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1. INTRODUCTION

Langlands’s principle of functoriality predicts the existence of a staggering
wealth of transfers (or lifts) between automorphic forms for different reduc-
tive groups. In recent years, attempts at the formulation of p-adic variants
of Langlands’s functoriality have been articulated in various special cases. We
prove the existence of the Shimura-Shintani-Waldspurger lift for p-adic families.
More precisely, Stevens, building on the work of Hida and Greenberg-Stevens,
showed in [2I] the existence of a A-adic variant of the classical Shintani lifting
of [20] for GL2(Q). This A-adic lifting can be seen as a formal power series with
coefficients in a finite extension of the Iwasawa algebra A := Z,[X] equipped
with specialization maps interpolating classical Shintani lifts of classical mod-
ular forms appearing in a given Hida family.

Shimura in [19], resp. Waldspurger in [22] generalized the classical Shimura-
Shintani correspondence to quaternion algebras over Q, resp. over any number
field. In the p-adic realm, Hida ([7]) constructed a A-adic Shimura lifting, while
Ramsey ([I7]) (resp. Park [12]) extended the Shimura (resp. Shintani) lifting
to the overconvergent setting.

In this paper, motivated by ulterior applications to Shimura curves over Q,
we generalize Stevens’s result to any non-split rational indefinite quaternion
algebra B, building on work of Shimura [I9] and combining this with a result
of Longo-Vigni [9]. Our main result, for which the reader is referred to Theorem
below, states the existence of a formal power series and specialization maps
interpolating Shimura-Shintani-Waldspurger lifts of classical forms in a given
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2 MATTEO LONGO, MARC-HUBERT NICOLE

p-adic family of automorphic forms on the quaternion algebra B. The A-
adic variant of Waldspurger’s result appears computationally challenging (see
remark in [I5 Intro.]), but it seems within reach for real quadratic fields (cf.
[13)).

As an example of our main result, we consider the case of families with trivial
character. Fix a prime number p and a positive integer N such that p t N.
Embed the set ZZ? of integers greater or equal to 2 in Hom(Z? , Z;) by sending
k € ZZ? to the character x +— 272, Let fo be an Hida family of tame
level N passing through a form fy of level T'o(Np) and weight ko. There is
a neighborhood U of kg in Hom(Z,,Z,’) such that, for any k € 722 NU,
the weight k specialization of fo gives rise to an element fi € Si(I'o(Np)).
Fix a factorization N = MD with D > 1 a square-free product of an even
number of primes and (M, D) = 1 (we assume that such a factorization exists).
Applying the Jacquet-Langlands correspondence we get for any k € ZZ2 N U
a modular form f;gL on I'; which is the group of norm-one elements in an
Eichler order R of level Mp contained in the indefinite rational quaternion
algebra B of discriminant D. One can show that these modular forms can be
p-adically interpolated, up to scaling, in a neighborhood of ky. More precisely,
let O be the ring of integers of a finite extension F' of Q, and let D denote
the O-module of O-valued measures on ZIQ, which are supported on the set of
primitive elements in ZIQ,. Let T'g be the group of norm-one elements in an
Eichler order Ry C B containing R. There is a canonical action of I’y on D
(see [0 §2.4] for its description). Denote by Fj the extension of F' generated
by the Fourier coefficients of fx. Then there is an element ® € H'(I'g, D) and
maps pi : HY(Tg,D) — HY(T, F}.) such that p(k)(®) = ¢, the cohomology
class associated to f{¥, with k in a neighborhood of ko (for this we need a
suitable normalization of the cohomology class associated to f;gL, which we do
not touch for simplicity in this introduction). We view ® as a quaternionic
family of modular forms. To each ¢, we may apply the Shimura-Shintani-
Waldspurger lifting ([I9]) and obtain a modular form hy of weigh k + 1/2,
level 4Np and trivial character. We show that this collection of forms can
be p-adically interpolated. For clarity’s sake, we present the liftings and their
A-adic variants in a diagram, in which the horizontal maps are specialization
maps of the p-adic family to weight k; JL stands for the Jacquet-Langlands
correspondence; SSW stands for the Shimura-Shintani-Waldspurger lift; and
the dotted arrows are constructed in this paper:

foo >fk

A—adic JLI IJL

Pk
o "> g
A—adic SSW | Issw
v

O foee >hk
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THE A-ADIC SSW CORRESPONDENCE 3

More precisely, as a particular case of our main result, Theorem 3.8 we get the
following

THEOREM 1.1. There exists a p-adic neighborhood Uy of ko in Hom(Z,, Z) ),
p-adic periods Q. for k € Uy NZ=? and a formal expansion

0= ZagqE

&1

with coefficients a¢ in the ring of Cp-valued functions on Uy, such that for all
ke UyNZZ2 we have

O(k) = Q. - hy.
Further, Qg, # 0.

2. SHINTANI INTEGRALS AND FOURIER COEFFICIENTS OF HALF-INTEGRAL
WEIGHT MODULAR FORMS

We express the Fourier coefficients of half-integral weight modular forms
in terms of period integrals, thus allowing a cohomological interpretation
which is key to the production of the A-adic version of the Shimura-
Shintani-Waldspurger correspondence. For the quaternionic Shimura-Shintani-
Waldspurger correspondence of interest to us (see [I5], [22]), the period in-
tegrals expressing the values of the Fourier coefficients have been computed
generally by Prasanna in [16].

2.1. THE SHIMURA-SHINTANI-WALDSPURGER LIFTING. Let 4M be a positive
integer, 2k an even non-negative integer and x a Dirichlet character modulo
4M such that x(—1) = 1. Recall that the space of half-integral weight modular
forms Sy,11/2(4M, x) consists of holomorphic cuspidal functions i on the upper-
half place $ such that

h(v(2)) = 5"/ (7, 2)* T x(d)h(2),

for all v = (¢ 4) € T'g(4M), where j'/2(v, 2) is the standard square root of the
usual automorphy factor j(v, z) (cf. [15, 2.3]).

To any quaternionic integral weight modular form we may associate a half-
integral weight modular form following Shimura’s work [19], as we will describe
below.

Fix an odd square free integer N and a factorization N = M - D into coprime
integers such that D > 1 is a product of an even number of distinct primes.
Fix a Dirichlet character vy modulo M and a positive even integer 2k. Suppose
that

U(-1) = (=)~
Define the Dirichlet character x modulo 4N by
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4 MATTEO LONGO, MARC-HUBERT NICOLE

Let B be an indefinite quaternion algebra over Q of discriminant D. Fix a
maximal order Op of B. For every prime ¢|M, choose an isomorphism

ip: B (2%0) Qy ~ Mg(@e)

such that i¢(Op ®z Z¢) = Ma(Z). Let R C Op be the Eichler order of B
of level M defined by requiring that i,(R ®z Z¢) is the suborder of My(Zy) of
upper triangular matrices modulo ¢ for all /|M. Let I' denote the subgroup
of the group R;* of norm 1 elements in R* consisting of those v such that
ie(v) = (§%) mod ¢ for all £[M. We denote by So;(I") the C-vector space
of weight 2k modular forms on I', and by Sax(T',%?) the subspace of Sox(T)
consisting of forms having character 1? under the action of R;. Fix a Hecke
eigenform

f € SQk‘ (F7 ¢2)
as in [19, Section 3].
Let V' denote the Q-subspace of B consisting of elements with trace equal to
zero. For any v € V, which we view as a trace zero matrix in M (R) (after
fixing an isomorphism i, : B @ R ~ M3(R)), set

G, = {y € SLy(R)| vy tvy = v}

and put ', := G, NT'. One can show that there exists an isomorphism

~

w:R* = @G,
defined by w(s) = 6*1(5 0 )ﬂ, for some 8 € SLy(R). Let t, be the order

0s !
of Ty N {£1} and let -, be an element of T, which generates I, {£1} / {£1}.
Changing v, to 7, ! if necessary, we may assume =, = w(t) with ¢ > 0. Define
V* to be the Q-subspace of V' consisting of elements with strictly negative

norm. For any « = (‘Z _ba) € V* and z € H, define the quadratic form
Qu(2) := cz* — 2az —b.

Fix 7 € H and set

P(fa D) = = 2lm(@) /) [ Qa2 p(e)is
where nr : B — Q is the norm map. By [19, Lemma 2.1], the integral is
independent on the choice 7, which justifies the notation.

Remark 2.1. The definition of P(f,«,T) given in [19, (2.5)] looks different: the
above expression can be derived as in [I9, page 629] by means of [19, (2.20)
and (2.22)].

Let R(T') denote the set of equivalence classes of V* under the action of T by
conjugation. By [19 (2.6)], P(f,«,T') only depends on the conjugacy class of
a, and thus, for C € R(T"), we may define P(f,C,T") := P(f, «,T") for any choice
of @ € C. Also, ¢(C) := —nr(«a) for any o € C.

Define O% to be the maximal order in B such that O ®z Z¢ ~ Op Qg Z for
all £+ M and Oz ®z Z, is equal to the local order of B ®g Q; consisting of
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THE A-ADIC SSW CORRESPONDENCE 5

elements 7 such that i,(y) = ((,;J b/éw) with a,b,¢,d € Zj, for all ¢/|M. Given

a € O, we can find an integer b, such that

(1) is(a) = ( - /M > mod ir(R®z Ze), V| M.
Define a locally constant function 7, on V by ny(a) = ¢(be) if « € O5NV and
n(a) = 0 otherwise, with ¢(a) = 0 if (a, M) # 1 (for the definition of locally
constant functions on V' in this context, we refer to [19, p. 611]).

For any C € R(T"), fix a¢ € C. For any integer £ > 1, define

ag(h) = 2u(M\9) " Y. nulac)e VAP(f.C.T).

CeR(I),q(C)=¢
Then, by [19] Theorem 3.1],

hi= Z:ag(fz)qE € Skt1/2(4N, X)
e>1

is called the Shimura-Shintani-Waldspurger lifting of f.

2.2. COHOMOLOGICAL INTERPRETATION. We introduce necessary notation to
define the action of the Hecke action on cohomology groups; for details, see [d]
§2.1]. If G is a subgroup of B* and S a subsemigroup of B* such that (G, 5)
is an Hecke pair, we let H(G, S) denote the Hecke algebra corresponding to
(G, S), whose elements are written as T'(s) = GsG = [],Gs; for s,s; € S
(finite disjoint union). For any s € S, let s* := norm(s)s~! and denote by
S* the set of elements of the form s* for s € S. For any Z[S*]-module M
we let T'(s) act on H'(G, M) at the level of cochains ¢ € Z'(G, M) by the
formula (¢|T'(s))(v) = >, sfc(ti(y)), where t;(y) are defined by the equations
Gs;v = Gs;j and s;v = t;(y)s;. In the following, we will consider the case of
G =T and

S = {s € B*[i¢(s) is congruent to (§ *) mod ¢ for all £|M}.

For any field L and any integer n > 0, let V,,(L) denote the L-dual of the
L-vector space P, (L) of homogeneous polynomials in 2 variables of degree n.
We let My(L) act from the right on P(z,y) as Ply(x,y) := P(y(x,y)), where

for v = (%) we put

Y(@,y) == (az + yb, cx + dy).
This also equips V,,(L) with a left action by 7 - ¢(P) := ¢(P]y). To simplify
the notation, we will write P(z) for P(z,1).
Let F denote the finite extension of Q generated by the eigenvalues of the Hecke
action on f. For any field K containing F', set

Wy(K) = H'(T, Vi_o(K))”

where the superscript f denotes the subspace on which the Hecke algebra acts
via the character associated with f. Also, for any sign &+, let ij (K) denote
the +-eigenspace for the action of the archimedean involution (. Remember
that ¢ is defined by choosing an element wy, of norm —1 in R* such that such
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6 MATTEO LONGO, MARC-HUBERT NICOLE

that ig(wse) = (§ % ) mod M for all primes ¢|M and then setting ¢ := T (woo)
(see [9], §2.1]). Then W?(K) is one dimensional (see, e.g., [9, Proposition 2.2]);
fix a generator ¢J$ of W% (F).

To explicitly describe (b)jf, let us introduce some more notation. Define

flwss(2) := (Cz + D)2 f(weo(2))

where ioo(woo) = (A 5). Then flws € S2x(T') as well. If the eigenvalues of

the Hecke action on f are real, then we may assume, after multiplying f by a
scalar, that flws = f (see [19, p. 627] or [I0, Lemma 4.15]). In general, let
I(f) denote the class in H*(T', V,_2(C)) represented by the cocycle

v

v(7)
P— L,(f)(P):= / f(2)P(2)d=

for any 7 € H (the corresponding class is independent on the choice of 7). With
this notation,

P(fa a, F) = —(2(—nr(a))1/2/ta) : I’yac (f) (Qac (Z)k_l)'

Denote by I£(f) := (1/2)- I(f) £ (1/2) - I(f)|woo, the projection of I(f) to the
eigenspaces for the action of woo. Then I(f) = I (f)+I~(f) and Ijjf = Q? -q[)f,
for some Qf e C*.

Given a € V* of norm —¢, put o = w laws. By [19, 4.19], we have

oo

()& 2P (f,0,T) + () 2P(f,a/,T) = —n(a) - ta " I (Que (2)"71).

‘We then have

h E —n(ac) -
ag(h) = i) I (Qac(2)"7).
CeRz(D),q(C)=¢ 20(T\H) tae

We close this section by choosing a suitable multiple of h which will be the
object of the next section. Given Q,(z) = c2? — 2az — b as above, with « in
V*, define Qu(2) := M - Qqa(2). Then, clearly, I=(f)(Qac(2)*1) is equal to
MF T (f)(Qae (2)F71). We thus normalize the Fourier coefficients by setting

(2)

a 7 . ki]‘ . a ~
ac(h) = — e(h) - M — 2u\H) _ 3 my(ac) 6 Qe ().
f CeR(D),q(C)=¢ ¢
So
(3) hi=Y_ag(h)g*

belongs to Si11/2 (4N, x) and is a non-zero multiple of h.
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THE A-ADIC SSW CORRESPONDENCE 7

3. THE A-ADIC SHIMURA-SHINTANI-WALDSPURGER CORRESPONDENCE

At the heart of Stevens’s proof lies the control theorem of Greenberg-Stevens,
which has been worked out in the quaternionic setting by Longo—Vigni [9].
Recall that IV > 1 is a square free integer and fix a decomposition N = M - D
where D is a square free product of an even number of primes and M is coprime
to D. Let p{ N be a prime number and fix an embedding Q < Qp.

3.1. THE HIDA HECKE ALGEBRA. Fix an ordinary p-stabilized newform
(4) fO € Sko (Fl(MpTO)mFO(D)a€O)

of level T'y (Mp™) N Ty(D), Dirichlet character ey and weight ko, and write O
for the ring of integers of the field generated over QQ,, by the Fourier coefficients
of fo.
Let A (respectively, O[Z]) denote the Iwasawa algebra of W := 1 + pZ,
(respectively, Z;) with coefficients in O. We denote group-like elements in A
and O[ZX] as [t]. Let h%? denote the p-ordinary Hida Hecke algebra with
coefficients in O of tame level I'1(N). Denote by £ := Frac(A) the fraction
field of A. Let R denote the integral closure of A in the primitive component
K of h&d @ L corresponding to fo. It is well known that the A-algebra R is
finitely generated as A-module.
Denote by & the O-module Homg, (R, Q) of continuous homomorphisms of
O-algebras. Let X1t the set of arithmetic homomorphisms in X, defined in
[9. §2.2] by requiring that the composition

We—A - Q,
has the form v — ¥, (y)y™ with n, = k, — 2 for an integer k, > 2 (called
the weight of k) and a finite order character ¢, : W — @p (called the wild
character of k). Denote by r, the smallest among the positive integers ¢ such
that 1+ p'Z, C ker(1,,). For any k € X 'let P, denote the kernel of x and

R p, the localization of R at k. The field F}; := Rp,_/P.Rp, is a finite extension
of Frac(Q). Further, by duality, x corresponds to a normalized eigenform

fr € Sk, (To(ND™), &)

for a Dirichlet character €, : (Z/Np™=Z)* — Q,. More precisely, if we write
1 for the character of R, defined as in [0, Terminology p. 555], and we let w
denote the Teichmiiller character, we have €, := ¥, - ¥r - w™ "™ (see [0, Cor.
1.6]). We call (e, ki) the signature of k. We let ko denote the arithmetic
character associated with fo, so fo = fx,, ko = kko, €0 = €ry, and rg = 71y, .
The eigenvalues of f,, under the action of the Hecke operators T;, (n > 1 an
integer) belong to F;,. Actually, one can show that f, is a p-stabilized newform
on 'y (Mp™)NTy(D).

Let Ay denote the Iwasawa algebra of Z) x (Z/NZ)* with coefficients in O.
To simplify the notation, define A := (Z/NpZ)*. We have a canonical isomor-
phism of rings Ax ~ A[A], which makes Ay a A-algebra, finitely generated as
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8 MATTEO LONGO, MARC-HUBERT NICOLE

A-module. Define the tensor product of A-algebras
Ry =R @A AN,

which is again a A-algebra (resp. Apy-algebra) finitely generated as a A-module,
(resp. as a Ay-module). One easily checks that there is a canonical isomor-
phism of A-algebras

(where A acts on R); this is also an isomorphism of A x-algebras, when we let
An =~ A[A] act on R[A] in the obvious way.

We can extend any x € X to a continuous O-algebra morphism

KN:RN —>@p

setting

n n
KN <Z T '51') =Y w(ri) - Pr(5)

i=1 i=1
for r;, € R and §; € A. Therefore, xy restricted to Z; is the character
t — e.(t)t". If we denote by Xy the O-module of continuous O-algebra
homomorphisms from Ry to @p, the above correspondence sets up an injec-
tive map Xt <y Xy, Let XY™ denote the image of A" under this map.
For ky € X¥h we define the signature of sy to be that of the corresponding
K.

3.2. THE CONTROL THEOREM IN THE QUATERNIONIC SETTING. Recall that
B/Q is a quaternion algebra of discriminant D. Fix an auxiliary real quadratic
field F' such that all primes dividing D are inert in F' and all primes dividing
Mp are split in F, and an isomorphism ip : B ®qg F ~ My (F). Let Op denote
the maximal order of B obtained by taking the intersection of B with M (Op),
where OF is the ring of integers of F'. More precisely, define

Op = L_l(il?l (ir(B®1) N Ma(OF)))

where ¢ : B — B ®gq F' is the inclusion defined by b +— b® 1. This is a maximal
order in B because ip(B ® 1) N My(OF) is a maximal order in ir(B®1). In
particular, i and our fixed embedding of Q into Q, induce an isomorphism

ip : B®o Qp ~ Ma(Qp)
such that i,(Op ®z Z,) = Ma(Z,). For any prime ¢|M, also choose an embed-
ding Q < Q, which, composed with ig, yields isomorphisms

i+ B®g Qr = M2(Qr)

such that i,(Op ®z Z;) = My(Z¢). Define an Eichler order R C Op of level
M by requiring that for all primes ¢|M the image of R ®z Zy via iy consists
of upper triangular matrices modulo ¢. For any r > 0, let ', denote the
subgroup of the group R;* of norm-one elements in R consisting of those
such that i,(y) = (‘Zg) with ¢ = 0 mod Mp" and a = d = 1 mod Mp",
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THE A-ADIC SSW CORRESPONDENCE 9

for all primes ¢|Mp. To conclude this list of notation and definitions, fix an
embedding F' — R and let
ico 1 B®g R~ M;(R)

be the induced isomorphism.

Let Y := ZIQ, and denote by X the set of primitive vectors in Y. Let D denote
the O-module of O-valued measures on Y which are supported on X. Note that
Mos(Z,) acts on Y by left multiplication; this induces an action of My(Z,) on
the O-module of O-valued measures on Y, which induces an action on ID. The
group R* acts on D via i,. In particular, we may define the group:

W := H' (T, D).
Then D has a canonical structure of O[Z,[-module, as well as hord-action, as
described in [9] §2.4]. In particular, let us recall that, for any [t] € O[Z,], we

have
/ ol y)d(f] - v) = / ot ty)dv,
X X

for any locally constant function ¢ on X.
For any x € X#th and any sign 4+ € {—, +}, set

o E
WiE = Wi, (Fy) = H' (T, Vi, (Fr))

where £ is any Jacquet-Langlands lift of f, to I, ; recall that the superscript
fr denotes the subspace on which the Hecke algebra acts via the character
associated with f., and the superscript + denotes the +-eigenspace for the
action of the archimedean involution ¢. Also, recall that Wi is one dimensional
and fix a generator ¢ of it.

We may define specialization maps

pr: D —V, (F)
by the formula
o) )P = [ al)Ply
Zp X LY
which induces (see [9, §2.5]) a map:
Dr Word N Word.
Here W'Y and WO denote the ordinary submodules of W and W, re-

spectively, defined as in [3| Definition 2.2] (see also [9, §3.5]). We also let
Wr =W ®x R, and extend the above map p, to a map

Pr W%d — Wzrd
by setting p.(z @ 1) = pp(x) - £(r).

THEOREM 3.1. There exists a p-adic neighborhood Uy of ko in X, elements ®+
m W?{d and choiceg of p-adic periods QX € F,, for k € Uy N X*h such that,
for all k € Uy N X e have

pﬂ(q)i) = Qf : (bf
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10 MATTEO LONGO, MARC-HUBERT NICOLE
+
and Qi # 0.

Proof. This is an easy consequence of [9, Theorem 2.18] and follows along the
lines of the proof of [2I Theorem 5.5], cf. [10, Proposition 3.2]. O

We now normalize our choices as follows. With Uy as above, define
ugrlth = Z/lO N Xarlth'

Fix x € U™ and an embedding Q, — C. Let fJ denote a modular form
onI';, corresponding to f. by the Jacquet-Langlands correspondence, which is
well defined up to elements in C*. View ¢;= as an element in H*(T,._, V,,(C))*.
Choose a representative (I% of ®*, by which we mean that if * = > <I>l:-t T,
then we choose a representative @fv for all i. Also, we will write p,(®)(P) as

€ x .= k(r;) - € z, +
/przg K(y)P( 7y)d<1>,y Z ( ) / (y)P( y)dq)lﬁ

P Zp XLy

With this notation, we see that the two cohomology classes
v — ex(y) Pz, y)dDE (z,y)
Zp XLy

and
y(7)
vy — QF. / P(z, 1) 5% (2)dz
are cohomologous in H(T';,_,V;,, (C)), for any choice of T € H.

3.3. METAPLECTIC HIDA HECKE ALGEBRAS. Let o : Ay — Ay be the ring ho-
momorphism associated to the group homomorphism ¢ — ¢2 on Zy x(Z/NZ)*,
and denote by the same symbol its restriction to A and (’)[[Z;]]. We let A,
O[Z; ], and Ay, denote, respectively, A, O[Z;] and Ay viewed as algebras
over themselves via . The ordinary metaplectic p-adic Hida Hecke algebra we
will consider is the A-algebra

R =R @) A,
Define as above B _
X = Hom‘é’_n;lg(R,@p)
and let the set X2rth of arithmetic points in X to consist of those & such that

the composition

we A€

A—=1RA 75,( i Qp
has the form v — ¥z (v)y"™* with ngz := kz — 2 for an integer k;z > 2 (called
the weight of &) and a finite order character ¢z : W — Q (called the wild
character of &). Let rz the smallest among the positive integers ¢ such that
1+ p'Z, C ker(¢).

We have a map p : X — X induced by pull-back from the canonical map
R — R. The map p restricts to arithmetic points.
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THE A-ADIC SSW CORRESPONDENCE 11

As above, define the A-algebra (or Ay-algebra)
(6) Ry =R & Ano

via A= 1® A, B _ B
We easily see that Ry ~ R[A] as Ay-algebras, where we enhance R[A] with
the following structure of Ay ~ A[A]-algebra: for Y. A;-d; € A[A] (with \; € A

and ¢; € A) and Y r; -0} € R[A] (with Ty =Y uTih @Now € R, rjn € R,
Aj.h € Ay, and 0% € A), we set

(Z&- - 6;) - (Z?‘j 287) =) (rin ® Nidgn)) - (6:6).

0,4;h
As above, extend & € X {0 a continuous O-algebra morphism
I%N : RN — @p

by setting

n n
RN <Z T '51') = Z R(xs) - Yr(0:)

i=1 i=1
for x; € R and 6; € A, where ¢ is the character of R. If we denote by QFN the
O-module of continuous O-linear homomorphisms from ﬁN to Qp, the above
correspondence sets up an injective map xerith <y ¥y and we let X J?,mh denote
the image of Xarith Pyt e = Vi - Pr - w ", which we view as a Dirichlet
character of (Z/Np™#7)*, and call the pair (ez, kz) the signature of Ky, where
k is the arithmetic point corresponding to &y .
We also have a map py : )?N — X induced from the map Ry — ﬁN taking
r — r ® 1 by pull-back. The map py also restricts to arithmetic points. The
maps p and py make the following diagram commute:

)?arithcﬁ )?E,rith

yarithC Xﬁ,rith
where the projections take a signature (e, k) to (€2, 2k).

3.4. THE A-ADIC CORRESPONDENCE. In this part, we combine the explicit in-
tegral formula of Shimura and the fact that the toric integrals can be p-adically
interpolated to show the existence of a A-adic Shimura-Shintani-Waldspurger
correspondence with the expected interpolation property. This follows very
closely [21], §6].

Let iy € /’?ﬁ,mh of signature (ez,kz). Let L, denote the order of My(F)

consisting of matrices (M;Tc b/AC/leT) with a,b,c,d € Op. Define

Op, =" (ip' (ir(B®1)NL,))
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12 MATTEO LONGO, MARC-HUBERT NICOLE

Then Op,, is the maximal order introduced in §21] (and denoted O there)
defined in terms of the maximal order Op and the integer Mp". Also,

S:=0nN OB,T

is an Eichler order of B of level Mp containing the fixed Eichler order R of
level M. With a € V* N Op, 1, we have

. _( a b/(Mp)
™ ivte) = (¢ 1
in My (F) with a,b,c € Op and we can consider the quadratic forms

Qa(z,y) = cx® — 2azy — (b/(Mp))y?,
and
(8) Qa(w,y) := Mp- Qalz,y) = Mpex® — 2Mpazy — by®.
Then Qa(x, y) has coefficients in Op a{ld, composing with F' — R and letting
x =z, y =1, we recover Q,(z) and Q,(z) of §27I (defined by means of the
isomorphism i, ). Since each prime ¢|Mp is split in F’ , the elements a, b, ¢ can
be viewed as elements in Z; via our fixed embedding Q — Qy, for any prime
L] Mp (we will continue writing a, b, ¢ for these elements, with a slight abuse of
notation). So, letting b, € Z such that i,(a) = (* b=/(MP) ) modulo i¢(S®7Ze),
for all ¢|Mp, we have b = b, modulo MpZ, as elements in Zg, for all ¢/|Mp, and
thus we get

(9) Ner (Oé) = €g (ba) = Gk(b)

for b as in ().
For any v € D, we may define an O-valued measure j, (v) on Z, by the formula:

. F@®)dja (v)(t) ::/ . f(@a(x,y))du(x,y).
7 Ly XL

for any continuous function f : Z; — C,. Recall that the group of O-valued
measures on Z; is isomorphic to the Iwasawa algebra O[[Z;(]], and thus we may
view jo () as an element in O[Z;] (see, for example, [I, §3.2]). In particular,
for any group-like element [\] € O[Z)] we have:

IRCLCEADICEYS ( . f<ts>dm<s>> dGa@)O) = [ FODdia()(0).

Zy

On the other hand,

[ Gy = [ 5@aew)dr = [ f(Ga(e)ds

Zp XZLp Zp XLy Zp XZLp
and we conclude that jo (A - v) = [X*] - jo(¥). In other words, jo is a O[Z)]-
linear map
Jo:D— O[[Z;]]a.

Before going ahead, let us introduce some notation. Let x be a Dirichlet char-
acter modulo Mp", for a positive integer r, which we decompose accordingly
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THE A-ADIC SSW CORRESPONDENCE 13

with the isomorphism (Z/Np"Z)* ~ (Z/NZ)* x (Z/p"Z)* into the product
X = X~ - Xp With xn : (Z/NZ)* — C* and x, : (Z/p"Z)* — C*. Thus,
we will write x(z) = xn(zn) - Xp(2p), where zy and z, are the projec-
tions of © € (Z/Np"Z)* to (Z/NZ)* and (Z/p"Z)*, respectively. To sim-
plify the notation, we will suppress the N and p from the notation for =y
and z,, thus simply writing « for any of the two. Using the isomorphism
(Z/NZ)* ~ (Z/MZ)* x (Z/DZ)*, decompose xn as XN = Xa - XD With xas
and yp characters on (Z/MZ)* and (Z/DZ)*, respectively. In the following,
we only need the case when yp = 1.
Using the above notation, we may define a O[Z]-linear map J, : D — O[Z}]
by
Ja(v) = €z a1 (b) - €x,p(—1) - Ja(v)
with b as in ([@). Set Dy := D ®qzx) Ay, where the map O[Z;] — Ay is
induced from the map Z; — Z) x (Z/NZ)* on group-like elements given by
z +— = ® 1. Then J, can be extended to a Ay-linear map J, : Dy — Ay .
Setting Dg , = Ry @A, Dy and extending by Ry -linearity over A we finally
obtain a R y-linear map, again denoted by the same symbol,
Jo:Dry — Rn.
For v € Dy and r € Ry we thus have
Jo(r @v) = €z m(b) - €rp(—1) -7 ® ja(¥).
For the next result, for any arithmetic point ky € XY™ coming from x €
Xarith “extend p, in (@) by Ry-linearity over O[Z}], to get a map
Prn - ]D)RN — Vnn
defined by py (r@v) := pe(v) - £n(r), for v € D and r € Ry. To simplify the
notation, set

(10) vV, )iy = pry (V (QZR/Q)
The following is essentially [21] Lemma (6.1)].

LEMMA 3.2. Let iy € )?j{‘,mh with signature (e, kz) and define ky = py(Fn).
Then for any v € Dgr, we have:

AN (Ja(V) = e () - (1, )y -
Proof. For v € Dy and r € Ry we have
EN (Ja(r ® V)) = kN (e;i,M(b) cemp(—1) -7 ®ja(u))
=eam(b) - €xp(—1) - En(r®1) - &n(1® ja(v))

= caar(B) - enp(-1) i)+ [ Fn(dia(v)

Zyp

and thus, noticing that 7y restricted to Z, is REn(t) = €z p(t)t"%, we have

v (Ja(rov)) = eg,M(b)'ek,p(*l)%N(T)/ €ip(Qa(7,9))Qa(w,y)"*2dv.

Zp XLy
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14 MATTEO LONGO, MARC-HUBERT NICOLE

Recalling (), and viewing a, b, ¢ as elements in Z,,, we have, for (z,y) € Z, XLy s

€R,p (Qa(xyy)) = 5F€,p(_by2) = 5F€,p(_b)5fc,p(y2) = 5F€,p(_b)5§,p(y) = GR,P(_b)EH,p(y)

Thus, since ez(—1)? = 1, we get:

RN (Ja(r ® V)) = kN (r) - €rp (D) - € p(b) - PH(V)(QZQ/Q) = 1e,, (@) - (v, Q)
where for the last equality use (@) and (I0Q). O

Define

WRN =W ®O[[Z§f]] RN,
the structure of O[[Z;]]—module of R being that induced by the composition
of the two maps O[Z)] — Ay — Ry described above. There is a canonical
map

¥ WRN — Hl(ro,DRN)

described as follows: if v, is a representative of an element v in W and r € Ry,
then ¥(v @ r) is represented by the cocycle v, @ r.
For v € Wr, represented by v, and { > 1 an integer, define

Jac (P,
O (v) := > M.

ceRtma@=¢
DEFINITION 3.3. For v € Wpg,,, the formal Fourier expansion
() =Y b: ()¢
§>1
inR N [q] is called the A-adic Shimura-Shintani-Waldspurger lift of v. For any
i € X2rith the formal power series expansion

o) (n) = 3 fn (8e()) ¢

£21

is called the &-specialization of ©(v).

There is a natural map

Wr — WRN
taking v ® r to itself (use that R has a canonical map to Ry ~ R[A], as
described above). So, for any choice of sign, ®* € Wx will be viewed as an
element in Wg .

JFrom now on we will use the following notation. Fix kg € xarith and put
ko = p(kg) € X*h_ Recall the neighborhood Uy of kg in Theorem Bl Define

Uy == p~ 1 (Up) and

I;{v(a)),rith — 1/70 N /’farith.
For each & € U™ put k = p(i) € U™, Recall that if (ez, kz) is the signature
of &, then (4, k) 1= (€2,2kz) is that of ro. For any x := p(£) as above, we
may consider the modular form

f:;]L € Skx, (Fn—, ) GH)
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THE A-ADIC SSW CORRESPONDENCE 15

and its Shimura-Shintani-Waldspurger lift

I
)

3
—
K
N—
7N

|
=L
N——
&

hn = Z aﬁ(hn)qg € Skn+1/2(4Np7‘”,XR), where XN(I) :
3

normalized as in (@) and (@]). For our fixed kg, recall the elements ® := &+
chosen as in Theorem ] and define ¢, := ¢;" and Q,, := Qf for xk € UHith,

PROPOSITION 3.4. For all k € Zjloamh such that r. =1 we have
RN (9&((1))) = QH . ag(h,@) and @((I))(RN) = QK . h,.i.
Proof. By Lemma [3.2] we have
~ 776;;- (ac) A&
Rv(0e(®) = D o (2)(QuE).
CER(I).q(C)=¢ ¢
Using Theorem B we get
~ Nez \OC 'QH ko —
AN (0e(®)) = > ¥¢n( ).
CER(T1),q(C)=¢ ae
Now (@) shows the statement on <y (0 (®)), while that on ©(®)(<y) is a formal

consequence of the previous one. O

COROLLARY 3.5. Let ay, denote the image of the Hecke operator T, in R. Then
®(¢)|T5 =a,-O(D).
Proof. For any k € X let a,(k) := k(T},), which is a p-adic unit by the
ordinarity assumption. For all & € U3 ™™ with r, = 1, we have

O(®)(An)|Ty = Qe - T, = ap(k) - Q- by = ap(r) - O(P)(Rn).
Consequently,

I~$N (9&02 (@)) = ap(n) . I%N (95(@))

for all % such that r, = 1. Since this subset is dense in /'FN, we conclude that

Ocp2 (P) = ap - 0c(®) and so O(P)|T7 = a,, - O(P). O

For any integer n > 1 and any quadratic form ) with coefficients in F', write
[Q]n for the class of @ modulo the action of ip(I'y). Define F, ¢ to be the
subset of the F-vector space of quadratic forms with coefficients in F' consisting
of quadratic forms Q,, such that a € V*N Op,, and —nr(a) = £&. Writing 06,
for the discriminant of @, the above set can be equivalently described as

Fne ={Qala € VN Op.,, 65, = Np"E}.

Define F,, ¢/T', to be the set {[Qa]n| Qu € Fne} of equivalence classes of F,, ¢
under the action of ix(I',). A simple computation shows that Q,-1,, = Qalg
for all « € V* and all g € T',,, and thus we find

Fne/Tn ={[Qc.]n|C € R(Tn), 85, = Np"&}.
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16 MATTEO LONGO, MARC-HUBERT NICOLE

We also note that, in the notation of §2.1] if f has weight character v, de-
fined modulo Np™, and level I',,, the Fourier coefficients a¢(h) of the Shimura-
Shintani-Waldspurger lift h of f are given by

() = Y Wgroer
QIEFme/Tn @

and, if Q = Qq, we put ¥(Q) := 1y (by) and tg = t,. Also, if we let

]:n/Fn = an,g/rn
13
we can write
(12) = Y D gr(gpr)giarn,
(QI€F. /T, ¢

Fix now an integer m > 1 and let n € {1,m}. For any t € (Z/p"7Z)* and any
integer £ > 1, define F,, ¢; to be the subset of F,, ¢ consisting of forms such
that Np"b, =t mod Np™. Also, define F, ¢ /I, to be the set of equivalence
classes of F,, ¢, under the action of ip(I'y). If « € V* N Op,,, and

. a b
ir(a) = ( e —u ) ,
then

(13) Qal(w,y) = Np"cx® —2Np"azy — Np"by?
ffom which we see that there is an inclusion Fi, ¢y C© Figpm—1 4. If Qa and
Qo belong to Fiy e, and o = gag~! for some g € I',,, then, since I',,, C I'y,
we see that @ and @ represent the same class in Fy ¢pm-1 4/I'1. This shows
that [Qa]m — [Qal]1 gives a well-defined map

Tt t Fmet/Tm — Figpm-1,4/T1.
LEMMA 3.6. The map mm ¢+ s bijective.

Proof. We first show the injectivity. For this, suppose Qn and Q. are in Fmet
a~nd [Qoi]l = [Qa/]}. So there exists g = (: f) in ip(I'1) such that such that
Qa = Qulg. If Qo = cx? — 2azy — by?, and easy computation shows that
Qo = 2% — 2d'zy — V'y? with

¢ =ca® — 2aay — by?

! —

a = —caf + afy+ aad + b6
b = —¢B? + 2a88 + bd>.

The first condition shows that v+ = 0 mod Np™. We have b = UV
mod Np™, so 62 = 1 mod Np™. Since § = 1 mod Np, we see that §
mod Np™ too.

[Tl
= o
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We now show the surjectivity. For this, fix [Qac]l in the target of 7, and choose
a representative

Qac = cz? — 2azy — by?
(recall Mpm§|6Qac, Nple, Npla, and b € Of, the last condition due to

ny(ac) # 0). By the Strong Approximation Theorem, we can find § € T'y
such that

. 1 0
ie(g) = ( a1 1 ) mod Np™

1

for all ¢|Np. Take g := ip(g), and put a := g 'acg. An easy computation,

. : /AR VWA — (ap
using the expressions for a/,0’, ¢ in terms of a,b,c and g = (7 6) as above,

shows that o € V* N Op m, ny(a) =t and dg, = Np™¢, and it follows that
Qa € fm,g,t- Now
W([Qa]m) = [Qa]l = [nglacg]l = [Qac]l
where the last equality follows because g € I'y. O
PROPOSITION 3.7. For all i € UZ™™ we have
O(®) (AN Ty " = Qs - h.

Proof. For r, = 1, this is Proposition [3.4] above, so we may assume 7, > 2. As
in the proof of Proposition 3.4 combining Lemma, and Theorem B.J]we get

O(@)(An) = Y Belaed By ghon| g

&1 \certarme
which, by () and ([I2) above we may rewrite as
~ €x Q : QK _
o) = Y HD ey (gretygiasin
[QleF1 /T Q

By definition of the action of T, on power series, we have
: & - _ rr
@((I))(RN”T;N—I _ Z € (Ci) QSK(Q]% 1)q6Q/(Np )'
QIeF/Trprlsq @
Setting Fy,.¢/Ty := Fnie/Tn for n € {1,r.}, Lemma [3.6] shows that
) e>1Y 08
Fi i =1{lQ] € F1+/T1+ such that p™|dq} is equal to F, ;.
Therefore, splitting the above sum over ¢t € (Z/Np™=7Z)*, we get
- re—1 _ €:(Q) - Qs ko—1\,8q/(Np™=)
@y = Y Y D gy

te(Z/pr=—12)* [QIEFT,

>y Ry @

te(Z/pre—12)% [QI€Fm +/T'm to

= > (@)D ) (rem1ygia/ V),
Qern/rn @
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Comparing this expression with (I2]) gives the result. a

We are now ready to state the analogue of [2Il Thm. 3.3], which is our main
result. For the reader’s convenience, we briefly recall the notation appearing
below. We denote by X the points of the ordinary Hida Hecke algebra, and
by AX2rith its arithmetic points. For kg € X" we denote by Uy the p-
adic neighborhood of kg appearing in the statement of Theorem [BI] and put
UGt = Uy N X We also denote by ® = T € W% the cohomology
class appearing in Theorem 3.1l The points X of the metaplectic Hida Hecke
algebra defined in §3.3] are equipped with a canonical map p : Xoarith _y yarith

on arithmetic points. Let UM := Ufy N Xith For cach & € U™, put
k = p(k) € UF™. Recall that if (ez,kz) is the signature of &, then the
signature of k is (€4, ky) = (€2,2kz). For any k := p(&) as above, we may

consider the modular form
f:;]L € Sk, (v €x)
and its Shimura-Shintani-Waldspurger lift

k
71 3
he = 3 ac(h)af € Si 12 (AND™, xe),  where xa(z) = ex(x) (—) ,
£

normalized as in (@) and ([@B). Finally, for & € Xh we denote by Ry its
extension to the metaplectic Hecke algebra Ry defined in §3.3

THEOREM 3.8. Let kg € X Then there exists a choice of p-adic periods
Q. for k € Uy such that the A-adic Shimura-Shintani- Waldspurger lift of ®

O(®) = 0e(P)g"
€1
in Ry[g] has the following properties:
(1) Q4 #0. o
(2) For any & € U™, the k-specialization of ©(®)

O)(kn) == z:i%(@g(q)))q6 belongs to Sy, 4+1/2(ANp"™, x}.),
£>1
where x|, (x) := xx(2) - (%)k"fl, and satisfies
O(®)(An) = Qe - he|T) ™.
Proof. The elements ,; are those Q appearing in Theorem B} which we
used in Propositions 34 and B7 above, so (1) is clear. Applying T;”’l to the
formula of Proposition 8.7, using Corollary B.5 and applying a,(x)' =" on both
sides gives
O(®) () = ap(k)' ™ Qs - h| Ty,

By [18 Prop. 1.9], each application of T}, has the effect of multiplying the
character by (2), hence

hy, = he| T~ € Sps1/2(ANDP™, X0)
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with x/. as in the statement. This gives the first part of (2), while the last
formula follows immediately from Proposition 3.7 O

Remark 3.9. Theorem [[Tlis a direct consequence of Theorem 3.8 as we briefly
show below.
Recall the embedding Z=? < Hom(Z),Z) ) which sends k € Z=? to the char-

acter z — 2*~2. Extending characters by O-linearity gives a map
772X (A) = Homfgo_r:lg(A, Q).

We denote by kM the image of k € Z22 in X(A) via this embedding. We
also denote by w : X — X'(A) the finite-to-one map obtained by restriction of
homomorphisms to A. Let k™) be a point in X of signature (k,1) such that
w(k®)) = kM. A well-known result by Hida (see [6] Cor. 1.4]) shows that
R/A is unramified at k™). As shown in [2ZI} §1], this implies that there is a
section s,y of w which is defined on a neighborhood Uy ) of k@) in X(A)
and sends k) to k(®).

Fix now kg as in the statement of Theorem [l corresponding to a cuspform
fo of weight k¢ with trivial character. The form fy corresponds to an arith-
metic character k(()R) of signature (1, ko) belonging to X'. Let U be the inverse
image of Uy under the section 5;&\)7 where Uy C X is the neighborhood of kéR)

in Theorem Extending scal[zxrs by O gives, as above, an injective contin-
uos map Hom(Z),Z)) < X(A), and we let Uy be any neighborhood of the
character z +— 2*~2 which maps to U} and is contained in the residue class
of ko modulo p — 1. Composing this map with the section U} — Uy gives a
continuous injective map

S: UO<—>L{6‘—>U0

which takes kg to k(()R), since by construction the image of ky by the first map

is kzéA). We also note that, more generally, ¢(k) = k(™) because by construction
s(k) restricts to k™) and its signature is (1, k), since the character of ¢(k) is
trivial. To show the last assertion, recall that the character of ¢(k) is ¢y -
Y -w*, and note that 1, is trivial because k™) (z) = 2#~1, and ¢g -w ™" is
trivial because the same is true for kg and k = kg modulo p— 1. In other words,
arithmetic points in ¢(Up) correspond to cuspforms with trivial character. This
is the Hida family of forms with trivial character that we considered in the
Introduction.

We can now prove Theorem [[1l For all k € Uy N Z22, put Q = Q=) and
define © := O(®) o ¢ with ® as in Theorem for kg = k(()R). Applying
Theorem B8 to kéR), and restricting to ¢(Up), shows that Uy, 2 and © satisfy
the conclusion of Theorem [I.1]

Remark 3.10. For & € Zj{gmh of signature (ez, kz) with rz = 1 as in the above
theorem, h,, is trivial if (—1)%% # ez(—1). However, since ¢, # 0, it follows
that h., is not trivial as long as the necessary condition (—1)k = ¢;(—1) is
verified.
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Remark 3.11. This result can be used to produce a quaternionic A-adic version
of the Saito-Kurokawa lifting, following closely the arguments in [§, Cor. 1].
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of a counterexample to a strong form of it.

2010 Mathematics Subject Classification: 14D05, 14E20354B1G10,
11G99

Keywords and Phrases: varieties in positive characteyistratified bun-
dles, étale trivializable bundles, monodromy group, i@oelarieties

INTRODUCTION

If (E,O) is a vector bundle with an algebraic integrable connectioer @ smooth
complex varietyX, then it is defined over a smooth sche@ever Spe[+] for
some positive intege, so(E, ) = (Es, Us) ®sC overX = Xs®sC for a geometric
generic pointQ(S) C C. Grothendieck-Katz'p-curvature conjecture predicts that if
for all closed points of some non-trivial opebd C S, the p-curvature of Es, Os) xS

is zero, ther{E, D) is trivialized by a finite étale cover &€ (see e.g.[[An, Conj.3.3.3]).
Little is known about it. N. Katz proved it for Gau3-Manin cwettions[[Ka], forS
finite over SpeZ[ﬁ] (i.e., if X can be defined over a number field), D. V. Chudnovsky
and G. V. Chudnovsky in [CC] proved it in the rank 1 case and Nd#& in [Af]
proved it in case the Galois differential Lie algebra(&f, ) at the generic point
of Sis solvable (and for extensions of connections satisfylrggdonjecture). More
recently, B. Farb and M. Kisin [EK] proved it for certain ldlgasymmetric varieties
X. In general, one is lacking methods to think of the problem.

The first author is supported by the SFB/TR45 and the ERC AmbaGrant 226257. The second
author is supported by the Bessel Award of the Humboldt Fatiod and a Polish MNiSW grant (contract
number N N201 420639).
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Y. André in [An, 1] and E. Hrushovsky in([Hr, V] formulateche following equal
characteristic 0 analog of the conjectureXif— Sis a smooth morphism of smooth
connected varieties defined over a characteristic O figllden if (Es, Og) is a relative
integrable connection such that for all closed pogti§some non-trivial opeb C S,
(Es,Os) xss is trivialized by a finite étale cover oX xgs, then(E,D)|><,7 should
be trivialized by a finite étale cover, wheneis a geometric generic point ang =

X xsn. So the characteristic 0 analogy to integrable connectsisnply integrable
connections, and to thp-curvature condition is the trivialization of the connecti
by a finite étale cover. André proved it [An, Prop. 7.1.13ing Jordan’s theorem
and Simpson’s moduli of flat connections, while Hrushov##g; [p.116] suggested a
proof using model theory.

It is tempting to formulate an equal characterigtic 0 analog of Y. André’s theorem.
A main feature of integrable connections over a fielof characteristic 0 is that they
form an abelian, rigidk-linear tensor category. In characterigtic- 0, the category of
bundles with an integrable connection is orly, -linear, wherexV is the relative
Frobenius twist oX, and the notion is too weak. On the other hand, in character-
istic 0, the category of bundles with a flat connection is thme as the category of
Ox-coherent?x-modules. In characteristig > 0, Ox-coherentZx-modules over a
smooth varietyX defined over a fieltt form an abelian, rigidk-linear tensor category
(seel[Gl]). It is equivalent to the category of stratified dles. It bears strong analo-
gies with the category of bundles with an integrable corinadh characteristic O.
For example, iiX is projective smooth over an algebraically closed field ttivality

of the étale fundamental group forces all sugfrcoherentZx-modules to be trivial

([EM)).

So we raise theyuesTioN 1: let f : X — S be a smooth projective morphism of
smooth connected varieties, defined over an algebraicklsed characteristip >

0 field, let(E,O) be a stratified bundle relative 8 such that for all closed point
s of some non-trivial opetd C S, the stratified bundI€E, O)|x, is trivialized by a
finite étale cover oKs := X xss. Is it the case that the stratified bunde, U) |x; is
trivialized by a finite étale cover of;?.

In this form, this is not true. Y. Laszl@ [Ls] constructed seafimensional non-trivial
family of bundles over a curve ov&, which is fixed by the square of Frobenius, as
a (negative) answer to a question of J. de Jong concerninlgethavior of represen-
tations of the étale fundamental group over a finite figdd q = p?, with values in
GL(r,F((t))), whereF > F, is afinite extension. In fact, Laszlo’s example yields also
a counter-example to the question as stated above. We expigin SectionEl1 arid 4
(see Corollary4]3). We remark thatifis a bundle orX, such that the bundIg|x, is
stable, numerically flat (see DefinitibnB.2) and moves inrtfeeluli, thenE; cannot
be trivialized by a finite étale cover (see Proposifiod 418)contrast, we show that
if the family X — Sis trivial (as it is in Laszlo’s example), thbs =Y xS, if k is
algebraically closed, and {F/' x identitys)*(E) |y x,s = E|v x,s for all closed points

of some non-trivial open i and some fixed natural numherthen the moduli points
of E|yx,s are constant (see Proposition]4.4). HEye Y — Y is the absolute Frobe-
nius ofY. In Laszlo’s example, one does hai&? x identitys)* (E) |y x,s = E|yx,s but
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only overk =, (i.e., Sis also defined ovdr,). When one extends the family to the
algebraic closure df,, to go from the absolute Frobenius oW, that is the relative
Frobenius ovek, to the absolute one, one needs to replace the power 2 withhahi
powern(s), which depends on the field of definition §fand is not bounded.

So we modify question 1 imUuEsTION 2: let f : X — S be a smooth projective
morphism of smooth connected varieties, defined over atedgelly closed charac-
teristic fieldk of characteristip > 0, letE be a bundle such that for all closed points
s of some non-trivial opely C S, the bundleE|x, is trivialized by a finite Galois
étale cover ofXs ;= X xgs of order prime top. Is it the case that the bundﬁx,7 is
trivialized by a finite étale cover of;?.

The answer is nearly yes: it is the cas& i§ not algebraic over its prime field (The-
orem5.1 2)). Ifk =Ty, it might be wrong (Remarks3.4 2), but what remains true is
that there exists a finite étale covengf over which the pull-back o is a direct sum

of line bundles (Theorein 3.1 1)). The idea of the proof is dwead from the proof

of Y. André’s theorem[Ah, Thm 7.2.2]. The assumption ondegrees of the Galois
covers ofX; trivializing E|x, is necessary (as follows from Laszlo’s example) and it
allows us to apply Brauer-Feit’s theorem [BF, Theorem] imog! of Jordan’s theorem
used by André. However, there is no direct substitute forgsion’s moduli spaces of
flat bundles. Instead, we use the moduli spaces construcfed] and we carefully
analyze subloci containing the points of interest, thahériumerically flat bundles.
The necessary material needed on moduli is gathered ino8gtti

Finally we raise the generaluesTion 3: let f : X — Sbe a smooth projective mor-
phism of smooth connected varieties, defined over an algetiisaclosed character-
istic p > 0 field, let(E,0) be a stratified bundle relative & such that for all closed
pointss of some non-trivial opet C S, the stratified bundI€E, O)|x, is trivialized
by a finite Galois étale cover of := X xgsof order prime top. Is it the case that the
bundle(E, [)|x; is trivialized by a finite étale cover of;?

We give the following not quite complete answer. If the rarikois 1, (in which
case the assumption on the degrees of the Galois coveargasnatically fulfilled,
then the answer is yes provid8ds projective, and for ang e U, Pic’(Xs) is reduced
(see Theorerh 7.1). The proof relies on (a variant of) an ided.dRaynaud [[RA],
using the height function associated to a symmetric linediiithat is the reason
for our assumption o) on the abelian scheme and its dual, to show that an infinite
Verschiebung-divisible point has height equal to 0 (Thed€&2). IfE has any rank,
then the answer is yeslfis notF, (Theoren{ 7R 2)). In general, there is a prime to
p-order Galois cover oKy such that the pull-back dE becomes a sum of stratified
line bundles (Theorem 4.2 1)).

AcknowledgementsThe first author thanks Michel Raynaud for the fruitful discu
sions in November 2009, which are reflected inl[Ra] and iniSel&. The first author
thanks Johan de Jong for a beautiful discussion in Noven®Ed &n the content of
[EM], where she suggested question 1 to him, and where hedegblat Laszlo’s ex-
ample should contradict this, and that this should be beattderstood. The second
author would like to thank Stefan Schroer for destroyirgmive hopes concerning
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Néron models of Frobenius twists of an abelian variety. Wank Damian Rossler
for discussions omp-torsion on abelian schemes over functions fields. We thiaak t
referee of a first version of the article. He/she explainedstdhat the dichotomy in
Theoren{ 51l 2) and in Theordm17.2 2) shouldHpeor not rather that countable or
not, thereby improving our result.

1 PRELIMINARIES ON RELATIVE STRATIFIED SHEAVES

Let Sbe a scheme of characterispidi.e., Os is anFp-algebra). ByFS : S— Swe
denote ther-th absolute Frobenius morphisof S which corresponds to thp'-th
power mapping oWs.

If X is anS-scheme, we denote t»yg’ the fiber product oiX and S over ther-th
Frobenius morphism @&. Ifitis clear with respect to which structukeis considered,
we simplify the notation tX("). Then ther-th absolute Frobenius morphism Xf
induces theelative Frobenius morphismgfs: X — X In particular, we have the
following commutative diagram:

which defines\ : X X,

Makingr = 1 and replacing by X1, this induces the similar diagram

We assume thaX/Sis smooth. Arelative stratified sheabn X/Sis a sequence
{Ei, 0 }ien of locally free coherent, i -modulesE; on X1 and isomorphisms; :
F;(i)/SEiH — E of 0y)-modules. Amorphism of relative stratified sheavés;} :
{Ei,0} — {E/,d]} is a sequence of, ) -linear maps; : Ej — E/ compatible with
theg;, that is such thatiy o Fx*<i)/sai+l = 0 o Gj.

This forms a categor§trat(X/S), which is contravariant for morphisngs: T — S: to
{Ei,q} € Start(X/S) one assign$*{E;, g;} € Strat(X xsT/T) in the obvious way:
¢ induces % x ¢ : XU xsT — XU and (¢*{Ei,a1})i = {(Iyi) x ¢)Ei, (Lo x
¢)"(0i)}-
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If S= Sped wherek is a field, Strat(X/k) is an abelian, rigid, tensor category.
Giving a rational pointx € X(k) defines a fiber functor viaw : Strat(X/k) —
Veck, ax({Ei,ai}) = (Eo)|x in the category of finite dimensional vector spaces &yer
thus ak-group schemet(Strat(X/k), wx) = Aut®(w). Tannaka duality implies that
Strat(X/K) is equivalent viawy to the representation category mfStrat(X/K), a)
with values inVecy. For any objeciE := {E;, i} € Strat(X/k), we define itsmon-
odromy groupto be thek-affine group schema((E), ), where(E) C Strat(X/K)

is the full subcategory spanned B This is the image oft(Strat(X/k),a) in
GL(ax(E)) ([DM] Proposition 2.21 a)]). We denote Hy ) € Strat(X/k) the triv-
ial object, WithE' = &, ;) ando;j = Identity.

LEMMA 1.1. With the notation above

1) If h:Y — X is a finite étale cover such that*L is trivial, then hly
has finite monodromy group and one has a faithfully flat honrphism
ri((hdy ), k) — T((E), wx). Thus in particular,E has finite monodromy
group as well.

2) If E € Strat(X/k) has finite monodromy group, then there exists(4E), c)-
torsor h: Y — X such that KE is trivial in Strat(Y/k). Moreover, one has an

isomorphisn((h.Iy ), ) = T((E), wy).

Proof. We first prove 2). Assumer((E), wy) =: G is a finite group scheme ovér
One applies Nori's method [Mo, Chapter I, 1]: the regulgonesentation o6 on the
affinek-algebra[G] of regular function defines the Artikralgebrak[G] as ak-algebra
object of the representation category@®bn finite dimensionakt-vector spaces, (such
thatk C k[G] is the maximal trivial subobject). Thus by Tannaka duatitgre is an
objectA = (A, ;) € Strat(X/Kk), which is anly -algebra object, (such thag , C A

is the maximal trivial subobject). We defig: Y; = Speg A' — X1, Then the

isomorphismt; yields an &, -isomorphism between (") LENN) andy; M x(0),
(see, e.gq.[ISGA5, Exposé X¥,1, Proposition 2]), and via this isomorphisi,is
isomorphic toh,Iy 4. On the other handix(E) is a subG-representation ck[G]“"
for somen € N, thusE € A®"in Strat(X/k), thus there is an inclusida C (h. Iy )"

in Strat(X/K), thush*E C (h*h,Iy 4)“"in Strat(Y /K). Since(h*h,Iy ) is isomorphic
t0 @engtn kg Ly /k in StratY /) (recall that by[[dS, Proposition 13k is an étale group
scheme), them*E is isomorphic to®,ly i, wherer is the rank ofE. This shows
the first part of the statement, and shows the second part lasingeed, E is then
a subobject ofprh.ly x, thus(E) C (h.ly ) is a full subcategory. One applies
[DM] Proposition 2.21 a)] to show that the induced homomasipitz((h. Iy /), wx) —
n((E), ax) = G is faithfully flat. Somt((h.Iy ), wx) acts onax(h.ly) = K[G] via its
quotientG and the regular representatiGnC GL(k[G]). Thus the homomorphism is
an isomorphism.

We show 1). Assume that there is a finite étale cdvelr — X such thath*E is
isomorphic inStrat(Y /k) to &Iy wherer is the rank ofE. ThenE C &rh,ly y,
thusr((h.ly k), ax) — T((E), ax) is faithfully flat [DM] loc. cit.], so we are reduced
to showing that(h.Iy ) has finite monodromy. But, by the same argument a&,on
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any of its objects of rank’ lies in ©/h.ly . So we apply[[DM, Proposition 2.20 a)]
to conclude that the monodromy bfly / is finite. O

COROLLARY 1.2. With the notations as ih1.1, it € Strat(X/k) has finite mon-
odromy group, then for any field extensiornXk, E @ K € Strat(X @ K/K) has finite
monodromy group.

Let E be andx-module. We say thdE has a stratification relative to Bthere exists
a relative stratified shedf;, gi } such thaEy = E

Let us consider the special caSe= Sped, wherek is a perfect field, an /k is
smooth. An(absolute) stratified sheabn X is a sequencgE;, ci}icy Of coherent
Ox-modulesE; on X and isomorphisms; : F¢Ei11 — Ej of Ox-modules.

As k is perfect, the\, i) are isomorphisms, thus giving an absolute stratified siseaf i
equivalent to giving a stratified sheaf relative to Spec

We now go back to the general case and we assumeStisaain integrak-scheme,
wherek is a field. Let us seK = k(S) and letn : Sped — S be the generic point
of S. Let us fix an algebraic closui€ of K and letn be the corresponding generic
geometric point of.

By contravariance, a relative stratified shé&, g;} on X/S restricts to a relative
stratified sheafE;, i }|x, in fibers Xs for s a point of S. We are interested in the
relation betweedEj, 0i }|x; and{E;, i }|x, for closed points € [§. More precisely,
we want to understand under which assumptions the finitesfeg&;, gi } |x,) for all
closed pointss € |§ implies the finiteness of{Ei,di}|x;). Recall that finiteness
of E C Strat(Xs) means that all objects @E) are subquotients ifitrat(Xs) of direct
sums of a single object, which is equivalent to saying thtatraifie choice of a rational
point, the monodromy group @ is finite ((DM, Proposition 2.20 (a)]).

Let X be a smooth variety defined ovigg with q = p'. For alln e N\ {0}, one has
the commutative diagram

(Rl

=) ’X » X (1)

Spedqg ——— - Spequ

which allows us to identifiX (™ with X (as anF4-scheme).
Let Sbe anFq connected scheme, with field of constaktse. k is the normal closure
of Fqin HO(S Ox). We defineXs:= X xg, S.

PrRoOPOSITIONL.3. Let E be a vector bundle onsXAssume that there exists a positive
integer n such that we have an isomorphism

71 ((F" xg,ids)")'E ~ E. @)

Then E has a natural stratificatidB; = {E;, gi}, Eo = E relative to S.
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Proof. We define
Ern = (W), &, ids) E. 3)

Then we use the factorization

1) (rn—1)
X Fx/[nix()x /[Fim (n— lx—/ngrn @
Spediy
of FF/F and we define
Enr—l = (Fx(rn—l)/]pq X]Fq idS)*Erm B El = (FX(l)/]Fq ><]Fq idS)*EZ (5)
with identity isomorphismey,_1,...,01. Then we use the isomorphismnto define
0p.E~ (FX/Fq XFq ids)*E;. (6)

Assume we constructed the bundigon X ) for all i < arn for some integea > 1.
We now replace the diagrai (1) by the diagram

(F);(arn) )n

/\

X (@m) —> X ((a+1)rn) —> X (@m) (7

Spedfqg ——» Fm 1 Spedy

We then define
E(a+1) (Wx(arn) /Fq XFyq ids)*Eamn (8)

(which is equal tcE under identification oK (@™ with X). Then we use the factoriza-
tion

X(arn) JF X(arn+1)/ﬂ;q X((a+1)rn 1)/Fq
x(am) —— ¥ (@amn+l) —— ... — x((a+)m-1) — x((a+1)m) 9)

]

Spedfy
of K e ) /Fq to define
E(a+l)rn71 = (Fx<<a+1)mfl)/]1rq XFq idS)*E(aJrl)rm sy

Earni1= (Fx(arn+1)/]Fq xrq1ds) Eami2  (10)
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with identity isomorphism®(a 1)nr—1,- - -, Oam+1. Then we again useto define
Oarn * Earn = (F)??arn) /]Fq)*EarnJrl- (11)

O

The above construction and [Gi, Proposition 1.7] imply

PROPOSITIONL.4. Assume in addition t@@) that X is proper and"q C k C Fq. Fix a
rational point xe Xg(k). Then for any closed pointss|S|, the Tannaka group scheme
T(Erg, We,k(s)) Of Erg := Er|x, over the residue field(k) of s is finite.

Proof. The bundlIeE is base changed of a bund defined oveiX XF, S for some
form & of S defined over a finite extensidiya of Iy such thatx is base change
of an Fga-rational pointxg of X XF, . We can also assume thatcomes by base
change fromro : ((F" xp, idg,)")*E® ~ E°. Propositior_LB yields then a relative
stratificationES = (E°, 6) of E° defined oveffiga, with Ei = E? @z k. A closed

pointsof S= & ®rg k is a base change of some closed pajdf & 0? degreeb say
overFq. By Corollary{I.2 we just have to show thatE(TO)SO,(%@F k(o)) IS finite.
qa

So we assume thét= Fq, S= S, s= 5. The underling bundles d&; andE;m are

by construction all isomorphic fan = ab. Thus by [Gi, Proposition 1.7]; ~ Em

in Strat(X/k). But this implies that=g'?. .s(Ex) = Er,. ThusE is algebraically
q

trivializable on the Lang torsdr: Y — X XFga Fgm and the bundleE; are trivializable
onY XXoxcgaFgn X =Y /Fgm. Thus the stratified bundi&E; onY relative toFgm
is trivial. We apply Lemm&1]1 to finish the proof. O

2 ETALE TRIVIALIZABLE BUNDLES

Let X be a smooth projective variety over an algebraically cldgdd k. LetFy : X —

X be the absolute Frobenius morphism.

A locally free sheaf oiX is calledétale trivializableif there exists a finite &tale cov-
ering of X on whichE becomes trivial.

Note that ifE is étale trivializable then it is numerically flat (see Défon [3.2 and
the subsequent discussion). In particular, stability axdistability for such bundles
are independent of a polarization (and Gieseker and sladigt and semistability
are equivalent). More precisely, sughis stable if and only if it does not contain
any locally free subsheaves of smaller rank and degree @ fegpect to some or
equivalently to any polarization).

ProposITION2.1. (seel[LSt])f there exists a positive integer n such thaf')*E ~ E
then E isétale trivializable. Moreover, if k= F, then E isétale trivializable if and
only if there exists a positive integer n and an isomorph(Bfh*E ~ E.

PrROPOSITION2.2. (seel[BD])If there exists a finite degree &ale Galois covering
f 1Y — X such that fE is trivial and E is stable, then one has an isomorphism
a: (FI)*E~E.
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As a corollary we see that a line bundle Xpk is étale trivializable if and only if it is
torsion of order prime t@. One implication follows from the above proposition. The
other one follows from the fact thaE)*L ~ L is equivalent td ®(P'~1) ~ gy and
for any integen prime top we can findd such thaip? — 1 is divisible byn.

We recall that ifE is any vector bundle oX such that there isd € N\ {0} and an
isomorphismo : (FS)*(E) = E, thenE carries arabsolutestratified structur@,, i.e.

a stratified structure relative ®, by the procedure of Propositi@n].3. On the other
hand, any stratified stratified structufg;, o;} relative tolF, induces in an obvious
way a stratified structure relative to the absolute Frobeniusy : X — X factors
through\NQ/k XM X, so{(WQ/k)*En, (W)f(‘/k)*an} is the relative stratified structure,
denoted byE, . Propositio 2P together with Lemrhall.1 2) show

COROLLARY 2.3. Under the assumptions of Propositibn]2.2, we can take d
lengthk[7i( (Eq x) . @0)]-

Let us also recall that there exist examples of étale traable bundles such that
(FY)*E # E for every positive integen (see Laszlo’s example in [BD]).

ProPOsITION 2.4. (Deligne; see [lls, 3.2J)et X be an Fyp-scheme. If G is a
connected linear algebraic group defined over a finite figjd then the embedding
G(Fp) — G induces an equivalence of categories between the cated@F yn)-
torsors on X and G-torsors P over X with an isomorphi$tf)*P ~ P.

In particular, if G is a connected reductive algebraic group defined over an alge
braically closed fieldk andP is a principalG-bundle onX/k such that there exists
an isomorphisniFy)*P ~ P for some natural number> 0, then there exists a Galois
étale coverf : Y — X with Galois groups(Fpn) such thatf “Pis trivial. Indeed, every
reductive group has@&-form so we can use the above proposition.

3 PRELIMINARIES ON RELATIVE MODULI SPACES OF SHEAVES

Let Sbe a scheme of finite type over a universally JapaneseRihgt f : X — Sbe a
projective morphism oR-schemes of finite type with geometrically connected fibers
and letox (1) be anf-very ample line bundle.

A family of pure Gieseker semistable sheaves on the fibreg ef X xsT — T is a
T-flat coherentx, -moduleE such that for every geometric poindf T the restriction
of E to the fibreX; is pure (i.e., all its associated points have the same dimeyasnd
Gieseker semistable (which is semistability with respe¢he growth of the Hilbert
polynomial of subsheaves defined 6% (1) (see[HL, 1.2]). We introduce an equiv-
alence relation~ on such families in the following wayE ~ E’ if and only if there
exist filtrations 0= Eg C E; C ... CEn=E and 0=Ej C E; C ... C E[,=E’ by co-
herentdx, -modules such thab" ,Ei /Ei_1 is a family of pure Gieseker semistable
sheaves on the fibres ofr and there exists an invertible shdafon T such that
S E/E 1~ (BL4E/Ei 1) @ L.

Let us define the moduli functor

AMp(X/S) 1 (SchB)° — Sets
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from the category of locally noetherian schemes &&rthe category of sets by

~ equivalence classes of families of pure Giesgker
AMp(X/S)(T) = ¢ semistable sheaves on the fibreJotsX — T,
which have Hilbert polynomid®.

Then we have the following theorem (see [l.al, Theorem 0.2]).

THEOREM 3.1. Let us fix a polynomial P. Then there exists a projective ®&rseh
Mp(X/S) of finite type over S and a natural transformation of functors

0 : . #p(X/S) — Homg(-,Mp(X/9)),

which uniformly corepresents the functa#p(X/S). For every geometric point

s € S the induced mai(s) is a bijection. Moreover, there is an open scheme
Mf(/S(P) C Mp(X/9) that universally corepresents the subfunctor of familiege
ometrically Gieseker stable sheaves.

Let us recall thaMp(X/S) uniformly corepresents#p(X/S) means that for every
flat base chang€ — Sthe fiber producMp(X/S) xsT corepresents the fiber product
functor Hony(+, T) X yomg(.,g -#p(X/S). For the notion of corepresentability, we refer
to [HL| Definition 2.2.1]. In general, for everg-schemel we have a well defined
morphismMp(X/S) xsT — Mp (Xt /T) which for a geometric poinf = Sped(s) —
Sis bijection on points.

The moduli spac#p(X/S) in general depends on the choice of polarizatitx(1).

DEerINITION 3.2. Let k be a field and leY be a projectivek-variety. A coherent
Ov-moduleE is callednumerically flaf if it is locally free and bothE and its dual

E* = 7om(E, 0v) are numerically effective o¥f @ k, wherek is an algebraic closure
of k.

Assume thal is smooth. Then a numerically flat sheaf is strongly slopeistainie
of degree 0 with respect to any polarization (see [La2, Psivipm 5.1]). But such a
sheaf has a filtration with quotients which are numerically énd slope stable (see
[Ca2, Theorem 4.1]). Let us recall that a slope stable she&ieseker stable and
any extension of Gieseker semistable sheaves with the salimert-polynomial is
Gieseker semistable. Thus a numerically flat sheaf is Gegsslmistable with respect
to any polarization.

Let P be the Hilbert polynomial of the trivial sheaf of rankIn caseSis a spectrum
of a field we writeMx (r) to denote the subscheme of the moduli sgde€X /k) cor-
responding to locally free sheaves. For a smooth projentivghismX — Swe also
define the moduli subscherMyX/S,r) — Sof the relative moduli spaddp(X/S) as

a union of connected components which contains points sporaling to numerically
flat sheaves of rank Note that in positive characteristic numerical flatnegsosan
open condition. More precisely, on a smooth projectiveatsiY with an ample divi-
sorH, a locally free sheaf witmumerically trivial Chern classes, that is with Chern
classes cin the Chow group of codimension i cycles intersecting ailyiH4m(Y)-i
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for all i > 1, is numerically flat if and only if it is strongly slope semibta (see[[LaPR,
Proposition 5.1]).

By definition for every familyE of pure Gieseker semistable sheaves on the fibres of
X1 we have a well defined morphisg = 6([E]) : T — Mp(X/S), which we call a
classifying morphism.

PrRoPOSITION3.3. Let X be a smooth projective variety defined over an algehtgic
closed field k of positive characteristic. Let S be a k-vgraetd let E be a rank r lo-
cally free sheaf on % S such that for every s S(k) the restriction Ek is Gieseker
semistable with numerically trivial Chern classes. Asstina¢ the classifying mor-
phism¢g : S— Mx(r) is constant and for a dense subsétzSS(k) the bundle Eis
étale trivializable for s= S. Then E is étale trivializable.

Proof. If Egis stable for som&-points € Sthen there exists an open neighbourhood
U of ¢e(s), a finite étale morphisrd’ — U and a locally free sheak on X x U’
such that the pull backs & and% to X xy (¢ 2(U) xy U’) are isomorphic (this is
called existence of a universal bundle on the moduli spatieeétale topology). But
¢e(S) is a point, so this proves that there exists a vector bund such that is its

pull back by the projectioX x, S— X. In this case the assertion is obvious.

Now let us assume th&t is not stable for als € S(k). If0 =E§CEf C ... CE} =Es

is a Jordan—Holder filtration (in the category of slope statile torsion free sheaves),
then by assumption the isomorphism classes of semi-siegtiifins®™ , ES/ES ;| do
notdepend ose S(k). Let(ry,...,rm) denote the sequence of ranks of the components
ES/E? , for somes € (k). Since there is only finitely many such sequences (they
differ only by permutation), we choose some permutation #pgpears for a dense
subseS’ C S.

Now let us consider the scheme of relative fldgsFlag(E/S; Py, ...,Pn) — S, where

R is the Hilbert polynomial ofﬁ{g. By our assumption the image dfcontainsS’.
Therefore by Chevalley’s theorem it contains an open swdyeebd of S. Let us recall
that the scheme of relative flags Fl&jx,u/U;P,...,Pn) — U is projective. In
particular, using Bertini’'s theorenk (s algebraically closed) we can find a generically
finite morphismW — U factoring through this flag scheme. Let us consider pull back
of the universal filtration 6= Fp C F; C ... € Iy = BEw to X xxW. Note that the
quotientsFi = F/F_1 areW-flat and by shrinkingV we can assume that they are
families of Gieseker stable locally free sheaves (sinceshxyu;mptiorFsi is Gieseker
stable and locally free for some poirgs W(k) NS). This and the first part of the
proof implies thatEq; has a filtration by subbundles such that the associated grade
sheafis étale trivializable. By Lemrhab.2 this impliesttBais étale trivializable. O

4 LASZLO’S EXAMPLE

Let us describe Laszlo’s example of a line in the moduli spHd®Indles on a curve
fixed by the second Verschiebung morphism (8eé [Ls, Secfjon 3
Let us consider a smooth projective genus 2 co¢\@erF, with affine equation

VA XX+ L)y =X+ X+ x.
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In this case the moduli spabdé (2, &x ) of rank 2 vector bundles oX with trivial de-
terminant is arf,-scheme isomorphic 2. The pull back of bundles by the relative
Frobenius morphism defines the Verschiebung map

Vi My (2,0y0) ~ P3 -5 Mx (2, Ox) ~ P3
which in appropriate coordinates can be described as
[@a:b:c:d] — [a®+b?+c?+d?:ab+cd: ac+bd: ad+bd.

The restriction oW to the lineA ~ P! given byb = ¢ = d is an involution and it can
be described ag: b] — [a+b: b].

Using a universal bundle on the moduli space (which existallpin the étale topol-
ogy around points corresponding to stable bundles) anddakfinite coveringg— A
we obtain the following theorem:

THEOREM 4.1. ([LS, Corollary 3.2])There exist a smooth quasi-projective curve S
defined over some finite extensiorFefand a locally free sheaf E of rarfkkon X x S
such that(F? x ids)*E ~ E, detE ~ 0x.s and the classifying morphisige : S —
Mx (2, Ox) is not constant. Moreover, one can choose S so thad Etable for every
closed pointsin S.

Now note that the mafx)* : Mx (2, Ox) --» Mx (2, Ox) defined by pulling back bun-
dles by the absolute Frobenius morphism can be describAdsfa : b] — [a + b?
b?]. In particular, the mapF2")*|» is described af: b] — [a2",b?"]. It follows that if
a stable bund|& corresponds to a modular point&fF3)\A(FS ) (or, equivalently,
E is defined oven) then(F2")*E ~ E and (FJ")*E 2 E for 0 < m < 2n.

This implies that folk = F, and for everys € S(k), the bundleEs which is the restric-
tion to X xp, s of the bundleE from Theoreni 4l1, is étale trivializable.

Let X, Sbe varieties defined over an algebraically closed fkedd positive character-
istic. Assume thak is projective. Let us sef = k(S). Let ) be a generic geometric
point of S.

PrROPOSITION4.2. Let E be a bundle ong& X xx S— S which is numerically flat
on the closed fibres ofg%= X xx S— S. Assume that for somessS the bundle Eis
stable and the classifying morphispa : S— Mx(r) is not constant. Thenj= E|x
is notétale trivializable.

Proof. Assume that there exists a finite étale comerY’ — Xp such that{m')“Eq ~

0y,. Askis algebraically closed, one has the base changx) = m(Xy) for the
étale fundamental group ([SGA1, Exp. X, Cor.1.8]), so éhexists a finite étale cover
m:Y — X such that = m® K. Hence there exists a finite morphidm— U over
some open subset of S, such thate (Et) is trivial wherergr = mxyidt 1Y x¢T —

X x T andEr :pU” back be xk T — X xU of E|Xka-

So for anyk-rational point € T, one hast'E; C &%, wherer is the rank ofE. Hence
E: C m.T'E C 1.0V, i.e., all the bundleg; lie in one fixed bundlet. &%
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Sincerris étale, the diagram

YL>Y

I, I
XLX

is cartesian (see, e.g.[_[SGA5, Exp. XB4, Prop. 2]). SinceX is smooth,Fx is
flat. By flat base change we have isomorphi$i&r. 0y ) ~ m.(R 0v) ~ .0y. In
particular, this implies thatr, & is strongly semistable of degree 0. ThereforE;if
is stable then it appears as one of the factors in a JordddeHifitration of 7. 0y .
Since the direct sum of factors in a Jordan—Holder filtrabba semistable sheaf does
not depend on the choice of the filtration, there are onlydipitnany possibilities for
the isomorphism classes of stable shedyedsrt € T(K).

It follows that inU C Sthere is an infinite sequence kirational pointss with the
property thatEs is stable (since stability is an open property) &ad= Eg_,. This
contradicts our assumption that the classifying morphpgnis not constant. O

COROLLARY 4.3. There exist smooth curves X and S defined over an algebraic clo
sure k ofF, such that X is projective and there exists a locally free §Hean

X xxS— S such that for every s S(k), the bundle Eis étale trivializable but &

is notétale trivializable. Moreover, on E there exists a struetof a relatively strati-
fied sheaf such that for every & §(k), the bundleEs has finite monodromy but the
monodromy group dEy is infinite.

The second part of the corollary follows from Proposi{io8. 1The above corollary
should be compared to the following fact:

PROPOSITION4.4. Let X be a projective variety defined over an algebraicalbseld
field k of positive characteristic. Let S be a k-variety artdHéoe a rank r locally free
sheaf on X< S. Assume that there exists a positive integer n such thatviny sc

S(k) we haveFy)*Es ~ Es, where I denotes the absolute Frobenius morphism. Then
the classifying morphismie : S— Mx(r) is constant and [ is étale trivializable.

Proof. By Propositio Z1L, if Fy)*Es ~ Es then there exists a finite étale Galois cover
Ts : Ys — X with Galois groupG = GL; (F ) such thatg Es is trivial (in this case it is
essentially due to Lange and Stuhler; see[LSt]). This iesplhatEs C (7%). TG Es ~
((18) 0% )®" and hence g Es C (gryy (76). Oy ).

SinceX is proper, the étale fundamental groupXois topologically finitely generated
and hence there exists only finitely many finite étale coxgiofX of fixed degree
(up to an isomorphism). This theorem is known as the LangeSkeorem (seé [LS,
Théoreme 4]). Let” be the set of all Galois coverings &f with Galois groupG.
Then for every closedt-point s of S the semi-simplification oEg is contained in
(gryy a0y )®" for somea € 7. Therefore there are only finitely many possibilities
forimages ok-pointssin Mx (r). SinceSis connected, it follows thafiz : S— Mx(r)

is constant.
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The remaining part of the proposition follows from Propiosif3.3.
O

Note that by Proposition 4.2 together with Corollfry] 2.3 thonodromy groups of
Es in Theoren{41l fos € S(k) are not uniformly bounded. In fact, only iis an
algebraic closure of a finite field do we know that the monodrgmoups ofEs are
finite because theks can be defined over some finite subfieldkodnd the isomor-
phism(F?)*Es ~ Es implies that for some we have(F)*Es ~ Es (see the paragraph
following Theoreni411).

Moreover, the above proposition shows that in Thedrein 4elgamnot hope to replace
F with the absolute Frobenius morphi$m.

5 ANALOGUE OF THE GROTHENDIECK-KATZ CONJECTURE IN POSITIVE
EQUICHARACTERISTIC

As Corollary[4.3 shows, the positive equicharacteristisioa of the Grothendieck—
Katz conjecture which requests a relatively stratified beitmhave finite monodromy
group on the geometric generic fiber once it does on all cléibeds, does not hold
in general. But one can still hope that it holds for a familybahdles coming from
representations of the prime-euotient of the étale fundamental group. In this
section we follow André’s approach [An, Théoreme 7.2r2the equicharacteristic
zero case to show that this is indeed the case.

Let k be an algebraically closed field of positive characterigtitet f : X — Sbe a
smooth projective morphism dfvarieties (in particular, integrd-schemes). Lek
be the generic point &. In particular, X is smooth (see¢ [SGA1, Defn 1.1]).

THEOREMDb.1. Let E be a locally free sheaf of rank r on X. Let us assume tleaieth
exists a dense subsetd S(k) such that for every s in U, there is a finite Galéisile
coveringTs : Ys — Xs of Galois group of order prime-to-p such that (Es) is trivial.

1) Thenthere exists afinite Galdtale coveringt; : Yy — Xi of order prime-to-p
such thatt;Ej is a direct sum of line bundles.

2) If k is not algebraic over its prime field and U is open in SritE; is étale
trivializable on a finiteétale cover 4 — Xy which factors as a Kummer (thus
finite abelian of order prime to p) coveRZ- Yy and a Galois covery — Xy
of order prime to p.

Proof. Without loss of generality, shrinking if necessary, we may assume tlsds
smooth. Moreover, by passing to a finite coverSadind replacindJ by its inverse
image, we can assume thiahas a sectiow : S— X.

By assumption for everg e U there exists a finite étale Galois coverirg Ys — Xs
with Galois grouf”s of order prime-top and such thatg Es is trivial. To these data

one can associate a representapgnnfl (Xs,0(8)) — I's C GL (k) of the prime-top
guotient of the étale fundamental group.
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By the Brauer—Feit version of Jordan’s theorem ($e€ [BF,oféma]) there exist a
constantj(r) such thatl s contains an abelian normal subgrofpof index < j(r)
(here we use assumption that §h&Sylow subgroup of s is trivial).

For ak-points of Swe have a homomorphism of specialization

Qs nl(xﬁao-(ﬁ» - nl(XS,O'(S)),

which induces an isomorphism of the primegoguotients of the étale fundamental
groups.
So for everys € U we can define the composite morphism

ps: 1 (X, 0(11)) 25 P (Xs, 0()) 25 Ts— T's/As.

Let K be the kernel of the canonical homomorphism: (X, 0(n))— (S n),
let KP' be its maximal prog-quotient. Then by [[SGA1, Exp. XIlI, Proposition 4.3
and Exemples 4.4], one h&&® = Tlf/(Xﬁ,O'(ﬁ)), the maximal prop’-quotient of
m(Xqg,0(n)), and one has a short exact sequence

{1} — 7 (Xg,0(7)—T4(X, 0(7)) = m(S,7) — {1},

whererg (X, 0(n)) is defined as the push-outmf (X, o(17)) by K — KP.

Since Xi is proper, i (X7,0(n)) is topologically finitely generated. Therefore

rcf/(x,y,a(ﬁ)) is also topologically finitely generated and hence it corgabnly
finitely many subgroups of indices j(r). Let G be the intersection of all such sub-

groups innf/(Xﬁ,a(ﬁ)). It is a normal subgroup of finite index. Since k&) is a
normal subgroup of index j(r) in nf/(Xﬁ,a(ﬁ)) we have

GC () ker(fs).

seU

Now let us consider the commutative diagram

m(Xg,0(n)) —— m(X,0(n)) — m(Sn) — {1}

l L]

{1} — f (Xq,0(7)) — R (X,0(7)) — m(S ) — {1}

ThenG-o.(m (S n)) C m(X,o(n)) is a subgroup of finite index. It is open by the
Nikolov—Segal theoreni [NS, Theorem 1.1]. So the pre-imidgef this subgroup
under the quotient homomorphism(X, a(17)) — m (X, a(n)) defines a finite étale
coveringh: X’ — X.

Let us takes € S(k). Since the composition

HC T[l(X,O'(f])) — T[l(X,O'(S)) — T[l(S,S)
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is surjective, the geometric fibres ¥f — Sare connected. Let us choos&-aoint
in X" lying overa(s). By abuse of notation we call @’(s). Similarly, let us choose
a geometric point’(n) of Xp lying over a(n). Then for anys € U we have the
following commutative diagram:

0

— T

(X5, 0 () —— i (X, 0(17)) —— 1 (X, 0(17))/G

U

7 (X, 0 (8)) —— ¥ (X6, 0(8)) ——— [s/As

This diagram shows tharfl (X{, 0'(s)) — s factors throughs and henc&, = (h*E)s
is trivialized by a finite étale Galois covering,: Y, — X, with an abelian Galois group
of order prime top, which is a subgroup o4s. Since

Eq C (19)+(16) B~ ((16)« )™,

and (7g). Oy, is a direct sum of torsion line bundles of orders primeptat follows
that for everys € U the bundleE{ is also a direct sum of torsion line bundles of order
prime top.

We consider the uniokl(X’/Sr) of the components dflp(X’/S) containing moduli
points of numerically flat bundles, as defined in Secfibn 3t usconsider thes
morphismy : M(X'/S 1)*s" — M(X'/S) given by([L1], ..., [L¢]) — [#Li] (in fact we
give it by this formula on the level of functors; existencetioé morphism follows
from the fact that moduli schemes corepresent these fus)ctbine bundlé&’ gives us
a sectiont : S— M(X’/S;r), and by the above for evekyrational points of U, the
point1(s) is contained in the image af. Thereforer(S) is contained in the image of
Y asy is projective (thus proper).

Let us consider the fibre product

M(X'/S1)*" xpmxr/sr) S——— S

| [

M(X'/$.1)* ————— M(X'/Sr)

Let us recall that in positive characteristic the canonibap M(X' xsS/S,r) —
M(X’/Sr) xsS need not be an isomorphism (although it is an isomorphism-ot).
Anyway we can find an étale morphisgh— S over some non-empty open subset
of S, such that there exists a map: S — M(X’' xsS/S,1)*s" which composed
with M(X’ xsS/S,1)*s" — M(X’ xsS/S,r) — M(X’/Sr) gives the composition
of S — Swith 1. This shows that the pull badk” of E' to X’ xsS has a filtration
whose quotients are line bundles which are of degree 0 onfttesfofX’ xsS — S.
Now let us note the following lemma:
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LEMMA 5.2. Let f: X — S be a projective morphism of k-varieties. Det> G; —

G — G, — 0 be a sequence of locally free sheaves on X. Assume that tiste &
dense subset ld S(k) such that for each s U this sequence splits after restricting to
Xs. Then it splits on the fibre Xover the generic poing of S.

Proof. By shrinking S if necessary, we may assume tisas affine and the relative
cohomology sheaR!p..7#om(G,, G, ) is locally free. The above short exact sequence
defines a class € Ext}(G,Gy) ~ HO(S R f,.20m(Gy, Gy)), such that (s) = O for
everyk-rational pointsof U. It follows thatA = 0 and hence the sequence is split over
the generic point 08. O

Now let us note that on a smooth projective variety everytséxact sequence of the
form 0 — G; —+ G — Gy — 0 in which G is a direct sum of line bundles of degree
0 andG; is a line bundle of degree 0 splits. So the filtrationEfrestricted to the
closed fibers splits. Therefore the above lemma and easygtiodiushow thaE;]’, isa
direct sum of line bundles, wherg is the generic point 08. This shows the first
part of the theorem.

To prove the second part of the theorem, we may assum&Jthas. Let us take a
line bundleL on X such that for everk-rational points the line bundleLs is étale
trivializable. We need to prove that there exists a posititegern prime top and
such that ;" ~ O, .

We thank the referee for showing us the following lemma.

LeEmMA 5.3. Letg: A— S be an abelian scheme anddebe a section of g such that
for all s € S(k), o(s) is torsion of order prime to p. Thea is torsion of order prime
to p.

Proof. We may assume th&is normal and affine. Let us choose a subfigld: k
that is finitely generated and transcendental &yeand such thaé — Sando come
by base change Spke+ Sped/ from an abelian schentg: A’ — S and a sectiow’
defined ovek'. Letm> 1 be prime tgp and let” be the subgroup/(S)N[m|~%(Z.0")
of A'(S). ThenT is a finitely generated group. Note that assumptions of N&ro
specialization theorem L, Chapter 9, Theorem 6.2] aresfati and therefore there
exists a Hilbert se& of pointss € S for which the specialization map'(S) —
A, (k(s)) is injective onl". Since the Hilbert subsét C S contains infinitely many
closed points (seé L, Chapter 9, Theorems 5.1, 5.2 and, 4h2}e is a closed point
se S the image of which ir8 lies in Z. The specialization df.o atsis injective and
henceo is torsion of order dividing the order @f(s), which is prime top. O

Let us first assume thXt— Sis of relative dimension 1. By passing to a finite cover of
Swe can assume théthas a section. The relative Picard schefre Pic®(X/S) — S

is smooth. Using the above lemma to the section correspgridithe line bundlé

we see that there exists some positive integprime top and a line bundi& on S
such thaL®" ~ f*M. In particular,LE" ~ O,
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Now we use induction on the relative dimensionfof X — Sto prove the theorem
in the general case. Note that our assumptions implylthas numerically flat and
therefore the family{L%”}neZ is bounded. Thus for any sufficiently ample divisbr
on X we haveH (X7, L"(—H)) = 0 for all integers. We consider such ad which
is defined oven.
Using Bertini’s theorem we can find a very ample divi¥or X in the linear system
[H| such thatf|y : Y — Sis smooth (possibly after shrinkin§ and such that for
every positive integen we haveH(X;,L®"(-Y)ly,) = 0. Indeed, shrinking and
using semicontinuity of cohomology, we may assume thas defined ovelS, that
the function dimH%(Xs, O, (H)) is constant an&is affine. Let us choosekarational
pointsin S. Then by Grauert’s theorem (see |Ha, Chapter Ill, CoroltE2y9]) the
restriction map

HO(X, Ok (H)) — H(Xs, Ox,(H))

is surjective. By Bertini’s theorem in the linear systéfix,(H )| there exists a smooth
divisor. By the above we can lift it to a divisatr C X, which after shrinkindsis the
required divisor.

Applying our induction assumption tdy onY — X we see that there exists a positive
integem prime top such tha(L|y )" ~ &, . Using the short exact sequence

0—Lp"(=Yq) = Ly" = (L§")y — 0
we see that the map
HO(Xnva?n) - HO(Yna(L\Q?n)n)
is surjective. In particulaL%’” has a section and hence it is trivial. O

Remark$.4 1. Laszlo’s example shows that the first part of the theorefalse
if one does not assume that orders of the monodromy groufs affe prime
to p (in this exampleEy is a stable rank 2 vector bundle). Note that in this
example E has even the richer structure of a relatively stratified teifsee
Propositio L.B).

2. LetE be a supersingular elliptic curve defined oker F. Let M be a line
bundle of degree 0 and of infinite order E@p(—t). Then one can find a smooth
curveSdefined ovek such that there exists a line bundlen X = SxyE — S
such thatL; ~ M. In this example the line bundles is torsion for everyk-
rational pointsof S as it is defined over a finite field. Sin&eis a supersingular
elliptic curve, there are no torsion line bundles of ordergible by p. So in this
case all line bundleks for s € S(k) are étale trivializable (and the monodromy
group has order prime tp).

This shows that the second part of Theoleni 5.1 is no longerifrk is an
algebraic closure of a finite field.

Let us keep the notation from the beginning of the sectien, k.is an algebraically
closed field of positive characterisfiandf : X — Sis a smooth projective morphism
of k-varieties (in particular connected) with geometricaliynoected fibers. For sim-
plicity, we also assume thdithas a sectiow : S— X.
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LEMMA 5.5. Let E be alocally free sheaf on X. If there exists a pojnt $(k) such
that By, is numerically flat then Eis also numerically flat. In particular, if there exists
a point g € S(k) such that there is a finite covering, : Ys, — X, such thatrg; (Es,)

is trivial, then By is also numerically flat.

Proof. Let us fix a relatively ample line bundle. Es, is numerically flat then it
is strongly semistable with numerically trivial Chern clas (se€ [Ld2, Proposition
5.1]). SinceE is Sflat, the restriction oE to any fiber has numerically trivial Chern
classes (as intersection numbers remain constant on fibes) note that for any
the shea(F)QSO/k)*ESo is slope semistable. Since slope semistability is an opep-pr

erty, it follows that(FQn/K)*E,7 is also slope semistable. By [HL, Corollary 1.3.8] it

follows that(F)?n_/K)*Eﬁ is also slope semistable. ThHg is strongly semistable with

vanishing Chern classes and hence it is numerically flet B [Proposition 5.1]. I

Let us recall that numerically flat sheaves on a prdpeariety Y form a Tannakian
category. A rational poing € Y (k) neutralizes it. Thus we can defigefundamental
group scheme of Y at the point(see [La2, Definition 6.1]). For a numerically flat
sheafE onY, we consider the Tannakegroupris((E),y) := Aut®((E),y) C GL(Ey),
where now(E) is the full tensor subcategory of numerically flat bundlearsged by
E. We call it theS-monodromy group schemésing this language we can reformulate
Theoreni 5l in the following way (for simplicity we refornaé only the second part
of the theorem).

THEOREMb5.6. Let E be an S-flat family of numerically flat sheaves on thedibfe
X — S. Let us assume that k is not algebraic over its prime fieldthatke exists a
non-empty open subsetd S(k) such that for every s in U, the S-monodromy group

schemets((Es), 0(9)) is finiteétale of order prime-to-p. Thems((Eq),0(n)) is also
finite étale.

6 VERSCHIEBUNG DIVISIBLE POINTS ON ABELIAN VARIETIES: ON THE THE-
OREM BY M. RAYNAUD

LetK be an arbitrary field of positive characterisfi@and letA be an abelian variety
defined oveK. The multiplication byp" map[p"] : A— Afactors through the relative
Frobenius morphisrﬁA”/K : A— A and hence defines theerschiebung morphism

VA — Asuch tha"Fl, = [p").

DEerINITION 6.1 A K-point P of A is said to beV-divisibleif for every positive
integem there exists &-pointP, in A™ such thav"(P,) = P.

LetT be an integral noetherian separated scheme of dimensioth figld of rational
functionsk. Let us recall that a smooth, separated group scheme oftfjpiéer’ — T

is called aNéron modebf A if the general fiber ot7 — T is isomorphic toA and for
every smooth morphist{ — T, a morphismXx — < extends (then uniquely) to a
T-morphismX — <.
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Assume that the base field is the function field of a normal projective varie8/
defined over a fieldt of positive characteristip.

We say thatA hasa good reductiorat a codimension 1 poiste Sif the Néron model
of A over Spe@s; is an abelian scheme (the usual definition is slightly défferas

it assumes that the identity component of the special fibth@Néron model is an
abelian variety; it is equivalent to the above onelby [BLRI, Theorem 5]). We say
that A has potential good reductiomat a codimension 1 poirge Sif there exists a
finite Galois extensiok’ of K such that ifS is the normalization 08in K’ thenAy:
has good reduction at every codimension 1 psirt S lying overs.

We say thatA has(potential) good reductioif it has (potential) good reduction at ev-
ery codimension 1 point &. Assume thaf has good reduction at every codimension
1 point of S. Then there exists big opensubseU C S(i.e., the codimension of the
complement ol in Sis > 2) and an abeliabd-schemeZ — U. Note that the group
A(K) of K-points ofA is isomorphic via the restriction map to the group of rationa
sectiondJ --» &7 of & — U defined over some big open subsethf The section
corresponding t® € A(K) will be denoted byP : U --» o7

Let c € PicA be a class of a line bundle By the theorem of the cub® satisfies the
following equality:

MY} 53C — M 5C — M 3C — M5C+ MiC+ MC + mzc = 0,

wherem for I C {1,2,3} is the mapA xk A xx A — A defined by addition over the
factors inl. (In particularm is thei-th projection). Combinind [MB, Chapter Ill, 3.1]
(relying on [MB, Chapter Il, Proposition 1.2.1]), the linerdleL € Pic(A) extends
uniquely (at least if we fix a rigidification) to a line bundleover .24, such that the

classc= [L] € Pic(«4/) is cubical, i.e., satisfies the relation

M 22€ — M€ — M€ — M55E+ MIE+ ME+ IMZE = 0,
whereV C U is a big open subset and whare for | C {1,2,3} is the maps/ xg
o xsof — o defined by addition over the factorslin .
Now let us choose an ample line bundieon S. Then the magh. : A(K) — Z given
by

he(P) = deg, (P—0)"¢

is well defined a# is defined on a big open subset®andP*L extends to a rank 1
reflexive sheaf os. This map is the canonical (Néron—Tate) heighhabrresponding
to c (see[[MB, Chapter lll, Section 3]).

The following theorem was suggested to the authors by M. Ragr(in the good
reduction case over a cur@and with a somewhat different proof).

THEOREM®6.2. Assume that A has potential good reduction. & R(K) is V-divisible
and c is symmetric them,(P) = 0.

Proof. Let us first assume tha has good reduction. By assumption there exists a
K-point P, of A such that/"(P,) = P. Sinces — U is an abelian scheme, so is
oW — U, thusP, is the restriction to Spé¢ of P, € o7V (U).
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Let us factor the absolute Frobenius morphifrinto the composition of the relative
Frobenius morphisry), : A — A andW, : AW — A, Let us set, = Wic. Its

cubical extensio, € Pic(. v(:))' for some big opel, C U, together withH allows

one to definen, (P,) by the corresponding formula. Sin¢ey)*c = p"c, we have
(Fai)*en = plc. On the other hand, sinceis symmetric, we havgp"]"c = p?'c and

hence(Fy )" (V") c) = p?"c. Therefore
(Fa)"((V")*c— pcn) = 0.

SinceF/Q/K is an isogeny this implies that the clads= (V")*c — p"c, is torsion. By
additivity and functoriality of the canonical height (s&&] Theorem, p. 35]) we have

Re(P) = hyny-c(Pr) = Ppng, (P) + ha(P) = p"- e, (Pn)

(note that additivity implies thalty,q = mhg, so sincemd = 0 for somem, we get
hg = 0). Therefore ifhs(P) # 0 then|h¢(P)| > p" and we get a contradiction if is
sufficiently large.

Now let us consider the general case. Since there exist ontigl§i many codimension
1 pointss € Sat whichA has bad reduction, one can find a finite Galois extenkion
of K such that ifS is the normalization o in K’ then Ak, has good reduction at
every codimension 1 poirgt € S. On the other hand, P € A(K) is V-divisible on
A PaK’ € A(K') isV divisible onAy. Then by the above we habg-¢(P') = 0 and
functoriality of the canonical height implies thiat(P) = 0. O

Remarks.3. It is an interesting problem whether Theorem 6.2 holds foarditrary
abelian varietyA/K. Its proof shows that one can use the semiabelian reduction
theorem to reduce the general statement to the case Avhas semiabelian reduction
(seelBLR, 7.4, Theorem 1]).

Now assume thab is geometrically connected. Then the extendianK is regular
(i.e., K/k is separable andl is algebraically closed ifK). Let (B, 1) be theK/k-
trace of the abeliaK-variety A, whereB is an abeliark-variety andr : Bx — Ais a
homomorphism of abeliak-varieties (it exists by [Jo, Theorem 6.2]). Let us recall
that by definitionB, 1) is a final object in the category of pairs consisting of aniabel
k-variety and &K-map from the scalak-extension of this variety té.

Since the extensiok C K is regular, the kerneK-group scheme of is connected
(with connected dual)[([Co, Theorem 6.12]). Therefoiis injective onK-points and

in particular we can tred(k) as a subgroup d&(K).

COROLLARY 6.4. Assume that A has potential good reduction. ER(K) is V-
divisible then[P] € (A(K)/B(k))twrs. In particular, if k is algebraically closed then
P € B(K) + A(K)tors C A(K).

Proof. We can choose the clasg Pic(A) so that itis ample and symmetric. Then the
first part of the corollary follows from Theorelm 6.2 and [Cohebrem 9.15] (which
is true for regular extension&/K).
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To prove the second part take positive integesuch thatmP = Q € B(k). Sincek
is algebraically closed, the sBtk) is divisible and there exist® € B(k) such that
mQ = Q. ThenP=Q + (P—Q'), wherem(P— Q') = 0. O

Let us assume that the fieldis algebraically closed. It is an interesting question
whether &/-divisible K-pointP of A can be written as a sum @+ R, whereQ € B(k)
andR € A(K)tors is torsionof order prime-to-p

By the Lang—Néron theorem {[Co, Theorem 2.1]), the groApgK)/B( (k) are
finitely generated. It follows that the grou@s = (A1) (K) /B (K) )ors are finite.

Note that the homomorphis®(k) — B (k) induced byFé/k is a bijection. One

has a factorizatiorFy . : AKYPY - AD(K) — AD(KY/P), inducing a bijection
AKYP) = AD(K). Thus in particular,

Fi: AKK)/B(k) — AV (K)/BY (k)

is injective.
Moreover, the Verschiebung morphism induces the homonismzh

Vi A0 (K)/BY (k) - A(K) /B(K)

such thatiF = p' andFRV; = p'. This shows that prime-tp-torsion subgroups of
groupsG; are isomorphic and in particular have the same onder

Now let us assume that orders of fiprimary torsion subgroups of the abelian groups
G; are uniformly bounded by song. Then for alli > e

R(m[P)) = R (Vi(m[R])) = p'm[R] =0.

This implies thatm[P] = 0, somP € B(k). Now B(K) is a divisible group so there
exists som&) € B(k) such thamP=mQ ThenR=P—Q € A(K) is torsion of order
prime top. So we conclude

LEMMA 6.5. If the order of the Gis bounded as i goes to infinity, under the as-
sumption the Theoreln 6.2, there exists a positive integ@rime to p and such that
m- R € B(k) for every integer i.

Note that the above assumption@nis satisfied, e.g., iAis an elliptic curve over the
function fieldK of a smooth curve ovet = k. If A is isotrivial then the assertion is
clear. IfAis notisotrivial then the-invariant ofA is transcendental ovér In this case
A(KPe)1s is finite (seel[LE]) so orders of the grou@s= A (K )ors are uniformly
bounded.

7 STRATIFIED BUNDLES
In this section we use the height estimate of the previousoseand the fact that

torsion stratified line bundles on a perfect field have orden@to p (apply Proposi-
tion[2.2 together with Lemnfa.1).
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Let k be an algebraically closed field of positive characterigticLet f : X — S

be a smooth projective morphism kfvarieties with geometrically connected fibres.
Assume thatSis projective, which surely is a very strong assumption. ek if
k+#Tp, and in the statement of Theoréml73lis open, then one obtains the stronger
Theoren_ZR. For simplicity, let us also assume thdtas a sectionw : S — X.
Consider the torsion component PiX/S) — S of identity of Pic(X/S) —+ S. Let

¢n : Pic(X/S) — Pic(X/S) be the multiplication byn map. Then there exists an open
subgroup scheme Pi¢X/S) of Pic(X/S) such that every geometric poisbf Sthe
fibre of Pic' (X/S) oversis the union

U ¢n *(Pic%(Xs)),

n>0

where Pi@(Xs) is the connected component of the identity of (Xg/s). It is well
known that Pi¢(X/S) — Sis also a closed subgroup scheme of (Ri¢S). More-
over, the morphism Pf¢X/S) — Sis projective and the formation of Pi¢X/S) — S
commutes with a base changeSxsee, e.g./IKl, Theorem 6.16 and Exercise 6.18]).
We assume that P‘?(:XS) is reduced for every poirge S.

THEOREM7.1. LetL = {L;, g} be arelatively stratified line bundle on/%. Assume
that there exists a dense subsetS(k) such that for every s S the stratified bundle
LLs = L|x, has finite monodromy. Théry has finite monodromy.

Proof. ReplacingL by a power.®N, whereN is sufficiently large, we may assume
thatlLs € Pic%(Xs) for all closed pointsin S(see[[Kl, Corollary 6.17]).

By assumptiorr: <7 = Pic®(X/S) — Sis an abelian scheme. Let us consider the dual
abelian schemes — S. We have a well defined Albanese morph|gm(X o) —

(o ,e) (see[[EGA, Exposeé VI, Théoréme 3.3]). Moreover, the rgamc (]S —

o/ = Pic®(X/S) is an isomorphism oB-schemes. Let us sét= g{,,

Let B be theK-point of Al) corresponding tdL;),. Note that theK-point Py € A is
V-divisible. Indeed, by the definition of a relative stratifion we have/"(R,) = Py
for all integersn. Similarly, we see that all the poinBs € A1) (K) areV-divisible. By
Corollary(6.2 it follows thaf, € B(") (k) + A1) (K)iors, where(B/k, T : Bx — A) is the
K /k-trace ofA (note that(B) /k, £(V) is theK /k-trace ofA)). So for everyi > 0 we
can writeR = Q; + R for someQ; € B) (k) andR; € AW (K)yos.

Now we transpose the above by duality. lAebe the dual abeliaiK-variety of A
andB the dual abeliak-variety of B. We have thé< /k-imagest () :AE,') —BY and
an Smorphismt : &7 — B x S (possibly after shrinking). By abuse of notation
we can treal; as line bundles on7 becausey* : Pic®(.«7/S) — Pic®(X/S) is an
isomorphism. LeM; be the line bundle oB{) corresponding t€); and letrs : B x

S— B denote the projection. Let us fix a non-negative intégerd take a posmve
integern; such thanyR; = 0. Then the line bundle”™ @ t*re*M” ™ has degree 0 on
every fiber ofe7 — S. Thus it is trivial after restrlct|0n te7,. Hence after shrinking
Swe can assume thaf™ ~ t* "M,

Let us fix a points € S(k) and consider the morphism
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Note thatr!) has connected fibres and herieg). &) = €. By assumption there

exists a positive integeas, such that for every the order of the line bundIé)
dividesas. The important point is thads is prime top.
Therefore(t)*M*®" ~ g  and by the projection formula

M2 o (7). (1) "M% = (7). Op =~ O
This implies thaM; is a torsion line bundle and heng € AV (K )ors. Therefore
P=Q+R e A(i)(K)tors-

Let us recall that the set @ftorsion points of&(K) is finite. Assuming it is not empty,
we can therefore find a non-empty open suhbet Ssuch that for everg e U (k) and
every p-torsion pointT € A(K) the sectionil is defined orlJ and the poinfT (s) is
non-zero.

Let us write the order o asm;p®, wherem is not divisible byp. If g > 1 then the
pointmop® 1Ry is p-torsion inA(K). If we takes € S NU (k), thenasmop® 1Py (s) =
[Ly%™]s = 0, a contradiction. It follows thatkPy = 0. Similarly, the order of alR,
is prime top. _

As already mentioned in the last section, the homomorpiigit/ Py — AD(K) in-
duced byF/L/K is a bijection. So we have an induced injection

F:AK) — AD(K).

On the other hand, the Verschiebung morphism induces hompinisons

Vi : AD(K) — A(K)
such thaw;F;(P) = p'P andFRV;(Q) = p'Q for all P € A(K) andQ € A1) (K). Hence
p'MoR = RVi(MR) = R (moRy) =0

and since the order d® is prime top we havemyP, = 0 for all i > 0. Therefore

(Li)?”b ~ ﬁxﬁ for all i and the stratified line bundle; has finite monodromy. [

Now we fix the following notationk is an algebraically closed field of positive char-
acteristicp and f : X — Sis a smooth projective morphism &fvarieties with geo-
metrically connected fibres.

THEOREM7.2. LetE = {E;, g; } be a relatively stratified bundle on/8. Assume that
there exists a dense subsetS(k) such that for every s U the stratified bundle
Es = E|x, has finite monodromy of order prime to p.

1) Thenthere exists afinite Galdtale coveringt, : Y5 — Xi of order prime-to-p
such that, 7 is a direct sum of stratified line bundles.
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2) Iftk# T, and U is open in &), then the monodromy group Bf; is finite, and
Ej trivializes on a finitettale cover 4 — Xi which factors as a Kummer (thus
finite abelian of order prime to p) coveRrZ- Yy and a Galois cover y — Xy
of order prime to p.

Proof. We prove 1). Let us first remark that the schem§§ i >0, are all isomorphic
(as schemes, not &sschemes). Therefore the relative Frobenius induces amoiso
phism on fundamental groups.

By the first part of Theorefn 3.1 we know that there exists adiGialois étale covering

T Ygi — X§> of degree prime t@ such thatz*(E;) is a direct sum of line bundles

@' Lij. Note that from the proof of Theoreln 5.1 the degreetoflepends only on

rcfl(x,$>,a<‘)(ﬁ)) and the Brauer-Feit constajr), and therefore it can be bounded
independently of. Using the Lang—Serre theorem (seel[LS, Théoréme 4]) we ca

therefore assume thit; = Y,%”, whereYy = Yq 0. Now we know that
@ _qLij ~ (Fia) —)*(@r'/:l L'+1,")'
! Ya'/n ! T

By the Krull-Schmidt theorem, the set of isomorphism classiine bundlegL;; }
is the same as the set of isomorphism classes of lines bumtbliels come by pull-back

{(F\i(ﬁ)/ﬁ)*(LiH’j/)}j/. So we can reorder the indicg¢'sso that
n

(R,

)" (Liaj) =L
n n

This finishes the proof of 1).
To prove 2), we do the proof 1) replaciiyg — Xi by Z7 — Xj7 of Theoreni 5]l 2).
This finishes the proof of 2).

O

Remarks.3. 1) Case 2) of Theorei 4.2 applied to a line bundle extends-Theo
rem[Z.1, wheré&swas assumed to be projective, BiXs) reduced for alsc S
closed,S c S(k) dense, to the case whé&his not necessarily projective and
S ¢ S(k) is open and dense, but we have to assumektfsanot algebraic over
its prime field.

2) If Yy has a good projective model satisfying assumptions of Témbf.1 then
it follows thatE has finite monodromy.
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1 DEFINITIONS AND NOTATION

Our main result, theorem 3.6, shows that there is an equivalence of categories
between the orthogonal components for the slice filtration (see definition 1.1)
and the weakly birational motivic stable homotopy categories which are con-
structed in this paper (see definition 2.9). Relying on this equivalence; we are
able to describe over an arbitrary base scheme (see theorems 4.2, 4.4 and 4.6)
the slices for projective spaces (including P*°), Thom spaces and blow ups. We
also construct the birational motivic stable homotopy categories (see definition
2.4), which are a natural generalization of the weakly birational motivic sta-
ble homotopy categories, and show (see proposition 2.12) that there exists a
Quillen equivalence between them when the base scheme is a perfect field. Our
approach was inspired by the work of Kahn-Sujatha [1] on birational motives,
where the existence of a connection between the layers of the slice filtration
and birational invariants is explicitly suggested. Furthermore, this approach
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allows to obtain analogues for the slice filtration in the unstable setting (see
remark 3.8).

In this paper X will denote a Noetherian separated base scheme of finite Krull
dimension, Schx the category of schemes of finite type over X and Smx the
full subcategory of Schx consisting of smooth schemes over X regarded as
a site with the Nisnevich topology. All the maps between schemes will be
considered over the base X. Given Y € Schx, all the closed subsets Z of Y
will be considered as closed subschemes with the reduced structure.

Let M be the category of pointed simplicial presheaves in Smyx equipped with
the motivic Quillen model structure [14] constructed by Morel-Voevodsky [8, p.
86 Thm. 3.2], taking the affine line A% as interval. Given amap f:Y — W in
Smx, we will abuse notation and denote by f the induced map f: Y, — Wy
in M between the corresponding pointed simplicial presheaves represented by
Y and W respectively.

We define T in M to be the pointed simplicial presheaf represented by S* AG,,,
where G,, is the multiplicative group A — {0} pointed by 1, and S* denotes
the simplicial circle. Given an arbitrary integer r > 1, S” (respectively G7,)
will denote the iterated smash product S*A---AS? (respectively G,, A+ - AGy,)
with r-factors; SY = G9, will be by definition equal to the pointed simplicial
presheaf X represented by the base scheme X.

Let Spt(M) denote Jardine’s category of symmetric T-spectra on M equipped
with the motivic model structure defined in [6, Thm. 4.15] and let SH denote
its homotopy category, which is triangulated. We will follow Jardine’s notation
[6, p. 506-507] where F,, denotes the left adjoint to the n-evaluation functor

Spt(M) —"= M
(X™)m>0 —= X"

Notice that Fy(A) is just the usual infinite suspension spectrum X3° A.
For every integer q € Z, we consider the following family of symmetric T-spectra

Cly ={Fn(S" NGy, ANUL) [ nyr,8 > 055 —n > ;U € Smx} (1.1)
where U, denotes the simplicial presheaf represented by U with a disjoint base
point. Let EqTSHeﬁ denote the smallest full triangulated subcategory of SH
which contains Cgﬁ and is closed under arbitrary coproducts. Voevodsky [16]

defines the slice filtration in SH to be the following family of triangulated
subcategories

- CRITSHA C 2ISHT C R ISH C
It follows from the work of Neeman [9], [10] that the inclusion
i SESHT — SH
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has a right adjoint rq : SH — EqTS’Heff , and that the following functors

fo:SH — SH
5<q SH — SH
54 :SH — SH

are triangulated, where f, is defined as the composition i4 o rg; and s<g, 54
are characterized by the fact that for every E € SH, we have distinguished
triangles in SH:

eE E

JdE - E = S<ql/ st N foE

E
Py n

foE sq L0 SYA fgr B

Jon B

We will refer to f E as the (¢ — 1)-connective cover of E, to s<oE as the
g-orthogonal component of E, and to sqF as the g-slice of E. It follows di-
rectly from the definition that s.,y1F, sqE satisfy that for every symmetric
T-spectrum K in DL SH .

Homgsy (K, s<q+1E) = Homsy (K, s4E) =0

DEFINITION 1.1. Let E € Spt(M) be a symmetric T-spectrum. We will say
that E is n-orthogonal, if for all K € E’%S"Heﬁ

HomSH(K, E) =0

Let SH*t (n) denote the full subcategory of SH consisting of the n-orthogonal
objects.

The slice filtration admits an alternative definition in terms of (left and right)
Bousfield localization of Spt(M) [11, 12]. The Bousfield localizations are con-
structed following Hirschhorn’s approach [2]. In order to be able to apply
Hirschhorn’s techniques, it is necessary to know that Spt(M) is cellular [2,
Def. 12.1.1] and proper [2, Def. 13.1.1].

THEOREM 1.2. The Quillen model category Spt(M) is:
1. cellular (see [5], [3, Cor. 1.6] or [12, Thm. 2.7.4]).
2. proper (see [6, Thm. 4.15]).

For details and definitions about Bousfield localization we refer the reader to
Hirschhorn’s book [2]. Let us just mention the following theorem of Hirschhorn,
which guarantees the existence of left and right Bousfield localizations.
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THEOREM 1.3 (see [2, Thms. 4.1.1 and 5.1.1]). Let A be a Quillen model
category which is cellular and proper. Let L be a set of maps in A and let K
be a set of objects in A. Then:

1. The left Bousfield localization of A with respect to L exists.

2. The right Bousfield localization of A with respect to the class of K -colocal
equivalences erists.

Now, we can describe the slice filtration in terms of suitable Bousfield localiza-
tions of Spt(M).

THEOREM 1.4 (see [12]). 1. Let chﬁSpt(/\/l) be the right Bousfield local-

ization of Spt(M) with respect to the set of objects Cly (see Eqn. (1.1)).
Then its homotopy category chﬁS"H is triangulated and naturally equiv-

alent to E%S"Heﬁ. Moreover, the functor f, is canonically isomorphic to
the following composition of triangulated functors:

C‘I
SH — Res SH "> s34
where R is a fibrant replacement functor in Spt(M), and Cq a cofibrant
replacement functor in Rea, Spt(M).

2. Let L.ySpt(M) be the left Bousfield localization of Spt(M) with respect
to the set of maps

{Fu(S" NGy, AUL) = #| Fo(S" NGy AU ) € Clyg }
Then its homotopy category L,SH is triangulated and naturally equiva-
lent to S’HL(q). Moreover, the functor s<q is canonically isomorphic to
the following composition of triangulated functors:

Wq
SH—2 s LogSH —2> S}

where Q is a cofibrant replacement functor in Spt(M), and Wy a fibrant
replacement functor in L.qaSpt(M).

3. Let S1Spt(M) be the right Bousfield localization of L<qi1Spt(M) with
respect to the set of objects

{Fo(S"ANG;, ANUL) | n,r,s > 0;s—n=q;U € Smx}
Then its homotopy category SISH is triangulated and the identity functor
id: chﬁSpt(M) — S1Spt(M)

is a left Quillen functor. Moreover, the functor sy is canonically isomor-
phic to the following composition of triangulated functors:

SH —2 > Res SH 0 gagy L Res SH -0 gy
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Proof. (1) and (3) follow directly from [12, Thms. 3.3.9, 3.3.25, 3.3.50, 3.3.68].
On the other hand, (2) follows from proposition 3.2.27(3) together with theorem
3.3.26; proposition 3.3.30 and theorem 3.3.45 in [12] O

2 BIRATIONAL AND WEAKLY BIRATIONAL COHOMOLOGY THEORIES

In this section, we construct the birational and weakly birational motivic sta-
ble homotopy categories. These are defined as left Bousfield localizations of
Spt(M) with respect to maps which are induced by open immersions with a
numerical condition in the codimension of the closed complement (which is
assumed to be smooth in the weakly birational case). The existence of the
left Bousfield localizations considered in this section follows immediately from
theorems 1.2 and 1.3.

LEMMA 2.1. Let a,d’,b,b',p,p’ > 0 be integers such that a —p = a’ — p’ and
b—p=0Vb —9p'. Assume that p > p’, then for every Y € Smx, there is a weak
equivalence in Spt(M), which is natural with respect to' Y

gut (V) 1 Fp(S* AGh, AYy) = Fy(S™ AGh, AYL)

Proof. We have the following adjunction (see [12, Def. 2.6.8])
(Fp, evp, @) : M — Spt(M)

Using this adjunction, we define gZ’z, (Y) as adjoint to the identity map:

S NG A Yy 2 evp(Fy (S AGY, AY)) = SP7F AGEP A ST AGH AY,
~ S NG, AYy

Thus, it is clear that gZ:z, (Y) is natural in Y, and it follows from [12, Prop.
2.4.26] that it is a weak equivalence in Spt(M). O

DEFINITION 2.2 (see [13, section 7.5]). Let Y € Schy, and Z a closed sub-
scheme of Y. The codimension of Z in Y, codimy Z is the infimum (over the
generic points z; of Z) of the dimensions of the local rings Oy.,.

Since X is Noetherian of finite Krull dimension and Y is of finite type over X,
codimy Z is always finite.

DEFINITION 2.3. We fix an arbitrary integer n > 0, and consider the following
set of open immersions which have a closed complement of codimension at least
n+1

B, = {w,y :U — Y open immersion |
Y € Smx;Y irreducible; (codimyY\U) > n + 1}

The letter B stands for birational.
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Now we counsider the left Bousfield localization of Spt(M) with respect to a
suitable set of maps induced by the families of open immersions B,, described
above.

DEFINITION 2.4. Let n € Z be an arbitrary integer.

1. Let B,Spt(M) denote the left Bousfield localization of Spt(M) with
respect to the set of maps

sB, = {Fp(Gl;n ANwy):b,p,r>0,b—p>n—r;wy € B}

2. Let b denote its fibrant replacement functor and SH(B,,) its associated
homotopy category.

For n # 0 we will call SH(B,,) the codimension n + 1-birational motivic stable
homotopy category, and for n = 0 we will call it the birational motivic stable
homotopy category.

LEMMA 2.5. Letn € Z be an arbitrary integer. Then for every a > 0, the maps
S*A sB,, = {Fp(S“/\an/\LU,y) cbp,r>0,b—p>n—rwy € B}
are weak equivalences in B, Spt(M).

Proof. Let F,(G% A w,y) € sB,, with uyy € B,. Both F,(Gb A U,) and
F,(Gb, AY,) are cofibrant in Spt(M) (see [12, Props. 2.4.17, 2.6.18 and Thm.
2.6.30]) and hence also in B, Spt(M). By construction, F,(G%, A,y ) is a weak
equivalence in B, Spt(M); and [2, Thm. 4.1.1.(4)] implies that B, Spt(M) is
a simplicial model category. Thus, it follows from Ken Brown’s lemma (see [4
lemma 1.1.12]) that F,,(S*AGY, Awyy ) is also a weak equivalence in B, Spt(M
for every a > 0.

o=

PROPOSITION 2.6. Let E be an arbitrary symmetric T-spectrum. Then E is
fibrant in B, Spt(M) if and only if the following conditions hold:

1. E is fibrant in Spt(M).

2. For every a,b,p,r > 0 such that b —p > n —r; and every wyy € B,, the
induced map

*

Homgy (F,(S* AGh, AYL), E) % Homgy (F,(S* AGb, AU, E)

s an isomorphism.
Proof. (=): Since the identity functor

id : Spt(M) — B, Spt(M)
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is a left Quillen functor, the conclusion follows from the derived adjunction
(@Q,b™,¢) : SH — SH(B,)

together with lemma 2.5.

(«<): Assume that E satisfies (1) and (2). Let wp, 19 denote the base points of
the pointed simplicial sets Map, (F,,(G%, AY}), E) and Map, (F,(G%, AU, ), E)
respectively. Since F,(G% AY,) and F,(G% AU, ) are always cofibrant, by [2,
Def. 3.1.4(1)(a) and Thm. 4.1.1(2)] it is enough to show that every map in
sB,, induces a weak equivalence of simplicial sets:

Map, (F, (G2, A Yy), E) — Map, (F, (G, A U.), E)

Since Spt(M) is a pointed simplicial model category, we observe that lemma
6.1.2 in [4] and remark 2.4.3(2) in [12] imply that the following diagram is
commutative for a > 0 and all the vertical arrows are isomorphisms

Ta,woMap, (Fp (Glr)n NYL), E)

IR

TanMap,. (Fp(Gy, AU ), E)

IR

HOHISH(FP(S@ A G}r)n ANYL), E)

Homgsy (Fp(S® AGE, AUL), E)

by hypothesis, the bottom row is an isomorphism, hence the top row is also an
isomorphism. This implies that for every map in sB,, the induced map

s

Map, (F,(G?, A Y,), E) —=> Map, (F,(G?, AU,), E)
is a weak equivalence when it is restricted to the path component of
Map, (F,(G%, AY,), E) containing wg. This holds in particular for
Map, (Fp1(G4H A YY), B) —> Map, (Fp41 (G5 AUL), E)

Therefore, the following map is a weak equivalence of pointed simplicial sets,
since taking S'-loops kills the path components that do not contain the base
point

Map, (S, Map, (F,+1(GUL A YL, E))

|

Ma'p*(sla Map*(FPJrl(Gf;rl A U+)7 E))
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Now, since Spt(M) is a simplicial model category we deduce that the rows in
the following commutative diagram are isomorphisms

Map, (S, Map, (F,+1 (G AYL), E))

IR

Ly Map*(Fp+1(51 /\Gfrjl /\Y+),E)
Map*(Sl, Map, (F;D-i-l (G%—l ANUL), E)) Wy

IR

Map*(FpH(Sl N Gf;rl A U+), E)

Thus, by the three out of two property for weak equivalences, we conclude that

Map, (Fpy1(S* AGEHLAY,), E) —2> Map, (F,11(S* AGEFL A UL), E)

is also a weak equivalence of pointed simplicial sets. Finally, lemma 2.1 implies
that the following diagram is commutative and the vertical arrows are weak
equivalences in Spt(M)

Map, (Fpy1(SY AGY AY,), B) —== Map, (Fpy1 (ST AGY A UL), E)
stio] [sstssio
Map, (Fy (G, AYy), B) ——"—> Map, (F, (G}, AU..), E)

Thus, we conclude by the two out of three property for weak equivalences that
the bottom arrow is also a weak equivalence in Spt(M). O

PROPOSITION 2.7. The homotopy category SH(By,) is a compactly generated
triangulated category in the sense of Neeman [9, Def. 1.7].

Proof. We will prove first that SH(B,,) is a triangulated category. For this, it
is enough to show that the smash product with the simplicial circle induces a
Quillen equivalence (see [14, sections 1.2, 1.3])

(= ASYQg1—,¢) : B,Spt(M) — B, Spt(M)

It follows from [2, Thm. 4.1.1.(4)] that this adjunction is a Quillen adjunction,
and the same argument as in [12, Cor. 3.2.38] (replacing [12, Prop. 3.2.32]
with proposition 2.6) allows us to conclude that it is a Quillen equivalence.
Finally, since SH is a compactly generated triangulated category (see [12, Prop.
3.1.5]) and the identity functor is a left Quillen functor

id : Spt(M) — B, Spt(M)

DOCUMENTA MATHEMATICA 18 (2013) 51-70



BIRATIONAL MoTIivic HOMOTOPY THEORIES 59

it follows from the derived adjunction
Q0™ ¢) : SH — SH(B,)

that SH(B,,) is also compactly generated, having exactly the same set of gen-
erators as SH. O

DEFINITION 2.8. We fix an arbitrary integer n > 0, and consider the following
set of open immersions with smooth closed complement of codimension at least
n+1

W By, = {wwy :U — Y open immersion |
Y,Z =Y\U € Smx;Y irreducible; (codimy Z) > n + 1}

Notice that every map in W B, is also in B,, but the converse doesn’t hold.
The reason to consider maps (yy in WhB, is that if the closed complement
is smooth, then the Morel-Voevodsky homotopy purity theorem (see [8, Thm.
2.23]) characterizes the homotopy cofibre of ¢y in terms of the Thom space
of the normal bundle for the closed immersion Y\U — Y.

DEFINITION 2.9. Let n € Z be an arbitrary integer.

1. Let WB,,Spt(M) denote the left Bousfield localization of Spt(M) with
respect to the set of maps

sWB, = {F,(G:, Awyy) :b,p,r >0,b—p>n—r;wy € WB,}.
2. Let wb(™ denote its fibrant replacement functor and SH(W B,,) its asso-
ciated homotopy category.

For n # 0 we will call SH(WB,,) the codimension n + 1-weakly birational
motivic stable homotopy category, and for n = 0 we will call it the weakly
birational motivic stable homotopy category.

PROPOSITION 2.10. Let E be an arbitrary symmetric T-spectrum. Then E is
fibrant in W B, Spt(M) if and only if the following conditions hold:

1. E is fibrant in Spt(M).

2. For every a,b,p,r > 0 such that b —p > n —r; and every vyy € WB,,
the induced map

Homsy (F, (5% AGE, A YY), E) % Homsy (F,(5* AGt, AU, ), E)

s an isomorphism.

Proof. The proof is exactly the same as in proposition 2.6. O
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PROPOSITION 2.11. The homotopy category SH(W By,) is a compactly gener-
ated triangulated category in the sense of Neeman.

Proof. The proof is exactly the same as in proposition 2.7. O

PROPOSITION 2.12. Assume that the base scheme X = Spec k, with k a perfect
field, then the Quillen adjunction:

(id,id, ) : WB,Spt(M) — B, Spt(M)
is a Quillen equivalence.

Proof. Consider the following commutative diagram

Spt(M)
/ X
WB,Spt(M) - — — — i > B, Spt(M)

where the solid arrows are left Quillen functors. Clearly, W B, C B, for every
r >0, so sWB,, C sB,, and we conclude that every sW B,-local equivalence
is a sBjy-local equivalence. Therefore, the universal property of left Bousfield
localizations implies that the horizontal arrow is also a left Quillen functor.
The universal property for left Bousfield localizations also implies that it is
enough to show that all the maps in

sB, = {Fp(Gbm ANwy) b,p,r>0,b—p>n—riwy € By}

become weak equivalences in W B, Spt(M). Given F,(G% A wyy) € sB, with
o,y € By, we proceed by induction on the dimension of Z = Y\U. If dim Z =
0, then Z € Smx since k is a perfect field (and we are considering Z with the
reduced scheme structure), hence F,(G% A wyy) € sWB, and then a weak
equivalence in W B, Spt(M).

If dim Z > 0, then we consider the singular locus Z; of Z over X. We have
that dim Z; < dim Z since k is a perfect field. Therefore, by induction on
the dimension F,(G%, A wvy) is a weak equivalence in W B, Spt(M), where
V = Y\Z,. On the other hand, F,(G% A tyv) is also a weak equivalence in
W B,,Spt(M) since vy,v is also in B, and its closed complement V\U = Z\Z,
is smooth over X, by construction of Z.

But F,(Gb, A wy) = Fp(GP, Awyy) o Fy(GE, A wyyv), so by the two out of
three property for weak equivalences we conclude that Fp(an Awyy) is a weak
equivalence in W B, Spt(M). O

3 A CHARACTERIZATION OF THE SLICES

This section contains our main results. We give a characterization of the slices
in terms of effectivity and birational conditions (in the sense of definition 3.1),
and we also show that there is an equivalence between the notion of orthogo-
nality (see definition 1.1) and weak birationality (see definition 3.1).
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DEFINITION 3.1. Let E € Spt(M) be a symmetric T-spectrum and n € Z.

1. We will say that E' is n+1-birational (respectively weakly n+1-birational),
if F is fibrant in B,Spt(M) (respectively W B, Spt(M)). If n = 0, we
will simply say that F is birational (respectively weakly birational).

2. We will say that E is an n-slice if E is isomorphic in SH to s, (E’) for
some symmetric T-spectrum E’.

DEFINITION 3.2. 1. Let ¢y,y be an open immersion in Smx. Let Y/U de-
note the pushout of the following diagram in M (i.e. the homotopy
cofibre of 17y in M)

LUy
U, 2y,

|

2. Given a vector bundle 7 : V — Y with Y € Smx, let Th(V) denote the
Thom space of V, i.e. V/(V\oo(Y)), where 0 : Y — V denotes the zero
section of V.

LEMMA 3.3. Let wyy € WB, for some r > 0, and let a,b,p > 0 be arbitrary
integers such that b —p > n—r. Then

F,(S* NGt AY/U) € sntisHes

Proof. Since E%HSHeﬁ is a triangulated category, it is enough to consider the
case a = 0. It is also clear that it suffices to show that Fo(Y/U) € 2 SH .
Now, it follows from the Morel-Voevodsky homotopy purity theorem (see [8,
Thm. 2.23]) that there is an isomorphism in SH

Fy(Y/U) = Fy(Th(N))

where Th(N) is the Thom space of the normal bundle N of the (smooth)
complement Z of U in Y:

e Y\U=2Z>Y

But, tpy € WB,; so e is a regular embedding of codimension c at least r + 1,
hence N is a vector bundle of rank at least r + 1. Therefore, if N is a trivial
vector bundle we conclude from [8, Prop. 2.17(2)] that

Fo(Th(N)) = Fy (S AGE, A Zy) € B9SH C srrtsH el

Finally, we conclude in the general case by choosing a Zariski cover of Z which
trivializes N and using the Mayer-Vietoris property for Zariski covers. o
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LEMMA 3.4. Let U € Smx. Consider the open immersion in Smx
my : AG\U — Ay

given by the complement of the zero section. Then my € W By, and there exists
a weak equivalence in Spt(M) between its homotopy cofibre in M, Al /(AL\U)
and S' NG, AU,

ty : AL/ (AG\U) = SYAG,, AUy

Proof. Since the zero section ig : U — A}; is a closed embedding of codimension
1 between smooth schemes over X, it follows from the definition of W By that
my € WDBy. Finally, [8, Prop. 2.17(2)] implies the existence of the weak
equivalence t;. O

PROPOSITION 3.5. Let E € Spt(M) be a symmetric T-spectrum and n € Z.
Consider the following conditions:

1. E is fibrant in L<p1Spt(M).
2. E is weakly n + 1-birational (see definition 3.1(1)).
3. E is n+ 1-birational (see definition 3.1(1)).

Then (1) and (2) are equivalent. In addition, if the base scheme X = Spec k,
with k a perfect field, then (1), (2) and (3) are equivalent.

Proof. (1)=(2): Assume that E is fibrant in L., +1S5pt(M). By proposition
2.10 it suffices to show that for every a,b,p,r > 0 with b—p > n —r, and every
ty,y € WB,; the induced map

Homsy (F,(S® AGb AYy), E) % Homsy (F,(5% AGt, AU, ), E)

is an isomorphism. We observe that
Fp(S* AGE, A=) : M — Spt(M)
is a left Quillen functor, therefore the following

F,(S“AGE, ALy y)
_—>

Fy(S*ANGE, AU F,(S* ANGb, A YL) = F,(S* AGh, AY/U)

is a cofibre sequence in Spt(M). However, SH is a triangulated category and
lemma 2.1 implies that

Fo1(SCAGETYAY/U) =2 Qg1 0 Ro F(S* AGY, AY/U)

are isomorphic in SH, where R denotes a fibrant replacement functor in
Spt(M). Hence it suffices to show that

Homsy (Fpy1(S* AGEFY AY/U), E) = Homsy (F,(S* NG, AY/U), E) =0
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But this follows from lemma 3.3 together with [12, Prop. 3.3.30], since we are
assuming that F is fibrant in L,41Spt(M).

(2)=(1) Assume that E is n + 1-weakly birational. Then, proposition 3.3.30
in [12] implies that it suffices to show that

Homgy (F,(S* AGE, AUL),E) =0

for every F,(S* AGY, AUL) € C’Zﬁfl.
The same argument as in lemma 2.5 implies that it is enough to consider the
case when F,(Gb, AU, € ng 1. Moreover, we can further reduce to the case

where b,p > 1 and F,(S'AG2, AU,) € ngl. In effect, if F,(G%, AU4) € C’Zgl,
then lemma 2.1 implies that the natural map

Gyt p(U) s Fpy1 (S* AGYTT AUL) = Fy(Gh, AUY)

is a weak equivalence in Spt(M).

Now, it follows from lemma 3.4, that if b > 1, and 0 —p+ (b — 1) > n (i.e.
b—p > n+1); then F,(G% ' Amy) € sWB,, i.e. a weak equivalence in
W B, Spt(M).

Since SH(W B,,) is a triangulated category, id : Spt(M) — W B, Spt(M) is a
left Quillen functor, and F,(G% 1 A (A}, /(AL\Uy))) is the homotopy cofibre of
F,(Gb 1 Amy); we deduce that E being n + 1-weakly birational implies that

Homsy (Fy(Gyy A (Ay/(Ap\U4))), B) = 0
Finally, it follows from lemma 3.4 that the following groups are isomorphic
0 = Homsn(Fy(G A (Al /(AL\UL))). B)
= Homsy (F,(S' AGY, AUL),E)
(2)<(3): This follows directly from proposition 2.12. O
THEOREM 3.6. The Quillen adjunction
(id,id, ) : WB,Spt(M) = Lcpi1Spt(M)

is a Quillen equivalence. In addition, if the base scheme X = Spec k, with k a
perfect field, then the Quillen adjunction

(id,id, @) : BpSpt(M) = Lepy1Spt(M)
is also a Quillen equivalence.

Proof. We show first that W B, Spt(M) and L, 41Spt(M) are Quillen equiv-
alent. Since W B, Spt(M), L<y,4+1Spt(M) are both left Bousfield localizations
of Spt(M), we deduce that they are simplicial model categories with the same
cofibrant replacement functor ). Thus, it suffices to show that they have the
same class of weak equivalences.
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However, proposition 3.5 implies that W B, Spt(M), and L«,41Spt(M) also
have the same class of fibrant objects. Therefore, it follows from [2, Thm. 9.7.4]
that they have exactly the same class of weak equivalences.

Finally, if the base scheme is a perfect field, by proposition 2.12 we conclude

that W B, Spt(M) and B, Spt(M) are Quillen equivalent. O

THEOREM 3.7. Let E be fibrant in Spt(M). Then E is an n-slice (see definition
3.1(2)) if and only if the following conditions hold:

S1 E is n-effective, i.e. E € S2SHY
S2 E is n+ 1l-weakly birational.

In addition, if the base scheme X = Spec k, with k a perfect field, then E is
an n-slice if and only if the following conditions hold:

GSS1 E is n-effective, i.e. E € XESHY .
GSS2 E is n+ 1-birational.

Proof. Assume that E is an n-slice. Then theorems 1.4(1) and 1.4(3) imply
that E is n-effective and fibrant in L.,4+1Spt(M). Hence, proposition 3.5
implies that E is also n 4+ 1-weakly birational.

Now we assume that F satisfies the conditions S1 and S2 above. Then, propo-
sition 3.5 implies that E is fibrant in L<,+1Spt(M). Therefore, theorem 1.4(3)
implies that E is isomorphic in SH to its own n-slice s, (E).

Finally, if the base scheme is a perfect field, then by proposition 3.5 the condi-
tions S2 and GSS2 are equivalent; hence we can conclude applying the same
argument as above. O

Remark 3.8. Notice that theorem 3.6 implies that it is possible to construct
the slice filtration directly from the Quillen model categories W B, Spt(M)
described in definition 2.9 without making any reference to the effective cat-
egories EqTS’Heﬁ . One of the interesting consequences of this fact is that it
is possible to obtain analogues of the slice filtration in the unstable setting,
since the suspension with respect to T or S! does not play an essential role
in the construction of W B, Spt(M), i.e. we could consider the left Bousfield
localization of the motivic unstable homotopy category M with respect to the
maps in definition 2.8. We will study the details of this construction in a future
work.

4 SOME COMPUTATIONS

In this section we use the characterization of the slices obtained in theorem 3.7
to describe the slices of projective spaces, Thom spaces and blow ups.

To simplify the notation, given a simplicial presheaf K € M or a map f € M;
let s;(K), s;(f) (respectively s<;(K), s<;(f)) denote s;(Fy(K)), s;(Fo(f))
(respectively s<;(Fo(K)), s<j(Fo(f)))-
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LEMMA 4.1. Let g : E — F be a map in SH such that s<,,(g) and s<n4+1(g) are
both isomorphisms in SH. Then the n-slice of g, sn(g) is also an isomorphism
in SH.

Proof. Tt follows from [12, Prop. 3.1.19] that the rows in the following commu-
tative diagram are distinguished triangles in SH

$n(B) — = scnt1(E) —= s<n(E) ——= SY A 5, (E)

Sn(g)l l5<n+1(g) ls<n(g) lsl/\sn(g)

$n(F) — scni1(F) — s<n(F) ——= S* A 5, (F)

Thus, we conclude that s, (g) is also an isomorphism in SH. O

Consider Y € Smx. Let P"(Y) denote the trivial projective bundle of rank
n over Y, and let P>°(Y’) denote the colimit in M of the following filtered
diagram

POY) = PHY) = - = P*(Y) = --- (4.1)

given by the inclusions of the respective hyperplanes at infinity.

THEOREM 4.2. Let Y € Smx. Then for any integer j < n, the diagram 4.1
induces the following isomorphisms in SH

~

si(PM(Y)4) —> s, (P"HH(Y)y) —> - —> 5;(PZ(Y)4)

Proof. Let k > n, and consider the closed embedding induced by the dia-
gram (4.1) Ak : P?(Y) — P¥(Y). It is possible to choose a linear embedding
P*=7=1(Y) — P*(Y) such that its open complement Uy, contains P"(Y) and
has the structure of a vector bundle over P"(Y), with zero section o%:

k
Uk —— PF(Y) <—— BF--1(Y)

A/

By homotopy invariance s<;(o¥) is an isomorphism in SH for every integer j.
On the other hand, if j < n, then Fy(vF) is a weak equivalence in W B, Spt(M)
since the codimension of its closed complement is n + 1. Thus, theorems 1.4(2)
and 3.6 imply that if j < n + 1, then s<;(v¥) is also an isomorphism in SH.
Therefore, s<;(AF) = s<;(vF)os<;(ck) is an isomorphism in SH for j < n+1;
and using lemma 4.1 we conclude that the induced map on the slices s;(\F) is
also an isomorphism for j < n.

Finally, the result for P>(Y) follows directly from the fact that the slices

commute with filtered homotopy colimits. o
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Let HZ denote Voevodsky’s Eilenberg-MacLane spectrum (see [15, section 6.1])
representing motivic cohomology in SH.

COROLLARY 4.3. Assume that the base scheme X = Spec k, with k a perfect

field. Then, in the following diagram all the symmetric T-spectra are isomor-
phic to HZ:

HZ —> s0(P°(k)4) —> so(PL(k);) ——> - -

e s (P (k) ) ——— - ——— 50 (P(k) )

Proof. This follows immediately from theorem 4.2 together with the compu-
tation of Levine [7, Thm. 10.5.1] and Voevodsky [17] for the zero slice of the
sphere spectrum. O

THEOREM 4.4. Let wyy € WB,,, m: V =Y a vector bundle of rank r together
with a trivialization t : 7= Y(U) — A}, of its restriction to U. Then for every
integer j < n, there exists an isomorphism in SH (see definition 3.2(2))

5 (Th(V)) 2 §™ NGl A sy (Y2)

Proof. Let Z € Smx be the closed complement of ¢y y. Consider the following
diagram in Smy, where all the squares are cartesian

7L(Z) A (V\oo(Y)) —= V\oo(Y) ~2— 7= (U) N (V\oo (Y))
i .
X -
l | l
7 Y o u

and let v : Th(r=Y(U)) — Th(V) be the induced map between the corre-
sponding Thom spaces. We observe that «, 8 also belong to W B,,; thus, if
Jj < n we conclude that Fy(tyy), Fo(a), Fo(B) are all weak equivalences in
W B;Spt(M). Therefore, theorems 1.4(2) and 3.6 imply that if j <n+1, then
s<j(tuy), s<;(a), s<j(B) are isomorphisms in SH. We claim that if j <n+1,
then
5<j(7) 1 5<j(Th(n~ 1 (U))) = s<;(TR(V))

is also an isomorphism in SH. In effect, by construction of the Thom spaces,
we deduce that for any integer j € Z, the rows in the following commutative
diagram in SH are in fact distinguished triangles

s<i (T HU) N (Voo (Y)))+) —= s<j (77 H(U)4) — s<;(Th(z~1(U)))

S<j(ﬂ)l S<j(0t)l S<j(’)’)l

s<j(VAoo(Y))y) —————s<;(V}) ————5<;(Th(V))
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Since s<;(a), s<;(B) are isomorphisms in SH for j < n+ 1, we conclude that
for j <n+1, s<;(v) is also an isomorphism in SH.

Thus, lemma 4.1 implies that for j < n, s;(ty,y), s;(7) are isomorphisms in SH.
Now, we use the trivialization ¢ to obtain the following commutative diagram
in Smx where the rows are isomorphisms

Sl

Ap\U T H(U) N (V\ao(Y))

l |

()

IR

The same argument as above, shows that for every integer j € 7Z, there is an
isomorphism in SH

sj(t) : s;(Th(r 1 (U))) = s;(Th(A}))
On the other hand, [8, Prop. 2.17(2)] implies that there is a weak equivalence

w: Fo(Th(A])) = S" AG], A Fy(Uy) in Spt(M). Thus, for j < n there exist
isomorphisms in SH

s;(Th(r=(U))) —2L s;(Th(A}))

Sj(’Y)l lsj(w)

5(Th(V)) 55(S7 NG, AU)

However, there exists a canonical isomorphism in SH
s;(S"ANG, ANUy) = S"AG), Asj—r(Uy)

Finally, we conclude by using the isomorphism s;_,(ty,y) (notice that if j <n
then certainly j — r < n, since r > 0). O

COROLLARY 4.5. Assume that the base scheme X = Spec k, with k a perfect
field. Let wyy € By, m: V. = Y a vector bundle of rank r together with a
trivialization t : 7= (U) — Al of its restriction to U. Then for every integer
j < n, there exists an isomorphism in SH

S5 (Th(V)) ~ STA GTm A\ Sj_7-(Y+)

Proof. Proposition 2.12 implies that Fyo(tpy) is a weak equivalence in
WB;Spt(M) for j < n. Hence, the result follows using exactly the same
argument as in theorem 4.4. O
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Given a closed embedding Z — Y of smooth schemes over X, let BzY denote
the blowup of Y with center in Z.

THEOREM 4.6. Let vyy € W DB, with closed complement Z, and j € 7Z an
arbitrary integer. Consider the following cartesian square in Smx

—d>B€ZY<u—U

lf I

Y< 77U

7 L

(4.2)

and let q;,d;,pj,i; denote s;(q),s;(d),s;(p), s;(i) respectively. Then the carte-
sian square (4.2) induces the following distinguished triangle in SH

(izdvj) Dj,ij
5(Ds) = 5, (BLoY 1) @ 5,(Z4) 22 5 (Y) (4.3)

If j < n, then sj(tvy) is an isomorphism in SH, and the following distin-
guished triangles in SH split

(izj]) (pj+i5)
sj(Dy) —_ s;(BzYy) @ 55(Z4) <(T_—)> s;(Y) (4.4)
55(V1) 55 (BE2Y4) T s (Th(Op(1) (45)

where r; = sj(u) o (s;(tu,y)) !, and Op(1) denotes the canonical line bundle
of the projective bundle q : D — Z.

Proof. Tt follows from [8, Prop. 2.29 and Rmk. 2.30] that the following square
is homotopy cocartesian in M

S'A D, Y ST ABLLY,

id/\ql lid/\iv

Sl/\Z_;,_WSl/\Y_;_

Thus, we deduce that the following diagram is a distinguished triangle in SH

(ryla)

Fo(p),Foli
Fo(Dy) — 29 R(BlyYy) @ Fy(Zy) 2@

Fo(Y4)

Since the slices s; are triangulated functors, it follows that diagram (4.3) is a
distinguished triangle in SH.
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Now, we prove that s;(ty,y) is an isomorphism for j < n. By lemma 4.1, it
suffices to show that s<;(cy) is an isomorphism in SH for j < n+1. But this
follows directly from theorems 3.6 and 1.4(2) since Fy(ty,y) is clearly a weak
equivalence in W B;Spt(M) for j < n.

Thus, r; is well defined for j < n, and the following diagram shows that it gives
a splitting for the distinguished triangle (4.4)

55 (u)

sj(BlzY)

Uy)
H lpj (4.6)
s;(U+) s;(Y5)

s (Lu,y)

Finally, since the normal bundle of the closed embedding d : D — B{zY is given
by Op(1), we deduce from the Morel-Voevodsky homotopy purity theorem (see
[8, Thm. 2.23]) that the following diagram is a distinguished triangle in SH

55 (u)

5j(Us) ———5;(BlzY}) — 5;(Th(Op(1)))

Combining this distinguished triangle with diagram (4.6) above, we conclude
that diagram (4.5) is a split distinguished triangle in SH for j < n. O
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ABSTRACT. We define weak units in a semi-monoidal 2-category €
as cancellable pseudo-idempotents: they are pairs (I, ) where T is
an object such that tensoring with I from either side constitutes a
biequivalence of ¢, and « : I ® I — I is an equivalence in €. We
show that this notion of weak unit has coherence built in: Theorem A:
« has a canonical associator 2-cell, which automatically satisfies the
pentagon equation. Theorem B: every morphism of weak units is
automatically compatible with those associators. Theorem C: the 2-
category of weak units is contractible if non-empty. Finally we show
(Theorem E) that the notion of weak unit is equivalent to the notion
obtained from the definition of tricategory: a alone induces the whole
family of left and right maps (indexed by the objects), as well as the
whole family of Kelly 2-cells (one for each pair of objects), satisfying
the relevant coherence axioms.

2010 Mathematics Subject Classification: 18D05; 18D10
Keywords and Phrases: Monoidal 2-categories, units, coherence.

INTRODUCTION

The notion of tricategory, introduced by Gordon, Power, and Street [2] in
1995, seems still to represent the highest-dimensional explicit weak categorical
structure that can be manipulated by hand (i.e. without methods of homotopy
theory), and is therefore an important test bed for higher-categorical ideas. In
this work we investigate the nature of weak units at this level. While coherence
for weak associativity is rather well understood, thanks to the geometrical
insight provided by the Stashefl associahedra [12], coherence for unit structures
is more mysterious, and so far there seems to be no clear geometric pattern for
the coherence laws for units in higher dimensions. Specific interest in weak units
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stems from Simpson’s conjecture [11], according to which strict n-groupoids
with weak units should model all homotopy n-types.

In the present paper, working in the setting of a strict 2-category ¥ with
a strict tensor product, we define a notion of weak unit by simple axioms
that involve only the notion of equivalence, and hence in principle make sense
in all dimensions. Briefly, a weak unit is a cancellable pseudo-idempotent.
We work out the basic theory of such units, and compare with the notion
extracted from the definition of tricategory. In the companion paper Weak
units and homotopy 3-types [4] we employ this notion of unit to prove a version
of Simpson’s conjecture for 1-connected homotopy 3-types, which is the first
nontrivial case. The strictness assumptions of the present paper should be
justified by that result.

By cancellable pseudo-idempotent we mean a pair (I, &) where I is an object in
% such that tensoring with I from either side is an equivalence of 2-categories,
and a: I ® I 3 I is an equi-arrow (i.e. an arrow admitting a pseudo-inverse).
The remarkable fact about this definition is that «, viewed as a multiplication
map, comes with canonical higher order data built in: it possesses a canonical
associator A which automatically satisfies the pentagon equation. This is our
Theorem A. The point is that the arrow « alone, thanks to the cancellability
of I, induces all the usual structure of left and right constraints with all the
2-cell data that goes into them and the axioms they must satisfy.

As a warm-up to the various constructions and ideas, we start out in Section 1
by briefly running through the corresponding theory for cancellable-idempotent
units in monoidal 1-categories. This theory has been treated in detail in [8].
The rest of the paper is dedicated to the case of monoidal 2-categories. In
Section 2 we give the definitions and state the main results: Theorem A says
that there is a canonical associator 2-cell for «, and that this 2-cell automati-
cally satisfies the pentagon equation. Theorem B states that unit morphisms
automatically are compatible with the associators of Theorem A. Theorem C
states that the 2-category of units is contractible if non-empty. Hence, ‘being
unital’ is, up to homotopy, a property rather than a structure.

Next follow three sections dedicated to proofs of each of these three theorems.
In Section 3 we show how the map a : II =5 I alone induces left and right
constraints, which in turn are used to construct the associator and establish
the pentagon equation. The left and right constraints are not canonical, but
surprisingly the associator does not depend on the choice of them. In Sec-
tion 4 we prove Theorem B by interpreting it as a statement about units in
the 2-category of arrows, where it is possible to derive it from Theorem A. In
Section 5 we prove Theorem C. The key ingredient is to use the left and right
constraints to link up all the units, and to show that the unit morphisms are
precisely those compatible with the left and right constraints; this makes them
‘essentially unique’ in the required sense.
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In Section 6 we go through the basic theory of classical units (i.e. as extracted
from the definition of tricategory [2]). Finally, in Section 7 we show that the
two notions of unit are equivalent. This is our Theorem E. A curiosity implied
by the arguments in this section is that the left and right axioms for the 2-
cell data in the Gordon-Power-Street definition (denoted TA2 and TA3 in [2])
imply each other.

(We have no Theorem D.)

This notion of weak units as cancellable idempotents is precisely what can be ex-
tracted from the more abstract, Tamsamani-style, theory of fair n-categories [7]
by making an arbitrary choice of a fixed weak unit. In the theory of fair cate-
gories, the key object is a contractible space of all weak units, rather than any
particular point in that space, and handling this space as a whole bypasses co-
herence issues. However, for the sake of understanding what the theory entails,
and for the sake of concrete computations, it is interesting to make a choice and
study the ensuing coherence issues, as we do in this paper. The resulting ap-
proach is very much in the spirit of the classical theory of monoidal categories,
bicategories, and tricategories, and provides some new insight to these theories.
To stress this fact we have chosen to formulate everything from scratch in such
classical terms, without reference to the theory of fair categories.

In the case of monoidal 1-categories, the cancellable-idempotent viewpoint on
units goes back to Saavedra [10]. The importance of this viewpoint in higher
categories was first suggested by Simpson [11], in connection with his weak-unit
conjecture. He gave an ad hoc definition in this style, as a mere indication of
what needed to be done, and raised the question of whether higher homotopical
data would have to be specified. The surprising answer is, at least here in
dimension 3, that specifying « is enough, then the higher homotopical data is
automatically built in.

ACKNOWLEDGEMENTS. We thank Georges Maltsiniotis for pointing out to us
that the cancellable-idempotent notion of unit in dimension 1 goes back to
Saavedra [10], and we thank Josep Elgueta for catching an error in an ear-
lier version of our comparison with tricategories. The first-named author was
supported by the NSERC. The second-named author was very happy to be
a CIRGET postdoc at the UQAM in 2004, and currently holds support from
grants MTM2009-10359 and MTM2010-20692 of Spain.

1 UNITS IN MONOIDAL CATEGORIES

It is helpful first briefly to recall the relevant results for monoidal categories,
referring the reader to [8] for further details of this case.

1.1. SEMI-MONOIDAL CATEGORIES. A semi-monoidal category is a category
% equipped with a tensor product (which we denote by plain juxtaposition),
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i.e. an associative functor

ECxEC — €
(X,Y) — XY

For simplicity we assume strict associativity, X (Y Z) = (XY)Z.
1.2. MONOIDAL CATEGORIES. (Mac Lane [9].) A semi-monoidal category €

is a monoidal category when it is furthermore equipped with a distinguished
object I and natural isomorphisms

IX XX x e xr

obeying the following rules (cf. [9]):

)\[ = pPI (1)
Axy = AxY (2)
pxy = Xpy (3)
Xy =pxY (4)
Naturality of A and p implies
Arx = I)x, px1 = px1, (5)

independently of Axioms (1)—(4).

1.3 REMARK. Tensoring with I from either side is an equivalence of categories.

1.4 LEMMA. (Kelly [5].) Axiom (4) implies azioms (1), (2), and (3).

Proof. (4) implies (2): Since tensoring with I on the left is an equivalence, it

is enough to prove IAxy = IAxY. But this follows from Axiom (4) applied

twice (swap A out for a p and swap back again only on the nearest factor):
I)\XY = p]XY = I)\Xy

Similarly for p, establishing (3).

(4) and (2) implies (1): Since tensoring with I on the right is an equivalence,

it is enough to prove A\;I = prI. But this follows from (2), (5), and (4):

)\]IZ)\]]ZI)\[:/)[I. O

The following alternative notion of unit object goes back to Saavedra [10]. A
thorough treatment of the notion was given in [8].
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1.5. UNITS AS CANCELLABLE PSEUDO-IDEMPOTENTS. An object I in a semi-
monoidal category € is called cancellable if the two functors € — €

X — IX
X — XI

are fully faithful. By definition, a pseudo-idempotent is an object I equipped
with an isomorphism « : 1T = I. Finally we define a unit object in € to be a
cancellable pseudo-idempotent.

1.6 LEMMA. [8] Given a unit object (I, ) in a semi-monoidal category €, for
each object X there are unique arrows

IX 22X x e xr
such that

(L) Dx =aX
(R) pxI = Xa.

The Ax and px are isomorphisms and natural in X .

Proof. Let L : € — % denote the functor defined by tensoring with I on the
left. Since L is fully faithful, we have a bijection

Hom(IX,X) — Hom(I1X,IX).

Now take Ax to be the inverse image of aX; it is an isomorphism since aX is.
Naturality follows by considering more generally the bijection

Nat(L,id%) — Nat(L oL, L);

let A be the inverse image of the natural transformation whose components are
aX. Similarly on the right. a

1.7 LEMMA. [8] For X\ and p as above, the Kelly aziom (4) holds:
X)\y = pr.

Therefore, by Lemma 1.6 a semi-monoidal category with a unit object is a
monoidal category in the classical sense.

Proof. In the commutative square

XTIy
XIIY — XIY

px1Y pxY

XIYTXY
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the top arrow is equal to XaY, by X tensor (L), and the left-hand arrow is
also equal to XaY', by (R) tensor Y. Since XaY is an isomorphism, it follows
that Xy = pxY. O

1.8 LEMMA. For a unit object (I,c) we have: (i) The map « : II — I is
associative. (i) The two functors X — IX and X — X1 are equivalences.

Proof. Since « is invertible, associativity amounts to the equation Ia = al,
which follows from the previous proof by setting X =Y = I and applying L and
R once again. To see that L is an equivalence, just note that it is isomorphic
to the identity via A. O

1.9. UNIQUENESS OF UNITS. Just as in a semi-monoid a unit element is unique
if it exists, one can show [8, 2.20] that in a semi-monoidal category, between
any two units there is a unique isomorphism of units. This statement does not
involve A and p, but the proof does: the canonical isomorphism I = J is the

-1
composite I 225 T.J SNy

2 UNITS IN MONOIDAL 2-CATEGORIES: DEFINITION AND MAIN RESULTS

In this section we set up the necessary terminology and notation, give the main
definition, and state the main results.

2.1. 2-CATEGORIES. We work in a strict 2-category . We use the symbol # to
denote composition of arrows and horizontal composition of 2-cells in ¥, always
written from the left to the right, and occasionally decorating the symbol # by
the name of the object where the two arrows or 2-cells are composed. By an
equi-arrow in % we understand an arrow f admitting an (unspecified) pseudo-
inverse, i.e. an arrow ¢ in the opposite direction such that f#g and g#f are
isomorphic to the respective identity arrows, and such that the comparison 2-
cells satisfy the usual triangle equations for adjunctions. (The usual word for
‘equi-arrow’ is of course ‘equivalence’; we reserve the latter word for equivalence
of categories and 2-categories. We find it useful to have a different word for
the equivalences inside a 2-category.) It is worth pointing out that it is not
necessary to insist on the triangle equations. If the 2-cells exist but do not
satisfy the triangle equation, they can always be replaced by 2-cells that do.
We shall make extensive use of arguments with pasting diagrams [6]. Our
drawings of 2-cells should be read from bottom to top, so that for example

denotes U : f# g = h. The symbol (C) will denote identity 2-cells.
Y
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The few 2-functors we need all happen to be strict. By natural transformation
we always mean pseudo-natural transformation. Hence a natural transforma-
tion v : F = G between two 2-functors from Z to % is given by an arrow
ux : FX — GX for each object X € 2, and an invertible 2-cell

FX —= 5 GX

F(w)‘[ Uz lG(w)

FX'u—X,>GX'

for each arrow z : X — X’ in &, subject to the usual compatibility condi-
tions [6]. The modifications we shall need will happen to be invertible.

2.2. SEMI-MONOIDAL 2-CATEGORIES. By semi-monoidal 2-category we mean
a 2-category ¥ equipped with a tensor product, i.e. an associative 2-functor
R:ECXEC — €
(X,Y) — XY,

denoted by plain juxtaposition. We already assumed % to be a strict 2-category,
and we also require ® to be a strict 2-functor and to be strictly associative:
(XY)Z = X(YZ). This is mainly for convenience, to keep the focus on unit
issues.

Note that the tensor product of two equi-arrows is again an equi-arrow, since
its pseudo-inverse can be taken to be the tensor product of the pseudo-inverses.

2.3. SEMI-MONOIDS. A semi-monoid in € is a triple (X, «, A) consisting of an

object X, a multiplication map « : XX — X, and an invertible 2-cell A called
the associator,

XXX - 5 xx
Xa A @
XX ——— X

required to satisfy the ‘pentagon equation’:

aXX aXX

XXXX — XXX XXXX — XXX
\ \\ XXa © Xa a
XXX XA XXX—}XX = XXX—}XX A XX
Xa A a \K\ \\ o
XXQ—>X XX—)X
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In the applications, a will be an equi-arrow, and hence we will have
A=A#a
XX
for a some unique invertible
A: Xa= aX,

which it will more convenient to work with. In this case, the pentagon equation
is equivalent to the more compact equation

xxxx —2X L xxx Xxxx —2X s xxx
XXa| XA | Xax AX aX =  XXa © Xa| A Jax
XXXT>XX XXXT>XX

(6)

which we shall also make use of.

2.4. SEMI-MONOID MAPS. A semi-monoid map f : (X, a,ﬂ) — (Y, 5, §) is the
data of an arrow f : X — Y in ¥ together with an invertible 2-cell

xx - oyy

alFlg

X—Y

f
such that this cube commutes:
BY
YYY —> YY YYY ——— YY
/ / W Yp B B
xxx =% 4 xx XXX YY 4> Y
Xa A o / /
XX ——— X XX ——— X

When S is an equi-arrow, the cube equation is equivalent to the simpler equa-
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tion:
frf frf
XXX ——YYY XXX ——YYY
Xa| A |ax Ff BY =  Xa fF vl B |8y (7)

which will be useful.

2.5. SEMI-MONOID TRANSFORMATIONS. A semi-monoid transformation be-
tween two parallel semi-monoid maps (f,F) and (g,G) isa 2-cell T: f = ¢ in
% such that this cylinder commutes:

a9 99
/\ /\,L
XX TT YY XX YY

\_/r
I G
F g
/_\
X Y X T Y
\_/ \_/f
f f

2.6 LEMMA. Let f: X =Y be a semi-monoid map. If f is an equi-arrow (as
an arrow in € ) with quasi-inverse g : Y — X, then there is a canonical 2-cell
G such that (g, G) is a semi-monoid map.

Proof. The 2-cell G is defined as the mate [6] of the 2-cell F~'. Tt is routine to
check the cube equation in 2.4. O

2.7. PSEUDO-IDEMPOTENTS. A pseudo-idempotent is a pair (I, ) where « :
IT — I is an equi-arrow. A morphism of pseudo-idempotents from (I, ) to
(J,5) is a pair (u,U) consisting of an arrow u : I — J in % and an invertible
2-cell

If (u,U) and (v, V) are morphisms of pseudo-idempotents from (I, a) to (J, 8),
a 2-morphism of pseudo-idempotents from (u,U) to (v,V) is a 2-cell T: u = v
satisfying the cylinder equation of 2.5.
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2.8. CANCELLABLE OBJECTS. An object [ in € is called cancellable if the two
2-functors ¢ — €

X — IX
X — XI

are fully faithful. (Fully faithful means that the induced functors on hom cat-
egories are equivalences.) A cancellable morphism between cancellable objects
I and J is an equi-arrow u : I — J. (Equivalently it is an arrow such that
the functors on hom cats defined by tensoring with u on either side are equiv-
alences, cf. 5.1.) A cancellable 2-morphism between cancellable arrows is any
invertible 2-cell.

We are now ready for the main definition and the main results.

2.9. UNITS. A wunit object is by definition a cancellable pseudo-idempotent.
Hence it is a pair (I, «) consisting of an object I and an equi-arrow « : [T — I,
with the property that tensoring with I from either side define fully faithful
2-functors ¢ — €.

A morphism of units is a cancellable morphism of pseudo-idempotents. In other
words, a unit morphism from (I, «) to (J, ) is a pair (u,U) where u : I — J is
an equi-arrow and U is an invertible 2-cell

A 2-morphism of units is a cancellable 2-morphism of pseudo-idempotents.
Hence a 2-morphism from (u, U) to (v,V) is an invertible 2-cell T : © = v such
that

/‘\ /‘\
17 TT JJ 17 JJ
\_/ V
o B = [} B
] v
N
I J I T J
\_/( \_/(

This defines the 2-category of units.

In the next section we’ll see how the notion of unit object induces left and right
constraints familiar from standard notions of monoidal 2-category. It will then
turn out (Lemmas 5.1 and 5.2) that unit morphisms and 2-morphisms can be
characterised as those morphisms and 2-morphisms compatible with the left
and right constraints.
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THEOREM A (ASSOCIATIVITY). Given a unit object (I, ), there is a canonical
invertible 2-cell

I —2X 1
T A @
II——1

which satisfies the pentagon equation

IIrr —> IIr IIrr L IIr
\y\ \\ ITa © Ia
III A IIr —> II III —> II
T A el \\ \\
I ————1I II——1

(8)

In other words, a unit object is automatically a semi-monoid. The 2-cell A is
characterised uniquely in 3.7.

THEOREM B. A wunit morphism (u,U) : (I,a) — (J,8) is automatically a
semi-monoid map, when I and J are considered semi-monoids in virtue of
Theorem A.

THEOREM C (CONTRACTIBILITY). The 2-category of units in € is con-
tractible, if non-empty.

In other words, between any two units there exists a unit morphism, and be-
tween any two parallel unit morphisms there is a unique unit 2-morphism.
Theorem C shows that units objects are unique up to homotopy, so in this
sense ‘being unital’ is a property not a structure.

The proofs of these three theorems rely on the auxiliary structure of left and
right constraints which we develop in the next section, and which also displays
the relation with the classical notion of monoidal 2-category: in Section 7 we
show that the cancellable-idempotent notion of unit is equivalent to the notion
extracted from the definition of tricategory of Gordon, Power, and Street [2].
This is our Theorem E.

3 LEFT AND RIGHT ACTIONS, AND ASSOCIATIVITY OF THE UNIT (THEO-
REM A)

Throughout this section we fix a unit object (I, «).
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3.1 LEMMA. For each object X there exists pairs (Ax,Lx) and (px,Rx),

AinX—>X, inI)\X:>OéX
pxiXI*)X, inXOt:>pr

where A\x and px are equi-arrows, and Lx are Rx are invertible 2-cells.

For every such family, there is a unique way to assemble the Ax into a natural
transformation (this involves defining 2-cells Ay for every arrow f in €) in
such a way that L is a natural modification. Similarly for the px and Rx.

The Ax is an action of I on each X, and the 2-cell L x expresses an associativity
constraint on this action. Using these structures we will construct the associator
for «, and show it satisfies the pentagon equation. Once that is in place we
will see that the actions A and p are coherent too (satisfying the appropriate
pentagon equations).

We shall treat the left action. The right action is of course equivalent to

establish.

3.2. CONSTRUCTION OF THE LEFT ACTION. Since tensoring with [ is a fully
faithful 2-functor, the functor

Hom(IX, X) —» Hom(I1X,IX)

is an equivalence of categories. In the second category there is the canonical
object aX. Hence there is a pseudo pre-image which we denote A\x : I X — X,
together with an invertible 2-cell Lx : TAx = aX:

aX
/—\
IIX Lx IX
~_ "

I x

Since « is an equi-arrow, also aX is equi, and since Lx is invertible, we conclude
that also IAx is an equi-arrow. Finally since the 2-functor ‘tensoring with I’
is fully faithful, it reflects equi-arrows, so already Ax is an equi-arrow.

3.3. NATURALITY. A slight variation in the formulation of the construction
gives directly a natural transformation A and a modification L: Let L : 4 — €
denote the 2-functor ‘tensoring with I on the left’. Since L is fully faithful,
there is an equivalence of categories

Nat(L,Id%) — Nat(L o L,L).

Now in the second category we have the canonical natural transformation whose
X-component is aX (and with trivial components on arrows). Hence there
is a pseudo pre-image natural transformation A\ : . — idg, together with a
modification L whose X-component is Lx : I\x = aX.
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However, we wish to stress the fact that the construction is completely object-
wise. This fact is of course due to the presence of the isomorphism Lx: some-
thing isomorphic to a natural transformation is again natural. More precisely,
to provide the 2-cell data Ay needed to make A into a natural transformation,
just pull back the 2-cell data from the natural transformation aX. In detail,
we need invertible 2-cells

Ax
IX—X
Ifl Af lf
IY/\‘)Y.

Y

To say that the Lx constitute a modification (from A to the identity) is to have
this compatibility for every arrow f : X — Y

aX aX
m /\
11X Lx IX p.¢ IX
\_/ @
Ixx
IIf If = IIf If
I\ aY
f /\
11y Y 11y Ly 1Y
\_/r \_/r
Iky I)\Y

(Here the commutative cell is actually the 2-cell part of the natural transfor-
mation oX.) Now the point is that each 2-cell A\; is uniquely defined by this
compatibility: indeed, since the other three 2-cells in the diagram are invertible,
there is a unique 2-cell that can fill the place of IAf, and since I is cancellable
this 2-cell comes from a unique 2-cell A¢. The required compatibilities of A;
with composition, identities, and 2-cells now follows from its construction: A;
is just the translation via L of the identity 2-cell o X.

3.4. UNIQUENESS OF THE LEFT CONSTRAINTS. There may be many choices
for Ax, and even for a fixed Ay, there may be many choices for Lx. However,
between any two pairs (Ax, Lx) and (N, L) there is a unique invertible 2-cell
U : Ax = Xy such that this compatibility holds:

left

\/

Indeed, this diagram defines uniquely an invertible 2-cell TAx = I\, and
since I is cancellable, this 2-cell comes from a unique 2-cell Ax = N which
we then call U'{".
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There is of course a completely analogous statement for right constraints.

3.5. CONSTRUCTION OF THE ASSOCIATOR. We define A : oo = ol as the
unique 2-cell satisfying the equation

1177 1117 Ry 117

Iir = Taor|IL7' |11 © x| L |arI

11 117 Ry 17

(9)
This definition is meaningful: since I« is an equi-arrow, pre-composing with
ITal is a 2-equivalence, hence gives a bijection on the level of 2-cells, so A is
determined by the right-hand side of the equation. Note that A is invertible
since all the 2-cells in the construction are.

The associator A is defined as A-followed-by-a:

but it will be more convenient to work with A.

3.6 PROPOSITION. The definition of A does not depend on the choices of left
constraint (A, L) and right constraint (p,R).

Proof. Write down the right-hand side of (9) in terms of different left and right
constraints. Express these cells in terms of the original L; and Ry, using the
comparison 2-cells U™ and U*** of 3.4. Finally observe that these comparison
cells can be moved across the commutative square to cancel each other pairwise.

O
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3.7. UNIQUENESS OF A. Equation (9) may not appear familiar, but it is
equivalent to the following ‘pentagon’ equation (after post-whiskering with «):

IITT —> II1 IITI L II7
\Q)# k\ ITX © IX
IIT (IL)#(I) I11 e S I ————II #a
T A#a o \ \
I——1 n——1

(10)
From this pentagon equation we shall derive the pentagon equation for A,
asserted in Theorem A. To this end we need comparison between «, A;, and
p1, which we now establish, in analogy with Axiom (1) of monoidal category:

the left and right constraints coincide on the unit object, up to a canonical
2-cell:

3.8 LEMMA. There are unique invertible 2-cells

E D
pr = a = A,

such that
al al
/\ al /\
L TNy EI
I[] ——1— ] = III A II = II]————pI—1]]
\]D/ kj/’ \R/
Ia Ia

(11)

Proof. The left-hand equation defines uniquely a 2-cell o = I\;, and since I
is cancellable, this cell comes from a unique 2-cell @ = A\; which we then call
D. Same argument for E. O

THEOREM A (ASSOCIATIVITY). Given a unit object (I, ), there is a canonical
invertible 2-cell

I — gy

II————1

which satisfies the pentagon Equation (8).
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Proof. On each side of the cube equation (10), paste the cell EIT on the top,
and the cell 71D on the left. On the left-hand side of the equation we can
use Equations (11) directly, while on the right-hand side we first need to move
those cells across the commutative square before applying (11). The result is
precisely the pentagon cube for A= A#a. O

3.9. COHERENCE OF THE ACTIONS. We have now established that (I, a,:&) is
a semi-monoid, and may observe that the left and right constraints are coherent
actions, i.e. that their ‘associators’ L and R satisfy the appropriate pentagon
equations. For the left action this equation is:

IITX —> 11X 111X & 11X
\ \ I © N @
IIX (IL#(IN) 11X —> X = IIx —> X
IX L#X A \ \
Ix f} X X 4> X

Establishing this (and the analogous equation for the right action) is a routine
calculation which we omit since we will not actually need the result. We also
note that the two actions are compatible—i.e. constitute a two-sided action.
Precisely this means that there is a canonical invertible 2-cell

AxT
IXI— XI

Ipx‘/ B J/ﬂX

IX —X.
Ax
This 2-cell satisfies two pentagon equations, one for 17X I and one for IXI1.

4  UNITS IN THE 2-CATEGORY OF ARROWS IN %, AND THEOREM B

In this section we prove Theorem B, which asserts that a morphism of units
(u,U) : (I, ) — (J, B) is automatically a semi-monoid map (with respect to the
canonical associators A and B of the two units). We have to establish the cube
equation of 2.4, or in fact the reduced version (7). The strategy to establish
Equation (7) is to interpret everything in the 2-category of arrows of . The
key point is to prove that a morphism of units is itself a unit in the 2-category
of arrows. Then we invoke Theorem A to get an associator for this unit, and a
pentagon equation, whose short form (6) will be the sought equation.
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4.1. THE 2-CATEGORY OF ARROWS. The 2-category of arrows in €, denoted
%2, is the 2-category described as follows. The objects of €2 are the arrows of
v,

Xo L) X .

The arrows from (Xg, X1, x) to (Yo, Y1, y) are triples (fo, f1, F') where fo : Xo —
Yy and f; : X7 — Y7 are arrows in € and F' is a 2-cell

X()LYO

X, f—>Y1
1

If (go,91,G) is another arrow from (Xo,X1,2) to (Yp,Y1,y), a 2-cell from
(fo f1. F) to (go,g1,G) is given by a pair (mo,m1) where mq : fy = go and
my : f1 = g1 are 2-cells in € compatible with F' and G in the sense that this
cylinder commutes:

go go
TN TN
Xo mo Yo Xo Yo
~_
fo G
xT Y = x Y
F g1
TN
X1 Yi X1 mi Yi
~_ ~_
fi f1

Composition of arrows in €2 is just pasting of squares. Vertical composition
of 2-cells is just vertical composition of the components (the compatibility is
guaranteed by pasting of cylinders along squares), and horizontal composition
of 2-cells is horizontal composition of the components (compatibility guaranteed
by pasting along the straight sides of the cylinders). Note that %2 inherits a
tensor product from %”: this follows from functoriality of the tensor product on

€.

4.2 LEMMA. If Iy and I are cancellable objects in € and i : Iy — I, is an
equi-arrow, then i is cancellable in €2.

Proof. We have to show that for given arrows x : Xg — X; and y : Yy — Y7,
the functor
Homeez (z,y) — Homeez (iz, iy)

defined by tensoring with ¢ on the left is an equivalence of categories (the check
for tensoring on the right is analogous).
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Let us first show that this functor is essentially surjective. Let
IpXo —2— IhY,
wl S lzy
LhX, —— 1LY

be an object in Homee= (iz,iy). We need to find a square

X()LYO

lKl

X ——n
1

and an isomorphism (mg, my) from (sg, s1,S) to (Ioko, [1k1, 1K), i.e. a cylinder

ngo IOkO
/\ /\
IhXo ™o  IpYp Ip Xo IyYo
\_/ .
S0 ZK
T 1y = T 1y
S Ilkl
/\
Ile IIYI Ile mi IIYI
~_ ~_
S1 S1

Since Iy is a cancellable object, the arrow sg is isomorphic to Iykg for some
ko : Xo — Yy. Let the connecting invertible 2-cell be denoted myg : sg = Ipko.
Similarly we find k; and m; : s;1 = I1 k1. Since mg and m; are invertible, there
is a unique 2-cell

IoXo 2 Iy vq

1 X, T} Ly

that can take the place of ¢K in the cylinder equation; it remains to see that
T is of the form iK for some K. But this follows since the map

2Cellg (ko#y, x#k1) — 2Cellg(i(ko#y), i(x#k1))
K s iK (12)

is a bijection. Indeed, the map factors as ‘tensoring with Iy on the left’ followed
by ‘post-composing with ¢Y7’; the first is a bijection since I is cancellable, the
second is a bijection since ¢ (and hence iY7) is an equi-arrow).
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Now for the fully faithfulness of Homez (z,y) — Homeez(iz, iy). Fix two objects
in the left-hand category, P and Q:

XOL)YO qu—O>YO
X1 T)Y1 X1T>Y1.

The arrows from P to @ are pairs (mg, m1) consisting of
Mo : Po = qo miip1 = q1

cylinder-compatible with the 2-cells P and ). The image of these two objects
are

IoXo —2 4 I, IoXo —2% 4 1Y,
LX  —— 111 LXy — LY.
Iip1 Iiq1

The possible 2-cells from P to i@ are pairs (ng,n1) consisting of
no : lopo = logo  n1:DLipt = L

cylinder-compatible with the 2-cells iP and Q). Now since Iy is cancellable,
every 2-cell ng like this is uniquely of the form Iyng for some ng. Hence there
is a bijection between the possible mg and the possible ng. Similarly for m,
and ni. So there is a bijection between pairs (mg,m1) and pairs (ng,n1).
Now by functoriality of tensoring with ¢, all images of compatible (mg,m1) are
again compatible. It remains to rule out the possibility that some (ng,n1) pair
could be compatible without (mg, m1) being so, but this follows again from the
argument that ‘tensoring with ¢ on the left’ is a bijection on hom sets, just like
argued for (12). O

4.3 LEMMA. An arrow in €2,

X, — v,

X, f4>Y1
1

is an equi-arrow in €2 if the components fo and fi are equi-arrows in € and
F is invertible.

DOCUMENTA MATHEMATICA 18 (2013) 71-110



90 ANDRE JOYAL AND JOACHIM KoOCK
Proof. We can construct an explicit quasi-inverse by choosing quasi-inverses to
the components. O

4.4 COROLLARY. If (Ip, o) and (I1, 1) are units in €, and (u,U) : Iy — I
s a unit map between them, then

u:lg— 1

is a unit object in €2 with structure map

IQIO L) IQ

uul U-t J/u
LI T> 1.

Proof. The object u is cancellable by Lemma 4.2, and the morphism
(g, a1, U") from uu to u is an equi-arrow by Lemma 4.3. O

THEOREM B. Let (Ip,ap) and (I1,a1) be units, with canonical associators Ag
and A1, respectively. If (u,U) is a unit map from Iy to Iy then it is automatically
a semi-monoid map. That is,

Iololy —~— L I, Iplgly —~— L 1
Igao AO Otg]g Uu 041[1 = Ioag UU 11041 Al Ot1[1
IOIOT)IIII Il T>11]1

Proof. By the previous Corollary, (u, U~!) is a unit object in ¢’2. Hence there
is a canonical associator
B:uU' < U 'u.

By definition of 2-cells in €2, this is a pair of 2-cells in €
B : Ipag = ol By: Lo = ()41[1,

fitting the cylinder equation

aolp aolo
/\ /\
YY) Bg Iyl Iolyly Iyl
\_/r .
Ioao U u
uuY uu = uuu uu
UJU71 arly
/\
LI L LI B, LI
~ ~ T
Ioq Iay
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This is precisely the cylinder diagram we are looking for—provided we can show
that Bg = Ag and B; = A;. But this is a consequence of the characterising
property of the associator of a unit: first note that as a unit object in €2, u
induces left and right constraints: for each object z : Xy — X; in €2 there
is a left action of the unit u, and this left action will induce a left action of
(I, ap) on Xo and a left action of (I7,a1) on X7 (the ends of the cylinders).
Similarly there is a right action of w which induces right actions at the ends of
the cylinder. Now the unique B that exists as associator for the unit object u
compatible with the left and right constraints induces By and By at the ends
of the cylinder, and these will of course be compatible with the induced left
and right constraints. Hence, by uniqueness of associators compatible with
left and right constraints, these induced associators By and B; must coincide
with Ag and A;. Note that this does not dependent on choice of left and right
constraints, cf. Proposition 3.6. O

5 CONTRACTIBILITY OF THE SPACE OF WEAK UNITS (THEOREM C)

The goal of this section is to prove Theorem C, which asserts that the 2-category
of units in ¥ is contractible if non-empty. First we describe the unit morphisms
and unit 2-morphisms in terms of compatibility with left and right constraints.
This will show that there are not too many 2-cells. Second we use the left and
right constraints to connect any two units.

The following lemma shows that just as the single arrow « induces all the
Ax and px, the single 2-cell U of a unit map induces families Uy and Uy
expressing compatibility with Ax and px.

5.1 LEMMA. Let (I,a) and (J,5) be units, and let (u,U) be a morphism of
pseudo-idempotents from (I, ) to (J,3). The following are equivalent.
(i) u is an equi-arrow (i.e. u is a morphism of units).
(ii) w is left cancellable, i.e. tensoring with u on the left is an equivalence of
categories Hom(X,Y) — Hom(I X, JY).
(i@’) w is right cancellable, i.e. tensoring with u on the right is an equivalence
of categories Hom(X,Y) — Hom(X 1, Y J).
(iii) For fized left actions (Ax,Lx) for the unit (I,a) and ({x,L') for the
unit (J,B), there is a unique invertible 2-cell U, natural in X :

Ix —X 5 x

Axl Uy l@x

X—F—X
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such that this compatibility holds:

IIx —“X 5 gJx IIx —=X 5 5x
x| Lx Jex  UX BX = Ix uUt  gex | Ly |8X
IX T) JX IX T) JX
(13)

(iti’) For fized right actions (px,Rx) for the unit (I, ?z) and (rx,RY) for the

unit (J, B), there is a unique invertible 2-cell U™, natural in X :

X1 —X" 5 xJ

px‘/ Uf)i(ght ‘/""X

X—F—X

such that this compatibility holds:

XIT—X" 5 xJJ XIT—X" 5 xJJ
Xa| Rx JoxI U¥u  |rxJ = Xa XU  x8{ Ry |rxJ

(14)

Proof. (i) implies (ii): ‘tensoring with «’ can be done in two steps: given an
arrow X — Y, first tensor with I to get IX — IY, and then post-compose
with uY to get IX — JY. The first step is an equivalence because [ is a unit,
and the second step is an equivalence because u is an equi-arrow.

(ii) implies (iii): In Equation (13), the 2-cell labelled ©wU'Y" is uniquely defined
by the three other cells, and it is invertible since the three other cells are. Since
tensoring with u on the left is an equivalence, this cell comes from a unique
invertible cell U, justifying the label uU'%".

(iii) implies (i): The invertible 2-cell U shows that uX is isomorphic to
an equi-arrow, and hence is an equi-arrow itself. Now take X to be a right
cancellable object (like for example I) and conclude that already w is an equi-
arrow.

Finally, the equivalence (i)=(ii’)=-(iii’)=-(i) is completely analogous. ]

Note that for (u, U) the identity morphism on (I, ), we recover Observation 3.4.
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5.2 LEMMA. Let (I,a) and (J,B) be units; let (u,U) and (v,V) be morphisms
of pseudo-idempotents from I to J; and consider a 2-cell T : u = v. Then the
following are equivalent.

(i) T is an invertible 2-morphism of pseudo-idempotents.
(i1) T is a left cancellable 2-morphism of pseudo-idempotents (i.e., induces a
bijection on hom sets (of hom cats) by tensoring with T from the left).
(i’) T is a right cancellable 2-morphism of pseudo-idempotents (i.e., induces
a bijection on hom sets (of hom cats) by tensoring with T from the right).
(i1i) For fized left actions (Ax,Lx) for (I,a) and ((x,L) for (J,B), with
induced canonical 2-cells U'Y* and V'{* as in 5.1, we have:

/\
IX TX JX X JX
~_ \/left
uX X
Ax £x = Ax £x (15)
Uleft X
X /\
X X X © X
\_/r \_/l
X X

(11i’) For fized right actions (px,Rx) for (I,a) and (rx,RY) for (J,8), with
induced canonical 2-cells U™ and V3E™ as in 5.1, we have:

/_\ /\
XI XT XJ XI XJ
\/’ Vright
Xu X
12% X = pPX rx (16)
Uright X
X /\
X X X © X
\_/( \/f
X X

Proof. Tt is obvious that (i) implies (ii). Let us prove that (ii) implies (iii),
so assume that tensoring with T on the left defines a bijection on the level
of 2-cells. Start with the cylinder diagram for compatibility of tensor 2-cells
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(cf. 2.5). Tensor this diagram with X on the right to get

vv X vv X
/\l /\
11X TTX JJX 11X JJX
aX BX = aX BX
vX
X JX X TX JX
\_/I \_/r
uX uX

On each side of this equation, paste an Lx along aX, apply Equation (13) on
each side, and cancel the L’y that appear on the other side of the square. The
resulting diagram

vvX vvX

/\ /\
IIX TTX JJX ITX JJIX
uuX vvl;(ﬂ
Ikx J@X = Ikx J€X
ullg /“_X\J
IX JX IX TX JX
~__ T ~__ T
uX uX

is the tensor product of T with the promised equation (15). Since T is can-
cellable, we can cancel it away to finish.

(iii) implies (i): the arguments in (ii)=-(iii) can be reversed: start with (15),
tensor with T on the left, and apply (13) to arrive at the axiom for being a
2-morphism of pseudo-idempotents. Since both U'{* and V" are invertible,
so is TX. Now take X to be a right cancellable object, and cancel it away to
conclude that already T is invertible.

Finally, the equivalence (i)=(ii")=-(iii’)=-(i) is completely analogous. O

5.3 COROLLARY. Given two parallel morphisms of units, there is a unique unit
2-morphism between them.

Proof. Choose left actions for (I, a) and (J, 8) as in Lemma 5.2 (iii), and take
X to be a right cancellable object. For given morphisms of units u and v
as in Lemma 5.2, Equation (15) defines the 2-cell T uniquely, since Ax is an
equi-arrow and X is right cancellable. O

Next we aim at proving that there is a unit morphism between any two units.
The strategy is to use the left and right constraints to produce a unit morphism

I—1J——J.

As a first step towards this goal we have:
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5.4 LEMMA. Let I and J be units, and pick a left constraint X for I and a right
constraint v for J. Put

v = T’[)\J IJIJ = 1J
Then (IJ,7) is a unit.

Proof. Since I and J are cancellable, clearly I.J is cancellable too. Since A
and 7y are equi-arrows, 7y is too. O

5.5 LEMMA. There is an invertible 2-cell
AsAg
1JIJ———JJ

vlzlﬁ

1J—/—J
AJ

Hence (Aj,Z) is a unit map. (And there is another 2-cell making r; a unit
map.)

Proof. The 2-cell Z is defined like this:

IJI1J
AsAy
I\,
Ay J
m
IJJ J/ JJ
Agg
TI. -197r
1J| R B )\5 B
IJ > J
where the 2-cell K is constructed in Lemma 7.2. O

5.6 COROLLARY. Given two units, there exists a unit morphism between them.

Proof. Continuing the notation from above, by Lemma 5.4, (I.J,7) is a unit,
and by Lemma 5.5, A\ : IJ — J is a morphism of units. Similarly, r: [J — I is
a unit morphism, and by Lemma 2.6 any chosen pseudo-inverse r="' : I — IJ
is again a unit morphism. Finally we take

rt A
I—1J——J.
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THEOREM C (CONTRACTIBILITY). The 2-category of wunits in € is con-
tractible, if non-empty. In other words, between any two units there exists a
unit morphism, and between any two parallel unit morphisms there is a unique
unit 2-morphism.

Proof. By Lemma 5.6 there is a unit morphism between any two units (an equi-
arrow by definition), and by Corollary 5.3 there is a unique unit 2-morphism
between any two parallel unit morphisms. a

6 CLASSICAL UNITS

In this section we review the classical theory of units in a monoidal 2-category,
as extracted from the definition of tricategory of Gordon, Power, and Street [2].
In the next section we compare this notion with the cancellable-idempotent
approach of this work. The equivalence is stated explicitly in Theorem E.

6.1. TRICATEGORIES. The notion of tricategory introduced by Gordon, Power,
and Street [2] is roughly a weak category structure enriched over bicategories:
this means that the structure maps (composition and unit) are weak 2-functors
satisfying weak versions of associativity and unit constraints. For the associa-
tivity, the pentagon equation is replaced by a specified pentagon 3-cell (TD7),
required to satisfy an equation corresponding to the 3-dimensional associahe-
dron. This equation (TA1) is called the nonabelian 4-cocycle condition. For the
unit structure, three families of 3-cells are specified (TD8): one corresponding
to the Kelly axiom, one left variant, and one right variant (those two being
the higher-dimensional analogues of Axioms (2) and (3) of monoidal category).
Two axioms are imposed on these three families of 3-cells: one (TA2) relating
the left family with the middle family, and one (TA3) relating the right family
with the middle family. These are called left and right normalisation. (These
two axioms are the higher-dimensional analogues of the first argument in Kelly’s
lemma 1.6.) It is pointed out in [2] that the middle family together with the
axioms (TA2) and (TA3) completely determine the left and right families if
they exist.

6.2. MONOIDAL 2-CATEGORIES. By specialising the definition of tricategory
to the one-object case, and requiring everything strict except the units, we
arrive at the following notion of monoidal 2-category: a monoidal 2-category
is a semi-monoidal 2-category (cf. 2.2) equipped with an object I, two natural
transformations A and p with equi-arrow components

Ax IX = X

px X1 —+ X
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and (invertible) 2-cell data

X2 ., x X712 x

If‘ Af lf fll Pf lf

IY ——Y YI———Y,
Ay PY

together with three natural modifications K, K*, and K?, with invertible com-
ponents

K ZX)\Y:>pr
)\ : )\XY = )\XY
K?: Xpy = pxy.

We call K the Kelly cell.
These three families are subject to the following two equations:

)\

\ / v
Kx,vz Kx v Z

pxYZ

\ / "
XKy, z Kxy,z

XYz

6.3 REMARK. We have made one change compared to [2], namely the direction
of the arrow px: from the viewpoint of « it seems more practical to work with
px : XI — X rather than with the convention of px : X — X chosen in [2].
Since in any case it is an equi-arrow, the difference is not essential. (Gurski in
his thesis [3]| has studied a version of tricategory where all the equi-arrows in the
definition are equipped with specified pseudo-inverses. This has the advantage
that the definition becomes completely algebraic, in a technical sense.)

6.4 LEMMA. The object I is cancellable (independently of the existence of K,
K*, and K*.)

Proof. We need to establish that ‘tensoring with I on the left’,

L :Hom(X,Y) — Hom(IX,IY),

DOCUMENTA MATHEMATICA 18 (2013) 71-110



98 ANDRE JOYAL AND JOACHIM KoOCK
is an equivalence of categories. But this follows since the diagram

Hom(X,Y) —— Hom(I X, IY)

1d # Ay

Hom(X,Y) ﬁ Hom(/X,Y)
X

is commutative up to isomorphism: the component at f : X — Y of this
isomorphism is just the naturality square Ay. Since the functors Ax # _ and
__# Ay are equivalences, it follows from this isomorphism that LL is too. O

6.5. COHERENCE OF THE KELLY CELL. As remarked in [2], if the K* and K?
exist, they are determined uniquely from K and the two axioms. Indeed, the
two equations

(19)
Kryz KryZ XKy, 1 Kxv,1
p]YZ XY)\]

which are just special cases of (17) and (18) uniquely determine K* and K?, by
cancellability of I. But these two special cases of the axioms do not imply the
general case.

We shall take the Kelly cell K as the main structure, and say that K is coherent
on the left (resp. on the right) if Axiom (17) (resp. (18)) holds for the induced
cell K* (resp. KP). We just say coherent if both hold. We shall see (7.8) that
in fact coherence on the left implies coherence on the right and vice versa.

6.6. NATURALITY. The Kelly cell is a modification. For future reference we
spell out the naturality condition satisfied: given arrows f : X — X’ and
g:Y =Y’ we have

pxY pxY
m /\
XIY Kxy XY XI1Y XY
XAy Pr9
flg fg = flg fg
fAg pxY’
X'y’ X'y’ X177’ Kxvyr X'V
\_/r \_/r
X' Ay X' Ays
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6.7 REMARK. Particularly useful is naturality of A with respect to Ax and
naturality of p with respect to px. In these cases, since Ax and px are equi-
arrows, we can cancel them and find the following invertible 2-cells:

N : Thx = A\rx
N” - PXI = )(p]7

in analogy with Observation (5) of monoidal categories.

The following lemma holds for K independently of Axioms (17) and (18):

6.8 LEMMA. The Kelly cell K satisfies the equation

px1Y px1Y
m NPY
XIIY —————XAiv— XIY = XIITY ————px1iY—= XY
XN)\ \KX_IV
X1y XTIy

Proof. Tt is enough to establish this equation after post-whiskering with X \y .
The rest is a routine calculation, using on one side the definition of the cell N*,
then naturality of K with respect to f = X and g = Ay. On the other side,
use the definition of N” and then naturality of K with respect to f = px and
g =Y. In the end, two K-cells cancel. O

Combining the 2-cells described so far we get

-1 A A
prl 'S B ST
and hence, by cancelling I on the right, an invertible 2-cell
P: pPr = AL

Now we could also define Q : py = A; in terms of

K? N? K'
Ipr = prr = pil = IX;.
Finally, in analogy with Axiom (1) for monoidal categories:

6.9 LEMMA. We have P = Q. (This is true independently of Azioms (17) and
(18).)

Proof. Since I is cancellable, it is enough to show IPI = IQI. To establish this
equation, use the constructions of P and Q, then substitute the characterising
Equations (19) for the auxiliary cells K* and K?, and finally use Lemma 6.8. O
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6.10. THE 2-CATEGORY OF GPS UNITS. For short we shall say GPS unit for
the notion of unit just introduced. In summary, a GPS unit is a quadruple
(I, A, p,K) where T is an object, Ax and px are natural transformations with
equi-arrow components, and K : XAy = pxY is a coherent Kelly cell (natural
in X and Y, of course).

A morphism of GPS units from (I, A, p,K) to (J,¢,r,H) is an arrow u : I — J
equipped with natural families of invertible 2-cells

IX — 5 x XTI —% 5 xJ
ka/ Uf)e(& ‘/ZX ﬂXl U]r)i(ght J/"'X
X———X X———X

satisfying the equation

X1y — . xjy X1y —Y . xJgv
Xy | K Jexy UMY |rxy = Xay XUS" Xey|{ H |rxY

(20)
Finally, a 2-morphism of GPS unit maps is a 2-cell T : u = v satisfying the
compatibility conditions (15) and (16) of Lemma 5.2.

6.11. REMARKS. Note first that u is automatically an equi-arrow. Observe
also that U™® and U"#"* completely determine each other by Equation (20), as
is easily seen by taking on the one hand X to be a left cancellable object and on
the other hand Y to be a right cancellable object. Finally note that there are
two further equations, expressing compatibility with K* and K?, but they can
be deduced from Equation (20), independently of the coherence Axioms (17)
and (18). Here is the one for K* for future reference:

IxXy —2XY . ixy IXy —Y ., ixy
Axy | KM Jaxy UMY xY = Axy Sy exv | HE |exy

(21)
7 COMPARISON WITH CLASSICAL THEORY (THEOREM E)
In this section we prove the equivalence between the two notions of unit.
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7.1. FROM CANCELLABLE-IDEMPOTENT UNITS TO GPS UNITS. We fix a unit
object (I,a). We also assume chosen a left constraint Ax : IX — X with
Lx : IAx = aX, and a right constraint px : XI — X with Rx : Xa = pxI.

First of all, in analogy with Axioms (2) and (3) of monoidal categories we have:

7.2 LEMMA. In the situation of 7.1, there are unique natural invertible 2-cells

K* : Axy = \xY
K?: Xpy = pxy

satisfying
IxY
IDNxY /\
/\/‘ L-Y
I1IXY IK* IXY = IIXY ——axy— IXY (22)
~ T L
IAxy
IAxy
pxvyl
pxvy Il /_\
/_\ R
XYII KPI XYI = XYI] —xvya— XYI (23)
Xpy]
Xpy]
Proof. The conditions precisely define the 2-cells, since I is cancellable. O

7.3 LEMMA. In the situation of 7.1, there is a canonical family of invertible
2-cells (the Kelly cell)
K: X\y = pr',

natural in X and Y.

Proof. This is analogous to the construction of the associator: K is defined as
the unique 2-cell K: XAy = pxY satisfying the equation

XaY

/\
XIIYy XL X1y XY
\_/(
X1y \‘
XaY | RY |pxIY oxY = XI1Y

© K\

XY
XY Xow XY
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This makes sense since XY is an equi-arrow, so we can cancel it away. Clearly
K is invertible since L and R are. O

We constructed K* and K? directly from L, and R. Meanwhile we also con-
structed K, and we know from classical theory (6.5) that this cell determines
the two others. The following proposition shows that all these constructions
match up, and in particular that the constructed Kelly cell is coherent on both
sides:

7.4 PROPOSITION. In the situation of 7.1, the families of 2-cells K, K and K
(constructed in 7.2 and 7.3) satisfy the GPS unit azioms (17) and (18):

)\

KXTE\\Q é//{fyz XK§>\\§ 4//{ilz
prZ ‘XYAZ

Proof. We treat the left constraint (the right constraint being completely anal-
ogous). We need to establish

pxYZ
/\ oxYZ
Kx.y 2 —
XIYZ 7)\X/\yz—> XYZ = XIYZ KX,YZ XYZ
\\\\__///2
XAy z

and it is enough to establish this equation pre-whiskered with XaY Z. In the
diagram resulting from the left-hand side:

pxYZ

oy s m

XIIYZ XY ———X»Z— XY Z

XAyz

we can replace (XaY Z)#(Kx,yZ) by the expression that defined Kx yZ
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(cf. (24)), yielding altogether

XIYZ

P

XI1IYZ

S

XIYZ

Here we can move the cell X Ki‘, 5 across the square, where it becomes X T KY z
and combines with XLy Z to give altogether XLy z (cf. (22)). The resulting
diagram

XIYZ

A

XIIYZ

PxNZ
RxYZ
XX Z XXz

XIYZ
is nothing but

pxYZ

/\
XIIYZ —22Y2 o x1v7 Kxyz XYZ
\/

XAy z
(by Equation (24) again) which is what we wanted to establish. O

Hereby we have concluded the construction of a GPS unit from (I, o). We will
also need a result for morphisms:

7.5 PROPOSITION. Let (u,U) : (I,a) — (J, 58) be a morphism of units in the
sense of 2.9, and consider the two canonical 2-cells U™ and U™ constructed
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in Lemma 5.1. Then Equation (20) holds:

X1y — ., xjy X1y — . xjy
Xy | K Jexy UMY |rxy = X)y XUS* Xey| H |rxY

(Hence (u, U*, Ure**) is a morphism of GPS units.)

Proof. 1t is enough to prove the equation obtained by pasting the 2-cell XUY
on top of each side of the equation. This enables us to use the characterising
equation for K and H. After this rewriting, we are in position to apply Equa-
tions (13) and (14), and after cancelling R and L cells, the resulting equation
amounts to a cube, where it is easy to see that each side is just U g™ U™, O

7.6. FRoM GPS UNITS TO CANCELLABLE-IDEMPOTENT UNITS. Given a GPS
unit (I, A, p, K), just put
o= )\1,

then (I, ) is a unit object in the sense of 2.9. Indeed, we already observed
that I is cancellable (6.4), and from the outset Ar is an equi-arrow. That’s all!
To construct it we didn’t even need the Kelly cell, or any of the auxiliary cells
or their axioms.

7.7. LEFT AND RIGHT ACTIONS FROM THE KELLY CELL. Start with natural
left and right constraints A and p and a Kelly cell K : XAy = pxY (not
required to be coherent on either side). Construct K* as in 6.5, put o := Aj,
and define left and right actions as follows. We define Lx as

N2 K2
I)\X = )\IX = )\]X = OéX,
while we define Rx simply as
Kx, 1
Xa=X\; = pr.

7.8 PROPOSITION. For fized (I, A, p,K), the following are equivalent:

(i) The left and right 2-cells L and R just constructed in 7.7 are compatible

with the Kelly cell in the sense of Equation (24).
(i) The Kelly cell K is coherent on the left (i.e. satisfies Axiom (17)).
(ii’) The Kelly cell K is coherent on the right (i.e. satisfies Aziom (18)).

Proof. Proposition 7.4 already says that (i) implies both (ii) and (ii’). To prove
(il)=-(i), we start with an auxiliary observation: by massaging the naturality
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equation
pxIY
XIIYy Kxgiy XIY
XAry
X1y Xy
XA,
X1y XY
\_/l
Xy
we find the equation
XAry
XITY  XN* X1y
XI\y
px1Y pxY
©
X1y XY
\_/!
Xy

px1Y
XI1lYy X1y
©
X1y XAy
pxY
X1y Kxy XY
XAy
XAry
X1y Ky XIY
px1Y
pxIY Xy [Kxy | pxY

©

XIY XY,
\_/

Xy
(25)

tailor-made to a substitution we shall perform in a moment.

Now for the main computation, assuming first that K is coherent on the left,
i.e. that Axiom (17) holds. Start with the left-hand side of Equation (24), and
insert the definitions we made for L and R to arrive at

XIIY

xxay | Ky 1Y

XArY
XKA

XNA

X1y

©

XAivy—r XTY

pxY

X1y

XAy

XY
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in which we can now substitute (25) to get

XArY
XK
XIIY X A1y X1y
W
px1Y
xxY | Kx 1Y |pxIy © X Kxy |pxY
X1y Xy XY

Here finally the three 2-cells incident to the XIIY vertex cancel each other
out, thanks to Axiom (17), and in the end, remembering o = A\, we get

XI1IYy

X1y

>

XY

as required to establish that K satisfies Equation (24). Hence we have proved
(ii)=(i), and therefore altogether (ii)=-(ii’). The converse, (ii’)=-(ii) follows
now by left-right symmetry of the statements. (But note that the proof via (i)
is not symmetric, since it relies on the definition v = A\;. To spell out a proof of
(ii")=-(ii), use rather a = py, observing that the intermediate result (i) would
refer to different L and R.) O

We have now given a construction in each direction, but both constructions
involved choices. With careful choices, applying one construction after the
other in either way gets us back where we started. It is clear that this should
constitute an equivalence of 2-categories. However, the involved choices make
it awkward to make the correspondence functorial directly. (In technical terms,
the constructions are ana-2-functors.) We circumvent this by introducing an
intermediate 2-category dominating both. With this auxiliary 2-category, the
results we already proved readily imply the equivalence.
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7.9. A CORRESPONDENCE OF 2-CATEGORIES OF UNITS. Let % be following
2-category. Its objects are septuples

(I, A\ p, LR K),
with equi-arrows
a: Il =1, Ax:IX—X, px:XI—X,
(and accompanying naturality 2-cell data), and natural invertible 2-cells
L:I\x = aX, R:Xa=pxI, K:XX\y=pxY.

These data are required to satisfy Equation (24) (compatibility of K with L and
R).
The arrows in % from (I, o, A\, p,L,R,K) to (J, 5,¢,r,L’,R’",H) are quadruples

(u’ Uleft’ Uright’ U),

where v : I — J is an arrow in %, U*" and U= are as in 6.10, and U
is a morphism of pseudo-idempotents from (I,«) to (J,3). These data are
required to satisfy Equation (20) (compatibility with Kelly cells) as well as
Equations (13) and (14) in Lemma 5.1 (compatibility with the left and right
2-cells).

Finally a 2-cell from (u, U'*f, Uriek® U) to (v, V'*f Vrigkt V) ig a 2-cell

T:u=v

required to be a 2-morphism of pseudo-idempotents (compatibility with U and
V as in 2.5), and to satisfy Equation (15) (compatibility with U* and V'***) as
well as Equation (16) (compatibility with Ure** and V=),

Let & denote the 2-category of cancellable-idempotent units introduced in 2.9,
and let ¢4 denote the 2-category of GPS units of 6.10. We have evident forgetful

(strict) 2-functors
/ \

& 9.

THEOREM E (EQUIVALENCE). The 2-functors ® and U are 2-equivalences.
More precisely they are surjective on objects and strongly fully faithful (i.e. iso-
morphisms on hom categories).

Proof. The 2-functor @ is surjective on objects by Lemma 3.1 and Proposi-
tion 7.4. Given an arrow (u,U) in & and overlying objects in %/, Lemma 5.1
says there are unique U™ and U"#"*, and Proposition 7.5 ensures the required
compatibility with Kelly cells (Equation (20)). Hence ® induces a bijection on
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objects in the hom categories. Lemma 5.2 says we also have a bijection on the
level of 2-cells, hence ® is an isomorphism on hom categories. On the other
hand, W is surjective on objects by 7.7 and Proposition 7.8. Given an arrow
(u, U Urieh) in & Lemma 7.10 below says that for fixed overlying objects in
% there is a unique associated U, hence ¥ induces a bijection on objects in the
hom categories. Finally, Lemma 5.2 gives also a bijection of 2-cells, hence ¥ is
strongly fully faithful. a

7.10 LEMMA. Given a morphism of GPS units

left | right
(1A 9, K) s (7,1, H)
fix an equi-arrow o : I1 5 I with natural families Lx : IDNx = aX and Rx :
aX = pxI satisfying Equation (24) (compatibility with K), and fix an equi-
arrow B : JJ 53 J with natural families Ly : Ifx = 8X and Ry : X = rxI
also satisfying Equation (24) (compatibility with H). Then there is a unique
2-cell
IT—==7jJ

[——J

satisfying Equations (13) and (14) (compatibility with U™* and the left 2-cells,
as well as compatibility with U™=™ and the right 2-cells).

Proof. Working first with left 2-cells, define a family Wx by the equation

IIx —=X 5 7x IIx —=X 5 7x
Dx| Ly |Jax Wy BX =  I)x uU'gt Jex | Ly |8x
IX —— 5 JX IX—— 5 JX
uX uX

It follows readily from Equation (21) that the family has the property
WXY = WXy

for all X,Y, and it is a standard argument that since a unit object exists, for
example (I, A7), this implies that

Wx =UX

for a unique 2-cell
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and by construction this 2-cell has the required compatibility with U" and the
left constraints. To see that this U is also compatible with Ue"* and the right
constraints we reason backwards: (u, U) is now a morphisms of units from (7, «)
to (J, 8) to which we apply the right-hand version of Lemma 5.1 to construct a
new U™ characterised by the compatibility condition. By Proposition 7.5 this
new Ure"* is compatible with U and the Kelly cells K and H (Equation (20)),
and hence it must in fact be the original U¥#* (remembering from 6.10 that
Ur* and U*'="* determine each other via (20)). So the 2-cell U does satisfy both
the required compatibilities. O
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