] for a proof of the existence of such a curve. Writing

[(TX) = O(ar) ® O(as)
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with a1 + as > 2, we compute
~Kx - fiP'=a; +as >2.

Write ¢ := f,P! for this curve. Since £ is movable, it is in particular nef. So for
an ample class H, the class ¢ + eH will be ample. Thus for sufficiently small e
the class £ + eH will intersect — K x positively.

First let us assume that X is not rationally connected. As we have just seen,
we can find a polarisation H with ¢1(TX) - H > 0. There exists a destabilizing
subsheaf F of TX, since otherwise X would be rationally connected by Theorem
(2.5). Furthermore the slope of F has to be bigger than ¢;(7X)-H and therefore
positive. So this sheaf will give a foliation with rationally connected leaves and
hence the maximal rationally connected quotient.

Now we consider the case where X is rationally connected. We then fix a very
free rational curve ¢ on X. For a proof of the existence of a very free rational
curve see [Deb01, Corollary 4.17]. This means that TX|, is ample. So we know
that each quotient of TX |, has strictly positive degree.

Since ¢ is movable, it is in particular nef. Let H be an ample class. Because ¢
is nef, we know that H, := £ 4 ¢H is ample in N(é)(X) for any € > 0. Observe
that ¢, (TX) - He > 0 for sufficiently small €, say for 0 < € < eg. If TX is
semistable with respect to a certain polarisation H, with 0 < € < €q, the claim
follows since TX has positive slope and induces a trivial foliation which gives
the rationally connected quotient. If TX is not semistable for all polarisations
H, with 0 < € < €, let F be the maximal destabilizing subsheaf of TX with
respect to H.. Because of Corollary (3.5) the ray H, stays in one destabilizing
chamber and Remark (3.3) ensures that F := F, remains constant.

Now it is clear that for sufficiently small € both the slope of F and the slope of
TX/F will be positive with respect to H.. Therefore the HN-filtration of TX
with respect to H, yields the maximal rationally connected quotient. O
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INTRODUCTION

The Allegretto-Piepenbrink theorem relates solutions and spectra of 2nd order
partial differential operators H and has quite some history, cf. [1, 5, 6, 7, 34,
35, 36, 43, 37, 38].

One way to phrase it is that the supremum of those real E for which a nontrivial
positive solution of H® = F® exists coincides with the infimum of the spectrum
of H. In noncompact cases this can be sharpened in the sense that nontrivial
positive solutions of the above equation exist for all E < inf o(H).

In the present paper we consider the Allegretto-Piepenbrink theorem in a gen-
eral setting in the sense that the coefficients that are allowed may be very
singular. In fact, we regard H = Hy + v, where Hj is the generator of a
strongly local Dirichlet form and v is a suitable measure perturbation. Let us
stress, however, that one main motivation for the present work is the conceptual
simplicity that goes along with the generalisation.

The Allegretto-Piepenbrink theorem as stated above consists of two statements:
the first one is the fact that positive solutions can only exist for E below the
spectrum. Turned around this means that the existence of a nontrivial positive
solution of H® = E® implies that H > E. For a strong enough notion of
positivity, this comes from a “ground state transformation”. We present this
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simple extension of known classical results in Section 2, after introducing the
necessary set-up in Section 1. For the ground state transformation not much
structure is needed.

For the converse statement, the existence of positive solutions below o(H), we
need more properties of H and the underlying space: noncompactness, irre-
ducibility and what we call a Harnack principle. All these analytic properties
are well established in the classical case. Given these tools, we prove this part
of the Allegretto-Piepenbrink theorem in Section 3 with arguments reminiscent
of the corresponding discussion in [18]. For somewhat complementary results
we refer to [14] where it is shown that existence of a nontrivial subexponentially
bounded solution of H® = E® yields that E € o(H). This implies, in partic-
ular, that the positive solutions we construct for energies below the spectrum
cannot behave to well near infinity. We dedicate this paper to Jiirgen Voigt -
teacher, collaborator and friend - in deep gratitude and wish him many more
years of fun in analysis.

1. BASICS AND NOTATION CONCERNING STRONGLY LOCAL DIRICHLET
FORMS AND MEASURE PERTURBATIONS

DIRICHLET FORMS. We will now describe the set-up; we refer to [22] as the
classical standard reference as well as [13, 19, 23, 31] for literature on Dirichlet
forms. Let us emphasize that in contrast to most of the work done on Dirichlet
forms, we treat real and complex function spaces at the same time and write
K to denote either R or C.

Throughout we will work with a locally compact, separable metric space X
endowed with a positive Radon measure m with suppm = X.

The central object of our studies is a regular Dirichlet form £ with domain D
in L2(X) and the selfadjoint operator Hy associated with €. Let us recall the
basic terminology of Dirichlet forms: Consider a dense subspace D C L?(X,m)
and a sesquilinear and non-negative map £: D x D — K such that D is closed
with respect to the energy norm || - ||¢, given by

lullz = Elu, ul + [l 22 x )

in which case one speaks of a closed form in L?(X,m). In the sequel we will
write

Elu] = Elu, ul.
The selfadjoint operator Hy associated with £ is then characterized by
D(Ho) C D and E[f,v] = (Hof |v) (f € D(Ho),v € D).

Such a closed form is said to be a Dirichlet form if D is stable under certain
pointwise operations; more precisely, T : K — K is called a normal contraction
if T(0) =0and |T(§) —T(C)] < |€—¢| for any &, ¢ € K and we require that for
any u € D also

ToueDand &[T ou] < E[ul.
Here we used the original condition from [9] that applies in the real and the
complex case at the same time. Today, particularly in the real case, it is mostly
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expressed in an equivalent but formally weaker statement involving Vv 0 and
u A1, see [22], Thm. 1.4.1 and [31], Section I.4.

A Dirichlet form is called regular if D N C.(X) is large enough so that it is
dense both in (D, || - ||¢) and (Ce(X), || - |loo), where C.(X) denotes the space
of continuous functions with compact support.

CAPACITY. Due to regularity, we find a set function, the capacity that allows
to measure the size of sets in a way that is adapted to the form &: For U C X,
U open,

cap(U) = inf{||v]|3 | v € D, xrr < v}, (inf § = o),
and

cap(A) := inf{cap(U) | A C U}

(see [22], p. 61f.). We say that a property holds quasi-everywhere, short g.e.,
if it holds outside a set of capacity 0. A function f : X — K is said to be
quasi-continuous, q.c. for short, if, for any € > 0 there is an open set U C X
with cap(U) < € so that the restriction of f to X \ U is continuous.
A fundamental result in the theory of Dirichlet forms says that every u € D
admits a q.c. representative @ € u (recall that u € L?(X,m) is an equivalence
class of functions) and that two such q.c. representatives agree q.e. Moreover,
for every Cauchy sequence (uy) in (D, || - ||¢) there is a subsequence (uy, ) such
that the (@, ) converge q.e. (see [22], p.64f).

MEASURE PERTURBATIONS. We will be dealing with Schrédinger type oper-
ators, i.e., perturbations H = Hy + V for suitable potentials V. In fact, we
can even include measures as potentials. Here, we follow the approach from
[45, 46]. Measure perturbations have been regarded by a number of authors in
different contexts, see e.g. [4, 24, 47] and the references there.

We denote by Mg (U) the signed Radon measures on the open subset U of X
and by Mp o(U) the subset of measures v that do not charge sets of capacity
0, i.e., those measures with v(B) = 0 for every Borel set B with cap(B) = 0.
In case that v = vy —v_ € Mg o(X) we can define

V[u,v]:/ avdy for u,v € D with @,9 € L*(X,vy +v_).
e

We have to rely upon more restrictive assumptions concerning the negative
part v_ of our measure perturbation. We write Mp ; for those measures v €
MRp(X) that are E-bounded with bound less than one; i.e. measures v for
which there is a k < 1 and a ¢, such that

viu,u] < kEu] + cﬁ||u||2.

The set Mp 1 can easily be seen to be a subset of Mgy We write v €
Mp,0— MR, if the positive part v of the measure is in Mg o and the negative
v_isin Mpg;.

By the KLMN theorem (see [39], p. 167), the sum & + v given by D(€ +v) =
{u e D|ae L?X,vy)} is closed and densely defined (in fact DN C.(X) C
D(E+v)) for v € Mpo—Mp1. We denote the associated selfadjoint operator

DOCUMENTA MATHEMATICA 14 (2009) 167-189



170 D. LENZ, P. STOLLMANN, I. VESELIC

by Hp +v. An important special case is given by v = Vdm with V € L{ (X).
As done in various papers, one can allow for more singular measures, a direction

we are not going to explore here due to the technicalities involved.

APPROXIMATION AND REGULARITY. By assumption the Dirichlet form (&, D)
is regular. We show now that this property carries over to the perturbed form
(E4+v,D(E+v)). Along the way we prove an approximation result which will
be useful in the context of Theorem 2.3. It will be convenient to introduce a
notation for the natural norm in D(€ + v). For all ¢ € D(E + v) we define

111240 = 1012 + i (v, 9).

LEMMA 1.1. Letv € Mpo— Mg, and £ and € + v be as above. Then

(a) For each uw € D(E + v) there exists a sequence (uy,) in DN LP(X) such
that |up| < |ul| for alln € N and ||u — up|lg+v — 0 for n — co.

(b) For anyv € DNL(X) withv >0 and anyn € DNC(X) withn =1 on
the support of v there exists a sequence (¢r) in DN C.(X) with ¢, — v in
(DE+v),| - lle+v) and 0 < wv,¢p <1 for all n € N.

In particular, DN C.(X) is dense in (D(E +v),| - |le+v) and the form (€ +
v, D(E +v)) is regular.

Note that DN LE(X) C D(E +v).

Proof. By splitting u into its real and imaginary and then positive and negative
part we can assume afterwards that u > 0.

We now prove the first statement. Since £ is regular there exists a sequence
(¢n) in DN C.(X) such that ||u — ¢,|le — 0. By the contraction property of
Dirichlet forms we can suppose that ¢,, > 0 and deduce that u, := ¢, Au — u
in (D,| - |le) as well. (Note that u, = T(¢, — u) with the normal contraction
T:R — R T(y) =y fory < 0and T(y) = 0 for y > 0.) Choosing
a subsequence, if necessary, we can make sure that u, — % q.e. Therefore
U, — @ a.e. with respect to vy and v_. Now (£ 4 v)-convergence follows by
Lebesgue’s dominated convergence theorem.

Now we turn to the proof of the second statement. Without loss of generality
we may chose 0 < v < 1. Consider the convex set

C:={peDnNC(X)|0<¢<n}

Since C is convex, its weak and norm closure in (D(€ + v), || - |le4.) coincide.
Therefore it suffices to construct a sequence (¢,,) C C that is bounded w.r.t || -
lle+» and converges to © q.e. By regularity we can start with a sequence
(n) C DN Cu(X) such that ¢, — v wrt || - ||e and ¢, — & q.e. By the
contraction property of Dirichlet forms the sequence ¢,, := 0V, An is bounded
in (D, || -|le). Since 0 < ¢, < 0, (¢) is also bounded in L?(vy + v_). We
finally prove the ’in particular’ statemtent. Since £ is regular, we can find an
n€DNC(X),0<n<1withn =1 on suppv. Now, the proof follows from
the previous parts. O
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STRONG LOCALITY AND THE ENERGY MEASURE. & is called strongly local if
Elu,v] =0

whenever u is constant a.s. on the support of v.
The typical example one should keep in mind is the Laplacian

Hy=—Aon L*(Q), Qc R?open,
in which case

D= W01’2(Q) and Elu,v] = / (Vu|Vv)dz.
Q
Now we turn to an important notion generalizing the measure (Vu|Vv)dz ap-
pearing above.
In fact, every strongly local, regular Dirichlet form £ can be represented in the
form

Elu, v] :/XdI‘(u,v)

where I' is a nonnegative sesquilinear mapping from D x D to the set of K-valued
Radon measures on X. It is determined by

[ ¢drtu) = Elugul = 5020

for realvalued v € D, ¢ € DN C.(X) and called energy measure; see also [13].
We discuss properties of the energy measure next (see e.g. [13, 22, 47]). The
energy measure satisfies the Leibniz rule,

dl'(u - v, w) = udl (v, w) + vdl(u, w),
as well as the chain rule
dl(n(u),w) = 7' (u)dl (u, w).
One can even insert functions from D). into dI', where Dj,. is the set
{u € L}, | for all compact K C X thereis ¢ € Ds.t. ¢ =u m-a.e. on K},

as is readily seen from the following important property of the energy measure,
STRONG LOCALITY:
Let U be an open set in X on which the function i € D, is constant, then

xvdl'(n,u) =0,

for any u € D. This, in turn, is a consequence of the strong locality of £ and
in fact equivalent to the validity of the Leibniz rule.
We write dI'(u) := dI'(u,u) and note that the energy measure satisfies the

CAUCHY-SCHWARZ INEQUALITY:
([1rear)” ([ takarw)
X X

1 2 1 24T (v
5 [ IRar 5 [ o).
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In order to introduce weak solutions on open subsets of X, we extend £ and
V['a ] to Dloc(U) X DC(U) Where,

Dioe(U) :={u € L (U) | Vcompact K C U ¢ € D s.t. ¢ =u m-a.e. on K}

loc

D.(U) := {¢ € D|supp ¢ compact in U}.
For u € Dioc(U), ¢ € D(U) we define

Elu, ] = Enu, ¢l

where n € DN C.(U) is arbitrary with constant value 1 on the support of ¢.
This makes sense as the RHS does not depend on the particular choice of 7
by strong locality. In the same way, we can extend v[,-], using that every
u € Dioc(U) admits a quasi continuous version @. Moreover, also I’ extends to
a mapping I' : Dipe(U) X Dipe(U) — Mg(U).

For completeness reasons we explicitly state the following lemma.

LEMMA 1.2. (a) Let U € Dipe NLYE(X) and ¢ € DN LX(X) be given.
Then, VU belongs to D.
(b) Let ¥ € Dy, and o € DNLX(X) be such that dU(¢) < C-dm. Then,
W belongs to D.

Proof. Let K be the support of ¢ and V an open neighborhood of K.
(a) Locality and the Leibniz rule give

[arw) = [ eparw) <2 [ pvire )+ [ wpa).

Obviously, the first and the last term are finite and the middle one can be
estimated by Cauchy Schwarz inequality. Putting this together, we infer
[dl(p¥) < oo.

(b) Clearly, it suffices to treat the case ¥ > 0. Since ¥,, := ¥ A n is a normal
contraction of ¥ for every n € N it follows that dI'(¥,,) < d['(¥). By part (a)
we know that oW, € D and an estimate as above gives that

8(90\1171) = /X dr((p\l/n)

2(/}( @er(\lfn)Jr/X‘l'idF(so))
2 (/X @2dD (W) +C/Xxv\112dm) ;

is bounded independently of n € N. As ¢W,, converge to ¢V in L?(X,m), an
appeal to the Fatou type lemma for closed forms, [31], Lemma 2.12., p. 21
gives the assertion. O

IN

IN

We close this section by noting that both DNC.(X) and DN L (X) are closed
under multiplication (due to Leibniz rule).
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THE INTRINSIC METRIC. Using the energy measure one can define the intrinsic
metric p by

plx,y) = sup{|u(x) — u(y)| |u € Dioe N C(X) and dl'(u) < dm}

where the latter condition signifies that I'(u) is absolutely continuous with
respect to m and the Radon-Nikodym derivative is bounded by 1 on X. Note
that, in general, p need not be a metric. We say that & is strictly local if p is a
metric that induces the original topology on X. Note that this implies that X
is connected, since otherwise points in z,y in different connected components
would give p(x,y) = oo, as characteristic functions of connected components
are continuous and have vanishing energy measure. We denote the intrinsic
balls by

B(z,r) = {y € X[p(x,y) <r}.
An important consequence of the latter assumption is that the distance function
pz(+) = p(z,-) itself is a function in Dioc with dI'(py) < dm, see [47]. This
easily extends to the fact that for every closed E C X the function pg(x) :=
inf{p(x,y)|y € E} enjoys the same properties (see the Appendix of [14]). This
has a very important consequence. Whenever ¢ : R — R is continuously
differentiable, and 7 := ( o pg, then n belongs to D), and satisfies

(1) dr(n) = (¢ pi)*d0(ps) < (¢’ © pp)*dm.

For this reason a lot of good cut-off functions are around in our context. More
explicitly we note the following lemma (see [14] as well).

LEMMA 1.3. For any compact K in X there exists a p € Co(X)ND with p =1
on K, ¢ >0 and dT'(p) < Cdm for some C > 0. If L is another compact set
containing K in its interior, then ¢ can be chosen to have support in L.

Proof. Let r > 0 be the positive distance of K to the complement of L. Choose
a two times differentiable ¢ : R — [0, 00) with ((0) = 1 and support contained
n (—oo,r). Then, ¢ o px does the job by (1). O

IRREDUCIBILITY. We will now discuss a notion that will be crucial in the
proof of the existence of positive weak solutions below the spectrum. In what
follows, h will denote a densely defined, closed semibounded form in L?(X)
with domain D(h) and positivity preserving semigroup (73;¢t > 0). We de-
note by H the associated operator. Actually, the cases of interest in this
paper are h = £ or h = £+ v with v € Mpo — Mpi1. We refer to
[40], XIII.12 and a forthcoming paper [30] for details. We say that b is re-
ducible, if there is a measurable set M C X such that M and its complement
M¢ are nontrivial (have positive measure) and L?(M) is a reducing subspace
for M, i.e., 1);D(h) C D(h), b restricted to 1, D(h) is a closed form and
E(u,v) = E(ulpr,vlpg) + E(ul pre, vlpse) for all u,v. If there is no such de-
composition of fh, the latter form is called irreducible. Note that reducibility
can be rephrased in terms of the semigroup and the resolvent:

THEOREM 1.4. Let h be as above. Then the following conditions are equivalent:
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e h is irreducible.

o T} is positivity improving, for everyt > 0, i.e. f >0 and f # 0 implies
that Ty f > 0 a.e.

e (H + E)~! is positivity improving for every E < inf o(H).

In [30] we will show that for a strictly local Dirichlet form £ as above and a mea-
sure perturbation v € Mg o — Mpg,1, irreducibility of £ implies irreducibility
of £+ v.

2. POSITIVE WEAK SOLUTIONS AND THE ASSOCIATED TRANSFORMATION

Throughout this section we consider a strongly local, regular Dirichlet form,
(€,D) on X and denote by I' : Djpe X Dioc — M(X) the associated energy
measure. We will be concerned with weak solutions ® of the equation

(2) (Hy+V)® =E - ®,

where Hj is the operator associated with £ and V is a realvalued, locally inte-
grable potential. In fact, we will consider a somewhat more general framework,
allowing for measures instead of functions, as presented in the previous sec-
tion. Moreover, we stress the fact that (2) is formal in the sense that ® is
not assumed to be in the operator domain of neither Hy nor V. Here are the
details.

DEFINITION 2.1. Let U C X be open and v € Mpgo(U) be a signed Radon
measure on U that charges no set of capacity zero. Let E € R and ® € L%OC(U).
We say that ® is a weak supersolution of (Hy +v)® =E-® in U if:

(i) @ € Dine(U),
(ii) ddv € My(U),
(iii) Vo € DNC,(U), 0 >0

E[®, o] + /U pdv > E - ().

We call ® a weak solution of (Ho +v)® = E - ® in U if equality holds in (iii)
above (which extends to all p € DNC.(U)). If V € L}, (U) we say that ® is

a weak (super-)solution of (Ho 4+ V)® = E - ® in U if it is a weak (super-)
solution of (Hy +v)® = E - ® for v =Vdm.

REMARK 2.2. (1) If v =Vdm and V € L3 (U), then property (i) of the
Definition above is satisfied.

(2) If ® € L.(U) and v € Mg(U) then (i) of the Definition above is
satisfied.

(3) If v € Mg(U) satisfies (i) above then v — Edm € Mpg(U) satisfies
(i) as well and any weak solution of (Hy+v)® = E-® in U is a weak
solution of (Hy+v— Edm)® =0 in U. Thus it suffices to consider the
case £ = 0.

(4) If @ is a weak solution on U, then

E[®, p] + /U e®dv = E - (D).
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for all o € DN L (U). This follows easily from (b) of the approzima-
tion Lemma 1.1. (Note that we can indeed approzimate within U by

first choosing an appropriate n with compact support in U according to
Lemma 1.5.)

We will deal with function ® € D, with & > 0. If ® is such a function and
®~1 € Lo, we can use the chain rule and suitable smoothed version of the
function x +— 1/x to conclude that &~ must belong to Die. as well. This will

be used various times in the sequel.

Here comes the first half of the Allegretto-Piepenbrink Theorem in a general
form.

THEOREM 2.3. Let (£,D) be a regular, strictly local Dirichlet form, Hy be the
associated operator and v € Mg o(U). Suppose that ® is a weak solution of
(Ho +v)® = E-® in U with ® > 0 m-a.e. and ®, &' € L (U). Then, for
all ,p e DNLX(U):

Elp, ) + v, ¥) = /U ST (90, p8) 1 E - (o).

In particular, €+ v > E if furthermore U = X.

Proof. The “in particular” is clear as the desired inequality holds on DNC.(X)
and the form is regular by Lemma 1.1.

For the rest of the proof we may assume E = 0 without restriction, in view of
the preceding remark. Without loss of generality we may also assume that ¢
and ¢ are real valued functions. We now evaluate the RHS of the above equa-
tion, using the following identity. The Leibniz rule implies that for arbitrary
w e DlOC(U):

0=dl(w,1) = dl'(w, ®®~ ') = &~ *dl(w, ®) + ®dl(w, ') (%)

Therefore, for ¢, ¢ € DN C.(X):

[ eraretve ) = [ sare )+ [ etpare i ve)
X X X
(by symmetry) = /dF(go,w)—i—/ <I>wdF(<p,(I)_1)
X X
+/ O2pdl (@1, &~ 1)
X

= 5[907w]+/x‘1>2dF(90¢¢‘1,<1>‘1)

(by (%) = Elp] - /X dr (oo, ®)
= Elp. Y] - Elppd!, @].
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As @ is a weak solution we can now use part (4) of the previous remark to
continue the computation by

Elp, ¥ = (—vlpp@™", )
= Elp, ¥l + vlp,¢.
This finishes the proof. O

We note a number of consequences of the preceding theorem. The first is rather
a consequence of the proof, however:

COROLLARY 2.4. Assume that there is a weak supersolution ® of (Ho+v)® =
E-® on X with® >0 m-a.e. and ®, "1 € LY (X). Then E+v > E.

loc

For the Proof we can use the same calculation as in the proof of the Theorem
with ¢ =9 and use the inequality instead of the equality at the end.

REMARK 2.5. (1) We can allow for complex measures v without problems.
In the context of PT-symmetric operators there is recent interest in
this type of Schrédinger operators, see [8]
(2) Instead of measures also certain distributions could be included. Cf [25]
for such singular perturbations.

We will extend Theorem 2.3 to all of p,9 € D. This is somewhat technical.
The main part is done in the next three propositions. We will assume the
situation (S):
(S) Let (£,D) be a regular, strictly local Dirichlet form, Hy be the associ-
ated operator and v € Mg o— Mg, 1. Suppose that @ is a weak solution
of (Hy+v)® = E-® in X with ® > 0 m-a.e. and ®,® 1 € L (X).

loc

PROPOSITION 2.6. Assume (S). Let v € D(E + v) be given. Let (uy) be a
sequence in D(E + v) N LP(X) which converges to uw with respect to || - ||g4w.
Then, pu,®~1 and pu®=! belong to D(€ + v) and

lpun®™" — Qud™ g4y — 0,n — 00

for any ¢ € DN C(X) with dT'(¢) < Cdm for some C > 0. In particular,
u®~1 belongs to Dioe.

Proof. Without loss of generality we assume E = 0.

As shown above p®~! belongs to DN L. Hence, u, @~ = u,(p® 1) is a
product of functions in D N Lg° and therefore belongs to D N L as well.

As ©®~! belongs to L*°, the sequence @u,® ! converges to @u® ! in
L?(X,m). It therefore suffices to show that ¢u,® ! is a Cauchy sequence
with respect to || - ||g4v-

As (uy,) is Cauchy with respect to || - ||e4, and @1 is bounded, convergence
of the v part is taken care of and it suffices to show that

E(o(Un — )P ™) — 0,1, m — oo.
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Let K be the compact support of ¢. Let ¢ > 0 be an upper bound for ®~2 on
K. Choose n,m € N and set v := u,, — u,,,. Then, we can calculate

E(pvd™t) = /dI’((pU(I)_l)
K
1 _
= /I(@(b2dr((pv¢ 1)

c/ O2dr (pvd 1)

K

(Previous theorem) = ¢(E(pv) + v(pv))

c(E(p(un — um)) + v(p(un — um)))-

IN

Now, convergence of v(p(un —unm)) to 0 for n,m — oo can easily be seen (with
arguments as at the beginning of the proof). As for £(p(u, — uym,)) we can use
Leibniz rule and Cauchy-Schwarz and dI'(¢) < C'dm to compute

E(plun — tum)) = /K AT ({1t — )

/@2df(un )+ 2/@(% )T (2, — 11yy)
+/|un — U |2dT ()
2(/ @2dD (ty, — ) + / [t — um|*dL ()

2|0 |2E (1 — 1) + zc/ i, — |2,

IN

IN

This gives easily the desired convergence to zero and (pu,®~ ') is a Cauchy
sequence with respect to || - ||e4v-

We now turn to a proof of the last statement: By Lemma 1.3, for any compact
K we can find a ¢ satisfying the assumptions of the proposition with ¢ =1 on
K. Then, pu®~! belongs to D by the above argument and agrees with u®~!
on K be construction. g

PROPOSITION 2.7. Assume (S). Let u € D(E + v) be given. Let (uy,) be a
sequence in D(E + v) N L (X) which converges to u with respect to || - ||g4v-
Then,

/wdr(un@l) — /zpdr(uqu)
for any ¢ € L (X).

Proof. We start with an intermediate claim.

Claim. For any ¢ € L>®(X) and ¢ € DN C.(X) with dI'(¢) < Cdm for some
C >0, we have [dl(ou,® 1) — [dl(pudt).
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Proof of the claim. By triangle inequality, the difference between the terms in
question can be estimated by

| [ odr et = u)e pu ) 4] [ war(eu ! ol )@,
By Cauchy Schwarz inequality these terms can be estimated by
[ [loo€ ((p(un — u)®~)V2E (pu, & 1)/
and
[ ]|oo€ (p(un — u)®~1)V2E (pud™")/2.
The previous proposition gives that &(¢(u, — u)® 1) — 0, n — oo and the

claim follows.

Let now ¢ € L°(X) be given. Let K be the compact support of ). We use
Lemma 1.3 to find ¢ € C.(X)ND with ¢ =1 on K and dI'(¢) < Cdm. for
some C' > 0. Locality gives

/de‘(unCI)*l) = /wdf(cpuanl)
and
/zpdr(uqu) = /wdr(wqu)
and the proposition follows from the claim. O

PROPOSITION 2.8. Assume (S). Let u € D(E + v) be given. Let (uy,) be a
sequence in D(E + v) N L (X) which converges to u with respect to || - ||g4v-
Then,

/(I)Qdf(unq)_l) — /<I>2dF(u<I>_1)
for any ¢ € LX(X).

Proof. Without loss of generality we assume E = 0. We start with the following
claim.

Claim. &(u) + v(u) > [ ®2dl (ud~1).
Proof of claim. By convergence of u,, to u w.r.t. || - ||+, and the last theorem,
we have

E(w) +v(u) = nh—vnc;lo E(uy) +v(uy) = lim [ ®2dT(u, @ 1).

n—oo
Now, the claim follows easily from the preceeding proposition.
We now note that for fixed n € N, the sequence (ty, — ty)m converges to u —uy,
w.rt. || - [|e4+r. We can therefore apply the claim to u — u,, instead of w. This
gives
E(u—up) +v(u—uy) > /(I>2df((u —u,)®71) >0

for any n € N. As the left hand side converges to zero for n — oo, so does the
right hand side.
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Mimicking the argument given in the proof of the Claim of the previous propo-
sition, we can now conclude the desired statement. O

COROLLARY 2.9. Let (£,D) be a regular, strictly local Dirichlet form, Hy be the
associated operator and v € Mp o — Mp,1. Suppose that ® is a weak solution
of (Hy+v)® =E-® in X with® > 0m-a.e. and ®, &' € L (X). Then, for
all p, € D(€ + v), the products ®~1 4@~ belong to Dj,e and the formula

3) Elp, 4] + v, ¥] = /X B2 (o0, b + E - (plt)
holds.

Proof. Without loss of generality we assume E = 0. It suffices to consider
¢ = 1. By Proposition 2.6, o®~! belongs to Djoe. According to Lemma 1.1,
we can choose a sequence (¢,,) in D N L°(X) converging to ¢ w.r.t. || - || gto-
This convergence and the last theorem then give

E(p) +vp) = lim E(pn) +v(pn) = lim [ &0 (@)

n—oo

The previous proposition then yields the desired formula. O

3. THE EXISTENCE OF POSITIVE WEAK SOLUTIONS BELOW THE SPECTRUM

As noted in the preceding section, we find that Hy 4+ v > E whenever £ + v is
closable and admits a positive weak solution of (Hy+v)® = E®. In this section
we prove the converse under suitable conditions. We use an idea from [18] where
the corresponding statement for ordinary Schrédinger operators on R? can be
found. A key property is related to the celebrated Harnack inequality.

DEFINITION 3.1. (1) We say that Hy+ v satisfies a Harnack inequality for
E € R if, for every relatively compact, connected open Xy C X there is
a constant C' such that all positive weak solutions ® of (Hy+v)® = E®
on X are locally bounded and satisfy

esssupp(, U < Cessinfp(, ryu,

for every B(z,7) C Xy where esssup and essinf denote the essential
supremum and infimum.

(2) We say that Hy + v satisfies the Harnack principle for E € R if for
every relatively compact, connected open subset U of X and every
sequence (®,,)nen of nonnegative solutions of (Hy +v)® =E-® in U
the following implication holds: If, for some measurable subset A C U
of positive measure

sup || P, 1 all2 < o0
neN

then, for all compact K C U also

sup || P, 1 k|2 < oc.
neN
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(3) We say that Hy + v satisfies the uniform Harnack principle if for every
bounded intervall I C R, every relatively compact, connected open
subset U of X and every sequence (®,)nen of nonnegative solutions of
(Hy4+v)® = E, -® in U with E,, € I the following implication holds:
If, for some measurable subset A C U of positive measure

sup || @, 142 < o0
neN

then, for all compact K C U also

sup || @, 1 k|2 < co.
neN

Note that validity of a Harnack principle implies that a nonnegative weak
solution @ must vanish identically if it vanishes on a set of positive measure (as
&,, := nd has vanishing L? norm on the set of positive measure in question).
Note also that validity of an Harnack inequality extends from balls to compact
sets by a standard chain of balls argument. This easily shows that Hy + v
satisfies the Harnack principle for E € R if it obeys a Harnack inequality for
E € R. Therefore, many situations are known in which the Harnack principle
is satisfied:

REMARK 3.2. (1) Forv =0 and E =0 a Harnack inequality holds, when-
ever € satisfies a Poincaré and a volume doubling property; cf [12] and
the discussion there.

(2) The most general results for Hy = —A in terms of the measures v that
are allowed seem to be found in [24], which also contains a thorough
discussion of the literature prior to 1999. A crucial condition concern-
ing the measures involved is the Kato condition and the uniformity of
the estimates from [24] immediately gives that the uniform Harnack
principle is satisfied in that context. Of the enormous list of papers on
Harnack’s inequality, let us mention [2, 10, 11, 17, 24, 26, 27, 33, 41,
42, 49, 50]

Apart from the Harnack principle there is a second property that will be im-
portant in the proof of existence of positive general eigensolutions at energies
below the spectrum: We say that & satisfies the local compactness property if

Dy(U):=Dn CC(U)H.”S is compactly embedded in L?(X) for every relatively
compact open U C X. (In case of the classical Dirichlet form this follows from
Rellich’s Theorem on compactness of the embedding of Sobolev spaces in L?.)

THEOREM 3.3. Let (€,D) be a regular, strictly local, irreducible Dirichlet form,
Hy be the associated operator and v € Mpo— Mp,1. Suppose that £ satisfies
the local compactness property and X is noncompact. Then, if E < inf o(Hy +
v) and Ho + v satisfies the Harnack principle for E, there is an a.e. positive
solution of (Hy + v)® = E®.
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Proof. Let E < info(Hp + v). Since X is noncompact, locally compact and
o-compact, it can be written as a countable union

X = U Ugr, Ug open, relatively compact ,Ur C Ur1;
ReN
where the Ur can be chosen connected, as X is connected, see [30] for details.
For n € N let g, € L*(X) with suppg, C X \ Uny2, gn > 0 and g, # 0. It
follows that
®,:=(Ho+v+E)tg, >0
is nonzero and is a weak solution of (Hyo+v)® = E® on X \supp g, in particular
on the connected open subset U,, 2. Since (Hg +v+ E) ™! is positivity improv-
ing, it follows that ||®, 1, |2 > 0. By multiplying with a positive constant we
may and will assume that ||®,1y, |2 = 1 for all n € N. We want to construct
a suitably convergent subsequence of (®,),en so that the corresponding limit
® is a positive weak solution.
First note that by the Harnack principle, for fixed R € N and n > R we know
that

sup ||y Ly |2 < oo,
neN

since all the corresponding ®,, are nonnegative solutions on Ug2. In particular,
(®, 117, )nen is bounded in L?(X) and so has a weakly convergent subsequence.
By a standard diagonal argument, we find a subsequence, again denoted by
(®,,)nen, so that @, 1y, — ¥x weakly in L2(X) for all R € N and suitable ¥ .
As multiplication with 1y, is continuous and hence also weak-weak continuous,
there is ® € L (X) such that ¥ = ®1y,. We will now perform some
bootstrapping to show that the convergence is, in fact, much better than just
local weak convergence in L? which will imply that ® is the desired weak
solution.

Since for fixed R > 0 and n > R the ®,, are nonnegative solutions on Ugr42 the
Caccioppoli inequality, cf [14] implies that

/ dr(®,) < C ®2dm

Ur Ur+1

is uniformly bounded w.r.t. n € N. Combined with Leibniz rule and Cauchy
Schwarz inequality this directly gives that fUR dl'(¢p®,,) is uniformly bounded
w.r.t. n € N for every ¢ € D with dI'(¢)) < dm (see [14] as well). Therefore,
by Lemma 1.3, we can find for suitable cut-off functions ng € DN C.(X) with
1y, < nr < 1yg,, such that the sequence (nr®,) is bounded in (D, || - [|¢)-
The local compactness property implies that (ngr®,) has an L2-convergent
subsequence. Using a diagonal argument again, we see that there is a common
subsequence, again denoted by (®,,),en, such that

O, 1y, — ¢y, in L*(X) as n — oo

for all R € N.
As a first important consequence we note that ® # 0, since |P1y, |2 =
lim, ||®,1y, |2 = 1.

DOCUMENTA MATHEMATICA 14 (2009) 167-189



182 D. LENZ, P. STOLLMANN, I. VESELIC

Another appeal to the Caccioppoli inequality gives that

/ dU(®,, — @) < C’/ (®,, — ®y)%dm — 0 as n, k — oo.
Ur Ur+1

Therefore, by the same reasoning as above, for every R € N the sequence
(nr®,) converges in (D, || - ||¢). Since this convergence is stronger than weak
convergence in L?(X), its limit must be np®, so that the latter is in D. We
have thus proven that ® € Dj,.(X). Moreover, we also find that

E[Pn, 0] — E[P, ¢] for all p € DNC(X),

(since, by strong locality, for every cut-off function n € DN C.(X) that is 1 on
supp ¢, we get

E[Pn, @] = EMPr, ] — EMP, ] = E[P, ¢].)

We will now deduce convergence of the potential term. This will be done in two
steps. In the first step we infer convergence of the v_ part from convergence
w.r.t. || -]l and the relative boundedness of v_. In the second step, we use
the fact that ® is a weak solution to reduce convergence of the v, part to
convergence w.r.t. || - ||¢ and convergence of the v_ part. Here are the details:
Consider cut-off functions nr for R € N as above. Due to convergence in
(D, |l - lle), we know that there is a subsequence of (ng®,,)nen that converges
g.e., see [22] and the discussion in Section 1. One diagonal argument more
will give a subsequence, again denoted by (®,,)nen, such that the P, converge
to @ q.e., where ~ denotes the quasi-continuous representatives. Since v is
absolutely continuous w.r.t capacity we now know that the ®, converge to
® v-a.e. Moreover, again due to convergence in (D, || - ||¢), we know that
(chIgn)neN is convergent in L?(v_) as v_ € Mg, 1. Its limit must coincide with
nr®, showing that ddv_ € Mp.

We now want to show the analogous convergence for v, ; we do so by approx-
imation and omit the ™ for notational simplicity. By simple cut-off procedures,
every ¢ € D.(X) N L (X) can be approximated w.r.t. || - ||¢ by a uniformly
bounded sequence of continuous functions in D with common compact support.
Thus, the equation

initially valid for ¢ € DNC.(X) extends to ¢ € D.(X)NL>*(X) by continuity.
Therefore, for arbitrary k € N, and R < min(n — 2,m — 2)

/@ (@0 — B ypdry < / (B — B ) {(—k) V (B — D) A k}yrdirs

n=®m|<k
Vi[(Pn = @), {(=F) V (Pn = Pn) A k}1R]
= E(®n = ®n)[{. Jur) +v-[(®n = ), {. . J1r)]
—E[(@n = Pn), {(=F) V (Pn = D) A K}nR]

By what we already know about convergence in D, L? and L?(v_), the RHS
goes to zero as n,m — oo, independently of k. This gives the desired conver-
gence of ng®,,, the limit being nr® since this is the limit pointwise.
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Finally, an appeal to the Harnack principle gives that ® is positive a.e. on
every Ugr and, therefore, a.e. on X. O

REMARK 3.4. That we have to assume that X is noncompact can easily be
seen by looking at the Laplacian on a compact manifold. In that situation any
positive weak solution must in fact be in L? due to the Harnack principle. Thus
the corresponding energy must lie in the spectrum. In fact, the corresponding
energy must be the infimum of the spectrum as we will show in the next theorem.
The theorem is standard. We include a proof for completeness reasons.

THEOREM 3.5. Let (€,D) be a regular, strictly local, irreducible Dirichlet form,
Hy be the associated operator andv € Mpo—MRp,1. Suppose that X is compact
and & satisfies the local compactness property. Then, Hy 4+ v has compact
resolvent. In particular, there exists a positive weak solution to (Hy + v)® =
Ey® for Ey := info(Hy + v). This solution is unique (up to a factor) and
belongs to L?(X). If Hy + v satisfies a Harnack principle, then Ey is the only
value in R allowing for a positive weak solution.

Proof. As X is compact, the local compactness property gives that the op-
erator associated to £ has compact resolvent. In particular, the sequence of
eigenvalues of Hj is given by the minmax principle and tends to co. As vy is
a nonnegative operator and v_ is form bounded with bound less than one, we
can apply the minmax principle to Hy + v as well to obtain empty essential
spectrum.

In particular, the infimum of the spectrum is an eigenvalue. By irreducibility
and abstract principles, see e.g. [40], XIII.12, the corresponding eigenvector
must have constant sign and if a Harnack principle holds then any other en-
ergy allowing for a positive weak solution must be an eigenvalue as well (as
discussed in the previous remark). As there can not be two different eigenval-
ues with positive solutions, there can not be another energy with a positive
weak solution. g

Combining the results for the compact and noncompact case we get:

COROLLARY 3.6. Let (£,D) be a regular, strictly local, irreducible Dirichlet
form, Hy be the associated operator and v € Mpo — Mp1. Suppose that
& satisfies the local compactness property and Hy + v satisfies the Harnack
principle for all E € R. Then,

info(Ho +v) <sup{E € R|3 a.e. positive weak solution (Hy + v)® = Ed}.

This doesn’t settle the existence of a positive weak solution for the groundstate
energy inf o(Hp + v) in the noncompact case. The uniform Harnack principle
settles this question:

THEOREM 3.7. Let (£,D) be a regular, strictly local, irreducible Dirichlet form,
Hy be the associated operator, v € Mpro— Mpg1. Suppose that € satisfies the
local compactness property and Ho + v satisfies the uniform Harnack principle.
Then there is an a.e. positive weak solution of (Hy + v)® = E® for E =
inf o(Ho + v).
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Proof. Tt suffices to consider the case of noncompact X. Take a sequence (E,,)
increasing to E = inf 0(Hy + v). From Theorem 3.3 we know that there is an
a.e. positive solution ¥,, of (Hy+v)® = E,,®. We use the exhaustion (Ur) ren
from the proof of Theorem 3.3 and assume that

19,1y, ||z =1 for all n € N.

As in the proof of Theorem 3.3 we can now show that we can pass to a sub-
sequence such that (nrW¥,,) converges in D, L?(m) and L?(vy +v_) for every
R € N. The crucial point is that the uniform Harnack principle gives us a con-
trol on ||[nr¥y,l|2, uniformly in n, due to the norming condition above. With
aruments analogous to those in the proof of Theorem 3.3, the assertion fol-
lows. g

Note that Corollaries 2.4 and 3.6 together almost give
inf o(Hy + v) = sup{E € R|3 a.e. positive weak solution (Hy + v)® = Ed}.

The only problem is that for the “>” from Corollary 2.4 we would have to
replace a.e. positive by a.e. positive and ®,®~! € L{° . This, however, is
fulfilled whenever a Harnack inequality holds.

COROLLARY 3.8. Let (€,D) be a regular, strictly local, irreducible Dirichlet
form, Hqy be the associated operator and v € Mpo— Mpg1. Suppose that €
satisfies the local compactness property and Hy+v satisfies a Harnack inequality
for all E € R. Then,

inf o(Ho + v) = sup{E € R|3 a.e. positive weak solution (Hy + v)® = Ed}.

4. EXAMPLES AND APPLICATIONS

We discuss several different types of operators to which our results can be
applied. Parts of the implications have been known before. However, previous
proofs dealt with each of the mentioned operators separately, while we have a
uniform argument of proof.

ExampPLES. Classical examples of operators for which our results have been
known before can be found in [5, 6, 7, 34, 35, 36, 18]. They concern Schrédinger
operators and, more generally, symmetric elliptic second order differential op-
erators on unbounded domains in R, whose coefficients satisfy certain regular-
ity conditions. For Laplace-Beltrami operators on Riemannian manifolds the
Allegretto-Piepenbrink theorem has been stablished in [51].

Here we want to concentrate on two classes of examples which have attracted
attention more recently: Hamiltonians with singular interactions and quantum
graphs.
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Hamiltonians with singular interactions. These are operators acting on R?
which may be formally written as H = —A — «d(- — M) where « is a pos-
itive real and M C R? is a manifold of codimension one satisfying certain
regularity conditions, see e.g.[15] or Appendix K of [3]. In fact, the delta
interaction can be given a rigorous interpretation as a measure v); concen-
trated on the manifold M. More precisely, for any Borel set B C R?, one
sets vpr(B) = volg_1(B N M) where volg_; denotes the (d — 1)-dimensional
Hausdorff measure on M. In [15], page 132, one can find suitable regularity
conditions on M under which the measure v, belongs to the class Mg 1. Thus
the singular interaction operator H falls into our general framework, cf. Remark
3.2.

If M is a C2%-regular, compact curve in R? the essential spectrum of H equals
Oess(—A) = [0,00), cf. [15]. On the other hand, the bottom of the spectrum of
H is negative and consists consequently of an eigenvalue. This can be seen using
the proof of Corollary 11 in [16]. In Section 3 of [21] it has been established
that the ground state is nondegenerate and the corresponding eigenfunction
strictly positive. This corresponds to part of our Theorem 3.3.

Quantum graphs. Quantum graphs are given in terms of a metric graph X and
a Laplace (or more generally) Schrodinger operator H defined on the edges of X
together with a set of (generalised) boundary conditions at the vertices which
make H selfadjoint. To make sure that we are dealing with a strongly-local
Dirichlet form we restrict ourselves here to the case of so called free or Kirchoff
boundary conditions. A function in the domain of the corresponding quantum
graph Laplacian Hy is continuous at each vertex and the boundary values of
the derivatives obtained by approaching the vertex along incident edges sum
up to zero. Note that any non-negative Borel measure on X belongs to the
class Mpo(X). For vy € Mpo(X) and v_ € Mp1(X) the quantum graph
operator H = Hy + vy — v_ falls into our framework.

See Section 5 of [14] for a more detailed discussion of the relation between
Dirichlet forms and quantum graphs.

APPLICATIONS. The ground state transformation which featured in Theorem
2.3 and Corollary 2.9 can be used to obtain a formula for the lowest spectral
gap. To be more precise let us assume that £, v and ® satisfy the conditions
of Theorem 2.3 with U = X. Assume in addition that ® is in D(€ 4+ v). Then
® is an eigenfunction of H corresponding to the eigenvalue £ = mino(H). We
denote by

E' = inf{€[u,u] + vu,u] |u e D,|ul| =1,u L &}

the second lowest eigenvalue below the essential spectrum of H, or, if it does
not exist, the bottom of oes5(H). Then we obtain the following formula

(4) E' —FE= inf / O2dr (ud L, ud1)
{ueD(E+v),|lul|=1,uld®} [x

DOCUMENTA MATHEMATICA 14 (2009) 167-189



186 D. LENZ, P. STOLLMANN, I. VESELIC

which determines the lowest spectral gap. It has been used in [28, 29, 52]
to derive lower bounds on the distance between the two lowest eigenvalues of
different classes of Schrodinger operators (see [44] for a related approach). In
[28] bounded potentials are considered, in [29] singular interactions along curves
in R? are studied, and [52] generalises these results using a unified approach
based on Kato-class measures.

If for a subset U C X of positive measure and a function u € {u € D, ||u| =
1,u L ®} the non-negative measure I'(u®~!, u®~1) is absolutely continuous
with respect to m, one can exploit formula (4) to derive the following estimate
(cf. Section 3 in [52], and [28, 29] for similar bounds). Denote by y(u®~1) =

dr(w;i;’“q’ﬂ the Radon-Nykodim derivative. Then

/U<I>2dr(u<1r1,u<1r1)z m(lU) ir(}f@g (/U \/'mdm)2

In specific situations one can chose u to be an eigenfunction associated to the
second eigenvalue E’ and use geometric properties of ® and u to derive explicit
lower bounds on the spectral gap.

Other uses of the ground state transformation include the study of LP-L?
mapping properties of the semigroup associated to £ [20] and the proof of
Lifschitz tails [32].
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ABSTRACT. In the manuscript “On the Parity of Ranks of Selmer
Groups III” Documenta Math. 12 (2007), 243-274, [1], Remark
4.1.2(4) and the treatment of archimedean e-factors in 4.1.3 are incor-
rect. Contrary to what is stated in 0.3, the individual archimedean
e-factors e, (M) (u | 00) cannot be expressed, in general, in terms of
My, but their product can.

2000 Mathematics Subject Classification: 11G40 11R23

To motivate the corrections below, consider a motive M (pure of weight w)
over F with coefficients in L. Set S, = {7 : F < C}, §p ={o: F— Qp}
and denote by 7 : goo — Soo, Tp ¢ §p — Sp the canonical surjections. Fix
an embedding ¢ : L «— C and an isomorphism X : Qp 5 C such that p is
induced by 1, = A" tor: L — Qp. To each v € S}, then corresponds a subset

Sso(v) = {rec(Ao0) [ 1p(0) = v} C S
such that
> [Luw:R]=[F,: Q.
WE S (V)

For each 7 € goo, the Betti realization Mp  is an L-vector space and there is
a Hodge decomposition

MB,T ®L,L C= @(LMT)i’wii-
i€Z
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The corresponding Hodge numbers

RSN My, = WY (uM,) = dime (1M,)5v !
depend only on u = r(7) € Se. The de Rham realization Myg is a free L ®q
F-module; its Hodge filtration is given by submodules F" Myg (not necessarily
free) which correspond, under the de Rham comparison isomorphism
Mg @roqruer C — Mpr @, C,
to
(F"Mar) ®Loqr.er C — M),
i>r

hence

dimg ((g?“%MdR) OLRQF®T C) — hi’w_i(LMT).
The p-adic realization M, of M is isomorphic, as an Ly-vector space, to
Mg ®r Ly (for any 7 € Si). For each v € Sy, Dar(My o) is a free L, ®q, Fo-
module equipped with a filtration satisfying
Dyp(My) — F"Mir @reqr (Lp @q, Fy).

This implies that, for each ¢ € Z, the dimension

di(Mp) = dimLp (DZIR(Mp,v)/DZlJ}rzl(Mp,v))

is equal to

dimp,, (QT%MdR) QLeqr (Lp ®q, Fv)
= dimap (gr}MdR) QL®GQF,,®incl (Qp ®q, )
= Z dimap (gT%MdR) OL®QF,1,®0 Qp
O'ZFv‘—>6p

= > [Fu:RIE"™T(M,),

UE S0 (V)

hence

dy (Mp) =) id,(My)= 3 [Fu:R]d™ (M),

<0 UE S0 (V)

d™(eMy) =Y ih" TN M). (%)
<0
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CORRECTIONS TO §4.1 AND §5.1: firstly, 4.1.2(4) and 5.1.2(9) should be
deleted. Secondly, §4.1.3 should be reformulated as follows: we assume that V
satisfies 4.1.2(1)-(3). For each v € S}, we define

dy (V)= Y idy(V),  di(V) = dimg, (Dip(V)/Diit(Ve))  (413.0)
<0

and
I =) :=En*™ [T (pdimetre (4.1.3.2')
UESoo (V) UES oo (v),F,=C

(even though we are unable to define the individual ¢(V,,)). If V = M,,, where
M =5 M*(1) is pure (of weight —1), it follows from (x) and (2.3.1) that this
definition gives the correct product of archimedean e-factors.

The formula (4.1.3.6) should be replaced by

YoeS, &V, =(-1)%V)(det V;')(~1) = e(WD(V,)N7%%), (4.1.3.6')
which implies that

evy) JI eV =(detv,)(-1) ] (~p)dmee™r2

UE S0 (V) UES oo (v),Fy=C
hence
H £(V,) = (71)7“2(F) dimp,, (V)/2 H (det Vj)(*l), (4.1.3.7)
vESpUS o veS,

where 79(F') denotes the number of complex places of F'.

CORRECTIONS TO THEOREM 5.3.1 AND ITS PROOF: the statement should say
that, under the assumptions 5.1.2(1)-(8), the quantity

(DM fe(v) = (~)M V) () =
_ (_1);}(}?,‘/)(_1)7'2(}‘_‘) dimg (V) /2 H (det Vj)(—l) H e(Vy)

vESy VEZSpUS

depends only on V and VI (v € S,).
In the proof, a reference to (4.1.3.7) should be replaced by that to (4.1.3.7’),
which yields

ev) =[] eva) I] (Vo) = (=)= dimes /2 TT (det V) (—1) [ (Vo).

VES,USee vZSpUSes vES, V€S, USse
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CORRECTIONS TO §5.3.3: the first question should ask whether

(=) Ve(WD(V,)N=*) (v € 5p)

depends only on V,?

CORRECTIONS TO §5.3.4-5: it is often useful to use a slightly more general
version of Example 5.3.4 with I' = I'g x A, where I'y is isomorphic to Z, and
A is finite (abelian). Given a character a: A — Oy, set

R=0,[[To]], T =(T®o, O[[l'"]]) ®o,(a),a Op,
7, = (T ®0, Oy[[['"]]) @0, (a1,0 Op (v E Sy).

As in 5.3.4(2)-(3), 7 is an R[Gp, s|-module equipped with a skew-symmetric
R-bilinear pairing (, ): 7 x 7 — R(1) inducing an isomorphism

7 ® Q — Homg(T,R(1)) ® Q.
In 5.3.4(5) we have to replace 8 : ' — L, (8) by 8 : I'o — L, (3); then
Tp/@pTp = IndGl (V@ (3 % a)).
In 5.3.5, we set, for any Ly [[']-module M,

MBxe) — {freM®p, Ly(B) |Vo €T o(z) = (8 x a)(x)};
then
H}(F, TP/WPTP) = H}(Fo,v ® (ﬂ X Oé))

— (HNFp, V) ® (B x a)) “/ )

= H}(Fﬁvv)(67 xa™)
and

T HY(Fp, V)P 07D 2 gl(Fy, V) (%),

Applying Corollary 5.3.2, we obtain, for any pair of characters of finite order
B,8":Tg — Ly, that

(1) (FoVOBxe) /) o (R V @ (8 x a))
= (~1)Fo Vel ) (R Ve (8 xa).  (5.35.1)
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functions, which give the stationary solutions of deterministic optimal
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compactification is seen to be a generalisation of the compactification
of metric spaces using (generalised) Busemann functions. We define
an analogue of the minimal Martin boundary and show that it can
be identified with the set of limits of “almost-geodesics”, and also
the set of (normalised) harmonic functions that are extremal in the
max-plus sense. Our main result is a max-plus analogue of the Mar-
tin representation theorem, which represents harmonic functions by
measures supported on the minimal Martin boundary. We illustrate
it by computing the eigenvectors of a class of Lax-Oleinik semigroups
with nondifferentiable Lagrangian: we relate extremal eigenvector to
Busemann points of normed spaces.
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1 INTRODUCTION

There exists a correspondence between classical and idempotent analysis, which
was brought to light by Maslov and his collaborators [Mas&7, [MS92] [KM97,
LMSOT]. This correspondence transforms the heat equation to an Hamilton-
Jacobi equation, and Markov operators to dynamic programming operators.
So, it is natural to consider the analogues in idempotent analysis of harmonic
functions, which are the solutions of the following equation

u; = sup(A;j + uy) forall i € S. (1)
JjeSs

The set S and the map A : S x S — RU{—o0}, (4,5) — A;j, which plays
the role of the Markov kernel, are given, and one looks for solutions u : S —
R U {—o0}, @ — wu,;. This equation is the dynamic programming equation of
a deterministic optimal control problem with infinite horizon. In this context,
S is the set of states, the map A gives the weights or rewards obtained on
passing from one state to another, and one is interested in finding infinite
paths that maximise the sum of the rewards. Equation () is linear in the
max-plus algebra, which is the set R U {—o0} equipped with the operations of
maximum and addition. The term idempotent analysis refers to the study of
structures such as this, in which the first operation is idempotent.
In potential theory, one uses the Martin boundary to describe the set of har-
monic and super-harmonic functions of a Markov process, and the final be-
haviour of its paths. Our goal here is to obtain analogous results for Equa-
tion ().
The original setting for the Martin boundary was classical potential theory
[Mardd]), where it was used to describe the set of positive solutions of Laplace’s
equation. Doob [Doohd] gave a probabilistic interpretation in terms of Wiener
processes and also an extension to the case when time is discrete. His method
was to first establish an integral representation for super-harmonic functions
and then to derive information about final behaviour of paths. Hunt [Hun60]
showed that one could also take the opposite approach: establish the results
concerning paths probabilistically and then deduce the integral representation.
The approach taken in the present paper is closest to that of Dynkin [Dyn69),
which contains a simplified version of Hunt’s method.
There is a third approach to this subject, using Choquet theory. However, at
present, the tools in the max-plus setting, are not yet sufficiently developed to
allow us to take this route.
Our starting point is the max-plus analogue of the Green kernel,

Aj; = sup{Aigiy + -+ Aiy i, | nEN, g, yin €S, do =4, i = j}

Thus, A;fj is the maximal weight of a path from ¢ to 5. We fix a map i — oy,
from S to RU {—o0}, which will play the role of the reference measure. We
set m; 1= SUpycg Ok + A,*fj. We define the mazx-plus Martin space .# to be the
closure of the set of maps J# := {A,*j —m; | j € S} in the product topology,
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and the Martin boundary to be .# \ % . This term must be used with caution
however, since .# may not be open in .# (see Example [[[LH). The reference
measure is often chosen to be a max-plus Dirac function, taking the value 0 at
some basepoint b € S and the value —oo elsewhere. In this case, m; = AZ;‘-
One may consider the analogue of an “almost sure” event to be a set of outcomes
(in our case paths) for which the maximum reward over the complement is
—00. So we are lead to the notion of an “almost-geodesic”, a path of finite total
reward, see Section[ll The almost sure convergence of paths in the probabilistic
case then translates into the convergence of every almost-geodesic to a point
on the boundary.

The spectral measure of probabilistic potential theory also has a natural ana-
logue, and we use it to give a representation of the analogues of harmonic
functions, the solutions of (). Just as in probabilistic potential theory, one
does not need the entire Martin boundary for this representation, a particular
subset, called the minimal Martin space, will do. The probabilistic version
is defined in [Dyn69] to be the set of boundary points for which the spectral
measure is a Dirac measure located at the point itself. Our definition (see Sec-
tion @) is closer to an equivalent definition given in the same paper in which
the spectral measure is required only to have a unit of mass at the point in
question. The two definitions are not equivalent in the max-plus setting and
this is related to the main difference between the two theories: the representing
max-plus measure may not be unique.

Our main theorem (Theorem BJ) is that every (max-plus) harmonic vector u
that is integrable with respect to 7, meaning that sup;cg 7; + u; < 0o, can be
represented as

u= sup v(w)+ w, (2)
we.dm

where v is an upper semicontinuous map from the minimal Martin space .#™
to RU{—o00}, bounded above. The map v is the analogue of the density of the
spectral measure.

We also show that the (max-plus) minimal Martin space is exactly the set of
(normalised) harmonic functions that are extremal in the max-plus sense, see
Theorem B3 We show that each element of the minimal Martin space is either
recurrent, or a boundary point which is the limit of an almost-geodesic (see
Corollary [ and Proposition [LH).

To give a first application of our results, we obtain in Corollary [T 3 an existence
theorem for non-zero harmonic functions of max-plus linear kernels satisfying
a tightness condition, from which we derive a characterisation of the spectrum
of some of these kernels (Corollary [TZ]).

To give a second application, we obtain in Section a representation of the
eigenvectors of the Lax-Oleinik semigroup [Eva98, §3.3]:

T'u(z) = sup —tL(u) +u(y) ,
ye]Rn t
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where L is a convex Lagrangian. This is the evolution semigroup of the
Hamilton-Jacobi equation

% = L*(Vu) ,
where L* denotes the Legendre-Fenchel transform of L. An eigenvector with
eigenvalue A € R is a function u such that T'u = At + u holds for all ¢ >
0. We compute the eigenvectors for a subclass of possibly nondifferentiable
Lagrangians (Corollary and Theorem [[ZH).
Results and ideas related to the ones of present paper have appeared in several
works: we now discuss them.
Max-plus harmonic functions have been much studied in the finite-dimensional
setting. The representation formula () extends the representation of harmonic
vectors given in the case when S is finite in terms of the critical and saturation
graphs. This was obtained by several authors, including Romanovski [Rom67],
Gondran and Minoux [GM77] and Cuninghame-Green [CGT79, Th. 24.9]. The
reader may consult [MS92, [BCOQ92, [Bap9§, [GM02L, [AGN3, [AGW05] for more
background on max-plus spectral theory. Relations between max-plus spec-
tral theory and infinite horizon optimisation are discussed by Yakovenko and
Kontorer [YK92] and Kolokoltsov and Maslov [KM3I7, § 2.4]. The idea of
“almost-geodesic” appears there in relation with “Turnpike” theorems.
The max-plus Martin boundary generalises to some extent the boundary of a
metric space defined in terms of (generalised) Busemann functions by Gromov
in [GroRT] in the following way (see also [BGSS5| and [Bal95, Ch. II]). (Note
that this is not the same as the Gromov boundary of hyperbolic spaces.) If
(S,d) is a complete metric space, one considers, for all y,z € S, the function
by,» given by

byz(2) =d(z,z) —d(z,y) forzels .

One can fix the basepoint y in an arbitrary way. The space €(S) can
be equipped with the topology of uniform convergence on bounded sets, as
in [Grof1l [Bal9d], or with the topology of uniform convergence on compact
sets, as in [BGS8A]. The limits of sequences of functions by 5, € €(S), where
xn is a sequence of elements of S going to infinity, are called (generalised)
Busemann functions.

When the metric space S is proper, meaning that all closed bounded subsets
of S are compact, the set of Busemann functions coincides with the max-plus
Martin boundary obtained by taking A,, = A%, = —d(z,x), and o the max-
plus Dirac function at the basepoint y. This follows from Ascoli’s theorem, see
Remark [ZT0 for details. Note that our setting is more general since —A* need
not have the properties of a metric, apart from the triangle inequality (the case
when A* is not symmetrical is needed in optimal control).

We note that Ballman has drawn attention in [Bal95, Ch. II] to the analogy
between this boundary and the probabilistic Martin boundary.

The same boundary has recently appeared in the work of Rieffel [Rie(?2], who
called it the metric boundary. Rieffel used the term Busemann point to des-
ignate those points of the metric boundary that are limits of what he calls
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“almost-geodesics”. We shall see in Corollary that these are exactly the
points of the max-plus minimal Martin boundary, at least when S is a proper
metric space. We also relate Busemann points to extremal eigenvectors of Lax-
Oleinik semigroups, in Section Rieffel asked in what cases are all bound-
ary points Busemann points. This problem, as well as the relation between
the metric boundary and other boundaries, has been studied by Webster and
Winchester [WWO6, WW05] and by Andreev [And04, [And07]. However, rep-
resentation problems like the one dealt with in Theorem do not seem to
have been treated in the metric space context.

Results similar to those of max-plus spectral theory have recently appeared in
weak-KAM theory. In this context, S is a Riemannian manifold and the kernel
A is replaced by a Lax-Oleinik semigroup, that is, the evolution semigroup
of a Hamilton-Jacobi equation. Max-plus harmonic functions correspond to
the weak-KAM solutions of Fathi [Faf97hl [Fat97al, [Faf0]], which are essentially
the eigenvectors of the Lax-Oleinik semigroup, or equivalently, the viscosity
solutions of the ergodic Hamilton-Jacobi equation, see [Faf(8, Chapter 8]. In
weak-KAM theory, the analogue of the Green kernel is called the Mane po-
tential, the role of the critical graph is played by the Mather set, and the
Aubry set is related to the saturation graph. In the case when the manifold
is compact, Contreras [Con(l Theorem 0.2] and Fathi [Eat08, Theorem 8.6.1]
gave a representation of the weak-KAM solutions, involving a supremum of
fundamental solutions associated to elements of the Aubry set. The case of
non-compact manifolds was considered by Contreras, who defined an analogue
of the minimal max-plus Martin boundary in terms of Busemann functions,
and obtained in [Con(T, Theorem 0.5] a representation formula for weak-KAM
solutions analogous to ). Busemann functions also appear in [Faf(3]. Other
results of weak-KAM theory concerning non-compact manifolds have been ob-
tained by Fathi and Maderna [EM02]. See also Fathi and Siconolfi [ES04]. Let
us point out that some results of weak-KAM theory with a discrete flavor were
established by MacKay, Slijep¢evi¢, and Stark [MSS00]. Extremality proper-
ties of the elements of the max-plus Martin boundary (Theorems and
below) do not seem to have been considered in weak-KAM theory.

Despite the general analogy, the proofs of our representation theorem for har-
monic functions (Theorem Bl and of the corresponding theorems in [Con(T]
and [Fat08] require different techniques. In order to relate both settings, it
would be natural to set A = By, where (B;)¢>0 is the Lax-Oleinik semigroup,
and s > 0 is arbitrary. However, only special kernels A can be written in this
way, in particular A must have an “infinite divisibility” property. Also, not
every harmonic function of By is a weak-KAM solution associated to the semi-
group (By)i>0. Thus, the discrete time case is in some sense more general than
the continuous-time case, but eigenvectors are more constrained in continuous
time, so both settings require distinct treatments. Nevertheless, in some spe-
cial cases, a representation of weak-KAM solutions follows from our results.
This happens for example in Section [[2] where our assumptions imply that the
minimal Martin space of By is independent of s. We note that the Lagrangian
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there is not necessarily differentiable, a property which is required in [Fat0§]
and [Con01].

The lack of uniqueness of the representing measure is examined in a further
work [Wal(9], where it is shown that the set of (max-plus) measures represent-
ing a given (max-plus) harmonic function has a least element.

After the submission of the present paper, a boundary theory which has some
similarities with the present one was developed by Ishii and Mitake [IM0O7].
The results there are in the setting of viscosity solutions and are independent
of the present ones.

We note that the main results of the present paper have been announced in
the final section of a companion paper, [AGW0H], in which max-plus spectral
theory was developed under some tightness conditions. Here, we use tightness
only in Section Il We finally note that the results of the present paper have
been used in the further works [Wal07, [Wal(S].

Acknowledgements. We thank Albert Fathi for helpful comments, and in par-
ticular for having pointed out to us the work of Contreras [Con(1]. We also
thank Arnaud de la Fortelle for references on the probabilistic Martin boundary
theory.

2 THE MAX-PLUS MARTIN KERNEL AND MAX-PLUS MARTIN SPACE

To show the analogy between the boundary theory of deterministic optimal
control problems and classical potential theory, it will be convenient to use
max-plus notation. The maz-plus semiring, Ruyax, is the set RU{—o0} equipped
with the addition (a,b) — a @ b := max(a,b) and the multiplication (a,b) —
a®b:=a+b. We denote by 0 := —oo and 1 := 0 the zero and unit elements,
respectively. We shall often write ab instead of @ ® b. Since the supremum
of an infinite set may be infinite, we shall occasionally need to consider the
completed maz-plus semiring Rpmax, obtained by adjoining to Rmax an element
400, with the convention that 0 = —oo remains absorbing for the semiring
multiplication.

The sums and products of matrices and vectors are defined in the natural
way. These operators will be denoted by @ and concatenation, respectively.
For instance, if A € R5X2, (i,5) ~ A;j, denotes a matrix (or kernel), and if
u € RS, i+ u; denotes a vector, we denote by Au € RS, i — (Au);, the
vector defined by

(Au)l = @Aiju]‘ 5

jes

where the symbol @& denotes the usual supremum.
We now introduce the max-plus analogue of the potential kernel (Green kernel).
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ESXS

mas » We define

Given any matrix A €

A =T A® A% @ - e R3XS |

max
At =A0 A0 A0 . - cREXS
where I = A% denotes the max-plus identity matrix, and A* denotes the kth
power of the matrix A. The following formulae are obvious:

A*=T@ A, AT = AA* = A*A,  and A" = A*A* .

It may be useful to keep in mind the graph representation of matrices: to any
matrix A € @Efgf is associated a directed graph with set of nodes S and an
arc from ¢ to j if the weight A;; is different from 0. The weight of a path is
by definition the max-plus product (that is, the sum) of the weights of its arcs.
Then, A;; and A7; represent the supremum of the weights of all paths from ¢
to j that are, respectively, of positive an nonnegative length.

Motivated by the analogy with potential theory, we will say that a vector
u € RS, is (max-plus) harmonic if Au = u and super-harmonic if Au < w.
Note that we require the entries of a harmonic or super-harmonic vector to
be distinct from +o0c. We shall say that a vector 7 € RS is left (max-plus)
harmonic if 7A = 7, 7 being thought of as a row vector. Likewise, we shall say
that 7 is left (max-plus) super-harmonic if 7A < 7. Super-harmonic vectors

have the following elementary characterisation.
s L e A
PROPOSITION 2.1. A wvector u € Ry . is super-harmonic if and only if u = A*u.

Proof. Ifu € RS, is super-harmonic, then A*u < v for all k > 1, from which it

follows that u = A*u. The converse also holds, since AA*u = Atu < A*u. O
From now on, we make the following assumption.

ASSUMPTION 2.2. There exists a left super-harmonic vector with full support,
in other words a row vector m € RS such that = > wA.

By applying Proposition X1 to the transpose of A, we conclude that 7 = wA*.
Since m has no components equal to 0, we see that one consequence of the
above assumption is that A;‘j € Ryax for all 4,5 € S. A fortiori, A;; € Rpyax
forall¢,j € S.

The choice of m we make will determine which set of harmonic vectors is the
focus of attention. It will be the set of harmonic vectors u that are w-integrable,
meaning that mu < co. Of course, the boundary that we define will also depend
on 7, in general. For brevity, we shall omit the explicit dependence on 7 of
the quantities that we introduce and shall omit the assumption on 7 in the
statements of the theorems. We denote by 57 and .7, respectively, the set of
m-integrable harmonic and m-integrable super-harmonic vectors.

It is often convenient to choose 7 := A} for some b € S. (We use the notation
M;. and M.; to denote, respectively, the ith row and ith column of any matrix
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M.) We shall say that b is a basepoint when the vector 7 defined in this way
has finite entries (in particular, a basepoint has access to every node in ).
With this choice of 7, every super-harmonic vector u € RS is automatically
m-integrable since, by Proposition X1l 7u = (A*u)p = up < 400. So, in this
case, ¢ coincides with the set of all harmonic vectors. This conclusion remains
true when m := o A*, where o is any row vector with finite support, that is,
with o; = 0 except for finitely many i.

We define the Martin kernel K with respect to m:

Kij = Aj(m;)" foralli,jes . (3)
Since m; Aj; < (wA*); = m;, we have
Kij < (m)™ % foralli,jes . (4)

This shows that the columns K.; are bounded above independently of j. By
Tychonoff’s theorem, the set of columns % := {K.; | j € S} is relatively
compact in the product topology of RS . The Martin space .# is defined to
be the closure of J#. We call & := .# \ # the Martin boundary. From (&)
and @), we get that Aw < w and 7w < 1 for all w € 2. Since the set of

vectors with these two properties can be written

{weRS, | Ajw; <w; and mpwy, < 1 for all 4,5, k € S}

S

o axs We have that

and this set is obviously closed in the product topology of R
M CS and mw <1l forallwe .# . (5)

3 HARMONIC VECTORS ARISING FROM RECURRENT NODES

Of particular interest are those column vectors of K that are harmonic. To
investigate these we will need some basic notions and facts from max-plus
spectral theory. Define the maximal circuit mean of A to be

p(A) = Pl AMVE

k>1

where tr A = @, g Aii- Thus, p(A) is the maximum weight-to-length ratio for
all the circuits of the graph of A. The existence of a super-harmonic row vector
with full support, Assumption 22 implies that p(A) < 1 (see for instance
Prop. 3.5 of [Dud92] or Lemma 2.2 of [AGW0H]). Define the normalised
matriz A = p(A)~'A. The max-plus analogue of the notion of recurrence is
defined in [AGW05]:

DEFINITION 3.1 (Recurrence). We shall say that a node 7 is recurrent if flj; =1.
We denote by N7(A) the set of recurrent nodes. We call recurrent classes
of A the equivalence classes of N"(A) with the relation R defined by iRj if
Af AL =1.
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This should be compared with the definition of recurrence for Markov chains,
where a node is recurrent if one returns to it with probability one. Here, a
node is recurrent if we can return to it with reward 1 in A.

Since AA* = AT < A*, every column of A* is super-harmonic. Only those
columns of A* corresponding to recurrent nodes yield harmonic vectors:

PROPOSITION 3.2 (See [AGWO05, Prop. 5.1]). The column vector A% is har-
monic if and only if p(A) = 1 and i is recurrent. O

The same is true for the columns of K since they are proportional in the max-
plus sense to those if A*.

The following two results show that it makes sense to identify elements in the
same recurrence class.

PROPOSITION 3.3. Let i,j € S be distinct. Then K.; = K.; if and only if
p(A) =1 and i and j are in the same recurrence class.

Proof. Let i,j € S be such that K.; = K.;. Then, in particular, K;; = Kj;,
and so Aj; = m;(m;) "', Symmetrically, we obtain A%, = m;(m;)~". Therefore,
A3 AL = 1. If i # j, then this implies that A;E > A;;A;;- = Aj;A7, =1, in
which case p(A) = 1, ¢ is recurrent, and ¢ and j are in the same recurrence
class. This shows the “only if” part of the proposition. Now let p(A) = 1 and 4
and j be in the same recurrence class. Then, according to [AGW05, Prop. 5.2],
A = A5 A%, and so K = K j(m;)~'m; A5, But since 7 = mA*, we have that
> ﬂ'jA;fi, and therefore K.; < K.;. The reverse inequality follows from a
symmetrical argument. O

PROPOSITION 3.4. Assume that p(A) = 1. Then, for allu € ¥ and i, j in the
same recurrence class, we have miu; = Tju;.

Proof. Since 7 € RS, we can consider the vector 7~ ! := (w;l)ies. That 7
is super-harmonic can be expressed as m; > m;A;;, for all ¢,7 € S. This is
equivalent to (m;)™1 > A;j(m;)~1; in other words, that =1, seen as a column
vector, is super-harmonic. Proposition 5.5 of [AGW05] states that the restric-
tion of any two p(A)-super-eigenvectors of A to any recurrence class of A are
proportional. Therefore, either u = 0 or the restrictions of v and 7! to any
recurrence class are proportional. In either case, the map i € S +— mu; is
constant on each recurrence class. o

Remark 3.5. Tt follows from these two propositions that, for any v € ., the
map S — Ruyax, ¢ — mu; induces a map # — Ryax, K.; — mu;. Thus, a
super-harmonic vector may be regarded as a function defined on JZ".

Let u € R3

max

be a m-integrable vector. We define the map pu,, : A4 — Rpyax by

py(w) :=limsupmju; := inf sup wju; forwe . # ,
K.j—w Wow i ew

where the infimum is taken over all neighbourhoods W of w in .#. The reason
why the limsup above cannot take the value 400 is that mju; < mu < +o0 for
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all j € S. The following result shows that p, : .# — Ryax is an upper semi-
continuous extension of the map from J# to Ry,ax introduced in Remark

LEMMA 3.6. Let u be a m-integrable super-harmonic vector. Then, p,(K.;) =
miu; for each i € S and p,(w)w < u for each w € # . Moreover,

u= @ Ly (W)w = @ oy (W)w

weX weM

Proof. By Proposition 221l A*u = u. Hence, for all i € S,

U; = @A:}u] = @Kijwjuj . (6)

jES jeSs

We conclude that u; > K;jmju; for all 4,5 € S. By taking the limsup with
respect to j of this inequality, we obtain that

u; > limsup K;jmju; > lii(minf K;; limsup mju; = w;pg (w) (7)
K.j—»’w jTw K_j—vw

for all w € .# and i € S. This shows the second part of the first assertion of
the lemma. To prove the first part, we apply this inequality with w = K.;. We
get that w; > Kyip,(K.;). Since Ky = (m;) 7!, we see that mu; > p.(K.;). The

reverse inequality follows from the definition of u,. The final statement of the
lemma follows from Equation () and the first statement. (]

4 THE MINIMAL MARTIN SPACE

In probabilistic potential theory, one does not need the entire boundary to
be able to represent harmonic vectors, a certain subset suffices. We shall see
that the situation in the max-plus setting is similar. To define the (max-plus)
minimal Martin space, we need to introduce another kernel:

Kfj = A;”j(ﬂj)_l foralli,j€ S .

Note that K,"j = AK.; is a function of K.;. For all w € .#, we also define
w’ € RS

max*

wzb =liminf K. forallie S .

b
K.j—vw K

The following lemma shows that no ambiguity arises from this notation since
(K ~j)b =K b g

LEMMA 4.1. We have w’ = w for w € &, and w® = K,"j = Aw forw=K; €
K. For allw € A, we have w’ € . and Tw® < 1.
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Proof. Let w € . Then, for each i € S, there exists a neighbourhood W of w
such that K., ¢ W. So

b 7. . b s . _
w; = liminf K7; = liminf K;; = w; ,

K. j—w K. j—w

proving that w’ = w.
Now let w = K_; for some j € S. Taking the sequence with constant value K.,
we see that v’ < K bj To establish the opposite inequality, we observe that

w” = liminf AK., > liminf A, K;, = A,w;  forallie S |

i
K. p—w K. p—w

or, in other words, w” > Aw. Therefore we have shown that v’ = K bj
The last assertion of the lemma follows from (E]) and the fact that 7 is super-
harmonic. O

Next, we define two kernels H and H” over ..
H(z,w) :=py(z) = limsup m;w; = limsup lim 7 K;;
K.j—z K.;—=z K'J'_'w
H(2,w) :=f1,» () = limsup m;w? = limsup lim inf mKibj .
K.;—=z K.;—=z K'j_’w
Using the fact that K” < K and Inequality @), we get that
Hb(z,w) < H(z,w) <1 forallw,ze€ # .

If w € .#, then both w and w” are elements of . by () and Lemma EIl
Using the first assertion in Lemma Bl we get that

H(K.;,w) = muw; (8)
H (K ;,w) = mu’ . (9)
In particular
H(K., K.j) = mK; = m Al ()~ (10)
H' (K., K. ) = mK) = mAfL(m) ™" (11)

Therefore, up to a diagonal similarity, H and H” are extensions to .# x .4 of
the kernels A* and AT respectively.

LEMMA 4.2. For all w,z € M, we have

H(zw) H’(z,w) whenw#zorw=z2¢€% ,
z,w) = i
1 otherwise .
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Proof. If w € %, then w” = w by Lemma Bl and the equality of H(z,w) and

H°(z,w) for all z € . follows immediately.

Let w = K.; for some j € S and let z € .# be different from w. Then, there

exists a neighbourhood W of z that does not contain w. Applying Lemma ET]

again, we get that w? = Kfj = K;; = w; for all i € W. We deduce that

H(z,w) = H*(z,w) in this case also.

In the final case, we have w = z € . The result follows from Equation ().
O

We define the minimal Martin space to be
M = {we M| H (w,w) =1} .
From Lemma EE2 we see that
{lwe A | Hw,w)=1}y=4"UX . (12)
LEMMA 4.3. Every w € 4™ U X satisfies mw = 1.

Proof. We have

7w = sup mw; > limsup mw; = H(w,w) = 1.
€S K.;—w

By Equation (@), 7w < 1, and the result follows. o

PROPOSITION 4.4. Every element of #™ is harmonic.

Proof. If 2 N #™ contains an element w, then, from Equation (), we see
that p(A) = 1 and w is recurrent. It follows from Proposition that w is
harmonic.

It remains to prove that the same is true for each element w of Z N .#™. Let
1 € S be such that w; # 0 and assume that § > 1 is given. Since w € %, w and
K .; will be different. We make two more observations. Firstly, by Lemma 2]
lim SUPg |y TjW) = 1. Secondly, limg ;. Kij = w;. From these facts, we
conclude that there exists j € S, different from 4, such that

1< fBmjw;  and  w; < BKG; . (13)

Now, since i and j are distinct, we have A}, = A;rj = (AA*);;. Therefore, we
can find k € S such that
A5 < BARAT, (14)

The final ingredient is that A} Wi < wg because w is super-harmonic. From this
and the inequalities in () and (@), we deduce that w; < 32 A;wy < £2(Aw);.
Both § and i are arbitrary, so w < Aw. The reverse inequality is also true since
every element of .Z is super-harmonic. Therefore w is harmonic. O
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5 MARTIN SPACES CONSTRUCTED FROM DIFFERENT BASEPOINTS

We shall see that when the left super-harmonic vector 7 is of the special form
m = Aj. for some basepoint b € S, the corresponding Martin boundary is
independent of the basepoint.

PROPOSITION 5.1. The Martin spaces corresponding to different basepoints are
homeomorphic. The same is true for Martin boundaries and minimal Martin
spaces.

Proof. Let .# and .#’ denote the Martin spaces corresponding respectively to
two different basepoints, b and b’. We set m = A} and n’ = A},. We denote
by K and K’ the Martin kernels corresponding respectively to m and «n’. By
construction, Kj; = 1 holds for all j € S. It follows that w, = 1 for all w € .Z.
Using the inclusion in (), we conclude that .# C %, := {w € ¥ | w, = 1},
where . denotes the set of m-integrable super-harmonic functions. Observe
that A7, and A}, ; are finite for all ¢, j € 5, since both b and b’ are basepoints.
Due to the inequalities 7’ > Aj,,m and m > Ay, 7', m-integrability is equivalent
to m'-integrability. We deduce that .#' C A = {w' € &/ | w, = 1}.
Consider now the maps ¢ and v defined by

d(w) =wlwy)™ !, Ywe S P) =w (w) T, Yo' € Fy .

Observe that if w € %, then wy > A}, ,wy = Aj,, # 0. Hence, w — wy does
not take the value 0 on .%,. By symmetry, w’ — wj does not take the value
zero on . It follows that ¢ and v are mutually inverse homeomorphisms
which exchange ., and .%. Since ¢ sends K.; to K’ ;> ¢ sends the the Martin
space ., which is the closure of ¢ := {K.; | j € S}, to the Martin space
', which is the closure of %" := {K; | j € S}. Hence, ¢ sends the Martin
boundary .# \ ¢ to the Martin boundary .’ \ 2.

It remains to show that the minimal Martin space corresponding to m, .Z™, is
sent by ¢ to the minimal Martin space corresponding to 7', .#Z'™. Let

1b (1 AN T PR + —1
H”(Z,w") =limsup liminf Ay AL (Ap ;) -
K’ —z/ K_/jﬁ’u)/

Since ¢ is an homeomorphism sending K.; to K’,, a net (K.;);c; converges to

w if and only if the net (K7;);er converges to ¢(w), and so

H'b((b(z), ¢(w)) = limsup lim inf AZ%A;;‘ (Az,j)_l = zb/wl;le(z, w) .

K,—z Kj—-w

It follows that H°(w,w) = 1 if and only if H"*(¢(w),é(w)) = 1. Hence,
HAT) =M. O

Remark 5.2. Consider the kernel obtained by symmetrising the kernel H®,

(z,w) — H’(z,w)H’(w, 2) .
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The final argument in the proof of Proposition BEJlshows that this symmetrised
kernel is independent of the basepoint, up to the identification of w and ¢(w).
The same is true for the kernel obtained by symmetrising H,

(z,w) — H(z,w)H(w,z) .

6 MARTIN REPRESENTATION OF SUPER-HARMONIC VECTORS

In probabilistic potential theory, each super-harmonic vector has a unique rep-
resentation as integral over a certain set of vectors, the analogue of .Z™ U ¢ .
The situation is somewhat different in the max-plus setting. Firstly, according
to Lemma B8 one does not need the whole of .Z™ U J# to obtain a repre-
sentation: any set containing £ will do. Secondly, the representation will
not necessarily be unique. The following two theorems, however, show that
™ U still plays an important role.

THEOREM 6.1 (Martin representation of super-harmonic vectors). For each
U E L, by 18 the mazimal v : A™ U X — Rypax satisfying

v= P vww, (15)

weMmUKX

Any v . H™ U X — Ruyax satisfying this equation also satisfies

sup  v(w) < oo (16)
WEMMUK

and any v satisfying {IA) defines by (LA) an element u of .7.

Proof. By Lemma B v can be written as () with v = p,. Suppose that
v: MUK — Rpax Is an arbitrary function satisfying (). We have

U = @ v(iw)rw .

weMmUK

By Lemma B3 7w = 1 for each w € .#Z™ U . Since mu < +oo, we deduce
that (@) holds.

Suppose that v : #™U% — Rpyax is an arbitrary function satisfying () and
define v by ([3). Since the operation of multiplication by A commutes with
arbitrary suprema, we have Au < u. Also mu = @, c_ym V(w) < +00. So
ue.s.

Let w € #™ U . Then v(w)w; < u; for all i € S. So we have

v(w)H (w,w) = v(w) limsup mw; < limsup mu; = py(w) .
K.;—w K.;—w

Since H(w,w) = 1, we obtain v(w) < p,(w). O
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We shall now give another interpretation of the set .#™ U J¢. Let V be
a subsemimodule of RS, that is a subset of RS stable under pointwise
maximum and the addition of a constant (see [LMSOT], [CGQU04] for definitions
and properties of semimodules). We say that a vector £ € V'\{0} is an extremal
generator of V if £ = u @ v with u,v € V implies that either £ = u or £ = v.
This concept has, of course, an analogue in the usual algebra, where extremal
generators are defined for cones. Max-plus extremal generators are also called
join irreducible elements in the lattice literature. Clearly, if £ is an extremal
generator of V' then so is af for all @ € R. We say that a vector u € RS __ is
normalised if mu = 1. If V is a subset of the set of m-integrable vectors, then
the set of its extremal generators is exactly the set of a&, where oo € R and &
is a normalised extremal generator.

THEOREM 6.2. The normalised extremal generators of & are precisely the el-
ements of A™ U X .

The proof of this theorem relies on a series of auxiliary results.

LEMMA 6.3. Suppose that & € A#™ U X can be written in the form & =
Ducy V(w)w, where v : M — Ryax is upper semicontinuous. Then, there
exists w € M such that & = v(w)w.

Proof. For all i € S, we have §; = @,,c_, v(w)w;. As the conventional sum of
two upper semicontinuous functions, the function .# — Rpax : w — v(w)w;
is upper semicontinuous. Since .# is compact, the supremum of v(w)w; is
attained at some w(Y) € .#, in other words & = V(w(i))wgi). Since H(,€) =1,
by definition of H, there exists a net (ix)gep of elements of S such that K.;,
converges to £ and ;, &;, converges to 1. The Martin space .# is compact and
S0, by taking a subnet if necessary, we may assume that (w(ik))ke D converges
to some w € .#. Now, for all j € S,

Kjikﬂ-ikgik = A;zk&k = A;iky(w(ik))wgk) < V(w(ik))wj('ik) )

since w(™) is super-harmonic. Taking the limsup as k — oo, we get that
& < v(w)w;. The reverse inequality is true by assumption and therefore
& =v(w)w;. O

The following consequence of this lemma proves one part of Theorem

COROLLARY 6.4. Every element of #4™UJ is a normalised extremal generator
of 7.

Proof. Let £ € .#™ U #. We know from Lemma that £ is normalised.
In particular, £ # 0. We also know from Equation @) that £ € .. Suppose
u,v € . are such that { = u@®v. By Lemma B8 we have u = @, c_, ptu(w)w
and v = @,,c_y to(w)w. Therefore, £ = P, c 4, v(w)w, with v = p, © fi,.
Since p,, and p, are upper semicontinuous maps from .# to Ryax, so is v. By
the previous lemma, there exists w € .# such that £ = v(w)w. Now, v(w)
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must equal either p,(w) or p,(w). Without loss of generality, assume the first
case. Then £ = p,(w)w < u, and since £ > u, we deduce that & = w. This
shows that £ is an extremal generator of .%. o

The following lemma will allow us to complete the proof of Theorem

LEMMA 6.5. Let F C RS have compact closure .Z in the product topology.

Denote by V' the set whose elements are of the form

&= @ viw)yw € RS, with v : . # — Rpax, sup v(w) <oo .  (17)
wWeT weEF

Let € be an extremal generator of V, and v be as in [I7]). Then, there exists

w € .F such that £ = D(w)w, where
p(w):= limsup v(w).
w'—w,w €EF
Proof. Since v < U, we have { < @, czV(w)w < @, .5 P(w)w. Clearly,
v(w)w; < & foralli € S and w € #. Taking the limsup as w — w’ for any
w' € %, we get that
Combined with the previous inequality, this gives us the representations
(=P vwyw = vww . (18)
weF weZF
Consider now, for each i € S and a < 1, the set
Ui,a = {w S j | f/(w)wl < Oéfz} R
which is open in .# since the map w D(w)wz-_ is upper semicontinuous. Let
& € V\{0} be such that & # (w)w for all w € .#. We conclude that there exist
i € S and a < 1 such that a&; > »(w)w;, which shows that (U; a)ies,a<1 18
an open covering of .#. Since .% is compact, there exists a finite sub-covering
Ui170€17 sy Uiman'
Using ([[8) and the idempotency of the & law, we get

(=¢o-a withd= P ww, (19)

U}eUij,aj NF
for j = 1...,n. Since the supremum of © over .% is the same as that over .Z,
the vectors &1, ..., £™ all belong to V. Since £ is an extremal generator of .,

we must have £ = & for some j. Then Ui;,a; NF is non-empty, and so &, > 0.
But, from the definition of Uy, 4,

;= @ (w)w;; < iy <& -
weUij,aj NgF

This shows that &7 is different from &, and so Equation ([[d) gives the required
decomposition of &, proving it is not an extremal generator of V. O

DOCUMENTA MATHEMATICA 14 (2009) 195-240



THE MAX-PLUS MARTIN BOUNDARY 211

We now conclude the proof of Theorem

COROLLARY 6.6. Fvery normalised extremal generator of . belongs to .A#4™ U
H .

Proof. Take F = .#™ U % and let V be as defined in Lemma Then,
by definition, .# = .#, which is compact. By Theorem B V = .#. Let
¢ be a normalised extremal generator of .. Again by Theorem BEJl ¢ =
Bwegpe(w)w. Since pe is upper semicontinuous on ., Lemma B yields
& = pe(w)w for some w € A, with pe(w) # 0 since & # 0. Note that
au = Qi for all @ € Ryax and u € . Applying this to the previous
equation and evaluating at w, we deduce that pe(w) = pe(w)pw (w). Thus,
H(w,w) = py(w) = 1. In addition, £ is normalised and so, by Lemma I3

1= € = pe(w)mw = pe(w).

Hence E =w e . #4™ U X . O

7 ALMOST-GEODESICS

In order to prove a Martin representation theorem for harmonic vectors, we will
use a notion appearing in [YK9?2] and [KM97, § 2.4], which we will call almost-
geodesic. A variation of this notion appeared in [Rie0?]. We will compare the
two notions later in the section.

Let u be a super-harmonic vector, that is u € Riax and Au < u. Let @ € Rpyax

be such that o« > 1. We say that a sequence (ir)r>0 with values in S is an
a-almost-geodesic with respect to w if u;, € R and

Ui < aAiOil - .Aik—likuik for all k& > 0. (20)

Similarly, (ix)r>0 is an a-almost-geodesic with respect to a left super-harmonic
vector o if 0;, € R and
Oy, S aaioAigil s Aik—lik for all k£ Z 0.

We will drop the reference to a when its value is unimportant. Observe that, if
(ik)k>0 is an almost-geodesic with respect to some right super-harmonic vector
u, then both u;, and A4;, ,;, arein R for all £ > 0. This is not necessarily true
if (ix)r>0 is an almost-geodesic with respect to a left super-harmonic vector o,
however, if additionally o;, € R for all £ > 0, then A € R for all £ > 0.

T—10k

LEMMA 7.1. Let u,o0 € Rfflax be, respectively, right and left super-harmonic
vectors and assume that u is o-integrable, that is ou < +oo. If (ix)k>0 s an
almost-geodesic with respect to u, and if o, € R, then (ix)k>0 is an almost-

geodesic with respect to o.
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Proof. Multiplying Equation ) by o, (u;,)~*, we obtain
i < a0 iy (Wig) " Aigiy - Aiy iy, < alow) (0 Uig) T i Agiy -+ Aiy i -

So (ik)k>o0 is a [-almost-geodesic with respect to o, with [ =
a(Uu)(Uiouio)_l > a. O

LEMMA 7.2. Let (ix)r>0 be an almost-geodesic with respect to m and let > 1.
Then, for £ large enough, (ir)k>e¢ is a B-almost-geodesic with respect to .

Proof. Consider the matrix /L-]- := m;A;j(m;)~t. The fact that (ig)k>o0 is an
a-almost-geodesic with respect to 7 is equivalent to

Pk = (leioh)il T (Aikfl’ik)il <a for all k >0

Since (A;,_,;,)”' > 1 for all £ > 1, the sequence {pj }x>1 is nondecreasing. The
upper bound then implies it converges to a finite limit. The Cauchy criterion
states that

¢ kignkk Ai“ﬂl v Aiyi =10
This implies that, given any 3 > 1, /L—N-Hl v Ay iy > B for k and ¢ large
enough, with k£ > ¢. Writing this formula in terms of A rather than A, we see

that, for ¢ large enough, (ix)k>¢ is a S-almost-geodesic with respect to 7. O

PROPOSITION 7.3. If (ix)k>0 is an almost-geodesic with respect to w, then K.;,
converges to some w € ™.

Proof. Let 8 > 1. By Lemma [CA (ix)r>¢ is a J-almost-geodesic with respect
to 7, for ¢ large enough. Then, for all & > ¢,

Tetk "

Since 7 is left super-harmonic, we have 7;, A
former inequalities, we deduce that

< m;,. Dividing by Bm;, the

*
X

gt Sﬁi[Kb

ek § ’/TZ'[KZ' § 1. (21)

20k
Since . is compact, it suffices to check that all convergent subnets of K.;,
have the same limit w € .#™. Let (ix,)dep and (i¢, )ecr denote subnets of
(ik)k>0, such that the nets (K.ikd )aep and (K ;, )ecr converge to some w € .4
and w’ € .4, respectively. Applying ) with ¢ = ¢, and k = kg, and taking
the limit with respect to d, we obtain 8~! < i, Wi, - Taking now the limit
with respect to e, we get that 3~ < H(w’,w). Since this holds for all 3 > 1,
we obtain 1 < H(w',w), thus H(w',w) = 1. From Lemma BH we deduce that
w > py(w)w = H(w',w)w' = w'. By symmetry, we conclude that w = w/’,
and so H(w,w) = 1. By Equation (@), w € .#™ U .#. Hence, (K.;, k>0
converges towards some w € .#Z™ U X .
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Assume by contradiction that w ¢ .#™. Then, w = K.; for some j € S,
and H’(w,w) < 1 by definition of .#™. By (), this implies that ijgj =
A;'j < 1. If the sequence (ix)r>0 takes the value j infinitely often, then, we
can deduce from Equation 1) that Ajj = 1, a contradiction. Hence, for k
large enough, iy does not take the value j, which implies, by Lemma BTl that
w;, = w'{k. Using Equation (), we obtain H’(w,w) > limsupy,_, . m;, w';k =
lim sup;,_, . ™, w;, = 1, which contradicts our assumption on w. We have
shown that w € .Z™. O

Remark 7.4. An inspection of the proof of Proposition [ shows that the same
conclusion holds under the weaker hypothesis that for all 3 > 1, we have
T, < B, A;Zik for all ¢ large enough and k > /.

LEMMA 7.5. If (ix)k>0 is an almost-geodesic with respect to w, and if w is the
limit of K., , then
k—o0

Proof. Let § > 1. By Lemma [L2A (ix)r>¢ is a B-almost-geodesic with re-
spect to m for ¢ large enough. Hence, for all k > ¢, m;, < fm;,A and so
1< 67@[/12‘[%7@: = Bm;, K, . Since K;,;, converges to w;, when k tends to
infinity, we deduce that 1 < fliminf, .. m;, w;,, and since this holds for all
B > 1, we get 1 < liminf, . m;,w;,. Since mjw; < 1 for all j, the lemma is
proved. O

*
Ltk

PROPOSITION 7.6. Let u be a m-integrable super-harmonic vector. Then, i,
is continuous along almost-geodesics, meaning that if (ix)k>0 is an almost-
geodesic with respect to m and if K.;, tends to w, then,

fu(w) = klingo (K i) = klingo T Wiy, -

Proof. Recall that m;u; = p,(K.;) holds for all ¢, as shown in Lemma B8 It
also follows from this lemma that v > p,(w)w, and so mu; > mw;u, (w) for
all i € S. Hence,

lim inf m;, w;, > lminf m;, w;, e, (w)
k—o0 k—o0
= pu(w)
by Lemma [ZA Moreover, im sup;,_, . mi, i, < o (w), by definition of g, (w).
o
Combining Lemma [T and Proposition [[3 we deduce the following.

COROLLARY 7.7. If (ix) k>0 s an almost-geodesic with respect to a m-integrable
super-harmonic vector, then K.;, converges to some element of 4™ .

For brevity, we shall say sometimes that an almost-geodesic (ix)r>0 converges
to a vector w when K.;, converges to w. We state a partial converse to Propo-
sition

23
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PROPOSITION 7.8. Assume that A is first-countable. For all w € .#™, there
exists an almost-geodesic with respect to m converging to w.

Proof. By definition, H b(w, w) = 0. Writing this formula explicitly in terms of
A;; and making the transformation A;; := m;A;;(m;) 7!, we get

lim sup lim inf A;-"j =1.

K.i—w Kj—-w

Fix a sequence (Oék)kzo in Ryax such that ap > 1 and o := agag --- < +0o0.
Fix also a decreasing sequence (Wj)g>o of open neighbourhoods of w. We
construct a sequence (ix)r>o in S inductively as follows. Given i5_1, we choose
i to have the following three properties:

a. sz € Wy,

s i+ —1
b. liminfg ;. Aikj > a

c. Af

-1
Te—11k > ak—l'

Notice that it is possible to satisfy (@) because ix_1 was chosen to satisfy (H)
at the previous step. We require io to satisfy @) and (H) but not (@). Since
A is first-countable, one can choose the sequence (Wy)g>o in such a way that
every sequence (wg)g>0 in .# with wy, € Wy, converges to w. By (@), one can
find, for all k£ € N, a finite sequence (i%)o<s<n, such that i = i, sz’“ = ikt1,
and

T T —1
Ap it »~oAi;€Vk—l7i;€Vk >ap  forallkeN .

Since A;; <1 for all i, j € S, we obtain

Ao

1
’Lk,lk

"'Ainfl ,n>a,;1 forallke N, 1 <n<Ng .
k "k

3

Concatenating the sequences (ii)ogeg N,, We obtain a sequence (jm,)m>0 such
that o= < Aj;, -+ A, ;. for all m € N, in other words an a-almost-
geodesic with respect to 7. From Lemma [[3 we know that K. converges to
some point in .#. Since (ix) is a subsequence of (j,,) and K.;, converges to w,

we deduce that K.;  also converges to w. O

Remark 7.9. If S is countable, the product topology on . is metrisable. Then,
the assumption of Proposition is satisfied.

Remark 7.10. Assume that (S,d) is a metric space, let A;; = A}, = —d(i, j)
for i,j € S, and let # = A} for any b € S. We have K.; = —d(-,j) + d(b, j).
Using the triangle inequality for d, we see that, for all £k € S, the function
K.} is non-expansive, meaning that |K;, — K| < d(i,7) for all 4,5 € S.
It follows that every map in .# is non-expansive. By Ascoli’s theorem, the
topology of pointwise convergence on .# coincides with the topology of uniform
convergence on compact sets. Hence, if S is a countable union of compact sets,
then . is metrisable and the assumption of Proposition [L8 is satisfied.
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Ezample 7.11. The assumption in Proposition cannot be dispensed with.
To see this, take S = wy, the first uncountable ordinal. For all ¢,5 € S, define
A;j:=01if i < j and A;; := —1 otherwise. Then, p(A) =1 and A = A*. Also
A7 equals 0 when ¢ < j and —1 otherwise. We take 7 := Aj., where 0 denotes
the smallest ordinal. With this choice, m; = 1 for all i € S, and K = A*.

Let 2 be the set of maps S — {—1,0} that are non-decreasing and take the
value 0 at 0. For each z € 2, define s(z) :=sup{i € S| z; =0} € SU {w1}.
Our calculations above lead us to conclude that

H ={z€ | s(z) € Sand zy,) =0} .

We note that Z is closed in the product topology on {—1,0}5 and contains
. Furthermore, every z € &\ % is the limit of the net (A%;)qcp indexed by
the directed set D = {d € S| d < s.}. Therefore the Martin space is given by
M = 2. Every limit ordinal v less than or equal to w; yields one point z7 in
the Martin boundary & := .# \ #: we have z] = 0 for i < v, and 2] = —1
otherwise.

Since A;-'; = A; = —1 for all i € S, there are no recurrent points, and so
H N A™ is empty. For any z € %, we have z4 = 0 for all d < s(z). Taking
the limsup, we conclude that H(z,z) = 1, thus .#™ = 2. In particular, the
identically zero vector z“! is in .Z™.

Since a countable union of countable sets is countable, for any sequence (ir)ren
of elements of S, the supremum I = sup,cy ¢x belongs to S, and so its successor
ordinal, that we denote by 141, also belongs to S. Since limy .00 K141, = —1,
K.;, cannot converge to 2!, which shows that the point 2“! in the minimal
Martin space is not the limit of an almost-geodesic.

We now compare our notion of almost-geodesic with that of Rieffel [Rie02)]
in the metric space case. We assume that (S, d) is a metric space and take
Aij = Aj; = —d(i,j) and m; = —d(b, j), for an some b € S. The compactifica-
tion of S discussed in [Rie(?], called there the metric compactification, is the
closure of J# in the topology of uniform convergence on compact sets, which,
by Remark [ZT0 is the same as its closure in the product topology. It thus
coincides with the Martin space .#. We warn the reader that variants of the
metric compactification can be found in the literature, in particular, the refer-
ences [Grof1l [Bal95] use the topology of uniform convergence on bounded sets
rather than on compacts.

Observe that the basepoint b can be chosen in an arbitrary way: indeed, for
all b € S, setting n’' = A}, , we get ' > Af,,m and m > Ay, ', which implies
that almost-geodesics in our sense are the same for the basepoints b and b'.
Therefore, when speaking of almost-geodesics in our sense, in a metric space,
we will omit the reference to .

Rieffel defines an almost-geodesic as an S-valued map ~ from an unbounded
set 7 of real nonnegative numbers containing 0, such that for all € > 0, for all
s € T large enough, and for all ¢t € 7 such that t > s,

ld(y(t),v(s)) 4+ d(7(s), 7(0)) —t| < € .
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By taking ¢ = s, one sees that |d(y(t),v(0)) — t| < e. Thus, almost-geodesics
in the sense of Rieffel are “almost” parametrised by arc-length, unlike those in
our sense.

PROPOSITION 7.12. Any almost-geodesic in the sense of Rieffel has a subse-
quence that is an almost-geodesic in our sense. Conversely, any almost-geodesic
in our sense that is not bounded has a subsequence that is an almost-geodesic
in the sense of Rieffel.

Proof. Let v:7 — S denote an almost-geodesic in the sense of Rieffel. Then,
for all 8 > 1, we have

A? < BAL () () A (22)

7(0),7(t) v(s)v(t)

for all s € 7T large enough and for all ¢ € 7 such that ¢ > s. Since the
choice of the basepoint b is irrelevant, we may assume that b = ~(0), so that
Toy(s) = A'y(O) +(s)" As in the proof of Lemma we set A;; = miAj; ; . We
deduce from (22) that

B < Ay <1
>

Let us choose a sequence 3, 3o, . . 1 such that the product (513 . . . converges
to a finite limit. We can construct a sequence tg < t; < ... of elements of 7
such that, setting ix, = (¢, ),

’Lk’Lk+1 ﬂk

Then, the product A;,;, A; s, - converges, which implies that the sequence i,
i1, ... 18 an almost-geodesic in our sense.

Conversely, let ig,i1,... be an almost-geodesic in our sense, and assume that
ty = d(b,ix) is not bounded. After replacing iy by a subsequence, we may
assume that to < t1 < .... We set 7 = {to,t1,...} and vy(tx) = ix. We choose
the basepoint b = ig, so that tg = 0 € 7, as required in the definition of Rieffel.
Lemma implies that

*
Abik 6Abu_z Ttk

holds for all ¢ large enough and for all £ > ¢. Since t;l = Azik, v is an
almost-geodesic in the sense of Rieffel. O

Rieffel called the limits of almost-geodesics in his sense Busemann points.

COROLLARY 7.13. Let S be a proper metric space. Then the minimal Martin
space is the disjoint union of & and of the set of Busemann points of S.

Proof. Since A}, = —d(i,i) = 0 for all i, the set # is included in the minimal
Martin space .#™. We next show that .#"\ .Z is the set of Busemann points.
Let w € .# be a Busemann point. By Proposition [LT2 we can find an almost-
geodesic in our sense ig,%1,... such that K, converges to w and d(b,iy) is
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unbounded. We know from Proposition [[3 that w € .Z™. It remains to check
that w ¢ J£. To see this, we show that for all z € .Z,
lim H(K.;,,z)=H(w,z) . (23)

k—oo

Indeed, for all 8 > 1, letting k tend to infinity in (Il and using @), we get
B < mwi, = H(K.,,w) <1,

for ¢ large enough. Hence, limy_,oo H(K;,,w) = 1. By Lemma B0
z > H(w,z)w. We deduce that H(K,;,,z) > H(w,z)H(K.,,,w), and so
liminf, oo H(K.;,,2) > H(w, z). By definition of H, limsup,_,., H(K.;,,z) <
limsupg ., H(Kj,2) = H(w,z), which shows (ZJ). Assume now that
w € A, that is, w = K.; for some j € S, and let us apply @3) to z = K.;,. We
have H(K.;,,2) = Ay, Aj, = —2 x d(b,ix) — —oo. Hence, H(w,z) = —oo.
But H(w,z) = Aj; A%, = =2 x d(b, j) > —oo, which shows that w ¢ .

Conversely, let w € #™ \ #. By Proposition [[J, w is the limit of an almost-
geodesic in our sense. Observe that this almost-geodesic is unbounded. Oth-
erwise, since S is proper, i would have a converging subsequence, and by
continuity of the map i — K.;, we would have w € J£, a contradiction. It
follows from Proposition that w is a Busemann point. O

8 MARTIN REPRESENTATION OF HARMONIC VECTORS

THEOREM 8.1 (Poisson-Martin representation of harmonic vectors). Any ele-
ment u € I can be written as

u= @ v(w)w , (24)

wes™

with v : M — Rupax, and necessarily,

sup v(w) < +00 .
wed™
Conversely, any v : M™ — Ruax satisfying the latter inequality defines by (24))
an element u of €. Moreover, given u € J, [, is the mazximal v satisfy-

ing ([Z4)-

Proof. Let u € 2. Then u is also in .¥ and so, from Lemma B0 we obtain

that
u= @ o (W)w > @ py (W)w (25)
weM weM™
To show the opposite inequality, let us fix some i € S such that u; # 0. Let
us also fix some sequence (a)g>0 in Ryax such that ay > 1 for all k£ > 0 and
such that o := apay -+ < +00. Since u = Au, one can construct a sequence
(ik)k>0 in S starting at i := 4, and such that

wyy, < o Aigin,, Ui, forallk>0.
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Then,

iy < @lgiy o Aiy i, < @A g, forallk >0, (26)
and so (ir)r>0 is an a-almost-geodesic with respect to u. Since u is w-integrable,
we deduce using Corollary[LAthat K.;, converges to some w € .#™. From (24,
we get u; < ak;, i, us, , and letting k go to infinity, we obtain u; < qw; iy, (w).

We thus obtain
u; < « @ o (W)w; .
weM™
Since a can be chosen arbitrarily close to 1, we deduce the inequality opposite
to (3)), which shows that 24]) holds with v = p,.

The other parts of the theorem are proved in a manner similar to Theorem 1]
O

Remark 8.2. The maximal representing measure p,, at every point that is the
limit of an almost geodesic can be computed by taking the limit of m;u; along
any almost-geodesic converging to this point. See Proposition [L0

In particular, 5# = {0} if and only if .#Z™ is empty. We now prove the analogue
of Theorem for harmonic vectors.

THEOREM 8.3. The normalised extremal gemerators of € are precisely the
elements of MA™.

Proof. We know from Theorem that each element of .Z™ is a normalised
extremal generator of .. Since S C ., and .#™ C s (by Proposition E=4),
this implies that each element of .Z™ is a normalised extremal generator of
H.

Conversely, by the same arguments as in the proof of Corollary B8, taking
F = /™ in Lemma and using Theorem instead of Lemma Bl we get
that each normalised extremal generator & of J# belongs to .Z™ U J¢ . Since,
by Proposition B no element of J& \ .#™ can be harmonic, we have that
Ee ™. O

Remark 8.4. Consider the situation when there are only finitely many recur-
rence classes and only finitely many non-recurrent nodes. Then J¢ is a finite
set, so that A is empty, 4 = &, and .#™ coincides with the set of columns
K.; with j recurrent. The representation theorem (Theorem Bl shows in this
case that each harmonic vector is a finite max-plus linear combination of the
recurrent columns of A*, as is the case in finite dimension.

9 PRrRODUCT MARTIN SPACES

In this section, we study the situation where the set .S is the Cartesian product
of two sets, S1 and Ss, and A and 7 can be decomposed as follows:

A=A410LdLH®A , T=mQRm . (27)
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Here, ® denotes the max-plus tensor product of matrices or vectors, A; is an
S; X §; matrix, m; is a vector indexed by S;, and I; denotes the S; X .S; max-plus
identity matrix. For instance, (A1 ® 12) (i, in),(j1.j2) = (A1)i1j: (12)inj,, Which is
equal to (Al)i1j1 if io = ja, and to O otherwise. We shall always assume that
m; is left super-harmonic with respect to A;, for i = 1,2. We denote by .#; the
corresponding Martin space, by K; the corresponding Martin kernel, etc.
We introduce the map

1RO X RS2 SR g(wy,wr) = wy Qg
which is obviously continuous for the product topologies. The restriction of
1 to the set of (wq,ws) such that mw; = mws = 1 is injective. Indeed,
if wy ® wy = w] ® wh, applying the operator I; ® m2 on both sides of the
equality, we get wy ® mws = w) ® mawj, from which we deduce that wy = wj
if oWy = '/T2wl2 =1.

PROPOSITION 9.1. Assume that A and 7 are of the form (Z73), and that mw; =

1 for all w; € M; and i = 1,2. Then, the map @ is a homeomorphism from
M1 X Mo to the Martin space M of A, and sends J# x Ha to & . Moreover,
the same map sends

M X (AU M) U (U M) X M
to the minimal Martin space M™ of A.
The proof of Proposition [Tl relies on several lemmas.
LEMMA 9.2. If A is given by ([Z74), then, A* = AT ® A and
At =Af @ AS o AT @ AT .
Proof. Summing the equalities A¥ = Di<i<k Al @ ARt we obtain A* = AT ®
As. Hence, At = AA* = (A0 La[10A4)(A;RAL) = AT @A AT0A. O

We define the kernel Hoz from (.41 X.#5)? t0 Ryax, by Hot((21, 22), (w1, ws)) =
H(1(21, 22),1(w1,ws)). The kernel H? o4 is defined from H” in the same way.

LEMMA 9.3. If A* = A1 @ A5 and m = 71 @ ma, then & = (1 X J#2) and
1AMy X M) = M. Moreover, if myw; =1 for all w; € M; and i = 1,2, then
is an homeomorphism from M1 X Mo to M, and H o1 = H; ® Hs.

Proof. Observe that K = K; ® Ky. Hence, & = (] x #3). Let X denote
the closure of any set X. Since % = #;, we get J; x Ho = My X Mo, and
so 1 X Ja is compact. Since 2 is continuous, we deduce that (¢ x Ja) =
1(F x ). Hence, o( M1 x Mo) = H# = . Assume now that mw; = 1 for all
w; € M; and i = 1,2, so that the restriction of ¢ to .#, X .#5 is injective. Since
M X M5 is compact, we deduce that ¢ is an homeomorphism from .#, x .#5
to its image, that is, .. Finally, let z = 1(z1,22) and w = (wy, wz), with
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z1,w1 € A1 and zo,ws € M5. Since ¢ is an homeomorphism from .#, X .#5 to
M , we can write H(z,w) in terms of limsup and limit for the product topology

of %1 X %2:

H(z,w)= limsup lim (i1 ,in) K (i1,i0),G1,ja) - (28)
(K1).iy —z1 (1) —wi
(K2).iy—z2 (K2)jy 2wz

Since A* = A} ® A5 and m = m; ® 72, we can write the right hand side term
of ) as the product of two terms that are both bounded from above:

W(i1,i2)K(i1,i2),(j1,j2) = ((ﬂ-l)il (Kl)ilvjl) ((WQ)iz (KQ)’iz,jz) .

Hence, the limit and limsup in ([Z8) become a product of limits and limsups,
respectively, and so H(z,w) = Hj(z1,w1)Ha(z2, w). O

LEMMA 9.4. Assume that A and 7 are of the form (Z4) and that myw; =1 for
all w; € M; and i =1,2. Then

H’o1=H® Hy® H, ® H . (29)
Proof. By Lemma @2 A+ = AT ® A5 © A} ® A, and so
K=K oK, &K &K} .
Let z = 1(21, 22) and w = 2(wy, ws), with z1, w1 € M1, z9,wy € M. In a way

similar to (25), we can write H as

b

H’(z,w) = limsup  liminf Tirsio) K iy i2),(1.d2)

(K1), —z1 (K1) —wn
(K2).ig—z2 (K2).jp —w2

The right hand side term is a sum of products:

b
(i1,92),(d1,52)

= (71)i2 (K7 )irgn (72)ia (K2)ing0 @ (m1)iy (K1 )iy (72)i (K3)inj -

We now use the following two general observations. Let (ag)dep, (Be)eck,
(Vd)deD, (0c)ecr be nets of elements of Ry,.x that are bounded from above.
Then,

W(ilfiz)K

lim sup agfe ® yade = (limsup ay)(limsup Be) @ (lim sup v4) (limsup d.) .
d,e d e d e

If additionally the nets (8.)ccr and (V4)dep converge, we have

hrfil inf agfe B vade = (limdinf aq)(lim G.) @ (lign v4)(liminf 4. ) .
Using both identities, we deduce that H® is given by (E3). O
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Proof of Proposition [@d We know from Lemma@Athat A* = A7® A3, and so,
by Lemma @3 ¢ is an homeomorphism from .41 X .#5 to .# . Since the kernels
Hy, H}, Hy and H} all take values less than or equal to 1, we conclude from (Z3)
that, when z = 12(21, 22), H(2,2) = 1 if and only if H?(21,21) = Ha(22,20) = 1
or Hi(z1,21) = HE(ZQ, z9) = 1. Using Equation ([Z) and the definition of the
minimal Martin space, we deduce that

M= 1M (A UMY U (UM X M O

Remark 9.5. The assumption that mw; = 1 for all w; € .#; is automatically
satisfied when the left super-harmonic vectors 7; originate from basepoints, that
is, when m; = (Ai)gi,~ for some basepoint b;. Indeed, we already observed in the
proof of Proposition Bl that every vector w; € #; satisfies (m;)p, (w;i)p;, = 1.
By @), mw; < 1. We deduce that mw; = 1.

Remark 9.6. Rieffel [Rie(2) Prop. 4.11] obtained a version of the first part of
Lemma for metric spaces. His result states that if (S1,d;) and (Sa,ds)
are locally compact metric spaces, and if their product S is equipped with the
sum of the metrics, d((i1,42), (j1,J2)) = d1(i1,71) + d2(i2, j2), then the metric
compactification of S can be identified with the Cartesian product of the metric
compactifications of S and S3. This result can be re-obtained from Lemma 3]
by taking (Al)il,ji - 7d1(i17j1)7 (AQ)iz,jz - 7d2(i27j2)7 T = 7d1(i1ab1)a and
i, = —d(i2, ba), for arbitrary basepoints by, b € Z. We shall illustrate this in
Example [L4

10 EXAMPLES AND COUNTER-EXAMPLES

We now illustrate our results and show various features that the Martin space
may have.

Ezample 10.1. Let S =N, A; ;41 =0 foralli € N, A; o = —1 for all i € N\ {0}
and A;; = —oo elsewhere. We choose the basepoint 0, so that m = Ag . The
graph of A is:

States (elements of .S) are represented by black dots. The white circle represents
the extremal boundary element £, that we next determine. In this example,
p(A) = 1, and A has no recurrent class. We have Af; = 1 for i < j and
Ay, = —1fori > j, so the Martin space of A corresponding to m = Af. consists
of the columns AY;, with j € N, together with the vector { whose entries are
all equal to 1. We have # = {£}. One can easily check that H(, &) = 1.
Therefore, #™ = {£}. Alternatively, we may use Proposition [[3 to show that
& €A™, since ¢ is the limit of the almost-geodesic 0,1,2,.... Theorem
says that £ is the unique (up to a multiplicative constant) non-zero harmonic
vector.
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Ezxample 10.2. Let us modify Example [l by setting Agg = 0, so that the
previous graph becomes:

0
Oo 0 0 0
-1

We still have p(A) = 1, the node 0 becomes recurrent, and the minimal Martin
space is now 4™ = {K g, &}, where £ is defined in Example [l Theorem K]
says that every harmonic vector is of the form aK.g ® S, that is sup(a +
K.o, 8+ &) with the notation of classical algebra, for some «, 3 € RU {—o0}.

Ezample 10.3. Let S = Z, Ai,i—i—l = Ai+17’i = —1 for i € Z, and Aij =0
elsewhere. We choose 0 to be the basepoint, so that 7 = Ag . The graph of A
is:

We are using the same conventions as in the previous examples, together with
the following additional conventions: the arrows are bidirectional since the
matrix is symmetric, and each arc has weight —1 unless otherwise specified.
This example and the next were considered by Rieffel [Rie()2)].

We have p(A) = —1 < 1, which implies there are no recurrent nodes. We have
A7, = —|i—j|, and so K;; = [j| — [i — j|. There are two Martin boundary
points, T = lim; .o, K.; and £ = lim;_,_ K.;, which are given by fj =1
and & = —i. Thus, the Martin space .# is homeomorphic to Z := Z U {£o00}
equipped with the usual topology. Since both £ and £~ are limits of almost-
geodesics, 4™ = {1, £ }. Theorem says that every harmonic vector is of
the form aét @ B¢, for some a, B € Ryax-

Ezample 10.4. Consider S := Z x Z and the operator A given by A; j) (i j+1) =
—land A jy i+1,5) = —1, for each i, j € Z, with all other entries equal to —oc.
We choose the basepoint (0,0). We represent the graph of A with the same
conventions as in Example
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o o o o o o
o = o
o -— o
o o
o -— o
o o o o o o

For all 4,5, k,l € Z,
Al ey = —li— k[ =17 =1 .

Note that this is the negative of the distance in the ¢; norm between (4, ) and
(k,1). The matrix A can be decomposed as A = A1 @ [ I ® Ay, where Ay, A
are two copies of the matrix of Example 3 and I denotes the Z x Z identity
matrix (recall that ® denotes the tensor product of matrices, see Section
for details). The vector 7 can be written as m ® ma, with m = (A1)6,~ and
m = (Az);.. Hence, Proposition shows that the Martin space of A is
homeomorphic to the Cartesian product of two copies of the Martin space of
Example [MI3 in other words, that there is an homeomorphism from .#Z to
7 x 7. Proposition [l also shows that the same homeomorphism sends % to
7 x 7 and the minimal Martin space to ({#o00} x Z) U (Z x {#o0}). Thus, the
Martin boundary and the minimal Martin space are the same. This example
may be considered to be the max-plus analogue of the random walk on the 2-
dimensional integer lattice. The Martin boundary for the latter (with respect
to eigenvalues strictly greater than the spectral radius) is known [NS66] to be
the circle.

Ezxample 10.5. Let S = Q and A;; = —|i — j|. Choosing 0 to be the basepoint,
we get K;; = —|i — j| + |j] for all j € Q. The Martin boundary 2 consists of
the functions i — —|i — j| + |j| with j € R\ Q, together with the functions
i+ i and i — —i. The Martin space .# is homeomorphic to R := R U {400}
equipped with its usual topology.

Ezample 10.6. We give an example of a complete locally compact metric space
(S,d) such that the canonical injection from S to the Martin space .# is not
an embedding, and such that the Martin boundary 8 = .# \ ¢ is not closed.
Consider S = {(4,7) | ¢ > j > 1} and the operator A given by

A gy, (i+1,5) = AGi+1,9),65) = —1, fori > 7 > 1,
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A, g+1) = AGg+1),6,) = =2, fori—1>72>1,
A10),6.0) = Ay 0,0) = —1/i, for i > 2,

with all other entries equal to —oco. We choose the basepoint (1,1). The graph
of A is depicted in the following diagram:

~1/4

—1/3

~1/2

L 4 - e}

We are using the same conventions as before. The arcs with weight —2 are
drawn in bold. One can check that

Al gy ey = max (= |i = k[ = 2| = €], =(i = 5) = (k= £) = 8(j) — 8(0))

where ¢(j) = 1/5 if j > 2, and ¢(j) = 0 if j = 1. In other words, an optimal
path from (i, j) to (k, £) is either an optimal path for the metric of the weighted
41 norm (4,7) — |i| + 2|j|, or a path consisting of an horizontal move to the
diagonal point (7, j), followed by moves from (j, 7) to (1,1), from (1, 1) to (¢, ¢),
and by an horizontal move from (¢, ¢) to (k,¢). Since A is symmetric and A* is
zero only on the diagonal, d((4, j), (k,£)) := —AJ; j).(k.0) is @ metric on S. The
metric space (5, d) is complete since any Cauchy sequence is either ultimately
constant or converges to the point (1,1). It is also locally compact since any
point distinct from (1,1) is isolated, whereas the point (1,1) has the basis of
neighbourhoods consisting of the compact sets V; = {(¢,4) | ¢ > j} U {(1,1)},
for j > 2.

If ((ém,Jm))m>1 is any sequence of elements of S such that both 4,, and j,,
tend to infinity, then, for any (k,¢) € S,

ACk0) (i j) = Ah), (1) A1) iy TOr m large enough.

(Intuitively, this is related to the fact that, for m large enough, every optimal
path from (k,¢) to (im,Jm) passes through the point (1,1)). It follows that
K. (i, ) converges to K. (1) as m — oo. However, the sequence (im,jm)
does not converge to the point (1,1) in the metric topology unless i,, = j,, for
m large enough. This shows that the map (4, ) — K. (; ;) is not an homeomor-
phism from S to its image.

The Martin boundary consists of the points &', &2, ..., obtained as limits of
horizontal half-lines, which are almost-geodesics. We have

€6y = Jim Ky e = max (i — £ = 2]j — £+ 6(6), —(i = j) — 6(5)) -

— 00
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The functions &¢ are all distinct because i +— 567 0 has a unique maximum
attained at i = £. The functions & do not belong to .# because §f3j,j) =
J+ L4 @) ~ j as j tends to infinity, whereas for any w € 7, w; ;) =
—2j — ¢(j) ~ —2j as j tends to infinity,. The sequence &° converges to K. 1,
as ¢ tends to infinity, which shows that the Martin boundary # = .# \ % is
not closed.

Ezample 10.7. We next give an example of a Martin space having a boundary
point which is not an extremal generator. The same example has been found
independently by Webster and Winchester [WW06]. Consider S := Nx {0, 1,2}
and the operator A given by

A, +1,9) = AG+1,9),6.9) = 461,65 = Ag)a1) = —1

for all + € N and j € {0,2}, with all other entries equal to —oco. We choose
(0,1) as basepoint, so that 7 := A?O,l),~ is such that 7(; ;) = —(1 + 1) if j =0
or 2, and m; jy = —(i+2) if j = 1 and 4 # 0. The graph associated to the
matrix A is depicted in the following diagram, with the same conventions as in
the previous example.

There are three boundary points. They may be obtained by taking the limits
&0 .= Jim K. 0, &= Jim K1), and &2 := Jim K (;.2).
Calculating, we find that
Gp=i—Ji+1l, &y=i+i-1, and¢ =¢a¢.

We have H(£0,¢%) = H(¢2,€%) = H(€2,¢Y) = H(£%,¢Y) = 0. For all other
pairs (¢',€) € B x B, we have H({',£) = —2. Therefore, the minimal Martin
boundary is .Z™ = {£°,£2}, and there is a non-extremal boundary point, £,
represented above by a gray circle. The sequences ((4,0));en and ((4,2));en are
almost-geodesics, while it should be clear from the diagram that there are no
almost-geodesics converging to £'. So this example provides an illustration of
Propositions and

Ezample 10.8. Finally, we will give an example of a non-compact minimal
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Martin space. Consider S := N x N x {0,1} and the operator A given by

A )G+ 1,k) = AG,j+1,8),(., k) =—1, for all i, j € N and k € {0,1},
Ay, (iji—ky=—1, for all i € N, j € N\ {0} and k € {0,1},
Ai,0,8),(,0,1—k) = —2, for all i € N and k € {0, 1},
A,0.8),(641,0,8) = A(i+1,0,8),(5,0,6) = — 1, for all i € N and k € {0, 1},

with all other entries equal to —oco. We take 7 := AE‘O 0,0)," With the same
conventions as in Examples [ and M7 the graph of A is

o o o [©]

Recall that arcs of weight —1 are drawn with thin lines whereas those of weight
—2 are drawn in bold.
For a'll (Z’ j? k)’ (7:/’ jl7 kl) E S?

AG iy i ey = — K = k| =" =il = |7 = jIXi=er — (G 45 ) Xinir = Xj=jr=0, kst
where xg takes the value 1 when condition E holds, and 0 otherwise. Hence,

K jwy oy =k — K —k|+4 —i" =i+ 3" = 3" = jlxi=e — (G +5")xizsr
+ Xj'=0,k'=1 — Xj=35'=0, k#£k’ -

By computing the limits of K. ;s j 1) when i and/or j' go to +o0, we readily
check that the Martin boundary is composed of the vectors

i o0k’ . 1:
¢ = im Kk,
goo,oo,k' = I K i o1 1
= j,IEOO (@5 k)
00,0,k" .__ 1:
€ = Z;EI;O K~,('L’,O,k/)'
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where the limit in ¢ and 7’ in the second line can be taken in either order. Note
that limy o K. jr oy = €°% for any j' € N\ {0} and &’ € {0,1}. The
minimal Martin space is composed of the vectors §i"°°’k/ and §°°’O’k' with i’ € N
and k' € {0,1}. The two boundary points £>°:°°0 and £°*°°:! are non-extremal
and have representations

0 0,0 0,1
£00:00:0 — £20.0.0 gy 300,01

goo,oo,l _ 500,0,0 o 71500,0,1
For k' € {0,1}, the sequence (&°°F);cy converges to £2°0F as i goes to
infinity. Since this point is not in .Z"", we see that .Z"" is not compact.

11 TIGHTNESS AND EXISTENCE OF HARMONIC VECTORS

We now show how the Martin boundary can be used to obtain existence results
for eigenvectors. As in [AGWE], we restrict our attention to the case where
S is equipped with the discrete topology. We say that a vector u € Riax is
A-tight if, for all i € S and § € R, the super-level set {j € S| A;ju; > 8} is
finite. We say that a family of vectors {u‘}ser C RS, is A-tight if sup,., u®
is A-tight. The notion of tightness is motivated by the following property.

LEMMA 11.1. If a net {u’}er C RS is A-tight and converges pointwise to

max
u, then Au’ converges pointwise to Au.

Proof. This may be checked elementarily, or obtained as a special case of gen-
eral results for idempotent measures [Aki95] [A%199, [Puh(1] or, even
more generally, capacities [OVIT]. We may regard u and u' as the densities of
the idempotent measures defined by

Qu(J) = supu; and Qi (J) =sup ué ,
jeT jeJ

for any J C S. When S is equipped with the discrete topology, pointwise
convergence of (u)scy, is equivalent to convergence in the hypograph sense of
convex analysis. It is shown in that this is then equivalent to conver-
gence of (Q,:)eer in a sense analogous to the vague convergence of probability
theory. It is also shown that, when combined with the tightness of (u;)eer,
this implies convergence in a sense analogous to weak convergence. The result
follows as a special case. O

PROPOSITION 11.2. Assume that S is infinite and that the vector 7' =

(w{l)ieg is A-tight. Then, some element of A is harmonic and, if 0 & A ,
then ™ is non-empty. Furthermore, each element of % is harmonic.

Proof. Since S is infinite, there exists an injective map n € N — 4, € S.
Consider the sequence (ip)nen. Since .# is compact, it has a subnet (ji)kep,
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Jk = in, such that {K j, }rex converges to some w € .#. Let i € S. Since
(AA*);; = A;rj = Aj; for all j # i, we have

(AK ;)i = Kijy,

when ji # i. But, by construction, the net (jx)rep is eventually in S\{i}
and so we may pass to the limit, obtaining limyex AK.;, = w. Since 7! is
A-tight, it follows from (@) that the family (K.;),cs is A-tight. Therefore, by
Lemma [Tl we get w = Aw. If 0 € .#, then 7 contains a non-zero vector,
and applying the representation formula @4]) to this vector, we see that .#™
cannot be empty.

It remains to show that # C €. Any w € £ is the limit of a net {K.j, }xep.
Let s € S. Since w # K.;, the net {K .}, }rep is eventually in some neighbour-
hood of w not containing K.;. We deduce as before that w is harmonic. O

COROLLARY 11.3 (Existence of harmonic vectors). Assume that S is infinite,
that m = A}, € RS for some b € S, and that 7~ is A-tight. Then, H# contains
a non-zero vector.

Proof. We have K; = 1 for all 7 € S and hence, by continuity, w, = 1 for
all w € . In particular, .# does not contain 0. The result follows from an
application of the proposition. O

We finally derive a characterisation of the spectrum of A. We say that A is a
(right)-eigenvalue of A if Au = Au for some vector u such that u # 0.

COROLLARY 11.4. Assume that S is infinite, A is irreducible, and for each
i € S, there are only finitely many j € S with A;; > 0. Then the set of right
eigenvalues of A is [p(A), ool.

Proof. Since A is irreducible, no eigenvector of A can have a component equal
to 0. It follows from [Dud92, Prop. 3.5] that every eigenvalue of A must be
greater than or equal to p(A).

Conversely, for all A > p(A), we have p(A"!A4) < 1. Combined with the
irreducibility of A, this implies [AGW05, Proposition 2.3] that all the entries
of (A"1A)* are finite. In particular, for any b € S, the vector 7w := (A" A)}. is
in R¥. The last of our three assumptions ensures that 7! is (A\~! A)-tight and
so, by Corollary M3 (A~ A) has a non-zero harmonic vector. This vector will
necessarily be an eigenvector of A with eigenvalue . O

Ezample 11.5. The following example shows that when 7~! is not A-tight, a
Martin boundary point need not be an eigenvector. Consider S := N and the
operator A given by

Ai,i-{-l = Ai+17’i =—1 and Ap; :=0 for all i € N,

with all other entries of equal to —oco. We take m := Ag .. With the same
conventions as in Example [ the graph of A is

DOCUMENTA MATHEMATICA 14 (2009) 195-240



THE MAX-PLUS MARTIN BOUNDARY 229

S 0 7
0

We have A ; = max(—i, —|i — j|) and m; = 0 for all 4, j € N. There is only one
boundary point, b := limy_., K., which is given by b; = —i for all : € N. One
readily checks that b is not an harmonic vector and, in fact, A has no non-zero
harmonic vectors.

12 EIGENVECTORS OF LAX-OLEINIK SEMIGROUPS AND BUSEMANN POINTS
OF NORMED SPACES

We now use the Martin boundary to solve a class of continuous-time determin-
istic optimal control problems. Consider the value function v defined by:

v(t,x):=  sup  H(X(t)) —/O L(X(s))ds .

X (), X(0)=x

Here, x is a point in R™, ¢ is a nonnegative real number, the Lagrangian L is
a Borel measurable map R” — R U {+o0}, bounded from below, the terminal
reward ¢ is an arbitrary map R” — RU{—oc}, and the supremum is taken over
all absolutely continuous functions X : [0,¢] — R™ such that X (0) = z. This
is a special case of the classical Lagrange problem of calculus of variations.
The Laz-Oleinik semigroup (T*):>o is composed of the maps T sending the
value function at time 0, v(0, ) = ¢ to the value function at time ¢, v(t,-). The
semigroup property 7% = T% o T follows from the dynamic programming
principle. The kernel of the operator T is given by

¢
(z,y) = T}, = sup 7/ L(X(s))ds ,
X(), X(0)=z, X(t)=y 0

where the supremum is taken over all absolutely continuous functions X :
[0,t] — R™ such that X (0) =z and X (¢) = y.
The classical Hopf-Lax formula states that

Tafyy:ftcoL(g), fort >0 ,

where co L denotes the convex lower semicontinuous hull of L. This is proved,
for instance, in [Eva98, §3.3, Th. 4] when L is convex and finite valued, and
when the curves X (-) are required to be continuously differentiable. The ex-
tension to the present setting is not difficult.

Since T only depends on co L, we shall assume that L is convex, lower semi-
continuous, and bounded from below. Moreover, we shall always assume that
L(0) is finite.
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We say that a function u : R™ — R U {—o0}, not identically —oo, is an eigen-
vector of the semigroup (7%);>¢ with eigenvalue X if

Tu=u+ X, forallt>0 .

We shall say that u is extremal if it is an extremal generator of the eigenspace
of the semigroup (7"*);>( with eigenvalue A\, meaning that u cannot be written
as the supremum of two eigenvectors with the same eigenvalue that are both
different from it.

One easily checks, using the convexity of L, that for all ¢ > 0, the maximal
circuit mean of the operator T is given by

p(T") = —tL(0) .

By Proposition 3.5 of [Dud92] or Lemma 2.2 of [AGW(05], any eigenvalue p of
T must satisfy u > p(T"), and so any eigenvalue X of the semigroup (7%):>¢
satisfies

A>—L(0) .

We denote by ((z) the one sided directional derivative of L at the origin in the
direction x:

C(z) = lim t~Y(L(tx) — L(0)) = inf t 1 (L(tx) — L(0)) € RU {£o0} , (30)

t—0+ t>0
which always exists since L is convex.

PROPOSITION 12.1. Assume that ¢ does not take the value —oo. Then, the
eigenvectors of the Laz-Oleinik semigroup (T")i>o with eigenvalue —L(0) are
precisely the functions u : R™ — RU {—o0}, not identically —oo, such that

—((y —z) +uly) <ulz) , for al z,y e R™ . (31)

Moreover, when C only takes finite values, the extremal eigenvectors with eigen-
value —L(0) are of the form ¢+ w, where ¢c € R and w belongs to the minimal
Martin space of the kernel (z,y) — —((y — x) with respect to any basepoint.

Proof. Let us introduce the kernels
As :=T?°+ sL(0), for all s > 0.

Using the Hopf-Lax formula, we get

At = sup —ksL Y=Y 4 ksL(0) .
( )y keN\{0} ( ks ) ()

Using @B0) and the fact that ¢(0) = 0, we deduce that
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The eigenvectors of the semigroup (T");>o are precisely the functions that are
harmonic with respect to all the kernels A, with s > 0. Since (As),, = 0 for all
x € R™, the harmonic and super-harmonic functions of A4 coincide. It follows
from Proposition Bl that w is a super-harmonic function of A, if and only if
u > A¥u. Since the latter condition can be written as ([Bl) and is independent
of s, the first assertion of the corollary is proved.

By (B2), when ( is finite, any point can be taken as the basepoint. The kernels
A and (z,y) — —((y — x) have the same Martin and minimal Martin spaces
with respect to any given basepoint, and so the final assertion of the corollary
follows from Theorem O

Remark 12.2. When 0L(0), the subdifferential of L at the origin, is non-empty,
¢ does not take the value —oo. This is the case when the origin is in the relative
interior of the domain of L. Then, { coincides with the support function of
0L(0):
((z)= sup y-x, for all z € R™ |
y€edL(0)
see [Roc70, Th. 23.4]. If in addition the origin is in the interior of the domain of
L, then 0L(0) is non-empty and compact, and so the function ¢ is everywhere
finite.

COROLLARY 12.3. When ( is a norm on R™, the extremal eigenvectors with
eigenvalue —L(0) of the Laz-Oleinik semigroup (T")i>0 are precisely the func-
tions x — ¢ — ((y — x), where ¢ € R and y € R™, together with the functions
¢+ w, where ¢ € R and w is a Busemann point of the normed space (R™, ().

Proof. This follows from Proposition [ZJ] and Corollary O

Remark 12.4. The map ¢ is a norm when the origin is in the interior of the
domain of L and the subdifferential JL(0) is symmetric, meaning that p €
O0L(0) implies —p € OL(0). When ¢ is a norm, condition ([Il) means that w is
Lipschitz-continuous with respect to ¢ or that u is identically —oo.

We next study the eigenspace of (T);>¢ for an eigenvalue A > —L(0) in the
special case where L is of the form

L(z) = MP
p ?
where || - || is an arbitrary norm on R™ and p > 1. For all A > 0, we set

1 1 1
Iy = (gA\)e where — +—-=1.
p q

THEOREM 12.5. Let s > 0 and A > 0. Any eigenvector of T® with eigenvalue
As is an eigenvector of the Laz-Oleinik semigroup (T*);>o with eigenvalue \.
Such an eigenvector can be written as

u= sup v(w)+dhw , (33)
WE Mpu
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where My, denotes the set of Busemann points of the normed space (R™, || - )
and v is an arbitrary map My, — RU{—00} bounded from above. The mazimal
map v satisfying (Z3) is given by p.,. Moreover, the extremal eigenvectors with
eigenvalue X are of the form ¢+ Yyw, where ¢ € R and w € Myy.

This theorem follows from Theorem Bl Theorem B33 and the next lemma.

LEMMA 12.6. For all s > 0, the minimal Martin space of the kernel As :=
T° — s\, with respect to any basepoint, coincides with the set of functions ¥ w,
where w is a Busemann point of the normed space (R™, || -||) equipped with the
same basepoint.

Proof. For all z,y € R™, we set
P(t) = —t'""PL(y —x) — A .
It follows from the Hopf-Lax formula that

(As)jy: sup Y(ks) . (34)
keN\{0}

Since 1) is concave, the supremum of ¢ (t) over all ¢t > 0 is attained at the point
t such that

P =tP(p-1)Ly—2)-A=0.

It follows that
P(t) = =Oally — || -
Since 1 is concave, we have ¥(t) > 1 (f) + ¢'(¢)(t — t), and so, for ¢t > &,

B(t) = o(t) = ¥(t) — (&) — 'Ot 1)
> (') — ' D)t — 1) =" (D)t~ 1)

since 1)’ is convex. Let k denote the smallest integer such that ¢ < ks, and let
t = ks. We deduce that

0> 9(t) = () > —plp = 1)Ly — 2)T 7Pt = 1)* = —pA 1 (t =) .
Since t <t <+ s, since t = (g\)~/?|jy — ||, and since
W(t) > (As)yy > (A)d, > 0()
we get
(As)zy = —Oally — =l + e(lly — [ (35)

where € is a function tending to 0 at infinity. Observe that the supremum
in (B2 is always attained by an integer k£ which can be bounded by an increasing
function of ||y —z||. Hence, for all z € R™ and every compact set C, we can find
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an integer N such that (A)f, = sup;<,<y ¥ (ks) for all y € C. Since every
¥ (ks) is a continuous function of y — z, we deduce that the map y — (A)f, is
continuous.

Denote by K the Martin kernel of A; with respect to this basepoint and denote
by A, #™, and £, the corresponding Martin space, minimal Martin space,
and set of columns of the Martin kernel. Also, we denote by H the kernel
constructed from K as in Section Bl Define the kernel A’ : (x,y) — —V||y —
z||. We use K', 4", #"™, %" and H' to denote the corresponding objects
constructed from A’.

We next show that 4™ = .4'™\ ¢’ .

An element w of .#Z™ is the limit of a net (K.,,)qep. If the net (yq)aep had
a bounded subnet, it would have a subnet converging to some 3 € R?. Then,
by continuity of the map z +— (Aj)7, the element w would be proportional in
the max-plus sense either to f := (A,)%, or to g := (As)7, (the first case arises
if the subnet is ultimately constant). Both cases can be ruled out: we know
from Proposition EE4l that an element of the minimal Martin space is harmonic,
but f, =0 # gy = (Asf)y = —sA # (Asg9)y = —2sA, and so f and g are not
harmonic. This shows that (y4)dep tends to infinity.

By (B3), we deduce that K7, | tends to w. Thus, any net (ya)4ep such that K.,
tends to w is such that y4 tends to infinity and K ,'y , tends to w. We deduce
that w € .#" and H'(w,w) > H(w,w) =1, and so, by (&), #4™ C .4"™U.x".
We proved that the columns of (A4)* are not harmonic, and so .#™ C 4\ ¥ .
We claim that .#™ C .#'™ \ . Indeed, if a net K.,, converges to w € .Z™,
we showed that (y4)acp tends to infinity, and that K, tends to w. But K/,
cannot converge to an element K _'y € ' because the map sending an element
of a finite-dimensional normed space to its column of the Martin kernel is an
embedding (see [Bal9%, Ch. IL,§1] for a more general result). So w & 2.

Let us take now w’ € .#'™\ J#”. Then, v’ is the limit of some net (K'Iy&)dED"
where (y);)acp’ necessarily tends to infinity, since otherwise, there would be a
subnet of (y)aeps converging to some z € R”, and so we would have v’ =
K!, € 2. It follows from (B3) that w' is the limit of K.,/ , and hence w’ € .Z.
These properties also imply that H'(w',w’) < H(w',w’). Since w' € .#'™,
we have H'(w',w') = 1, and so H(w',w') = 1, and by @), w’ € 4™ U % .
Observe that the map z +— w/, is continuous because it is a pointwise limit of
elements of %", all of which are Lipschitz continuous with constant ¢, with
respect to the norm || - [|. For all y € R", the map = +— A} takes the value 0
when x = y and the value (As)jy < —sA < 0 when x # y. Thus, the elements of
A are not continuous, and so, w’ € & . It follows that w’' € A™\ H = .4™.
We have shown that 4™ = 2"\ .

By Corollary [LT3, .#'™ \ ¢’ is the set of Busemann points of the normed
space (R™, 95| - ||). These are precisely the functions of the form ¥ w, where
w is a Busemann point of (R", || - [|). O

Remark 12.7. Lemma [[20 identifies a special situation where the minimal
Martin space of T° — s\ is independent of s. This seems related to the fact
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that the set of functions of the form z — al|z||” with a > 0 is stable by inf-
convolution. One may still obtain a representation of the eigenvectors for more
general semigroups (T"%);>0, but this requires adapting some of the present
results to the continuous-time setting. We shall present this elsewhere.

Ezample 12.8. Consider the Euclidean norm on R”, ||z|| := (x - 2)}/2, and
L(z) := ||=||P/p with p > 1. The set of Busemann points of the normed space
(R™, || - |I), with respect to the basepoint 0, coincides with the set of functions

wWixr Ty

where y is an arbitrary vector of norm 1. It follows from Theorem [[2ZH that
the extremal eigenvectors with eigenvalue A > 0 of the Lax-Oleinik semigroup
are of the form ¢+ ¥ w, with ¢ € R, and that any eigenvector with eigenvalue
A is a supremum of maps of this form. In particular, when n = 1, there are
two Busemann points, w® (z) = +9,2, and any eigenvector u with eigenvalue
A can be written as

x+— max(ct + Iz, ¢ — D),

with ¢* € RU{—o0c}. The Busemann points w® are the limits of the geodesics
t — +t, from [0, 00[ to R. Hence, Proposition [CH allows us to determine the
maximal representing measure u,, or equivalently, the maximal value of the
scalars ¢, as follows:

ct = lim wu(t) F Ot .

t—too
In this special case, the representing measure is unique.

In order to give another example, we characterise the Busemann points of a
polyhedral norm. We call proper face of a polytope the intersection of this
polytope with a supporting half-space.

PROPOSITION 12.9. Let || - || denote a polyhedral norm on R™, so that

]| = maxa; -z

where (2})i;cr is the finite family of the extreme points of the dual unit ball.
The Martin boundary of the kernel (z,y) — —||lx — y||, taking the origin as the
basepoint, is precisely the set of functions of the form

x;—»rjxg‘r]lzg(fo)Jrr;lea;(x;X , (36)
where X € R™ and (2)jes is the set of extreme points of a proper face of the
dual unit ball. Moreover, all the points of the Martin boundary are Busemann
points.

Proof. Any point f of the Martin boundary is the limit of a sequence of func-
tions
e fPa) = [|XF) = | XP
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where X* € R™ and || X*|| — oo when k — oco. Consider the sequence of
vectors

ub = (o XF = X Dier -

These vectors lie in [—oo, 0]/, which is compact and metrisable, and so, we may
assume, by taking a subsequence if necessary, that u* converges to some vector
u € [~00,0]!. Since I is finite, we may also assume, again taking a subsequence
if necessary, that there exists an index jo € I such that o - X k= || X*| for all
k. Let J:={i e I| u; > —oo}. Observe that J is non-empty since u;, = 0.
We have
f(x) = lim f*(z) = lim —max(az; - X% — | X"|| — 2} - 2)
k—o00 k—o00 el
!/
= —max(u; — ) -x) .
jeJ ( J J )

Observe that the set E := {((z}; — 2% )- X)jes | X € R"} is closed, since it is a
finite-dimensional vector space. Since the vector (u*);c; belongs to E and has
a finite limit when k — oo, this limit belongs to E, and so there exists some

X € R” such that u; =2’ - X — 2/, - X for all j € J. Thus,

J Jo

— / /
f(x) ——r;leaij-(X—x)+xj0 - X .

Since f(0) = 0, we have max;c; 2 - X = 2 - X, and so

_ / /
flz) = frjneagcxj (X —x) +r;1€a}(:yj X,

which is of the form (Zg).

We now have to show that (2);e is the set of extreme points of a face of the
dual unit ball. Let E’ denote the set of vectors 2’ € R™ such that /- X* — || X*||
remains bounded when k tends to infinity. This is an affine space. Let B’ denote
the dual unit ball. We claim that F’' := E’' N B’ is an extreme subset of B’,
meaning that

ar’ + (1—a)y e I/ = 2,y € F', forall 2/,y € B and 0 < o < 1.
(37)

Indeed, let 2/, y’ € B’ and 0 < a < 1. Since 2’ € B’, we have 2/-X < || X|| for all
X € R™. In particular, /- X* — || X*|| < 0 for all k. Similarly, y"- X*—| X*|| <0
for all k. Since

(az’ + (1= a)y’) - X" — ||X"]

= a2’ XP— X))+ (1 - a)(y - XF || XF])

<a(a’- X" —|IX*)

<0,
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we deduce that 2’ - X* — || X*|| is bounded if az’ + (1 — a)y’ € F’. Similarly,
y' - X* — || X*|| is bounded. This shows ().

Let z denote any accumulation point of the sequence || X*|~1X*. We have
F'c{2’e€B' |2 2=1},and so, F/ # B’.

Since the dual ball B’ is a polytope, the convex extreme subset F’' # B’ is a
proper face of B’. Therefore, the vectors x}, with i € I, such that /- X* —|| X*||
remains bounded are precisely the z} that belong to the proper face F’. Hence,
these 2} are the extreme points of the proper face F’.

Every proper face F’ of the dual ball is the intersection of the dual ball with
a supporting hyperplane, so F' = {2’ € B’ | 2’ -y = 1} for some y € B.
Observe that the set J of 2 such that 2} -y = 1 is precisely the set of extreme
points of F’/. Consider now X € R" and the ray ¢t — X + ty, which is a
geodesic, and a fortiori an almost-geodesic. One readily checks that the function
x = || X 4+ ty|| — || X + ty — x| converges to the function [BH) when ¢ tends to
400, and so, every point of the Martin boundary is a Busemann point. O

Remark 12.10. Karlsson, Metz, and Noskov [KMNQO6] have shown previously
that every boundary point of a polyhedral normed space is the limit of a
geodesic, and hence a Busemann point. They did this by characterising the
sequences which converge to a boundary point.

Ezample 12.11. Consider now L(z) := |z|%/p with |z]ec :=
max(|z1], - ,|zn|) and p > 1. By Proposition [Z9 the Busemann points of
(R™, || - [|oo) with respect to the basepoint 0 are of the form:

w: x+— mine(z; — X;) + maxeX;
icl el

where I is a non-empty subset of {1,...,n}, ¢, = £1, and the X; are arbitrary

reals. Theorem [[ZH shows that any eigenvector with eigenvalue A > 0 of the

Lax-Oleinik semigroup can be written as a supremum of maps ¢+ ¥ w, where

¢ € RU{—o0} and w is of the above form. For instance, when n = 2, the

functions w are of one of the following forms:

€121, €22, or min(er(z1 — X1),ea(xa — X2)) + max(e1 X1, €2X2)

with X1, Xs € R and €1 = +1,¢e5 = £1.

Remark 12.12. Tt is natural to ask whether the eigenvectors of the Lax-Oleinik
semigroup (7");>0 coincide with the viscosity solutions of the ergodic Hamilton-
Jacobi equation

L*(Vu) =\,

where L* denotes the Legendre-Fenchel transform of L. This is proved
in [Eaf(8 Chapter 7] in the different setting where the space is a compact
manifold and the Lagrangian L can depend on both the position and the speed
but must satisfy certain regularity and coercivity conditions.
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ABSTRACT. We show that the p-adic Galois representations attached
to Hilbert modular forms of motivic weight are potentially semistable
at all places above p and are compatible with the local Langlands cor-
respondence at these places, proving this for those forms not covered
by the previous works of T. Saito and of D. Blasius and J. Rogawski.

2000 Mathematics Subject Classification: 11F80, 11F41

1 INTRODUCTION

Let F be a totally real extension of Q of degree d. Let F be an algebraic closure
of F and let G := Gal(F/F). Let I :== Homgq(F, C) be the set of embeddings
of F into C. The set I indexes the archimedean places of F'. For each finite
place v of F let F', be an algebraic closure of F, and fix an F-embedding
F — F,. These determine a choice of a decomposition group D, C Gp for
each v and an identification of D,, with Gal(F',/F,). Let p be a rational prime
and fix an algebraic closure Qp of Q, and an isomorphism ¢ : C = Qp. Via

composition with ¢ the set I is identified with the embeddings of F' into Qp.

Let m be a cuspidal automorphic representation of GLy(Ap). Then 7 is a
restricted tensor product m = ®’m, with v running over all places of F. Assume
that each m;, ¢ € I, is a discrete series representation with Blattner parameter
k; > 2 and central character z — sgn(x)" |z|; " with w an integer independent
of i. We say that 7 has infinity type (k, w), k := (k;);c7. Assume also that each
k; = w( mod 2). In this case, 7 is an automorphic representation associated
with a Hilbert modular eigenform of weight k. We recall that attached to 7
(and ¢) is a two-dimensional semisimple Galois representation

Pr - Grp — GLQ(Qp)
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such that

WD(pr|p,)"™ ™ =2 (Rec,(m, @ - [; /%) Vo {poo. (1)
Here WD(o) denotes the Weil-Deligne representation over Qp associated to a
continuous representation o : D, — GL,(Q,) for a place v { poo (see [Ta,
(4.2.1)]), and the superscript ‘Fr-ss’ denotes its Frobenius semi-simplification.
Also, Rec,(7) denotes the Frobenius semi-simple Weil-Deligne representation
over C associated with an irreducible admissible representation 7 of GL,, (F,) by
the local Langlands correspondence, and (Rec, () is the Weil-Deligne represen-
tation over Qp obtained from Rec,(7) by change of scalars via the isomorphism
t. We choose Rec, so that when n = 1, Rec,, is the inverse of the Artin map
of local class field theory normalized so that uniformizers correspond to geo-
metric frobenius elements. The existence of a p, satisfying (1) was established
by Carayol [Ca2], Wiles [W], Blasius and Rogawski [BR], and Taylor [Tay1],
following the work of Eichler, Shimura, Deligne, Langlands, and others on the
Galois representations associated with elliptic modular eigenforms.

The purpose of this note is to complete the proof of the analog of (1) at places
v | p:

THEOREM 1 Let v | p be a place of F. The representation pr|p, is potentially
semistable with Hodge-Tate type (k,w) and satisfies

WD(px|p,)™* = iRecy(my @ | - |, 1/?). (2)

We recall that p, := px|p, is potentially semistable if

Dzvst(pv) = U (pv ®Q, Bst)Gal(Fv/L)
L/F,

is a free Qp ®q, Fyp-module of rank 2, where here L is ranging over all finite
extensions of Fy,, I is the union of all absolutely unramified subfields of F,,

and Bs; is Fontaine’s ring of semistable p-adic periods (the 1atter_ has a con-
tinuous action of D, = Gal(F,/F,) with the property that Bgal(F”/L) =Ly
the maximal absolutely unramified subfield of L). We also recall that the

module Dgr(p,) = (V ®q, Byr)Pv is a graded Qp ®q, F,-module (recall

that Bgr = ©nezCr,(n), Cg, := F,, with the obvious action of Dy)._By
px|p, having Hodge-Tate type (k,w), we mean that for j € Homq,(F,Q,)

)

the induced graded module Dpyr(py) ®6p®Qp Fj Qp is non-zero in degrees
(w — ky(jy)/2 and (w + ki) — 2)/2, where i(j) € I is the induced embed-
ding of F into Qp. To make sense of the left-hand side of (2) we recall that
Fontaine has defined an action of the Weil-Deligne group on Dy (py). Given

an embedding 7 : Fi'y — Qp we obtain a Weil-Deligne representation over Q,
on WD(py,)r := Dpsi(pv) ®6p®Qp Fup.r Q,- This representation is independent
of 7 up to equivalence, and we have denoted an element of its equivalence class
by WD(p,). The right-hand side of (2) has the same meaning as in (1).
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Saito proved that Theorem 1 holds when either d is odd or there exists a
finite place w such that m, is square-integrable [Sal, Sa2]; this builds on the
aforementioned work of Carayol. Under the same hypotheses or when d is
even and some k; is strictly larger than 2, Blasius and Rogawski proved that
plp, is potentially semistable of Hodge-Tate type (k, w), and when additionally
Tp = ®y|pTy is unramified they essentially showed that the full conclusion of the
theorem holds [BR] (some additional, albeit minor, observations are required to
extend their arguments to all such cases). The theorem is of course also known
for those 7 that are the automorphic induction of a (necessarily) algebraic Hecke
character of an imaginary quadratic extension of F' (such representations are
often called CM representations). In this case, Theorem 1 follows from the
results in [Se]. These results account for the cases where p, is known to arise
from a motive; the conclusion of the theorem then follows from various deep
comparison theorems between suitable cohomology theories.

It remains to deal with the cases where p; is not known to arise from a motive,
namely those cases where each k; = 2, each m, is a principal series represen-
tation, and 7 is not a CM representation. In [Tay2] it is shown that if p, is
residually irreducible and 7, v|p, is unramified, then p,|p, is crystalline with
the predicted Hodge-Tate weights. For p > 2 unramified in F', the same result
is proved in [Br] without the hypothesis that p, be residually irreducible. For
those pr that are residually irreducible, Kisin [Kil] deduced Theorem 1 from
his results on potentially semistable deformation rings, Taylor’s construction
of the representations p,, and Saito’s results. In this paper, we prove Theo-
rem 1 by a different approach. A simple base change argument reduces the
theorem, in the cases not covered by Saito’s results, to that where d is even
and each 7, v|p, is unramified. From the automorphy of the symmetric square
Sym?7 and the results of [Mo] it follows that Sym?p, is crystalline’ and even
that WD(Sym?p,) = (Rec,(Sym?m, @ | - |;!). From results of Wintenberger
[Winl, Win2] we then deduce that p, is crystalline up to a (possibly trivial)
quadratic twist and hence that WD(p,) is isomorphic to a (possibly trivial)
quadratic twist of tRecy(m, @ | - v L %). There exists a suitable p-adic analytic
family of eigensystems of cuspidal representations of GLy(Ar) (essentially due
to Buzzard [Bul] in the cases needed) that contains an eigensystem attached
to pr. For members of this family with sufficiently regular weights Theorem 1
is known by the work of Blasius and Rogawski. An appeal to a result of Kisin
then shows that WD(p,,) has at least one D,-eigenspace predicted by (2), from
which we then conclude that (2) holds.

After completing the first draft of this paper, the author learned that Tong Liu
[L] has also proven Theorem 1, at least for p > 2, by an argument that is a
generalization of that of Kisin [Kil].

Acknowledgements. The author’s work on this paper was inspired by a question

1As remarked at the end of 2.4.1, a similar use of the symmetric square yields a proof of
the Ramanujan conjecture for 7. This conjecture has previously been established in [B2].

DOCUMENTA MATHEMATICA 14 (2009) 241-258



244 CHRISTOPHER SKINNER

about what was known regarding Theorem 1 asked by Henri Darmon at the
summer school on the stable trace formula, automorphic forms, and Galois
representations held at BIRS in August of 2008. The referee prodded the author
to write a note with more details. The author’s research is supported by grants
DMS-0701231 and DMS-0803223 from the National Science Foundation and by
a fellowship from the David and Lucile Packard Foundation.

2 THE PROOF OF THEOREM 1

We keep to the notation from the introduction. We assume some familiarity
on the part of the reader with p-adic Hodge theory, particularly the theory of
Hodge-Tate weights and the notions of crystalline and semistable representa-
tions. A good reference is [Fo]. While p-adic Hodge theory is usually applied to
continuous representations of Gal(F,/F,), v|p, defined over a finite extension
of Q,, we apply it to continuous representations over Qp. This should cause no
confusion as the latter are always defined over a finite extension of Q,. While
this is well-known, references seem rare, so we provide a quick proof.

Let ' be a compact group and p: I' — GLn(Qp) a continuous representation.
The subfields L of Qp that are finite over Q, form a countable set, and as
cach GL,,(L) is closed in GL,(Q,), the subgroups I'y, := p~(GL,(L)) form a
countable set of closed subgroups of I' whose union is I'. Since I' is compact, it
carries a Haar measure with total measure finite and non-zero. As the countable
union of measurable sets each having measure zero also has measure zero, it
follows that some I';, must have non-zero measure and hence have finite index
in . Write I' = U™, ¢;',. Then p takes values in GL,(L') where L’ is the
finite extension of Q,, generated by L and the entries of the p(g;).

2.1 WEIL-DELIGNE REPRESENTATIONS OVER Qp FOR v|p

Let v[p be a place of F. Let Byt := @, .5CF,(n) with the obvious action
of D,. Let B.ris C Bs be Fontaine’s rings of crystalline and semistable p-
adic periods, respectively. Recall that the latter are naturally F'j-algebras

equipped with a continuous action of D, such that B?G al(Fo/L) _ Lg for any

finite extension L/ F,,, ? = cris, st, and that furthermore they are both equipped
with a compatible F}'{-semilinear Frobenius morphism ¢ : By — B (that
is, p(azx) = frob,(a)p(z) for all a € F}j, where frob, € Gal(F};/Q,) is
the absolute arithmetic Frobenius). Additionally, Bs: is equipped with an

;‘,B—linear and D,-equivariant monodromy operator N : Bs; — By such that
Beris = Bﬁzo-

For a finite-dimensional Qp—vector space V with a continuous Qp—linear action
of D, we put

DHT(V) = (V ®Qp BHT)va Dcris(V) = (V ®Qp Bcris)DU;

DOCUMENTA MATHEMATICA 14 (2009) 241-258



p-ADIC GALOIS REPRESENTATIONS 245

and B
DL(V) = (V ®q, Ba) /M Dyu(V) = | DY
L/F,

where L/F, is a finite extension. Then Dy (V) is a finite, graded Qp ®q, Fu-
module. Also, D¢.;s(V) is a finite Qp ®q, Fyo-module, DL(V) is a finite
Qp ®q, Lo-module, and D, (V) is a finite Qp ®q, Fy'5-module, each of rank
at most dimg (V). The action of ¢ induces a Qp-linear, F, o-semilinear (resp.
Lo-semilinear) Frobenius operator on D.;s(V) (resp. DL (V)) that we also
denote by . The action of the monodromy operator N on B induces a
Qp ®q, Lo-linear nilpotent operator on th(V) that we also denote by N and

which satisfies N o ¢ = ppo N. These are compatible with varying L, so ¢ and
N are defined on D, (V) as well. Note that D,.;s(V) = DEy (V)N=0,

Lei W, C D, be the Weil group of F,,. The action of D, on V and Bj; induces
a Q-linear, F'-semilinear action rg of W, on D,s (V). We define another
action 7 of W, on Dy (V): for w € Wi we let 7(w) = rq(w) o ") with
v(w) € Z such that w acts on F}}'j) as frob;”(w). This also defines an action on
D¢ris(V). The action r is Q, ®q, F'o-linear, and we have

Nor(w)=Norg(w)oe’ ™ oN =rg(w)oN o™ = p"™r(w)o N.

It follows that the pair (r, N) defines an action of the Weil-Deligne group w)
of F, on Dysi (V). Moreover, if 7 : Fi'j — Q,, is any embedding, then it also
follows that the induced action on

WD(V)r := Dpst(V) ®q p®Qp FLGT 61)

is a Weil-Deligne representation over Qp (the subscript 7 on the tensor sign

means that we consider Qp as a Qp ®q, Fyo-algebra via the homomor-
phism id ® 7). Furthermore, d ® v — ©(d) ® x defines an isomorphism
WD(V)7ofrob, = WD(V), of Weil-Deligne representations over Qp, hence the
equivalence class of WD(V) is independent of the choice of 7. We let WD(V)
be any member of this equivalence class.

We recall that V is potentially semistable if D, (V) is a free Qp ®q, Fuo-
module of rank equal to dimg V' or, equivalently, dimg WD(V) = dimap V.
Similarly, V is crystalline if DCMS(V) is a free Qp ®Qp F, o-module of rank
dlm V. This is equivalent to (V ®q, Bc,.is)lv being a free Qp ®q, Féfg_
module of rank equal to dlmQ V', where I, C D, is the inertia subgroup.
Thus, V is crystalline if and only if V' is potentially semistable and both N
and I, act trivially on Dps (V). In particular, V' is crystalline if and only if
dimg WD(V) = dimap(V), WD(V) is unramified (i.e., N = 0 and the inertia
group I, acts trivially). Consequently, for V crystalline the eigenvalues of
w € W, on WD(V)¥¥55 are just the roots of the characteristic polynomial of
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the Qp—endomorphism induced by ¢”(®). We also recall that for a crystalline

representation V' there is Qp ®q, Fy-filtration on D.pis(V') ®F,, F, whose
associated graded module is just Dyr (V).

Suppose now that m, is unramified. From the preceding paragraph it follows
that (2) holds if p, = px|p, is crystalline and if for all w € W,

det(l - T(pl’(w”Dcris(v) ®6p®Qva,oﬂ' Qp) = det(l — Tw|LRer(7r7j R | . |;1/2))
(3)

for some (equivalently, each) embedding 7 : F, o — Gp.

2.2 REDUCTION TO d EVEN AND 7, UNRAMIFIED

As mentioned in the introduction, Saito has proven Theorem 1 when the degree
d of F is odd or some m, is square-integrable [Sal],[Sa2]. We may therefore
assume that d is even and that m, is a principal series representation for finite
places v. Theorem 1 then asserts that each p, is potentially crystalline with
predicted Hodge-Tate weights. Clearly, this is true for p, = px|p, if and only if
there is a finite extension '/ F such that it is true for p,|p ,, v'[v the place of I
determined by the fixed embedding F' < F,. Additionally, if p, is potentially
crystalline with the predicted Hodge-Tate weights, then to establish (2) it is
enough to show that

trace(w|WD(p,)) = trace(w|tRec, (m, & | - |;1/2)) (4)
for all w € W, with v(w) > 0.

Let v|p. For a given w € W, such that v(w) > 0 there exists an abelian
extension F’/F such that (a) the base change 7’ of m to GL2(Ap-) is cuspidal
and unramified at each place over p and (b) w € W,» C W, for v'|v the
place of F’ determined by the fixed embedding F < F,. That (a) can be
satisfied is a consequence of each local constituent of 7 being a principal series
representation (we are, of course, using that base change is known for GLs
for abelian extensions). That (b) can be simultaneously satisfied with (a) is a
simple consequence of v(w) > 0. Note that the extension F’/F may depend on
w. As pr = prla,,, it follows that WD (pr|p,,) = WD(px|p,)|w:, . Similarly,

Recy (my @ | - |;,1/2) = Recy(my ® | - |;1/2)|W//. Therefore if Theorem 1 holds

for 7/, then p, is potentially crystalline with the predicted Hodge-Tate weights
and (4) holds for the given w. This shows that if Theorem 1 holds whenever
the representation is unramifed at all primes above p then it also holds for 7.
Consequently, it suffices to prove Theorem 1 under the assumption that each
Ty, U|p, is unramified.

2.3 GALOIS REPRESENTATIONS IN THE COHOMOLOGY OF CERTAIN SHIMURA
VARIETIES
As mentioned in the introduction, Blasius and Rogawski have essentially proved

Theorem 1 in the case where some k; > 2 and each 7, v|p, is unramified [BR].
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We explain this here, giving the necessary modifications required to make their
argument cover all such cases. We also record some additional consequences
for Galois representations associated with essentially self-dual representations
of GL3 (AF)

2.3.1 THE SHIMURA VARIETIES

Let Ey C F be an imaginary quadratic extension of Q in which p splits and set
FE = FEy. Fix a place vy of Fy above p. For convenience we assume that for
each place v|p of F the fixed embedding F < F, induces the valuation vy on
FEy. Fix an embedding Fy <— C such that - again for convenience - composition
with ¢ also induces the valuation vg. Let ¢ be the CM type of E consisting of
those embeddings E — C extending the fixed embedding of Ey. For 7 € ¢ we
write 7 for the composition of 7 with complex conjugation. Restriction to F'
determines a bijection between ¢ and I, and we write 7; for the element of ¢
extending ¢ € I. Via composition with ¢, ¢ determines a place of E above each
place v|p of F; the fixed decomposition group D, is also a decomposition group
for the place of E above p so determined, hence we also denote this place by v,
writing o for its conjugate (note that each place v|p of F splits in F). If M is
an Og-module, then M, := M ® C decomposes as M, = HTE¢ M. & M- with
My := M ®0,,0 C for any embedding o : ' — C. Similarly, M, := M ® Z,
decomposes as M, = [[, M, & My with M,, :== M ®0, Op,. for a place w|p
of E.

Fix ip € I. Let ® be the Hermitian E-pairing on V := E3 (viewed as column
vectors) defined by the diagonal matrix J := diag(a, 1,1) with o € F* such
that 7;,(a) < 0 and 7;(a) > 0 for i # ig: ®(z,y) = 'ZJy. Then & has
signature (2,1) with respect to 7;, and signature (3,0) with respect to all
other 7;. Let U(®),q be the unitary group of ® and G := GU(®),q its
similitude group. We note that G(C) = C* x [[ ., GLc(Vr), where the
projection to the C*-factor is the similitude character, and the projection to
the second factor is via the corresponding projection of GLggc(Vao). Similarly,
G(Qp) = Q) x[[,GLg,(V,), where v runs over the place of F' dividing p (or
the fixed places of E over these). Let ¢ := traceg,qB® with 3 a totally
imaginary element of Fy. Then there exists an Og-lattice A C V such that ¢
identifies A, with its Z,-dual.

Let S := Resc/rGm, so S(R) = (C®r R)* for any R-algebra R. We identify
S(C) = (C® C)* with C* x C* via z @ w (2w, zZw). Let h: S — G /g be
the homomorphism such that for (z,w) € S(C)

€

diag(w, w,w) 7 # 7.

Let h(z) = h(z,Z). We assume that § is such that ¢ (z, h(i)z) is positive
definite for z € V ® R. As explained in [Ko], associated with E,V,4, and h
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is a family of PEL moduli spaces Sk over? E, K C G(Ay) being a neat open
compact subgroup: in the notation of [Ko, §5] we take® B = F with * the non-
trivial automorphism fixing F and (V,(—,—)) = (V,4); then C = Endg(V)
and the G of loc. cit. is the group G defined above, and we take for the *-
homomorphism C — C' ® R the R-linear extension of z — h(z). The varieties
Sk are smooth over E and, being solutions to PEL moduli problems, are
equipped with ‘universal’ abelian varieties Ax/Sk. As explained in [Ko, §8],
Sk is naturally identified with a disjoint union of a finite number of copies
of the canonical model Shi over E of the Shimura variety associated with G,
h~1, and K, indexed by the isomorphism classes of Hermitian E-spaces (V', )
that are everywhere locally isomorphic to (V,v). We identify Shyx with the
copy corresponding to the class of (V) and let Ax/Shk be the restriction of
the universal abelian variety.

Suppose K = K,K? with K? C G(A%) and K, C G(Q,) identified with a
subgroup Z; x [[,, Ko € Z x ], GLoy ,(As). Let v|p be a fixed place. If
K, = GLo ,(Ay), then an argument of Carayol [Cal, §5] shows that Ax and
Sk have good reduction at v. A model of Sk over Op, = O, is obtained
by considering a moduli problem as in [Cal, 5.2.2]. To be be precise, one
considers the functor from the category of locally Noetherian OF ,-schemes to
the category of sets that sends an Op ,-scheme R to the set of isomorphism
classes of quadruples (4,14, 6, k") where (a) A is an abelian scheme over R of
relative dimension 3d and ¢ : Op — Endg(A) is an embedding such that
Lie(A), is a locally free Or-module of rank one on which Op, = Og,, acts
via the structure map Op, — Opg and such that Lie(A4),, = 0 for all v'|p,
v' # v; (b) 6 is a prime-to-p polarization of A satisfying 6 o i(z) = i(z)¥ o 6 for
all x € Op; (c) k¥ is a K-level structure as* in [Cal, 5.2.2(c)] but with Vg in
the definition of W there replaced by A. That this functor is isomorphic over
F, = E, to that in [Ko, §5] defining Sk g, follows from the arguments in [Cal,
2.4-2.6,5.2.2]. That it is representable by a smooth, projective scheme Sk over
Op, follows from the arguments in [Cal, 5.3-5.5]. The p-divisible group A, of
A decomposes under the action of O ), = Op ® Z, as A, = Hv’|p Ay X Ay
The condition on Lie(A), in (a) then implies that A, is ind-étale if v/ # v,
and part of the level structure k¥ is a class modulo H@,#U K, of O p-linear
R-isomorphisms k) : H@,?EU Alp™y = Hv,;év(p*"A/A)U/ with n any integer
so large that K, contains the kernel of the reduction map GLOE,U/ (Ay) —
GLo, ,, (Aw /p"Av) (see [Cal, 5.2.3(ii)]). The condition that A, is self-dual
ensures that over F, this moduli problem is equivalent to one with a usual

2The reflex field in this case is 7;,(E) C C which we identify with E via ;.

3As we are only defining the moduli spaces over E at this point, the conditions at p in
[Ko, §5] are superfluous.

4When adapting the arguments of [Cal] to the setting of this paper, the roles of the super-
scripts 1 and 2 in loc. cit. are switched. This is a result of our choice of the homomorphism h
and the identification of E with the reflex field. A homomorphism S — G, g more naturally
generalizing that in loc. cit. would be (z,w) — h(w, z). We have chosen h here so that Shx
is the Shimura variety in [BR].
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K-level structure. The representability of this moduli problem by a scheme
Sk over Op, follows from the arguments in [Cal, 5.3] and the properness from
those in [Cal, 5.5]. The smoothness of this scheme follows exactly as in [Cal,
5.4]. The key point is that for R a local artinian O ,-module, the conditions
on the dimension of A and on Lie(A), in (a) imply that A, is a divisible Op,-
module of height 3 whose formal (or connected) part has height 1 (we are
keeping to the terminology in the Appendix of [Cal]). The smoothness then
follows by the deformation argument given in loc. cit. Over E,, Sk is just Sk,
and Ag is the base change of the universal abelian scheme Ak /Sk. Hence Sk,
Shy, and Ax have good reduction at v.

2.3.2 THEOREM 1 WHEN SOME k; > 2 AND EACH 7, UNRAMIFIED

We can now explain how the arguments in [BR] yield Theorem 1 when d > 1,
some k; > 2, and each 7, v|p, is unramified. Without loss of generality we may
assume that w = max;e s k;; choosing a different w amounts to replacing p, by
a Tate-twist. We may assume that Ey has been chosen so that the base change
g of m to GLa(Ag) is cuspidal (equivalently, 7 is not a CM representation
associated to a Hecke character of F). Fix an algebraic Hecke character u of
A} satisfying M|A; = wg/r, the quadratic character of the extension E/F,

and such that g is unramified at each place over p. As explained® in [BR,
Prop. 4.1.2], there exists a global L-packet 7 on the quasi-split unitary group
U(2),r such that its non-standard base change to GL2(Ag) (with respect to 1)

isTg®n|- |11E/2 with 7 an algebraic Hecke character of A} that is unramified at
each place above p. It follows from [BR, Lem. 4.2.1] that there exists a global
character 6 of U(1),r unramified at all places above p for which the L-packet
p=717®80 of U(2) x U(1) is such that the endoscopic L-packet II(p) for U(P)
contains an element oy with d(of) := #{0w € I(po) : €(0x0)e(oy) =1} =
2. Let x be an algebraic character of the center of G extending the central
character of II(p) and unramified at all places above p (cf. [BR, §1.2]). The
pair (o, x) defines an admissible representation (o, x) of G(Ag). From the
definition of o it follows that o, is an unramified representation of U(Q,) &
[I, GLE, (V%) in the sense that it is a tensor product of unramified principal
series representations of each factor. In particular, as x is unramified at each
place above p, m(os, X)X # 0 for K = K,K? with K,, identified with Z) x
[1., GLog,, (Av) and K7 sufficiently small.

As explained in the proof of [BR, Thm. 3.3.1], associated with m(of,x) is a
motive M = (A%, e) with coefficients in a number field T C C (this motive is
denoted My in loc. cit.; n is some integer depending on the weights of 7, u, 6,
and y, A% is the n-fold self-product over the Shimura variety Shg, and e is an
idempotent in Z5 (A% x A% )) such that for any prime ¢ and any isomorphism

5The representations of GL2(A ) in [BR] are normalized so that what is denoted by 7
1/2 . .
there equals 7 ® | - |/~ in this paper.
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/:C 5 Q the f-adic realization M, of M satisfies

Mé,u =M, QTRQy,/ Qe = p7r7LI|GE & Pyt (5)

where the subscript +/ denotes that the objects on the right-hand side are the
(-adic Galois representations® associated with the embedding /. Here ) is the
Hecke character z — x(Ng/g, (%)) of A%. Equivalently,

WD(Mv|p,,) & ¢ Recu(Tpw © uthu| - ['?) (6)

for all places w t ¢ of E, D, being any decomposition group for w. More
precisely, (6) is only shown in [BR, Thm. 3.3.1] for those w t £ coprime to the
conductor of w and the absolute discriminant of . But this together with the
existence of the ¢-adic representations associated with m, 0, and ' implies (5),
from which (6) follows for all places w t ¢. This relies on more than is proved
in loc. cit.; it also requires the work of Carayol and Taylor on the existence of
the f-adic representations.

As Ak has good reduction at v|p, it follows - from the theorems of Faltings
and of Katz and Messing cited in [BR, §5] together with (5) and (6) - that for
a place v|p of F' the representation M, , is crystalline at v and for all w € W,

det(1 — X" )| Dyepis (M, |p,) 9Q, @a, Foo.r Q,)

oy (7)
:det(l —Xw|LReCU(7Tv®77v¢v| : |'u )

As n and ¢ are both unramified at all places above p, p, /.| is crystalline at v.
It then follows that p, = (M, , ® p;$)| D, is crystalline, and so (3) follows from
(7). That p, has Hodge-Tate type (k, w) is immediate from [BR, Thm. 2.5.1(ii)]
and Faltings’ proof of the deRham conjecture.

2.3.3 ESSENTIALLY SELF-DUAL REPRESENTATIONS OF GL3(Ap)

Let IT = ®'TI, be a cuspidal automorphic representation of GL3(A r) for which
each II;, i € I, is such that its corresponding representation Rec;(II;) of the
WEeil group of F; satisfies

Reci(Hi)|Cx = Zaifbi D zbiz‘“ D (22)(ai+bi)/2’ a; 7é b; € Z, a; +b; € 27Z. (8)

Suppose also that ITY = TI®1) for some Hecke character 1 (then 1) is necessarily
algebraic). As explained in [B1, 4.1-4.6], it is a consequence of the results in
[Mo] that for each prime ¢ and each isomorphism +/ : C = Q, there is an
¢-adic Galois representation pr,/ : Gr — GL3(Q,) satisfying WD (pm,/|p, ) =

6For an algebraic Hecke character 1 of a number field, we denote by Py, the fL-adic
Galois representation associated with 1 and ./, normalized so that the restriction of the
Galois character to the decomposition group at a place w { £ is just the image of the local
character 1, under the inverse of the Artin map, composed with ¢/
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'Recy (I1,) for all places v t £ that are prime to the conductor of II and the
absolute discriminant of F'.

The proof of the existence of pr,,s follows the arguments in [BR]. In particular,
letting E be as in 2.3.2, if the base change of II to F is still cuspidal then, as
explained in the proof of [B1, Thm. 4.2], there is a motive M = (A%, e), K
small enough, such that the ¢-adic realizations of M yield pr|g, twisted by
a representation associated with an algebraic Hecke character of A%. If IT is
unramified at each v|p then one can take K = K,K? with K, identified with
Z; x H@‘p GLoy ,(Ay) and the Hecke character can be taken unramified at
each v|p. Then arguing as in 2.3.2 shows that pr := pr,, is crystalline at each
v|p and such that Dyr(pn|p,) ®6p®Qmej Qp, J € Homgq, (Fq,,ﬁp)7 is non-
zero in degrees —a;(;), —b;i(;), and —(a;(;) + bi;))/2, i(j) € I being the induced
embedding of F. Furthermore, if WD(pm,./|p,) = t'Rec,(IL,) for some £ # p
(only an additional condition if p is not prime to the absolute discriminant of
F'), then these arguments also show that WD (pn|p, ) = tRec, (IL,).

Remark. Suppose II,, is unramified at each v|p. From the good reduction of the
Shimura variety Shx with K, as in 2.3.2 or 2.3.3, it follows easily from the Weil
conjectures that the Frobenius-at-v eigenvalues of any ¢-adic representation
pi,., ¢ # p, have absolute value as predicted by the Ramanujan conjecture
for IT,, when considered as elements of C via «. Therefore, if WD(pm,./|p,) =
{'Recy(I1,), then the Ramanujan conjecture is true for II,. This argument
shows (at least) that if ¢ is a prime such that II,, is unramified for all w|gq,
then the Ramanujan conjecture is true for II,,, w|q, provided there is some
prime ¢ # g such that the ¢-adic representation prr - satisfies WD(pm,./|p,,) =
' Recy, (Iy).

2.4 THEOREM 1 FOR THE REMAINING CASES

As a consequence of the work of Saito [Sal, Sa2], the remarks in 2.2, and the
results of [BR] as described in 2.3.2, to complete the proof of Theorem 1 it
remains to consider the case where d is even, each k; = 2, each m,, v|p, is
unramified, and 7 is not a CM representation. Replacing w by a twist by an
integral power of | - |p if necessary (which corresponds to twisting p, by a
power of the cyclotomic character), we may also assume that w = 2. Hereon
we assume we are in this case.

2.4.1 AN APPLICATION OF THE SYMMETRIC SQUARE

Let 1T := Sym?r ® | - |z!, with Sym®n the symmetric square lift of 7 to
GL3(Ar) (cf. [GJ]). As 7 is not a CM representation, II is cuspidal. Since
Rec; (m;)|ox 22 (2/2)1/28(2/2)'/?, Reci(IL;)|ox 22 Sym®Rec;(mi] - |; /%) o sat-
isfies (8) with a; = —2 and b; = 0. Furthermore, as 7¥ & 1®@w ™!, w the central
character of m, it follows that IV 2 I ®w™?2|- |%. Therefore, II satisfies all the

hypotheses in 2.3.3. In particular, there exist associated ¢-adic representations
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pr. Clearly prr,,s 2 Sym?p,./, 50 WD(prr..|p,,) = t'Recy, (Sym?m, @ | - |21)
for all w 1 . Since m,, and therefore IL,, is unramified at each v|p, as ex-
plained in 2.3.3 we can conclude from this that for each v|p: (i) Sym?p,|p,
is crystalline for v|p, (ii) WD(S_mepW|DU) = (Rec, (_Smeﬂ'v ®|-],1), and (iii)
Dyr(Sym?px|p,) ®Q,0a, Fo.j Q,, j € Homgq, (F,Q,), is non-zero in degrees
2, 1, and 0.

Let v|p. By conclusion (iii) of the preceding paragraph, the graded module
Dgr(Sym?p,) is the symmetric square of the expected graded module for p,. It
then follows from results of Wintenberger” - Thm. 1.1.3, Prop. 1.2, and Remarks
1.1.4 of [Win1] or Thm. 2.2.2 of [Win2], applied to the isogeny GLy — GLg2/=+1 -
that there is a crystalline representation p : D,, — GLQ(QI)) such that Sym?p =

Sym?p,. From this it follows that p, is isomorphic to a (possibly trivial)
quadratic twist of p. In particular, p, is potentially crystalline. Therefore
WD(Sym?p,) = Sym*WD(p,,), and it then follows from conclusion (ii) of the
preceding paragraph that Sym*WD(p,) = Sym*Rec, (7, ® | - ;1/2). From
this it follows that WD(p,) is isomorphic to a (possibly trivial) quadratic twist
of tRecy(my @ | - ;1/2). It also follows that p, is of Hodge-Tate type (k,w)
(= ((2)ier1,2) in this case).

Remark. We can also use Sym? to show that the Ramanujan conjecture holds
for . We may assume that 7 is not a CM representation. Let ¢ be a prime.
It then follows from the remark at the end of 2.3.3 that if 7, is unramified at
each w|g, then the Ramanujan conjecture holds for each Sym?m,, and hence
for m,. A simple base change argument like that in 2.2 then shows that the
Ramanujan conjecture holds at all places where 7 is a principal series. In
particular, this establishes the Ramanujan conjecture for those w for which
there is no finite place v with m, square-integrable. That the Ramanujan
conjecture is known when such a v exists follows from Carayol’s work [Ca2].
The Ramanujan conjecture has already been established for = by Blasius [B2].

2.4.2 'THE EXISTENCE OF A CRYSTALLINE PERIOD

Recall that we are assuming that for each v|p, m, = w(ay,By) is an un-

ramified principal series®. As WD(p,) is isomorphic to a (possibly trivial)

quadratic twist of tRecy(my ® |« |o 1/ %), to prove (2) it suffices to show that

WD(py)f“’b“:a“(wv)qim # 0, where frob,, is a geometric frobenius at v, w, is a

uniformizer at v, and ¢, is the order of the residue field at v. This is equivalent
to showing that Dcms(pybv)‘fof“ =a,/%au(@) g o Qp ®q, Fyo-module of rank

"Note that ‘weakly admissible = admissible’ has been proved by Colmez and Fontaine,
and ‘de Rham = potentially semistable’ has been proved (independently in some cases) by
André, Berger, Kedlaya, and Mebkhout, and so the hypotheses on which these results depend
are known to hold.

8By m(a, 8) we mean the usual principal series representation that is the induction to

GL2(Fy) of the character (§ ) — o¢(a)ﬁ(d)|a/d|11)/2 of the upper-triangular Borel.
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at least one. To establish a lower bound on this rank, we make use of p-adic
analytic families of cuspidal representations.

Let O denote the integer ring of F and let O, := O ® Z, = Hvlp O,. Let
Sp := {v|p} be the set of places of F' over p and let Sy be the set of finite places
of F at which 7 is ramified. Let S := S, U S, and K9 := [Logs,0r00 GL2(O0).
Let H® be the abelian Hecke algebra

H® = Co(GL2(A% ) [/ K®).

For each v € S}, let

L= {(24) €GLa(O,) + wale}, Iy =[] L

v|p

and let U, C C.(GL2(0,)//I,) be the abelian subalgebra generated by the
characteristic functions

U, := char(I,diag(w,, 1)1,).

Put
Uy = @,,U, and T :=U,H".

Then there exists an fr € 7K°Ly that is an eigenvector for the (usual) ac-

tion of the Hecke ring T such that char(I,diag(w,, 1)I,) acts with eigenvalue

1/2
0 ().

Let K C Qp be a finite extension of Q, containing each i(F'), ¢ € I, and
the eigenvalues for the action of T on fr. Let |[K*| = {|z[, : = € K*}.
For r € |K*|, we denote by B, the usual closed rigid ball over K of radius
r (so B.(Cp) = {x € C, : l|z[, < r}, where C, := Q,). Then O(B;) =
K < T >. Let A, := O(By,); this is an affinoid K-algebra. From the work
of Buzzard [Bul, Bu2] one can deduce that if 7o € |K*| is sufficiently small,
then there exists a reduced finite torsion-free A, -algebra R (so also an affinoid
K-algebra) and a homomorphism ¢ : T° — R satisfying (i)-(iii) below. For
x € Homg (R, Qp) put ¢, := z o ¢. Then:

(i) if « is such that (1 +T) = (1 + q)", n, € p(p — 1)Z~o (¢ = p if p odd
and ¢ = 4 if p = 2), then there exists a cuspidal representation 7, of
GL2(Ar) with infinity type (ki,ws) = ((ns + 2)ier, e + 2)) and which
is unramified at all v|p and such that ¢, : TS — Q,, gives the eigenvalues

S
of the action of T on an eigenvector f, € 7T£( Ip;

(ii) there exists g € X(K) with zo(1 +7T) = 1 such that ¢, gives the
eigenvalues of the action of T® on f,;

(ili) if ¢y, := ¢(Uy) € R™, then |z(¢y)|p is constant for all z;
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(iv) there exists a continuous representation
PR : GF — GLQ(R)

unramified away from S and such that for x as in (i) the representation

pz : Gr — GL2(Q,) induced from pr by z is equivalent to pr, and that
induced by z¢ is equivalent to p,.

Assuming the existence of R and ¢, we can complete the proof of Theorem 1.
Let ¥ € Homg (R, Qp) be the set of x as in (i). Then ¥ is Zariski dense by the
finiteness of R over A,. As explained in 2.3.2 we know that Theorem 1 holds
for each 7, x € . Let v|p and z € ¥. Then 7, = 7(lg, Ay), an unramified

2 Tn particular, as Theorem 1 holds

principal series with 2(¢y) = fte(w0)qe
for p, = pp, we have that Dcris(pxbv)‘”f”:w(‘b“) is a Qp ®q, Fuv,o-module
of rank at least one for all z € ¥, where f, is the residue class degree of
F, (so ¢, = p/*). As the Hodge-Tate type of p,, x € %, is (ks,w,), each

Dyr(pz|D,) Q. 0, Fo.j Q, is non-zero in degrees 0 and n, + 1. It then follows
easily from [Ki2, (5.15)] that®

o —

1/2
Dcris (Pw|Dv )90 v

(@) — p ot =ro(00)

cris (pazg |Dv

is also a Qp ®q, Fv,0-module of rank at least one.

While the existence of R and ¢ is essentially proved in the work of Buz-
zard, there is no convenient reference in [Bul]. So we conclude by explain-
ing how their existence follows from this work. Let D be the quaternion
algebra over F' that is split at all finite places and compact modulo the
center at all archimedean places. Fix a maximal order Op of D, and for
each finite place v of F fix an isomorphism Op, = M>(0O,). This identi-
fies GLa(Ap, ) with (D ®p Ap)*. Let n be the conductor of 7 and let
Uy C GL2(0O® 2) be the subgroup of matrices with lower left entries in n ® 2,
and let U = Uy N I,. Let J := {v[p}. For a € ZL; let Ua := [], ., Ug*. For

veJlet o, = ordv(ay(wv)qiﬂ), and let o, := > AyOy-

veJ

For r € |[K*| with 7 <1 we define a homomorphism x : O x O — AX by

H((xv)a(yy)) = H H ](yv)(l +T)logp Nmpv/Qp(zu).

veSy j€Homq,, (Fy ,61))

9Proposition (5.14) and Corollary (5.15) of [Ki2] are only stated for representations of
Gq, = Gal(ép/Qp). But it is easily checked that the arguments extend to the case of the
representations of D, = Gal(fv /Fy) under consideration here; the necessary results with
¢ replaced by ¢fv (e.g., Corollary (3.7)) are easily deduced from those for ¢. A key point
is that our hypotheses on the weights in the family X ensure that the polynomial P(X) €
(O(X)®q, Fv)[X] provided by Sen’s theory as in [Ki2, (2.2)] is of the form P(X) = XQ(X)
with the constant coefficient of @ not a zero-divisor.
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Let W be the rigid analytic weight space over K defined in §8 of [Bul]. Then
B, is identified with a reduced affinoid subspace of W such that x is the induced
weight in the sense of loc. cit. Let m € |K*| be so small that the A,-Banach
module SP(U;m) of overconvergent automorphic forms is defined (notation
as in [Bul, §9]). This is equipped with an A,-linear action of T* such that

each U, is a completely continuous operator. For b € BT(QP) such that the
induced map ¢ : A, — Qp sends 1 + T to (1 + ¢)™ with ny € p(p — 1)Z>o
we have a T®-equivariant inclusion of the classical forms of weight (kj, wy):
Sﬁwb(U) C SP2(U;m) ®o(s,),e, Qps Wo := (nb + 2)ies € Z' (see [Bul, §11]).
By the Jacquet-Langlands correspondence, there exists fo € S22(U) having
the same T®-eigenvalues as fr. Recall that by the theory of Fredholm series
and orthonormalizable Banach modules as developed by Coleman, Ash and
Stevens, and Buzzard, if r is small enough then there is a finite A,-direct
summand A C SP(U;m) that is stable under TS and such that for each
ac Zio the Fredholm series for U, on N is a factor of the slope o, part of
the Fredholm series P,(X) € A,.{X} associated to the completely continuous
operator U, on SP(U;m) (the latter is well-defined for » small enough), and
furthermore is such that fo € N ®a4, ., K. If r is sufficiently small then for
any b € A, with ny € p(p — 1)Z~¢ it follows from the arguments in [Bu2, §7]
(see also the comment at the end of §11 of [Bul]) that Np := N ®a4,.c, Q,, is
comprised of classical forms in S2 ., 5(U) (ny is divisible by a high power
of p; the smaller r is, the larger the power of p). By the definition of N, any
TS-eigenform in N, is such that the eigenvalue of U, has slope o, and so if
r is small enough relative to o, then it is easily seen that the v-constituent of
the irreducible representation of GLa(AF r) generated by f is not special and
therefore must be an unramified principal series.

Let R be the A,-algebra generated by the image of T in Enda, (NV); this is
a finite torsion-free A,-algebra and so an affinoid K-algebra. Note that there
exists a K-homomorphism ¢q : R — K giving the eigenvalues of the T®-action
on fy. Let A be the normalization of the quotient of R by a minimal prime
containing the kernel of ¢g. This is a reduced finite torsion-free A,-algebra and
so also an affinoid K-algebra. Let ¢ : T — A be the canonical homomorphism.
It follows from the definitions that (i), (ii), and (iii) hold with R replaced by
A. For each x € Homg (A, Q,) as in (i), let T, : Gr — Q, be the continuous
pseudo-representation associated with p,_  (so T, = tracep,, ). Since for a
place w 1 np, T (froby,) = x o @(char(GL2(O,, )diag(wy, 1)GL2(Oy)), @y € Oy
a uniformizer, it follows easily from the Cebotarev density theorem and the
Zariski density of the set ¥4 of z € HomK(A,Qp) as in (i) that there is a
continuous pseudo-representation T : Ggp — A such that T, = x oT. From
the general theory of pseudo-representations (cf. [Tay3]) there is a semisimple
Galois representation p4 : Gp — GLo(F4), F4 the field of fractions of A, such
that T' = trace pa. It is easy to see that there is a finite A-module M C F3 on
which Gr acts continuously and such that V, := M, ®a4, + Qp is isomorphic
to the representation p, , * € ¥4 or x any extension of ¢g to A (here the
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subscript z on M and A denotes the localization at the kernel of z). Such
a module M is given explicitly as follows. Fix a basis of p4 such that for
some i € I the corresponding complex conjugation in G is diagonalized (with
eigenvalues 1 and —1). Writing pa(o) = ('Z: Z:), we have ay,d,,bycer € A
for all 0,0’ € G and that these define continuous functions of o and o’. It
follows that the A-submodules B and C of Fa generated by {b, : o € G}
and {c, : 0 € G}, respectively, are fractional ideals of A satisfying CB C A
(note that by the semisimplicity of ps and the diagonalization of the chosen
complex conjugation, B = 0 if and only of C = 0). We can then take M =
A Aif C = 0and M = A & C otherwise. Being a finite A-module, M
is a Banach A-module and the continuity of the action of G on M is clear
from the continuity of the functions a,, d,, and byc, . As A is normal, for any
x € Hompg (A, Qp) the localization A, is a DVR, and so M, is a free A,-module
of rank two. The representation V. is then two-dimensional and its associated
pseudo-representation is x o T'. Therefore if x € ¥4 or x any extension of ¢q
to A, the pseudo-representation associated with V,, equals that associated with
pr,- As the latter representation is irreducible (this irreducibility is well-known,
but see also the remark below) it follows that V, = pr_ . As A is normal and
finite over A,, there is an f ¢ T A, (in fact one can pick f not to be zero on
any given finite set of points of B,) such that My is free over Ay. Let ro <7
be so small that f € AX. Then (i)-(iv) hold with R the quotient of A®4, A,
by any minimal prime (a finite A, -algebra and so an affinoid K-algebra) and
with pr the representation of G on the free R-module M ®4 R.

Remark. We recall that there is a quick proof of the irreducibility of p, using
that it is potentially semistable (really only that it is Hodge-Tate), which was
established in 2.4.1. If pr = x1 @ x2, then each x; is potentially semistable and
hence is the Galois representation associated to an algebraic Hecke character
¥; of F (cf. [Se], esp. I11,2.3-2.4). Tt then follows that L(m ® w;l, s—1/2) =
L(p1 /12, 8)Cr(s). As ¢ = )| - |% with a; € Z and 1] finite and since we may
assume a1 > ag, L(Y1/v2,1) = LY} /¢h, a1 —az + 1) # 0. But this implies
that L(m @15 ', s) has a pole at s = 1, contradicting the cuspidality of .
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ABSTRACT. We consider the moduli space H, ,, of n-pointed smooth
hyperelliptic curves of genus g. In order to get cohomological in-
formation we wish to make S,,-equivariant counts of the numbers of
points defined over finite fields of this moduli space. We find recur-
rence relations in the genus that these numbers fulfill. Thus, if we
can make S,-equivariant counts of H, , for low genus, then we can
do this for every genus. Information about curves of genus 0 and 1
is then found to be sufficient to compute the answers for H, ,, for all
g and for n < 7. These results are applied to the moduli spaces of
stable curves of genus 2 with up to 7 points, and this gives us the
S,-equivariant Galois (resp. Hodge) structure of their ¢-adic (resp.
Betti) cohomology.

2000 Mathematics Subject Classification: 14H10, 11G20
Keywords and Phrases: Cohomology of moduli spaces of curves,
curves over finite fields.

1. INTRODUCTION

By virtue of the Lefschetz trace formula, counting points defined over finite
fields of a space gives a way of finding information on its cohomology. In
this article we wish to count points of the moduli space Hg, of n-pointed
smooth hyperelliptic curves of genus g. On this space we have an action of the
symmetric group S,, by permuting the marked points of the curves. To take
this action into account we will make S,, -equivariant counts of the numbers of
points of H, ,, defined over finite fields.

For every n we will find simple recurrence relations in the genus, for the equi-
variant number of points of ‘H, , defined over a finite field. Thus, if we can
count these numbers for low genus, we will know the answer for every genus.
The hyperelliptic curves will need to be separated according to whether the
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characteristic is odd or even and the respective recurrence relations will in
some cases be different.

When the number of marked points is at most 7 we use the fact that the
base cases of the recurrence relations only involve the genus 0 case, which
is easily computed, and previously known S,-equivariant counts of points of
M p, to get equivariant counts for every genus. If we consider the odd and
even cases separately, then all these counts are polynomials when considered
as functions of the number of elements of the finite field. For up to five points
these polynomials do not depend upon the characteristic. But for six-pointed
hyperelliptic curves there is a dependence, which appears for the first time for
genus 3.

By the Lefschetz trace formula, the S,-equivariant count of points of H, , is
equivalent to the trace of Frobenius on the f-adic S,-equivariant Euler char-
acteristic of H, . But this information can also be formulated as traces of
Frobenius on the Euler characteristic of some natural local systems Vy on H,.
By Theorem 3.2 in [1] we can use this connection to determine the Euler char-
acteristic, evaluated in the Grothendieck group of absolute Galois modules, of
all Vy on Hy ® Q of weight at most 7. These result are in agreement with
the results on the ordinary Euler characteristic and the conjectures on the mo-
tivic Euler characteristic of V on Hs by Bini-van der Geer in [5], the ordinary
Euler characteristic of V) on Hs by Getzler in [16], and the Sy-equivariant
cohomology of H, o for all g > 2 by Tommasi in [20].

The moduli stack ngn of stable n-pointed curves of genus ¢ is smooth and
proper, which implies purity of the cohomology. If the S,,-equivariant count of
points of this space, when considered as a function of the number of elements
of the finite field, gives a polynomial, then using the purity we can determine
the S,,-equivariant Galois (resp. Hodge) structure of its individual ¢-adic (resp.
Betti) cohomology groups (see Theorem 3.4 in [2] which is based on a result of
van den Bogaart-Edixhoven in [6]). All curves of genus 2 are hyperelliptic and
hence we can apply this theorem to MQ’n for all n < 7. These results on genus
2 curves are all in agreement with the ones of Faber-van der Geer in [9] and
[10]. Moreover, for n < 3 they were previously known by the work of Getzler
in [14, Section 8].
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OUTLINE

Let us give an outline of the paper, where x. denotes the section.
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In this section we define S,-equivariant counts of points of H, , over
a finite field &, and we formulate the counts in terms of numbers ay |4,
which are connected to the H'’s of the hyperelliptic curves.

The hyperelliptic curves of genus g, in odd characteristic, are realized
as degree 2 covers of P! given by square-free polynomials of degree
2g+2 or 2g+1. The numbers a,|, are then expressed in terms of these
polynomials in equation (3.2). The expression for ay|, is decomposed
into parts denoted ug, which are indexed by pairs of tuples of numbers
(n;r). The special cases of genus 0 and 1 are discussed in Section 3.1.
A recurrence relation is found for the numbers u, (Theorem 4.12).
The first step is to use the fact that any polynomial can be written
uniquely as a monic square times a square-free one. This results in an
equation which gives U, in terms of uj for h less than or equal to g,
where U, denotes the expression corresponding to ug, but in terms of
all polynomials instead of only the square-free ones. The second step
is to use that, if g is large enough, U, can be computed using a simple
interpolation argument.

The recurrence relations for the uy’s are put together to form a linear
recurrence relation for ay|y, whose characteristic polynomial is given
in Theorem 5.2.

It is shown how to compute g for any pair (n;r).

Information on the cases of genus 0 and 1 is used to compute, for all g,
ug for tuples (n;r) of degree at most 5, and ay|, of weight at most 7.

The hyperelliptic curves are realized, in even characteristic, as pairs
(h, f) of polynomials fulfilling three conditions. The numbers u, and
U, are then defined to correspond to the case of odd characteristic.

In even characteristic, a recurrence relation is found for the numbers ug
(Theorem 9.11). Lemmas 9.6 and 9.7 show that one can do something
in even characteristic corresponding to uniquely writing a polynomial
as a monic square times a square-free one in odd characteristic. This
results in a relation between U, and uy for h less than or equal to g.
Then, as in odd characteristic, a simple interpolation argument is used
to compute U, for g large enough.

The same amount of information as in Section 7 is obtained in the
case of even characteristic. It is noted that a|, is independent of
the characteristic for weight at most 5 (Theorem 10.3). This does not
continue to hold for weight 6 where there is dependency for genus at
least 3 (see Example 10.6).

The counts of points of the previous sections are used to get cohomo-
logical information. This is, in particular, applied to ngn forn <.

In the first appendix, a more geometric interpretation is given of the
information contained in all the numbers u4 of at most a certain degree
(see Lemma 12.8).

In the second appendix, we find that for sufficiently large g we can
compute the Euler characteristic, with Gal(Q/Q)-structure, of the part
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of the cohomology of sufficiently high weight, of some local systems V
on ‘Hy. We will also see that these results are, in a sense, stable in g.

2. EQUIVARIANT COUNTS

Let k be a finite field with ¢ elements and denote by k,,, a degree m extension.
Define H, ,, to be the coarse moduli space of Hgm@k’ and let F' be the geometric
Frobenius morphism.

The purpose of this article is to make S,,-equivariant counts of the number of
points defined over k of H,,. With this we mean a count, for each element
o € Sy, of the number of fixed points of Fo acting on H,,. Note that these
numbers only depend upon the cycle type ¢(o) of the permutation o.

Define R, to be the category of hyperelliptic curves of genus g that are de-
fined over k together with marked points (p1,...,pn) defined over k such that
(Fo)(pi;) = p; for all i. Points of Hy,, are isomorphism classes of n-pointed
hyperelliptic curves of genus ¢ defined over k. For any pointed curve X that
is a representative of a point in H;;'L, the set of fixed points of F'o acting on
H, ,, there is an isomorphism from X to the pointed curve (Fo)X. Using
this isomorphism we can descend to an element of R, (see [17, Lem. 10.7.5]).
Therefore, the number of k-isomorphism classes of the category R, is equal to
[Hy7l

Fix an element Y = (C,p1,...,pn) in R,. We then have the following equality

(see [12] or [17]): .
2 TR

[X]ER, /22K
XY

This enables us to go from k-isomorphism classes to k-isomorphism classes:

o| __ — 1 = 1
EAED VR TNV DI, v et I R et

[Y]ER, /=5, [Y]ER, /2 [X]ER, /=K [X]ER,/=k
XY

For any curve C over k, define C’(a) to be the set of n-tuples of distinct points
(p1,-..,pn) in C(k) that fulfill (Fo)(p;) = p;.

NOTATION 2.1. A partition A of an integer m consists of a sequence of non-
negative integers A,...,\, such that |A| := Y7 i\; = m. We will write
A= [17uh

Say that 7 € S,, consists of one n-cycle. The elements of C(T) are then given

by the choice of py € C(ky) such that p; ¢ C(k;) for every ¢ < n. By an
inclusion-exclusion argument it is then straightforward to show that

C(r)] =D n(n/d)|C(ka)l,
d|n
where p is the Mobius function. Say that A is any partition and that o € Sy
has the property ¢(o) = A. Since C’(a) consists of tuples of distinct points it
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directly follows that

(2.1) C (o)l = 1:I 1_1 <Z( (i/d) |C (ka)| yz)>

Fix a curve C over k and let Xy,..., X, be representatives of the distinct k-
isomorphism classes of the subcategory of R, of elements (D, ¢1, ..., g,) where
D =, C. For each X; we can act with Auty(C) which gives an orbit lying in
R, and where the stabilizer of X; is equal to Auty(X;). Together the orbits of

Xi,..., X, will contain |C( )| elements and hence we obtain
1 C(0)]
(2.2) HE = Y — = Y
x1éra o AU 00T o, IAUER(C)]

We will compute slightly different numbers than |H F "|, but which contain
equivalent information. Let C' be a curve defined over k. The Lefschetz trace
formula tells us that for all m > 1,
(2.3)

|C (k)| = |C{ =14¢™ — an(C) where a,(C) = Tr(Fm,Hl(C,;,Qg)).

If we consider equations (2.1) and (2.2) in view of equation (2.3) we find that

1
HP7| = = fo(q,a1(0), ..., an(C)),
| memzm/gk Aus(0)] 7o (@ 1) ()

where f,(zo,...,Zy) is a polynomial with coefficients in Z. Give the variable
x; degree i. Then there is a unique monomial in f, of highest degree, namely
:L'i\l ..~ x)v. The numbers which we will pursue will be the following.

DEFINITION 2.2. For g > 2 and any partition A define

(2.4) alg:= Y |Autk Hal

[CleH (k) /=

This expression will be said to have weight |A|. Let us also define

1
aO|g T Z |Autk(0)|7

[CleH (k) /2

an expression of weight 0.

3. REPRESENTATIVES OF HYPERELLIPTIC CURVES IN ODD CHARACTERISTIC

Assume that the finite field k£ has an odd number of elements. The hyperelliptic
curves of genus g > 2 are the ones endowed with a degree 2 morphism to P?.
This morphism induces a degree 2 extension of the function field of P!. If we
consider hyperelliptic curves defined over the finite field k£ and choose an affine
coordinate z on P!, then we can write this extension in the form y? = f(x),
where f is a square-free polynomial with coefficients in k of degree 2g + 1 or
2g + 2. At infinity, we can describe the curve given by the polynomial f in the
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coordinate t = 1/x by y? = t29%2 f(1/t). We will therefore let f(co), which
corresponds to ¢ = 0, be the coefficient of f of degree 2g + 2.

DEFINITION 3.1. Let P, denote the set of square-free polynomials with coeffi-
cients in k and of degree 2g+ 1 or 2g + 2, and let P; C Py consist of the monic
polynomials. Write C; for the curve corresponding to the element f in Pj.

By construction, there exists for each k-isomorphism class of objects in Hy(k)
an f in P, such that Cy is a representative. Moreover, the k-isomorphisms
between curves corresponding to elements of P, are given by k-isomorphisms of
their function fields. By the uniqueness of the linear system g3 on a hyperelliptic
curve, these isomorphisms must respect the inclusion of the function field of
P!. The k-isomorphisms are therefore precisely (see [16, p. 126]) the ones
induced by elements of the group G := GL3" (k) x k*/D where

D= {(( 8 2 ),a9+1):aek*}cGLgP(k) X k*

and where an element
a b
v=1(% ;) elec
induces the isomorphism
@ (

This defines a left group action of G on Py, where v € G takes f € P, to
f € Py, with

ar+b ey
cx +d’ (cx+d)st!

o) fio = LA by

NOTATION 3.2. Let us put I :=1/|G| = (¢ —q¢)" (¢ —1)"1.

e2

DEFINITION 3.3. Let x2 ,, be the quadratic character on k,,. Recall that it is
the function that takes a € k,, to 1 if it is a square, to —1 if it is a nonsquare
and to 0 if it is 0. With a square or a nonsquare we will always mean a nonzero
element.

LEMMA 3.4. If Cy is the hyperelliptic curve corresponding to f € P, then

an(Cp) == D> xem(f(a)).

a€Pl (k)

Proof: ~ The fiber of Cy — P! over a € Al(k,,) will consist of two points
defined over k,, if f(«) is a square in k,,, no point if f(«) is a nonsquare in
km, and one point if f(a) = 0. By the above description of f in terms of the
coordinate t = 1/, the same holds for &« = oco. The lemma now follows from
equation (2.3). O
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We will now rephrase equation (2.4) in terms of the elements of P;. By what

was said above, the stabilizer of an element f in P, under the action of G is
equal to Auty(Cy) and hence

62 wly= ¥ Haz )

[flepy /G
v N
IGI 2 Ha’ Cp™ =13 H(— > X2,i(f(0&))) .
fEP, i=1 FeP, i1 acPl(k)

This can up to sign be rewritten as

(3.3) I Z Z H H x2.i (f (i)

fe€Py (a1,1,-..,00,2,,)€S =1 j=1

where S := [],_, P'(k;)*, in other words, a; ; € P(k;) for each 1 < i < v and
1 <j < A;. The sum (3. 3) will be split into parts for which we, in Section 4,
will find recurrence relations in g.

DEFINITION 3.5. For any tuplen = (nq,...,n,,) € N2, let the set A(n) consist
of the tuples a = (ay,...,a,) € [[1-, P (kn,) such that for any 1 <i,j <m
and any s > 0,

Fé(a;) = a; = ny|lsandi=j.
Let us also define A'(n) := A(n) N ", Al(ky,).

DEFINITION 3.6. Let A, denote the set of pairs (n;r) such that n =
(n1,...,nm) € NZyand ¢ = (r1,...,7m) € {1,2}™.

DEFINITION 3.7. For any g > —1, (n;r) € N, and o = (aq,..., ) € A(n)

define
m
Ugl:lc’tr Z H 2n1 "

ep,i=1

and
(n r) . Z u(“ r)
acA(n)

CONSTRUCTION-LEMMA 3.8. For each A, there are positive integers ci, ... ,Cs
and my,...,ms, and moreover pairs (n(’);r(’)) € No, for each 1 <i <s, such

that for any finite field k,

S
(). ()
n'":r
axlg = g ciué ).
i=1

Proof: The lemma will be proved by writing the set S as a disjoint union of
parts that only depend upon the partition A, and which therefore are indepen-
dent of the chosen finite field k.

For each positive integer i, let i =d; 1 > ... > d; 5, = 1 be the divisors of ¢.
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% Foreach 1 <i<w,letT;,...,T;s be an ordered partition of the set
{1,...,\;} into (possibly empty) subsets.

x For each 1 <4 < v and each 1 < j < 4y, let Qi j1,...,Qijk,, be
an unordered partition (where k;; is arbitrary) of the set T;; into
non-empty subsets.

From such a choice of partitions we define a subset S = S({T; ;},{Qijx})
of S consisting of the tuples (a11,...,a,,) € S fulfilling the following two
properties.

* If . € T, j then: o;; € kj and Vs < j, o 5 ¢ ks.

* Ifx € Q;;r and 2’ € Qi jv ) then:

s F* (e 0) = ap <= (i,5,k) = (@', ', k).
Define n to be equal to the tuple

K1,1 K1,2 K1,89 K21 Ru,§y,
((,11717 .. ~,d1,17d1,27 .. .,d1727 ceey d1,517 “ee ,Cl1’517d2’17 “ee ,Cl2’17 .. .7dy’6u7 “ee ,dy,(su).

Let p; jx be equal to 2 if either i/d; ; or |Q; ;x| is even, and 1 otherwise.
Define r to be equal to

(P1,1,1, P1,1,25 -5 P1L1k1,15 P1,2,15 -+ 5 PLS1,K1sy 0 P2,1,15 - -+ 5 Pu,éy,nu,du)-

The equality

v
w® =1 3 3 [T I ei(f(a)

fEPy (a1,1,...,a0, 7, )ES’ i=1 =1
is clear in view of the following three simple properties of the quadratic char-
acter.
* Say that a € P!(k,), then if §/s is even we have x2;(f(a)) =
Xg,s(f(a))Q and if §/s is odd we have x2,5(f(@)) = x2,s(f()).
* If for any a, 8 € P! we have F*(a) = /3 for some s, then x2;(f(a)) =
XQ’i(f(ﬂ)) for all s.
% Finally, for any o € P! and any s, we have Xg,s(f(a))r = X2,s (f(a))2
if r is even and X2, (f(a))" = x2,s(f(a)) if r is odd.
The lemma now follows directly from the fact that the sets S({T; ;},{Qi.j.x}) C

S (for different choices of partitions {7} ;} and {Q; ;x}) are disjoint and cover
S. O

The set of data {(c;, (n(V;r(¥))} resulting from the procedure given in the
proof of Construction-Lemma 3.8 is, after assuming the pairs (n(i);r(i)) to be
distinct, unique up to simultaneous reordering of the elements of n and r®
for each ¢, and it will be called the decomposition of ax|g.

DEFINITION 3.9. For a partition A, the pair
A1 A2 A
—— —_———
R VAN,

(myr) = ((1,...,1,2,...,2,...,0, . D) (1,...,1))
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will appear in the decomposition of ay |, (corresponding to the partitions T; 1 =
{1,...; N} for 1 < i <w,and Qi1 = {k} for 1 < i,k < v) with coefficient
equal to 1, and it will be called the general case. All other pairs (n;r) appearing
in the decomposition of ay|, will be refered to as degenerations of the general
case.

DEFINITION 3.10. For any (n;r) € Ny, the number |n| := >7" n; will be
called the degree of (n;r).

LEMMA 3.11. The general case is the only case in the decomposition of ax|y
which has degree equal to the weight of ax|y.

Proof: If (n;r) appears in the decomposition of ay|, and is associated to
the partitions {7} ;} and {Q; ;x}, then |n| = 37, Zj“:l Kijd; . Since A\; =
Z?;l ki; and 1 < d;; < 4, the equality |A\| = |n| implies that x; ;1 = A; and

LEMMA 3.12. If (n;r) appears in the decomposition of ax|g then > | rin; < ||
and these two numbers have the same parity.

Proof: If (n;r) appears in the decomposition of ay|, and is associated to the
partitions {7; ;} and {Q; jx}, then > rn; =Y 0, Z;s:l St pigkdi -

Let us prove the lemma by induction on m, starting with the case that m =
>oi_1 Ai. In this case we must have [Q; x| =1foralll <i<w, 1<j<4¢;
and 1 < k < k;,j, and hence p; ;1 is only equal to two if i/d; ; is even. This
directly tells us that p; ;rd; ; <4, and that these two numbers have the same

parity. Since \; = Zj;l Kij, it follows that > r;n; < |A| and that these
two numbers have the same parity.
Assume now that m = k and that the lemma has been proved for all pairs (fa; T)
with m > k. Since m < Z;’Zl A; we know that there exists numbers ig, jo, ko
such that [Qsg jo,ke| = 2. Let us fix an element « € Q;, jo.k, and define a new
pair (n’;r’) associated to the partitions {7} ;} and {Q] ; ;} by putting:

* Tic]':,-ri,j foralll<i<vand1l<j<d,,

* Q’/L'(),j[),k[) = Qioﬁjoyko \ {l‘},

* K;(hjo = Kiy,jo + 1 and ng,jo,ﬁﬁ,o,jo = {x},

* Q; jr = Qi in all other cases.
The pair (n’,r’) thus appears in the decomposition of A, and m’ = k + 1.

Moreover, we directly find that Y ;" rin; < Zm’ rin’ and that these two

=1"1""
numbers have the same parity. By the induction hypothesis the lemma is then

also true for (n;r). O
EXAMPLE 3.13. Let us decompose ajy2)|, starting with the general case:

aly =1 Y (- xealf@) =1 Y xealf@)f(@) =

fEP; acPl(ky) fEPy a,BeP (k2)
— ué(2,2);(171)) + 2ué(211)?(172)) + 2u(g(2)§(2)) + ué(1,1>;(272)) + ué(l);@)).
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EXAMPLE 3.14. The decomposition of a1 9y, starting with the general case:
apsgly = —ué@’1’1’1’1);(1’1’1’1’1)) _ 6u(g(271,171);(1,271,1)) _ 3ué(2,171);(1,272))
— {@LDLLD) g (2501.2)) _ (LLLLDILLLY) _ gy (L1 L1):(2:2,11)

— g {LLED(LLLY) g, (L11):(2:2.2) _ 99, ((L11):(2:1,1))

_ 70, ((1,1)5(2,2)) _ g, ((1,1);(1,1)) _ , ((1);(2
7ug 8ug Ug ),

3.1. THE CASES OF GENUS 0 AND 1. We would like to have an equality of the
same kind as in equation (3.2), but for curves of genus 0 and 1. Every curve of
genus 0 or 1 has a morphism to P! of degree 2 and in the same way as for larger
genera, it then follows that every k-isomorphism class of curves of genus 0 or 1
has a representative among the curves coming from polynomials in Py and P;
respectively. But there is a difference, compared to the larger genera, in that
for curves of genus 0 or 1 the g3 is not unique. In fact, the group G induces (in
the same way as for g > 2) all k-isomorphisms between curves corresponding
to elements of Py and P that respect their given morphisms to P! (i.e a fixed
g3), but not all k-isomorphisms between curves of genus 0 or 1 are of this form.
Let us, for all » > 0, define the category A, consisting of tuples (C, Qo, ..., Q)
where C' is a curve of genus 1 defined over k£ and the @); are, not necessarily
distinct, points on C' defined over k. The morphisms of A, are, as expected,
isomorphisms of the underlying curves that fix the marked points. Note that
Ay is isomorphic to the category M 1(k). We also define, for all » > 0, the
category B, consisting of tuples (C, L, Q1,...,Q,) of the same kind as above,
but where L is a g3. A morphism of B, is an isomorphism ¢ of the underlying
curves that fixes the marked points, and such that there is an isomorphism 7
making the following diagram commute:

¢

c ——

Ll lL’

P! ——— PL
Consider P; as a category where the morphisms are given by the elements of
G. To every element of P, there corresponds, precisely as for g > 2, a curve
C} together with a g3 given by the morphism to P!, thus an element of B.
Since every morphism in By between objects corresponding to elements of Py
is induced by an element of G, and since for every k-isomorphism class of an
element in By there is a representative in P;, the two categories P, and By are
equivalent.
For all » > 1 there are equivalences of the categories A, and B, given by

(CaQOa"'7Qr) = (C’ |Q0 +Q1|aQ17"'7QT)a

with inverse

(CaLana"'aQ’!‘) = (Ca|L_Q1|7Q17"'7QT)'
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We therefore have the equality

Z |Autk 11_[ az - Z |Autk }:[ al

[X]EA /=, [Y]eB,. /=),

The Riemann hypothesis tells us that |a,(C)| < 2g+/q7, for any finite field k
with ¢ elements and for any curve C' defined over k of genus g. For genus 1
this implies that |C(k)| > ¢ +1—2,/g > 0, and thus every genus 1 curve has a
point defined over k. There is therefore a number s such that 1 < |C(k)| < s
for all genus 1 curves C. As in the argument preceding equation (2.2) we can
take a representative (C, Qy, ..., Q) for each element of A,/ = and act with
Auti(C, Qo), respectively for each representative (C, L, Q1, ..., Q) of By/ =
act with Auty(C, L) and by considering the orbits and stabilizers we get

S S
" Ao .
Z] Z |AUtk H a(C Zj Z |Autk H ai(C
J=1 [X]€Ag/=y j=1  [Y]e€Bo/2 i=
|C(k)|=j |C(k)|=j

Since this holds for all » > 1 we can, by a Vandermonde argument, conclude
that we have an equality as above for each fixed j. We can therefore extend
Definition 2.2 to genus 1 in the following way:

(3.4) ax|1:= Z W Ha’ Ai

[(C,Qo)]e
My 1 (k) /=g
_ § E . A
= tab Haz Cf i=171 Ha,(Cf)
[Stabe (f)]
[fleP/G i=1 fepy i=1

which gives an agreement with equation (3.2).
All curves of genus 0 are isomorphic to P! and a,.(P!) = 0 for all » > 1. In
this trivial case we just let equation (3.2) be the definition of a|o.

4. RECURRENCE RELATIONS FOR uUg IN ODD CHARACTERISTIC

This section will be devoted to finding, for a fixed finite field & with an odd
number of elements and for a fixed pair (n;r) € A,,, a recurrence relation for
ug. Notice that we will often suppress the pair (n;r) in our notation and for
: : : (msr)

instance write u, instead of ug .

Fix a nonsquare ¢ in k and an o = (aq,...,an) € A(n). Multiplying with the
element ¢ gives a fixed point free action on the set P, and therefore

(41) uga=1 " [[xem (F@)" =1 3 T xem (¢ fle)" =

feP, i=1 feP, i=1

=1 Y T e )7 xoum, (fle)" = (1) =5 gy .

feP, i=1
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This computation and Lemmas 3.8 and 3.12 proves the following lemma.

LEMMA 4.1. For any g > —1, (n;r) € N, and a € A(n), if >i"; rin; is odd
then ug o = 0. Consequently, ax|y is equal to 0 if it has odd weight.

Thus, the only interesting cases are those for which Z;zl rin; is even.

REMARK 4.2. The last statement of Lemma 4.1 can also be found as a conse-
quence of the existence of the hyperelliptic involution.

We also see from equation (4.1) that

m
(4.2) Uga =1 (g —1) Z ng n; (f () ” if Zmni is even.

fep)i=1 i=1

DEFINITION 4.3. Let @, denote the set of all polynomials (that is, not neces-
sarily square-free) with coefficients in k and of degree 2g + 1 or 2g + 2, and let
Q'g C Qg consist of the monic polynomials. For a polynomial h € Q4 we let
h(o0) be the coefficient of the term of degree 2g + 2 (which extends the earlier
definition for elements in P,). For any ¢ > —1, (n;r) € N,, and o € A(n),

define .
n r) =71 Z HXQ,»,M (h(ai))”,
heQ, i=1
g
U;“;r) = Z Uéfgr) and Ué“;r) = Z Ui(n;r).
a€A(n) i=—1

We will find an equation relating U, to u; for all —1 < ¢ < g. Moreover, for
g large enough we will be able to compute U,. Together, this will give us our
recurrence relation for ug.

With the same arguments as was used to prove equation (4.2) one shows that

(4.3) Uga=1(g—1) Z ng n; () ” if Zm:rmi is even.

heQy, i=1 i=1

DEFINITION 4.4. For any a = (1, ..., ap,) € A'(n), let b; = b7 be the number
of monic polynomlals l of degree j such that I(«;) is nonzero for all 7. Let us
also put b = bn = b

LEMMA 4.5. For each j > 0 and n € N, we have the equalily

(44) bi=d +> (1) Y g T

=1 1§m1<...<mi§m
Doim1 Pmy <J

from which it follows that b; does not depend upon the choice of o € A’'(n).

Proof:  The numbers b; can be computed by inclusion-exclusion, where the
choice of 1 < m; < ... < m; < m corresponds to demanding the polynomial
to be 0 in the points qum,, ..., Qm,;- g

7
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NoOTATION 4.6. For any a € A’(n), let p,, denote the minimal polynomial of
a; and put po = []\", Pa,-

LEMMA 4.7. For any o € A'(n) there is a one-to-one correspondence be-
tween polynomials f defined over k with deg(f) < |n|] — 1, and tuples
(f(al)a see 7f(aﬂ1)) € HZI knz

Proof:  For any a € A’(n) we have deg(ps,) = n; and ged(pa,,Pa;) = 1 if
i # j. The lemma now follows from the Chinese remainder theorem, which
tells us that the morphism k[z|/pa — [[iv; k[z]/pa; = T1i%; kn, given by
f(@)— (f(a1),..., f(am)) is an isomorphism. O

NOTATION 4.8. Let R; denote the set of polynomials of degree j and let Rg- be
the subset containing the monic polynomials.

We will divide into two cases.

4.1. THE CASE « € A'(n). Fix an element o € A’(n). Any nonzero polyno-
mial h can be written uniquely in the form h = fI? where f is a square-free
polynomial and [ is a monic polynomial. This statement translates directly
into the equality

s+1

Us,oz =1 Z Z Z HX27"i (f(ai))riXQ,nq, (l(ai))%‘% = ijus—j,aa
=0

j+k=slER) fEPy i=1
because for any 3 € Al(ks), x2,s ((f12)(B)) = x2,s(f(B)) if {(8) # 0. Summing
this equality over all s between —1 and g gives

A g+1 ~
(45) Ug,a = ijug_j,a.
7=0

If r; = 2 for all 4, then it follows from equation (4.3) that

Usa =1(q—1) Z HXQ,m (h(az‘))Q =1(q—1)(b2s+2 + b2s41)-
heqQ!, i=1

Summing this equality over all s between —1 and g gives
(4.6) Upa = I(q—1)bogin forg>—1ifVi:r; =2.

In Ug,a we are summing over all polynomials h of degree less than or equal
to 2g + 2, and every h can uniquely be written on the form hy + pyhe, with
deghy < |n| — 1 and deghs < 2g + 2 — |n|. Hence if 2g + 2 > |n| — 1 we find
that

[n|—1 m

Uy = T30 3" ST T xuns (haen) ™

s=1 hi€Rsi=1
Using Lemma 4.7 we can reformulate this equality as

ﬁg,a = Iq2g+3—|n| Z HXQ,n,, (5@)77

(B sBm)ETTI Fon, =1
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For any j, half of the nonzero elements in k; are squares and half are nonsquares,
and thus if r; = 1 for some i, we can conclude from this equality that

(4.7 Uja=0 forg>(n|—-3)/2ifJi:r,=1.
4.2. THE CASE a € A(n) \ A'(n). Fix an element o € A(n) \ A'(n). We
can assume that a3 = oo, and then & := (ag,...,,) € A'(2) where n :=

(’ng, e ,nm).

If h € Qg and f € P; such that h = f 2 for some monic polynomial [ (which is
then unique), then h(co) = f(c0), because the coefficient of h of degree 2¢g + 2
must equal the coefficient of f of degree 2j + 2. As in Section 4.1 we get

(4.8)
g+1

Upa =1 3 3 3 £(00) ] oo, (@) X (1(00)™™ = 37 by
i=2 §j=0

J+k=gleR) fEP:

If > 7n; is even, equation (4.3) and the definition of h(co) shows that

(4.9) Upa=T(g—=1) > []xem (h(c:)".

heRY, =2
If r; = 2 for all 4, then equation (4.9) tells us that
(4.10) Uga=1I(qg— 1)1)5‘ng2 forg > —1,Vi:r; =2.

If 29 +2 > |n| — 1, an element h € R 5 can be written uniquely as h =
hi + paha, where deg(h1) < |n| — 2, deg(hs) > 0 and ho monic. In the same
way as in Section 4.1 we can (if Y ., r;n; is even) use this together with
equation (4.9) and Lemma 4.7 to conclude that

(4.11) Uja=0 forg>(n|—3)/2,3:r =1,
which of course also holds if Y"1, 7;n; is odd by Lemma 4.1 and equation (4.8).

REMARK 4.9. Fix an a € A(n). If there is an element 8 € Al(k) such that
B¢ {ar,...,an}, then T(a) := (T'(a1),...,T(,)) is in A’(n), where T is the
projective transformation of P}, defined by = — Bz/(z — ).

In the notation of equation (3.1), x2.n, (f(T(a;))) = ngni(f(ai)) (with e =
1). Since this induces a permutation of Py, we find that ug . = 1y () and
similarily that Ug o = Uy (). So, if ¢ > |n|, then equations (4.5), (4.6) and
(4.7) will also hold for & € A(n) \ A'(n). By Lemma 4.10 in the next section,
we will see that this is true even if ¢ < |n|.

4.3. THE TWO CASES JOINED. In this section we will put the results of the two
previous sections together using the following lemma.

LEMMA 4.10. For any 0= (na,...,nm), if n = (1,n9,...,0y) then I;;’ = bg’.
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Proof: Fix any tuple n = (n1,...,n,,) and put n:= |n|. If we let t;, = ¢" in
the formula

H(tifl):tr"thrZ(*l)i Z tl"'tmtl ti’

i=1 i=1 1<mi<...<m;<m m1 i

then the right hand side is equal to the right hand side of equation (4.4), and
hence

m
(4.12) [ -1 =0

i=1
Say that 0% = ZLO ?iq" and ZA)E‘ = Z{ZO &g If i < j then equation (4.4)
implies that ¢f'; = ¢} ,,,; ; and hence ¢?; = >>)_cp ., .. By equation

(4.12) we know that ¢ — 1 divides b2, and if b2/(q — 1) = 31 dig* then
i = dn11i—j- -

So, if ny = 1 and fn = (na,...,ny) then by/(¢ — 1) = b, _; and thus ¢}, =
ch =B O

n n
n—1,n—1+i—j g,

NOTATION 4.11. Let us write J := I (¢ — 1) |A(n)|.

THEOREM 4.12. For any pair (n;r) € Ny,

&« Tbogra ifViiri=2,9>—1;
ijug—j = 0 Zf I =1 > [n|—3
=0 ri=1,9= 2

Proof:  The theorem follows from combining equations (4.5), (4.6), (4.7) and
equations (4.8), (4.10), (4.11), using Lemma 4.10. O

Note that with this theorem we can, for any (n;r) € N, such that r; = 2 for
all 4, compute u, for any g. Moreover, for any pair (n;r) we can compute u,
for any g, if we already know u, for all g < (jn| — 3)/2.

LEMMA 4.13. For any n, q — 1 divides b‘“n‘, and if we write blnnl/(q -1) =
2‘12‘0_1 diqi then l;j — qlA)];l = d\n\—l—j-
Proof: 'The first claim is shown in the proof of Lemma 4.10. Using the notation

of that proof we find that l;j - ql;j,l =37 odn-14i-jq" — 3;01 dntioiq ™t =
dp—1—;. Note that d,,—1—; only depends upon n and not on g. O

THEOREM 4.14. For any pair (n;r) € Ny,

min(|n|—1,g+1)

7 7 J(BQ 2*(]1;2) ZfVZT',L:Q,gZO,
S (b —abj1)ug; = { s g

7 LR In|—1
pard 0 ifJdiiry=1,92>5—.

Proof: Let us temporarily put F(s) := Zjié lajus,j. From Lemma 4.13 we

find that l;j — ql;j,l =01if j > |n|— 1. The theorem then follows from applying
Theorem 4.12 to the expression F(g) — ¢F (g — 1). O
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For g > (|Jn| —1)/2, Theorem 4.14 presents us with a linear recurrence relation
for ug which has coefficients that are independent of the finite field k.

EXAMPLE 4.15. If (n;r) = ((2,1,1,1);(1,2,1,1)) then b2/(¢—1) = (¢>—1)(q¢—
1)2 = ¢* — 2¢® +2q — 1. Applying Lemma 4.13 and then Theorem 4.14 we get
Ug — 2Ug_1 + 2ug_3 —ug—q4 =0 for g > 3.

EXAMPLE 4.16. Let us compute w4, for all ¢ > —1, when (n;r) =
((1,1,1),(2,2,2)). We have that u_; = J = 1 and since r; = 2 for all ¢,
Theorem 4.14 gives the equality ug = 2u_1 + J(¢*> — 3¢+ 1) = ¢*> — 3¢ + 3.
Applying Theorem 4.14 again we get

Uy — 2Ug—1 +Uug_2 = q*9" (g — 13 forg>1.
Solving this recurrence relation gives
L2y _ -1 — 29+ 2) (" — 1) +3¢+1
I (¢+1)?

5. LINEAR RECURRENCE RELATIONS FOR ay |4

for g > —1.

REMARK 5.1. From a sequence v,, that fulfills a linear recurrence relation with
characteristic polynomial C' we can, for any polynomial D, in the obvious way
construct a linear recurrence relation for v,, with characteristic polynomial C'D.
Thus, from two sequences v, and w, that each fulfill linear recurence relation
with characteristic polynomial C' and D respectively, we can construct a linear
recurence relation for the sequence v, + w, with characteristic polynomial
lem(C, D).

THEOREM 5.2. By applying Theorem 4.1/ to each pair (n;r) appearing in the
decomposition (given by Lemma 3.8) of ax|q, we get a linear recurrence relation
for axly. The characteristic polynomial C(X) of this linear recurrence relation
equals

174

1

5.1 — X7 — 1)
(51) = [exi-n
i=1
Proof:  Fix any pair (n;r) in the decomposition of ay|y and put n = |n|.

Lemma 4.13 tells us that Bj — qlA)j_l is equal to the coefficient of ¢*~1—J
in b,/(¢q —1). If ¢ > n — 1, then these numbers are also the coefficients
in the recurrence relation given by Theorem 4.14. By equation (4.12), the
characteristic polynomial Cy.) of this linear recurrence relation is equal to
(IT= (X™ = 1)/ (X = 1).

We find that the linear recurrence relation in the general case (see Defini-
tion 3.9) will have characteristic polynomial equal to C. Moreover, we find (by
their construction in the proof of Lemma 3.8) that if (n;r) is a degenerate case
then Ciy,r)|C. The theorem now follows from Remark 5.1. O

Theorem 5.2 tells us that if we can compute ay|y for g < |A\| — 1 then we can
compute it for every g. But note that by considering the individual cases in the
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decomposition of ay|y we will do much better in Section 7, in the sense that we
will be able to use information from curves of only genus 0 and 1 to compute
ax|g for any A such that |A| <6.

EXAMPLE 5.3. For A = [14, 2] the characteristic polynomial equals (X —1)*(X +
1), so if V is a particular solution to the linear recurrence relation for aj4 4|y
then

aps9)lg = Vg + Asg® + A2g® + Arg + Ao + Bo(—1)7,
where Ag, A1, As, Az and By do not depend upon g.

6. COMPUTING ug

In this section we will see that we can compute ug for any choice of a pair
(n;r) € N,. This is due to the fact that if C' is a curve of genus 0 then, for
all 7, |C(kr)| = 1+ ¢" or equivalently a,(C) = 0.

CONSTRUCTION-LEMMA 6.1. For each (n;r) € N,,, there are numbers
c1,...,cs and pairs (nW;rM) . (0n);r()) where v = (2,...,2) for all
i, such that for any finite field k,

S
. () .p(®)
uén’r) = E ciuén ” ).

i=1
Proof: Fix a pair (n;r) € N,,. We will use induction over the number n := |n|,
where the base case n = 0 is trivial.
Let us put (0;7) = ((n2,...,nm); (r2,...,7m)). For an & = (ag,...,qmy) €

A(n) let PL(k;) be the set of all points in P'(k;) \ {az,...,,} that are
not defined over a proper subfield of k;. The set of ay € P(k,,) such that
(o1,...,0m) € A(n) then equals

(6.1) P! (ko) \ (U Patki) | {ewr.. ., Fas}).
ilny ni|ny

Assume now that the lemma has been proved for all pairs of degree strictly less
than n. By reordering the elements of the pair (n;r) we can assume that 1 =1,

because otherwise r = (2,...,2) and we are done. By applying equation (6.1)
we get
62) 1 Y [Dxen (F@)” =1 > []xem(Fa)™
a€A(n)i=1 &EA(R) i=2
: (—am CH=> > xem(fB) = D nixam (f(ai)))-
iln1 BePL (ki) nilna

Let us put (n®;r®) = ((i,na,...,nm); (n:/i,ro,...,7m)) for all i that divides
n; and ¥ = (ro, ..., 7 1,701 /N, i1, .., Tm) for all n; that divides nj.
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Summing both sides of equation (6.2) over polynomials f € Py and using that
an, (C¢) = 0 then gives

; () .o (3) = =(i)
0 =T S

i|lny ni|ny

Since || < n and [n®| < n, the lemma follows by induction from equa-
tion (6.3). O

EXAMPLE 6.2. In the case (n;r) = ((6,6,3,1,1);(1,1,2,2,2)), the first step in
the procedure in the proof of Lemma 6.1 equals

; 6,3,3,1,1);(1,2,2,2,2 6,3,2,1,1);(1,2,1,2,2 6,3,1,1,1);(1,2,2,2,2
u(()n r) _ —ué( )i ( ) ué( )i ( ) ué( )i ( )

B 5ué(6,3,1,1);(1,2,2,2)) B 6ué(6,3,1,1);(2,2,2,2)).

EXAMPLE 6.3. In the case (n;r) = ((4,1,1,1);(1,2,1,1)), the procedure in the
proof of Lemma 6.1 gives

W) (2 2:2.2) | (LLD:2:2.2)) 4 (LD:22) _ (@):(22) _ (1052)

7. RESULTS FOR WEIGHT UP TO 7 IN ODD CHARACTERISTIC

We will in this section show that we, for any number g and any finite field £ of
odd characteristic, can compute all ay|, of weight at most 7. This is achieved
by decomposing ay |, using Lemma 3.8 and employing the recurrence relation of
Theorem 4.12 on the different parts. This involves finding the necessary base
cases for the recurrence relations and that will be possible with the help of
results on genus 0 curves obtained in Section 6, and on genus 1 curves obtained
in the article [1].

We will write ax|g,0da and ug,0qq to stress that all results are in the case of odd
characteristic. See Section 10 for results in the case of even characteristic.

EXAMPLE 7.1. Theorem 4.12 is applicable even if the degree is 0 (if considered

as a case when r; = 2 for all 4) and with b; = Y"7_, ¢*. From Theorem 4.12 we

find that aglo.eaa = Jg? = q/(¢> — 1) and again from Theorem 4.12 that
aolgodd = J(qT? = ¢*) = ¢ forg>1.

This result can also be found in [7, Proposition 7.1].

7.1. DEGREE AT MOST 3. When the degree of the pair (n;r) is at most 3 we

find using Theorem 4.12 that we do not need any base cases to compute u, for
every g.

EXAMPLE 7.2. Let us consider (n;r) = ((2); (1)). Wehaveu_1 = J =1/(¢+1)
and applying Theorem 4.12 we get ugp = —(¢+1)u_; = —1. Theorem 4.14 tells
us that ug = —uy_; for g > 1 and thus

a{OH = (=17 forg > 0.
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EXAMPLE 7.3. The result for ajgj|g,odd is

a[2]|g7odd — _u§(2);(1)) _ ugu);(z)) = (-1)9 — 9 for g > 0.
EXAMPLE 7.4. The result for aji2)|g,0aa is

a[12]|g,0dd = ué(l’l);(Ll)) + ué(l)v(Q)) — _1 + ng fOI“ g Z O

REMARK 7.5. The result for (¢%+1) aolg,odd — a[2)|g,0da can be found in lecture
notes by Bradley Brock and Andrew Granville from 28 July 2003.

EXAMPLE 7.6. Consider the case (n;r) = ((1,1,1);(2,1,1)). We have u_q =
J =1 and from Theorem 4.12 we get ug = —(¢—2)u—_1 = —¢+2. Theorem 4.14
gives the recurrence relation uy = 2ug—1 — ug—2 for g > 1 and hence

AP g 41) - g2

7.2. DEGREE 4 OR 5. From Theorem 4.12 we find that when the degree of the
pair (n;r) is 4 or 5 we need the base case of genus 0. But the genus 0 case is
always computable using Lemma 6.1 and then Theorem 4.12, and hence the
same is true for u, for all g.

EXAMPLE 7.7. For (m;r) = ((2,1,1);(1,1,1)) we have u_; = ¢ and from
Lemma 6.1 it follows that
(G L (D02) (@522 L ()

Using Theorem 4.12 we get u; = —(q — 1)ug — (¢*> — ¢ — Du_1 = —¢> + 2¢.
Solving the recurrence relation ug = ug—1 —ug—2 —ug—3 for g > 2, coming from
Theorem 4.14, gives

. 1
ulZ L) - 1@ =20+ (-7 = 1) +q

EXAMPLE 7.8. The result for af12 9)|g,0da is
012 9o ot = —u{BIDLD) L (@1:02) (@115 10)
_ ug(l’l);(Q’Q)) _ ng(lyl);(l,l)) _ ug(l);@)) —

29+2 _ i =
- - 1—q2-"+lg(q3+q—2)+1{2§ fg=0mod2
qg+1 2 2 1¢°—q—2 ifg=1mod?2
7.3. WEIGHT 6. We will not be able to compute u, for all pairs (n;r) of de-
gree 6. But we will be able to compute uy for all pairs (n;r) that are general
cases in the decomposition of ay|, for X’s of weight 6. This will be sufficient
to compute all ay|, of weight 6, because we saw in Lemma 3.11 that only the
general case will have degree 6 and therefore all degenerate cases are covered
in Sections 7.1 and 7.2.
Let ug be the general case in the decomposition of ax|g. When the degree is
equal to 6 we see from Theorem 4.12 that we need the base cases of genus 0
and 1 to compute uy for all g. As we know, we can always compute v using
Lemma 6.1. For genus 1, the numbers ay|; have been computed for weight up
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to 6 by the author. This was done by embedding every genus 1 curve with a
given point as a plane cubic curve, see [1, Section 15]. Since we know all the
degenerate cases in the decomposition of ay|; we can then compute the general
case uj.

EXAMPLE 7.9. Let us deal with (n;r) = ((6); (1)) which is the generic case in
the decomposition of ajg|g,0aa and for which we have u_; = J = @ +q—1.
Using Lemma 6.1 we get

O (3@ L (@50) _ (02) _ _(5@) _ g2,

Using the results of [1, Section 15] we find that ag|1 = ¢ — 1. Decomposing
aggly gives agln = —ul@ W) _ (@) _ (@) _ (05 Thyg, using
Example 7.2, we get u1 = —(¢q—1) — (¢* —¢* —q—1) —1—¢* = —¢* +1. We
can now apply Theorem 4.12 which gives us = —(q + 1)us — (¢*> + ¢ + 1)ug —
@+ +g+Dur=—-"+¢*—quz=—ug —w1 —up—u_1=¢°+¢* - ¢*
and ug = —usz — us —u; —ug — u_1 = 0. If we then multiply the characteristic
polynomial for the linear recurrence relation of ug by X — 1 we get uy = ugy_g
for all g > 5.

EXAMPLE 7.10. The result for ajg)|g,0da is

2g+3
6);(1 3);(2 2);(1 1);(2 2 q (g—1)
a[6]|g,odd:*U§;()(»*UEJ()())*UEJ(H))*Ug()()):*qgfm+
@41 if g=0mod 6
t-2 if g=1mod 6
q° if g=0mod 3 qG 5 .g
1 9 ) ¢ —q +q+1 if g=2mod 6
+—5———49-¢ -1 ifg=1mod3+ 6 4 . 3 .
P —q+1 ] —q¢ —q¢ +¢°—1 ifg=3mod6
1 if g=2mod 3 .
1 if g=4 mod 6
¢ —q if g=5 mod 6

REMARK 7.11. For any choice of A and g, consider ax|g,044 as a function of the
number q of elements of the finite field & of odd characteristic. If A is of weight
at most 7 it follows from our computations that this function is a polynomial
in the variable gq.

This will not continue to hold when considering for instance a[;e |3, that is, also
including finite fields of even characteristic, see Example 10.6. But it will also
not hold for instance for afy10)|1,04a, Which for prime fields will be a polynomial
function minus the Ramanujan 7-function, compare [15, Corollary 5.4].

8. REPRESENTATIVES OF HYPERELLIPTIC CURVES IN EVEN CHARACTERISTIC

Let k be a finite field with an even number of elements. We will again describe
the hyperelliptic curves of genus g > 2 defined over k by their degree 2 mor-
phism to P'. If we choose an affine coordinate z on P! we can write the induced
degree 2 extension of the function field of P! in the form y? + h(x)y + f(x) = 0,
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where h and f are polynomials defined over k that fulfill the following condi-
tions:

(8.1) 20+1< max(2 deg(h), deg(f)) < 2g+2;

(8.2) ged(h, f? + fR?) = 1;

(8.3) t 1 ged(hoo, f22 + foohi2).

The last condition comes from the nonsingularity of the point(s) in infinity,
around which the curve can be described in the variable t = 1/z as y? +

hoo )y + foo(t) = 0, where ho = t9T1A(1/t) and foo := t29T2f(1/t). We
therefore define h(oo) and f(oo) to be equal to the degree g + 1 and 2g + 2
coefficient respectively. For a reference see for instance [19, p. 294].

DEFINITION 8.1. Let P, denote the set of pairs (h, f) of polynomials defined
over k, where h is nonzero, that fulfill all three conditions (8.1), (8.2) and (8.3).
Write C(y, 5y for the curve corresponding to the element (h, f) in P,.

To each k-isomorphism class of objects in Hy(k) there is a pair (h, f) in P,
such that C(, 5y is a representative. All k-isomorphisms between the curves
represented by elements of P, are given by k-isomorphisms of their function
fields, and since the g2 of a hyperelliptic curve is unique the k-isomorphisms
must respect the inclusion of the function field of P!.

Identify the set of polynomials [(x) defined over k and of degree at most g + 1
with k972, and define the group homomorphism

by 1 GLEP (k) x k™ — Aut(k7*2), oy (( ’ ).e) (1) =

e Yex + d)9+1l(ax—+b).

cr+d
Now define the group Gy := (k972 x4, (GL3P(k) x k*)) /D where
De={0,( & V). e k) C R g, (GLP(R) X k).

The k-isomorphisms between curves corresponding to elements of P, are then
precisely the ones induced by elements of G4 by letting

v=10@), (¢ 0 ).elea,

induce the isomorphism

(2.4) <az+b e(y+1(x)) ) .

cx +d’ (cx+ d)sti

This defines a left group action of G4 on Py, where v = [(I, A, e)] € G, takes
(h, f) € Py to (h, f) € P,, with

(b, J) = (6g (A ) (h), e g (A, €)(f) + Loy (A,€)(h) + 7).
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DEFINITION 8.2. Let 7, be the function that takes (a,b) € k2, to 1 if the
equation y2 + ay + b has two roots defined over k,,, 0 if it has one root and —1
if it has none.

LEMMA 8.3. If Cy, 5y is the hyperelliptic curve corresponding to (h, f) € P,
then

am(C(h,f)) = — Z Tm(h(a)7 f(Oé))

a€P (k)

Proof: Follows in the same way as Lemma 3.4. |

NOTATION 8.4. Let us put I, := 1/|G,| = ¢+ (¢® — ¢)" (g — 1)1

In the same way as in the case of odd characteristic we get the equality

wlh=1, ¥ T X nle.s@))"

(h,f)EPg =1 acPl(k;)

All results of Section 3.1 are independent of the characteristic and hence we
extend the definition of ay |, to genus 0 and 1 in the same way as in that section.

DEFINITION 8.5. For any g > —1, (n;r) € N;, and a € A(n) define

m

U_E;,qézr) = Ig Z H Tn; (h(az)a f(az))h

(h,f)ePy i=1

and

u™ = Y uflid.
acA(n)

CONSTRUCTION-LEMMA 8.6. For each A\ we have (in even characteristic) the
same decomposition of ax|g as given by Construction-Lemma 3.8.

Proof: The following properties of 7,,, for (h, f) € P, correspond precisely to
the ones for the quadratic character.

* Say that a € Pl(ky), then 75(h(a), f(a)) = 7s(h(a), f()) if §/s is
even, and 73(h(a), f(@)) = 75 (h(a), f(@)) if §/s is odd.
x If for any o, € P! we have F*(a) = 3 for some s, then
7i(h(a), f(a)) = 7 (h(a), f(B)) for all i.
x Finally, for any o € P! and any s, 74 (h(oz),f(a))r = 75 (M), f())
if 7 is even and 7, (h(a), f(a))T = 75(h(a), f(a)) if r is odd.
With this established we can use the same proof as for Construction-Lemma 3.8.
O

2

Since the decompositions are the same, Lemmas 3.11 and 3.12 also hold in even
characteristic.
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9. RECURRENCE RELATIONS FOR Ug IN EVEN CHARACTERISTIC

Analogously to Section 4, this section will be devoted to finding for a fixed pair
(n;r) € N,p, a recurrence relation for u,. Fix an s € k which does not lie in the
set {r?+r:r € k}, that is, such that 71 (1, s) = —1. We define an involution on
P, sending (h, f) to (h, f + sh?). This involution is fixed point free and hence

Ug,a = Ig Z HTni (h(az)a f(ai))h =

(h,f)ePy i=1

= Ig Z ]:[Tn-; (h’(az)a f(az) + s hQ(ai))Ti = (71)2:’;1””1'1119’&.

(h,f)ePg i=1
Thus, Lemma 4.1 also holds in the case of even characteristic.
DEFINITION 9.1. Let @, denote the set of pairs (h, f) of polynomials over k,
where h is nonzero and h, f are of degree at most g + 1, 2g + 2 respectively.
Extending the definition for P, above to a pair (h, f) € Qy, let h(co) and f(o0)

be equal to the degree g + 1 and 2¢g + 2 coefficient of A and f respectively. For
any g > —1, (n;r) € N, and o € A(n) define

O =1y 3 1L 7w (hlew). flen)"”

(h,f)eQq =1
and
r(ngr) L 7 (nsr)
U = " U,
acA(n)

REMARK 9.2. The connection between the sets (), and P, which we will present
below is due to Brock and Granville and can be found in an early version of
[7]. There the connection is used to count the number of hyperelliptic curves
in even characteristic, which is aglg,cven in our terminology.

LEMMA 9.3. Let h and f be polynomials over k. For any irreducible polynomial
m over k, the following two statements are equivalent:

* m|ged(h, f° + f0/°);
x there is a polynomial | over k, such that m|h and m?|f + hl + 2.

Proof: Say that o € k, is a root of an irreducible polynomial m and of the
polynomial ged(h, f’2+fh’2). Let [ be equal to f4"/2. Working modulo (z—a/)?
we then get
fAR A+ =f+hfr/? 4 f0"
= f(a) + f'(a) (@ = a) + W (a) ()" (x — ) + f(a)”"
= (¢ = a)(f'(@) + () f(@)" /) = (& — a)(f (@)® + W (a)* f(a))/* = 0,
which tells us that m?|f + hi+12. For the other direction, assume that we have

an irreducible polynomial m and a polynomial [ such that m|h and m?| f+hl+I>.
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Differentiating the polynomial f + hl + (% gives m?2|f’ + h/l + hl’, and thus
m|f’ + h'l. Taking squares we get m?|f"? + h'2[?> and then it follows that
m?2|f”? + h'2(f + hl) and hence m|f"? + h'2f. O

Let (h, f) be an element of Q4. In the first part of the proof of Lemma 9.3,
we may take for [ any representative of f¢ /2 modulo h, because for these I we
have f + hl +12 = f + hf?"/? + f7" modulo (z — a)?. In the second part it
does not matter which degree [ has. We conclude from this that Lemma 9.3
also holds if we assume that [ is of degree at most g + 1.

Choose g > —1 and let (h, f) € Q4. Lemma 9.3 gives the following alternative
formulation of the conditions (8.1), (8.2) and (8.3). For all polynomials [ of
degree at most g + 1:

(9.1) mlh, m?|f +hl +1*> = deg(m) = 0;
(9.2) deg(h) =g+1 or deg(f+hl+1%) >2g+1.

Here we used that t| ged(hoo, f2 + fooh/2) if and only if t|he and there exists
a polynomial I, such that deg(loo) < g+ 1 and 2| foo + hooloo + 1%, In turn,
this happens if and only if deg(h) < g and there exists a polynomial ! of degree
at most g + 1 such that deg(f + hl+1?) < 2g, where we connect [ and [, using
the definitions [ := 2971 (1/2) and I = t9T1(1/t).

This reformulation leads us to making the following definition.

DEFINITION 9.4. Let ~ be the relation on Q, given by (h, f) ~4 (h, f+hl+1?)
if [ is a polynomial of degree at most g + 1. This is an equivalence relation
and since (h, f) = (h, f + hl + 1?) if and only if [ = 0 or [ = h, the number of
elements of each equivalence class [(h, f)], is ¢?2/2. If (h, f) € P, C Qg then
[(h, f)]g C Py and we get an induced equivalence relation on P, which we also
denote ~g.

We will now construct all ~,4 equivalence classes of elements of @), in terms of
the ~; equivalence classes of the elements in P;, where i is between —1 and g.
This is the counterpart of factoring a polynomial into a square-free part and a
squared part in the case of odd characteristic.

DEFINITION 9.5. For z := [(h, f)]; € Pi/ ~; let V, be the set of all equiva-
lence classes [(mh, m?f)], in Qg for all monic polynomials m of degree at most
g — i. This is well defined since if (hi, f1) ~i (he, f2) then (mhi,m?fi) ~,
(mha, m2fs).

LEMMA 9.6. The sets V, for all z € P;/ ~; where —1 < i < g are disjoint.

Proof: Say that for some z; and 29 the intersection V., NV,, is nonempty.
That is, there exist (hi, f1) € Pi,, (h2, f2) € Pi, and monic polynomials my,
mso such that mih; = mohs and m%fl = m%fg + mohsol + (2. If for some
irreducible polynomial » we have r|m; but r { mao, it follows that r|he and
r?|m3 fa + mahal 4+ [?. By the equivalence of conditions (8.2) and (9.1), this
implies that 7|(m3 f2)"2 +m3 f2(mah2)" which in turn implies that r| £ + foh's.
Since (hg, f2) € P, we see that r must be constant. Hence every irreducible
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factor of my is a factor of msy. The situation is symmetric and therefore the
converse also holds.

So far we have not ruled out the possibility that a factor in m; appears with
higher multiplicity than in mg, or vice versa. Let m be the product of all
irreducible factors of my and put my := my/m, ma := ma/m and [ = I/m.
We are then in the same situation as above, that is mi1h; = mohs and ﬁﬁfl =
m%fg + ﬁmhgi—l— 2. Thus, if r is an irreducible polynomial such that r|m; but
r 1 Mo we can argue as above to conclude that r is constant. By a repeated
application of this line of reasoning we can conclude that m; and ms must be
equal.

It now follows that hy; = hg and that mall, thus (hy, f1) ~i, (hz, f2). This tells
us that V,, NV, is only nonempty when z; = z». O

LEMMA 9.7. The sets V, for all z € P;/ ~; where —1 <i < g cover Qg/ ~y.

Proof: Pick any element (h1, fi1) € Q4 and put g; := g. We define a procedure,
where at the ith step we ask if there are any polynomials m; and [; such that
deg(m;) > 0, deg(l;) < g; + 1, m;|h; and m?|f; + hil; + (2. If so, take any
such polynomials m;, I; and define h;y1 1= h;/m;, fix1 := (fi + hil; +12)/m?
and g;+1 := g; — deg(m;). This procedure will certainly stop. Assume that the
procedure has been carried out in some way and that it has stopped at the jth
step, leaving us with some pair of polynomials (h;, f;).

Next, we take (hj, fj11) to be any element of the set [(hj, fj)]g, for which
deg(fj+1) is minimal. Say that f;11 = f; + hjl; + l? where deg(l;) <
g; + 1 and let us define g;11 to be the number such that 2g;4;1 +1 <
max(2 deg(hj),deg(fjﬂ)) < 2g;41 + 2. The claim is now that (hj, fj+1) €
Py, ... By definition, condition (8.1) holds for (h;, fj+1). If there were polyno-
mials m;41 and [ 41 such that mj4q|h; and m?+1|fj+1 +hjlita +lj2-+1 then the
pair of polynomials m;41 and l; +1;41 would contradict that the process above
stopped at the jth step. Hence condition (9.1) is fulfilled for (h;, f;+1). Condi-
tion (9.2) is fulfilled if 2 deg(h;) > deg(f;+1) because then deg(h;) = gj+1 + 1.
On the other hand, if 2deg(h;) < deg(fj+1) and there were a polynomial
Zj+1 such that deg(lj+1) < gj+1 + 1 and deg(fj_H + hjlj+1 + lj2-+1) < 2gj+1
then this would contradict the minimality of deg(f;j+1). We conclude that
(hj, fi+1) € Pyiia- )

Finally we see that if we put i, := H:;ll m; and | ==Y 7_, m;l;, then deg(l) <
g+ 1, hy = myh; and fi = ﬁﬁfjﬂ + hqil + 2. This shows that V. contains
[(hla fl)]g where z := [(hj’ fj+1)]9j+1 € ng+1/ ~gjt1- U

Using the lemmas above we will be able to write Ug in terms of u; for i between

—1 and g. After this we will determine Ug for large enough values of g. We
divide into two cases.

NoTATION 9.8. Let S; denote all polynomials of degree at most j, and let
S ; C S; consist of the monic polynomials.
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9.1. THE CASE a € A'(n). Fix an element € A'(n). It follows from
Lemma 9.6 and Lemma 9 7 that

(9.3) Ugo = 9 > Z > > Hfm (fHR2) ()"

l€Sg+1 J==1z€P;/~; [(h,f)];€V: i=1
LEMMA 9.9. Choose any s > 1 and t1,t2 in ks. We then have
Ts(vt1,v2t0) = T4 (t1,t2)  for all v # 0 € ky;
Ts(t1, ta + vt + v2) =T14(t1,t2) for allv € ks.
Proof: Clear. O

Fix elements z = [(ho, fo)]: € P;/ ~i and 8 € A'(ks) and define V to be the
subset of V, of classes [(1ho,m?fo)]y, where 7 is a monic polynomial with
m(B) # 0. Lemma 9.9 shows that 75(h(8), f(8)) is constant for all s and
(h, f) such that [(h, )]y € V.. Applying this to equation (9.3) after recalling
Definition 4.4 we find that

gott

04) Upa=L—5= > > > JIm((h) (e, (7)) =

j=—1z€P;/~; meS,_ i=1

qg+1 9 g+1
=1,

975 Z (;g —j%j,a qJHI Zb“g i,a0

Jj=-1

where we have taken into account that the group of isomorphisms depends
upon g and that the numbers of elements of the equivalence classes of the
relations ~,_; and ~, differ by a factor ¢/. From the definitions we see that
¢ 1,/1; =1.

For any g > —1 and any hg € Sg41 it is clear that

(9.5)

m . . .
i 0 ifVi:r; =2,35: holay) = 0;
> 7 (hotei), flai)” :{ 2043 iV, =2,V h Eaj;#o
(hng)ng i=1 q <1y ’ ] . 10 7 .

For any g such that 29 +2 > |n| — 1, and any nonzero polynomial hg of degree
at most g + 1, Lemma 4.7 tells us that

(9.6) > TTm (holaw), (1 + pafe)en) ™ =

(ho,f1+Pa f2)EQg i=1

= o3 S [ (o), fiaa) " =

f1€8|n)—1 =1

m
= q29+37|n| Z HTni (ho(ai);ﬂz‘)n =0 ifdi:r; =1,
(B sBm)ETTI Fon, =1

because for all a € k; there are as many b € k; for which 75(a,b) = 1 as there
are b € k, for which 74(a,b) = —
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Summing equations (9.5) and (9.6) over all hg € Sy4+1 and using that ¢29731, =
Ig9%t! we get

(9.7) oo {I(q 1) bgyy VT =2, 9> —1;
. =

0 ifﬂi:m:l,gzlan_s.

9.2. THE CASE o € A(n) \ A'(n). Fix an a € A(n) \ A’(n). We can assume
that ap = oo, and then & := (ag, ..., ) € A'(0) where i := (na,...,Nm).

LEMMA 9.10. For any element (h, f) € P/ and any monic polynomial m of
degree g — 1,

Ts((mh)(00), (m? f)(00)) = 7s(h(00), f(00));
To((mh)(00), (f + 1h + 1%)(00)) = 7s(h(00), f(00)).
Proof: Clear. O

For any (h, f) € Qg it holds that if deg(h) < g+1 then 75(h(oc0), f(c0)) = 0 for
all s. Define therefore P_(; and Q; to be the subsets of P; and @4 respectively,
that consist of pairs (h, f) such that deg(h) = g+1. We get an induced relation
~; on P/ and Q) and we let V’ be the set of all equivalence classes [(mh, m?f)],
in Qj, for all monic polynomials m of degree g —i, where z := [(h, f)]; € P{/ ~i.
In the same way as in Lemma 9.6 and 9.7 we see that the sets V' for all
z € P}/ ~;, where —1 < i < g, are disjoint and cover Q/ ~4. Using this
together with Lemma 9.10 and the arguments showing equation (9.4) we find
that

9.8) Uga = Z > Hrnl (f R+ 1) ()" =

lesg+1 2€Q) /~g i=1

g+1 g+1

Z Z [T (G} ), 672 () =3 s

GR; J.z 1

If we choose g such that 2942 > |n| — 1, hg € Ry41 and we put p,(z) := x pa,
then we find in the same way as for equation (9.6) that

09 ¥ TTrm(bofa. (h+ pafa)(a))" =

(ho,f14+Pa f2)EQ, i=1
m

=gt > ani (ho(ew), ) =0 if Ji:r = 1.
(B1ye-sBm)ETTT | ko 1=

Since equation (9.5) also hold for & € A(n) \ A’(n) we find, by summing over
all polynomials hg € Ry11, that

g, —

(910) . . n|—3
0 1f32:ri:1,gz%.

DOCUMENTA MATHEMATICA 14 (2009) 259-296



286 JONAS BERGSTROM

9.3. THE TWO CASES JOINED. Recall that J = (¢ — 1) I |A(n)|.

THEOREM 9.11. For any pair (n;r) € Ny,

%5 {qu+159+1 Vi =2 g>-1;
it—i = P [n|—3
= 0 ifdiiri=1,9> —5—.

Proof:  The theorem follows from combining equations (9.4), (9.7), (9.8) and
(9.10), using Lemma 4.10. O

THEOREM 9.12. For any pair (n;r) € Ny,

min(|n|—1,94+1) R R qu-l—l(l;ngl . l;g) ZfVZ cry = 2’ g > 0,

(bj — qbj—1)ug—; = 0 fJiiri=1,¢9> [n|—1
iz ifdiiri=1,9> —5—.
Proof: In the notation of the proof of Theorem 4.14, the theorem follows from
applying Theorem 9.11 to the expression F(g) — ¢F (g — 1). O

THEOREM 9.13. By applying Theorem 9.12 to each pair (n;r) appearing in
the decomposition (given by Lemma 8.6) of a,\|g7evm we get a linear recurrence
relation for axlgeven- The characteristic polynomial of this linear recurrence
relation equals (5.1).

Proof: We know that the decomposition of ay|4 is independent of character-
istic, and since the left hand side of the equation in Theorem 9.12 is the same
as the left hand side of the equation of Theorem 4.14 this theorem follows in
the same way as Theorem 5.2. O

10. RESULTS FOR WEIGHT UP TO 7 IN EVEN CHARACTERISTIC

In this section we compute, for any number g and any finite field k of even char-
acteristic, all ax|g,even Of weight at most 7. First we will exploit the similarities
of Theorems 4.12 and 9.11.

LEMMA 10.1. If g > n — 2 then 1329+2 = q9+ll;g+1.
Proof: Fix a pair (n;r) € M,,. Lemma 4.13 tells us that (;j = qlA)j_l +djn-1—j;
so if j > |n| then Bj = q(;j_l and thus l;j = qj+1_‘n‘ls‘n‘,1. O

REMARK 10.2. If r; = 1 for some i and g > (|n| — 3)/2, then the recursive
relations of Theorems 9.11 and 4.12 are equal. On the other hand, if r; = 2
for all ¢ we see from Lemma 10.1 that the recursive relations of Theorems 9.11
and 4.12 are equal if g > |n| — 2.

THEOREM 10.3. For weight less than or equal to 5, ax|geven = arlg,0dd GS
functions (in this case polynomials) in q.
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Proof: Consider any ay|, with |A| < 5. By Lemma 3.12 it suffices to show that
ug is independent of characteristic when (n;r) € N,, is such that ZZ’;I n;r; < 5.
Clearly u_; = J is always independent of characteristic. Clearly, Lemma 6.1
also holds in even characteristic. We can therefore assume that r; = 2 for all
i in the case of genus 0. But if ; = 2 for all ¢ then |n| < 2 and hence, by
Remark 10.2, ug will be independent of characteristic.

This takes care of the base cases of the recurrence relations for u, when g > 1,
given by Theorems 4.12 and 9.11. Again by Remark 10.2 we see that (both
in the case when r; = 2 for all ¢, and when r; = 1 for some ) when g > 1
these recurrence relations are the same. We can therefore conclude that ug4 is
independent of characteristic for all g. O

We will now compute ax|g,cven for weight 6 in the same way as in Section 7.3.
To compute ug of degree at most 5 using Theorem 9.11 we need to find the base
case ug. But when the genus is 0 we can use Lemma 6.1 (which also holds in
even characteristic) to reduce to the case that r; = 2 for all 4, which is always
computable using Theorem 9.11.

What is left is the general case of the decomposition of ax|g,even. We then need
the base cases of genus 0 and 1. Again, the genus 0 part is no problem. The
computation of ax|; in [1] is independent of characteristic. We can therefore
compute the genus 1 part (compare Section 7.3).

REMARK 10.4. As in the case of odd characteristic, for all g and all A such that
|Al <7, axlg,even is @ polynomial when considered as a function in the number
¢ (compare Remark 7.11) of elements of the finite field k of even characteristic.
In Theorem 10.3 we saw that the polynomial functions ax|g odd and axlgeven
are equal (for a fixed g), if |A\| < 5. But for weight 6 there are A such that
the two polynomials are different, this occurs for the first time for genus 3, see
Example 10.6.

EXAMPLE 10.5. Let us compute g even, when (n;r) = ((1,1);(2,2,2)). We see
that u_; = 1 and Theorem 9.11 gives ug = ¢% — 3¢ + 2. This result is different
from the 1 in the case of odd characteristic, see Example 4.16. Continued use
of Theorem 9.11 gives u; = ¢* — 3¢> + 5¢®> — 6¢ + 3 and then Theorem 9.12
gives

g = 2ug_1 —Ug_2 +q*9 " (g — 1)3 for g >2.

Solving this leaves us with

L2y _ @= D@ +9(¢* —1) =3¢ -2)
g,even (q+ 1)2

EXAMPLE 10.6. The result for aji6)[g,cven is

5
a19)lg.cven = apeilgoaa — g 909 = 1)(g — 2)((9—3)(g—1) —4).
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EXAMPLE 10.7. The result for a2 4lg,cven is

g(g—1) if g =0 mod 4;
u B 1 J(g-1(q-1) if g =1 mod 4;
12,4)lg.cven = @p12.4g,0a 41(g-2)(¢g-1) if g =2 mod 4;
(9—3)(g—1)—4 if g=3mod 4.

11. COHOMOLOGICAL RESULTS

11.1. COHOMOLOGICAL RESULTS FOR Hg,. Define the local system V :=
R'm.(Q) where m : M,1 — M, is the universal curve. For every par-
tition (note that in this section we use a different notation for partitions)
A= (M > ... > Ay > 0) there is an irreducible representation of GSp(2g)
with highest weight (A1 — X2)y1 + ... + Agyg — |A|n, where the ; are suitable
fundamental roots and 7 is the multiplier representation, and we define V to
be the corresponding local system. Let us also denote by V) its restriction to
‘Hg. In Lemma 13.5 below we will see that making an Sj-equivariant count of
points of Hy 5 over a finite field k, for all 7 < n, is equivalent to computing
the trace of Frobenius on the compactly supported f-adic Euler characteristic
e.(Hy ® k, V), for every A with |A\| < n (where £ { |k|). For more details, see
[14] and [15].

Thus, we can use the results of Section 7 together with Theorem 3.2 in [1]
to compute the f-adic Euler characteristic e.(H, ® Q,V,) in Ko(Galg), the
Grothendieck group of Gal(Q/Q)-representations, for every A with |\ < 7.
Specifically, Theorem 3.2 in [1] tells us that if there is a polynomial P such
that Tr(F,e.(H, ® k,Vy)) = P(q) for all finite fields k, possibly with the
exception of a finite number of characteristics, then e.(H, ® Q,V,) = P(q),
where q is the class of Qg(—1) in Ky(Galg). By excluding even characteristic,
Section 7 (see Remark 7.11) and Lemma 13.5 shows that there is indeed such
a polynomial for all g and all [A| < 7.

EXAMPLE 11.1. For g = 8 and A = (5,1) we have
e.(H, ® Q,Vy) = 5q° — 28q* + 4> + 96> — 34q — 88.

11.2. COHOMOLOGICAL RESULTS FOR ﬂm AND My ,,. Using the stratifica-
tion of Mg,n we can make an S,,-equivariant count of its number of points using
the Sp-equivariant counts of the points of Mj 5 for all § < gand 7 < n+2(g—g)
(see [13, Thm 8.13] and also [2]). Since all curves of genus 2 are hyperelliptic,
Moy, is equal to Ha . Above, we have made S,-equivariant counts of Hs
for n < 7 and they were all found to be polynomial in q. These S,-equivariant
counts can now be complemented with ones of M, ,, for n <9 (see [1, Section
15]) and of My, for n < 11 (see [18, Prop 2.7]), which are also found to be
polynomial in g. We can then apply Theorem 3.4 in [2] to conclude, for all
n < 7, the S,-equivariant Galg (resp. Hodge) structure of the ¢-adic (resp.
Betti) cohomology of Ma .
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In the theorems below we give the S,-equivariant Hodge Euler characteristic
(which by purity is sufficient to conclude the Hodge structure) in terms of the
Schur polynomials and L, the class of the Tate Hodge structure of weight 2
in Ko(HSq), the Grothendieck group of rational Hodge structures. That is,
the action of S,, on My, induces an action on its cohomology, and hence
H{(Ms,, ® C,Q) may be written as a direct sum of H}(Maz,, ® C,Q), which
correspond to the irreducible representations of S,, indexed by A F n and with
characters y. In terms of this, the coefficient of the Schur polynomial s) is
equal to 1/xx(id) - 3, (=1){[Hi(Ma,, ® C,Q)]. The results for n < 3 were
previously known by the work of Getzler in [14, Section 8].

THEOREM 11.2. The S,,-equivariant Hodge Fuler characteristic 0fﬂ274 is equal
to

(L7 + 8L® + 33L° + 67L* + 67L* + 33L* + 8L + 1)s4
+(4L° + 26L° + 60L* + 60L? + 26L? + 4L)s31
+(2L° 4 12L° + 28L* + 2813 + 1212 + 2L) sy
+(3L5 + 10L* + 10L3 + 3L?)s5;2
THEOREM 11.3. The S, -equivariant Hodge Euler characteristic 0fﬂ275 18 equal
to
(L% 4+ 9L7 + 4915 + 128L° + 181L* + 128L3 + 49L2 + 9L + 1)s5
+(6L7 4 48L° + 156L° + 227L* + 156L? 4 48L? + 6L)s4;
+(3L7 + 31LS + 106L° + 159L* + 106L> + 31L? + 3L)s3,
+ (8L + 4215 4 65L* + 4213 + 8L?)s3;>
+(6L° 4 26L° + 43L* + 2613 + 6L%)s52,
+(L5 4 3L* 4+ L%)s918
THEOREM 11.4. The S, -equivariant Hodge Euler characteristic ofmm s equal
to
(LY + 11L8 4- 68L” + 229L° + 420L° + 420L* + 229L3 + 68L2% 4 11L + 1)s¢
+(7L® + 75L7 + 317L° 4 641L° + 641L* + 317L? + 75L? + 7L)s51
+(5L® + 62L7 + 292L° + 615L° + 615L* + 292L* + 62L* + 5L)s42
+(L® 4 21L7 + 108LS + 236L° + 236L* + 108L? + 21L? + L)s3:
+(17L7 4 118L° 4- 278L° 4 278L* 4- 118L3 4 17L?)s,>
+(16L7 + 115L8 + 27715 + 277L* 4 115L* + 16L?)s301
+(3L7 + 22L° 4 53L° + 53L* + 2213 + 3L%)s,s
+(9LS + 29L° + 29L* + 9L3)s3;3
+(6LS + 21L5 4 21L* + 6L%)s52,2
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THEOREM 11.5. The S, -equivariant Hodge Euler characteristic of Mgg is equal to

(L' + 12L° + 90L® + 363L" + 854L° + 1125L° + 854L" + 363L°% + 90L* + .. .)s7
+(9L? 4 109L® + 580L" + 1529L° + 2109L° + 1529L* + 580L* + 109L> + 9L)s¢:
+(6L° 4 100L® + 606L" + 1728L° + 2430L° + 1728L* + 606L> + 100L? + 6L)ss2
+(3L7 + 58L° + 389L" + 1153L° + 1647L° 4 1153L* 4 389L° + 58L° + 3L)s43
+(28L% + 258L7 + 831L° + 1221L° + 831L* + 258L° + 28L%)s;,2
+(34L% + 331L7 + 1133L° + 1675L° + 1133L* + 331L° + 34L7)s40:
+(12L% + 140L7 + 489L° 4 738L° + 489L* + 140L° + 12L°)s32,
+(8LE + 91L7 + 335L° + 502L° + 335L* + 91L* + 8L?) 552
+(28L7 + 143L° + 228L° + 143L* + 28L%)s4ys
+(34L7 + 17018 4 275L° 4 170L* + 34L3)s30;2
+(10L7 + 47L° + 77L° 4 47L* 4 10L%) 53,
+(4L5 + 7TL° + 4L*)s5,4
+(2L° 4 6L° + 2L*)s5523
In Table 1 we present the nonequivariant informatio_n (remember that all co-
homology is Tate) in the form of Betti numbers of My, for all n < 7. Notice
that the table only contains as many numbers as we need to be able to fill in

the missing ones using Poincaré duality. These results agree with Table 2 of
ordinary Euler characteristics for My ,, for n < 6 found in [4].

TABLE 1. Dimensions of H'(Ms, ® C,Q) for n < 7.

HO H2 H4 HG HS HIO
My 1 2
Moy | 1 5
Mooy | 1 6 14
Moz | 1 | 12 | 44 67
Moy | 1 | 24 | 144 | 333
Maos | 1 | 48 | 474 | 1668 | 2501
Mag | 1 | 96 | 1547 | 8256 | 18296
Moz | 1 [ 192 | 4986 | 39969 | 129342 | 189289

The theorem used above also gives the corresponding results for My ,, forn <7,
which we will present in terms of local systems V) defined as above, but starting
from V := R!'7,Q. See [14, Section 8] for the results on e.(Mz ® C,V,), for
all \ of weight at most 3.
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THEOREM 11.6. The Hodge FEuler characteristics of the local systems Vy on
M) := Mo @ C of weight 4 or 6 are equal to
eC(M/27V(4,0)) =0, eC(MéaV(&l)) = L2 -1, ec(MIQ;V(Q,Q)) = *L47
ec( IQ,V(QO)) =-1, ec(M'Q,V(571)) =12 —-L-1,
eC(MéaV(4,2)) = L37 ec(M/27V(3,3)) =-L-1.

12. APPENDIX: INTRODUCING b;, ¢; AND 7;

This section will give an interpretation of the information carried by the u,’s.
It will be in terms of counts of hyperelliptic curves together with prescribed
inverse images of points on P! under their unique degree 2 morphism.

DEFINITION 12.1. Let C, be a curve defined over k£ together with a separable
degree 2 morphism ¢ over k from C to P'. We then define

bi(Cp) = {a € A(4) : [o7 (@) = 2,07 () € Clk)},
ci(Cy) = Ha € A[W) : [~ ()] = 2,97 () & C(k:)}
and put 7;(Cy) = b;(Cy) + ¢;(Cy).
The number of ramification points of f that lie in A(¢) is then equal to |A(7)| —

ri(C,). Let \; denote the partition of i consisting of one element. We then find
that

' 2¢;/2(Cy,) if i is even;
o )\i 4 b; A iC i/2\“ e )
[Co(Xo)| = [A@D)] + bi(C) — e ‘P)+{0 if ¢ is odd.

and thus
an(Cy) = Z (Ci(ccp) - bi(ctp)) + Z (*bi(ctp) - Ci(ccp))-
iln: 2itn i:2i|n
DEFINITION 12.2. For partitions p and v, g > 2 and odd characteristic, define
L(p) I(v)

1
b vig +— S bz i . v
uCulg Z Ate(C7)] (Cy) | | ¢;j(Cy)

[CrleHy(k)/= i=1 j=1

The number |u| + |v| will be called the weight of this expression.
REMARK 12.3. We can, in the obvious way, also define axb,c,|y, but from

the relation between a;(Cy), b;(C) and ¢;(Cy) we see that this gives no new
phenomena.

Directly from the definitions we get the following lemma.

LEMMA 12.4. Let the characteristic be odd and let f be an element of P,. We

then have
bi(Cy) = % Z (XQ,i(f(a))2 + X2,i(f(04)))

acA(t)
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and
1

ci(Cyr) = B Z (Xz,i(f(a))Q — X2, (f(a)))-

a€A(7)

If the characteristic is odd we then use the same arguments as in Section 3 to
conclude that

()

bucylg = ﬁ Z H( Z X2, (f(a)) +X2,i(f(04))2)

FEP, i=1 acA(i)

i

Vi

I(v)
: H( Z X2,j (f(@) = x2,5 (f(a))Q)

j=1 a€cA(j)
Note that this expression is defined for all ¢ > —1. It can be decomposed in

terms of ugy’s (that is, we can find a result corresponding to Lemma 3.8) for
tuples (n;r) € N, such that

(12.1) ] < [pa] + vl

REMARK 12.5. The corresponding results clearly hold for elements (h, f) in
P, in even characteristic and the decomposition of b,c,|, is independent of
characteristic.

ExXAMPLE 12.6. For each N we have the decomposition:

1 , , 1 . .
biwily = 5 () M) and eppgly = 5 (D) — u O,

EXAMPLE 12.7. Let us decompose b[lz}c[2]|g into ug’s:

1 . _ .
ezl = 5 (GG 4 g GLDCLD) 4 9y (@21:C2)

_ . ((2,1,1)5(1,2,2)) _  ((2,1,1)5(1,1,1)) _ 9,,((2,1);(1,2))
ug Ug 2u, ).
In this expression we have removed the u,’s for which 221 rin; is odd, since
they are always equal to 0.

LEMMA 12.8. For each N, the following information is equivalent:

(1) all ug’s of degree at most N;
(2) all bucy|g of weight at most N.

Proof: ~ From property (12.1) of the decomposition of b,c, |y into ug,’s we
directly find that if we know (1) we can compute (2). For the other direction
we note on the one hand that

(12.2) 13" TI®(Cr) = ci(C) ™ (0:(Cp) + ci(Cp)) "

feP, i=1

can be formulated in terms of b,c,|,’s of weight at most

i=1
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If we on the other hand decompose (12.2) into uy’s we find that there is a unique
ug of degree S. The corresponding pair (n;r) contains, for each ¢, precisely s;
entries of the form i' and ¢; entries of the form i?. Every u, of degree S can
be created in this way and hence if we know (2) we can compute (1). O

REMARK 12.9. From the definitions of a;(C) and r;(C) we see that knowing
(1) and (2) in Lemma 12.8 is also equivalent to knowing

(3) all axrel|g of weight at most N,
where axre|y is defined in the obvious way. Moreover, axre|, = 0 if |A| is odd.

13. APPENDIX: THE STABLE PART OF THE COUNTS

REMARK 13.1. All results in this section are independent of characteristic.

DEFINITION 13.2 ([8, Def. 1.2.1, 1.2.2]). Let F be a constructible (¢-adic)
sheaf on a scheme X of finite type over Z. The sheaf F is said to be pure
of weight m if, for every closed point z in X and eigenvalue « of Frobenius
F (relative to k = k(z)) acting on Fz, « is an algebraic integer of weight
equal to m, i.e., such that all its conjugates have absolute value equal to ¢/2.
The sheaf F is said to be mized of weight < m if there exists a filtration
0=F_1CFyC...CFn=7F of constructible subsheaves such that, for all
J, Fj/Fj—1 is pure of weight j.

THEOREM 13.3 ([8, Cor. 3.3.3, 3.3.4]). Let X 1. 7 be a scheme of finite type,
and F a constructible sheaf mized of weight < m. Then R'fiF is mized of
weight < m +i. Thus, for every finite field k, there is a filtration 0 = W_1 C
Wo C ... C Wiy = HY(X}, F) of Gal(k/k)-representations such that, for all
J, Wi /W;_1 is pure of weight j.

DEFINITION 13.4. Let Ko(Galy) be the Grothendieck group of Gal(k/k)-repre-
sentations. In this category, and with the notation of Theorem 13.3, we have
[H{(X}, F)| = Z;i?[Wj/Wj_l]. For any w > 0, let us define [H:( X}, F)|¥ :=
Z;iﬁ[Wj/Wj,l] and ey (Xg, F) := D250 (= 1) [HA( Xy, F)]Y in Ko(Galg). We
make the corresponding definition of ey’ (Xg, F) in Ko(Galg).

Recall the definition in Section 11.1, for a prime £t ¢, of the f-adic local system
Vi on ‘Hy. If 7 is the canonical morphism from H9®E to Hy, we put V§ = 7, V.
This is a constructible sheaf pure of weight |A|.

In this section we will see that if g and w are large enough we can compute the
trace of Frobenius on e?(H, ® k, V), which by definition (cf. Section 2 in [3])
is equal to e¥ (H,, V). We first make the connection to S,-equivariant counts
of points of Hy, explicit.

LEMMA 13.5. Let the symmetric polynomial s<x~ be the Schur polynomial
in the symplectic case (see [11, A.45]), and px the power sum. If scys =

Z\Msw my, P then

(13.1) Te(F,ec(Hy @ k,V4)) = > myuqzM=1th g, |,
DY
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From Theorems 4.14 and 9.12 we see that only the uy’s with all 7; = 2 have
inhomogeneous recurrence relations. Theorem 5.2 dealt with the homogeneous
part of the linear recurrence relations for ay|,. The following lemma, which is
a direct consequence of Theorems 4.14, 9.12 and 5.2, deals with the “inhomo-
geneities”.

LEMMA 13.6. Denote by t, the coefficient of u(gn;(Q""’m) in the decomposi-
tion of ax|g (given in Construction-Lemma 3.8). Each value of |n| for a pair
(n;(2,...,2)) appearing in this decomposition of axlg is at most equal to |A|/2.
Define the polynomial

fa@) = ([[@™ - 1) /@ —1).
i=1
For g > 0, let Rx(q)|g be the sum, over the pairs (n;(2,...,2)) that occur in
the decomposition of ax|g, of the polynomial quotients of,

(13.2) tan @ T (g —1) fule) by fald?),

which is of degree at most (|A|[4+49—2)/2. The polynomial Rx(q)|g ts a particular
solution to the recurrence relation, described in Section 5, for axly.

Since the power sums form a rational basis of the ring of symmetric polynomials,
equation (13.1) and Theorem 13.3 show that a|y is of the form °; z;ja; for a
finite set of rational numbers z; and distinct algebraic integers «; of weight at
most |A| +4g — 2 (note that 2g — 1 is the dimension of Hy). If our base field &
is replaced by an extension ky, of degree m then a, |, is equal to > j 20", For
g > |A] — 1, the linear recurrence relation for ay|, (see Section 5) shows that it
can be written as the particular solution Ry(q)|, plus the homogeneous part,
an integer sum of ax|z — Ra(g)|5 for § < |A| —2. We then see that if g > |A\| -1
and w = 5 |A| =9, the homogeneous part of the solution to the linear recurrence
relation for ay|, does not contribute to Tr(F, el(Hy ® ]_G,Vl)\)). To conclude
this we used the fact that >, z;a* = 0 for all m implies that z; = 0 for all ¢,
where the z; and «a; are complex numbers and the «; are distinct and nonzero.
We can now summarize using Theorem 3.2 in [1].

DEFINITION 13.7. For a polynomial f(z) = )=, fiz* put f*(z) := 3,5, fiz".
THEOREM 13.8. Let q denote the class of Q¢(—1) in Ko(Galg). For g > |A—1
and w = 5|\ — 9 we have an equality in Ko(Galg),
e¥(H, ®Q,V,) = Z m,, qz (A=1kD sz—\/\lﬂu\(q)b.
[ <IA]

EXAMPLE 13.9. In the case A = (4,2,2), for w = 31 and g > 7, we find that
Tr(F, el(Hy ® k,VA)) is equal to f;’(q), where f, is the polynomial quotient
of ¢*9**(3¢* + 3¢ +2) by (¢* + 1)*(¢ + 1)>.

REMARK 13.10. By Poincaré duality (cf. Section 2 in [3]) we find that there is

a filtration 0 = W/, | C W/ | C ... C Wy, 1y = H'(Hy @k, Vy)
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of Gal(k/k)-representations such that WI/W;_, is pure of weight j. Let
us define [H'(Hy  F, Vo)l 1= X0 [W/Wi_1] and eu(M, @ K,V5) =
diso(C)'H (Hg @k, Vy)]w in Ko(Galy) and similarily e, (Hy ® Q, V). The-
orem 13.8 shows that, for g > § > |A\| — 1 and w = 4g — 3|A| + 7, one has that
ey(Hy ® Q,V,) is stable, in the sense that it is independent of g.

Computations for A’s of low weight lead us to make a conjecture, which is true
for |A] < 30.

CONJECTURE 13.11. For g > [A\|—1 and w = 5|\|-9, we have e? (H,2Q, V) =
0 for all A such that Ay > |A|/2.
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ABSTRACT. This is the first part of a series of two papers, which
investigate spectral properties of Dirac operators with singular poten-
tials. We examine various properties of complex dilated Dirac oper-
ators. These operators arise in the investigation of resonances using
the method of complex dilations. We generalize the spectral analysis
of Weder [50] and Seba [46] to operators with Coulomb type poten-
tials, which are not relatively compact perturbations. Moreover, we
define positive and negative spectral projections as well as transforma-
tion functions between different spectral subspaces and investigate the
non-relativistic limit of these operators. We will apply these results
in [30] in the investigation of resonances in a relativistic Pauli-Fierz
model, but they might also be of independent interest.

2000 Mathematics Subject Classification: 81C05 (47F05; 47N50;
81MO05)

Keywords and Phrases: Dirac operator, Coulomb Potential, Spectral
theory of non-self-adjoint operators, Non-relativistic limit

1 INTRODUCTION AND DEFINITIONS

A fascinating question in the mathematical analysis of operators describing
atomic systems is the fate of eigenvalues embedded in the continuous spectrum
if a perturbation is “turned on”. Typically, these eigenvalues “vanish” and
one has absolutely continuous spectrum. But the eigenvalues leave a trace:
For example, the scattering cross section shows bumps near the eigenvalues, or
certain states with energies close to the eigenvalues have an extended lifetime
(described by the famous “Fermi Golden Rule” [13, Equation (VIIL.2), p. 142]
on a certain time scale). These energies are called resonances or resonance
energies. Mathematically, resonances are described by poles of a holomorphic
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continuation of the resolvent (or matrix elements of it) or the scattering am-
plitude to a second sheet.

The generic systems in which resonances occur are many-particle systems. This
can be many-electron systems, in which the electron-electron interaction is the
perturbation. The corresponding physical effect is called “Auger effect”: Ex-
cited states (“autoionizing states”) relax by emission of electrons. Another
typical system in a one- or many-electron atom interacting with the quantized
electromagnetic field, in which case excited states can relax by emitting pho-
tons. Resonances can also occur in one-particle systems, although this is not
typically the case. It is well known (see [8] for example) that for a Schrodinger
operator with Coulomb potential the set of resonances is empty.

During the last decades numerous results were obtained in the mathematical
investigation of resonances so that it seems hopeless to give a complete account
of the available literature. Nevertheless we would like to give an overview and
mention at least some of the relevant works.

The investigation of resonances as poles of holomorphic continuations of scat-
tering amplitude and resolvent goes back to Weisskopf and Wigner [53] and
Schwinger [45]. The mathematical theory of resonances was pushed further by
Friedrichs [14], Livsic [36], and Howland [27, 28]. One of the mathematical
methods in the spectral analysis is the method of complex dilation, which as-
sociates the “vanished” embedded eigenvalue with a non-real eigenvalue of a
certain non-selfadjoint operator and was investigated by Aguilar and Combes
[2] and Balslev and Combes [6] (see [43] for an overview). Resonances in the
case of the Stark effect were investigated by Herbst [24] and by Herbst and
Simon [25]. Simon [48] initiated the mathematical investigation of the time-
dependent perturbation theory. This was carried on by Hunziker [32]. Herbst
[23] proved exponential temporal decay for the Stark effect.

The spectral analysis of non-relativistic atoms in interaction with the radia-
tion field was initiated by Bach, Fréhlich, and Sigal [4, 5]. It was carried on
by Griesemer, Lieb und Loss [18], by Frohlich, Griesemer und Schlein (see for
example [15]) and many others (see for example Hiroshima [26], Arai and Hi-
rokawa [3], Dereziniski and Gérard [9], Hiroshima and Spohn [12]), Loss, Miyao
and Spohn [37] or Hasler and Herbst [21, 20]). In particular, Bach, Frohlich,
and Sigal [5] proved a lower bound on the lifetime of excited states in non-
relativistic QED. Later, an upper bound was proven by Hasler, Herbst, and
Huber [22] (see also [29]) and by Abou Salem et al. [1]. Recently, Miyao and
Spohn [38] showed the existence of a groundstate for a semi-relativistic electron
coupled to the quantized radiation field.

Our overall aim is to show that the lifetime of excited states of a relativis-
tic one-electron atom obeys Fermi’s Golden Rule [30] and coincides with the
non-relativistic result in leading order in the fine structure constant. We will
investigate the necessary spectral properties of a Dirac operator with potential,
projected to its positive spectral subspace, coupled to the quantized radiation
field. Following Bach et al. [5] and Hasler et al. [22], our main technical tool is
complex dilation in connection with the Feshbach projection method.
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In this first part of the work, we investigate the necessary properties of one-
particle Dirac operators with singular potentials. In particular, we will derive
the necessary properties of complex dilated spectral projections and discuss the
non-relativistic limit of complex dilated Dirac operators. This serves mainly as
a technical input for the second part of our work [30]. However, we believe that
some of the results presented in the first part are also of independent interest.
Note that the method of complex dilation has already successfully been applied
to Dirac operators (see Weder [50] and Seba [46]). However, these authors
assume the relative compactness of the electric potential so that their method
does not apply to Coulomb type potentials. Note moreover that Weder [51]
considers very general operators including relativistic spin-0-Hamiltonians with
potentials with Coulomb singularity. The basic assumption of this work is,
however, that the unperturbed operator is sectorial, which is not fulfilled for
the Dirac operator. Our results cover a class of Dirac operators which includes
Coulomb and Yukawa potentials (with exception of Lemma 11 and Lemma 12
which we prove for the Coulomb case only).

Our results about the spectral projections of the dilated Dirac operator can be
used to generalize the Douglas-Kroll transformation (see Siedentop and Stock-
meyer [47] and Huber and Stockmeyer [31]) to dilated operators.

2 DEFINITIONS AND OVERVIEW

The free Dirac operator (with velocity of light ¢ > 0)
Do := —ica-V +2p (1)

is an operator on the Hilbert space H := L2?(R3;C*). It is self-adjoint on the
domain Dom(D. ) := H(R?;C*) [49, Chapter 1.4]. Here « is the vector of
the usual Dirac a- matrices, and [ is the Dirac -matrix.

We define for € > 0 the strip S, := {# € C|[lmz| < €}. Let x : R® - R a
bounded, measurable function. We will suppose that there is a © > 0 such
that 6 — x(e’z) admits a holomorphic continuation to § € Sg for all z € R3.
We abbreviate yp = X(ee-). We will need the following two properties at
different places:

sup  |x(e’s) <1 (1)
feSe, z€R3
sup |x(e’z) — x(z)| < C|A] for some C > 0 (H2)

T€R3
It is easy to see that these properties are fulfilled for the Coulomb potential
(x(xz) = 1) or the Yukawa potential (x(z) = e~ ** for some a > 0). The Dirac
operator with potential V := x/| - |

D, = —ica-V + 2 -V (2)

is an operator on the Hilbert space L?(R3;C*) as well. It is self-adjoint on
the domain Dom(D. ) := Dom(D.o) = H'(R3;C*) for v € R with || <
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cV/3/2 [49, Chapter 4.3.3]. 7 is called coupling constant. The interacting Dirac
operator describes a relativistic electron in the field of a nucleus, where the free
operator yields the kinetic energy of the electron, whereas the electric potential
gives its potential energy in the electric field of the nucleus.

The operator D, , has the set (—oo, —c?]U[c?, 00) as essential spectrum. We as-
sume that the operator has a nonempty set of positive eigenvalues, all of which
have finite multiplicity. We number the eigenvalues by Enyl(c, v) (not counting
multiplicities). Here n € N (or n € {1,..., Npax} for some Npyax € N if there
are only finitely many eigenvalues) denotes the principal quantum number and
1 e{l,...,N,} for some N,, € N labels the fine structure components. We
choose the numbering in such a way that for alln’ > n,alll € {1,...,N,} and
all I’ € {1,..., N} the inequality E, (c,7) < En y(c,7) holds and such that
Eni(c,) < Enyp(c,) for I < I'. This numbering is natural for all values of ¢ for
the Coulomb potential, where the eigenvalues are explicitly known (see [35]).
The spectrum of a Dirac operators can be shown to have this structure if ¢ is
large enough for general potentials (see [49]). We set E,, ;(c,7) := Eni(c,v)—c>.
We define for § € C and v € R the dilated operators

Deo(0) == —ice %a -V 4 32p (3)

and
Deo(0) := —ice a-V + 2B — 4V (6) (4)

with V(6) := e~%xy Ve on Dom(D.o(0)) = Dom(D, ,(6)) = H*(R3; C*), where
Ve = 1/] - | is the Coulomb potential. It is clear that D, o(f) is closed on
this domain and that (because of Hardy’s inequality) D. () is at least well
defined under assumption (H1). We shall prove further properties in Section
4. For technical reasons, we will assume ¢ > 1 in the following. We will
assume moreover that v > 0. Further, we define for § € R the unitary dilation
UWB) : L>(R3C* — L2(R3%CYH, UO)f)(z) = egef(e‘gac). It fulfills the
identity U(0)D.,U(0)* = D, (). The operators D, () are extensions of the
operators U(0)D. ,U(0)* for complex #. Note that the mapping U(#) cannot
be continued as a bounded operator to a complex domain, but the mapping
0 — U(0)y for an analytic vector ¢ admits such an continuation, whose radius
of convergence depends on the vector ¢ (cf. [42, Chapter X.6]). However, we
will prove in Section 8, that under certain conditions the restrictions of /()
to certain spectral subspaces have bounded, bounded invertible extensions.
We add a short guide through the paper: We define a version of the Foldy-
Wouthuysen transformation for non-self-adjoint Dirac operators in Section 3.
Just as its analog for self-adjoint operators, it diagonalizes the free Dirac op-
erator. It is however not a unitary operator any more so that one has to
prove explicit estimates on its norm (see Theorem 1). The Foldy-Wouthuysen
transformation serves as a technical input for the following sections.

We prove in Section 4 that the method of complex dilation can be successfully
applied to Dirac operators with potentials with Coulomb singularities. In par-
ticular, we shall see that the dilated operators define a holomorphic family of
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type (A) in the sense of Kato (see Theorem 2). Moreover, we provide a spectral
analysis of such operators in Theorem 3. Just as in the case of Schrodinger
operator, the real eigenvalues remain fixed under the complex dilation, whereas
the essential spectrum swings into the complex plane and thus reveals possible
non-real eigenvalues, which correspond to resonances of the original self-adjoint
operator (see Figure 7?7). Note that there are no resonances for the Coulomb
potential (see Remark 3).

In Section 5 we extend the notion of positive and negative spectral projections
to the complex dilated Dirac operators. The definition of the spectral projec-
tions in Formula (32) is a straightforward extension of a well known formula
from Kato’s book (see [33, Lemma VI.5.6]). The rest of this section is devoted
to the proof that the operators defined in (32) are actually well defined projec-
tions (see Theorem 4), that they commute with the dilated Dirac operator (see
Theorem 5), and that their range is what one expects it to be (see Theorem
5 as well), which is not completely obvious in the non-self-adjoint case. Note
that the projections themselves are not orthogonal projections.

These results enable us to define transformation functions between the positive
spectral projections of the dilated and not dilated Dirac operators in Section
6, which is essential in order to show that also the projected Dirac operators
are holomorphic families — even if they are coupled to the quantized radiation
field. This will be accomplished in [30]. Moreover, these results can be used
to generalize [47] to complex dilated operators. Transformation functions as
defined in Formula (60) are similarity transformations between two (not neces-
sarily orthogonal) projections (see Formula (57) in Theorem 6). Note that our
definition requires that the norm difference between the projections be smaller
than one, but there are more general approaches. For details on transformation
functions we refer the reader to [33, Chapter II.4].

In Theorem 7 in Section 7 we prove a resolvent estimate for the dilated Dirac
operator projected and restricted onto its positive spectral subspace. In par-
ticular, we prove that the norm of the resolvent converges (essentially) to zero
as the inverse distance to the right complex half plane. Note that this really
requires the restriction of the operator to its positive spectral subspace and
that the norm of the resolvent of a non-self-adjoint operator is not bounded
from above by the inverse distance of the spectral parameter to the spectrum.
In Section 8 we will investigate the non-relativistic limit of dilated Dirac op-
erators and thereby generalize and extend the results in Thaller’s book [49] in
various directions. We prove in Theorem 8 and Corollary 2 that complex dilated
Dirac operators converge to the corresponding (complex dilated) Schrodinger
operators in the sense of norm resolvent convergence as the velocity of light
goes to infinity. As in the undilated case, this convergence is needed to gain
information about the spectral projections onto the eigenspaces belonging to
the real eigenvalues and their behaviour in the nonrelativistic limit (see for ex-
ample Lemma 7 or Lemma 8). In particular, the complex dilation, restricted to
an eigenspace is a bounded operator (uniformly in the dilation parameter and
the velocity of light — see Lemma 9) and the projections onto the fine structure
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components are uniformly bounded as well (see Corollary 5). These statements
will be needed in [30]. Note that for Schrédinger operators and non-relativistic
QED the above mentioned problems are absent, since there is neither a fine
structure splitting nor the additional parameter of the velocity of light which
has to be controlled.

Moreover, we show in Theorem 9 and Theorem 10 that the lower Pauli spinor
of a normed eigenfunction of the Dirac operator converges to zero in the sense
of the Sobolev space H'(R3;C?) and that the upper Pauli spinor is bounded
in the sense of H'(R?;C?) as the velocity of light tends to infinity. This shows
that the notion of “large” and “small” components of a Dirac spinor, which is
frequently used by physicists, is also justified for dilated operators. Moreover,
it follows that certain expectation values of the Dirac a-matrix vanish as the
velocity of light tends to infinity. We will apply this fact in [30].

Note that in the discussion of the non-relativistic limit in Section 8 we need
some estimates from Bach, Frohlich, and Sigal [5] which we cite in Appendix
A for the convenience of the reader.

3 FoLDY-WOUTHUYSEN-TRANSFORMATION

In this section we investigate the complex continuation of the Foldy-Wouthuy-
sen transformation and show some important properties in Theorem 1. We need
this as a technical input for the spectral analysis in the following sections. Let us
mention that a complex continuation of the Foldy-Wouthuysen transformation
was implicitly used by Evans, Perry, and Siedentop [11] for the investigation
of the spectrum of the Brown-Ravenhall operator. Also Balslev and Helffer [7]
use holomorphic continuations of the Foldy-Wouthuysen transformation.

For p € R® we define the matrix D, o(p;0) := ce %a - p + c23. We use the
convention /- : C\Ry — C: /z = rél ¢/2 for the complex square root, where
z =rel? with r > 0 and —7 < ¢ < 7. Note that for w € C with |argw| < T
the estimate

Revw > VRew >0 (5)
holds, which follows immediately from the formula cos(2¢) = (cos¢)? —

(sin¢)? < (cos¢)?. Next, we define for p € R and 6 € S, /5 the matrix

1 (c? + E.(p;0))1ax2 ce % - p (6)
Ne(p; 0) —ce %o p (¢ + Ec(p;0))1ax2 )’

where E.(p;0) := /e 20c2p2 + ¢t and N.(p;0) := \/2E.(p;0)
Upw (c; 0) is the maximal multiplication operator on L2(R3; C*
erated by Upw (p, ¢;0). Analogously, we define

UFW(C7P; 0) L=

(¢ + Ec(p; 0))-
) which is gen-

A+ E.(p;0) —ce pa-p
Ne(p; 0)

and Vew(c; 0). The corresponding Fourier transforms are Upw (c; 0) :=
FWpw(c;0)F and Vew(c;0) == F~Vew(c; 0)F. Note that these operators

(7)

VFVV(p7 (6% 0) L=
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coincide with the usual Foldy-Wouthuysen transformation for 6 = 0 (see [49]),
but are not unitary for § ¢ R. Nevertheless they define a similarity transfor-
mation, which diagonalizes the free Dirac operator. This will be important
in the following sections, since the diagonalized operator v/ —c2e 20 A + ¢4 is
normal, contrary to the operator D, ¢(9).

THEOREM 1. Let 6 € Sy /4. Then the following statements hold:

a) The operator Upw(c; 0) is a bounded operator on L?(R3; C*) with bounded
inverse Vew (c; 0). There is a constant Crw (independent of ¢ and 0) such
that

|Urw(c; 0)] < /1 + Crw]|sinIm 6] (8)

and

[Vew(c; 0) < \/1+C’Fw|sin1m9|. (9)

b) The Foldy- Wouthuysen transformation diagonalizes the Dirac operator:
UFw(C; Q)Dc,o(G)VFw(C; 9) =V —c2e—20A + 046. (10)

Proof.
a) A simple calculation shows

Urw (D, & 0)Vew (p, ¢; 0) = Viw (0, ¢; 0)Upw (p, ¢; 0) = 1. (11)

We have |[Upw(c;0)|| < sup,ecps |Urw.e(p; 0)||. Thus, it suffices to consider

the case ¢ = 1 and Ref = 0. In view of the identity |Upw c(p;0)|> =
|Urw e (p; 0)*Upw.(p; 0)|| we find with 9 € (—n/4,7/4)

- o . 14+ By (p;i0))(1 + Ey(p; —i9)) + p?

Urw c(p;19) Urw o(p;19) = ( 1B 1)) N 1(p N+p
| Ba e (1 + Ex(p; —i9)) — (1 + Bi(p;i9)))

N

where N := VAE1(p;10)Er(p; —19)(1 + E1(p;19))(1 + E1(p; —19)). Note that

the expression under the square root is real, and that |1 + Ey(p;+id)| >

|E1(p; £i9)| = /1 + 2cos(20)p? + p* > /1 + p*, where we used |[J] < 7/4.

Thus the denominator in (12) can be estimated as

IN| > 2y/1+ [p]*. (13)

(12)

)

Next, observe that
| sin(29)]
/% + cos(29)’

where we used the estimate |w| > |Rew| and (5). From (14) it follows that

1Baple™” (+E1 (p; i) e (1+ Br(p; —19)|| < 2lp||sin(®)[+]sin(20)]. (15)

€Y By (p;i9) — eV By (p; —i9)| < (14)
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Moreover, we have

_ A+ Ea(ps —i9) (L + Ea (p;19)) + 1
N

N (B i) 0 Baio) 7)o

N (N + (1 + By (p; —i9)) (1 4 Ey(p;i0)) +p2))

1

Using ((1 + E1(p; —i9))(1 + E1(p;i9)) + p*) > 0 and (13) we estimate the
denominator by

IN(N + (14 By (p; —19))(1 + Ex(p; i) +p)) > 4(1 + |p|*). (17)
In order to estimate the enumerator we find after some calculations

4E: (p; —i9)E1(p;i9)(1 + E1(p; —19))(1 + E1(p;119)) (18)
— (1 + Bi(p; —19) (1 + E1(p; i) + p*)?
—opt 4 22 4 e B2 1 2 (e BV By (p; —i0) + 2V, (p:10))
—2p° — 2p*(Er(p; —i0) + Ex(p;19)) — 2p° Ex (p; —i9) Ex (p; i9).

We combine suitable terms in (18): We have

(€27 4 e 27)p? — 2p? = 2(cos(20) — 1)p?, (19)

12p° (e =27 Ex1(p; —19) + €V E1(p;19)) — 2p%(E1 (p; —19) + E1(p; 19))| < 4p°

(20)

28in(299)
|\/p2+62i19+\/p2+672i19|

x|/ p2+ed? —\/p2e-20| < 4p? < 4|p|sin(29),

and
12p* + 2 cos(20)p? — 2p* E1 (p; —19) By (p;i9)| < 2|sin(20)|%. (21)
Summarizing the estimates (13) and (15) through (21), we finally obtain

lpl+1 | p*+2p[+1

+
V1+pl L+ [p|*

where we used that |sin(29)| < 2|sind| for |9 < /4. If we set Cpw :=

t+1 t242t41
SUPiept | iy T 14

The claim on the inverse operatorAVFW(c; 6) can be proven analogously.
b) We have Upw (¢, p; 0)De.o(p; 0)Vew (¢, p;0) = Deo(p; 0)Vew (¢, p; 0)? as well
as Vew (¢, p; 0) = Upw (e, p; 0) — 2ce~?Bac - p/N.(p; §). From this it follows that

1Urw (0, p)* Upw (i9,p) — 1]| < |sin(9)], (22)

< 00, equation (22) shows the claim on Upw/(c; ).
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Urw (¢, p;0)De.o(p; 0)Vew (¢, p; 0) = Deo(p; 0) — A, where A := m
D.o(p; 0)[2ce ?Ba - p][c® + E.(p;0) — ce=%Ba - p]. A little calculation shows

2, —-20,2 .
A= ,W + ce % - p, which implies

Urw (¢, p;0)Deo(p; 0) View (¢, p; 0) = Ee(p; 0)8 (23)

and thus proves (10). O

4  DILATION ANALYTICITY AND SPECTRUM

We show that the operators in equations (3) and (4) define holomorphic families
of closed operators. Since we will be interested in the non-relativistic limit
later on, we consider only such values of ¢ and « which can be dealt with using
Hardy’s inequality. For 6 € S5 we define the set M,,. := {0 € (C|277 <
cos(Im@)}. We define Vi(0) := e=92xp\/Vo and Va(0) := e~ 9/2/Vz. Note
that V(6) = V1(0)Va(0).

THEOREM 2. Let 0 € Shin{e,r/2y and suppose that (H1) holds. Then the
operator D, ~(0) is closed for i_v < cos(Im @) on Dom(D, () = H'(R?;C*),
and we have D ~(0)* = D.~(0). Dc~(8) is a holomorphic family of type (A)
in the sense of Kato for 0 € M. D.o(0) is an entire family of type (A).

Proof. For f € H'(R3;C*) the estimate ||D.o(0)f||*> > |Ree ?|?c?|Vf|?
holds. Hardy’s inequality implies |7V (0)f|> < 4v%e~?|?||Vf||* and thus
WV fl < mHDc’O(G)]‘H, which proves that the operator D, -(6)
is closed and has a bounded inverse. Thus, the domain Dom(D.(6)) =
H'(R3;C*) is independent of § € M, /.. It is clear that for f € Dom(D. -(f))
the mapping M, /. — L3R C*), 0 — D.(0)f is holomorphic, which implies
that D, ,(0) is a holomorphic family of type (A) [33, Chapter VII-2.1].

Moreover, obviously D, (0)* D D, (6) holds. Thus, it suffices to prove the
inclusion Dom(D..~(#)*) € Dom(D, ,(6)) = Ran(D.~(8)~!). We adapt a well
known strategy from the case of self-adjoint operators (cf. [52, Satz 5.14]). We

have Dom(D.(0)~1) = Ran(D. () = L?*(R3;C*). For f € Dom(D.~(#)*)
we find fo := De~(0) "' De~(0)"f € Dom(D,(0)) C Dom(D,(0)*). Thus
D¢~ (0)fo = De~(0)* fo, and the definition of f, implies D ~(0)* f = D, () fo.
From this it follows that D, (0)*(f — fo) = 0 and thus f — fo € N(D,(0)*) =

Ran(D.~(0))* = {0}, implying f = fo € Dom(D.~(8)). O

REMARK 1. Note that if V is the Coulomb potential or the Yukawa potential,
then D.(0) is equal to a multiple of the self-adjoint operator —ico -V + Vi
up to a bounded operator so that the proof of the above theorem is trivial. Note
moreover, that for V. = Vg, the operator D. () is entire.

REMARK 2. Theorem 2 and its proof imply that H'(R3;C*) is the mazimal
domain of the operator on L?(R3;C*) generated by the differential expression
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De(0) := —eYica -V + 23—V (0). To see this set
Miax == {f € L*(R*;C*)| D, (0) f € L*(R* C*)},

where the gradient is to be understood in distributional sense. Note that f €
Mnax tmplies Vf € L} (R3C*), since V(0) € L%(R3) + L¥(R?). If Mmax 2

HY(R3;C*), then the operator D, (0) defined by the differential expression

De(0) on the domain D(D,, ., (0)) := Muax is a strict extension of the operator
D.~(8). As in the proof of Theorem 2 it would follow that there was a 0 #
g € Muax such that Dy (8)g = 0. It follows by partial integration from Vg €

L} (R3;CY) that (De~(0)f,9) = 0 for all f € C3°(R3;C*Y). By density of

loc

C3°(R?;C*) in H'(R?;C*) this equality extends to (D.~(0)f,g) = 0 for all

f € HYR3C*) = D(D.,(f)). Since D.~(0) is onto, it follows g = 0, a
contradiction, which implies H'(R3; C*) = M ax.

The following lemma, whose simple proof we omit, contains a useful fact:

/a202p2+c4 a
LEMMA 1. Let a,b > 0. Then sup,cps Ve < max{1, ¢}.

Now we need the spectrum of the operator D. (f). Theorem 1 shows (see
Figure 1) o(D.o(0)) = 3, (8) U S} (0), where F(0) = £ E.(R;0).

In the case of self-adjoint operators the compactness of the difference of free
and interacting resolvent would imply that D.¢(6) and D.(0) with v # 0
have the same essential spectrum. This is however not true for non-self-adjoint
operators in general. In particular there exist several different definitions of
the essential spectrum, which do not coincide in general and have different
invariance properties.

In the case of relatively compact perturbations this difficulty can be mastered
using the analytic Fredholm theorem [50]. Since Coulomb type potentials are
not relatively compact, we adapt a strategy invented by Nenciu [40] for the
self-adjoint case. We need the following lemma:

LEMMA 2. Let 0 € Sy/y and z ¢ 0(Dco(0)). Then the operator Vé/2(D570(9) -
2)~ 1 is compact.

Proof. 1t suffices to consider the case z = 0. We write 1/01/2D57()(t9)’1 =
v (Veae AT as) (VoPe AT A8) Deol#) . Because of
VCI/2 € L8 (R3) and 1/(£+/c2e=20(-)2 + ¢* — z) € LS(R?), the operator

Vcl/ *(V=c2e 2P A ¥ A8 — z)~ ! is compact [44]. Moreover, Theorem 1 implies
(V=c2e=20 A 4+ c2B3) D, o(0) || < 1 4 Cpw|Im@|. This shows the claim. O

For z ¢ 0(D,.0(6)) we define the operator M,.p(z) := Va(0)(Dc,0(0)—2)"1V1(6).
Moreover, let B.p.. and Beg,— (see Figure 1) the closed subsets of {z €
C|Rez > 0} and {z € C|Rez < 0} respectively, which are enclosed be the
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xxxx

Figure 1: The spectrum of the operator D, o(f) and sets B,p,4 for ¢ = 1 and
0 =in/4.

curves [c?,00) and E.(R;0) ((—oo, —c?] and —FE.(R;#) respectively). We set
Bejg = Beyo;+ U Beyo;—-
Furthermore, for 0 € S;,4 we define the constants

C(Imf) := ———, C1(Im0):=C(Imb) + ————— 24
(Im ) \/cos(2Im 6) 1(Im6) (fmf) cos(Im 6) (24)

Note the inequality 1/ cos(Im6) < C'(Im 9).

The following theorem yields a precise description of the spectrum of the op-
erator D, (). In particular, outside the set B g the spectra of D, () and
D, ~(0) coincide so that one particle resonances — if any exist — can be located
only within the set B, g.

Let B(L%(R3;C*)) be the set of bounded and everywhere defined operators on
L?(R3; C*). Moreover, we set B, (z) := {z € R3||z — x¢| < a} for @ > 0 and
o € R?

THEOREM 3. Let 0 € Suin{r/s,0)y and 2%C’(Im@) < 1. Suppose that (H1)
holds. Then o(Dc~(0)) = 0(Dc,0(0)) U Ac ~.9, where Ac .9 is a discrete subset
of C\o(D.,0(8), and we have Ac ;0N (C\ Beg) = 0disc(De~(0)). The set Ac .0
has at most the accumulation points +c*. For z ¢ o(D.n~(0)) the resolvent
identity
(Deqy(0) = 2)71 = (Deo(0) —2)~'+
+7(Deo(8) = 2) " VA(0)(1 — ey Meip(2) ™ Va(6)(Deo(6) — 2) 7 (25)

holds.

Proof. We denote the r.h.s. of (25) by R :0(2).
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Step 1: Proof of (25) for z =1in, n € R. Using Kato’s inequality and Theorem 1
we obtain

e Re9(1 4 Cpw|Im d))
2

C(Im#6), (26)

Iy Meo(in)ll = [l7V2(60)(De,o(0) —in)~ ' Vi(0)]] <

< i/ <22
\/— cos(2Im 0)c2e—2ReOA + ¢4 c2

where we used additionally (5) and Lemma 1. Equation (26) shows that (25)
holds for z =in, n € R.
Step 2: Proof of (25), general case. We have

1=y Meip(2) = 1=y Me;0(0) =y (Meip(2)—Meip(0)) = (1—7Me;0(0))(1-N(2)),

where N(z) := 2 (1 —yMe9(0) ™" [Va(0)Deo(8) " (De,o(0) — 2)~'Vi(8)] . Us-
ing Step 1 and Lemma 2 we see that N(z) is compact and a holomorphic
function of z for z € C\ o(D.(0)). Applying the analytic Fredholm the-
orem [41, Theorem VI.14] yields that (1 — N(z))~! is a meromorphic func-
tion on C \ (D o(#)) with values in B(L?(R3;C*)), whose residues are op-
erators of finite rank. Using Step 1 once more, we see that this also holds
for (1 — e %yM,o(2))~!. In particular, there is a set A. .9 C C\ (D¢ 0(0))
which has no accumulation point in C\ (D, 0(6)) such that z +— R .9(2) is
holomorphic in C\ (o(D¢0(0)) U Ac.4:0)-

Step 3: The mapping z — R ~.0(2) (Dey(0) — 2) f with f € Dom(D.(6))
is holomorphic on C \ (¢(D,,0(0)) U Ac0). Because of Step 1 the operator
R..0(2) equals the resolvent of D, ,(0) for z = in, n € R. It follows that
Reri0(2) (Dey(0) —2) f = f forall z € C\ (0(De,0(0)) U Acvi0) and f €
Dom(D, ~(0)).

Moreover, it is easy to see that Ran R, .¢(z) C H'/?(R3;C*). Thus, we obtain
as before (g, (De(0) —2) Reryio(2)f) = (9, f) for all f € L*(R%C*), g €
HY2(R3;C*) and 2z € C\ (0(De,0(0)) U Ac.0). It follows that Ran R .9(2) C
HY(R?;C*) and (D.~(0) — 2)Req0(2)f = f for f € L?*(R%C*) and 2z € C\
(0(Deo(0)) U Acrip). Summarizing, we find R .0(2) = (Dq~(0) — 2)71 for
all z € C\ (6(Deo(F)) U Ac yi0). In particular, it follows that o(D.(0)) C
o(Deol®)) U Acira.

Let now zg € A¢ ;9. Then the analytic Fredholm theorem implies the existence
of f € L*(R* C*) with (1 — N(z))f = 0, and thus also (1 — vMcg(20))f = 0.
We proceed as follows: Since (D, o(f) — z)~'V1(#) is bounded, we find f €
Ran(V5(0)), i.e. f = Va(0)g for g = (Deo(0) — 2)"Va(0)f € L3(R3;CY). It
follows that (D.o(6) — z0)g = YVi(0)f = 7V (0)g in H1/2(R3;C*). Rewrit-
ing this equality (in the sense of H~'/?(R3;C*)) we find —ice a - Vg —
Bctg — vV (0)g = z20g9. Since the r.h.s. of this equality is a (regular distri-
bution generated by a) function in L?(R?;C*), the Lh.s. is. This implies that
g € H'(R3;C*) = D(D,(0)) by Remark 2, i.e. 29 € 0(D,(6)) which in turn
proves 0(D..~(0)) N (C\ 0(Dc,0(0))) = Ac,~:0-
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Step 4: It remains to show that o(D.(0)) N o (Deo(#)) = 0(Dc,0(8)) holds.
To show this, we pick E € o(D.o(0)) and p € R?® with E = E.(p;0) in order
to construct a suitable Weyl sequence. Let us define ¢, ..o € C*°(R3;C*) by

Upeso () := Ne(p; 0) 71 (c? + Ee(p; 0)¢, ce o - p&) e ™" (27)
with ¢ = (1,0)7. Equations (7) and (23) imply
(—ica -V + By c:o(x) = Ee(p; 0)p c0(). (28)

We pick a function 0 # ¢ € C5°(R3) with supp¢ C B;1(0) and set for n € N
On(x) = (b(%x —nep) with e; = (1,0,0)7 as well as f,, := ¢ntbp ;0. Obviously,

we have f, € Dom(D, (0)). First, we calculate

1£all > (1+ Crw) " 2ll¢nll = n*2(1 + Crw) =2 l9]], (29)

where we used the definition (27) of ¥, ¢,0, Equation (7), Equation (11), Equa-
tion (8) and the identity [dz¢n(z)? = [dzd(iz — ner) = n® [da ()
Furthermore, we find for n > 2

1
Ve full? =/dw W%(%)Q||¢p,c;9(0)||2 (30)
:c)24(1+CFZV|Im9|)n3H¢||2,

4

since supp ¢, C By (n%e1) and [|1p0(0)]] < v/1 + Cpw|Im 0] because of For-

mula (9). Moreover, we obtain

cy/1+ prl1m9|
Ol < n*?||Vg|.

[ (cex - Vo )pco()]l < n (31)

Formulas (28) through (31) imply

n3/2 cn3/?
[(DerO)= Belpi OVl _ i im g 19+ = 961
= n3/2 oo
Tl el

Thus D¢ ~(0) — Ec(p;0) does not have a bounded inverse and E.(p;0) €
o(De(0))-

Step 5: The proof of A¢ 4.0N(C\ Be.g) = 0dise(De,~(0)) is a standard argument,
which uses the dilation analyticity of the operators D, (0) (see [43, Chapter
XII.6] or [46]). The same holds for the claim on the accumulation points. [

REMARK 3. Note that for V= Vi the set of resonances is empty. This follows

similarly as for the Schrodinger case (see [8]): If there was a resonance, then
D, ~(m) would have a non-real eigenvalue.
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5 SPECTRAL PROJECTIONS

In this section we extend the notion of positive and negative spectral projections
to dilated Dirac operators. We define for p € R3 the matrices ASEO) (p; 0) :=

11+ %) A calculation shows that ASB) (p;0)? = ASB) (p;0) and

A((:,ja) (p;0)Dco(p; 0) = £E.(p; H)ASB) (p; 0). Moreover, one verifies the identity
A((:,ja) (p;0) = % + % ngr(l)o ffR dn m. These observations motivate the
following definition for the dilated interacting operators:

1,1 R 1

+ — 3
Agv)(H) = -+ —slim

S 2
R el B> YN (7 B (32)

It is well known [33, Chapter VI-5.2, Lemma 5.6] that Equation (32) yields the
positive and negative spectral projections for real §. Note that similar formulas
for not necessarily self-adjoint operators are known (see [16, Chapter VX]).
These authors use a different definition for the spectral projections, however.
First, we show in Theorem 4 that these operators are well defined and bounded
projections even if § ¢ R. We need the following technical lemma:

LEMMA 3. Let 0 € Sy/4. Then for alln € R

|D.o(Re )| —in

: - < Ci(Im@0), 33
15 i < Caame) ()

where C1(Im @) is defined in (24).

Proof. We prove the estimate
Dco(Reb)| —in D¢ o(Reb)
| Reo@®eB 10y Deo®eBl gy
V—e202A + 4B —in V—e202A + 4B —in
1 1

+ I'<

n
< + .
/e 202N 1 A3 —in cos(2Im@)  cosIm@

We estimate the first summand using inequality (5) and Lemma 1. For the sec-
ond summand we restrict ourselves to the case Im 6 < 0. The proof for Imé > 0
works analogously, and (33) holds obviously if Im# = 0. Moreover, it suffices
to consider Re # = 0. We investigate the term |y/e=20¢2p? + ¢* —in|. Forn > 0
the inequality Im y/e=20¢2p? + ¢t < 0 yields | —+/e=20¢2p? + ¢t +in| > |n|. For
n < 0 the inequality Im /c2p? + et20¢* > 0 implies |/c2p? + et20ct —jet0n| >
— cos(Im 6)n = cos(Im 0)|n|, which proves (34). The claim follows using Theo-

rem 1. O

THEOREM 4. Let 6 € Shinir/a,0} and 2%C’(Imé’) < 1. Suppose that (HI1)
holds. Then the following statements hold: Ag@) (0) € B(L*(R3;C*)), Agﬁ)(ﬂ) =
Ag@) (0)? and Agﬁ)(ﬂ) + AE;Y) (0) = 1. The operators Agﬁ)(ﬂ) are bounded holo-
morphic families in 0 for 6 € M, ..
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Proof. The proof is inspired by similar estimates in [47].
Step 1: The resolvent equation (25) and the estimate (26) yield the convergence
of the series

in norm.
Step 2: We show that the expression

y R 1 1 1
im n (fa [DCW(Q) —in B Dc,o(Q) — iﬂ}g)a

R—oo R

f.9€ L*(R%CY)  (36)

defines a bounded operator on L?(R3; C*). In order to achieve this, we estimate

1 1 ne1 1
“ﬁz%ow>—nﬂ“w“””*”z%pw>—nf4”” O 5w —?)
IVI/ IVI -1 ™
= GESTIAL® H( Cllm0))" < o—p
|DC0 Re9 )|M/? |DC0 Reo) n—-1
H| Re@|—|—177fH|||DCORe(9 ) — HCl Im@) ( C(Im@)) )

where we used (26) in the first estimate and Lemma 3 in the second estimate.
C(Im#) and C;(Im ) were defined in (24). As in [47, Proof of Lemma 1] we

. 1/2 1/2
obtain [ dn|| \lchoo((§::)|+ln FIN \lg:oo(g:ee))“ 1779” < 7| fllllgll and thus

[ =~ premr =) <

El 2
< gLl
< a5 I/ lgllCL(Im 8)” - (37)

1
— (12C(Im0))
Step 3: The expressions

1

1
(f’ D.o(0) —in

Vi(0) [’Y‘é(@m

Vi(0)] nilvz(wmg)

are holomorphic functions of 6 € Spyin(r/1,0). These estimates show the exis-
tence of an integrable and summable majorant, independent of ¢ for 6 € M., /.
Thus, the operator in Equation (36) is a holomorphic function of 6 [33, Chap-

ter VII-1.1], and the identity ASCY) 0) = ASQY)(G){ which is obviously true for

(+)

0 € R, extends to 6 € M, ., i.e. Ac(0) is a projection.
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Step 4: We show that the limit exists as a strong limit and estimate for g €
H'/?(R3;C*) as follows:

1 1 n—1 1
TR R TR T
2 D, o(Reb)| 1
~ ce” R66H|| ?]-E{eeaﬂ +17’H||f||H|D R69)| HH|D07O(Re9)|1/29H

x Cy(Im 0)> (Q%C(Im 6)"

Here we estimated the expression in the square brackets similarly to (26), but
used Hardy’s inequality instead of Kato’s inequality. Moreover, we used the
estimate (33) twice. Since o(D.o(Ref)) = (—o0,c?] U [c?, 00), we have

D, o(Ref)|'/? VI 11

I [ Deo(Re )] —|| = sup _ VAL < min{-, —}.
[Deo(ReO)| +in"  x>c2 /A2 + 92 ¢ /In

This estimate shows that the convergence in formula (36) is uniform in f €

L?(R3; C*), which implies the strong convergence [33, Theorem III.1.32 and
Lemma I11.3.5], since H'/2(R3; C*) is dense in L?(R?; C*). O

Obviously, the identity A (0) + AL (0) = 1 holds. We set HE)(0) =
A((:,iv) (0)L?(R?;C*) and find L?(R3;C*) = Hﬁf’( 6) + HC,V (0), wehre + denotes
the direct sum. We call the A%’(&) positive and negative spectral projections

and ’H(i)( 0) positive and negative spectral subspaces, respectively. This is
justified because of Theorem 5.

The following corollary generalizes [47, Lemma 1] to dilated spectral projec-
tions.

COROLLARY 1. Let 0 € Siingr/4,0) and suppose that (H1) holds. Then there
exists a constant Cyr > 0 such that for 2%C(Im 0) < 1 the estimate

1A ) - AL @) < Oxnt

holds.

Proof. This follows directly from Equation (37) in the proof of Theorem 4. O

The next theorem shows that the spaces Hgﬁ)(é’) are invariant under D, ~(6)
and describes the spectrum of the restriction of the operator to these spaces.
If a part of the spectrum is contained in a Jordan curve, analogous statements
can be found in [33, Theorem III-6.17]. The following theorem describes a
more general situation, but the essential elements of the proof of [33, Theorem
I11-6.17] can be adapted.

For a closed operator A we denote its resolvent set by p(A).
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THEOREM 5. Let ) € Siin(r/a,0} and 2%’C’(Im 0) < 1. Suppose that (H1) holds.
Then the identity

AS;)(G)(DC,,Y(G) - Z)_l = (De5(0) — Z)_lAﬁﬁ)(H) (38)

holds for all z € p(D.(0)). The subspaces RanA(+)( 0) and Ran Ag;}(@) are
invariant subspaces for D.(0). In particular,

o(D.

6»7(9)|RanA(ct)(6)) = U(Dc,’y(e)) n {Z € (ClReZ > 0} (39)

and

a(D =0(D.~(0))N{z € CRez < 0} (40)

c,y (9) | Ran AE,}) (9))
hold.

Proof. Obviously, for all z ¢ o(D.(0)), all n € R and all f € L*(R3;C*) the

equation (De,y(0) —2) ™ (D (0) —in) ' f = (Dey(0) —im) = (Deq(0) —2) 71 f
is true. This immediately implies

R
(Dey(0) =2)7" Jim [ dy (Dey(0) —in) ™ f =
—oo J_R
R
= lim [ dp (Dey(6) —in) " (Den(60) = 2)"" f
—0oo J_R

and thus (38). It follows that [33, Chapter I1I-5.6 and Theorem III.6.5]
(Der(0) — 2)"'RanAE)(0) ¢ RanA®)(9) and AZ)(6) Dom(D..(0)) <
Dom(D,~(0)) as well as DC,W(G)H&Y) 0) C HSEY)(G). We define the operators
DS;)(H) = D¢~ (0 )|H(j:)(9) and (for z ¢ o(D.(0)) at the moment) the resol-

vents RS;)G( ) = (D (%)(9) 2)7t = (Deq(0) — Z)_1|Hg%7>(9)- In particular,

+
o(Di3 (6)) C 0(Des (6))-
On the other side, we have [ € H(i)( 0) and z ¢ o(D.~(9)) Riiy)e( Vf =
(Do (0) — 2)"1f = (De(0) — 2)~ ALE) (0) f. Using the first resolvent identity,
we find for z € C with Re z < 0 respectively Rez > 0

1 [ 1
S NE: _ 1

(Der®) =) MR O = —5= [ dr== Dy 0)=in) ' (4)

since for z 6 C Wlth Re z < 0 respectively Re z > 0 the residue theorem implies
. R B

limg o0 f dn = ”7 = limg 00 f_Rdn = = T
The r.h.s. of equation (41) is holomorphic in z ¢ iR. Thus, Rt(:—:)e( ) has
a holomorphic continuation to {z € C|Rez < 0}, and R( ,Y) (2) has a holo-
morphic continuation to {z € C|Rez > 0}. The holomorph1c1ty of the

resolvent implies {z € C|Rez < 0} C p(D(Jr)(G)) and {z € CRez >
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0} C p(Dg,_,y) (#)). This proves U(D&_W) (0)) ¢ {# € CJRez < 0} and
U(Dgt,) (0)) C {# € CJRez > 0}. On the other side, z € o(D.~(f)) cannot
fulfill both z € p(Dl(:,_v) (0)) and z € p(Dgﬁ)(G)), because otherwise the identity
(Der(0)—2) 71 = (DEE) (0)—2) " ALE (6)+ (DL (8) —2) "1 AL (9) would imply
the contradiction z € p(D, ~(6)). This shows (39) and (40). O

Next, we need spectral projections for the eigenvalues: We define for all n > 1
(and n < Npay if there only finitely many eigenvalues) the spectral projections

1 1
P, :0) = ——— —d 42
n(e7:6) 2mi /Fn(c,’v) D.(0) — 2 = (42)

where z runs through I, (¢, ) in the positive sense. I';, (¢, ) is chosen such that
for all 1 <[ < N, the eigenvalues Enyl(c, ~) are located within the contour,
but no other elements of the spectrum D, - (6).

For later, we need spectral projections for the fine structure components. We
set forn>1and 1<l <N,

1 1

P, 7:0) = ——— S
n,l(C;77 ) i P s(er) Dc,’y(e) —

dz, (43)

where z runs through I', ;(¢,y) in the positive sense, and I’y ;(c,) is chosen
such that only the eigenvalue E, ;(c,~) lies within the contour. We denote the
corresponding normed eigenfunctions by ¢, i(c,v; 6).

6 TRANSFORMATION FUNCTIONS

We need transformation functions between the spectral subspaces of dilated
and not dilated operators for the resolvent estimate in Section 7 and in order
to establish the dilation analyticity of a relativistic Pauli-Fierz model in [30].
Another example for a transformation function is the Douglas-Kroll transfor-
mation, which was investigated by Siedentop and Stockmeyer [47] (see also
Huber and Stockmeyer [31]). Contrary to the situation there, our spectral
projections are not self-adjoint and thus the transformation function is a non-
unitary similarity transformation. The estimates in this section can be used to
generalize the Douglas-Kroll transformation to complex dilated operators.

In order to prove the existence of the transformation function, we need norm
estimates on the difference between the spectral projections.

LEMMA 4. Let 0 € Syin{r/s,0}- Suppose that (H1) and (H2) hold. Then the
following statements hold:

a) There is a constant Cpr, > 0 (independent of ¢, v and 0) such that for
2%’C’(Im 0) < 1 the estimate

1A (0) = AL (0)]] < Coilo) (44)
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holds. The operator | De.o(0)|Y/2[AE) (0)— ASE) (0)]| Do (0)|~1/2 is a holo-
morphic function of 6 € M, ..

b) Let moreover 0 < g < 1. Then there is a constant Cprs > 0 (independent
of ¢, v and 8) such that for 2T’,YC’(Im 0) < q the estimate

1| De,o(0)]/2[AE)(0) — AL (0)]|De,o(0)] /2| < Cpus|f)| (45)
holds.

Proof. We adapt method which was used by Siedentop and Stockmeyer [47]
and by Griesemer, Lewis and Siedentop [19] for other choices of projections.
We start with the difference of resolvents

(Deo(0) —in) ™! = (Deo(0) —in)~*
= ic[e_‘g —1)(Dc,0(8) — in)la- V(D.,0(0) — in)~t (46)

and note that |e=? — 1| < B|6| holds with B = e™/* for all || < 7/4.
Step 1: Proof for the free projections. Equation (46) it and Lemma 3 imply
that

(£, [(De,o(8) —im) ™" = (Deo(0) —in)~']g)|
<B|0|[||De.o(Re 0)['/%(| De,o(Re 8)] +im) = f[| De,o(0)/*(Deo (0) — i) g

_ _ D.o(Re8)| —in
% |1 Den(Re 0)|2ca - V| Do 0)| /2| PeoBeO) —in,

Deo(0) —in
Blf| Deo(®ed)[2 . [Deo(0)[!/?
Imé@ :
ReO/QCl( )|||DC,O(R69)|+177f||” c, (O)—l’l]gH’

where we used the estimate ||c|V||D.o(Re )|~ < 1/eRe?.
This proves (cf. [47, Proof of Lemma 1] and proof of Corollary 1) HA(i)( 0) —
AE(0)] < Covlf] with a Cor, > 0 and analogously [|[Da.o(0)[/*[A%) (0) -

ASB) (0)]| De.0(0)|~1/2|| < Cpulb], since |De.o(0)|'/? commutes with all operators
in (46).
Step 2: Proof of (44). We write

11200) 5=, 0] = [V20) i R O] (47)
—0 676
SH[%(@mX&VQ(GH - [W(@mxﬂfz(@)] I
+| [VlmmW(ﬂ — )V < B|296|7T(C(Im9) +1+0),
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where we estimated the second summand by B(1 4+ C)|f]7/(2¢) from above,
and the second summand — similarly as in (26) — according to

-0 _ L ;
B|9|7r |DC0 Re9 | Blo|n
< 15, |||| 77|| < —5,~C(Im6).
In the same way we obtain
[e=*/2Ve*(Deo(6) —in) ™ = Ve (Deo(0) —in) ]9 (48)
s|e-9/27e9/2|ue-9v1/2< 0(0) —in)~tea - V(Deo(0) ~in)” gu
)|1/2
He 2V gl < Bl 7 (Cme) + 172 H' ' .
Lemma 3 implies
—0/2 1/2
1/2 m [De,o(Re6)|
Ve Byl < O gl i memy —r?l (49
and (see Formula (26))
Va2 (Do) — iy~ ve?)| < TOIRO. (50)
Formulas (47) through (50) show
n O Va0)— Vi (0)]" " Va(0)—
" (f, Dool®) —in 1(0) [Va( )Dc,o(G)fin ()] Va( )Dc,o(G)fing
. 1 1 et 1
(ﬁm‘ﬂ(o)[%(o)m‘ﬁ(o)] Vz(o)mg)}
< B|9|(7r702(£m9))nfl(ﬂ'yClQ(cImG))(C(Imo) L140)
AP Lo0R Ty DO
|D. |De,o( Re(9|+177 (0) +in”"
which implies (44).
Step 3: Proof of (45). We use the expansion
(Dey () —im)~ lf(Dco(9)*iﬂ)_1
> 1 n—1 1
V(6 V() —— (51
Y s O Onamn O
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and start with the necessary estimates on the differences of the resolvents:
Using Hardy’s inequality, we obtain as in (26)

IV (0)(Deo(8) —in) ™" = V(0)(Deo(0) = im) ][ De,o(0)| 29| (52)
2B]6| [Deo(0)['/?2
<= (C(Im6) +1+C) C()(O)imgH’
and we find analogously
e ? 1 2B|9| ~
Ve [xo Doo@ —1n X Doo(0) = in] | < C(Im@)+1+C)  (53)
as well as
1[(Deo(8) +im) ™" = (Deo(0) +im) ") Deo(0)] /2 ] (54)
i e’ o lDeo(0)]'? | Deo(0)]"/?
<IN G e Vg o)y < 2BIICIm o)l 5= gl

For the terms with the resolvents we use Lemma 3 and Lemma 1 to estimate

1 1/2 |De,o(Re )| ~1/2
VO 5@ =1 Pe0 @I ﬂ_\%—@—;ww@| gl (35
_ 201 (Imo)e ™/8  |Deo(Red)|/?
c | |Dco(Re8)| — gH,

and (cf. Formula (26))

1 2 1 C(Im )
\’V(é’)mn < E|||DC’O(R69)|DC,O(9) 717,\’ < — (56)
Formulas (52) through (56) show
n 1/2 1 1 n—1 1
71 1O [ VO B Y OB
o 1 - 1 e
Do) 17 Dog(0) 17 VammAwaw' 9l
/4 27C(Im )\ n-1,27C1(Im [Deo(0)['/
<e™Blo|( —)" (7, )(C(Im9)+1+CHme
ol 20RO g | 0O,
-o(Ref) — e0(0) —

which in turn proves (45).

Step 4: Holomorphicity. This follows as in the proof of Theorem 4, since
1 1 n—1 1 -

(£ 1Deo O iy [V O 5y VO) pgrays [Deo(0)]712g) ave

holomorphic functions of § and the above estimates imply the existence of

summable and integrable majorant which does not depend on 6. o
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Before we turn to the existence of a transformation function in Theorem 6,
we need two operator inequalities, one of which was proven in [19]. Since the
other inequality can be proven completely analogously, we omit the proof. Let
us mention that there exits an improved version of one of these inequalities
(see [39]). But since we will be interested in the non-relativistic limit only, it
is sufficient to use the original version.

LEMMA 5 ([19], Lemma 2). Suppose that 9 € R and 2 < 1. Then the operator
inequalities

hold.

Now we can turn to the transformation function Upr,(c,v; 0) defined below. It
enables us to consider the operator Upz(c,v; G)DS;)(G)L{DL(C, v;0)~! instead of
the operator Dg,iy) (f). This is necessary for technical reasons, since the latter

operates on a fixed space (i.e. Ran AEE)(O)). We will prove in [30] that this
operator defines a holomorphic family of operators. Moreover, we will need the
transformation function in the proof of the resolvent estimate in Theorem 7.

THEOREM 6. Suppose that 0 € Sningr/a,0}, 2%C’(Im 0) < 1 and Cpr|f| < ¢
for some 0 < q < 1. Suppose moreover that (H1) and (H2) hold. Then the
following statements hold:

a) There is a bounded mapping Upr,(c,v;0) : L?(R3;C*) — L?(R3;C*) with
the property

Upw(e; 73 O)ALE (O)UpL(c,7:6) 71 = AL (0) (57)

1

and bounded inverse Vpy,(c,7;0) := Upr(c,v;0)~'. There is a constant

Cupr > 0, independent of ¢, v and 0, such that
[UpL(c,v:0) = 1] < CupLld] (58)
holds.

b) Suppose that additionally Cprs|0| < q holds. Then there is a constant
Cuprs, independent of ¢, v and 0, such that

11 De.0(0)["*Upr (¢, 7;0)|De,o(0)| "> = 1| < Cuprslo]  (59)
is true. The same estimates hold for Vpy(c,;0).
¢) The operator Upy(c,v;0), and for Cprs|f| < q the operator
| De,o(0)*Unr (e, 0)| De,o(0)] /2

and the operator |Dco(0)] ™"/ 2UpL(c,7;0)|Deo(0)|*/2, are holomorphic
functions of 0. The same statements hold for Vpr(c,7;0).
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Proof. We follow [47, Theorem 1] and [33, Chapter I-4.6.] and define

Upi(c,7:0) = [ALD (0)ALE) (6) + AL (0)AL) (0)][1 — (ALE (6) — ALY (0))2](_1/§
60
It is easy to see that (AEE)(G) - AE;?(O))2 commutes with AS@) (#) and AEE)(O)
and that Upy, (¢, v; 0) is invertible with inverse Vpr, (¢, v; 0) := [ASQ) (H)ASQ) (0)+
+A£E)(9)A£E) (0)¢][L— (ASQ)(G) —Aﬁ? (0))2]7'/2, and that Equation (57) holds.
Lemma 4 implies that Upy (¢, 7; 6) is a holomorphic function 6, since (1—A)~1/2
has a norm convergent series expansion for bounded operators A with || A|| < 1.

Proof of (58): We follow [47, Proof of Lemma 5]. We have A(+)( )Ag:t,) 0) +
ALY ()AL (0) = 1 [AL)(0) = ALD(0)] [AL5(8) — ALY(0)] and thus

Ui (e,7:6) = {1~ [ ©0) - AD©O)] [AH)6) - 4H 0)] }

«[1- <A£,@> 0 - a2 "

Y

Using the representation (1 —a?)~1/2 = 1 f_ dy (see [17, Formula

3.197.4]) we obtain

21 ya

Upi(e.:0) = {1 - [AZ 0 - A (0)] [A<+><9> - A<+><o>} }

x _/ 1—y21— (A(+)( 0) — A(+)( ))dy

Lemma 4 implies that the estimates || [Aﬁ,;) (O)*Agty)(())] [AEE’(G%AS;)(O)] I <
QCDL|9| and

dy —1|| =

/1 1 /\_ (+) 9 /\_ (+) (0))2
(Aga’}’ (9) AE,’Y) (0))

)
_”_/ ¢ 21—y (A5 0) - AD(0))

hold for some C’ > 0.
Proof of (59): The strategy is similar to the proof of (58). We write

| De.o(0)[*Upr(e,7:0) | Deo(0)| /% =

~{1 = 1Deo()121De, ()2 [AL)(0) = AL (0)] 1Dy (0)[/2] Do (0)| /2
X [Deo(O)/2 [AL(0) = ALD(0)] Do (0)] 72}
= !

TS VI= 97 1=y Deo(0)172 (AL (6) = ALD(0)) Do (0)]-/2

dy H < C/CDL|9|

dy,
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where we used that |D. - (0)|~/2 commutes with A'%)(0). Using Lemma 5 and
Lemma 4 we obtain the claim as before. O

A first application of the transformation function Upy (c,;6) is the following
lemma, which estimates the difference between the dilated Dirac operator and
its original version.

LEMMA 6. Under the assumptions of Theorem 6 b) there is a constant Cyp > 0,
independent of v, ¢ and 0, such that

[1D20 ()72 UL (e, 7:0) De.y (9o e, :0)
— D (0)]1Deo(0) || < Cunlol (61)
holds.

Proof. We have

|De,0(0)| 72 Upr(e, 7: 8) Dey (O)UpL(e, 73 8) ™" = Dy (0)]| De,o(0)| 712
=[Deo(0)|~*[UpL(e, 75 0) — 1| De,o(0)'/?| De,o(0)| /2 De. (8) | Deo (0) 2

x| De,0(0)[2Upr(c,v;0) ! [ De,o(0)| 72+

+|Deo(0)| /(D (9)—D +(0)]|De,o(0) /2

XIDco(O)I”QMDL( 10) 7! De,0(0)| 7% + | De,o(0)] /2 De sy (0)| Deo(0) 712
X[ De,o(0)[V*Unw(c, %9) —1]|D.0(0)] 12,

which implies the claim, if we use additionally

11De0(0)[/2[De s (6) — Dery (0] Deo(0)] /2] = | Deo0)] 72 (62)
% [(e™ = jicar- ¥ = 4(V(6) = V)| Deo(0)] 2] < (B +C)lel(1+ 2)

and Theorem 6. Moreover, we used the inequality [e=? — 1| < B|0| with B =
e™/* and Kato’s inequality in the proof of (62).
o

7 A RESOLVENT ESTIMATE FOR THE DIRAC OPERATOR

In the following, we Choose an 7 > 0 such that for Some n > 1and all ¢ > 1 the
inequalities Enn( ,Y) < ¢ —n and En+1 1(¢,7) > ¢ —n hold. If i = Npyax,
then the second condition has to be omitted.

Using the notation of Section 5 we define Pyisc,i(c, ;0 Zl<n<n (¢, 7; 0)
and Paisc.i(c,7:0) = 1 — (AL (0) + Paisen(c,7;0)). Note that Pyise.s(c,7;0)
projects onto a subspace of the positive spectral subspace.
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The following theorem partly generalizes [5, Lemma 3.8] for Dirac operators
(see also Theorem A.1). We will slightly extend this theorem in the non-
relativistic limit (see Lemma 7 and Corollary 4). This theorem and Corollary 4
enable us to control the norm of the resolvent of the non-self-adjoint operator
Dey(0)|Ran Pusec s (c,v:0)- Note that the usual theorems about the norm of the
resolvent of a self-adjoint operator fail in general, and that for the following to
hold it is essential that to restrict the operator to (a subspace of) the positive
spectral subspace.

THEOREM 7. Suppose that the assumptions of Theorem 6 b) hold. Assume
additionally that the inequalities Cup|0|(1+27v/c) < ¢ and 27(14+Crw|Im 0)]) <
q are fulfilled for some 0 < g < 1. Then the following statements are true: The
operator De(0)|ran Puyo. o (c,yi0) — 2 has a bounded inverse for all z € C with
Rez < ¢ —1 . There is a constant Cgr > 0, independent of ¢, v and 6, such
that for all z € C with Rez < ¢ — 1 the estimate

Crl| Paise,a(c, ;)
2—n—Rez

H {Dc,’v(‘g)lRan Puice,n(cy:0) — F Pdiscﬁ(a B H)H :

holds.

Proof. We make a case distinction:
Case 1: Rez < 0. Theorem 6 implies the inclusion Ran(Upy,(c,;0)

X Pyise.n(c,7;0)UpL(c,v;0)71) C Ran(Agg) (0)). Thus, using Theorem 6 again,
it suffices to show

C
(@1 (e 7 ) Dy (O)UDL(¢, 7 0) ™Ml a0y — 2 AL O] < &y Res
As in [5, Proof of Lemma 3.8], we use a resolvent expansion:
[UpL(e,7: 0) Dery (OWUDL(C, 13 0) ™ ah) (o) — 2171 ALE (0) (63)
[Der (Ol gan w20y — 21 AL (01D, ()72
=0

[ (1D, (0)] 7| Deo(0)[De(0) 72

(el

(UL (c.7:0) De (O)UpL(c,7:0) ™" — Dy (0)]
[De,0(0)]~ 1/2|Dco( 0)['/2|De.(0)]~H/2AL) (0)

)
2] AL (O)1Deq (0)]2 | [Dey (0)] 2

X X

X |De(0)] 12 [De,~(0)] Ran ASH) (0)

In order to prove the convergence of the series, we have to estimate the terms
n (63). First, we note that

[DeA(0)|(De —2)7'AL(0) = sup

<1 64
7 ase2 A=z T (64)

Ol ganatH 0)
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holds, since Re z < 0. Moreover, the spectral theorem implies

11De (0)[/*[De,,(0)
<[[DeA(

lran ) (0) — 2 AL O (65)

0l 0~ 2 AL O]

C

D. D. -
% 1Dy (0)[[Decs 0) e

A7) <

|Ran AR ) ey =

Lemma 6, Lemma 5 and (64) prove the convergence of the series in (63). Using
Formula (65), the claim follows for Re z < 0 from (63).
Case 2: 0 < Rez < ¢ — 1. We use the resolvent expansion

o

[Dey(8) =217 =D [Deo(8) = 2] 'V (O)[Deo(8) — 217" (66)

n=0

Hardy’s inequality and Theorem 1 yield ||yV (0)[Deo(0) — 2] 7| < 2ve Ref(1+

Crw|Im6)) Vi

I I. In order to control this norm, we estimate as
V=202 At A B2

follows:
e Reflp| 1 lp|
sup < sup
peRr3 [\/e20c2p2 + ¢t £ 2| T \/cos(2Im 0) pers |\/c?p? + ¢t £ Rez

Since ——12L < 1/e, it suffices to consider the case with the minus sign.
£/ c2p2+ct+Re z

We need to find the supremum of the function f.; : [0,00) — R, foi(r) :=

ﬁ for0 <[ < (02 —1). If we differentiate this function, we find that it

attains its maximum at the point rg := 7”4;#‘ Now, we define the function

ge(l) = feulro) = ﬁ for 0 < 1 < (¢ —1). This function is obviously

monotonously increasing in [ and therefore attains its maximum at the point
2 _ _

lo :==¢® — 1. We have g.(lp) = \/647(66271)2 = s <1

Thus, Equation (66) and Theorem 1 yield the estimate ||[D.~(0) — 2]~ <
ClI1/(\/e=20c2p? 4 AB — 2)|| with some C' > 0. Since \/e=29¢2p2 + 43 is
normal, we find ||[[D.(6) — z]7!|| < Cr/(c* —n — Re z), which remains true, if
we restrict the resolvent to Ran Pyisc 7 (c,7; 0).

o

8 NON-RELATIVISTIC LIMIT

In this section we investigate the non-relativistic limit of complex dilated Dirac
operators. We will use these results in [30], where we will discuss the interac-
tion with the second quantized radiation field. Moreover, we can extend the
resolvent estimate of Theorem 7 to the region close to the spectrum of the
operator and control the norm of the projection occurring there.
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8.1 GENERAL THEORY

We extend some statements from [49] to the non-self-adjoint case. We define
By :=3(1+£p) aswellas M :={z € C|—1<Rez <0, [Imz| <1} and fix a
v > 0 such that D, (6) — c* has no eigenvalues E with Re E < —1. This is at
least true for 0 < vy < 1 in the case of V = V(z, which can be seen, for example,

using the explicit formula for the eigenvalues, see [35]. We define as operators
on L?(R3; C*):

e—20 e—20
D, 0(9) = - 2 Aa Do 7(9) = - 9 A*’)’V(H)ﬂJr
22 52
Keo(0) := (Dos,0(0) — 2z — 2—62)’1, Keny(0) := (Dooy(0) — 2 — 2—62)’1
as well as
Roo,00(2) := (Doo,o(0) —2) 71, Re0:0(2) 7= (Deo(0) —2) 7"
Rocrt(2) = (Doory(0) =) Reyn(2) i= (Do (6) — 2) 7

First, we generalize [49, Theorem 6.1 and Theorem 6.4] to dilated operators.
As in [49], Theorem 8 is the starting point for the investigation of the non-
relativistic limit.

THEOREM 8.  a) Suppose that 0 € Sy;4 andc > 1. Then for z ¢ o(D.0(0))U
0(Doo,0(8)) the resolvent relation

(Dua0) % =27 = (B i (icar T 2.2))

X <1q:2icQz2 (iDm,ow)z)l) (£Doc0(0) = 2)~" (67)

holds.

b) Suppose that 0 € Siin{x /4,63 2%C’(Im 0) < 1 and that (H1) holds. Then
for z € M\ R the relations

(Dery(0) — 2 —2) 1 = <ﬁ+ + %CQ(—icefea -V + z))

X Koy (0) (1= 5V O) (mice "oV 4 2)Ken(0) (68)
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Proof.

a) We follow the proof of [49, Theorem 6.1], noting that z € C with z(1+5%) ¢
e~ 2Im01) o) is equivalent to z + ¢* ¢ (D, 0(#)). In order to show Equation
(67), we define the operators A (0) := D¢ o(f) £c* £z = —ica-V+2c26; 2
and note that A, (0)A_(0) = A_(0)A4 (0) = —c?e~ 29 A—2c22—22. This yields

el (Dm,ow) —z- 2—2) 7 (70)

which in turn implies the claim. Note that all operators are equivalent to
multiplication operators.

b) We follow the proof of [49, Theorem 6.2]. Theorem 3 implies that
z+c* ¢ o(D.~(0)). Tt follows that D.~(0) — (¢ +2) = A_(0) —yV(0) =
(1 +~V(0)A_(0)"1)A_(0). Since D.~(0) — (c* + z) and A_(6) have bounded
inverses, the bounded operator 1 + vV (8)A_(6)~! is bijective, and is thus in
particular bounded invertible. From Equation (70) it follows that

AL(0)7t =

(Dey(0)—c*—2) = (A_(0) =V ()" '=A_(0) " (1—V(O)A_(6) )~

(71)

22

= (94 + qz(-ice e T +2)) (Dmal6) 5 - 53)

2c
x (1= AV (081 Keol6) — 515V (B) (—ice oV + 2)Keo(6) -

z € M\ R implies z + 22/(2¢) € M \ R and in particular z(1 + %) ¢
0(Doo,~(8)), which shows (69). Moreover K.~(6) = K:o(0) — vV (60 )6+ =
1 - 7V(9)6+K570(9)_1)K670(9) holds. To see this, note that z + c?
o(D.~(0)) implies z + ¢* ¢ o(D.0(0)), which in turn implies 2(1 + 527)
0(Dso,0(0)), ie. K. o(0) is bounded invertible. Thus, the bounded operator
1- 'yV( )B+Kco0(0)~! has a bounded inverse, and

Kcrv(e)il = 0,0(9)71(1 - VV(9)5+KC,O(9)71)71 (72)

AR

as well as

(1= AV (0)8: Keol0) — 55V O)(—ice eV +2)Keo(6) B
= (1 —yV(0)Kco(0)'81)7!
< (1= V() (—ice oV + 2)Keo(O)1 3V O Keo®) 81

2c2

hold. Using (72) and (73), (68) follows from (71). O

We denote the real eigenvalues of Do o(0) by Er(00,7) = En(y), ordered by
size and not counting multiplicities. Note that by dilation analyticity these
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eigenvalues are the same as the eigenvalues of Do 4(0) and that |E,(co,7) —
Eni(e,y)] = 0(1/c?) foralll € {1,...,N,} by [49, Theorem 6.8]. We pick now
1 as in Section 7 and define for each € > 0 the set

Mpe:={2€C|l1 <Rez < —(n+¢€), Imz| <1, dist(z,0(D.(0))) > €}.

Moreover, we set D(w,r) := {z € C||z —w| < r} for w € C and r > 0. Fix
€ > 0 so small that for all n,n’ € N with n # n’ and 1 < n,n’ < 7 the
sets D(E,(00,7),2€) and D(E, (c0,7),2€) are disjoint and contained in the
set {z€C|ll <Rez< —(n+ 6), |Im z| < 1}. Now we pick for € > 0 a contour
I' with positive orientation such that I' is contained M, ¢ and has only the
eigenvalue E, () in its interior, but no other eigenvalues of 0(Dsg,(6)). Then
we define

P, (00,7;0) := f—/dzRoowg

We set Pyisc(00,7;0) := Z?zl Pi(00,7v;0) and Pggc(oo,7;6) == 1 —
Pyisc(00,7;0). Note that using the definitions in Appendix A and in slight
abuse of notation Piisc(00,7;60) = Paise(7;0)3+ and Pyise(00,7;0) = B +
Pise (’Y; 0)B-

Now we are in the position to generalize [49, Corollary 6.5] to dilated operators.

COROLLARY 2. Suppose that |0] < 6y, where 0y is sufficiently small (see Ap-
pendiz A), and 0 € Spinir/a,0) as well as 2%C’(Im 0) < 1. Suppose moreover
that (H1) holds. Then the resolvent expansion

[Des(0) = (+2)] =3 Cian(z). (74)

holds for all z € M, ¢ and all sufficiently large c. The series converges in norm,
uniformly in 0 and z. In particular,

[De(0) — (02 + Z)]_l — [Doo,H(0) — Z]_lﬁ+

cC— 00
uniformly in 6 and z.

Proof. First, we need an estimate on the resolvent of D ,(#). We split the
resolvent according to

[DOOK)’(G) - Z]_l = [DOO (9 |Rmn Pyise(00,7;0) — Z]_lpdisc(ooa Vs 9) (75)

Z |RanP,L(0079) _Z] IPn(OOa’Y79)

Theorem A.1 implies that the norm of the first summand in (75) is bounded

by 2/77 The norms of the other summands can be estimated according to
H 0)| — 2 1P (00 || | Pn (o0, v:0) || Clo| usin
Ran Py, (00,7;0) 7’ — dist(z,En (7)) — dist(z,En(y)) g
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Corollary A.1. Thus, we have for sufficiently small 1/c¢ (dependent on €) and
all z € M, ¢ the expansion

o)
22 2

—1y— _ z _
(1= 25 (Dacs(8) = 277 = Do) = )7 D2 (g (D) — 2) )"
n=0
Hardy’s inequality implies for f € H?(R3;C*) the estimates ||V f|| < 2|V f]| <
al|Af|| + (1/a)l|lf]| and e ?RCIAF| < 1/(1 = 2a7)[|Docy (0) ]| + 29/lall —
2a7)]|| f|| with a sufficiently small @ > 0. It follows that

IV O)(ice ™07 +2) (Do (0)-2) ' < 2C+Cal(Dcr(0)-2) ]

holds with C7,Cy > 0 (independent of ~, ¢ and 6), which implies that the
last factor in (68) has a norm convergent series expansion in 1/¢ for 1/¢ small
enough. O

REMARK 4. We find Ro(2) := B4+ Roo,y:0(2) asin [49]. Asin [49, Remark after
Corollary 6.5], the operators occurring with even powers of 1/c are even, and
the operators occurring with odd powers of 1/c are odd .

LEMMA 7. Suppose that the assumptions of Corollary 2 hold. Then there is a
constant Cp n, > 0 (independent of ¢ and 0) such that for sufficiently large ¢

the estimate
CP,n
”Pn(cv’ﬂ 9) - Pn(ooaf)’; 9)” S T
holds.

Proof. This follows immediately from Corollary 2. O

The following two corollaries extend Theorem 7.

COROLLARY 3. Suppose that the assumptions of Corollary 2 hold. Then there
is a constant C' > 0 (possibly dependent on 0) such that for all z € C with
—1<Rez < —nand [Imz| <1 and all sufficiently large c the estimate

” [DC,’Y(GNRan Paise,n(c,730) — (02 + Z)]ilpdiscﬁ (C, ) 9)” <C
holds.
Proof. Corollary 2 implies that [De,(0)|ran By » (c,r:0)— (¢*+2)] " is uniformly

bounded in z € M, ¢ and ¢ (for sufficiently large ¢). Lemma 7 and Lemma 4
yield the existence of an upper bound on

1 Paisc,i (e, 7 0)| = 111 = (AL (8) + Paiscan(e, 7:0))ll,

which does not depend on c. Thus the claim holds for z € M, ;.
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Let zp € D(E,(00,7),€). Then I' := {z € C||z — Ep (00, 7)| = 2€} C M, ¢ holds
because of the definition of the set M, ¢. Since [De,(0)|Ran Py s (c,v:0)) — (2 +
2)tinze{z€C|-1<Rez< —n, [Imz| <1} is holomorphic,

1

[De(0)|Ran Piven (cr30) — (02 + zo)]_lpdisc,ﬁ(&’ﬁ 0) = o

x / Do (0) tan P s ety — (2 2] Pt (e 7: 0) ——dLz

zZ— 20

holds, where the contour is oriented in the positive sense. This implies the
claim for zy € D(E,(c0,7), €). O

COROLLARY 4. Suppose that the assumptions of Theorem 7 and Corollary 2
hold. Then there is a C > 0 (possibly dependent on 0) such that for all z € C
with =1 < Rez < —n and |Imz| < 1 or with —oo < Rez < —1 and all
sufficiently large c the estimate

C

Dy (0)|Ran Paee s (r:0) — (€ + 2] Paisen(c, 3 0) || < T —TRez

s true.

Proof. This follows immediately from Corollary 3 and Theorem 7 together with
Lemma 7. O

Now, we define a transformation function Uxr (c,v;0) : L?(R3;C*) —
L2(R%C*) by

Unr(c,7:0) == [Pn(c,7;0)Pr(00,7;0) + (1 — Pra(c,7:0))(1 — Pr(o0,7;6))]
X [L = (Pa(c,730) = Pa(00,7;0))*]71/2.
LEMMA 8. Suppose that the assumptions of Corollary 2 and the inequality

Cp.n/c < q <1 hold for some 0 < q < 1. Then the mapping Unr(c,v;0) is
bounded with bounded inverse VNr(c,7;6). The relations

Unr(c,v;0)Pi(00, v; O)Unr(c,7;0) 1 = Pi(c,;0) (76)

and

C
e (e, 7:0) = 1] < = (77)

hold with a constant Cxrp > 0 independent of ¢ and 6. Unr(c,v;0) is a
holomorphic function of 0.

Proof. Using Lemma 7 this can be proven in the same way as Theorem 6.
For the holomorphicity in 6 note that the power series (in 1/¢) for R ~.0(2),
P, (c,7v;0) and Unr(c,;8) converge uniformly in 6. O

DOCUMENTA MATHEMATICA 14 (2009) 297-338



328 MATTHIAS HUBER

REMARK 5. As in [49] we obtain by Remark 4 that in the series expansion of
Unr(c,7;0) the operators occurring with even powers of 1/c¢ are even and the
operators occurring with odd powers of 1/c¢ are odd. In particular,

1
UNR(C7 v 9) = uNR,g(ca V3 9) + ZUNR,U_(] (C7 Y3 9)) (78)

where Unr,q(c,v;0) and Un g.uqg(c,7v; 0) are even and odd operators holomorphic
inl/c.

The following theorem generalizes [49, Theorem 6.7] and shows that the lower
component of an eigen-spinor of the Dirac operator converges to zero as ¢ — oo.

THEOREM 9. Suppose that the assumptions of Lemma 8 hold. Then the normed
eigenfunctions ¢n(c,7v;0) of D(0) with eigenvalue E, ;(c,v) have the form

1
Gn,i(c,750) = dn v (c,7:0) + zqﬁn,z,—(c,v; 0),
Pni+(c,7;0) € BLLA(R% CY), (79)

where ¢y, 1.+ (c,7v;0) are continuous functions of 1/c.

Proof. We have Py, (c,v;0)De~(0)Py(c,7;0) = =55 J; mdz . Any eigen-
vector ¢y, (c,7;60) of Py(c,v;0)De~(0)Pa(c,v;0) and thus any eigenvector of

D..~(0) with eigenvalue E,, ;(c,v) is given by ¢,.(c,v;0)

= UNr(c,7;0)dni(00,7;0) for a ¢,i(00,7;0) € B L*(R*C*). Remark 5
and the analytic perturbation theory imply g?)n,l(c,’y;@) = $n71,+(c,7;9) +
%(1571,1,—(0, 7;0), where ¢,,1(c,7;0) and ¢, 1.+ (c,7;0) are holomorphic functions
of 1/c. Since the projections P, (c,~;#) are nor orthogonal, the normed eigen-
functions are in general not holomorphic functions of 1/¢. But nevertheless
| Gni(c,v;0)|| >1— CZ holds for some C' > 0 and thus (79) follows. O

We use these statements to prove that eigenfunctions are bounded in the norm
of H'(R3; C*).

THEOREM 10. Suppose the assumptions of Lemma 8 hold. Then there is a con-
stant Cgr > 0, independent of c, such that the normed eigenfunctions ¢, (c,v;6)
of Dc.~(0) with eigenvalue Ey ;(c,v) fulfill the estimates

IVéni+(c,v;0)| < Cgr (80)
and
CEF
IVoni,—(c,v;0)| < — (81)

for sufficiently large c.
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Proof. We follow Esteban and Séré [10, Proof of Lemma 7 and Theorem 3],
who considered the non-relativistic limit of self-adjoint Dirac-Fock operators.
Since D, ~(0) is not self-adjoint, there are some additional difficulties. To
simplify the notation, we suppress the dependence of ¢, ;(c,~;0) on ¢, v and
0. We have

En,l(ca 7)2||¢n,l| ?= |‘Dc,v(9)¢n,l||2
>e 2ReV[2(1 — 25inTm @ — v/4) — 4|V bl
+[c4(1 —2sinIm#) — 16702]H¢n71||2,

where we used Hardy’s inequality. Since E,, ;(c,v)? — ¢* <0, it follows that

Epn(c,7)? — ¢t + 2sinIm 6c? + 16¢2 a2
2(1 —2sinIlm @ — 1/4) — 4cy !
< C(sinTm Oc? + 1)||pni

IV nall® <

2 (82)

for sufficiently large ¢, where C' > 0 does not depend on c.

Note that the term proportional to ¢? in (82) does not occur for Im 6 = 0, which
implies immediately the boundedness of |V | in this case. To circumvent
this difficulty, we write the Dirac equation in its components, where (in abuse
of notation) ¢y + denotes the upper and, respectively, lower components of

¢n,l3
ce o - Voni— — AV (O) it + Pbnis = Eni(c,¥)bni+ (83)
66760 : V¢n,l,+ - "}/V(Q)(ﬁnyl’, - 62(1)"’[7, = n,l(ca V)an,l,f (84)

Dividing (83) by ¢, using Hardy’s inequality and the boundedness of E,, ;(c, ) —
2, Formula (82) implies

2 |En,l(ca ’7) B C2|
[Vni,—II < E||V¢n,l,+” + WH%,LH\ <C (85)

for some C' > 0 independent of ¢, i.e. ||[ V¢, | is bounded in ¢. Dividing (84)
by ¢, we obtain

2 |Eni(c,y) + ¢
[Vni+| < EHV%,L—H + WH%,L—H <C (86)

for some C' > 0 independent of ¢, where we used Theorem 9 and Equation (85).
This shows (80). Inserting (86) in (85), Equation (81) follows. O

REMARK 6. Their validity of Theorem 9 and Theorem 10 in the Coulomb case

could be derived from the explicit form of the eigenfunctions (see the proof of
Lemma 11).
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Moreover, we need a bound on the norm of the dilation operator I (6), restricted
to the spaces Ran P, (c,;6).

LEMMA 9. Suppose that the assumptions of Lemma 8 hold. Then the family
of operators U(0)|ran p, (c,v;0) : Ran Py(c,v;0) — Ran P, (c,v;0) is uniformly
bounded in ¢ and 6.

Proof. Surely U(0)|ran P, (s0,v;0) : Ran Py (00,7;0) — Ran P,(0c0,v;0) is well
defined for all @ € C with |#| < min{n/4,0} (see [2, 6]) and (as a mapping
between finite-dimensional vector spaces) bounded. Since the operator is a
holomorphic function of @ for |#| < min{n/4,0}, there is a bound C’ > 0
(independent of ) on its norm.

Let f € RanP,(c,7;0). Then there is a fe Ran P, (00,7;0) with f =
Unr(c,7;0)f, and for real 6 f(0) := Uea(0) f = U(O)Unr(c,v; 0)UO) 1 f(0) =
Unr(c,v;0)f(0) holds, where f(0) := Ua(f)f. By holomorphic continua-
tion we obtain for complex 6 the equality f(f) = Unr(c,7;0)f(6). Thus
Lemma 8 implies [F@)] < [Uxn(cO)IFO)] < (1 + Cxnp/C Il <
(14 Cngrp/c)C’|| f]|| for some C’ > 0 independent of ¢ and . O

The following corollary shows that also the projections on the fine structure
components are bounded uniformly in c¢. This follows from the fact the dilated
projections are similar to the corresponding orthogonal projections belonging
to the corresponding self-adjoint Dirac operators because of Lemma 9. Note
that in general such projections are not uniformly bounded in the perturbation
parameter (see [33, Chapter II-1.5]).

COROLLARY 5. Let 1 < n < n and suppose that the assumptions of Lemma 9
hold. Then || Py i(c,v;0)|| < C for some C > 0 independent of n, I, ¢ and 6.

Proof. This follows from Lemma 5, since the projections P, ;(c,7;0) =
=U(0)"1 P, (c,v;0)U(0) are orthogonal. O

8.2 APPLICATION TO EXPECTATION VALUES OF DIRAC MATRICES

We are now in the position to investigate expectation values of the matrices
«. Since these matrices are odd, such expectation values involve scalar prod-
ucts of the upper component of one spinor with the lower component of the
other spinor. Therefore, one expects that such expectation values converge to
zero like 1/¢ as ¢ — oo uniformly in a set of suitable spinors. We show in the
following that this is true, if one of the spinors is in the set of eigenstates (in
the positive part of the gap) and the other state is an arbitrary state from the
positive spectral subspace. Note that this is not true, if both states are arbi-
trary states from the positive spectral subspace. At least for the free spectral
subspaces this can be seen from the explicit form of the projections (see Section
5). We will apply this result in [30].
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LEMMA 10. Suppose that the assumptions of Lemma 9 hold and let n as in
Section 7. Then there is a constant C' > 0, independent of ¢ and 6, such that
foralll<n,n' <n,1<1<n,1<l<n and ki, ky € R3

Clki|

Hpn,l(ca v 9)k1 : aeikz.mpn’,l’(ca v 9)” § T

Proof. This follows from Theorem 9 and Corollary 5, since ¢ is an odd operator.
O

LEMMA 11. Suppose that V = V. Let ¢ > 1 and v/c < \/3/2. Then there is
a constant C > 0, independent of ¢, such that

[z Pni(c,7; 0) < C

holds, where x denotes the operator of multiplication with the space variable.

Proof. We define the unitary dilations U, f.(x) := (U.f)(z) := ¢ 3/2f(c"'x)
and note that U.De U; ' = ¢?Dy /.. Thus, if f € H'(R3C*) is a normed
eigenfunction of D, , with eigenvalue E, ;, then f. is a normed eigenfunction
of Dy /. with eigenvalue E,1/c?. The radial parts f. 1(r) of the upper and
lower component, respectively, of f. are (see [35, Abschnitt 36])

+(20)%2 (14 Eny/AT(25 +np +1)

fex(r) = (2)\7‘)&7167)\7“

T(27 + 1) 12 (% — m)n,!
x {(% — K)F(=np, 29+ 1,200) F i, F(1 — ny, 27 + 1,201}

Here the radial quantum number fulfills n,. € Ny if kK < 0 and n,. € Nif x > 0,
and k € £N is the eigenvalue of the spin-orbit operator (see [49, Chapter
4.6]). F denotes the confluent hypergeometric function, which reduces to a
polynomial in 2Ar here (see [35, Abschnitt 36] and [34, Abschnitt d]). Moreover,

¥ = /K2 =~2/c? and A := /1 — Egyl/c‘l. Thus, the radial parts fi (r) of the
upper respectively lower components of f are

C E£(2eN)?2 (1 £ By /A2 + 1, + 1)

— 9 F—1_—cAr
F£(0) = T N A (2Ar)T e
x {(% — K)F(=np, 29+ 1,2eA7) F i F(1 = 0y, 29+ 1,2eAr)

Using the explicit formula (see [35]) for the eigenvalues, we see that cA is a
function bounded in ¢ with ¢cA — ~/n for ¢ — oco. Moreover, obviously
4 — || holds. This shows the claim. O

REMARK 7. At this point we make use of the explicit from of the eigenfuntions
of the Coulomb Dirac operator. There do not seem any results to be available
in the literature about exponential decay of eifenfunctions of the Dirac operator
uniformly in the velocity of light.
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LEMMA 12. Suppose that the assumptions of Lemma 9 are fulfilled and let n
as in Section 7. Let moreover f : C — C with |f(z)| < |z|. Then there is a
constant C > 0, independent of ¢, such that for all 1 <n <n,1<1<n and
kl, ko € R3

[P, (e;7; 0)k1 - e f (ko - ) P (¢, 0)]| <

Proof. Lemma 11 implies that ||zP, ;(c,v;0)| is uniformly bounded in ¢, in
particular (using the notation of Theorem 9) x¢, ;1 (c,7v;0). Now the claim
follows exactly as in Lemma 10. O

Clka k2|
a—

The following theorem generalizes Lemma 10. Note that the statement of
Lemma 10 is not completely obvious, since not even the lower component of
the free positive spectral projection converges to zero in norm as ¢ — oo. This
is, however, compensated by the fact that the H'-norm of the upper component
of bound states is bounded uniformly in ¢ (Theorem 10).
THEOREM 11. Suppose the assumptions of Lemma 9 hold and let n as in Section
7. Then there is a constant C' > 0, independent of ¢ and 0 such that for all
1<n<n,1<1<n andki, ks € R3
Clha| (1 + [k2l)

- .
Proof. Corollary 1 and Corollary 5 imply || Pn(c,v; 0)k1 - ikz'zA(i)( 0)] <
| Poi(c,v; 0)k1 - cxe®e ‘”AC o ( )|+ Cxr|k1 |2 with some C' > 0 independent of ¢
and c. Thus, it suffices to show || P, (c,v; 0)k - cetr? mA((fO)( )| < w

for some C > 0. In a first step, we pick f € RanPn,l(c,v;é) and g €
T

1P i(e,y; 0)ky - e 2 A (9)]| <

Ran ASEO)(H) normed, but arbitrary otherwise. We have g = pr(c 0)(g,0)
for some g € L?(R3;C?). It follows that g = F~1( +Ezp(’9’39).7-", o (paep]:g)
where F denotes both the Fourier transform on L?(R?; C2?) and on L?(R3; C*).
We decompose f = (fi, f_)7 with fi € L?(R3;C?). It follows that

(. Prale, 7 O)krcxe™ AT (0)9)

—ce Vo c? + E.(p;0)

<|(f. ,kl-a'.?’:_lifg + |kl f=1lllg sup .
7+ o P+ - sup |
Similarly to the proof of Theorem 1 we see that the supremum
SUPpcRs |%p(gsm| is bounded independently of ¢ and 6. Thus, Theorem

9 implies the claim for the second summand.
—0
For the first summand, observe that sup,cgs |M| < e™/*/c. Thus

ce Yo -p

. ik:g-:b B —1~
|(f+7k1 ge F Ng(p,o) F g)|
: —ik2~£c _ce_e —1~ |k1| le T
= Il (V) e o P ) < S Z et gl
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Theorem 1 yields ||| < v/1+ Crw|Imé|||g||, which shows

(f, Paa(e, v 0)kiae™ A5 (0)g)] < Ol f]|]1gll (87)

for some C > 0, if one takes Theorem 9 and Theorem 10 into account .

Now, pick f,g € L2?(R3;C*) arbitrarily and apply (87) to the functions
Poi(e,v;0)f and AS[O)(Q)Q. This implies the claim together with Corollary
5 and Lemma 4. O

A SOME ESTIMATES TAKEN FROM BACH, FROHLICH, AND SIGAL [5]

In this appendix we quote some results from [5] which we need for the inves-
tigation of the non-relativistic limit in Section 8. We quote the result only in
the generality which we need here and would like to mention that it also holds
for suitable multi-particle Schrédinger operators.

We define
o—20
H,(0) := — 5 A —~V(0) (88)
as operator on L?(R3;C?) and pick some eigenvalue E;. We define (with
r > 0 small enough) Py (v;0) := —(2mi)~! fIE /—z|=7-(H7(9) — 2)7ldz as

projection onto the eigenspace of H,(0) with eigenvalue E,,. We abbrevi-
ate Pp/(v;0) == 1 — P,(6). For n > 0 with B < —n < Ej41 we define
Paise(730) = 3.5, <y Pi(7:0) and Paisc(7;0) := 1 — Faise(7; ).

In the following, we pick a sufficiently small 6y > 0.

LeMMA A.1 ([5], Corollary 1.4.). There is a constant C > 0 such that for all
6] < 0o the estimate ||[H(0) — Hy(0)](H,(0) £1)7t|| < C|6]| holds.

Lemma (A.1) implies

CoROLLARY A.1 ([5], Equation (3.79)). There is a C > 0 such that for all
|0] < o the estimate || Pp(7;6) — Pn(7v;0)|| < C|6] holds. The same estimate is
true if one replaces P, with Pgisc-

Using Lemma A.1 and Corollary A.1 as well as a resolvent expansion one shows

THEOREM A.1 ([5], Lemma 3.8.). Let z € C with Rez < ¥ —n. Then the
operator H.(0) — z is invertible on Ran Pyisc(7y;0) for sufficiently small |6|(1 +
(—n —Rez)~ 1) and the estimate

H(H’Y(9)|Pdisc('y;9) - Z)ilpdisc(v; 9)” S 2(777 - Re 2)71
holds.
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1. INTRODUCTION

Suppose G is a complex, reductive algebraic group, B is the variety of Borel
subgroups of G. Let g be the Lie algebra of G and N the cone of nilpotent
elements in g. Let T*B denote the cotangent bundle of 5. Then there is a
moment map, po: T*B — N. The Steinberg variety of G is the fibered product
T*B x n T*B which we will identify with the closed subvariety

Z={(z,B',B") €N x BxB|z e Lie(B') N Lie(B") }

of N x B x B. Set n = dim B. Then Z is a 2n-dimensional, complex algebraic
variety.

If V = ®;>0V; is a graded vector space, we will frequently denote V' by V,.
Similarly, if X is a topological space, then H;(X) denotes the i*? rational Borel-
Moore homology of X and He(X) = ®;>0H;(X) denotes the total Borel-Moore
homology of X.

Fix a maximal torus, T, of G, with Lie algebra t, and let W = Ng(T)/T be
the Weyl group of (G,T). In [6] Kazhdan and Lusztig defined an action of
W x W on He(Z) and they showed that the representation of W x W on the

IThe authors would like to thank their charming wives for their unwavering support during
the preparation of this paper
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top-dimensional homology of Z, Hy,(Z), is equivalent to the two-sided regular
representation of W. Tanisaki [11] and, more recently, Chriss and Ginzburg
[3] have strengthened the connection between Ho(Z) and W by defining a Q-
algebra structure on He(Z) so that H;(Z) * H;(Z) C H;yj_4,(Z). Chriss and
Ginzburg [3, §3.4] have also given an elementary construction of an isomorphism
between Hy,(Z) and the group algebra QW.

Let Z; denote the “diagonal” in Z:

7y ={(z,B',B") e N x Bx B|z € Lie(B')}.

In this paper we extend the results of Chriss and Ginzburg [3, §3.4] and show
in Theorem 2.3 that for any ¢, the convolution product defines an isomorphism
Hi{(Z1) ® Hyn(Z) = H;(Z). It then follows easily that with the convolution
product, He(Z) is isomorphic to the smash product of the coinvariant algebra
of W and the group algebra of W.

Precisely, for 0 < i < n let Coinvg;(WW) denote the degree i subspace of
the rational coinvariant algebra of W, so Coinvy,; (W) may be identified with
the space of degree i, W-harmonic polynomials on t. If j is odd, define
Coinv;(W) = 0. Recall that the smash product, Coinv(W)#QW, is the Q-
algebra whose underlying vector space is Coinv(W) ®q QW with multiplication
satisfying (f1Q¢1)-(fa®d2) = f1d1(f2)@¢1d2 where f1 and f; are in Coinv(W),
¢1 and ¢ are in QW, and QW acts on Coinv(W) in the usual way. The al-
gebra Coinv(W)#QW is graded by (Coinv(W)#QW); = Coinv;(W)#QW
and we will denote this graded algebra by Coinve(W)#QW. In Theorem
2.5 we construct an explicit isomorphism of graded algebras Hy,_o(Z) =
Coinve (W)#QW .

This paper was motivated by the observation, pointed out to the first author
by Catharina Stroppel, that the argument in [3, 8.1.5] can be used to show that
H,(Z) is isomorphic to the smash product of QW and Coinve (). The details
of such an argument have been carried out in a recent preprint of Namhee Kwon
[8]. This argument relies on some deep and technical results: the localization
theorem in K-theory proved by Thomason [12], the bivariant Riemann-Roch
Theorem [3, 5.11.11], and the Kazhdan-Lusztig isomorphism between the equi-
variant K-theory of Z and the extended, affine, Hecke algebra [7]. In contrast,
and also in the spirit of Kazhdan and Lusztig’s original analysis of Hy,(Z), and
the analysis of Hy,(Z) in [3, 3.4], our argument uses more elementary notions
and is accessible to readers who are not experts in equivariant K-theory and to
readers who are not experts in the representation theory of reductive, algebraic
groups.

Another approach to the Borel-Moore homology of the Steinberg variety uses
intersection homology. Let p: Z — N be projection on the first factor. Then,
as in [3, §8.6], He(Z) & Ext‘gl(/_v') (Rp«Qar, RptsQpr). The Decomposition The-
orem of Beilinson, Bernstein, and Deligne can be used to decompose Ru.Qnr
into a direct sum of simple perverse sheaves Ru.Qn = @44 ICZ:&"’ where x
runs over a set of orbit representatives in N, for each z, ¢ runs over a set of ir-
reducible representations of the component group of Z¢(z), and IC, 4 denotes
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an intersection complex (see [2] or [9, §4,5]). Chriss and Ginzburg have used
this construction to describe an isomorphism Hy, (Z) =2 QW and to in addition
give a description of the projective, indecomposable Hq(Z)-modules.

It follows from Theorem 2.3 that H;(Z) = Coinvyy,—;(W) ® Hyn(Z) and so

Coinvy(W) © Hun(Z) = Extp( ) (RpQur, R Q)
1.1 ~ dn—i N, Ty,
(1.1) ~ PP st (ch,;,lcwﬂ).

¢ Y,
In the special case when ¢ = 0 we have that

Coinvo(W) @ Hin(Z) 2 Endpy) (RiQx) = @) Endpy (Icgfg) .
z,¢

The image of the one-dimensional vector space Coinvo(W) in
Endpany (Rps«Qar) is the line through the identity endomorphism and
QW = Hy(Z) = @©u¢Endpy (ICZ%"’) is the Wedderburn decomposi-
tion of QW as a direct sum of minimal two-sided ideals. For i > 0 we have
not been able to find a nice description of the image of Coinv;(W) in the
right-hand side of (1.1).

The rest of this paper is organized as follows: in §2 we set up our notation
and state the main results; in §3 we construct an isomorphism of graded
vector spaces between Coinve(W) ® QW and Hyp,—e(Z); and in §4 we com-
plete the proof that this isomorphism is in fact an algebra isomorphism when
Coinve (W) ® QW is given the smash product multiplication. Some very gen-
eral results about graphs and convolution that we need for the proofs of the
main theorems are proved in an appendix.

In this paper ® = ®q, if X is a set, then dx, or just J, will denote the diagonal
embedding of X in X x X, and for g in G and x in g, g - « denotes the adjoint
action of g on .

2. PRELIMINARIES AND STATEMENT OF RESULTS

Fix a Borel subgroup, B, of G with T' C B and define U to be the unipotent
radical of B. We will denote the Lie algebras of B and U by b and u respectively.
Our proof that He(Z) is isomorphic to Coinve(W)#QW makes use of the
specialization construction used by Chriss and Ginzburg in [3, §3.4] to estab-
lish the isomorphism between Hy,(Z) and QW. We begin by reviewing their
construction.

The group G acts diagonally on B x B. Let O, denote the orbit containing
(B,wBw~!). Then the rule w — O, defines a bijection between W and the
set of G-orbits in B x B.

Let wz: Z — B x B denote the projection on the second and third factors and
for w in W define Z,, = ng(Ow). For w in W we also set u, = uNw-u. The
following facts are well-known (see [10] and [9, §1.1]):

o Z, =G xBYBy,.

DOCUMENTA MATHEMATICA 14 (2009) 339-357



342 J. M. DouGLASs AND G. ROHRLE

e dim 7, :ﬁ.

e The set { Z,, | w € W} is the set of irreducible components of Z.
Define

g={(z,B") €egx B|xelLie(B)},
N ={(z,B")e N x B| z € Lie(B')}, and

Z={(z,B',B") € gx Bx B |z € Lie(B') N Lie(B") },

and let u: g — g denote the projection on the first factor. Then N =~ T*B,
uNY =N, Z2N xyN,and Z =G x, 3.

Let #: Z — B x B denote the projection on the second and third factors and
for w in W define Zu = 77Y0Oy). Then it is well-known that dim Zu =dimg
and that the closures of the ZJJ’S for w in W are the irreducible components of

~

Z (see [9, §1.1]).
Next, for (z,gBg~!) in g, define v(z,gBg~!) to be the projection of g~ -z in t.
Then p and v are two of the maps in Grothendieck’s simultaneous resolution:

g
t
It is easily seen that if fi: 7 — g is the projection on the first factor, then the

square
g
X

g

1

—t/W

m
_—

g

X =—N)

e
g WX g

is cartesian, where the vertical map on the left is given by (z,B’,B") —
((z, B"), (z,B")). We will frequently identify Z with the subvariety of g X g
consisting of all pairs ((z, B’), (z, B")) with = in Lie(B’) N Lie(B").

For w in W, let I'y,-1 = { (h,w™ - h) | h € t} C t x t denote the graph of the
action of w~! on t and define

~

Aw=ZN0wxv) ' (Typ1)={(2,B,B") e Z|v(z,B") =w 'v(z,B)}.

In the special case when w is the identity element in W, we will denote A,, by
A
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The spaces we have defined so far fit into a commutative diagram with cartesian

squares:
g
X

g

i

(2.1) Ay

|

Z
(v % 0) " (Tyr) ET -

|

[yt ————>txt

xug

Let vy : Ay — I'y—1 denote the composition of the leftmost vertical maps in
(2.1), s0 vy, is the restriction of v X v to A,,.

For the specialization construction, we consider subsets of Z of the form vyt (9)
for $ C T'y-1. Thus, for h in t we define A® = v *(h,w=h). Notice in
particular that AY = Z. More generally, for a subset S of t we define AS =
[lhes AL, Then, A = v;'(S"), where S is the graph of w™! restricted to S.
Let t.g denote the set of regular elements in t.

Fix a one-dimensional subspace, £, of t so that £ Nt = ¢\ {0} and set
¢ = £\ {0}. Then AY = AL J[A% = AL J]Z. We will see in Corollary
3.6 that the restriction of v, to A% is a locally trivial fibration with fibre
G/T. Thus, using a construction due to Fulton and MacPherson ([4, §3.4], 3,
§2.6.30]), there is a specialization map

lim: Hy o(AY)) — Ho(2).

Since A% is an irreducible, (2n+1)-dimensional variety, if [A% ] denotes the fun-
damental class of AY | then Hy, 2(A%,) is one-dimensional with basis {[A%]}.
Define \,, = lim([A%]) in Hyn(Z). Chriss and Ginzburg [3, §3.4] have proved
the following theorem.

THEOREM 2.2. Consider He(Z) endowed with the convolution product.

(A) For 0 < 4,5 < 4n, Hi(Z) «+ Hj(Z) C Hij1j—an(Z). In particular,
Hy, (Z) is a subalgebra of He(Z).

(B) The element Ay, in Hy,(Z) does not depend on the choice of £.

(C) The assignment w +— A\, extends to an algebra isomorphism
a: QW = Hy,(2).

Now consider
Zy={(2,B',B") e N x Bx B|z € Lie(B')}.

Then Z; may be identified with the diagonal in N x N. Tt follows that VAR
closed in Z and isomorphic to N.
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Since N = T*B , it follows from the Thom isomorphism in Borel-Moore homol-
ogy [3, §2.6] that H;y2,(Z1) = H;(B) for all 4. Since B is smooth and compact,
H;(B) = H*"~%(B) by Poincaré duality. Therefore, Hy,—;(Z1) = H'(B) for all
i.

The cohomology of B is well-understood: there is an isomorphism of graded
algebras, H*(B) = Coinve(W). It follows that H;(Z:) = 0 if j is odd and
Hyy—2i(Z1) = Coinve; (W) for 0 <i <n.

In §3 below we will prove the following theorem.

THEOREM 2.3. Consider the Borel-Moore homology of the variety Z;.

(A) There is a convolution product on He(Zy). With this product, He(Z1)
is a commutative Q-algebra and there is an isomorphism of graded Q-
algebras

B: Coinve(W) —— Hyn_s(Z1).

(B) If r: Zy — Z denotes the inclusion, then the direct image map in
Borel-Moore homology, r.: He(Z1) — He(Z), is an injective ring
homomorphism.

(c) If we identify He(Z1) with its image in He(Z) as in (b), then the linear
transformation given by the convolution product
Hi(Z,) ® Hyn(Z) —— Hy(Z)

is an isomorphism of vector spaces for 0 < i < 4n.

The algebra Coinv, (W) has a natural action of W by algebra automorphisms,
and the isomorphism [ in Theorem 2.3(a) is in fact an isomorphism of W-
algebras. The W-algebra structure on He(Z1) is described in the next theorem,
which will be proved in §4.

THEOREM 2.4. Ifw is in W and He(Z1) is identified with its image in He(Z),
then

Aw * Hi(Z71) % Ay—1 = Hi(Z7).
Thus, conjugation by Ay, defines a W-algebra structure on He(Z1). With this
W -algebra structure, the isomorphism 3: Coinve (W) =5 Hin—o(Z1) in The-
orem 2.3(a) is an isomorphism of W -algebras.

Recall that the algebra Coinv(W)#QW is graded by (Coinv(W)#QW), =
Coinv; (W) ® QW. Then combining Theorem 2.2(c), Theorem 2.3(c), and The-
orem 2.4 we get our main result.

THEOREM 2.5. The composition
Coinve (W)HQW 22 Hyno(Z1) © Hin(Z) —— Hin_o(Z)

s an isomorphism of graded Q-algebras.
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3. FACTORIZATION OF H,(Z)

PROOF OF THEOREM 2.3(A). We need to prove that He(Z1) is a commutative
Q-algebra and that Coinve(W) = Hy,—o(Z1).
Let m: N' — B by m(z,B’) = B’. Then 7 may be identified with the vec-
tor bundle projection T*B — B and so the induced map in cohomology
7 H(B) — HYN) is an isomorphism. The projection 7 determines an
isomorphism in Borel-Moore homology that we will also denote by 7* (see [3,
§2.6.42]). We have 7*: H;(B) =, iron(N).
For a smooth m-dimensional variety X, let pd: H*(X) — Ha,,_;(X) denote
the Poincaré duality isomorphism. Then the composition
d—l ) 7'[‘* i ~ d ~

Hop—i(B) =—— H'(B) =— H'(N) == Hup—i(N)
is an isomorphism. It follows from the uniqueness construction in [3, §2.6.26]
that

pdon*o pd71 =" Hgn_i(B) — H4n—i(-/\7)

and so 7* o pd = pd o 7 : H'(B) — Hypn_;(N).
Recall that Coinv;(W) = 0 if j is odd and Coinvg; (W) is the degree 7 subspace
of the coinvariant algebra of W. Let bi: Coinve(W) — H*(B) be the Borel
isomorphism (see [1, §1.5] or [5]). Then with the cup product, H*(B) is a
graded algebra and bi is an isomorphism of graded algebras.
Define : Coinv,(W) — Hy,—i(Z1) to be the composition

Coinv,(W) 2 H'(B) T H'(N') 2% Hyw i(N) 2 Hunoi(Z1)
where § = d7. Then (3 is an isomorphism of graded vector spaces and

B =0,0pdon®obi=4d,0n" opdobi.

The algebra structure of H*(B) and H*(N) is given by the cup product,

and 7*: H*(B) — H*(N\) is an isomorphism of graded algebras. Since
N is smooth, as in [3, §2.6.15], there is an intersection product defined

on He(N) using Poincaré duality and the cup product on H®*(N). Thus,

pd: H*(N) — Hyn_o(N) is an algebra isomorphism. Finally, it is observed
in [3, §2.7.10] that d,: He(N) — He(Z1) is a ring homomorphism and hence
an algebra isomorphism. This shows that § is an isomorphism of graded alge-

bras and proves Theorem 2.3(a).

PrROOF OF THEOREM 2.3(B). To prove the remaining parts of Theorem 2.3,
we need a linear order on W. Suppose |W| = N. Fix a linear order on W that
extends the Bruhat order. Say W = {wy,...,wy}, where w; = 1 and wy is
the longest element in W.

For 1 <j < N, define Z; = g:l Zy,. Then, for each j, Z; is closed in Z, Z,,
isopenin Z;, and Z; = Z;_1 ]_[ij. Notice that Zy = Z and Z; = Z,,.
Similarly, define ,Z\j = Z:l ’Z\w%. Then each ,Z\j is closed in 2, ij is open in

,Z\j, and ,Z\j = Zj—l Hij.
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We need to show that r,: He(Z1) — He(Z) is an injective ring homomor-
phism.

Let res;: H;(Z;) — H;i(Zw,) denote the restriction map in Borel-Moore homol-
ogy induced by the open embedding Z,,; C Z; and let r;: H;(Z;_1) — H;(Z;)
denote the direct image map in Borel-Moore homology induced by the closed
embedding Z;_1 C Z;. Then there is a long exact sequence in homology

T4 resj

. _>H1(Z_1)_>H1(Z)—>H1(ZMJ)—6> i—l(Zj—l)—> .

J J
It is shown in [3, §6.2] that 9 = 0 and so the sequence

(3.1) 0—>H(Z; 1) —>Hy(Z})——> Hy(Z4p,) —>0

is exact for every i and j. Therefore, if r: Z; — Z denotes the inclusion, then
the direct image r.: H;(Z;) — H;(Z) is an injection for all ¢. (The fact that r
depends on j should not lead to any confusion.)

We will frequently identify H;(Z;) with its image in H;(Z) and consider H;(Z;)
as a subset of H;(Z). Thus, we have a flag of subspaces 0 C H;(Z;) C --- C
Hi(Zn-1) C Hi(2).

In particular, r.: H;(Z1) — H;(Z) is an injection for all i. It follows from
[3, Lemma 5.2.23] that r, is a ring homomorphism. This proves part (b) of
Theorem 2.3.

PROOF OF THEOREM 2.3(C). We need to show that the linear transformation
given by the convolution product H;(Z1) ® Hyn(Z) — H;(Z) is an isomorphism
of vector spaces for 0 < i < 4n.

The proof is a consequence of the following lemma.

LEMMA 3.2. The image of the convolution map * : Hi(Z1)®@Hun(Z;) — Hi(Z)
is precisely Hi(Z;) for 0 <i<4n and1 < j < N.

Assuming that the lemma has been proved, taking j = N, we conclude that the
convolution product in He(Z) induces a surjection H;(Z1)®Hy,(Z) — H;(Z).
It is shown in [3, §6.2] that dim He(Z) = |W|? and so dim He(Z1) @ Hyn(Z) =
|[W|? = dim He(Z). Thus, the convolution product induces an isomorphism
H;(Z1) ® Hyn(Z) =2 Hi(2).

The rest of this section is devoted to the proof of Lemma 3.2.

To prove Lemma 3.2 we need to analyze the specialization map,
lim: Heyo(AL) — Ho(Z), beginning with the subvarieties AY, and A!, of
Ay .

SUBVARIETIES OF A,,. Suppose that ¢ is a one-dimensional subspace of t with
0* =10\ {0} = €N teg. Recall that u,, =uNw-ufor win W.

LEMMA 3.3. The variety AL, N Zu is the G-saturation in Z of the subset
{(h+n,B,wBw ') |hel,ncu,}.
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Proof. By definition,
A=A TTAS ={ (=B B € Z | v(x,B") =w 'v(z,B) e w () }.

Suppose that & is in t,eg and (z, g1Bgr Y, 92Bgy Y)isin AL, Then g7tz = htmy
and g;l -z = wth + no for some n; and ny in u. Since A is regular, there
are elements u; and ug in U so that u;'g; " -h = h and uy 'g; ' - h = w™'h.
Then x = giuy - h = ggugw_l - h and so giu; = gquw_lt for some t in T.
Therefore, (z, g1 Bgy ', g2Bgy 1) = gius - (b, B,wBw™"). Thus, A? is contained
in the G-orbit of (h, B,wBw™!). Since v is G-equivariant, it follows that A"
is G-stable and so A" is the full G-orbit of (h, B,wBw™"!). Therefore, Aﬁj is
the G-saturation of { (h + n, B,wBw™! | h € £*, n € u,, } and A? C Zw for h
in £*.

We have already observed that A9 = Z and so

ANZ, = (Afjm?w)]_[(/\?vmiw) =25 T[] 2

It is easy to see that Z,, is the G-saturation of { (n, B,wBw™!) | n € u, } in
Z. This proves the lemma. O

COROLLARY 3.4. The variety A, N 2w is a locally trivial, affine space bundle
over O, with fibre isomorphic to £ + u,,, and hence there is an isomorphism
AN Zy 2 G xBE (04 uy,).

Proof. Tt follows from Lemma 3.3 that the map given by projection on the
second and third factors is a G-equivariant morphism from Afu onto O,, and
that the fibre over (B,wBw™!) is {(h + n,B,wBw™') | h € {,n € uy }.

w

Therefore, AY, = G xB""B (£ 4+ u,). a

Let g denote the set of regular semisimple elements in g and define g.s =
{(z,B') €g|x € g }. For an arbitrary subset S of t, define

= (S) = {0, B) €§ | v(a,B) € S}

For w in W, define w: G/T X tyeg — G/T X treg by w(gT, h) = (qwT,w='h).
The rule (97", h) — (g - h,gB) defines an isomorphism of varieties

fi GJT X trog — Brs

and we will denote the automorphism f owo f~! of g, also by @. Notice that
if b is in tyeg and g is in G, then w(g - h,gB) = (g h,gwBw™1g™1).

LEMMA 3.5. The variety AY, is the graph of Wlgew : 3¢ - gu e,
Proof. Tt follows from Lemma 3.3 that
A, ={(g-h,gBg ', guBw g7 ) g x BxB|hel* ge G}
={((9-hgBg "), (g-h,gwBw 'g~")) egxa|hel, geG}.
The argument in the proof of Lemma 3.3 shows that

¢ ={(g-hgBg ") |het',geG}
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and by definition @(g - h,gB) = (g - h,gwBw~'g~"). Therefore, AL is the
graph of w]ge- . O

COROLLARY 3.6. The map vy, : Aﬁj — 0% is a locally trivial fibration with fibre
isomorphic to G/T.

5

Proof. This follows from the lemma and the fact that g* = G/T x ¢*. ]

THE SPECIALIZATION MAP. Suppose that w is in W and that ¢ is a one-
dimensional subspace of t with ¢* = ¢\ {0} = £ N tiez. As in [4] and [3,
§2.6.30], lim: H,;y2(A%) — H;(Z) is the composition of three maps, defined as
follows.

As a vector space over R, £ is two-dimensional. Fix an R-basis of ¢, say {v1,v2}.
Define P to be the open half plane R<gv; &Ruvs, define I+ to be the ray Ry gvy,
and define I to be the closure of I, so I = R>gv;.

Since P is an open subset of £*, AZ is an open subset of A, and so there is a
restriction map in Borel-Moore homology res: Hiy2(AY ) — Hiio(AL).

The projection map from P to I-g determines an isomorphism in Borel-Moore
homology ¥: Hi2(AL) — Hip1(Ai°).

Since I = I [J{0}, we have AL = AL JTAY = AL [] Z, where Z is closed
in AI. The connecting homomorphism of the long exact sequence in Borel-
Moore homology arising from the partition A = Ao 117 is a map

8: HiJrl(Ai?O) — HZ(Z)
By definition, lim = 9 o 9 o res.
Now fix j with 1 < j < N and set w = wj.
Consider the intersection AL, NZ; (AI>"0Z )I_[(ZﬂZ )- Then ZNZ; is closed

in AL ﬂZ and by construction, Az; o c Z and Z N Z = Z;. Thus, AI N Z

i?" 11Z;. Let 0;: Hipi (ML) — H,(Z;) be the connecting homomorphlsm of
the long exact sequence in Borel-Moore homology arising from this partition.
Because the long exact sequence in Borel-Moore homology is natural, we have
a commutative square:

z+1 AI>0) 2 Hi(Z)

z+1 — HI(Z])

This proves the following lemma.

LEMMA 3.7. Fiz j with 1 < j < N and set w = w;. Then the map
0: Hiyp1 (AN°) — Hy(Z) factors as 1y o 0; where 0;: Hig (A5°) — H,(Z;)
is the connecting homomorphism of the long exact sequence arising from the
partition AL N Z = AT Z;.
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It follows from the lemma that lim: H;,2(A%, ) — H;(Z) factors as

res

. d; .

(3.8) Hita(AS) = Hio(AD) o Hip (AL0) 2 Hi(Z;) " Hi(Z).
Define lim;: H;y2(AY) — H;(Z;) by lim; = 0; 0 ¢ o res.

SPECIALIZATION AND RESTRICTION. As above, fix j with 1 < 7 < N and a

one-dimensional subspace ¢ of t with £* = £\ {0} = £ N tyeq. Set w = wj.
Recall the restriction map res;: H;(Z;) — H;(Z,) from (3.1).

LEMMA 3.9. The composition res;jolim;: Hy o(AL) — Hi(Zy) is surjective
for 0 <1i<d4n.
Proof. Using (3.8), res; olim; factors as

res;

Hio(AL) 2 Hypo(AR) 25 Hipa (AL0) 2 Hy(Z) s Hi(Z).

Lemma 3.11 below shows that res is always surjective and the map v is an
isomorphism, so we need to show that the composition res; o 9; is surjective.

Consider AL N Zw = (AL n Z\J) NZy = AL° []Zs. Then AL is open in
Al N Z, and we have a commutative diagram of long exact sequences

~ Ow
e s H_I(A{Umzw)_) 1+1A>0)—>H(Z )_>

I

= Hip1 (AL N Zj) — Hyp (M) —— Hi(Z)) — -

where J,, is the connecting homomorphism of the long exact sequence arising
from the partition AL ﬂZﬂ = AL 11 Zw- We have seen at the beginning of this
section that res; is surjective and so it is enough to show that 9,, is surjective.
Recall that {v1, v} is an R-basis of £ and I = R>gv;. Define

Er=G x BN"B (Rzom + uw)v
E]>0 =G XanB (R>QU1 + uw), and
EO =G XanB Uy

It follows from Corollary 3.4 that By = AL, B, = A{i“, and Ey = Z,,

so the long exact sequence arising from the partition AL N Zw = AL® 1 Zw
may be identified with the long exact sequence arising from the partition E; =
E1>0 H EQ:

o
——H; 1 (E)—=Hiy1 (B, ) —=H;(E)) — - --

Therefore, it is enough to show that Og is surjective. In fact, we show that
H,(Er) =0 and so Jg is an isomorphism.

Define g = G xP™" B (Rv; 4 u,,). Then Eg is a smooth, real vector bundle
over G/BN" B and so Eg is a smooth manifold containing E; as a closed subset.
We may apply [3, 2.6.1] and conclude that H;(E;) = H4""1={(Eg, Eg \ Ep).
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Consider the cohomology long exact sequence of the pair (Eg, Eg \ Ey). Since
Eg is a vector bundle over G/BN™ B, it is homotopy equivalent to G/BN"B.
Similarly, Eg\ E; = G <27 B (R.gv; + u,,) and so is also homotopy equivalent
to G/BNYB. Therefore, H'(Eg) = H'(Eg\ E;) and it follows that the relative
cohomology group H'(Eg, Eg\ Ey) is trivial for every i. Therefore, Hq(E;) = 0,
as claimed.

This completes the proof of the lemma. O

COROLLARY 3.10. The specialization map limy : H; o(AY) — H;(Zy) is sur-
jective for 0 <1 < 4n.

Proof. This follows from Lemma 3.9, because Z; = Z,,, and so res; is the
identity map. O

The next lemma is true for any specialization map.

LEMMA 3.11. The restriction map res: Hy o(AL) — Hiio(AL) is surjective
for every w in W and every i > 0.

Proof. There are homeomorphisms AY = G/T x ¢* and AL = G/T x P.
By definition, P is an open subset of ¢* and so there is a restriction map
res: Hy(0*) — Hy(P). This map is a non-zero linear transformation between
one-dimensional Q-vector spaces so it is an isomorphism.

Using the Kiinneth formula we get a commutative square where the horizontal
maps are isomorphisms and the right-hand vertical map is surjective:

Hiyo(AY) ——— Hi(G/T) @ Hy(€*) + Hy 41 (G/T) ® Hy ()

resl lid@res +0

Hipo(AR) H;(G/T) ® H2(P)

It follows that res: H; o(AL) — Hio(AD) is surjective. O

Proor or LEMMA 3.2. Fix ¢ with 0 < ¢ < 4n. We show that the image of
the convolution map * : H;(Z1) @ Han(Z;) — H;(Z) is precisely H;(Z;) for
1 < j < N using induction on j.

For j = 1, Hy,(Z1) is one-dimensional with basis {\1}. It follows from The-
orem 2.2(c) that A\; is the identity in He(Z) and so clearly the image of the
convolution map H;(Z1) ® Hy,(Z1) — H,;(Z) is precisely H,;(Z1).

Assume that j > 1 and set w = w;. We will complete the proof using the
commutative diagram with exact rows

i d® (1) id@res;
(3.12) Hi® Hun(Z_))—22"" | @ Han(2;) "2 H, © Han(Zu)

| Lo

H(Z;_1)¢ (r3)- H,(Z;) 4J>>HZ-(ZM)
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and the Five Lemma, where in the first line H; means H;(Z1). We saw in
(3.1) that the bottom row is exact and it follows that the top row is also exact.
By induction, the convolution product in He(Z) determines a surjective map
«: Hi(Z1) ® Hyn(Zj—1) — Hi(Z;—1). To conclude from the Five Lemma that
the middle vertical map is a surjection, it remains to define the other vertical
maps so that the diagram commutes and to show that the right-hand vertical
map is a surjection.
First we show that the image of the map H;(Z1) ® Hun(Z;) — H;(Z;) de-
termined by the convolution product in He(Z) is contained in H;(Z;). It then
follows that the middle vertical map in (3.12) is defined and so by exactness
there is an induced map from H;(Z1) ® Hy,(Zy) to H;(Z,) so that the dia-
gram (3.12) commutes. Second we show that the right-hand vertical map is a
surjection.
By Lemma 3.5, Af{* is the graph of the identity map of g¢ , and Af; is the graph
of wlgex . Therefore, Ay o AY =AY and there is a convolution product
Hip2(A7) ® Hapga(Ay) —— Hiya(AL).
Suppose a is in H;(Z1). Then by Corollary 3.10, a = lim;(a;1) for some ay in
H; 2(AY). Tt is shown in [3, Proposition 2.7.23] that specialization commutes
with convolution, so lim(a; * [AL]) = lim(a;) * im([AS]) = a * Ay. Also,
ay*[AL ] is in Hio(AY)) and lim = 7, olim; and so a* A\, = 7. olim;(ay *[A%])
is in H;(Z;). By induction, if k < j, then a * Ay, is in H;(Zx) and so a * Ay,
is in H;(Zy). Since the set { Ay, | 1 < k < j} is a basis of Hun(Z;), it
follows that a * Hypn(Z;) C Hi(Z;). Therefore, the image of the convolution
map H;(Z1) ® Han(Z;) — H;(Z) is contained in H;(Z;).
To complete the proof of Lemma 3.2, we need to show that the induced map
from H;(Z1) ® H4n(Zy) to H;(Zy,) is surjective.
Consider the following diagram:

Hio(A) @ Hapio(Aly)——=Hiys(AY))
lim; ® limj llimj

Hi(Z1) ® Han(Z;) ———H;(Z;)
id@res; res;

H(Z)) @ Hy(Zy)———=Hi(Zy)

We have seen that the bottom square is commutative. It follows from the
fact that specialization commutes with convolution that the top square is also
commutative. It is shown in Proposition A.2 that the convolution product
Hio(AT)Y® Hypyo(AL)) — Hiyo(AL) is an injection. Since Hyyo(Af) is finite-
dimensional and Hy,,42(A% ) is one-dimensional, it follows that this convolution
mapping is an isomorphism. Also, we saw in Lemma 3.9 that res; olim; is sur-
jective. Therefore, the composition res; olim; o * is surjective and it follows
that the bottom convolution map H;(Z1) ® Hupn(Zyw) — Hi(Z,,) is also surjec-
tive. This completes the proof of Lemma 3.2.
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4. SMASH PRODUCT STRUCTURE

In this section we prove Theorem 2.4. We need to show that A\, «H;(Z1)#\,-1 =
H;(Z,) and that §: Coinve(WW) = Hyp—o(Z1) is an isomorphism of W-
algebras.

Suppose that ¢ is a one-dimensional subspace of t so that £* = £\ {0} = {Ntyeg.
Recall that for S C t, g° = v~ (S). By Lemma 3.5, if w is in W, then A% is
the graph of the restriction of w to 'gve*. It follows that there is a convolution
product

s

* —1 0* — 1% *
Hint2(AS) © Hipo(AY )@ Hunya(AY ) s Hyp(A]).
Because specialization commutes with convolution, the diagram

s

* —1p* —1 % *
Hino(AS) @ Hipo(AY )@ Hypao(Al ) —— Hipa(AY)

lim®lim ® liml llim

Huy(Z) @ Hi(Z1) ® Hun(Z)

commutes.

We saw in Corollary 3.10 that lim; : H; o(AY) — H;(Z) is surjective. Thus,
if ¢ is in H;(Z1), then ¢ = lim(cy) for some ¢ in Hyyo (AL, (4*))' Therefore,
Nk, =lim([A% ])stim(er)+tim([A% 7)) = Tim ([A5]+ e1 + (A% 7).

. —1p% - - . —1p%
Since A% and AZ,IM ) are the graphs of w and w~! respectively, and A}’ )

is the graph of the identity function, it follows that [A% ] * ¢; * [AZ:(W}
Hio(AY 1(6*)) and so by (3.8), Ay * ¢ x A\y—1 is in H;(Z;). This shows that
)\w * Hz(Zl) * )\w—l = Hz(Zl) for all 4.

To complete the proof of Theorem 2.4 we need to show that if w is in W and
f is in Coinv; (W), then B(w - f) = Ay * B(f) * Ay—1 where w - f denotes the
natural action of w on f. To do this, we need some preliminary results.

First, since AY" is the diagonal in g¢ x g*", it is obvious that

] is in

Sow t =@ x@ )os: gy @) AL
Therefore,
(4.1) Soow t = (@t xw 1Y), 06,1 Hyg" ) — H;(AL)

for all 4. (The first 6 in (4.1) is the diagonal embedding g¢ = AY" and the
second ¢ is the diagonal embedding ﬁ“’fl(é*) = A?ilw).)

Next, with ¢ C t as above, §¢ = g¢ [~ 2(0) = g* ][N and the restriction
of v: gt — £ to g¥ is a locally trivial fibration. Therefore, there is a special-
ization map limg: Hy2(§%) — H;(N). Since 6,: H;15(§") — Hipo(AL) and
0«: Hi(Z) — H;(Z;) are isomorphisms, the next lemma is obvious.
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LEMMA 4.2. Suppose that ¢ is a one-dimensional subspace of t so that ¢* =
2\ {0} C tieg. Then the diagram

~p* 5 "

Hip2(3") — Hipa(A])

limgl lliml

H(Z) —— Hy(Z)
commutes.

Finally,/\?xj\/./\/':./\?andso ZoN = (J\7XN./\~/)O(./\7><NN)=./\7XN./\/'.

Thus, there is a convolution action, Hy,(Z) ® H;(N) — H;(N), of Hyn(Z)
on Hi (N)
Suppose that w is in W and z is in H¥(8). Then 7* opd(2) is in Hyn—;(N) and
S0 Ay * (7 0 pd(2)) is in Hyp_;(N). It is shown in [3, Proposition 7.3.31] that
for y in He(B), Ay * 7*(y) = €, (w - y) where €, is the sign of w and w -y
denotes the action of W on He(B) coming from the action of W on G/T and
the homotopy equivalence G/T ~ B. It is also shown in [3, Proposition 7.3.31]
that pd(w - z) = e,w - pd(z). Therefore,

Aw * (7% o pd(2)) = € (w - pd(2)) = €peum™ opd(w - z) = 7% o pd(w - 2).
This proves the next lemma.

LEMMA 4.3. If w is in W and z is in H;(B), then
Aw * (1% opd(2)) = 7" o pd(w - 2).
PROOF OF THEOREM 2.4. Fix w in W and f in Coinv,; (). We need to show

that Ay * B(f) * Ay—1 = B(w - f). Set C = Ay, * B(f) * Apy—1. Using the fact
that 8 = 0, o ™ o pd o bi we compute

€ =timy (A% ] limp (3(F)) + (A5, 7)) [3, 2.7.23]
= lim; o(@~* x @ 1), olim; * of(f) Proposition A.3
= lim; o6, o @, * 06! olim] ! o3(f) (4.1)
=4, olimgow, * 06 olim; ! 04, 0 6% o B(f) Lemma 4.2
=4, o limg ow; o limgy ! 061 o B(f) Lemma 4.2

=4, olimg ow; ! o limgy * o™ o pd o bi(f)

= 6. o limg ((limg ™ o o pd o bi()) * [A%_, 7)) [3, 2.7.11]
=0, (7" opd o bi(f)) * Ay-1) (3, 2.7.23]
= 6, (A * (7% o pd o bi(f))) Lemma A.1 and [3, 3.6.11]
= d, o opd(w - bi(f)) Lemma 4.3
=d,0om" opdobi(w- f) bi is W-equivariant
=pBw - f).
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This completes the proof of Theorem 2.4.

APPENDIX A. CONVOLUTION AND (GRAPHS

In this appendix we prove some general properties of convolution and graphs.
Suppose Mj, M, and M3 are smooth varieties, dim My = d, and that Z; 5 C
My x My and Zy 3 € My x Mz are two closed subvarieties so that the convolution
product,
Hi(Z12) @ Hj(Z23) — Hiyj—24(Z120 Za3),

in [3, §2.7.5] is defined. For 1 < 4,5 < 3, let 7;;: M; x M; — M; x M; be
the map that switches the factors. Define Zy1 = 71,2(Z1,2) € My x M; and
Zs9 = To,3(Z2,3) C M3 x M. Then the convolution product

Hj(Z32) ® Hi(Z21) — Hiyj-2a(Z32 0 Z2,1)
is defined. We omit the easy proof of the following lemma.
LEMMA A.l. If ¢ is in Hi(Z12) and d is in Hj(Za3), then (T1,3)«(c*d) =
(72,3)+(d) *' (71,2)4(c).
Now suppose X is an irreducible, smooth, m-dimensional variety, Y is a smooth
variety, and f: X — Y is a morphism. Then if I'x and I'y denote the graphs
of idx and f respectively, using the notation in [3, §2.7], we have 'y o'y =T
and there is a convolution product *: H;(I'x) ® Hap(T'y) — H;(Ty).
PROPOSITION A.2. The convolution product *: H;(T'x)® Hopm(T ) — H;(Ty)
18 an injection.
Proof. For i,j = 1,2,3, let p; ; denote the projection of X x X x Y on the
ith and j* factors. Then the restriction of p13 to (I'x x Y) N (X x I'y) is
the map that sends (z,z, f(x)) to (x, f(x)). Thus, the restriction of p; 3 to
(Tx xY)N(X xT'y) is an isomorphism onto 'y and hence is proper. Therefore,
the convolution product in homology is defined.
Since X is irreducible, so is I'y and so Hg,, (I'f) is one-dimensional with basis
[['¢]. Suppose that ¢ is in H;(T'x). We need to show that if ¢ * [I'f] = 0, then
c=0.
Fix ¢ in H;(I'x). Notice that the restriction of p1 3 to I'x x Y) N (X x I'y)
is the same as the restriction of ps 3 to (I'x x Y) N (X x I'y). Thus, using the
projection formula, we have

¢ [Cg] = (p1.3)« (PT 2¢ NP5 5[T5])
= (p2.3)« (P 2c NP3 3[Ty])
= ((p2,3)+p7 2¢) N [Tyl

where the intersection product in the last line is from the cartesian square:

Ff;>Ff

L

XXY—XxY
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Let p: X xY — X and ¢q: I'x — X be the first and second projections,
respectively. Then the square

Ty xY 22 X xY

I'x X

is cartesian. Thus,
e (% [T]) = ps (((p2,3)p1 2¢) N [Ty])
= ps ((P"quc) N [L'y])
— . (plr, )+ [T]
= g.cN[X]
= g«C,
where we have used the projection formula and the fact that (p|r,)«[I's] = [X].

Now if ¢*[['f] = 0, then g.c = 0 and so ¢ = 0, because ¢ is an isomorphism. O

Let T'y denote the graph of the identity functions idy. Then the following
compositions and convolution products in Borel-Moore homology are defined:

e I'yoI'x =I'y and so there is a convolution product
Hi(T'y) ® Hj(I'x) — Hiyj—m(Ly).
e I'y ol'yf-1 =T'y-1 and so there is a convolution product
Hz(]-—‘X)@Hj(Ff*l) —_— ,H,j,m(rffl).
e I'yol'y-1 = I'x and so there is a convolution product
Hi(Ty) @ Hj(Cy—1) — Hiyjm(x).

Thus, if cis in H;(I'y ), then [['f] ¢ * [[';-1] is in H;(I'x). Note that the map
f~'x f~1: Ty — I'x is an isomorphism, so in particular it is proper.

PROPOSITION A.3. If ¢ is in H;(Ty), then [Lf]*cx [Dp-1] = (f~1 x f71).(c).

Proof. We compute ([I'f] * ¢) * [ y-1], starting with [I'y] * c.
For 1 <4,j5 <3 let ¢;; be the projection of the subset

Ly xYNXxTy ={(z f(x),f(z)|ze X}

of X xY XY onto the 7, j-factors. Then ¢1 3 = g1,2. Therefore, using the
projection formula, we see that

[Cy]xe=

*

Lrl0(q1,2)xa3 3¢
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Next, for 1 <4,7 < 3 let p; ; be the projection of the subset
Py x XNX XDy ={(2 f(x),z)|recX}

of X x Y x X onto the i, j-factors. Then p; 3 = (f~* x id) o p2 3. Therefore,
using the fact that [['¢] x ¢ = (q1,2)+¢5 3¢ and the projection formula, we have

([Cl*c) * [Tpa] = (p13)s (PT2((q1,2)45 5¢) NP3 5[T 1))

= (f7! % id)s(p2.3)« (P 2((91,2)+03 5¢) NP3 5[0 5-1])
= (f7! xid)s ((p2,3)+p1 2(q1,2)+45 3¢ N [Tp-1])

= (f 7" X id)«(p2,3) D7 2(q1,2) G5 3¢

The commutative square

Tyx XNX xTpor — Y posynX xTy

Fpx XNX xTya e Iy
is cartesian, so pj 5(q1,2)« = (id x id x f)*.
Also, the commutative square
Ff X XA X % Ff71 g2,30(tdXxidX f) Iy
(flxid>opz,3l lfle1
I'x I'x

id
is cartesian, so (f 7! x id).(p2,3)«(id x id X f)*q5 3 = (f7" x f71)..
Therefore,
([Dsl*c) x [Dp-] = (f 71 % id)s(p2,3)+p] 2(a1,2) 445 5
= (f 71 xid)u(p2;3)«(id x id x f)*q5 3¢
— (% Y
This completes the proof of the proposition. O
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ABSTRACT. We show that the motivic spectrum representing alge-
braic K-theory is a localization of the suspension spectrum of P,
and similarly that the motivic spectrum representing periodic alge-
braic cobordism is a localization of the suspension spectrum of BGL.
In particular, working over C and passing to spaces of C-valued points,
we obtain new proofs of the topological versions of these theorems,
originally due to the second author. We conclude with a couple of
applications: first, we give a short proof of the motivic Conner-Floyd
theorem, and second, we show that algebraic K-theory and periodic
algebraic cobordism are E, motivic spectra.

2000 Mathematics Subject Classification: 55N15; 55N22

1. INTRODUCTION

1.1. BACKGROUND AND MOTIVATION. Let (X,u) be an E,, monoid in the
category of pointed spaces and let § € 7,(X°°X) be an element in the stable
homotopy of X. Then ¥*°X is an E, ring spectrum, and we may invert the
“multiplication by 87 map

W(B) : BXX = 5280 Axex ¥ M ponyeex A peex T T oy

to obtain an F, ring spectrum

$%X[1/6] := colim{E® X L= wnypeex ¥ p-myeoy

with the property that p(G8) : ¥°X[1/8] — ¥ "X X([1/4] is an equivalence.
In fact, as is well-known, 3*°X[1/0] is universal among F., %°°X-algebras A
in which § becomes a unit.

It was originally shown in [27] (see also [28] for a simpler proof) that the
ring spectra X°BU[1/3] and LCP>[1/0], obtained as above by taking X
to be BUL or P and 3 a generator of mX (a copy of Z in both cases),
represent periodic complex cobordism and topological K-theory, respectively.
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360 DAviD GEPNER AND VICTOR SNAITH

This motivated an attempt in [27] to define algebraic cobordism by replacing
BGL(C) in this construction with Quillen’s algebraic K-theory spaces [26].
The result was an algebraic cobordism theory, defined in the ordinary stable
homotopy category, which was far too large.

By analogy with topological complex cobordism, algebraic cobordism ought to
be the universal oriented algebraic cohomology theory. However, there are at
least two algebraic reformulations of the topological theory; as a result, there
are at least two distinct notions of algebraic cobordism popular in the literature
today. One, due to Levine and Morel [11], [12], constructs a universal “oriented
Borel-Moore” cohomology theory €2 by generators and relations in a way remi-
niscent of the construction of the Lazard ring, and indeed the value of {2 on the
point is the Lazard ring. However, () is not a generalized motivic cohomology
theory in the sense of Morel and Voevodsky [20], so it is not represented by a
motivic ring spectrum.

The other notion, and the one relevant to this paper, is Voevodsky’s spectrum
MGL [34]. Tt is a bona fide motivic cohomology theory in the sense that it is
defined directly on the level of motivic spectra. Although the coefficient ring
of MGL is still not known (at least in all cases), the orientability of MGL
implies that it is an algebra over the Lazard ring, as it carries a formal group
law. Provided one defines an orientation as a compatible family of Thom
classes for vector bundles, it is immediate that M GL represents the universal
oriented motivic cohomology theory; moreover, as shown in [23], and just as in
the classical case, the splitting principle implies that it is enough to specify a
Thom class for the universal line bundle.

The infinite Grassmannian

BGL,, ~ Grass, o := colimy Grass,

represents, in the A'-local homotopy category, the functor which associates to
a variety X the set of isomorphism classes of rank n vector bundles on X. In
particular, tensor product of line bundles and Whitney sum of stable vector
bundles endow P*° ~ BGL; and BGL ~ colim, BGL, with the structure
of abelian group objects in the A'-homotopy category. Note that, over C,
the spaces P>°(C) and BGL(C) underlying the associated complex-analytic
varieties are equivalent to the usual classifying spaces CP*° and BU.

We might therefore hypothesize, by analogy with topology, that there are equiv-
alences of motivic ring spectra

S¥BGL[1/f] — PMGL  and  SP®[1/8] — K

where PMGL denotes a periodic version of the algebraic cobordism spectrum
MGL. The purpose of this paper is to prove this hypothesis. In fact, it holds
over an arbitrary Noetherian base scheme S of finite Krull dimension, provided
one interprets K properly: the Thomason-Trobaugh K-theory of schemes [33] is
not homotopy invariant, and so it cannot possibly define a motivic cohomology
theory. Rather, the motivic analogue of K-theory is Weibel’s homotopy K-
theory [38]; the two agree for any regular scheme.
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1.2. ORGANIZATION OF THE PAPER. We begin with an overview of the theory
of oriented motivic ring spectra. The notion of an orientation is a powerful
one, allowing us to compute first the oriented cohomology of flag varieties and
Grassmannians. We use our calculations to identify the primitive elements in
the Hopf algebra R°(Z x BGL) with R°(BGL,), a key point in our analysis of
the abelian group R°(K) of spectrum maps from K to R.

The second section is devoted to algebraic cobordism, in particular the proof
that algebraic cobordism is represented by the motivic spectrum X° BGL[1/f].
We recall the construction of M GL as well as its periodic version PMGL and
note the functors they (co)represent as monoids in the homotopy category of
motivic spectra. We show that PMGL is equivalent to \/, 3*°MGL,[1/3]
and use the isomorphism RY(BGL) =[], R°(MGL,) to identify the functors
Rings(X° BGL[1/f], —) and Rings(\/,, X*°MGL,[1/8], —).

The third section provides the proof that algebraic K-theory is represented
by the motivic spectrum X°P>[1/3]. First we construct a map; to see that
it’s an equivalence, we note that it’s enough to show that the induced map
RY(K) — R°(X°P*°[1//]) is an isomorphism for any PM GL-algebra R. An
element of R%(K) amounts to a homotopy class of an infinite loop map Z x
BGL ~ QK — Q*R; since loop maps Z x BGL — Q°°R are necessarily
additive, we are reduced to looking at maps P> — Q>*R. We use this to
show that the spaces map(K, R) and map(35°P>°[1/6], R) both arise as the
homotopy inverse limit of the tower associated to the endomorphism of the
space map(X5°P>, R) induced by the action of the Bott map P A P> — P,
and are therefore homotopy equivalent.

We conclude the paper with a couple of corollaries. The first is a quick proof
of the motivic Conner-Floyd theorem, namely that the map

MGL*’*(X) RMGL** K** — I(*’*()()7

induced by an M G L-algebra structure on K, is an isomorphism for any compact
motivic spectrum X. This was first obtained by Panin-Pimenov-Réndigs [24]
and follows from a motivic version of the Landweber exact functor theorem [21].
We include a proof because, using the aforementioned structure theorems, we
obtain a simplification of the (somewhat similar) method in [24], but which is
considerably more elementary than that of [21].

Second, it follows immediately from our theorems that both K and PMGL are
E as motivic spectra. An E, motivic spectrum is a coherently commutative
object in an appropriate symmetric monoidal model category of structured
motivic spectra, such as P. Hu’s motivic S-modules [6] or J.F. Jardine’s motivic
symmetric spectra [7]; in particular, this is a much stronger than the assertion
that algebraic K-theory defines a presheaf of (ordinary) E., spectra on an
appropriate site. This is already known to be the case for algebraic cobordism,
where it is clear from the construction of MGL, but does not appear to be
known either for periodic algebraic cobordism or algebraic K-theory.
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This is important because the category of modules over an E., motivic spec-
trum R inherits a symmetric monoidal structure, at least in the higher categor-
ical sense of [16]. As a result, there is a version of derived algebraic geometry
which uses E,, motivic spectra as its basic building blocks. In [13], J. Lurie
shows that spec X°P>[1/4] is the initial derived scheme over which the de-
rived multiplicative group Gg := spec R A ¥°Z acquires an “orientation”, in
the sense that the formal group of Gg may be identified with the formal spec-
trum P> ® spec R. Since X°CP>°[1//3] represents topological K-theory, this is
really a theorem about the relation between K-theory and the derived multi-
plicative group, and is the starting point for Lurie’s program to similarly relate
topological modular forms and derived elliptic curves. Hence the motivic ver-
sion of the K-theory result may be seen as a small step towards an algebraic
version of elliptic cohomology.

1.3. ACKNOWLEDGEMENTS. We are very grateful to Mike Hopkins and Rick
Jardine for helpful lunch-break discussions during a workshop at the Fields
Institute in May 2007, as well as to an anonymous referee for their careful
reading of the paper and constructive criticism. We thank M. Spitzweck and
P.A. Ostveer for bringing to our attention their methods, which give an alter-
nate proof of Theorem 4.17 (see [32]), and for suggesting a number of valuable
comments. The first author would also like to thank Sarah Whitehouse for
illuminating conversations about operations in K-theory and John Greenlees
for his interest in this project and its equivariant analogues.

2. ORIENTED COHOMOLOGY THEORIES

2.1. MoTIvIC SPACES. Throughout this paper, we write S for a Noetherian
base scheme of finite Krull dimension.

DEFINITION 2.1. A motivic space is a simplicial sheaf on the Nisnevich site of
smooth schemes over S.

We often write 0 for the initial motivic space (), the simplicial sheaf with con-
stant value the set with zero elements, and 1 for the final motivic space S, the
simplicial sheaf with constant value the set with one element.

We assume that the reader is familiar with the Morel-Voevodsky Al-local model
structure on the category of motivic spaces used to define the unstable motivic
homotopy category [20]. We adhere to this treatment with one exception: we
adopt a different convention for indexing the simplicial and algebraic spheres.
The simplicial circle is the pair associated to the constant simplicial sheaves

SL0 .= (A, 0AY);
its smash powers are the simplicial spheres
S0 = (A" 9A™).
The algebraic circle is the multiplicative group scheme G := G,,, := A' — A?,

pointed by the identity section 1 — G; its smash powers define the algebraic
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spheres
SO = (G, 1)
Putting the two together, we obtain a bi-indexed family of spheres
SPd = §P0 A 50,
It is straightforward to show that
(A" — A% 1) = gnhn

and

(A", A" — A%) ~ (P, P 1) ~ S™,
We emphasize that, according to the more usual grading convention, S?9 is
written SPT99; we find it more intuitive to separate the simplicial and algebraic
spheres notationally. Moreover, for this purposes of this paper, the diagonal
spheres

S~ (A" AT — A%) ~ (P, P
are far and away the most important, so they will be abbreviated

S™ = 8™,

This allows us to get by with just a single index most of the time.
We extend this convention to suspension and loop functors. That is, X(—)
denotes the endofunctor on pointed motivic spaces (or spectra) defined by

YX =S'AX =5 A X
Similarly, its right adjoint Q(—) is defined by
QX :=map, (5", X) := map, (5", X).

Note that 3 is therefore not the categorical suspension, which is to say that the
cofiber of the unique map X — 1 is given by SU"OAX instead of SUIAX = X
While this may be confusing at first, we feel that the notational simplification
that results makes it worthwhile in the end.

2.2. MoTivic SPECTRA. To form the stable motivic category, we formally add
desuspensions with respect to the diagonal spheres S™ = S™" = (A", A" — A?).

DEFINITION 2.2. A motivic prespectrum is a sequence of pointed motivic spaces
{X(0), X(1),.. .},
equipped with maps ¥? X (¢) — X (p + q), such that the resulting squares
YPYIX (r) —— XPTaX(r)
YPX(g+r) —=X(p+q+r)

commute.
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DEFINITION 2.3. A motivic prespectrum is a motivic spectrum if, for all natural
numbers p, ¢, the adjoints X (q) — QPX(p + q) of the prespectrum structure
maps XP X (q) — X (p + q) are weak equivalences.

A pointed motivic space X = (X, 1) gives rise to the suspension spectrum
3 X, the spectrum associated to the prespectrum with

(X*°X)(p) :=XPX
and structure maps

YIYPX — YPHIX,
If X isn’t already pointed, we usually write X5°X for X*° X, where X is the
pointed space (X;,1) ~ (X,0). If X happens to be the terminal object 1, we
write S := X5°1 for the resulting suspension spectrum, the motivic sphere.
We will need that the category of motivic spectra is closed symmetric monoidal
with respect to the smash product. However, we do not focus on the details
of its construction, save to say that either P. Hu’s theory of motivic S-modules
[6] or J.F. Jardine’s motivic symmetric spectra [7] will do.
In particular, the category of motivic spectra is tensored and cotensored over
itself via the smash product and the motivic function spectrum bifunctors.
We may also regard it as being tensored and cotensored over pointed motivic
spaces via the suspension spectrum functor. Given a motivic spectrum R and
a pointed motivic space X, we write X A R for the motivic spectrum X*° X A R
and RX for the motivic spectrum of maps from £°X to R. Here XX is the
motivic spectrum associated to the motivic prespectrum whose value in degree
n is the pointed motivic space ¥ X. As a functor from pointed motivic spaces
to motivic spectra, ¥°° admits a right adjoint {2°° which associates to a motivic
spectrum its underlying motivic “infinite-loop”.
There are also a number of symmetric monoidal categories over which the cat-
egory of motivic spectra is naturally enriched. We write YX for the motivic
function spectrum of maps from the motivic spectrum X to the motivic spec-
trum Y, map(X,Y) = (Q°Y¥X)(S) for the (ordinary) space of maps from X
to Y, and [X,Y] = Y(X) = mpmap(X,Y) for the abelian group of homotopy
classes of maps from X to Y.

2.3. MOTIVIC RING SPECTRA. In this paper, unless appropriately qualified,
a motivic ring spectrum will always mean a (not necessarily commutative)
monoid in the homotopy category of motivic spectra. We reiterate that a
motivic spectrum is a P'-spectrum; that is, it admits desuspensions by algebraic
spheres as well as simplicial spheres.

DEFINITION 2.4. A motivic ring spectrum R is periodic if the graded ring 7, R
contains a unit u € m1 R in degree one.

REMARK 2.5. Since 71 R is by definition mo map_ (P*, 2> R), and over specC,
P(C) ~ CP!, the topological 2-sphere, this is compatible with the notion of an
even periodic ring spectrum so common in ordinary stable homotopy theory.

PROPOSITION 2.6. If R is periodic then R ~ X" R for all n.
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Proof. Let ;1 € m R be a unit with inverse u=! € m_; R. Then for any n, the
multiplication by ©~™ map

R—Y"R
is an equivalence, since multiplication by p™ provides an inverse. O

Let PS denote the periodic sphere, the motivic spectrum

ps:=\/ z"s.
neZ
With respect to the multiplication induced by the equivalences 3PS A %S —
¥:»+4S, the unit in degree one given by the inclusion X'S — PS makes PS into
a periodic S-algebra.
More generally, given an arbitrary motivic ring spectrum R,

PR:=PSAR~ \/ £"R
nez
is a periodic ring spectrum equipped with a ring map R — PR.

PROPOSITION 2.7. Let R be a motivic ring spectrum. Then homotopy classes
of ring maps PS — R naturally biject with units in m R.

Proof. By definition, ring maps PS — R are indexed by families of elements

rn € ™R with 7,7, = 74 and 7o = 1. Hence r, = r{, and in particular
-1

r_1=r71]". |

Said differently, the homotopy category of periodic motivic ring spectra is
equivalent to the full subcategory of the homotopy category of motivic ring
spectra which admit a ring map from PS. This is not the same as the ho-
motopy category of PS-algebras, in which only those maps which preserve the
distinguished unit are allowed.

COROLLARY 2.8. Let Q be a motivic ring spectrum and R a periodic motivic
ring spectrum. Then the set of homotopy classes of ring maps PQ — R 1is
naturally isomorphic to the set of pairs consisting of a homotopy class of ring
map @ — R and a distinguished unit p € m R.

2.4. ORIENTATIONS. Let R be a commutative motivic ring spectrum.

DEFINITION 2.9. The Thom space of an n-plane bundle V' — X is the pair
(V,V — X), where V — X denotes the complement in V' of the zero section
X —-V.

Given two vector bundles V' — X and W — Y, the Thom space (VxW, V xW —
X xY) of the product bundle V x W — X x Y is equivalent (even isomorphic)
to the smash product (V,V — X) A (W,W —Y) of the Thom spaces. Since
the Thom space of the trivial 1-dimensional bundle A' — A® is the motivic
1-sphere S' ~ (A', Al — A%), we see that the Thom space of the trivial n-
dimensional bundle A" — A is the motivic n-sphere S™ ~ (A", A" — A%). Note
that the complement of the zero section . — P> of the universal line bundle
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L — P> ~ BG is equivalent to the total space of the universal principal G-
bundle EG — BG, which is contractible. Hence the Thom space of L — P>
is equivalent to (P>°,PY), and the Thom space of the restriction of L — P>
along the inclusion P! — P is equivalent to (P, PY) ~ S*.

DEFINITION 2.10. An orientation of R is the assignment, to each m-plane
bundle V' — X, of a class (V/X) € R™(V,V — X), in such a way that

(1) for any f : Y — X, the class 6(f*V/Y) of the restriction f*V — Y
of V.— X is equal to the restriction f*6(V/X) of the class (V/X) in
R™(fV, f*V =Y),

(2) for any n-plane bundle W — Y, the (external) product 6(V/X) x
O(W/Y) of the classes 0(V/X) and O(W/Y) is equal to the class
O(V x W/X xY) of the (external) product of V' — X and W — Y in
R™(V x W,V xW — X xY), and

(3) if L — P> is the universal line bundle and i : P! — P> denotes the
inclusion, then i*0(L/P*°) € R!(f*L, f*L — P!) corresponds to 1 €
RY(S%) via the isomorphism R°(S%) = RY(S1) = RY(f*L, f*L — P!).

Given an orientation of R, the class (V/X) € R"(V,V — X) associated to a
n-plane bundle V' — X is called the Thom class of V' — X. The main utility
of Thom classes is that they define R*(X)-module isomorphisms R*(X) —
R*™(V,V — X)) (cf. [23]).

REMARK 2.11. The naturality condition implies that it is enough to specify
Thom classes for the universal vector bundles V,, — BGL,,. We write MGL,,
for the Thom space of V,, — BGL,, and 8,, for 8(V,,/BGL,) € R*"(MGL,).

2.5. BASIC CALCULATIONS IN ORIENTED COHOMOLOGY. In this section we
fix an oriented commutative motivic ring spectrum R equipped with a unit
u € m R. Note that we can use p to move the Thom classes 8,, € R"(MGL,,) to
degree zero Thom classes ¢,, := u"6, € RO(M GL,). The following calculations
are well known (cf. [1], [4], [23]). Note that all (co)homology is implicitly
the (co)homology of a pair. In particular, if X is unpointed, then R%(X) :=
RO(X,O), where 0 — X is the unique map from the inital object 0; if X is
pointed, then R°(X) := R°(X,1), where 1 — X is the designated map from
the terminal object 1.

PRrROPOSITION 2.12. The first Chern class of the tautological line bundle on P™
defines a ring isomorphism RO[A]/(A\"t1) — RO(P™).

Proof. Inductively, one has a morphism of exact sequences

ATROA/(AHY) ——= RO/ (A1) —— RO[\]/(A")

| l |

RO(Pn,Pn_l) 5 RO(IPm) 5 RO(Pn_l)
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in which the left and right, and hence also the middle, vertical maps are
isomorphisms. O

PROPOSITION 2.13. The first Chern class of the tautological line bundle on P>
defines a ring isomorphism R°[A] = lim R°[A]/(A™) — RO(PY).
Proof. The lim" term in the exact sequence

0 — lim'R~1O(P") — R%(P>°) — lim R°(P")

vanishes because the maps R~10(P") — R™1L9(P"~1) are surjective. ]

COROLLARY 2.14. For each n, the natural map
Ro(P") — hompo (RY(P"), R)
s an isomorphism.

Proof. The dual of 2.12 shows that Ro(P") is free of rank n + 1 over Ry. [

PROPOSITION 2.15 (Atiyah [4]). Let p : Y — X be a map of quasicompact
S-schemes and let y1,...,yn be elements of RO(Y). Let M be the free abelian
group on the y1,...,Yn, and suppose that X has a cover by open subschemes U
such that for all open V in U, the natural map
R(V)®M — R°(p~'V)

is an isomorphism. Then, for any open W in X, the map

RY(X, W)@ M — R°(Y,p~'W)
s an isomorphism.

Proof. Apply Atiyah’s proof [4], mutatis mutandsis. a

PROPOSITION 2.16. Let Z be an S-scheme such that, for any homotopy com-
mutative R-algebra A, A°(Z) = R%(Z) ®@po A°. Then, for any S-scheme X,
RY(Z x X) = R°(Z) ®po R*(X).
Proof. The diagonal of X induces a homotopy commutative R-algebra structure
on A = RX, the cotensor of the motivic space X with the motivic spectrum R.
Hence
A%(Z) =2 R%(Z) ®po A° =2 R*(Z) ®go R(X).
O

COROLLARY 2.17. Letp : V — X be a rank n vector bundle over a quasicompact
S-scheme X and let L — P(V') be the tautological line bundle. Then the map
which sends X\ to the first Chern class of L induces an isomorphism

RUX)N/A" = A" rerV oo (=1)"enV) — R (B(V))
of R®-algebras.
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Proof. 1f V is trivial then P(V) 2 ]P’}_l, and the result follows from Propo-
sitions 2.12 and 2.16. In general, the projection P(V) — X is still locally
trivial, so we may apply Proposition 2.15, with W empty and {y;} the image
in RO(P(V)) of a basis for RO(X)[A]/(A" — ...+ (=1)"¢,V) as a free R%(X)-
module. O

PROPOSITION 2.18. Let V — X be a rank n vector bundle over a quasicompact
S-scheme X, Flag(V) — X the associated flag bundle, and op(x1,...,%,),
1 < k < n, the k' elementary symmetric function in the indeterminates \;.
Then the map

RY(X)[ A1, dn)/({ex(V) = ou(A1, ..o, M) beso) — RO(Flag(V))

which sends the \; to the first Chern classes of the n tautological line bundles
on Flag(V), is an isomorphism of R°-algebras.

Proof. The evident relations among the Chern classes imply that the
map is well-defined. Using Proposition 2.15 and a basis for the free RO-
module R%(Flag(A™~1), it follows inductively from the fibration Flag(A"~1) —
Flag(A™) — P"~! that

R°A1s - M)/ ({on(A, - An)}) — RO (Flag(A™))

is an isomorphism. Using Proposition 2.16, we deduce the desired result for
trivial vector bundles V. For the general case, we apply Proposition 2.15 again,
with a basis of the free R%(X)-module R*(X)[A1, ..., A\n]/({ck (V) —ox}) giving
the necessary elements of R?(Flag(V)). O

ProrosITION 2.19. Let p : V — X be an rank n vector bundle over a qua-
sicompact S-scheme X, let q : Grass,,(V) — X be the Grassmannian bundle
of m-dimensional subspaces of V, let £, (V) — Grass,, (V) be the tautologi-
cal m-plane bundle over Grass,,(V), and write ¢*(V)/§m (V') for the quotient
(n — m)-plane bundle. Then the map

RY(X)[o1,...,0m,T1y- s Tnm] — R°(Grass,,(V))
which sends o; to ¢;(Em(V)) and 7; to ¢;(¢*(V)/&m(V)) induces an isomor-
phism

RYX)[o1,. .., 0m,T1se ey Tneml]/ ({er (V) — i+32:k

of R°-algebras (as usual, cx(V) =0 for k >n and co(V) =09 =10 = 1).
Proof. The identity ¢*c(V) = ¢(¢*V) = c¢(€n(V))e(q*V/En(V)) implies that
each ¢, (V) — Xoy7; is sent to zero, so the map is well-defined. Just as in

the case of flag bundles, use induction together with the fibration Flag(A™) x
Flag(A"~™) — Flag(A™) — Grass,,(A"™) to see that

Ro[al, Oy Tly e - ,Tn_m]/({q_Z kaﬂj}) — RO(Grassm(A”))
i+j=

0T }) — RO(Grassm(V))
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is an isomorphism. This implies the result for trivial vector bundles by
Proposition 2.16, and we deduce the general result from Proposition 2.15. [

PrROPOSITION 2.20. There are isomorphisms
R%(BGL,) — R°(BGLY)® = R°[\1,..., \]"" = R%o4,...,0.].

Proof. Writing V,, — BGL, for the tautological vector bundle, we have an
equivalence Flag(V},) ~ BGLY. Inductively, we have isomorphisms

R°[\1, ..., \] — R%(BGLY)
and the map
R%(BGL,) — R%(BGL}) = R°[\1, ..., \]

factors through the invariant subring R°[\y, ..., \n]* = R%[oq,...,0,]. By
Proposition 2.18, RO(BGL?) is free of rank n! over R°(BGL,,), so it follows
that RO(BGL,) = R*(BGLY})*". O

COROLLARY 2.21. The natural map
R°(BGL,) — homg, (Symfp,, Ro(P>), Ro)
is an isomorphism.
Proof. By Proposition 2.20, we need only check this for n = 1. But
R°(P™) = homp, (Ro(P™), Ry),
both being free of rank m 4 1 over R°, and
R(P>) = lim R°(P™) 2 homp, (colim Ro(P™), Ro) = homp, (Ro(P™), Ro)
by Proposition 2.12. O

1%

COROLLARY 2.22. There are isomorphisms R°(BGL) = lim,, R°(BGL,)
RO[oy,00,...].

Proof. The lim" term in the short exact sequence
0 — lim!} RY*(BGL,) — R°(BGL) — lim,,R°(BGL,)
vanishes since the maps R'"°(BGL,) — R*Y(BGL,_1) are surjective. O

2.6. THE ORIENTED COHOMOLOGY OF BGL A Z. Let R be an oriented pe-
riodic commutative motivic ring spectrum and let Z be an arbitrary motivic
spectrum. Recall (cf. [5]) that a motivic spectrum is cellular if belongs to the
smallest full subcategory of motivic spectra which is closed under homotopy
colimits and contains the spheres S?-? for all p, ¢ € Z, and that a motivic space
is stably cellular if its suspension spectrum is cellular.
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PROPOSITION 2.23. Let X := colim,, X,, be a telescope of finite cellular motivic
spectra such that each R**(X,,) is a finite free R**-module and, for any motivic
spectrum Z, the induced maps

RUX,ANZ)— R (X, .1 NZ)
are surjective. Then the natural map
RO(X) @)RO(Z) — RYX A Z)
R
s an isomorphism.

Proof. This is an immediate consequence of the motivic Kiinneth spectral
sequence of Dugger-Isaksen [5]. Indeed, for each n, R**(X,,) is a free R**-
module, so the spectral sequence

Tor®"" (R**(X,.), R**(Z)) = R**(Xn A Z)
collapses to yield the isomorphism

R*’*(Xn)R@@ R**(Z) = R**(X, A Z).

Moreover, by hypothesis, each of the relevant lim! terms vanish, so that
R*v*(X)Rg*R*v*(Z) = lim R*’*(Xn)R%R*’*(Z)
= lim R (X, NZ)=2 R (X A Z).
O

COROLLARY 2.24. Let Z be a motivic spectrum. Then there are natural iso-
morphisms

RY(P*)&R"(Z) — R (PY A Z)
RO
and
RY(BGL)®R°(Z) — R°(BGL, A Z)
RO
Proof. For each m,
BGLy, ~ colim,, Grass,, (A")

is a colimit of finite stably cellular motivic spaces such that, for each n,
R**(Grass;,(A™)) is a free R**-module and

R%(Grass,,(A™)) @po R°(Z) = R°(Grass,,(A")y A Z) —
R%(Grass,, (A" N, AZ) = R%Grass,, (A" 1)) ®g, R°(Z)
is (split) surjective. It therefore follows from Proposition 2.23 that, for each m,

R(Grass,, (A>),) @0 R%(Z) = R°(Grass,(A®) . A Z).
R

Taking m = 1 yields the result for P>°; for BG L, we must consider the sequence

BGL ~ colim,, BGL;, ~ Grass,, (A>)
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in which the maps come from a fixed isomorphism Al @ A>® = A>. Note,
however, that it follows from the above, together with the (split) surjection

R°(Grass,, (A>) — R%(Grass,,_1(A>))
of Proposition 2.20, that, for each m,
R%(Grass,,(A>®)y A Z) — R%(Grass,,_1(A®) 4 A Z)
is (split) surjective, so that the lim" term vanishes and

R°(BGL) @3@0 R%(Z) = lim R%(Grass,,(A®) 4 A Z) = RY(BGLy A Z).
R m

O

2.7. PRIMITIVES IN THE ORIENTED COHOMOLOGY OF BGL. Let R be an ori-
ented periodic commutative motivic ring spectrum. As is shown in Section 4.3
of [20], the group completion

BGLy ~ Q" B(BGLy)

(usually written Z x BGL) of the additive monoid BGLy = []
into a fibration sequence

en BGL, fits

BGL — BGLz — Z,

where BGL ~ colim,, BGL,. As BG Ly is commutative up to homotopy, BGLz
is an abelian group object in the motivic homotopy category.

LEMMA 2.25. Let Add(BGLz,Q°R) denote the abelian group of homotopy
classes of additive maps BGLy — Q°°R. Then the inclusion

Add(BGLz, Q*R) — R°(BGLz)

identifies Add(BGLz,Q2°R) with the abelian group of primitive elements in
the Hopf algebra R°(BGLz).

Proof. By definition, there is an equalizer diagram
Add(BGLz,Q*°R) —— R°(BGLz) —= (BGLy x BGLy)
associated to the square

BGLz x BGL7 — BGLy

| |

QPR x QR Q®°R
in which the horizontal maps are the addition maps. Let § denote the Hopf
algebra diagonal

§: R%(BGLz) — R°(BGLz x BGLz) = R°(BGLz)® R*(BGLz).
RO

Then the equalizer consists of those f € RY(BGLz) such that §(f) =
f®1+1® f. This identifies Add(BGLgz,2>°R) with the primitive elements
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in RO(BGLy). 0

LEMMA 2.26. There are natural isomorphisms
Add(BGLz,Q2°R) 2 Add(BGL,Q*R) x Add(Z, 2™ R)
=~ Add(BGL,Q*R) x R.
Proof. The product of additive maps is additive, and, in any category with

finite products and countable coproducts, Z = [[, 1 is the free abelian group
on the terminal object 1. g

ProPOSITION 2.27. The map
Add(BGLz,Q*R) — R°(BGL,),

obtained by restricting an additive map BGLy — Q%R along the inclusion
BGLy — BGLyz, is an isomorphism.

Proof. By Lemma 2.26, it’s enough to show that the inclusion (BGL1,1) —
(BGL,1) induces an isomorphism

Add(BGL,Q*R) — R°(BGL1,1).
Thus let M = Ro(BGL1,1), and consider the Ryp-algebra
A= @ Symp, M
n>0
together with its augmentation ideal

I := P Symp, M.

n>0
We have isomorphisms of split short exact sequences

0 — R°(BGL,1) — R°(BGL) RO 0

| | l

0 — hompg, (I, Ry) — hompg, (A, Rg) — homp, (Ro, Ry) —=0

and

0 — R°(BGL*%, BGL"?) R°(BGL*?)

| |

0—>h0ng(I®Ro I,Ro) —>h0mRO(A QR A,RQ) —_— .

RY(BGLY?)

|

e hOHlRO(RO D IGBQ,Ro) —(

0
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of R®-modules. According to Lemmas 2.25 and 2.26, we have an exact sequence
0 — Add(BGL,Q*R) — R°(BGL,1) — R°(BGL*? BGL"?)
in which the map on the right is the cohomology of the map
p—p1 —pe: (BGL*? BGLY?) — (BGL,1)

(1 is the addition and the p; are the projections); moreover, this map is the
Ro-module dual of the multiplication I ®r, I — I. Hence these short exact
sequences assemble into a diagram

0 — homp, (I/I?, Ry) — Add(BGL, 2°R) — - --

| |

0 —— hompg, (I, Rg) ———— R°(BGL) —— - -~

| |

0—>h0mR0(I®R0 I,RO) RO(BGLX2)
0 0
RO 0

|

e — hOIl’lRO (R() D I€B2, Ro) — ()

of short exact sequences by the snake lemma. In particular, we see that
Add(BGL, Q% R) is naturally identified with the dual hompg, (I/I%, Ry) of the
module of indecomposables I/I%. But I/I? = M = Ry(BGL1,1), the duality
map

R°(BGLy,1) — homg, (Ro(BGL1, 1), Ro)

is an R%-module isomorphism, and the restriction R°(BGL,1) — R°(BGL1,1)
is dual to the inclusion M — I. O

3. ALGEBRAIC COBORDISM

3.1. THE REPRESENTING SPECTRUM. For each natural number n, let V,, —
BGL,, denote the universal n-plane bundle over BGL,,. Then the Thom spaces

MGL,, := (V,,V, — BGL,)
come equipped with natural maps
MGL,NMGLy — MGLptq
defined as the composite of the isomorphism

V,,V, — BGL,) A (V,,V, — BGL,) — (V,, x Vi, Vi, x V, — BGL, x BGL,)
P P p q q q p q p q p q

DOCUMENTA MATHEMATICA 14 (2009) 359-396



374 DAviD GEPNER AND VICTOR SNAITH

and the map on Thom spaces associated to the inclusion of vector bundles

Vy % Vg e Vi

l |

BGL, x BGL, —= BGL,,.

Restricting this map of vector bundles along the inclusion 1 x BGL; — BGL, x
BGL, gives a map of Thom spaces

(AP, AP — A°) AMGL; — MGLy+q,

and these maps comprise the structure maps of the prespectrum MGL. The
associated spectrum is defined by

MGL(p) := colim; QM GL 4,
as evidently the adjoints
MGL(q) ~ colim, Q"MGLg¢, ~ colim, Q""" MGLyig1r ~ QMGL(p+ q)

of the structure maps ¥PMGL(q) — MGL(p + q) are equivalences. The last
equivalence uses the fact that P! is a compact object of the motivic homotopy
category.

DEFINITION 3.1 (Voevodsky [34]). Algebraic cobordism is the motivic coho-
mology theory represented by the motivic spectrum MGL.

3.2. ALGEBRAIC COBORDISM IS THE UNIVERSAL ORIENTED MOTIVIC SPEC-
TRUM. Just as in ordinary stable homotopy theory, the Thom classes 6, €
R"(MGL,,) coming from an orientation on a commutative motivic ring spec-
trum R assemble to give a ring map 6 : MGL — R. We begin with a brief
review of this correspondence.

PROPOSITION 3.2 (Panin, Pimenov, Rondigs [23]). Let R be a commutative
monoid in the homotopy category of motivic spectra. Then the set of monoidal
maps MGL — R is naturally isomorphic to the set of orientations on R.

Proof. The classical analysis of complex orientations on ring spectra R
generalizes immediately. A spectrum map 6 : MGL — R is determined by
a compatible family of maps 6, : MGL, — R"™, which is to say a family
of universal Thom classes 6, € R"(MGL,). An arbitrary n-plane bundle
V — X, represented by a map X — BGL,, induces a map of Thom spaces
V/V — X — MGL,, so 6, restricts to a Thom class in R"(V/V — X).
Moreover, these Thom classes are multiplicative and unital precisely when
0 : MGL — R is monoidal. Conversely, an orientation on R has, as part of its
data, Thom classes 0, € R"(MGL,,) for the universal bundles V,, — BGL,,
and these assemble to form a ring map 0 : MGL — R. U

Again, just as in topology, an orientation on R is equivalent to a compatible
family of R-theory Chern classes for vector bundles V' — X. This follows from

the Thom isomorphism R*(BGL,) = R*(MGL,,).

DOCUMENTA MATHEMATICA 14 (2009) 359-396



MoOTIVIC SPECTRA REPRESENTING COBORDISM AND K-THEORY 375

More difficult is the fact that an orientation on a ring spectrum R is uniquely
determined by the first Thom class alone; that is, a class §; € RY(BGL;) = R
whose restriction i*6; € Rl(Sl) along the inclusion S' — MGL; corresponds
to 1 € R%(S) via the suspension isomorphism R'(S!) = R°(SY). This is a
result of the splitting principle, which allows one to construct Thom classes (or
Chern classes) for general vector bundles by descent from a space over which
they split. See Adams [1] and Panin-Pimenov-Rondigs [23] for details.

3.3. A RING SPECTRUM EQUIVALENT TO PMGL. The wedge
\/ Y*°MGL,
neN
forms a ring spectrum with unit S ~ 3*° M GLy and multiplication
\/E*MGL, AN\/S*MGL, — \/S®MGL, N MGL, — \/S*MGL,
p q p.q n

induced by the maps MGL, N MGL; — MGL,14. Evidently, a (homotopy
class of a) ring map \/,, X*°MGL,, — R is equivalent to a family of degree zero
Thom classes
¥, € R° (MGL,)

with 99 = 1 € RY(MGLy) = R° such that 9, restricts via MGL,AMGL, —
MG Lp4q to the product 9,9,. This is not the same as an orientation on R, as
there is nothing forcing 9; € R°(MGL1) to restrict to a unit in R°(S!). Clearly
we should impose this condition, which amounts to inverting 3 : P! — P,

ProrosiTioN 3.3. A ring map PMGL — R induces a ring map
V, 2*MGL,[1/3] — R.

Proof. A ring map 6 : PMGL — R consists of a ring map MGL — R and
a unit p € mR. This specifies Thom classes 6, € R"(MGL,), and therefore
Thom classes
Oy = "0, € R°(MGL,)
such that
g = uPT90,0, = pPr9i* 0,y = i"prq € RO (MGL, N MGL,),

where ¢ is the map MGL, A MGL; — MGL,;,. This gives a ring map
v:V, X*°MGL, — R, and therefore the desired map, provided £ is sent to a
unit. But this is clear: as a class in R%(S?),

Y(B) = B0 = pB o,

and 3*0; € RY(S') is the image of 1 € R°(S°) under the isomorphism
RY(S%) = RY(SY). O

PROPOSITION 3.4. The ring map \/ ¥*°MGL,[1/3] - PMGL is an equiva-
neN
lence.
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Proof. Write
M :=\/ S*MGL,[1/8] — PMGL,
neN
and consider the natural transformation of set-valued functors

Rings(PMGL,—) — Rings(M, —).

Given a ring spectrum R, we have seen that the set Rings(M, R) is naturally
isomorphic to the set of collections {9, }nen with ¥, € R°(MGL,) such that
Uptq Testricts to 9,0, U1 restricts to a unit in R™!, and 9y = 1 € R°(S9).
Similarly, the set Rings(PMGL, R) is naturally isomorphic to the product of
the set of units in R~! and the set of collections {6, }nen with R"(MGL,,) such
that 6,4, restricts to 6,0,, 0 restricts to the image of 1 € R%(S%) in R!(S1),
and 0y = 1 € R(SY).

The map Rings(PMGL,R) — Rings(M,R) sends p € R™! and
0, € R*(MGL,) to ¥, = u"0,. We get a natural map back which sends
VU, € RO(MGL,) to 6, = p~"9,, where u € R~! in the unit corresponding to
B9 € R°(SY). Clearly the composites are the respective identities, and we
conclude that M — PMGL is an equivalence. g

3.4. ¥°BGL[1/3] 18 ORIENTABLE. Recall from [23] that, just as in the usual
stable homotopy category, an orientation on a ring spectrum R is equivalent to
a class in R'(MGL1) which restricts, under the inclusion i : S' — MGL; of
the bottom cell, to the class in R'(S!) corresponding to the unit 1 € R%(S?)
under the suspension isomorphism R%(SY) — R!(S!). Note also that in the
case R is periodic with Bott element 3 € R°(S!), corresponding under the
suspension isomorphism to the unit g € R=(S°) with inverse =1 € R(S?),
then the suspension isomorphism R°(SY) — R1(S?!) sends 1 to p~14.

Now there’s a canonical class 6, € X BGL[1/6]*(MGLy) such that

p B =i"0, € S°BGL[1/4])M(SY).

Namely, set 6, := p~'91, where ¢y € X BGL[1/8]°(MGL;) is the class of the
composite

S®MGL, ~ $®°BGL, — Y¥BGL — Y BGL[1/M).
Then 3 = i*uf, so =13 = i*0.
PROPOSITION 3.5. There is a canonical ring map 6 : PMGL — X°BGL[1//].

Proof. The Thom class 6, € Y°BGL[1/B]°(MGL;) extends, as in [1] or
[23], to a ring map MGL — X°BGL[1/3], and we have a canonical unit
p € R71(S%), the image of 8 € R°(S!) under the suspension isomorphism
RO(S') = R~1(SY). O

COROLLARY 3.6. There is a canonical ring map 9 : \/, X°MGL,[1/0] —
$*BGL[1/8).
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Proof. Precompose the map from the previous Proposition 3.5 with the equiv-
alence
\/ Z*MGL,[1/8] — PMGL.

O

3.5. U IS AN EQUIVALENCE. We analyze the effect of ¥ : \/, XM GL,[1/0] —
Y BGL[1/f] on cohomology. To this end, fix an oriented periodic commuta-
tive motivic ring spectrum R; we aim to show that the induced map

RO(SFBGL[L/f)) — R°(\/ S*MGL[1/p))

is an isomorphism.

LEMMA 3.7. Let R be a commutative ring and let A = colim,, A,, be a filtered
commutative R-algebra with the property that A, @p Ay — A®r A — A
factors through the inclusion Apyq — A (that is, the multiplication is compatible
with the filtration). Suppose that, for each n, the maps A,—1 — A, are split
injections, so that the isomorphisms Ap,_1 ® An/An—1 — A, define an R-
module isomorphism

grA ;= @An/An,l =5 colim, A, = A

of A with its associated graded. — Then the multiplication Ap/A,—1 ®r
AgfAg—1 — Apiq/Apirq—1 makes grA = @, A, /An—1 into a commutative
R-algebra in such a way that grA — A is an R-algebra isomorphism. O

PROPOSITION 3.8. There is a commuting square of R°-module maps
R°(BGL) 1, R°(MGL,) ,

l |

RY(BGL x BGL) —=11,,, RO (MGL, N MGL,)

in which the vertical maps are induced by the multiplication on BGL and
V,, MGL,,, respectively, and the horizontal maps are isomorphisms.

Proof. Set A := colim,, Symp Ro(P>), where the map Sym’lg1 Ro(P>) —
Symp, Ro(P>) is induced by the the inclusion Ry = Ro(P°) — Ro(P>). Ap-
plying Ry to the cofiber sequence BGL, 1 — BGL, — MGL, yields split
short exact sequences

Sym" ! Ro(P>) ——= Sym" Ro(P>°) ——= Sym" Ro(P>)/ Sym" " Ro(P>)

Sk :

Ro(BGLy,_1) Ro(BGL,) Ro(MGLy,)
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with A = colim,, Ro(BGL,) = Ro(BGL) a filtered commutative R-algebra.
By the lemma, we have a commutative square

@ Sym? Ro(P*°)/ SymP~* Ro(P>) ® Sym? Ro(P*°)/Sym?~! Ro(P®) —= A ® A
P.q Ro

@, Sym™ Ro(P>)/Sym™ ! Ro(P™) A

in which the vertical maps are multiplication and the horizontal maps are
Rp-algebra isomorphisms. The desired commutative square is obtained by
taking Rg-module duals. O

THEOREM 3.9. The map of oriented periodic motivic ring spectra

9 :\/ B°MGL,[1/8] — £ BGL[1/B]

s an equivalence.
Proof. We show that the induced natural transformation

¥* : Rings(X°BGL[1/f], —) — Rings(\/ S°MGL,[1/06],-)

n

is in fact a natural isomorphism. The result then follows immediately from
Yoneda’s Lemma.
Fix a ring spectrum R, and observe that, for another ring spectrum A,
Rings(A4, R) is the equalizer of the pair of maps from R°(A) to R°(AAA)x RO(S)
which assert the commutativity of the diagrams

RAR——R R

Given a map 8 : ©!S — A, the set Rings(A[1/3], R) is the equalizer of the pair
of maps from Rings(A, R) x R%(X~1S) to R°(S) which assert that the ring map
A — R is such that there’s a spectrum map X~ !'S — R for which the product

S~¥!'SAY'S— AANR— RAR—R

is equivalent to the unit S — R. Putting these together, we may express
Rings(A[1/0], R) as the equalizer of natural pair of maps from R%(A4)x R°(S™1)
to RO(A A A) x R°(S) x RO(S).

We therefore get a map of equalizer diagrams

R°(BGL) x R°(%71'S) R°(BGL x BGL) x R°(S) x R°(S)

| |

[1, R®(MGLy) x R*(27'S) —=1,, R* (MGL, A MGL,) x R°(S) x R°(S),
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the equalizer of which is ¥*. Now if R does not admit the structure of a
PM G L-algebra, then clearly there cannot be any ring maps from either of the
PMGL-algebras \/,, 2 MGLy[1/3] of ¥3°BGL[1/{]. Hence we may assume
that R is also an oriented periodic ring spectrum, in which case Proposition
3.8 implies that the vertical maps are isomorphisms. ]

COROLLARY 3.10. The map of periodic oriented motivic ring spectra
0: PMGL — XBGL[1/0]
s an equivalence.

Proof. \/,, X°MGLy[1/8) — PMGL is an equivalence. O

4. ALGEBRAIC K-THEORY

4.1. THE REPRESENTING SPECTRUM. Let BGLy ~ Z x BGL denote the group
completion of the monoid

BGLy := ]_[ BGL,.
neN

Given a motivic space X, write K°(X) := mo mapg(X, BGLz). If S = specZ
and X is a scheme, this agrees with the homotopy algebraic K-theory of X as
defined by Weibel [38], and if in addition X is smooth, this also agrees with
Thomason-Trobaugh algebraic K-theory of X [33]; see Proposition 4.3.9 of [20]
for details. As the name suggests, homotopy algebraic K-theory is a homotopy
invariant version of the Thomason-Trobaugh algebraic K-theory, and homotopy
invariance is of course a prerequisite for any motivic cohomology theory.

It turns out that the motivic space BG Ly, pointed by the inclusion

1~ BGLO —_— BGLN I BGLZ7

is the zero space of the motivic spectrum K representing (homotopy) algebraic
K-theory. This is a direct corollary of the following famous fact.

PROPOSITION 4.1 (Motivic Bott Periodicity). The adjoint
(BGLz, BGLy) — Q(BGLz, BGLo)

of the map Bott map X(BGLyz, BGLy) — (BGLyz, BGLy) classifying the tensor
product of (L —1) and V, where L — P! is the restriction of the universal line
bundle and V' — BGLgz is the universal virtual vector bundle, is an equivalence.

Proof. Quillen’s projective bundle theorem [26] implies that the tensor product
of vector bundles induces an isomorphism

K°(Ph) @ K%X) — K°(P! x X)
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of abelian groups. It follows that there’s an isomorphism of split short exact
sequences of K°(X)-modules

AKC(X)[A)/(A?) ——= K°(X)[N]/(\?) —— K°(X)

| ! |

KO((PY, %) A (X,0)) — K°(P! x X) —= KO(P° x X).

In particular, K°((P1,PY) A (X,0)) = K°(X) and similarly K°((P!,P%) A
(X,1) = KX, 1). O

Define a sequence of pointed spaces K (n) by

K(n):= (BGLz, BGLy)
for all n € N. By Proposition 4.1, each K (n) comes equipped with an equiva-
lence

K(n) = (BGLz,BGLy) — Q(BGLz, BGLy) = QK(n + 1),

making K := (K(0), K(1),...) into a motivic spectrum.
4.2. A MAP XP>*[1/8] — K. Let § : P! — P> be the map classifying the
tautological line bundle on P*. We construct a ring map XPP* — K which
sends 3 to a unit in K, thus yielding a ring map X°P*°[1/5] — K. There is
a homotopy commutative ring structure on the motivic space BGLy ~ QK
in which addition is induced by the sum of vector bundles and multiplication
is induced by the tensor product of vector bundles.
Ring maps X°P>*° — K are adjoint to monoidal maps P> — GL1K, the
multiplicative monoid of units (up to homotopy) in the ring space QK =~

BGLyz. Since mgBGLy contains a copy of Z, the multiplicative units contain
the subgroup {£1} — Z, giving a map

{£1} x BGL — GL:K.

But the inclusion BGL; — BGL is monoidal with respect to the multiplicative
structure on BGL, so we get a monoidal map

P* ~ BGL; — {+1} x BGL — GL1 K
and therefore a ring map X°P>* — K.
PROPOSITION 4.2. The class of the composite
2eSt ~ 2P PY) — BPP* — K
s equal to that of the K -theory Bott element (3, i.e. the class of the reduced

tautological line bundle L — 1 on P!,

Proof. The map YXP> — K classifies the tautological line bundle on P>, so
the pointed version X*°P>° — K corresponds to the reduced tautological line
bundle on P>, This restricts to the reduced tautological line bundle on P!. O
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COROLLARY 4.3. There’s a canonical ring map v : XP¥[1/5] — K. g

4.3. COMPARING R°(K) AND R°(L). Let L denote the localized motivic ring
spectrum
L :=XTP>[1/0].
That is, L is the colimit
L = colim,, X>°"P°

of a telescope of desuspended suspension spectra. We show that ¢ : L — K is
an equivalence by showing the induced map R°(L) — R°(K) is an isomorphism
for a sufficiently large class of motivic spectra R.

Throughout this section, we will be considering the motivic space BGLy
(pointed by {0} x BG L) multiplicatively, as a homotopy commutative monoid
with respect to the smash product. Accordingly, 3*°BG Ly is a ring spectrum,
and the monoidal map

P ~ BGLy + BGLy — BGLy — BGLg

gives X°°BG Lz, the structure of a homotopy commutative X*°P$°-algebra. In
particular, the Bott element 3 € mX*°P° determines a Bott element 3 €
mN>°BGLy as well as a Bott element g € m K.

If R is a homotopy commutative ring spectrum equipped with homotopy ele-
ment o € T, R, we write

wa) =X""(uo(a«AR)): R— X "R
for the “multiplication by «” map, the n-fold desuspension of the composite
aAR

Y"R~Y"SARSRAR- R.

If « € m, R is a unit, then this map has an inverse u(a)™! : ¥""R — R, the
n-fold desuspension of the multiplication by a~! map u(a™!): R — X"R. For
our purposes, R will typically admit a periodic orientation, and « will be the
image of the Bott element § € m PMGL = m X BGL[1/] under some ring
map PMGL — R.
Finally, we also write

w(B) : BGLy — QBGLy
for multiplication by (8 in the homotopy commutative monoid BG Lz, (regarded
multiplicatively). This is Q> applied to the multiplication by § map u(8) :
K — Y7'K on K-theory, and thus it is the equivalence adjoint to the Bott
map

¥BGLz — BGLy
The following lemma is formal.

LEMMA 4.4. Let € : ¥XQBGLz — BGLyz denote the counit of the adjunction
(3,Q) applied to BGLyz. Then the composite

SBGL; P yOBGL, -5 BGL,

s the Bott map X BGLy; — BGLy,.
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Proof. More generally, if (2, ) is any adjunction and §* : ¥X — Y is a map
left adjoint to B, : X — QY then 8* = ey 0 X[,. g

ProproOSITION 4.5. The square

EooJrl]pgro ﬂ) zoopf

|

2+l BG L, ——> S BGLy ,

in which vertical maps come from the inclusion i : P° ~ BGLy + BGL; —
BGLyz and the horizontal maps are the Bott maps, commutes up to homotopy.

Proof. The inclusion ¥*°P$°* — ¥*°BG Lz is a map of homotopy commutative
ring spectra, and the Bott element P! — X*°BGLz factors through the
Bott element X®°P! — S*°PY. O

PROPOSITION 4.6. Let R be a homotopy commutative PMGL-algebra. Then
the space map(K, R) of maps from K to R is equivalent to the homotopy inverse
limgt

map(K, R) ~ holim,{- - - S, map(X*°BGLz, R) N map(X*°BGLz, R)},
where f = p(a)™t o X7 o p(B) is the endomorphism of map(X°*°BGLz, R)
which sends a map x : X° BGLz — R to the composite

— —1
s*paL, “P v>-1par, = ¢ xR " R,

Proof. In general, for motivic spectra M and N,
map(M, N) ~ holim{- - - — map(M (1), N(1)) — map(M (0), N(0))},

where the maps send a map x : M(n) — N(n) to Qz : M(n—1) ~ QM (n) —
QN(n) ~ N(n — 1). By adjunction, we may rewrite this as

map(M, N) ~ holim{- -+ — map(Z*Q*EM,XN) — map(Z*Q>*M, N)}.
Now K and R are periodic via equivalences u(3) : K — X7 'K and p(a) : R —
YR, the diagram

map(BGLz, 2 R) — 2 map(QBGLz, Q! R) LN map(BGLz, Q1 R)

l l seot (s l

map(S*° BGLz, R) ——% map(S¥'QBGLy, R) ——=map(X=*+'BGLz, R) ,

in which the vertical arrows are adjunction equivalences, commutes, and ac-
cording to Lemma 4.4 above, the ¥°° applied to the composite € o () is
Yu(B) : T BGLy — X*°BGLyz. Hence

map(K, R) ~ holim{- - - — map(X*°BGLz, R) — map(X*°BGLz, R)}
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is the homotopy inverse limit of the tower determined by the composite

Su(B)” pu(a) tox™
) — s

map(X*°BGLz, R map(X*°T'BGLz, R) map(X*°BGLyz, R).

That is, the endomorphism f of map(X°*°BGL, R) sends z : ¥*°BGL — R to
the composite p(a)™! o X7 (2 o Xu(B)) = u(a)™ o X7 (z) o u(B), which is to
say that f = p(a) ™t o X7 1o u(B). a

PROPOSITION 4.7. Let R be a homotopy commutative PMGL-algebra. Then
the space map(L, R) of maps from L to R is equivalent to the homotopy inverse
limat

map(L, R) ~ holim, {- - - -4 map(X*PY, R) SN map(XPY¥, R)},
where g = p(a) ™' o X7t o p(B) is the endomorphism of map(X°°PS°, R) which
sends a map y : X°PY — R to the composite

soopse 40 sioomipes T o1 p O
Proof. By definition, L = X°P>°[1/3] = hocolim,, X*°~"PS°, where the map
RXTIPY — BT IPY

is the n-fold desuspension of the multiplication by 8 map u(3) : ¥*P —
$oo 1P, Hence
map(L, R) ~

~ holim,{- - - T omaey map(X*PY¥, XR) T om) map(X*PF, R)}.

Again, since R is periodic via the multiplication by a map p(a) : R — X7 'R,
we may compose with p(a)™! in order to rewrite this as

map(L, R) ~ holim,,{- - - -4 map(X*PF, R) <, map(X*PF, R)},

where g is the endomorphism of map(3°°PS°, R) which sends the map
y : B°PF — R to the map g(y) = u(a) ™" o X7 (y) o u(B). O

COROLLARY 4.8. Let R be a homotopy commutative PM G L-algebra. Then the
square

map(X* BGLy, R) — > map(S*°BGLy, R)

map(S¥PY, R) ——> map(S¥PY, R)

in which the vertical map are induced by the inclusion ¢ : P° ~ BGLg +
BGLy; — BGLyz, commutes up to homotopy. In particular, 1* : map(K, R) —
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map(L, R) is the homotopy inverse limit of the map of towers

map(K, R) —— holim{: - - — 4 map(X*°BGLz, R) A map(X*°BGLz, R)}
’ : :
map(L, R) —— holim{: - - —— > map(2®P%°, R) —~ > map(S°PY, R)}
obtained from iterating this commuting square.

Proof. This is immediate from Lemmas 4.6 and 4.7. g

4.4. A USEFUL SPLITTING. To complete the analysis of ¢* : map(K,R) —
map(L, R), we must split the space of additive maps from BGLyz to Q>R off
of the space of all maps from BG Ly to Q*°R.

PROPOSITION 4.9. Let R be a motivic spectrum equipped with an equivalence
(@) : R— 7R, Then given a map x : QK — Q®R, the map
Q% u(a) o Q) 0 Q®u(B) : QK — QMK — Q®FR — QR

is a homomorphism for the additive structures on QK and Q> R.

Proof. If X is a motivic space equipped with an equivalence X — QY then
X is a group object in the homotopy category of motivic spaces; if in addition
Y ~ QZ, then X is an abelian group object. In particular, the additions on
QK and Q°°R are induced by the equivalences Q®u(8) : QK — QK
and Q% u(a) : QR — QTR respectively, and Q> u(a)~t o Q(z) o Q% u(A)
is a map of loop spaces and therefore respects this addition. O

PROPOSITION 4.10. Let R be a homotopy commutative PM G L-algebra. Then
there exists a canonical section s : R+ — RBGLz of the restriction r = i* :
RBCLz 5 RPY induced by the inclusion i : P° ~ BGLo + BGL1 — BGLg.

Proof. Set Y = RBGLz and Z = R'+ . By Proposition 4.11, the additive maps
from BGLyz to Q2R define a canonical section myZ — mpY of the surjection
moY — mpZ. We must lift this to a map of spectra s : Z — Y.

By Proposition 2.24, we have isomorphisms R*(PY ® Z) = R%(Z) ®@x,r 02 =
Z%(Z). Combined with the section mY — myZ, this induces a map

Z°%(Z) = R%(Z) ®@ror m0Z — RU(Z) @ mY — Y°(Z).
Take s € Y°(Z) to be the image of 1 € Z°(Z) under this map. O

COROLLARY 4.11. Let R be a homotopy commutative PM G L-algebra. Then
map(X*°BGLz, R) ~ map(X*PF, R) x X

for some space X.
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Proof. Take X to be the global points of the motivic space obtained by
applying Q°° to the fiber of r : RBGLz — RPY g

We write
r: map(X*°BGLz, R) — map(X™ P, R)
for the restriction and

s :map(X*°PYF, R) — map(X*°BGLz, R)

for the section corresponding to the inclusion of the additive maps from BG Ly,
to Q2°°R into all maps from BGLyz to 2°°R. By Corollary 4.8, we have that
ro f = gor; however, the next proposition shows that in fact f ~ sogor,
which is stronger since ro f ~rosogor >~ gor as s is a section of .

PROPOSITION 4.12. Let R be a homotopy commutative PM GL-algebra. Then
f~sogor:map(X*°BGLz, R) — map(X*°BGLyz, R).

Proof. Note that f and g are induced from corresponding maps f : RBGLz —
RBGLz and ¢ - RPY — RPY, respectively, and that r and s come similarly from
maps 7 : RBGLz — RFY and s : R** — RBGLz. Thus it’s enough to check
that

f=so0gor e mymap(RECLz RBCGLz),
Since r o f ~ g or, we may instead show that f >~ sor o f. By definition,

f € momap(RP9!%, RPO12) = RO(BGLy) @ RO (RP4)
R

is the image of

1e o map(RBGLZ,RBGLZ) ~ RO(BGLZ)®RO(RBGLZ)
RO

under the map obtained by applying (—)® zo R°(R®S%2) to the map
Q% u(a); 1 u(8)*Q : mo map(BG Lz, Q°R) — 1 map(BGLz, Q®°R).

One similarly checks that  and s are obtained by applying (—)&z, R*(RP¢L2)
to the restriction R*(BGLz) — R°(P*°) and its section R(P*>°) — R°(BGLyz),
respectively. Now, according to Proposition 4.9, as a map of motivic loop
spaces, Q% u(a); Q% u(3)*Q sends x : BGLz — QR to the additive map

Q% u(a) ™t o Q(z) 0 Q®°u(B) : BGLy — QBGLy — QTR — Q®R,

which is to say that it factors through the inclusion Add(BGLz,Q>®R) =
RO(PY) — R°(BGLyz). Hence f is in the image of

RO(Pi_O)@RORO(RBGLz) 5, R°(BGLy)®po R°(RBGLz)

l: l:

o map(RBGLZ, RIP’?:’) s o map(RBGLZ, RBGLZ) ’

DOCUMENTA MATHEMATICA 14 (2009) 359-396



386 DAviD GEPNER AND VICTOR SNAITH

so f = sof for some f: RBGLz _, RPY . But then sorof ~ sorosof~ ~ sof~ ~ f.
O

LEMMA 4.13. Suppose given a homotopy commutative diagram of (ordinary)
Iy

spectra
Y
g

7 —7
such that r : Y — Z admits a section s : Z — Y with
fesogor:Y =Y.

Then the natural map from the homotopy limit of the tower {--- - Y — Y},
obtained by iterating f, to the homotopy limit of the tower {--- — Z — Z},
obtained by iterating g, is an equivalence.

Proof. Since Z is a retract of Y, we may write Y ~ Z x X for some spectrum
X such that the fiber of f over g is the trivial map X — X. Now consider the
diagram

| |

holim{--- »Y - Y} — LY — .Y

! |

holim{-+ — Z — Z} —= 1, Z —=11, Z

in which the rows and columns are fiber sequences. Then the fiber of
1 — f over 1 — g is the identity [[,, X — [],X, so W is trivial and
holim{--- - Y — Y} ~ holim{--- — Z — Z}. O

PROPOSITION 4.14. Let R be an orientable commutative motivic ring spectrum
and let o« € m R be a unit. Then

Tb* : map(K, R) - map(La R)
s an equivalence.

Proof. Set Y = map(X*°BGLz,R) and Z = map(X*P, R), so that
Y~ZxXviar:Y — Z and its section s : Z — Y. By Proposition 4.12,
f~sogor:Y — Y, and since r and s are infinite loop maps we may regard
them as maps of (ordinary) connective spectra. The result then follows from
Lemma 4.13. g
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COROLLARY 4.15. The map v : L — K induces an isomorphism 1" : RO(K) —
RO(L) for any orientable periodic commutative motivic ring spectrum R.

Proof. This is immediate from Proposition 4.14 above, since the spectrum of
motivic spectrum maps from L to R admits precisely the same description as
that of the spectrum of motivic spectrum maps from K to R. Indeed,

L ~ colim,, {£°P> L= m-tyeepee Boy oy
and we see that

RY ~ holim,, {- - - -+ R¥¥ £ RFY},
where the map g : R¥* — RF¥ sends A : ¥P® — R to a; ' o X'\ o A, the
composite

PP — STIEPP® - 'R — R,

just as above. O

By the homotopy category of orientable periodic spectra, we mean the full
subcategory of the homotopy category of spectra on the orientable and periodic
objects. In other words, R is an orientable periodic spectrum if there exists a
homotopy commutative ring structure on R which admits a ring map PMGL —
R. Note that, according to this definition, maps between orientable periodic
spectra need not preserve potential orientations or even ring structures.

PROPOSITION 4.16. 1) induces an isomorphism ¢* : [K,—] — [L, —] of functors
from the homotopy category of orientable periodic spectra to abelian groups.

Proof. Let R be an orientable periodic spectrum. Then
Y"1 [K,R] = R*(K) — R(L) = [L, R

is an isomorphism by Corollary 4.15, and this isomorphism is natural in
spectrum maps R — R/, provided of course that R’ is also orientable and
periodic. 0

THEOREM 4.17. The ring map ¢ : L — K is an equivalence.

Proof. Let ¢* : [L,—] — [K,—] be the inverse of the isomorphism
¥* : [K,—] — [L,—] of Proposition 4.16, and let ¢ : K — L be the map
obtained by applying ¢* to the identity 1 € [L, L]. It follows from the Yoneda
lemma that ¢* is precomposition with ¢. The equations ¢* o ¢* = 1% and
P* op* =17 imply that ¥ o p = 1k and ¢ o) = 1, in the homotopy category
of orientable periodic spectra, and therefore that ¢ o ¢ = 1x and poy =1
in the homotopy category of spectra. Hence ¢ : L — K is an equivalence with
inverse ¢ : K — L. g
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5. APPLICATIONS

5.1. THE MOTIVIC CONNER-FLOYD THEOREM. The classical theorem of Con-
ner and Floyd shows that complex cobordism determines complex K-theory
by base change. More precisely, writing PMU for periodic complex cobordism
and KU for complex K-theory, then, for any finite spectrum X, the natural
map

PMU(X) @pppo KUY — KUY(X)
is an isomorphism of KU°-modules.
REMARK 5.1. This is the precursor of the more general notion of Landweber
exactness. In [8], P. Landweber gives a necessary and sufficient condition on
an MU,-module G so that the functor (=) @y, G, from (MU,, MU, MU)-

comodules to graded abelian groups, is exact. For G = K,, it follows that the
natural map

MU*(=) @mu- K* — K*(=)
is an isomorphism. See [21] for the motivic analogue of Landweber exactness.

We now turn to the motivic version of the theorem of Conner and Floyd. A
motivic spectrum X is said to be compact if [X, —], viewed as a functor from
motivic spectra to abelian groups, commutes with filtered colimits.

PROPOSITION 5.2. Let X be a compact motivic spectrum. Then the natural
map

PMGLY(X) ® K°— K%X)
PMGL®

18 surjective.

Proof. Set B := X¥BGL and A := X°P*. Then the determinant map
r: B — A admits a section s : A — B, so, for each n, ¥~ ™A is a retract of
Y7"B and ¥ "B%(X) — £7"A%(X) is surjective. Since X is compact, the
colimit

B[1/8]°(X) = colim,, X" "B°(X) — colim,, ¥ "A%(X) = A[1/6]°(X)
is also surjective, and we see that

B[1/8]°(X) 0 A[L/B)° — A[L/B)°(X) 550 A[L/6)° = A[L/6)°(X)

is surjective as well. O

THEOREM 5.3. Let X be a compact motivic spectrum. Then the natural map

PMGL'(X) ® K°— K°%X)
PMGL®

s an isomorphism.
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Proof. According to Proposition 5.2, it’s enough to show that the map is
injective. For simplicity of notation, set R := PMGL, define a contravariant
functor J°(—) from compact motivic spectra to R%-modules by the rule

J(X) = ker{ R(X) — K°(X)},
and write JO for JO(S). Since the tensor product is right exact, the map
JUX) @po K® — ker{R%(X) @po K° — K°(X) ®@po K°}

is surjective, so in light of the isomorphism

K(X)®po K= KO(X) @Ko K° = K°(X)
it’s enough to show that J°(X) ®go K is zero, or, equivalently, that

JU(X) @po J* — J%(X) @po R* = J°(X)
is surjective. To this end, set

19(X) = im{ J(X) @0 10 — JO(X) 00 RO = JO(X)};

we must show that 1°(X) 2 JO(X).
Now, writing B := X°BGL and A := P as above, and using the com-
pactness of X, we see that any element of

J(X) = ker{colim,,[X, £""B] — colim,[X, ¥ "A]}
= colim, ker{[X,X7"B] — [X, X" A]}
is represented by a map
x: X" X — B =~ colim, colim, X5° Grassy, 4,

which, by compactness, factors as f, : ¥"X — Y, followed by y : Y, — B
for Y, ~ ¥5° Grass,, 4 the suspension spectrum of a finite Grassmannian. This
yields a commuting diagram

X = B
fl / lr

in which r o z is trivial and the determinant map r : B — A admits a section
s: A — B. Of course, as r oy need not be trivial, set ¢’ := y— soroy, so that

yof~(y—soroy)of~yof—soroyof~r—sorox~uzw

and r oy’ =~ 0, which is to say that ¥’ € J°(X) and f}y' = .
Finally, according to Proposition 2.19, R%(Y,) ®zo K = K°(Y,) for each
r € JY(X), so we must have surjections

JO(Y,) @po JO — JO(Yy) ®@po R® =2 JO(Yy).
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Adding these together, we obtain a morphism of short exact sequences

e

I°(X) JUX) —— J(X) ®po K" —0

0

such that @, fr : @, J°(Y,) — JYX) is surjective. It follows that
19(X) = JO(X). O

5.2. PMGL AND K ARE E,, MOTIVIC SPECTRA. As a final application, we
show that PMGL and K are E,, motivic spectra. As we shall see, this is an
immediate consequence of the fact that PMGL and K are obtained through a
localization of the category of F, R-algebras for some E., motivic spectrum
R. Roughly, given an element 3 € mp, R, the functor which sends the R-
module M to M[1/8] := M Ar R[1/f] defines a monoidal localization of the
category of R-modules, so it extends to a localization of the category of F,
R-algebras. Taking R = X BGL and (3 the Bott element, we see that PMGL
is the localization of the initial E,, R-algebra and K is the localization of the
determinant F,, R-algebra.

In order to make this precise, we fix a suitable symmetric monoidal model cat-
egory (Mods, As) of motivic spectra, such as motivic S-modules [6] or motivic
symmetric spectra [7]. For sake of definiteness, we adopt the formalism of the
latter; nevertheless, we refer to motivic symmetric spectra as S-modules, as
they are indeed modules over the symmetric motivic sphere S.

Recall that a motivic symmetric sequence is a functor from the groupoid %
of finite sets and isomorphisms to pointed motivic spaces. It is sometimes
convenient to use a skeleton of ¥, so we simply write n for a finite set with n
elements and X (n) for its automorphism group. Motivic symmetric sequences
form a symmetric monoidal category under the smash product defined by

(X AY)(n) = \/ E(n)1 Asgyxzg) X(P) A Y (9).
n=p+q

The motivic sphere S has a natural interpretation as the motivic symmet-
ric sequence in which S(n) is the pointed X(n)-space associated to the pair
(A", A" —A%), where ¥(n) acts by permutation of coordinates. The (p)x X(q)-
equivariant maps

(AP AP — A%) A (A9, A7 — A%) — (APTI APTT _ A0)
give S the structure of a commutative monoid for this smash product. An
S-module is then a motivic symmetric sequence equipped with an action of S,

which is to say a sequence X (p) of pointed X(p)-equivariant motivic spaces
equipped with X(p) x X(g)-equivariant maps

(AP, A? — A") A X (q) — X(p+q);
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the fact that S is a commutative monoid implies that A extends to a smash
product Ag on the category Modg of S-modules. There are monoidal functors

{Motivic spaces} — {Motivic symmetric spaces} — {Motivic symmetric spectra}

in which the righthand map is the free S-module functor, the left hand map
sends the motivic space X to the constant motivic symmetric space X, and
the composite is a structured version of the suspension spectrum functor ¥5°.

PRrROPOSITION 5.4. The S-modules ¥°BGL and XP> are equivalent to
strictly commutative S-algebras in such a way that the determinant map
LPBGL — XP™ is equivalent to a map of strictly commutative S-algebras.

Proof. For each n, write GL(n) for the group S-scheme of linear automorphisms
of A™. Then X(n) acts on GL(n) by conjugation via the embedding X(n) —
GL(n), so that GL(n) is the value at n of a symmetric sequence GL in group S-
schemes such that the determinant map GL — GL; is a morphism of symmetric
sequences in group S-schemes, where we regard GL; as a constant symmetric
sequence. Taking classifying spaces, we obtain a morphism of commutative
monoid symmetric sequences BGL — BGLj in unpointed motivic spaces. Now
let SIBGL] and S[BGL1] denote the S-modules defined by

S[BGL)(n) :=S(n) A BGL(n)+ and S[BGL4](n) :==S(n) A BGL14,

respectively, where X(n) acts diagonally; note that S[BGL4] is the free S-
module on the motivic symmetric sequence BG L1, whereas the action of S
on S[BGL] is induced by the canonical ¥(p) x 3(g)-equivariant inclusions

BGL(q) — BGL(p) x BGL(q) — BGL(p+q)

coming from the fact that BGL(p) has a canonical basepoint which is fixed
by the action of ¥(p). The monoidal structure on BGL; extends to a strictly
commutative S-algebra structure on S[BGL4], and the strictly commutative
S-algebra structure on S[BGL| comes from ¥(p) x ¥X(g)-equivariant pairing

S(p) A BGL(p)+ AS(q) A BGL(q)+ — S(p+q) A BGL(p + q)+;

moreover, it is clear that the determinant map S[BGL] — S[BGL4] is monoidal
with respect to these multiplicative structures. Hence we are done, provided
the underlying ordinary motivic spectra (obtained by forgetting the actions of
the symmetric groups) of S[BGL] and S[BGL;] are equivalent to the motivic
spectra X BGL and XP>, respectively. This is immediate for S{BG L],
whose underlying spectrum is the suspension spectrum %5° BGLy; on the other
hand, the underlying spectrum of S[BGL] is the prespectrum {S™ A BGL,}.
But the motivic spectrum associated to ¥3°BGL is given by

colimy, QP¥P colimy BGL4 ~ colim,, colimy Q’XP BGL, ~ colim,, Q"X"BGL,,

so the two motivic prespectra are stably equivalent. O

Instead of considering localization in the context of symmetric monoidal model
categories, it will be enough to consider localization in the context of symmetric
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monoidal co-categories, in the sense of Lurie [16]. Indeed, if (#,®) is a sym-
metric monoidal model category, then, in the notation of [16], the commutative
algebra objects of the associated symmetric monoidal oo-category N(.Z, ®)°
correspond to coherently homotopy commutative, or Eo, objects of (A ,®).
Here N denotes the simplicial nerve of a simplicial category; if the simplicial
category comes from a symmetric monoidal model category, then its simpli-
cial nerve is symmetric monoidal as an oco-category. See [17] for facts about
oo-categories and simplicial nerves, and [16] for a treatment of commutative
algebra in the oco-categorical context.

Recall (cf. [17]) that a map F : € — 2 of oo-categories is said to be a
localization if F admits a fully faithful right adjoint G. In this case, it is
common to identify 2 with the full subcategory of € consisting of those objects
in the essential image of G (the “local objects”), and suppress Z and G from
the notation by writing L for the composite Go F': 4 — 2 — €. If € is the
underlying co-category of a symmetric monoidal co-category (¢, ®), then we
may ask when a localization L : € — % extends to a lax symmetric monoidal
functor on (¢, ®). Given a localization L : ¥ — %, an L-equivalence is a map
which becomes an equivalence after applying L.

DEFINITION 5.5 ([16], Example 1.7.5). Let (¢,®) be a symmetric monoidal
oo-category and let L : 4 — € be a localization of the underlying co-category.
Then L is said to be compatible with ® if, for all L-equivalences A — A’ and
all objects B of ¥, A® B — A’ ® B is an L-equivalence.

PROPOSITION 5.6 ([16], Proposition 1.7.6). Let (%, ®) be a symmetric monoidal
oco-category, let L : € — € be a localization of the underlying oo-category,
and suppose that L is compatible with ®. Then L extends to a lax symmetric
monoidal functor

(L,®): (¢,®) — (¢,®).
In particular, L preserves algebra and commutative algebra objects of (€, ®).

Let N(Mods, As)® denote the symmetric monoidal oco-category which arises
as the simplicial nerve of the symmetric monoidal simplicial model category
(Mods, As) of S-modules. Since commutative algebra objects of N(Modg, Ag)®
are modeled by algebras over a suitable E,, operad, we refer to commutative
algebra objects of N(Modg, As)® as Es S-algebras. Given an E., S-algebra
R, we write (Modg, Ag) for the resulting symmetric monoidal co-category of
R-modules, and refer to commutative algebra objects of (Modg, Ag) as Foo
R-algebras.

PROPOSITION 5.7. Let R be an Fu S-algebra, let f € mp 4R be an arbitrary
element, and write Ly : Modr — Modpg for the functor which sends the R-
module M to the R-module

MI1/f]:== M Agr R[1/f].

Then Ly is a localization functor which is compatible with the symmetric
monoidal structure Agr on Modg; in particular, Ly extends to a lax monoidal
functor Ly : (Modg, Ar) — (Modg, AR).
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Proof. Say that an R-module M is f-local if the multiplication by f map
f« : M — X7P79M is an equivalence. Given an f-local R-module M, the
induced map

Map(R[1/f], M) =~ lim{M «— SPIM — ---} ~ M
is an equivalence, so
map(N[1/f], M) = map(N, Map(R[1/ f], M)) = map(N, M)

is an equivalence for any R-module N. Hence L is left adjoint to the inclusion
of the full subcategory of f-local R-modules, and is therefore a localization.
Moreover, it is compatible with Ag, since if M — M’ is an L j-equivalence
then so is M Ag N — M’ Ar N for any R-module N, for if M[1/f] — M'[1/f]
is an equivalence then

(M ARN)[1/f]=M[1/fIlAr N — M'[L/f] Ar N ~ (M’ Ag N)[1/f]

is as well. Hence, by Proposition 5.6, Ly extends to a lax symmetric monoidal
endofunctor (Ls, Ar) of (Modg, AR). O

COROLLARY 5.8. Let R be an E S-algebra and let f € 7, 4 be a fized element.
Then R[1/f] is an Es R-algebra, and therefore also an Eo, S-algebra.

Proof. By Proposition 5.7, Ly is a lax symmetric monoidal functor with
LyR ~ R[1/f]. Since lax symmetric monoidal functors preserve commuta-
tive algebra objects, we see that R[1/f] is a commutative algebra object in
(Modg, Ag). Lastly, as the forgetful functor from R-modules to S-modules is
lax symmetric monoidal, it follows that R[1/f] is also an E., S-algebra. O

COROLLARY 5.9. MGL, PMGL and K are E5, S-algebras.

Proof. The MGL case is already well-known (cf. [6], for example). By
Proposition 5.4, ¥ BGL and X°P* are equivalent to strictly commutative
S-algebras, so they are naturally commutative algebra objects in the sym-
metric monoidal oo-category N(Mods, As). Applying Proposition 5.8, we see
that PMGL ~ Y BGL[1/f] is an Ey X BGL-algebra, and likewise that
K ~ XPP>®[1/f] is an E XLFP*-algebra. In particular, PMGL and K are
F. S-algebras. O

ProproSITION 5.10. K is an Eo PMGL-algebra.

Proof. Note that the Bott element XS — 2P factors as the com-
posite of the Bott element XS — X°BGL followed by the determinant
map XPBGL — XPP*. By Proposition 5.4, the determinant map
YPBGL — YX¥P* is a map of E, X°BGL-algebras, so by Propo-
sition 5.8, the localization K ~ XP*[l/3] is an E. algebra over
PMGL ~ X BGL[1/]. O
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ABSTRACT. Let k be an algebraically closed field of characteristic
p > 0, and G be a Barsotti-Tate over k. We denote by S the “algebraic”
local moduli in characteristic p of G, by G the universal deformation
of G over S, and by U C S the ordinary locus of G. The étale
part of G over U gives rise to a monodromy representation pg of the
fundamental group of U on the Tate module of G. Motivated by a
famous theorem of Igusa, we prove in this article that pg is surjective
if G is connected and HW-cyclic. This latter condition is equivalent
to saying that Oort’s a-number of G equals 1, and it is satisfied by all
connected one-dimensional Barsotti-Tate groups over k.
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1. INTRODUCTION

1.1. A classical theorem of Igusa says that the monodromy representation as-
sociated with a versal family of ordinary elliptic curves in characteristic p > 0
is surjective [Igu, Ka2]. This important result has deep consequences in the
theory of p-adic modular forms, and inpsired various generalizations. Faltings
and Chai [Ch2, FC]| extended it to the universal family over the moduli space
of higher dimensional principally polarized ordinary abelian varieties in char-
acteristic p, and Ekedahl [Eke] generalized it to the jacobian of the universal
n-pointed curve in characteristic p, equipped with a symplectic level structure.
Recently, Chai and Oort [CO] proved the maximality of the p-adic monodromy
over each “central leaf” in the moduli space of abelian varieties which is not
contained in the supersingular locus. We refer to Deligne-Ribet [DR] and Hida
[Hid] for other generalizations to some moduli spaces of PEL-type and their
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arithmetic applications. Though it has been formulated in a global setting, the
proof of Igusa’s theorem is purely local, and it has got also local generalizations.
Gross [Gro] generalized it to one-dimensional formal &-modules over a com-
plete discrete valuation ring of characteristic p, where & is the integral closure
of Z, in a finite extension of Q,. We refer to Chai [Ch2] and Achter-Norman
[AN] for more results on local monodromy of Barsotti-Tate groups. Motivated
by these results, it has been longly expected/conjectured that the monodromy
of a wversal family of ordinary Barsotti-Tate groups in characteristic p > 0 is
maximal. The aim of this paper is to prove the surjectivity of the monodromy
representation associated with the universal deformation in characteristic p of
a certain class of Barsotti-Tate groups.

1.2. To describe our main result, we introduce first the notion of HW-cyclic
Barsotti-Tate groups. Let k be an algebraically closed field of characteristic p >
0, and G be a Barsotti-Tate group over k. We denote by G the Serre dual of G,
and by Lie(G") its Lie algebra. The Frobenius homomorphism of G (or dually
the Verschiebung of GY) induces a semi-linear endomorphism ¢ on Lie(GY),
called the Hasse-Witt map of G (2.6.1). We say that G is HW-cyclic, if ¢ =
dim(GY) > 1 and there is a v € Lie(G") such that v, pc(v), -, 5 ' (v) form
a basis of Lie(G"Y) over k (4.1). We prove in 4.7 that G is HW-cyclic and non-
ordinary if and only if the a-number of G, defined previously by Oort, equals
1. Basic examples of HW-cyclic Barsotti-Tate groups are given as follows. Let
7, s be relatively prime integers such that 0 < s < 7 and r # 0, A = s/r, G*
be the Barsotti-Tate group over k whose (contravariant) Dieudonné module is
generated by an element e over the non-commutative Dieudonné ring with the
relation (F™~% — V*)-e =0 (4.10). It is easy to see that G* is HW-cyclic for
any 0 < A < 1. Any connected Barsotti-Tate group over k of dimension 1 and
height A is isomorphic to G/* [Dem, Chap.IV §8].
Let G be a Barsotti-Tate group of dimension d and height ¢+ d over k; assume
c > 1. We denote by S the “algebraic” local moduli of G in characteristic p, and
by G be the universal deformation of G over S (cf. 3.8). The scheme S is affine
of ring R ~ k[[(t; j)1<i<c,1<j<d]], and the Barsotti-Tate group G is obtained
by algebraizing the formal universal deformation of G' over Spf(R) (3.7). Let
U be the ordinary locus of G (i.e. the open subscheme of S parametrizing the
ordinary fibers of G), and 77 a geometric point over the generic point of U. For
any integer n > 1, we denote by G(n) the kernel of the multiplication by p™
on G, and by

(G, 7) = lim G(n)(7)

n

the Tate module of G at 7. This is a free Z,-module of rank c¢. We consider
the monodromy representation attached to the étale part of G over U

(1.2.1) pc (U, 7) — Autz, (T, (G, 7)) ~ GLc(Zy).

The aim of this paper is to prove the following :
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THEOREM 1.3. If G is connected and HW-cyclic, then the monodromy repre-
sentation pg 1S surjective.

Igusa’s theorem mentioned above corresponds to Theorem 1.3 for G = G'/2 (cf.
5.7). My interest in the p-adic monodromy problem started with the second
part of my PhD thesis [Til], where I guessed 1.3 for G = G* with 0 < A < 1
and proved it for G'/3. After I posted the manuscript on ArXiv [Ti2], Strauch
proved the one-dimensional case of 1.3 by using Drinfeld’s level structures [Str,
Theorem 2.1]. Later on, Lau [Lau] proved 1.3 without the assumption that
G is HW-cyclic. By using the Newton stratification of the universal deforma-
tion space of G due to Oort, Lau reduced the higher dimensional case to the
one-dimensional case treated by Strauch. In fact, Strauch and Lau considered
more generally the monodromy representation over each p-rank stratum of the
universal deformation space. In this paper, we provide first a different proof of
the one-dimensional case of 1.3. Our approach is purely characteristic p, while
Strauch used Drinfeld’s level structure in characteristic 0. Then by following
Lau’s strategy, we give a new (and easier) argument to reduce the general case
of 1.3 to the one-dimensional case for HW-cyclic groups. The essential part
of our argument is a versality criterion by Hasse-Witt maps of deformations
of a connected one-dimensional Barsotti-Tate group (Prop. 4.11). This crite-
rion can be considered as a generalization of another theorem of Igusa which
claims that the Hasse invariant of a versal family of elliptic curves in charac-
teristic p has simple zeros. Compared with Strauch’s approach, our character-
istic p approach has the advantage of giving also results on the monodromy of
Barsotti-Tate groups over a discrete valuation ring of characteristic p.

1.4. Let A = Kk[[n]] be the ring of formal power series over k in the variable
m, K its fraction field, and v the valuation on K normalized by v(7) = 1. We
fix an algebraic closure K of K, and let K*°P be the separable closure of K
contained in K, I be the Galois group of K*%° over K, I, C I be the wild inertia
subgroup, and I, = I /I, the tame inertia group. For every integer n > 1, there
is a canonical surjective character Opn_1 : I; — F