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The Λ-Adic

Shimura-Shintani-Waldspurger Correspondence

Matteo Longo, Marc-Hubert Nicole
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Abstract. We generalize the Λ-adic Shintani lifting for GL2(Q) to
indefinite quaternion algebras over Q.

2010 Mathematics Subject Classification: Primary 11F37, 11F30,
11F85

1. Introduction

Langlands’s principle of functoriality predicts the existence of a staggering
wealth of transfers (or lifts) between automorphic forms for different reduc-
tive groups. In recent years, attempts at the formulation of p-adic variants
of Langlands’s functoriality have been articulated in various special cases. We
prove the existence of the Shimura-Shintani-Waldspurger lift for p-adic families.
More precisely, Stevens, building on the work of Hida and Greenberg-Stevens,
showed in [21] the existence of a Λ-adic variant of the classical Shintani lifting
of [20] for GL2(Q). This Λ-adic lifting can be seen as a formal power series with
coefficients in a finite extension of the Iwasawa algebra Λ := Zp[[X ]] equipped
with specialization maps interpolating classical Shintani lifts of classical mod-
ular forms appearing in a given Hida family.
Shimura in [19], resp. Waldspurger in [22] generalized the classical Shimura-
Shintani correspondence to quaternion algebras over Q, resp. over any number
field. In the p-adic realm, Hida ([7]) constructed a Λ-adic Shimura lifting, while
Ramsey ([17]) (resp. Park [12]) extended the Shimura (resp. Shintani) lifting
to the overconvergent setting.
In this paper, motivated by ulterior applications to Shimura curves over Q,
we generalize Stevens’s result to any non-split rational indefinite quaternion
algebra B, building on work of Shimura [19] and combining this with a result
of Longo-Vigni [9]. Our main result, for which the reader is referred to Theorem
3.8 below, states the existence of a formal power series and specialization maps
interpolating Shimura-Shintani-Waldspurger lifts of classical forms in a given
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2 Matteo Longo, Marc-Hubert Nicole

p-adic family of automorphic forms on the quaternion algebra B. The Λ-
adic variant of Waldspurger’s result appears computationally challenging (see
remark in [15, Intro.]), but it seems within reach for real quadratic fields (cf.
[13]).
As an example of our main result, we consider the case of families with trivial
character. Fix a prime number p and a positive integer N such that p ∤ N .
Embed the set Z≥2 of integers greater or equal to 2 in Hom(Z×

p ,Z
×
p ) by sending

k ∈ Z≥2 to the character x 7→ xk−2. Let f∞ be an Hida family of tame
level N passing through a form f0 of level Γ0(Np) and weight k0. There is
a neighborhood U of k0 in Hom(Z×

p ,Z
×
p ) such that, for any k ∈ Z≥2 ∩ U ,

the weight k specialization of f∞ gives rise to an element fk ∈ Sk(Γ0(Np)).
Fix a factorization N = MD with D > 1 a square-free product of an even
number of primes and (M,D) = 1 (we assume that such a factorization exists).
Applying the Jacquet-Langlands correspondence we get for any k ∈ Z≥2 ∩ U
a modular form fJL

k on Γ, which is the group of norm-one elements in an
Eichler order R of level Mp contained in the indefinite rational quaternion
algebra B of discriminant D. One can show that these modular forms can be
p-adically interpolated, up to scaling, in a neighborhood of k0. More precisely,
let O be the ring of integers of a finite extension F of Qp and let D denote
the O-module of O-valued measures on Z2

p which are supported on the set of

primitive elements in Z2
p. Let Γ0 be the group of norm-one elements in an

Eichler order R0 ⊆ B containing R. There is a canonical action of Γ0 on D
(see [9, §2.4] for its description). Denote by Fk the extension of F generated
by the Fourier coefficients of fk. Then there is an element Φ ∈ H1(Γ0,D) and
maps ρk : H1(Γ0,D) −→ H1(Γ, Fk) such that ρ(k)(Φ) = φk, the cohomology
class associated to fJL

k , with k in a neighborhood of k0 (for this we need a
suitable normalization of the cohomology class associated to fJL

k , which we do
not touch for simplicity in this introduction). We view Φ as a quaternionic
family of modular forms. To each φk we may apply the Shimura-Shintani-
Waldspurger lifting ([19]) and obtain a modular form hk of weigh k + 1/2,
level 4Np and trivial character. We show that this collection of forms can
be p-adically interpolated. For clarity’s sake, we present the liftings and their
Λ-adic variants in a diagram, in which the horizontal maps are specialization
maps of the p-adic family to weight k; JL stands for the Jacquet-Langlands
correspondence; SSW stands for the Shimura-Shintani-Waldspurger lift; and
the dotted arrows are constructed in this paper:

f∞
� //

_

Λ−adic JL

��

fk_

JL

��
Φ

� ρk //
_

Λ−adic SSW

��

φk_

SSW

��
Θ

� // hk
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The Λ-Adic SSW Correspondence 3

More precisely, as a particular case of our main result, Theorem 3.8, we get the
following

Theorem 1.1. There exists a p-adic neighborhood U0 of k0 in Hom(Z×
p ,Z

×
p ),

p-adic periods Ωk for k ∈ U0 ∩ Z≥2 and a formal expansion

Θ =
∑

ξ≥1

aξq
ξ

with coefficients aξ in the ring of Cp-valued functions on U0, such that for all
k ∈ U0 ∩ Z≥2 we have

Θ(k) = Ωk · hk.

Further, Ωk0 6= 0.

2. Shintani integrals and Fourier coefficients of half-integral
weight modular forms

We express the Fourier coefficients of half-integral weight modular forms
in terms of period integrals, thus allowing a cohomological interpretation
which is key to the production of the Λ-adic version of the Shimura-
Shintani-Waldspurger correspondence. For the quaternionic Shimura-Shintani-
Waldspurger correspondence of interest to us (see [15], [22]), the period in-
tegrals expressing the values of the Fourier coefficients have been computed
generally by Prasanna in [16].

2.1. The Shimura-Shintani-Waldspurger lifting. Let 4M be a positive
integer, 2k an even non-negative integer and χ a Dirichlet character modulo
4M such that χ(−1) = 1. Recall that the space of half-integral weight modular
forms Sk+1/2(4M,χ) consists of holomorphic cuspidal functions h on the upper-
half place H such that

h(γ(z)) = j1/2(γ, z)2k+1χ(d)h(z),

for all γ =
(
a b
c d

)
∈ Γ0(4M), where j1/2(γ, z) is the standard square root of the

usual automorphy factor j(γ, z) (cf. [15, 2.3]).
To any quaternionic integral weight modular form we may associate a half-
integral weight modular form following Shimura’s work [19], as we will describe
below.
Fix an odd square free integer N and a factorization N =M ·D into coprime
integers such that D > 1 is a product of an even number of distinct primes.
Fix a Dirichlet character ψ modulo M and a positive even integer 2k. Suppose
that

ψ(−1) = (−1)k.

Define the Dirichlet character χ modulo 4N by

χ(x) := ψ(x)

(
−1

x

)k
.
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4 Matteo Longo, Marc-Hubert Nicole

Let B be an indefinite quaternion algebra over Q of discriminant D. Fix a
maximal order OB of B. For every prime ℓ|M , choose an isomorphism

iℓ : B ⊗Q Qℓ ≃ M2(Qℓ)

such that iℓ(OB ⊗Z Zℓ) = M2(Zℓ). Let R ⊆ OB be the Eichler order of B
of level M defined by requiring that iℓ(R ⊗Z Zℓ) is the suborder of M2(Zℓ) of
upper triangular matrices modulo ℓ for all ℓ|M . Let Γ denote the subgroup
of the group R×

1 of norm 1 elements in R× consisting of those γ such that
iℓ(γ) ≡

(
1 ∗
0 1

)
mod ℓ for all ℓ|M . We denote by S2k(Γ) the C-vector space

of weight 2k modular forms on Γ, and by S2k(Γ, ψ
2) the subspace of S2k(Γ)

consisting of forms having character ψ2 under the action of R×
1 . Fix a Hecke

eigenform

f ∈ S2k(Γ, ψ
2)

as in [19, Section 3].
Let V denote the Q-subspace of B consisting of elements with trace equal to
zero. For any v ∈ V , which we view as a trace zero matrix in M2(R) (after
fixing an isomorphism i∞ : B ⊗ R ≃ M2(R)), set

Gv := {γ ∈ SL2(R)| γ
−1vγ = v}

and put Γv := Gv ∩ Γ. One can show that there exists an isomorphism

ω : R× ∼
−→ Gv

defined by ω(s) = β−1
(
s 0
0 s−1

)
β, for some β ∈ SL2(R). Let tv be the order

of Γv ∩ {±1} and let γv be an element of Γv which generates Γv {±1} / {±1}.
Changing γv to γ−1

v if necessary, we may assume γv = ω(t) with t > 0. Define
V ∗ to be the Q-subspace of V consisting of elements with strictly negative
norm. For any α =

(
a b
c −a

)
∈ V ∗ and z ∈ H, define the quadratic form

Qα(z) := cz2 − 2az − b.

Fix τ ∈ H and set

P (f, α,Γ) := −
(
2(−nr(α))1/2/tα

) ∫ γα(τ)

τ

Qα(z)
k−1f(z)dz

where nr : B → Q is the norm map. By [19, Lemma 2.1], the integral is
independent on the choice τ , which justifies the notation.

Remark 2.1. The definition of P (f, α,Γ) given in [19, (2.5)] looks different: the
above expression can be derived as in [19, page 629] by means of [19, (2.20)
and (2.22)].

Let R(Γ) denote the set of equivalence classes of V ∗ under the action of Γ by
conjugation. By [19, (2.6)], P (f, α,Γ) only depends on the conjugacy class of
α, and thus, for C ∈ R(Γ), we may define P (f, C,Γ) := P (f, α,Γ) for any choice
of α ∈ C. Also, q(C) := −nr(α) for any α ∈ C.
Define O′

B to be the maximal order in B such that O′
B ⊗Z Zℓ ≃ OB ⊗Z Zℓ for

all ℓ ∤ M and O′
B ⊗Z Zℓ is equal to the local order of B ⊗Q Qℓ consisting of
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The Λ-Adic SSW Correspondence 5

elements γ such that iℓ(γ) =
(
a b/M
cM d

)
with a, b, c, d ∈ Zℓ, for all ℓ|M . Given

α ∈ O′
B, we can find an integer bα such that

(1) iℓ(α) ≡

(
∗ bα/M
∗ ∗

)
mod iℓ(R⊗Z Zℓ), ∀ℓ|M.

Define a locally constant function ηψ on V by ηψ(α) = ψ(bα) if α ∈ O′
B∩V and

η(α) = 0 otherwise, with ψ(a) = 0 if (a,M) 6= 1 (for the definition of locally
constant functions on V in this context, we refer to [19, p. 611]).
For any C ∈ R(Γ), fix αC ∈ C. For any integer ξ ≥ 1, define

aξ(h̃) :=
(
2µ(Γ\H)

)−1
·

∑

C∈R(Γ),q(C)=ξ

ηψ(αC)ξ
−1/2P (f, C,Γ).

Then, by [19, Theorem 3.1],

h̃ :=
∑

ξ≥1

aξ(h̃)q
ξ ∈ Sk+1/2(4N,χ)

is called the Shimura-Shintani-Waldspurger lifting of f .

2.2. Cohomological interpretation. We introduce necessary notation to
define the action of the Hecke action on cohomology groups; for details, see [9,
§2.1]. If G is a subgroup of B× and S a subsemigroup of B× such that (G,S)
is an Hecke pair, we let H(G,S) denote the Hecke algebra corresponding to
(G,S), whose elements are written as T (s) = GsG =

∐
iGsi for s, si ∈ S

(finite disjoint union). For any s ∈ S, let s∗ := norm(s)s−1 and denote by
S∗ the set of elements of the form s∗ for s ∈ S. For any Z[S∗]-module M
we let T (s) act on H1(G,M) at the level of cochains c ∈ Z1(G,M) by the
formula (c|T (s))(γ) =

∑
i s

∗
i c(ti(γ)), where ti(γ) are defined by the equations

Gsiγ = Gsj and siγ = ti(γ)sj . In the following, we will consider the case of
G = Γ and

S = {s ∈ B×|iℓ(s) is congruent to
(
1 ∗
0 ∗

)
mod ℓ for all ℓ|M}.

For any field L and any integer n ≥ 0, let Vn(L) denote the L-dual of the
L-vector space Pn(L) of homogeneous polynomials in 2 variables of degree n.
We let M2(L) act from the right on P (x, y) as P |γ(x, y) := P (γ(x, y)), where
for γ =

(
a b
c d

)
we put

γ(x, y) := (ax+ yb, cx+ dy).

This also equips Vn(L) with a left action by γ · ϕ(P ) := ϕ(P |γ). To simplify
the notation, we will write P (z) for P (z, 1).
Let F denote the finite extension of Q generated by the eigenvalues of the Hecke
action on f . For any field K containing F , set

Wf (K) := H1
(
Γ, Vk−2(K)

)f

where the superscript f denotes the subspace on which the Hecke algebra acts
via the character associated with f . Also, for any sign ±, let W±

f (K) denote
the ±-eigenspace for the action of the archimedean involution ι. Remember
that ι is defined by choosing an element ω∞ of norm −1 in R× such that such

Documenta Mathematica 18 (2013) 1–21



6 Matteo Longo, Marc-Hubert Nicole

that iℓ(ω∞) ≡
(
1 0
0 −1

)
mod M for all primes ℓ|M and then setting ι := T (w∞)

(see [9, §2.1]). Then W±
f (K) is one dimensional (see, e.g., [9, Proposition 2.2]);

fix a generator φ±f of W±
f (F ).

To explicitly describe φ±f , let us introduce some more notation. Define

f |ω∞(z) := (Cz +D)−k/2f(ω∞(z̄))

where i∞(ω∞) =
(
A B
C D

)
. Then f |ω∞ ∈ S2k(Γ) as well. If the eigenvalues of

the Hecke action on f are real, then we may assume, after multiplying f by a
scalar, that f |ω∞ = f (see [19, p. 627] or [10, Lemma 4.15]). In general, let
I(f) denote the class in H1(Γ, Vk−2(C)) represented by the cocycle

γ 7−→

[
P 7→ Iγ(f)(P ) :=

∫ γ(τ)

τ

f(z)P (z)dz

]

for any τ ∈ H (the corresponding class is independent on the choice of τ). With
this notation,

P (f, α,Γ) = −
(
2(−nr(α))1/2/tα

)
· IγαC

(f)
(
QαC

(z)k−1
)
.

Denote by I±(f) := (1/2) · I(f)± (1/2) · I(f)|ω∞, the projection of I(f) to the
eigenspaces for the action of ω∞. Then I(f) = I+(f)+I−(f) and I±f = Ω±

f ·φ
±
f ,

for some Ω±
f ∈ C×.

Given α ∈ V ∗ of norm −ξ, put α′ := ω−1
∞ αω∞. By [19, 4.19], we have

η(α)ξ−1/2P (f, α,Γ) + η(α′)ξ−1/2P (f, α′,Γ) = −η(α) · tα
−1 · I+γα

(
QαC

(z)k−1
)
.

We then have

aξ(h̃) =
∑

C∈R2(Γ),q(C)=ξ

−ηψ(αC)

2µ(Γ\H) · tαC

· I+γαC

(
QαC

(z)k−1
)
.

We close this section by choosing a suitable multiple of h which will be the
object of the next section. Given Qα(z) = cz2 − 2az − b as above, with α in

V ∗, define Q̃α(z) := M · Qα(z). Then, clearly, I±(f)(Q̃αC
(z)k−1) is equal to

Mk−1I±(f)(QαC
(z)k−1). We thus normalize the Fourier coefficients by setting

(2)

aξ(h) := −
aξ(h̃) ·M

k−1 · 2µ(Γ\H)

Ω+
f

=
∑

C∈R(Γ),q(C)=ξ

ηψ(αC)

tαC

· φ+f
(
Q̃αC

(z)k−1
)
.

So

(3) h :=
∑

ξ≥1

aξ(h)q
ξ

belongs to Sk+1/2(4N,χ) and is a non-zero multiple of h̃.
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The Λ-Adic SSW Correspondence 7

3. The Λ-adic Shimura-Shintani-Waldspurger correspondence

At the heart of Stevens’s proof lies the control theorem of Greenberg-Stevens,
which has been worked out in the quaternionic setting by Longo–Vigni [9].
Recall that N ≥ 1 is a square free integer and fix a decomposition N =M ·D
where D is a square free product of an even number of primes andM is coprime
to D. Let p ∤ N be a prime number and fix an embedding Q̄ →֒ Q̄p.

3.1. The Hida Hecke algebra. Fix an ordinary p-stabilized newform

(4) f0 ∈ Sk0
(
Γ1(Mpr0) ∩ Γ0(D), ǫ0

)

of level Γ1(Mpr0) ∩ Γ0(D), Dirichlet character ǫ0 and weight k0, and write O
for the ring of integers of the field generated over Qp by the Fourier coefficients
of f0.
Let Λ (respectively, O[[Z×

p ]]) denote the Iwasawa algebra of W := 1 + pZp
(respectively, Z×

p ) with coefficients in O. We denote group-like elements in Λ

and O[[Z×
p ]] as [t]. Let hord∞ denote the p-ordinary Hida Hecke algebra with

coefficients in O of tame level Γ1(N). Denote by L := Frac(Λ) the fraction
field of Λ. Let R denote the integral closure of Λ in the primitive component
K of hord∞ ⊗Λ L corresponding to f0. It is well known that the Λ-algebra R is
finitely generated as Λ-module.
Denote by X the O-module Homcont

O-alg(R, Q̄p) of continuous homomorphisms of

O-algebras. Let X arith the set of arithmetic homomorphisms in X , defined in
[9, §2.2] by requiring that the composition

W −֒→Λ
κ

−→ Q̄p

has the form γ 7→ ψκ(γ)γ
nκ with nκ = kκ − 2 for an integer kκ ≥ 2 (called

the weight of κ) and a finite order character ψκ : W → Q̄p (called the wild
character of κ). Denote by rκ the smallest among the positive integers t such
that 1+ ptZp ⊆ ker(ψκ). For any κ ∈ X arith, let Pκ denote the kernel of κ and
RPκ

the localization ofR at κ. The field Fκ := RPκ
/PκRPκ

is a finite extension
of Frac(O). Further, by duality, κ corresponds to a normalized eigenform

fκ ∈ Skκ
(
Γ0(Np

rκ), ǫκ
)

for a Dirichlet character ǫκ : (Z/NprκZ)× → Q̄p. More precisely, if we write
ψR for the character of R, defined as in [6, Terminology p. 555], and we let ω
denote the Teichmüller character, we have ǫκ := ψκ · ψR · ω−nκ (see [6, Cor.
1.6]). We call (ǫκ, kκ) the signature of κ. We let κ0 denote the arithmetic
character associated with f0, so f0 = fκ0 , k0 = kκ0 , ǫ0 = ǫκ0 , and r0 = rκ0 .
The eigenvalues of fκ under the action of the Hecke operators Tn (n ≥ 1 an
integer) belong to Fκ. Actually, one can show that fκ is a p-stabilized newform
on Γ1(Mprκ) ∩ Γ0(D).
Let ΛN denote the Iwasawa algebra of Z×

p × (Z/NZ)× with coefficients in O.

To simplify the notation, define ∆ := (Z/NpZ)×. We have a canonical isomor-
phism of rings ΛN ≃ Λ[∆], which makes ΛN a Λ-algebra, finitely generated as

Documenta Mathematica 18 (2013) 1–21



8 Matteo Longo, Marc-Hubert Nicole

Λ-module. Define the tensor product of Λ-algebras

RN := R⊗Λ ΛN ,

which is again a Λ-algebra (resp. ΛN -algebra) finitely generated as a Λ-module,
(resp. as a ΛN -module). One easily checks that there is a canonical isomor-
phism of Λ-algebras

RN ≃ R[∆]

(where Λ acts on R); this is also an isomorphism of ΛN -algebras, when we let
ΛN ≃ Λ[∆] act on R[∆] in the obvious way.
We can extend any κ ∈ X arith to a continuous O-algebra morphism

κN : RN −→ Q̄p

setting

κN

(
n∑

i=1

ri · δi

)
:=

n∑

i=1

κ(ri) · ψR(δi)

for ri ∈ R and δi ∈ ∆. Therefore, κN restricted to Z×
p is the character

t 7→ ǫκ(t)t
nκ . If we denote by XN the O-module of continuous O-algebra

homomorphisms from RN to Q̄p, the above correspondence sets up an injec-
tive map X arith →֒ XN . Let X arith

N denote the image of X arith under this map.
For κN ∈ X arith

N , we define the signature of κN to be that of the corresponding
κ.

3.2. The control theorem in the quaternionic setting. Recall that
B/Q is a quaternion algebra of discriminant D. Fix an auxiliary real quadratic
field F such that all primes dividing D are inert in F and all primes dividing
Mp are split in F , and an isomorphism iF : B ⊗Q F ≃ M2(F ). Let OB denote
the maximal order of B obtained by taking the intersection of B with M2(OF ),
where OF is the ring of integers of F . More precisely, define

OB := ι−1
(
i−1
F

(
iF (B ⊗ 1) ∩M2(OF )

))

where ι : B →֒ B⊗QF is the inclusion defined by b 7→ b⊗ 1. This is a maximal
order in B because iF (B ⊗ 1) ∩M2(OF ) is a maximal order in iF (B ⊗ 1). In
particular, iF and our fixed embedding of Q̄ into Q̄p induce an isomorphism

ip : B ⊗Q Qp ≃ M2(Qp)

such that ip(OB ⊗Z Zp) = M2(Zp). For any prime ℓ|M , also choose an embed-
ding Q̄ →֒ Q̄ℓ which, composed with iF , yields isomorphisms

iℓ : B ⊗Q Qℓ ≃ M2(Qℓ)

such that ip(OB ⊗Z Zℓ) = M2(Zℓ). Define an Eichler order R ⊆ OB of level
M by requiring that for all primes ℓ|M the image of R ⊗Z Zℓ via iℓ consists
of upper triangular matrices modulo ℓ. For any r ≥ 0, let Γr denote the
subgroup of the group R×

1 of norm-one elements in R consisting of those γ
such that iℓ(γ) =

(
a b
c d

)
with c ≡ 0 mod Mpr and a ≡ d ≡ 1 mod Mpr,
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for all primes ℓ|Mp. To conclude this list of notation and definitions, fix an
embedding F →֒ R and let

i∞ : B ⊗Q R ≃ M2(R)

be the induced isomorphism.
Let Y := Z2

p and denote by X the set of primitive vectors in Y. Let D denote
the O-module of O-valued measures on Y which are supported on X. Note that
M2(Zp) acts on Y by left multiplication; this induces an action of M2(Zp) on
the O-module of O-valued measures on Y, which induces an action on D. The
group R× acts on D via ip. In particular, we may define the group:

W := H1(Γ0,D).

Then D has a canonical structure of O[[Z×
p ]]-module, as well as hord∞ -action, as

described in [9, §2.4]. In particular, let us recall that, for any [t] ∈ O[[Z×
p ]], we

have ∫

X

ϕ(x, y)d
(
[t] · ν

)
=

∫

X

ϕ(tx, ty)dν,

for any locally constant function ϕ on X.
For any κ ∈ X arith and any sign ± ∈ {−,+}, set

W±
κ := W±

fJL
κ
(Fκ) = H1

(
Γrκ , Vnκ

(Fκ)
)fκ,±

where fJL
κ is any Jacquet-Langlands lift of fκ to Γrκ ; recall that the superscript

fκ denotes the subspace on which the Hecke algebra acts via the character
associated with fκ, and the superscript ± denotes the ±-eigenspace for the
action of the archimedean involution ι. Also, recall that W±

κ is one dimensional
and fix a generator φ±κ of it.
We may define specialization maps

ρκ : D −→ Vnκ
(Fκ)

by the formula

(5) ρκ(ν)(P ) :=

∫

Zp×Z
×
p

ǫκ(y)P (x, y)dν

which induces (see [9, §2.5]) a map:

ρκ : Word −→ Word
κ .

Here Word and Word
κ denote the ordinary submodules of W and Wκ, re-

spectively, defined as in [3, Definition 2.2] (see also [9, §3.5]). We also let
WR := W⊗Λ R, and extend the above map ρκ to a map

ρκ : Word
R −→ Word

κ

by setting ρκ(x⊗ r) := ρκ(x) · κ(r).

Theorem 3.1. There exists a p-adic neighborhood U0 of κ0 in X , elements Φ±

in Word
R and choices of p-adic periods Ω±

κ ∈ Fκ for κ ∈ U0 ∩ X arith such that,
for all κ ∈ U0 ∩ X arith, we have

ρκ(Φ
±) = Ω±

κ · φ±κ
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and Ω±
κ0

6= 0.

Proof. This is an easy consequence of [9, Theorem 2.18] and follows along the
lines of the proof of [21, Theorem 5.5], cf. [10, Proposition 3.2]. �

We now normalize our choices as follows. With U0 as above, define

Uarith
0 := U0 ∩ X arith.

Fix κ ∈ Uarith
0 and an embedding Q̄p →֒ C. Let fJL

κ denote a modular form
on Γrκ corresponding to fκ by the Jacquet-Langlands correspondence, which is
well defined up to elements in C×. View φ±κ as an element in H1(Γrκ , Vn(C))

±.
Choose a representative Φ±

γ of Φ±, by which we mean that if Φ± =
∑

iΦ
±
i ⊗ri,

then we choose a representative Φ±
i,γ for all i. Also, we will write ρκ(Φ)(P ) as

∫

Zp×Z
×
p

ǫκ(y)P (x, y)dΦ
±
γ :=

∑

i

κ(ri) ·

∫

Zp×Z
×
p

ǫκ(y)P (x, y)dΦ
±
i,γ .

With this notation, we see that the two cohomology classes

γ 7−→

∫

Zp×Z
×
p

ǫκ(y)P (x, y)dΦ
±
γ (x, y)

and

γ 7−→ Ω±
κ ·

∫ γ(τ)

τ

P (z, 1)fJL,±
κ (z)dz

are cohomologous in H1(Γrκ , Vnκ
(C)), for any choice of τ ∈ H.

3.3. Metaplectic Hida Hecke algebras. Let σ : ΛN → ΛN be the ring ho-
momorphism associated to the group homomorphism t 7→ t2 on Z×

p ×(Z/NZ)×,

and denote by the same symbol its restriction to Λ and O[[Z×
p ]]. We let Λσ,

O[[Z×
p ]]σ and ΛN,σ denote, respectively, Λ, O[[Z×

p ]] and ΛN viewed as algebras
over themselves via σ. The ordinary metaplectic p-adic Hida Hecke algebra we
will consider is the Λ-algebra

R̃ := R⊗Λ Λσ.

Define as above

X̃ := Homcont
O-alg(R̃, Q̄p)

and let the set X̃ arith of arithmetic points in X̃ to consist of those κ̃ such that
the composition

W
�

� // Λ
�

� λ7→1⊗λ // R̃
�

� κ̃ // Q̄p

has the form γ 7→ ψκ̃(γ)γ
nκ̃ with nκ̃ := kκ̃ − 2 for an integer kκ̃ ≥ 2 (called

the weight of κ̃) and a finite order character ψκ̃ : W → Q̄ (called the wild
character of κ̃). Let rκ̃ the smallest among the positive integers t such that
1 + ptZp ⊆ ker(ψκ̃).

We have a map p : X̃ → X induced by pull-back from the canonical map

R → R̃. The map p restricts to arithmetic points.
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As above, define the Λ-algebra (or ΛN -algebra)

(6) R̃N := R⊗Λ ΛN,σ

via λ 7→ 1⊗ λ.
We easily see that R̃N ≃ R̃[∆] as ΛN -algebras, where we enhance R̃[∆] with
the following structure of ΛN ≃ Λ[∆]-algebra: for

∑
i λi ·δi ∈ Λ[∆] (with λi ∈ Λ

and δi ∈ ∆) and
∑
rj · δ

′
j ∈ R̃[∆] (with rj =

∑
h rj,h ⊗ λj,h ∈ R̃, rj,h ∈ R,

λj,h ∈ Λσ, and δ
′
j ∈ ∆), we set

(∑

i

λi · δi
)
·
(∑

j

rj · δ
′
j

)
:=
∑

i,j,h

(
rj,h ⊗ (λiλj,h)

)
· (δiδ

′
j).

As above, extend κ̃ ∈ X̃ arith to a continuous O-algebra morphism

κ̃N : R̃N −→ Q̄p

by setting

κ̃N

(
n∑

i=1

xi · δi

)
:=

n∑

i=1

κ̃(xi) · ψR(δi)

for xi ∈ R̃ and δi ∈ ∆, where ψR is the character of R. If we denote by X̃N the

O-module of continuous O-linear homomorphisms from R̃N to Q̄p, the above

correspondence sets up an injective map X̃ arith →֒ X̃N and we let X̃ arith
N denote

the image of X̃ arith. Put ǫκ̃ := ψκ̃ · ψR · ω−nκ̃ , which we view as a Dirichlet
character of (Z/Nprκ̃Z)×, and call the pair (ǫκ̃, kκ̃) the signature of κ̃N , where
κ̃ is the arithmetic point corresponding to κ̃N .

We also have a map pN : X̃N → XN induced from the map RN → R̃N taking
r 7→ r ⊗ 1 by pull-back. The map pN also restricts to arithmetic points. The
maps p and pN make the following diagram commute:

X̃ arith
�

� //

p

��

X̃ arith
N

pN

��
X arith �

� // X arith
N

where the projections take a signature (ǫ, k) to (ǫ2, 2k).

3.4. The Λ-adic correspondence. In this part, we combine the explicit in-
tegral formula of Shimura and the fact that the toric integrals can be p-adically
interpolated to show the existence of a Λ-adic Shimura-Shintani-Waldspurger
correspondence with the expected interpolation property. This follows very
closely [21, §6].

Let κ̃N ∈ X̃ arith
N of signature (ǫκ̃, kκ̃). Let Lr denote the order of M2(F )

consisting of matrices
( a b/Mpr

Mprc d

)
with a, b, c, d ∈ OF . Define

OB,r := ι−1
(
i−1
F

(
iF (B ⊗ 1) ∩ Lr

))
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Then OB,r is the maximal order introduced in §2.1 (and denoted O′
B there)

defined in terms of the maximal order OB and the integer Mpr. Also,

S := OB ∩ OB,r

is an Eichler order of B of level Mp containing the fixed Eichler order R of
level M . With α ∈ V ∗ ∩OB,1, we have

(7) iF (α) =

(
a b/(Mp)
c −a

)

in M2(F ) with a, b, c ∈ OF and we can consider the quadratic forms

Qα(x, y) := cx2 − 2axy −
(
b/(Mp)

)
y2,

and

(8) Q̃α(x, y) :=Mp ·Qα(x, y) =Mpcx2 − 2Mpaxy − by2.

Then Q̃α(x, y) has coefficients in OF and, composing with F →֒ R and letting

x = z, y = 1, we recover Qα(z) and Q̃α(z) of §2.1 (defined by means of the
isomorphism i∞). Since each prime ℓ|Mp is split in F , the elements a, b, c can
be viewed as elements in Zℓ via our fixed embedding Q̄ →֒ Q̄ℓ, for any prime
ℓ|Mp (we will continue writing a, b, c for these elements, with a slight abuse of
notation). So, letting bα ∈ Z such that iℓ(α) ≡

(
∗ bα/(Mp)
∗ ∗

)
modulo iℓ(S⊗ZZℓ),

for all ℓ|Mp, we have b ≡ bα modulo MpZℓ as elements in Zℓ, for all ℓ|Mp, and
thus we get

(9) ηǫκ̃(α) = ǫκ̃(bα) = ǫκ̃(b)

for b as in (7).
For any ν ∈ D, we may define an O-valued measure jα(ν) on Z×

p by the formula:
∫

Z
×
p

f(t)djα(ν)(t) :=

∫

Zp×Z
×
p

f
(
Q̃α(x, y)

)
dν(x, y).

for any continuous function f : Z×
p → Cp. Recall that the group of O-valued

measures on Z×
p is isomorphic to the Iwasawa algebra O[[Z×

p ]], and thus we may

view jα(ν) as an element in O[[Z×
p ]] (see, for example, [1, §3.2]). In particular,

for any group-like element [λ] ∈ O[[Z×
p ]] we have:

∫

Z
×
p

f(t)d
(

[λ] · jα(ν)
)

(t) =

∫

Z
×
p

(

∫

Z
×
p

f(ts)d[λ](s)

)

djα(ν)(t) =

∫

Z
×
p

f(λt)djα(ν)(t).

On the other hand,
∫

Zp×Z
×
p

f
(

Q̃α(x, y)
)

d(λ · ν) =

∫

Zp×Z
×
p

f
(

Q̃α(λx, λy)
)

dν =

∫

Zp×Z
×
p

f
(

λ
2
Q̃α(x, y)

)

dν

and we conclude that jα(λ · ν) = [λ2] · jα(ν). In other words, jα is a O[[Z×
p ]]-

linear map

jα : D −→ O[[Z×
p ]]σ.

Before going ahead, let us introduce some notation. Let χ be a Dirichlet char-
acter modulo Mpr, for a positive integer r, which we decompose accordingly

Documenta Mathematica 18 (2013) 1–21



The Λ-Adic SSW Correspondence 13

with the isomorphism (Z/NprZ)× ≃ (Z/NZ)× × (Z/prZ)× into the product
χ = χN · χp with χN : (Z/NZ)× → C× and χp : (Z/prZ)× → C×. Thus,
we will write χ(x) = χN (xN ) · χp(xp), where xN and xp are the projec-
tions of x ∈ (Z/NprZ)× to (Z/NZ)× and (Z/prZ)×, respectively. To sim-
plify the notation, we will suppress the N and p from the notation for xN
and xp, thus simply writing x for any of the two. Using the isomorphism
(Z/NZ)× ≃ (Z/MZ)× × (Z/DZ)×, decompose χN as χN = χM · χD with χM
and χD characters on (Z/MZ)× and (Z/DZ)×, respectively. In the following,
we only need the case when χD = 1.
Using the above notation, we may define a O[[Z×

p ]]-linear map Jα : D → O[[Z×
p ]]

by
Jα(ν) = ǫκ̃,M (b) · ǫκ̃,p(−1) · jα(ν)

with b as in (7). Set DN := D ⊗O[[Z×
p ]] ΛN , where the map O[[Z×

p ]] → ΛN is

induced from the map Z×
p → Z×

p × (Z/NZ)× on group-like elements given by
x 7→ x ⊗ 1. Then Jα can be extended to a ΛN -linear map Jα : DN → ΛN,σ.
Setting DRN

:= RN ⊗ΛN
DN and extending by RN -linearity over ΛN we finally

obtain a RN -linear map, again denoted by the same symbol,

Jα : DRN
−→ R̃N .

For ν ∈ DN and r ∈ RN we thus have

Jα(r ⊗ ν) = ǫκ̃,M (b) · ǫκ̃,p(−1) · r ⊗ jα(ν).

For the next result, for any arithmetic point κN ∈ X arith
N coming from κ ∈

X arith, extend ρκ in (5) by RN -linearity over O[[Z×
p ]], to get a map

ρκN
: DRN

−→ Vnκ

defined by ρκN
(r⊗ ν) := ρκ(ν) · κN (r), for ν ∈ D and r ∈ RN . To simplify the

notation, set

(10) 〈ν, α〉κN
:= ρκN

(ν)(Q̃nκ̃/2
α ).

The following is essentially [21, Lemma (6.1)].

Lemma 3.2. Let κ̃N ∈ X̃ arith
N with signature (ǫκ̃, kκ̃) and define κN := pN (κ̃N ).

Then for any ν ∈ DRN
we have:

κ̃N
(
Jα(ν)

)
= ηǫκ̃(α) · 〈ν, α〉κN

.

Proof. For ν ∈ DN and r ∈ RN we have

κ̃N
(
Jα(r ⊗ ν)

)
= κ̃N

(
ǫκ̃,M (b) · ǫκ̃,p(−1) · r ⊗ jα(ν)

)

= ǫκ̃,M (b) · ǫκ̃,p(−1) · κ̃N(r ⊗ 1) · κ̃N
(
1⊗ jα(ν)

)

= ǫκ̃,M (b) · ǫκ̃,p(−1) · κN(r) ·

∫

Z
×
p

κ̃N(t)djα(ν)

and thus, noticing that κ̃N restricted to Z×
p is κ̃N (t) = ǫκ̃,p(t)t

nκ̃ , we have

κ̃N
(
Jα(r⊗ν)

)
= ǫκ̃,M (b)·ǫκ̃,p(−1)·κN (r)

∫

Zp×Z
×
p

ǫκ̃,p(Q̃α(x, y))Q̃α(x, y)
nκ̃/2dν.
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14 Matteo Longo, Marc-Hubert Nicole

Recalling (8), and viewing a, b, c as elements in Zp, we have, for (x, y) ∈ Zp×Z×
p ,

ǫκ̃,p
(

Q̃α(x, y)
)

= ǫκ̃,p(−by
2) = ǫκ̃,p(−b)ǫκ̃,p(y

2) = ǫκ̃,p(−b)ǫ2κ̃,p(y) = ǫκ̃,p(−b)ǫκ,p(y).

Thus, since ǫκ̃(−1)2 = 1, we get:

κ̃N
(
Jα(r ⊗ ν)

)
= κN(r) · ǫκ̃,M (b) · ǫκ̃,p(b) · ρκ(ν)(Q̃

nκ̃/2
α ) = ηǫκ(α) · 〈ν, α〉κN

where for the last equality use (9) and (10). �

Define

WRN
:= W⊗O[[Z×

p ]] RN ,

the structure of O[[Z×
p ]]-module of RN being that induced by the composition

of the two maps O[[Z×
p ]] → ΛN → RN described above. There is a canonical

map

ϑ : WRN
−→ H1(Γ0,DRN

)

described as follows: if νγ is a representative of an element ν in W and r ∈ RN ,
then ϑ(ν ⊗ r) is represented by the cocycle νγ ⊗ r.
For ν ∈ WRN

represented by νγ and ξ ≥ 1 an integer, define

θξ(ν) :=
∑

C∈R(Γ1),q(C)=ξ

JαC
(νγαC

)

tαC

.

Definition 3.3. For ν ∈ WRN
, the formal Fourier expansion

Θ(ν) :=
∑

ξ≥1

θξ(ν)q
ξ

in RN [[q]] is called the Λ-adic Shimura-Shintani-Waldspurger lift of ν. For any

κ̃ ∈ X̃ arith, the formal power series expansion

Θ(ν)(κ̃N ) :=
∑

ξ≥1

κ̃N
(
θξ(ν)

)
qξ

is called the κ̃-specialization of Θ(ν).

There is a natural map

WR −→ WRN

taking ν ⊗ r to itself (use that R has a canonical map to RN ≃ R[∆], as
described above). So, for any choice of sign, Φ± ∈ WR will be viewed as an
element in WRN

.

¿From now on we will use the following notation. Fix κ̃0 ∈ X̃ arith and put
κ0 := p(κ̃0) ∈ X arith. Recall the neighborhood U0 of κ0 in Theorem 3.1. Define

Ũ0 := p−1(U0) and

Ũarith
0 := Ũ0 ∩ X̃ arith.

For each κ̃ ∈ Ũarith
0 put κ = p(κ̃) ∈ Uarith

0 . Recall that if (ǫκ̃, kκ̃) is the signature
of κ̃, then (ǫκ, kκ) := (ǫ2κ̃, 2kκ̃) is that of κ0. For any κ := p(κ̃) as above, we
may consider the modular form

fJL
κ ∈ Skκ(Γrκ , ǫκ)
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and its Shimura-Shintani-Waldspurger lift

hκ =
∑

ξ

aξ(hκ)q
ξ ∈ Skκ+1/2(4Np

rκ , χκ), where χκ(x) := ǫκ̃(x)

(
−1

x

)kκ
,

normalized as in (2) and (3). For our fixed κ0, recall the elements Φ := Φ+

chosen as in Theorem 3.1 and define φκ := φ+κ and Ωκ := Ω+
κ for κ ∈ Uarith

0 .

Proposition 3.4. For all κ̃ ∈ Ũarith
0 such that rκ = 1 we have

κ̃N
(
θξ(Φ)

)
= Ωκ · aξ(hκ) and Θ(Φ)(κ̃N ) = Ωκ · hκ.

Proof. By Lemma 3.2 we have

κ̃N
(
θξ(Φ)

)
=

∑

C∈R(Γ1),q(C)=ξ

ηǫκ̃(αC)

tαC

ρκN
(Φ)(Q̃nκ̃/2

αC
).

Using Theorem 3.1, we get

κ̃N
(
θξ(Φ)

)
=

∑

C∈R(Γ1),q(C)=ξ

ηǫκ̃(αC) · Ωκ
tαC

φκ(Q̃
kκ−1
αC

).

Now (2) shows the statement on κ̃N (θξ(Φ)), while that on Θ(Φ)(κ̃N ) is a formal
consequence of the previous one. �

Corollary 3.5. Let ap denote the image of the Hecke operator Tp in R. Then
Θ(Φ)|T 2

p = ap ·Θ(Φ).

Proof. For any κ ∈ X arith, let ap(κ) := κ(Tp), which is a p-adic unit by the

ordinarity assumption. For all κ̃ ∈ Ũarith
0 with rκ = 1, we have

Θ(Φ)(κ̃N )|T 2
p = Ωκ · hκ|T

2
p = ap(κ) · Ωκ · hκ = ap(κ) ·Θ(Φ)(κ̃N ).

Consequently,

κ̃N
(
θξp2(Φ)

)
= ap(κ) · κ̃N

(
θξ(Φ)

)

for all κ̃ such that rκ = 1. Since this subset is dense in X̃N , we conclude that
θξp2(Φ) = ap · θξ(Φ) and so Θ(Φ)|T 2

p = ap ·Θ(Φ). �

For any integer n ≥ 1 and any quadratic form Q with coefficients in F , write
[Q]n for the class of Q modulo the action of iF (Γn). Define Fn,ξ to be the
subset of the F -vector space of quadratic forms with coefficients in F consisting
of quadratic forms Q̃α such that α ∈ V ∗ ∩OB,n and −nr(α) = ξ. Writing δQ̃α

for the discriminant of Qα, the above set can be equivalently described as

Fn,ξ := {Q̃α|α ∈ V ∗ ∩OB,n, δQ̃α
= Npnξ}.

Define Fn,ξ/Γn to be the set {[Q̃α]n| Q̃α ∈ Fn,ξ} of equivalence classes of Fn,ξ
under the action of iF (Γn). A simple computation shows that Qg−1αg = Qα|g
for all α ∈ V ∗ and all g ∈ Γn, and thus we find

Fn,ξ/Γn = {[Q̃Cα
]n| C ∈ R(Γn), δQ̃α

= Npnξ}.
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We also note that, in the notation of §2.1, if f has weight character ψ, de-
fined modulo Npn, and level Γn, the Fourier coefficients aξ(h) of the Shimura-
Shintani-Waldspurger lift h of f are given by

(11) aξ(h) =
∑

[Q]∈Fn,ξ/Γn

ψ(Q)

tQ
φ+f
(
Q(z)k−1

)

and, if Q = Q̃α, we put ψ(Q) := ηψ(bα) and tQ := tα. Also, if we let

Fn/Γn :=
∐

ξ

Fn,ξ/Γn

we can write

(12) h =
∑

[Q]∈Fn/Γn

ψ(Q)

tQ
φ+f
(
Q(z)k−1

)
qδQ/(Np

n).

Fix now an integer m ≥ 1 and let n ∈ {1,m}. For any t ∈ (Z/pnZ)× and any
integer ξ ≥ 1, define Fn,ξ,t to be the subset of Fn,ξ consisting of forms such
that Npnbα ≡ t mod Npm. Also, define Fn,ξ,t/Γn to be the set of equivalence
classes of Fn,ξ,t under the action of iF (Γn). If α ∈ V ∗ ∩ OB,m and

iF (α) =

(
a b
c −a

)
,

then

(13) Q̃α(x, y) = Npncx2 − 2Npnaxy −Npnby2

from which we see that there is an inclusion Fm,ξ,t ⊆ F1,ξpm−1,t. If Q̃α and

Q̃α′ belong to Fm,ξ,t, and α
′ = gαg−1 for some g ∈ Γm, then, since Γm ⊆ Γ1,

we see that Q̃α and Q̃α′ represent the same class in F1,ξpm−1,t/Γ1. This shows

that [Q̃α]m 7→ [Q̃α]1 gives a well-defined map

πm,ξ,t : Fm,ξ,t/Γm −→ F1,ξpm−1,t/Γ1.

Lemma 3.6. The map πm,ξ,t is bijective.

Proof. We first show the injectivity. For this, suppose Q̃α and Q̃α′ are in Fm,ξ,t
and [Q̃α]1 = [Q̃α′ ]1. So there exists g =

( α β
γ δ

)
in iF (Γ1) such that such that

Q̃α = Q̃α′ |g. If Q̃α = cx2 − 2axy − by2, and easy computation shows that

Q̃α′ = c′x2 − 2a′xy − b′y2 with

c′ = cα2 − 2aαγ − bγ2

a′ = −cαβ + aβγ + aαδ + bγδ

b′ = −cβ2 + 2aβδ + bδ2.

The first condition shows that γ ≡ 0 mod Npm. We have b ≡ b′ ≡ t
mod Npm, so δ2 ≡ 1 mod Npm. Since δ ≡ 1 mod Np, we see that δ ≡ 1
mod Npm too.
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We now show the surjectivity. For this, fix [Q̃αC
]1 in the target of π, and choose

a representative
Q̃αC

= cx2 − 2axy − by2

(recall Mpmξ|δQ̃αC

, Np|c, Np|a, and b ∈ O×
F , the last condition due to

ηψ(αC) 6= 0). By the Strong Approximation Theorem, we can find g̃ ∈ Γ1

such that

iℓ(g̃) ≡

(
1 0

ab−1 1

)
mod Npm

for all ℓ|Np. Take g := iF (g̃), and put α := g−1αCg. An easy computation,

using the expressions for a′, b′, c′ in terms of a, b, c and g =
( α β
γ δ

)
as above,

shows that α ∈ V ∗ ∩ OB,m, ηψ(α) = t and δQ̃α
= Npmξ, and it follows that

Q̃α ∈ Fm,ξ,t. Now

π
(
[Q̃α]m

)
= [Q̃α]1 = [Q̃g−1αCg]1 = [Q̃αC

]1

where the last equality follows because g ∈ Γ1. �

Proposition 3.7. For all κ̃ ∈ Ũarith
0 we have

Θ(Φ)(κ̃N )|T rκ−1
p = Ωκ · hκ.

Proof. For rκ = 1, this is Proposition 3.4 above, so we may assume rκ ≥ 2. As
in the proof of Proposition 3.4, combining Lemma 3.2 and Theorem 3.1 we get

Θ(Φ)(κ̃N ) =
∑

ξ≥1




∑

C∈R(Γ1),q(C)=ξ

ηǫκ̃(αC) · Ωκ
tαC

φκ(Q̃
kκ−1
αC

)



 qξ

which, by (11) and (12) above we may rewrite as

Θ(Φ)(κ̃N ) =
∑

[Q]∈F1/Γ1

ǫκ̃(Q) · Ωκ
tQ

φκ(Q
kκ−1)qδQ/(Np)

By definition of the action of Tp on power series, we have

Θ(Φ)(κ̃N )|T rκ−1
p =

∑

[Q]∈F1/Γ1, prκ |δQ

ǫκ̃(Q) · Ωκ
tQ

φκ(Q
kκ−1)qδQ/(Np

rκ ).

Setting Fn,t/Γn :=
∐
ξ≥1 Fn,t,ξ/Γn for n ∈ {1, rκ}, Lemma 3.6 shows that

F∗
1,t := {[Q] ∈ F1,t/Γ1,t such that prκ |δQ} is equal to Frκ,t.

Therefore, splitting the above sum over t ∈ (Z/NprκZ)×, we get

Θ(Φ)(κ̃N )|T rκ−1
p =

∑

t∈(Z/prκ−1Z)×

∑

[Q]∈F∗
1,t

ǫκ̃(Q) · Ωκ
tQ

φκ(Q
kκ−1)qδQ/(Np

rκ )

=
∑

t∈(Z/prκ−1Z)×

∑

[Q]∈Fm,t/Γm

ǫκ̃(Q) · Ωκ
tQ

φκ(Q
kκ−1)qδQ/(Np

rκ )

=
∑

[Q]∈Fm/Γm

ǫκ̃(Q) · Ωκ
tQ

φκ(Q
kκ−1)qδQ/(Np

rκ).
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Comparing this expression with (12) gives the result. �

We are now ready to state the analogue of [21, Thm. 3.3], which is our main
result. For the reader’s convenience, we briefly recall the notation appearing
below. We denote by X the points of the ordinary Hida Hecke algebra, and
by X arith its arithmetic points. For κ0 ∈ X arith, we denote by U0 the p-
adic neighborhood of κ0 appearing in the statement of Theorem 3.1 and put
Uarith
0 := U0 ∩ X arith. We also denote by Φ = Φ+ ∈ Word

R the cohomology

class appearing in Theorem 3.1. The points X̃ of the metaplectic Hida Hecke

algebra defined in §3.3 are equipped with a canonical map p : X̃ arith → X arith

on arithmetic points. Let Ũarith
0 := Ũ0 ∩ X̃ arith. For each κ̃ ∈ Ũarith

0 , put
κ = p(κ̃) ∈ Uarith

0 . Recall that if (ǫκ̃, kκ̃) is the signature of κ̃, then the
signature of κ is (ǫκ, kκ) := (ǫ2κ̃, 2kκ̃). For any κ := p(κ̃) as above, we may
consider the modular form

fJL
κ ∈ Skκ(Γrκ , ǫκ)

and its Shimura-Shintani-Waldspurger lift

hκ =
∑

ξ

aξ(hκ)q
ξ ∈ Skκ+1/2(4Np

rκ , χκ), where χκ(x) := ǫκ̃(x)

(
−1

x

)kκ
,

normalized as in (2) and (3). Finally, for κ̃ ∈ X̃ arith, we denote by κ̃N its

extension to the metaplectic Hecke algebra R̃N defined in §3.3.

Theorem 3.8. Let κ0 ∈ X arith. Then there exists a choice of p-adic periods
Ωκ for κ ∈ U0 such that the Λ-adic Shimura-Shintani-Waldspurger lift of Φ

Θ(Φ) :=
∑

ξ≥1

θξ(Φ)q
ξ

in RN [[q]] has the following properties:

(1) Ωκ0 6= 0.

(2) For any κ̃ ∈ Ũarith
0 , the κ̃-specialization of Θ(Φ)

Θ(ν)(κ̃N ) :=
∑

ξ≥1

κ̃
(
θξ(Φ)

)
qξ belongs to Skκ+1/2(4Np

rκ, χ′
κ),

where χ′
κ(x) := χκ(x) ·

(
p
x

)kκ−1
, and satisfies

Θ(Φ)(κ̃N ) = Ωκ · hκ|T
1−rκ
p .

Proof. The elements Ωκ are those Ω+
κ appearing in Theorem 3.1, which we

used in Propositions 3.4 and 3.7 above, so (1) is clear. Applying T rκ−1
p to the

formula of Proposition 3.7, using Corollary 3.5 and applying ap(κ)
1−rκ on both

sides gives
Θ(Φ)(κ̃N ) = ap(κ)

1−rκΩκ · hκ|T
rκ−1
p .

By [18, Prop. 1.9], each application of Tp has the effect of multiplying the
character by

(
p
·

)
, hence

h′κ := hκ|T
rκ−1
p ∈ Skκ+1/2(4Np

rκ , χ′
κ)
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with χ′
κ as in the statement. This gives the first part of (2), while the last

formula follows immediately from Proposition 3.7. �

Remark 3.9. Theorem 1.1 is a direct consequence of Theorem 3.8, as we briefly
show below.
Recall the embedding Z≥2 →֒ Hom(Z×

p ,Z
×
p ) which sends k ∈ Z≥2 to the char-

acter x 7→ xk−2. Extending characters by O-linearity gives a map

Z≥2 −֒→X (Λ) := Homcont
O-alg(Λ, Q̄p).

We denote by k(Λ) the image of k ∈ Z≥2 in X (Λ) via this embedding. We
also denote by ̟ : X → X (Λ) the finite-to-one map obtained by restriction of
homomorphisms to Λ. Let k(R) be a point in X of signature (k, 1) such that
̟(k(R)) = k(Λ). A well-known result by Hida (see [6, Cor. 1.4]) shows that
R/Λ is unramified at k(Λ). As shown in [21, §1], this implies that there is a
section sk(Λ) of ̟ which is defined on a neighborhood Uk(Λ) of k(Λ) in X (Λ)
and sends k(Λ) to k(R).
Fix now k0 as in the statement of Theorem 1.1, corresponding to a cuspform
f0 of weight k0 with trivial character. The form f0 corresponds to an arith-

metic character k
(R)
0 of signature (1, k0) belonging to X . Let U ′

0 be the inverse

image of U0 under the section s−1

k
(Λ)
0

, where U0 ⊆ X is the neighborhood of k
(R)
0

in Theorem 3.8. Extending scalars by O gives, as above, an injective contin-
uos map Hom(Z×

p ,Z
×
p ) →֒ X (Λ), and we let U0 be any neighborhood of the

character x 7→ xk0−2 which maps to U ′
0 and is contained in the residue class

of k0 modulo p − 1. Composing this map with the section U ′
0 →֒ U0 gives a

continuous injective map

ς : U0 −֒→U ′
0 −֒→U0

which takes k0 to k
(R)
0 , since by construction the image of k0 by the first map

is k
(Λ)
0 . We also note that, more generally, ς(k) = k(R) because by construction

ς(k) restricts to k(Λ) and its signature is (1, k), since the character of ς(k) is
trivial. To show the last assertion, recall that the character of ς(k) is ψk ·
ψR · ω−k, and note that ψk is trivial because k(Λ)(x) = xk−1, and ψR · ω−k is
trivial because the same is true for k0 and k ≡ k0 modulo p−1. In other words,
arithmetic points in ς(U0) correspond to cuspforms with trivial character. This
is the Hida family of forms with trivial character that we considered in the
Introduction.
We can now prove Theorem 1.1. For all k ∈ U0 ∩ Z≥2, put Ωk := Ωk(R) and

define Θ := Θ(Φ) ◦ ς with Φ as in Theorem 3.8 for κ0 = k
(R)
0 . Applying

Theorem 3.8 to k
(R)
0 , and restricting to ς(U0), shows that U0, Ωk and Θ satisfy

the conclusion of Theorem 1.1.

Remark 3.10. For κ̃ ∈ Ũarith
0 of signature (ǫκ̃, kκ̃) with rκ̃ = 1 as in the above

theorem, hκ is trivial if (−1)kκ̃ 6= ǫκ̃(−1). However, since φκ0 6= 0, it follows
that hκ0 is not trivial as long as the necessary condition (−1)k0 = ǫ0(−1) is
verified.
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Remark 3.11. This result can be used to produce a quaternionic Λ-adic version
of the Saito-Kurokawa lifting, following closely the arguments in [8, Cor. 1].
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Abstract. Our aim is to formulate and prove a weak form in equal char-
acteristicp> 0 of thep-curvature conjecture. We also show the existence
of a counterexample to a strong form of it.
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Introduction

If (E,∇) is a vector bundle with an algebraic integrable connection over a smooth
complex varietyX, then it is defined over a smooth schemeS over SpecZ[ 1

N ] for
some positive integerN, so(E,∇) = (ES,∇S)⊗SC overX = XS⊗SC for a geometric
generic pointQ(S)⊂ C. Grothendieck-Katz’sp-curvature conjecture predicts that if
for all closed pointssof some non-trivial openU ⊂ S, thep-curvature of(ES,∇S)×Ss
is zero, then(E,∇) is trivialized by a finite étale cover ofX (see e.g. [An, Conj.3.3.3]).
Little is known about it. N. Katz proved it for Gauß-Manin connections [Ka], forS
finite over SpecZ[ 1

N ] (i.e., if X can be defined over a number field), D. V. Chudnovsky
and G. V. Chudnovsky in [CC] proved it in the rank 1 case and Y. André in [An]
proved it in case the Galois differential Lie algebra of(E,∇) at the generic point
of S is solvable (and for extensions of connections satisfying the conjecture). More
recently, B. Farb and M. Kisin [FK] proved it for certain locally symmetric varieties
X. In general, one is lacking methods to think of the problem.

The first author is supported by the SFB/TR45 and the ERC Advanced Grant 226257. The second
author is supported by the Bessel Award of the Humboldt Foundation and a Polish MNiSW grant (contract
number N N201 420639).
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Y. André in [An, II] and E. Hrushovsky in [Hr, V] formulated the following equal
characteristic 0 analog of the conjecture: ifX → S is a smooth morphism of smooth
connected varieties defined over a characteristic 0 fieldk, then if(ES,∇S) is a relative
integrable connection such that for all closed pointssof some non-trivial openU ⊂ S,
(ES,∇S)×Ss is trivialized by a finite étale cover ofX ×Ss, then(E,∇)|Xη̄ should
be trivialized by a finite étale cover, wherēη is a geometric generic point andXη̄ =
X×Sη̄ . So the characteristic 0 analogy to integrable connectionsis simply integrable
connections, and to thep-curvature condition is the trivialization of the connection
by a finite étale cover. André proved it [An, Prop. 7.1.1], using Jordan’s theorem
and Simpson’s moduli of flat connections, while Hrushovsky [Hr, p.116] suggested a
proof using model theory.

It is tempting to formulate an equal characteristicp> 0 analog of Y. André’s theorem.
A main feature of integrable connections over a fieldk of characteristic 0 is that they
form an abelian, rigid,k-linear tensor category. In characteristicp> 0, the category of
bundles with an integrable connection is onlyOX(1) -linear, whereX(1) is the relative
Frobenius twist ofX, and the notion is too weak. On the other hand, in character-
istic 0, the category of bundles with a flat connection is the same as the category of
OX-coherentDX-modules. In characteristicp> 0, OX-coherentDX-modules over a
smooth varietyX defined over a fieldk form an abelian, rigid,k-linear tensor category
(see [Gi]). It is equivalent to the category of stratified bundles. It bears strong analo-
gies with the category of bundles with an integrable connection in characteristic 0.
For example, ifX is projective smooth over an algebraically closed field, thetriviality
of the étale fundamental group forces all suchOX-coherentDX-modules to be trivial
([EM]).

So we raise thequestion 1: let f : X → S be a smooth projective morphism of
smooth connected varieties, defined over an algebraically closed characteristicp>
0 field, let (E,∇) be a stratified bundle relative toS, such that for all closed point
s of some non-trivial openU ⊂ S, the stratified bundle(E,∇)|Xs is trivialized by a
finite étale cover ofXs := X ×Ss. Is it the case that the stratified bundle(E,∇)|Xη̄ is
trivialized by a finite étale cover ofXη̄?.

In this form, this is not true. Y. Laszlo [Ls] constructed a one dimensional non-trivial
family of bundles over a curve overF2 which is fixed by the square of Frobenius, as
a (negative) answer to a question of J. de Jong concerning thebehavior of represen-
tations of the étale fundamental group over a finite fieldFq, q = pa, with values in
GL(r,F((t))), whereF⊃ F2 is a finite extension. In fact, Laszlo’s example yields also
a counter-example to the question as stated above. We explain this in Sections 1 and 4
(see Corollary 4.3). We remark that ifE is a bundle onX, such that the bundleE|Xs is
stable, numerically flat (see Definition 3.2) and moves in themoduli, thenEη̄ cannot
be trivialized by a finite étale cover (see Proposition 4.2). In contrast, we show that
if the family X → S is trivial (as it is in Laszlo’s example), thusX = Y×k S, if k is
algebraically closed, and if(Fn

Y × identitys)
∗(E)|Y×ks

∼= E|Y×ks for all closed pointss
of some non-trivial open inSand some fixed natural numbern, then the moduli points
of E|Y×ks are constant (see Proposition 4.4). HereFY : Y →Y is the absolute Frobe-
nius ofY. In Laszlo’s example, one does have(F2

Y × identitys)
∗(E)|Y×ks

∼= E|Y×ks but
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only overk= F2 (i.e.,S is also defined overF2). When one extends the family to the
algebraic closure ofF2, to go from the absolute Frobenius overF2, that is the relative
Frobenius overk, to the absolute one, one needs to replace the power 2 with a higher
powern(s), which depends on the field of definition ofs, and is not bounded.

So we modify question 1 inquestion 2: let f : X → S be a smooth projective
morphism of smooth connected varieties, defined over an algebraically closed charac-
teristic fieldk of characteristicp> 0, letE be a bundle such that for all closed points
s of some non-trivial openU ⊂ S, the bundleE|Xs is trivialized by a finite Galois
étale cover ofXs := X×Ss of order prime top. Is it the case that the bundleE|Xη̄ is
trivialized by a finite étale cover ofXη̄?.

The answer is nearly yes: it is the case ifk is not algebraic over its prime field (The-
orem 5.1 2)). Ifk= F̄p, it might be wrong (Remarks 5.4 2), but what remains true is
that there exists a finite étale cover ofXη̄ over which the pull-back ofE is a direct sum
of line bundles (Theorem 5.1 1)). The idea of the proof is borrowed from the proof
of Y. André’s theorem [An, Thm 7.2.2]. The assumption on thedegrees of the Galois
covers ofXs trivializing E|Xs is necessary (as follows from Laszlo’s example) and it
allows us to apply Brauer-Feit’s theorem [BF, Theorem] in place of Jordan’s theorem
used by André. However, there is no direct substitute for Simpson’s moduli spaces of
flat bundles. Instead, we use the moduli spaces constructed in [La1] and we carefully
analyze subloci containing the points of interest, that is the numerically flat bundles.
The necessary material needed on moduli is gathered in Section 3.

Finally we raise the generalquestion 3: let f : X → Sbe a smooth projective mor-
phism of smooth connected varieties, defined over an algebraically closed character-
istic p> 0 field, let(E,∇) be a stratified bundle relative toS, such that for all closed
pointss of some non-trivial openU ⊂ S, the stratified bundle(E,∇)|Xs is trivialized
by a finite Galois étale cover ofXs := X×Ssof order prime top. Is it the case that the
bundle(E,∇)|Xη̄ is trivialized by a finite étale cover ofXη̄?

We give the following not quite complete answer. If the rank of E is 1, (in which
case the assumption on the degrees of the Galois covers isautomatically fulfilled),
then the answer is yes providedS is projective, and for anys∈U , Picτ(Xs) is reduced
(see Theorem 7.1). The proof relies on (a variant of) an idea of M. Raynaud [Ra],
using the height function associated to a symmetric line bundle (that is the reason
for our assumption onS) on the abelian scheme and its dual, to show that an infinite
Verschiebung-divisible point has height equal to 0 (Theorem 6.2). If E has any rank,
then the answer is yes ifk is not F̄p (Theorem 7.2 2)). In general, there is a prime to
p-order Galois cover ofXη̄ such that the pull-back ofE becomes a sum of stratified
line bundles (Theorem 7.2 1)).

Acknowledgements:The first author thanks Michel Raynaud for the fruitful discus-
sions in November 2009, which are reflected in [Ra] and in Section 6. The first author
thanks Johan de Jong for a beautiful discussion in November 2010 on the content of
[EM], where she suggested question 1 to him, and where he replied that Laszlo’s ex-
ample should contradict this, and that this should be betterunderstood. The second
author would like to thank Stefan Schröer for destroying his naive hopes concerning
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Néron models of Frobenius twists of an abelian variety. We thank Damian Rössler
for discussions onp-torsion on abelian schemes over functions fields. We thank the
referee of a first version of the article. He/she explained tous that the dichotomy in
Theorem 5.1 2) and in Theorem 7.2 2) should beF̄p or not rather that countable or
not, thereby improving our result.

1 Preliminaries on relative stratified sheaves

Let S be a scheme of characteristicp (i.e., OS is anFp-algebra). ByF r
S : S→ S we

denote ther-th absolute Frobenius morphismof S which corresponds to thepr -th
power mapping onOS.

If X is anS-scheme, we denote byX(r)
S the fiber product ofX andS over ther-th

Frobenius morphism ofS. If it is clear with respect to which structureX is considered,
we simplify the notation toX(r). Then ther-th absolute Frobenius morphism ofX
induces therelative Frobenius morphism FrX/S : X → X(r). In particular, we have the
following commutative diagram:

X

  B
BB

BB
BB

B

F r
X

""

Fr
X/S

// X(r)

��

Wr
X

// X

��
S

F r
S

// S

which definesWr
X/S : X(r) → X.

Making r = 1 and replacingX by X(i), this induces the similar diagram

X(i)

##G
GGG

GGG
GG

F
X(i)

%%

F
X(i)/S

// X(i+1)

��

W
X(i)

// X(i)

��
S

FS

// S

We assume thatX/S is smooth. Arelative stratified sheafon X/S is a sequence
{Ei ,σi}i∈N of locally free coherentOX(i) -modulesEi on X(i) and isomorphismsσi :
F∗

X(i)/S
Ei+1 → Ei of OX(i) -modules. Amorphism of relative stratified sheaves{αi} :

{Ei ,σi} → {E′
i ,σ ′

i } is a sequence ofOX(i) -linear mapsαi : Ei → E′
i compatible with

theσi , that is such thatσ ′
i ◦F∗

X(i)/S
αi+1 = αi ◦σi.

This forms a categoryStrat(X/S), which is contravariant for morphismsϕ : T →S: to
{Ei ,σi} ∈ Start(X/S) one assignsϕ∗{Ei ,σi} ∈ Strat(X×ST/T) in the obvious way:
ϕ induces 1X(i) ×ϕ : X(i) ×ST → X(i) and (ϕ∗{Ei ,σi})i = {(1X(i) ×ϕ)∗Ei ,(1X(i) ×
ϕ)∗(σi)}.
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If S= Speck wherek is a field, Strat(X/k) is an abelian, rigid, tensor category.
Giving a rational pointx ∈ X(k) defines a fiber functor viaωx : Strat(X/k) →
Veck, ωx({Ei ,σi}) = (E0)|x in the category of finite dimensional vector spaces overk,
thus ak-group schemeπ(Strat(X/k),ωx) = Aut⊗(ωx). Tannaka duality implies that
Strat(X/k) is equivalent viaωx to the representation category ofπ(Strat(X/k),ωx)
with values inVeck. For any objectE := {Ei,σi} ∈ Strat(X/k), we define itsmon-
odromy groupto be thek-affine group schemeπ(〈E〉,ωx), where〈E〉 ⊂ Strat(X/k)
is the full subcategory spanned byE. This is the image ofπ(Strat(X/k),ωx) in
GL(ωx(E)) ([DM, Proposition 2.21 a)]). We denote byIX/k ∈ Strat(X/k) the triv-
ial object, withEi = OX(i) andσi = Identity.

LEMMA 1.1. With the notation above

1) If h : Y → X is a finite étale cover such that h∗E is trivial, then h∗IY/k
has finite monodromy group and one has a faithfully flat homomorphism
π(〈h∗IY/k〉,ωx) → π(〈E〉,ωx). Thus in particular,E has finite monodromy
group as well.

2) If E ∈ Strat(X/k) has finite monodromy group, then there exists aπ(〈E〉,ωx)-
torsor h: Y → X such that h∗E is trivial in Strat(Y/k). Moreover, one has an

isomorphismπ(〈h∗IY/k〉,ωx)
∼=
−→π(〈E〉,ωx).

Proof. We first prove 2). Assumeπ(〈E〉,ωx) =: G is a finite group scheme overk.
One applies Nori’s method [No, Chapter I, II]: the regular representation ofG on the
affinek-algebrak[G] of regular function defines the Artink-algebrak[G] as ak-algebra
object of the representation category ofG on finite dimensionalk-vector spaces, (such
thatk ⊂ k[G] is the maximal trivial subobject). Thus by Tannaka duality,there is an
objectA= (Ai ,τi) ∈ Strat(X/k), which is anIX/k-algebra object, (such thatIX/k ⊂ A

is the maximal trivial subobject). We definehi : Yi = SpecX(i) Ai → X(i). Then the

isomorphismτi yields anOX(i) -isomorphism betweenY(i) h(i)
−−→ X(i) andYi

hi−→ X(i),
(see, e.g., [SGA5, Exposé XV,§ 1, Proposition 2]), and via this isomorphism,A is
isomorphic toh∗IY/k. On the other hand,ωx(E) is a subG-representation ofk[G]⊕n

for somen∈N, thusE⊂A⊕n in Strat(X/k), thus there is an inclusionE⊂ (h∗IY/k)
⊕n

in Strat(X/k), thush∗E⊂ (h∗h∗IY/k)
⊕n in Strat(Y/k). Since(h∗h∗IY/k) is isomorphic

to⊕lengthkk[G]IY/k in Strat(Y/k) (recall that by [dS, Proposition 13],G is an étale group
scheme), thenh∗E is isomorphic to⊕rIY/k, wherer is the rank ofE. This shows
the first part of the statement, and shows the second part as well: indeed,E is then
a subobject of⊕rh∗IY/k, thus〈E〉 ⊂ 〈h∗IY/K〉 is a full subcategory. One applies
[DM, Proposition 2.21 a)] to show that the induced homomorphismπ(〈h∗IY/k〉,ωx)→
π(〈E〉,ωx) = G is faithfully flat. Soπ(〈h∗IY/k〉,ωx) acts onωx(h∗IY) = k[G] via its
quotientG and the regular representationG⊂ GL(k[G]). Thus the homomorphism is
an isomorphism.
We show 1). Assume that there is a finite étale coverh : Y → X such thath∗E is
isomorphic inStrat(Y/k) to ⊕rIY/k wherer is the rank ofE. ThenE ⊂ ⊕rh∗IY/k,
thusπ(〈h∗IY/k〉,ωx)→ π(〈E〉,ωx) is faithfully flat [DM, loc. cit.], so we are reduced
to showing that〈h∗IY/k〉 has finite monodromy. But, by the same argument as onE,
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any of its objects of rankr ′ lies in⊕r ′h∗IY/k. So we apply [DM, Proposition 2.20 a)]
to conclude that the monodromy ofh∗IY/k is finite.

COROLLARY 1.2. With the notations as in 1.1, ifE ∈ Strat(X/k) has finite mon-
odromy group, then for any field extension K⊃ k,E⊗K ∈ Strat(X⊗K/K) has finite
monodromy group.

Let E be anOX-module. We say thatE has a stratification relative to Sif there exists
a relative stratified sheaf{Ei ,σi} such thatE0 = E.
Let us consider the special caseS= Speck, wherek is a perfect field, andX/k is
smooth. An(absolute) stratified sheafon X is a sequence{Ei,σi}i∈N of coherent
OX-modulesEi onX and isomorphismsσi : F∗

XEi+1 → Ei of OX-modules.
As k is perfect, theWX(i) are isomorphisms, thus giving an absolute stratified sheaf is
equivalent to giving a stratified sheaf relative to Speck.
We now go back to the general case and we assume thatS is an integralk-scheme,
wherek is a field. Let us setK = k(S) and letη : SpecK → S be the generic point
of S. Let us fix an algebraic closurēK of K and letη̄ be the corresponding generic
geometric point ofS.
By contravariance, a relative stratified sheaf{Ei,σi} on X/S restricts to a relative
stratified sheaf{Ei,σi}|Xs in fibers Xs for s a point of S. We are interested in the
relation between{Ei,σi}|Xη̄ and{Ei ,σi}|Xs for closed pointss∈ |S|. More precisely,
we want to understand under which assumptions the finitenessof 〈{Ei ,σi}|Xs〉 for all
closed pointss∈ |S| implies the finiteness of〈{Ei,σi}|Xη̄ 〉. Recall that finiteness
of E⊂ Strat(Xs) means that all objects of〈E〉 are subquotients inStrat(Xs) of direct
sums of a single object, which is equivalent to saying that after the choice of a rational
point, the monodromy group ofE is finite ([DM, Proposition 2.20 (a)]).

Let X be a smooth variety defined overFq with q= pr . For all n∈ N \ {0}, one has
the commutative diagram

X

""E
EE

EE
EE

EE

(F r
X)

n=Frn
X

$$

F rn
X/Fq

// X(rn)

��

Wrn
X/Fq

// X

��
SpecFq

F rn
Fq

=id
// SpecFq

(1)

which allows us to identifyX(rn) with X (as anFq-scheme).
Let Sbe anFq connected scheme, with field of constantsk, i.e. k is the normal closure
of Fq in H0(S,OX). We defineXS := X×Fq S.

PROPOSITION1.3. Let E be a vector bundle on XS. Assume that there exists a positive
integer n such that we have an isomorphism

τ : ((F r ×Fq idS)
n)∗E ≃ E. (2)

Then E has a natural stratificationEτ = {Ei,σi}, E0 = E relative to S.
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Proof. We define

Ern = (Wrn
X/Fq

×Fq idS)
∗E. (3)

Then we use the factorization

X

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
FX/Fq

// X(1)

++WWWWWWWWWWWWWWWWWWWWWWWWWW

F
X(1)/Fq

// · · · // X(rn−1)

$$J
JJJJJJJJ

F
X(rn−1)/Fq

// X(rn)

��
SpecFq

(4)

of F rn
X/Fq

and we define

Enr−1 = (FX(rn−1)/Fq
×Fq idS)

∗Ern, . . . ,E1 = (FX(1)/Fq
×Fq idS)

∗E2 (5)

with identity isomorphismsσnr−1, . . . ,σ1. Then we use the isomorphismτ to define

σ0 : E ≃ (FX/Fq ×Fq idS)
∗E1. (6)

Assume we constructed the bundlesEi onX(i) for all i ≤ arn for some integera≥ 1.
We now replace the diagram (1) by the diagram

X(arn)

%%J
JJJJJJJJ

(F r
X(arn) )

n

&&

F rn
X(arn)/Fq

// X((a+1)rn)

��

Wrn
X(arn)/Fq

// X(arn)

��
SpecFq

Frn
Fq

=1
// SpecFq

(7)

We then define

E(a+1)rn = (Wrn
X(arn)/Fq

×Fq idS)
∗Earn (8)

(which is equal toE under identification ofX(arn) with X). Then we use the factoriza-
tion

X(arn)

,,ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

F
X(arn)/Fq

// X(arn+1)

,,XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

F
X(arn+1)/Fq

// · · · // X((a+1)rn−1)

&&N
NNNNNNNNNN

F
X((a+1)rn−1)/Fq

// X((a+1)rn)

��
SpecFq

(9)

of F rn
X(arn)/Fq

to define

E(a+1)rn−1 = (FX((a+1)rn−1)/Fq
×Fq idS)

∗E(a+1)rn, . . . ,

Earn+1 = (FX(arn+1)/Fq
×Fq idS)

∗Earn+2 (10)
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with identity isomorphismsσ(a+1)nr−1, . . . ,σarn+1. Then we again useτ to define

σarn : Earn ≃ (F rn
X(arn)/Fq

)∗Earn+1. (11)

The above construction and [Gi, Proposition 1.7] imply

PROPOSITION1.4. Assume in addition to(2) that X is proper andFq ⊂ k⊂ F̄q. Fix a
rational point x∈ XS(k). Then for any closed point s∈ |S|, the Tannaka group scheme
π(Eτs,ωx⊗kk(s)) of Eτs := Eτ |Xs over the residue field k(s) of s is finite.

Proof. The bundleE is base changed of a bundleE0 defined overX×Fq S0 for some
form S0 of S defined over a finite extensionFqa of Fq such thatx is base change
of anFqa-rational pointx0 of X ×Fq S0. We can also assume thatτ comes by base
change fromτ0 : ((F r ×Fq idS0)

n)∗E0 ≃ E0. Proposition 1.3 yields then a relative
stratificationE0

τ0
= (E0

i ,σ0
i ) of E0 defined overFqa, with Ei = E0

i ⊗Fa
q

k. A closed
points of S= S0⊗Fa

q
k is a base change of some closed points0 of S0 of degreeb say

overFqa. By Corollary 1.2 we just have to show thatπ(E(τ0)s0
,ωx0⊗Fqa k(s0)) is finite.

So we assume thatk= Fqa, S= S0, s= s0. The underling bundles ofEτ andEτm are
by construction all isomorphic form= ab. Thus by [Gi, Proposition 1.7],Eτ ≃ Eτm

in Strat(X/k). But this implies thatFmn
X×Fqa s(Eτs)

∼= Eτs. ThusE is algebraically

trivializable on the Lang torsorh : Y → X×Fqa Fqm and the bundlesEi are trivializable

onY×X×FqaFqm X(i) =Y(i)/Fqm. Thus the stratified bundleh∗Eτ onY relative toFqm

is trivial. We apply Lemma 1.1 to finish the proof.

2 Étale trivializable bundles

Let X be a smooth projective variety over an algebraically closedfield k. LetFX : X →
X be the absolute Frobenius morphism.
A locally free sheaf onX is calledétale trivializableif there exists a finite étale cov-
ering ofX on whichE becomes trivial.
Note that ifE is étale trivializable then it is numerically flat (see Definition 3.2 and
the subsequent discussion). In particular, stability and semistability for such bundles
are independent of a polarization (and Gieseker and slope stability and semistability
are equivalent). More precisely, suchE is stable if and only if it does not contain
any locally free subsheaves of smaller rank and degree 0 (with respect to some or
equivalently to any polarization).

PROPOSITION2.1. (see [LSt])If there exists a positive integer n such that(Fn
X)

∗E≃E
then E isétale trivializable. Moreover, if k= F̄p then E isétale trivializable if and
only if there exists a positive integer n and an isomorphism(Fn

X)
∗E ≃ E.

PROPOSITION2.2. (see [BD])If there exists a finite degree d́etale Galois covering
f : Y → X such that f∗E is trivial and E is stable, then one has an isomorphism
α : (Fd

X )
∗E ≃ E.
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As a corollary we see that a line bundle onX/k is étale trivializable if and only if it is
torsion of order prime top. One implication follows from the above proposition. The
other one follows from the fact that(Fd

X )
∗L ≃ L is equivalent toL⊗(pd−1) ≃ OX and

for any integern prime top we can findd such thatpd −1 is divisible byn.
We recall that ifE is any vector bundle onX such that there is ad ∈ N \ {0} and an
isomorphismα : (Fd

X )
∗(E)∼= E, thenE carries anabsolutestratified structureEα , i.e.

a stratified structure relative toFp by the procedure of Proposition 1.3. On the other
hand, any stratified stratified structure{Ei ,σi} relative toFp induces in an obvious
way a stratified structure relative tok: the absolute FrobeniusFn

X : X → X factors
throughWn

X/k : X(n)→X, so{(Wn
X/k)

∗En,(Wn
X/k)

∗σn} is the relative stratified structure,
denoted byEα/k. Proposition 2.2 together with Lemma 1.1 2) show

COROLLARY 2.3. Under the assumptions of Proposition 2.2, we can take d=
lengthkk[π(〈Eα/k〉,ωx)].

Let us also recall that there exist examples of étale trivializable bundles such that
(Fn

X)
∗E 6≃ E for every positive integern (see Laszlo’s example in [BD]).

PROPOSITION 2.4. (Deligne; see [Ls, 3.2])Let X be an Fpn-scheme. If G is a
connected linear algebraic group defined over a finite fieldFpn then the embedding
G(Fpn) →֒ G induces an equivalence of categories between the categoryof G(Fpn)-
torsors on X and G-torsors P over X with an isomorphism(Fn

X)
∗P≃ P.

In particular, if G is a connected reductive algebraic group defined over an alge-
braically closed fieldk andP is a principalG-bundle onX/k such that there exists
an isomorphism(Fn

X)
∗P≃ P for some natural numbern> 0, then there exists a Galois

étale coverf : Y → X with Galois groupG(Fpn) such thatf ∗P is trivial. Indeed, every
reductive group has aZ-form so we can use the above proposition.

3 Preliminaries on relative moduli spaces of sheaves

Let Sbe a scheme of finite type over a universally Japanese ringR. Let f : X → Sbe a
projective morphism ofR-schemes of finite type with geometrically connected fibers
and letOX(1) be anf -very ample line bundle.
A family of pure Gieseker semistable sheaves on the fibres of XT = X×ST → T is a
T-flat coherentOXT -moduleE such that for every geometric pointt of T the restriction
of E to the fibreXt is pure (i.e., all its associated points have the same dimension) and
Gieseker semistable (which is semistability with respect to the growth of the Hilbert
polynomial of subsheaves defined byOX(1) (see [HL, 1.2]). We introduce an equiv-
alence relation∼ on such families in the following way.E ∼ E′ if and only if there
exist filtrations 0= E0 ⊂ E1 ⊂ ...⊂ Em = E and 0= E′

0 ⊂ E′
1 ⊂ ...⊂ E′

m = E′ by co-
herentOXT -modules such that⊕m

i=0Ei/Ei−1 is a family of pure Gieseker semistable
sheaves on the fibres ofXT and there exists an invertible sheafL on T such that
⊕m

i=1E′
i /E

′
i−1 ≃

(
⊕m

i=1Ei/Ei−1
)
⊗OT L.

Let us define the moduli functor

MP(X/S) : (Sch/S)o → Sets
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from the category of locally noetherian schemes overSto the category of sets by

MP(X/S)(T) =





∼ equivalence classes of families of pure Gieseker

semistable sheaves on the fibres ofT ×SX → T,

which have Hilbert polynomialP.




.

Then we have the following theorem (see [La1, Theorem 0.2]).

THEOREM 3.1. Let us fix a polynomial P. Then there exists a projective S-scheme
MP(X/S) of finite type over S and a natural transformation of functors

θ : MP(X/S)→ HomS(·,MP(X/S)),

which uniformly corepresents the functorMP(X/S). For every geometric point
s ∈ S the induced mapθ (s) is a bijection. Moreover, there is an open scheme
Ms

X/S(P) ⊂ MP(X/S) that universally corepresents the subfunctor of families of ge-
ometrically Gieseker stable sheaves.

Let us recall thatMP(X/S) uniformly corepresentsMP(X/S) means that for every
flat base changeT → Sthe fiber productMP(X/S)×ST corepresents the fiber product
functor HomS(·,T)×HomS(·,S)MP(X/S). For the notion of corepresentability, we refer
to [HL, Definition 2.2.1]. In general, for everyS-schemeT we have a well defined
morphismMP(X/S)×ST →MP(XT/T) which for a geometric pointT = Speck(s)→
S is bijection on points.
The moduli spaceMP(X/S) in general depends on the choice of polarizationOX(1).

Definition 3.2. Let k be a field and letY be a projectivek-variety. A coherent
OY-moduleE is callednumerically flat, if it is locally free and bothE and its dual
E∗ =H om(E,OY) are numerically effective onY⊗ k̄, wherek̄ is an algebraic closure
of k.

Assume thatY is smooth. Then a numerically flat sheaf is strongly slope semistable
of degree 0 with respect to any polarization (see [La2, Proposition 5.1]). But such a
sheaf has a filtration with quotients which are numerically flat and slope stable (see
[La2, Theorem 4.1]). Let us recall that a slope stable sheaf is Gieseker stable and
any extension of Gieseker semistable sheaves with the same Hilbert polynomial is
Gieseker semistable. Thus a numerically flat sheaf is Gieseker semistable with respect
to any polarization.
Let P be the Hilbert polynomial of the trivial sheaf of rankr. In caseS is a spectrum
of a field we writeMX(r) to denote the subscheme of the moduli spaceMP(X/k) cor-
responding to locally free sheaves. For a smooth projectivemorphismX → Swe also
define the moduli subschemeM(X/S, r)→ Sof the relative moduli spaceMP(X/S) as
a union of connected components which contains points corresponding to numerically
flat sheaves of rankr. Note that in positive characteristic numerical flatness isnot an
open condition. More precisely, on a smooth projective varietyY with an ample divi-
sorH, a locally free sheaf withnumerically trivial Chern classes, that is with Chern
classes ci in the Chow group of codimension i cycles intersecting trivially Hdim(Y)−i
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for all i ≥ 1, is numerically flat if and only if it is strongly slope semistable (see [La2,
Proposition 5.1]).
By definition for every familyE of pure Gieseker semistable sheaves on the fibres of
XT we have a well defined morphismϕE = θ ([E]) : T → MP(X/S), which we call a
classifying morphism.

PROPOSITION3.3. Let X be a smooth projective variety defined over an algebraically
closed field k of positive characteristic. Let S be a k-variety and let E be a rank r lo-
cally free sheaf on X×k S such that for every s∈ S(k) the restriction Es is Gieseker
semistable with numerically trivial Chern classes. Assumethat the classifying mor-
phismϕE : S→ MX(r) is constant and for a dense subset S′ ⊂ S(k) the bundle Es is
étale trivializable for s∈ S′. Then Ēη is étale trivializable.

Proof. If Es is stable for somek-point s∈ S then there exists an open neighbourhood
U of ϕE(s), a finite étale morphismU ′ → U and a locally free sheafU on X ×k U ′

such that the pull backs ofE andU to X×k (ϕ−1
E (U)×U U ′) are isomorphic (this is

called existence of a universal bundle on the moduli space inthe étale topology). But
ϕE(S) is a point, so this proves that there exists a vector bundle onX such thatE is its
pull back by the projectionX×k S→ X. In this case the assertion is obvious.
Now let us assume thatEs is not stable for alls∈ S(k). If 0 = Es

0 ⊂ Es
1 ⊂ ...⊂Es

m= Es

is a Jordan–Hölder filtration (in the category of slope semistable torsion free sheaves),
then by assumption the isomorphism classes of semi-simplifications⊕m

i=1Es
i /E

s
i−1 do

not depend ons∈S(k). Let(r1, ..., rm) denote the sequence of ranks of the components
Es

i /E
s
i−1 for somes∈ S(k). Since there is only finitely many such sequences (they

differ only by permutation), we choose some permutation that appears for a dense
subsetS′′ ⊂ S′.
Now let us consider the scheme of relative flagsf : Flag(E/S;P1, ...,Pm)→ S, where
Pi is the Hilbert polynomial ofO r i

X . By our assumption the image off containsS′′.
Therefore by Chevalley’s theorem it contains an open subschemeU of S. Let us recall
that the scheme of relative flags Flag(E|X×kU/U ;P1, ...,Pm) → U is projective. In
particular, using Bertini’s theorem (k is algebraically closed) we can find a generically
finite morphismW →U factoring through this flag scheme. Let us consider pull back
of the universal filtration 0= F0 ⊂ F1 ⊂ ... ⊂ Fm = EW to X ×k W. Note that the
quotientsF i = Fi/Fi−1 areW-flat and by shrinkingW we can assume that they are
families of Gieseker stable locally free sheaves (since by assumptionF i

s is Gieseker
stable and locally free for some pointss∈ W(k)∩S′). This and the first part of the
proof implies thatEη̄ has a filtration by subbundles such that the associated graded
sheaf is étale trivializable. By Lemma 5.2 this implies that Eη̄ is étale trivializable.

4 Laszlo’s example

Let us describe Laszlo’s example of a line in the moduli spaceof bundles on a curve
fixed by the second Verschiebung morphism (see [Ls, Section 3]).
Let us consider a smooth projective genus 2 curveX overF2 with affine equation

y2+ x(x+1)y= x5+ x2+ x.
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In this case the moduli spaceMX(2,OX) of rank 2 vector bundles onX with trivial de-
terminant is anF2-scheme isomorphic toP3. The pull back of bundles by the relative
Frobenius morphism defines the Verschiebung map

V : MX(1) (2,OX(1))≃ P3
99K MX(2,OX)≃ P3

which in appropriate coordinates can be described as

[a : b : c : d]→ [a2+b2+ c2+d2 : ab+ cd : ac+bd : ad+bc].

The restriction ofV to the line∆ ≃ P1 given byb= c= d is an involution and it can
be described as[a : b]→ [a+b : b].
Using a universal bundle on the moduli space (which exists locally in the étale topol-
ogy around points corresponding to stable bundles) and taking a finite coveringS→ ∆
we obtain the following theorem:

THEOREM 4.1. ([Ls, Corollary 3.2])There exist a smooth quasi-projective curve S
defined over some finite extension ofF2 and a locally free sheaf E of rank2 on X×S
such that(F2 × idS)

∗E ≃ E, detE ≃ OX×S and the classifying morphismϕE : S→
MX(2,OX) is not constant. Moreover, one can choose S so that Es is stable for every
closed point s in S.

Now note that the map(FX)
∗ : MX(2,OX) 99KMX(2,OX) defined by pulling back bun-

dles by the absolute Frobenius morphism can be described on∆ as[a : b]→ [a2+b2 :
b2]. In particular, the map(F2n

X )∗|∆ is described as[a : b]→ [a2n,b2n]. It follows that if
a stable bundleE corresponds to a modular point of∆(Fn

2)\∆(Fn−1
2 ) (or, equivalently,

E is defined overF2n) then(F2n
X )∗E ≃ E and(Fm

X )∗E 6≃ E for 0<m< 2n.
This implies that fork= F̄2 and for everys∈ S(k), the bundleEs which is the restric-
tion toX×F2 sof the bundleE from Theorem 4.1, is étale trivializable.

Let X,Sbe varieties defined over an algebraically closed fieldk of positive character-
istic. Assume thatX is projective. Let us setK = k(S). Let η̄ be a generic geometric
point ofS.

PROPOSITION4.2. Let E be a bundle on XS= X×k S→ S which is numerically flat
on the closed fibres of XS= X×k S→ S. Assume that for some s∈ S the bundle Es is
stable and the classifying morphismϕE : S→ MX(r) is not constant. Then Ēη = E|Xη̄
is notétale trivializable.

Proof. Assume that there exists a finite étale coverπ ′ : Y′ → Xη̄ such that(π ′)∗Eη̄ ≃

O r
Y′ . As k is algebraically closed, one has the base changeπ1(X)

∼=
−→ π1(XK̄) for the

étale fundamental group ([SGA1, Exp. X, Cor.1.8]), so there exists a finite étale cover
π : Y → X such thatπ ′ = π ⊗ K̄. Hence there exists a finite morphismT → U over
some open subsetU of S, such thatπ∗

T(ET) is trivial whereπT = π ×k idT : Y×k T →
X×k T andET =pull back byX×k T → X×kU of E|X×kU .
So for anyk-rational pointt ∈ T, one hasπ∗Et ⊂ O r

Y, wherer is the rank ofE. Hence
Et ⊂ π∗π∗Et ⊂ π∗O

r
Y, i.e., all the bundlesEt lie in one fixed bundleπ∗O

r
Y.
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Sinceπ is étale, the diagram

Y

π
��

FY // Y

π
��

X
FX // X

is cartesian (see, e.g., [SGA5, Exp. XIV,§1, Prop. 2]). SinceX is smooth,FX is
flat. By flat base change we have isomorphismsF∗

X(π∗OY) ≃ π∗(F∗
Y OY) ≃ π∗OY. In

particular, this implies thatπ∗OY is strongly semistable of degree 0. Therefore ifEt

is stable then it appears as one of the factors in a Jordan–Hölder filtration of π∗OY.
Since the direct sum of factors in a Jordan–Hölder filtration of a semistable sheaf does
not depend on the choice of the filtration, there are only finitely many possibilities for
the isomorphism classes of stable sheavesEt for t ∈ T(k).
It follows that inU ⊂ S there is an infinite sequence ofk-rational pointssi with the
property thatEsi is stable (since stability is an open property) andEsi

∼= Esi+1. This
contradicts our assumption that the classifying morphismϕE is not constant.

COROLLARY 4.3. There exist smooth curves X and S defined over an algebraic clo-
sure k ofF2 such that X is projective and there exists a locally free sheaf E on
X ×k S→ S such that for every s∈ S(k), the bundle Es is étale trivializable but Ēη
is notétale trivializable. Moreover, on E there exists a structure of a relatively strati-
fied sheafE such that for every s∈ S(k), the bundleEs has finite monodromy but the
monodromy group ofEη̄ is infinite.

The second part of the corollary follows from Proposition 1.3. The above corollary
should be compared to the following fact:

PROPOSITION4.4. Let X be a projective variety defined over an algebraically closed
field k of positive characteristic. Let S be a k-variety and let E be a rank r locally free
sheaf on X×k S. Assume that there exists a positive integer n such that forevery s∈
S(k) we have(Fn

X)
∗Es≃Es, where FX denotes the absolute Frobenius morphism. Then

the classifying morphismϕE : S→ MX(r) is constant and Ēη is étale trivializable.

Proof. By Proposition 2.1, if(Fn
X)

∗Es≃ Es then there exists a finite étale Galois cover
πs : Ys→ X with Galois groupG= GLr(Fpn) such thatπ∗

s Es is trivial (in this case it is
essentially due to Lange and Stuhler; see [LSt]). This implies thatEs ⊂ (πs)∗π∗

s Es ≃
((πs)∗OY)

⊕r and hence grJH Es ⊂ (grJH(πs)∗OY)
⊕r .

SinceX is proper, the étale fundamental group ofX is topologically finitely generated
and hence there exists only finitely many finite étale coverings ofX of fixed degree
(up to an isomorphism). This theorem is known as the Lang–Serre theorem (see [LS,
Théorème 4]). LetS be the set of all Galois coverings ofX with Galois groupG.
Then for every closedk-point s of S the semi-simplification ofEs is contained in
(grJH α∗OY)

⊕r for someα ∈ S . Therefore there are only finitely many possibilities
for images ofk-pointss in MX(r). SinceSis connected, it follows thatϕE : S→MX(r)
is constant.
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The remaining part of the proposition follows from Proposition 3.3.

Note that by Proposition 4.2 together with Corollary 2.3, the monodromy groups of
Es in Theorem 4.1 fors∈ S(k) are not uniformly bounded. In fact, only ifk is an
algebraic closure of a finite field do we know that the monodromy groups ofEs are
finite because thenEs can be defined over some finite subfield ofk and the isomor-
phism(F2)∗Es≃ Es implies that for somen we have(Fn

X)
∗Es≃ Es (see the paragraph

following Theorem 4.1).
Moreover, the above proposition shows that in Theorem 4.1, we cannot hope to replace
F with the absolute Frobenius morphismFX.

5 Analogue of the Grothendieck-Katz conjecture in positive
equicharacteristic

As Corollary 4.3 shows, the positive equicharacteristic version of the Grothendieck–
Katz conjecture which requests a relatively stratified bundle to have finite monodromy
group on the geometric generic fiber once it does on all closedfibers, does not hold
in general. But one can still hope that it holds for a family ofbundles coming from
representations of the prime-to-p quotient of the étale fundamental group. In this
section we follow André’s approach [An, Théorème 7.2.2]in the equicharacteristic
zero case to show that this is indeed the case.

Let k be an algebraically closed field of positive characteristicp. Let f : X → Sbe a
smooth projective morphism ofk-varieties (in particular, integralk-schemes). Letη
be the generic point ofS. In particular,Xη̄ is smooth (see [SGA1, Defn 1.1]).

THEOREM 5.1. Let E be a locally free sheaf of rank r on X. Let us assume that there
exists a dense subset U⊂ S(k) such that for every s in U, there is a finite Galoisétale
coveringπs : Ys → Xs of Galois group of order prime-to-p such thatπ∗

s (Es) is trivial.

1) Then there exists a finite Galoisétale coveringπη̄ :Yη̄ →Xη̄ of order prime-to-p
such thatπ∗

η̄Eη̄ is a direct sum of line bundles.

2) If k is not algebraic over its prime field and U is open in S, then Eη̄ is étale
trivializable on a finiteétale cover Z̄η → Xη̄ which factors as a Kummer (thus
finite abelian of order prime to p) cover Zη̄ →Yη̄ and a Galois cover Ȳη → Xη̄
of order prime to p.

Proof. Without loss of generality, shrinkingS if necessary, we may assume thatS is
smooth. Moreover, by passing to a finite cover ofS and replacingU by its inverse
image, we can assume thatf has a sectionσ : S→ X.
By assumption for everys∈U there exists a finite étale Galois coveringπs : Ys → Xs

with Galois groupΓs of order prime-to-p and such thatπ∗
s Es is trivial. To these data

one can associate a representationρs : π p′

1 (Xs,σ(s))→ Γs ⊂ GLr(k) of the prime-to-p
quotient of the étale fundamental group.
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By the Brauer–Feit version of Jordan’s theorem (see [BF, Theorem]) there exist a
constantj(r) such thatΓs contains an abelian normal subgroupAs of index≤ j(r)
(here we use assumption that thep-Sylow subgroup ofΓs is trivial).
For ak-pointsof Swe have a homomorphism of specialization

αs : π1(Xη̄ ,σ(η̄))։ π1(Xs,σ(s)),

which induces an isomorphism of the prime-to-p quotients of the étale fundamental
groups.
So for everys∈U we can define the composite morphism

ρ̃s : π p′

1 (Xη̄ ,σ(η̄)) αs−→ π p′

1 (Xs,σ(s))
ρs
−→ Γs ։ Γs/As.

Let K be the kernel of the canonical homomorphismπ∗ : π1(X,σ(η̄))−→π1(S, η̄),
let Kp′ be its maximal pro-p′-quotient. Then by [SGA1, Exp. XIII, Proposition 4.3

and Exemples 4.4], one hasKp′ = π p′

1 (Xη̄ ,σ(η̄)), the maximal pro-p′-quotient of
π1(Xη̄ ,σ(η̄)), and one has a short exact sequence

{1}→ π p′

1 (Xη̄ ,σ(η̄))−→π ′
1(X,σ(η̄)) π∗−→π1(S, η̄)→{1},

whereπ ′
1(X,σ(η̄)) is defined as the push-out ofπ1(X,σ(η̄)) by K → Kp′ .

Since Xη̄ is proper, π1(Xη̄ ,σ(η̄)) is topologically finitely generated. Therefore

π p′

1 (Xη̄ ,σ(η̄)) is also topologically finitely generated and hence it contains only
finitely many subgroups of indices≤ j(r). Let G be the intersection of all such sub-

groups inπ p′

1 (Xη̄ ,σ(η̄)). It is a normal subgroup of finite index. Since ker(ρ̃s) is a

normal subgroup of index≤ j(r) in π p′

1 (Xη̄ ,σ(η̄)) we have

G⊂
⋂

s∈U

ker(ρ̃s).

Now let us consider the commutative diagram

π1(Xη̄ ,σ(η̄)) //

��

π1(X,σ(η̄)) //

��

π1(S, η̄) //

��

{1}

{1} // π p′

1 (Xη̄ ,σ(η̄)) // π ′

1(X,σ(η̄)) // π1(S, η̄) // {1}

ThenG ·σ∗(π1(S, η̄)) ⊂ π ′
1(X,σ(η̄)) is a subgroup of finite index. It is open by the

Nikolov–Segal theorem [NS, Theorem 1.1]. So the pre-imageH of this subgroup
under the quotient homomorphismπ1(X,σ(η̄))→ π ′

1(X,σ(η̄)) defines a finite étale
coveringh : X′ → X.
Let us takes∈ S(k). Since the composition

H ⊂ π1(X,σ(η̄))→ π1(X,σ(s))→ π1(S,s)
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is surjective, the geometric fibres ofX′ → S are connected. Let us choose ak-point
in X′ lying overσ(s). By abuse of notation we call itσ ′(s). Similarly, let us choose
a geometric pointσ ′(η̄) of X′

η̄ lying over σ(η̄). Then for anys∈ U we have the
following commutative diagram:

π p′

1 (X′
η̄ ,σ ′(η̄))

0

**
h∗ //

≃

��

π p′

1 (Xη̄ ,σ(η̄)) //

αs ≃

��

π p′

1 (Xη̄ ,σ(η̄))/G

��

π p′

1 (X′
s,σ ′(s))

h∗ // π p′

1 (Xs,σ(s)) // Γs/As

This diagram shows thatπ p′

1 (X′
s,σ ′(s))→Γs factors throughAs and henceE′

s=(h∗E)s

is trivialized by a finite étale Galois coveringπ ′
s :Y′

s →X′
s with an abelian Galois group

of order prime top, which is a subgroup ofAs. Since

E′
s ⊂ (π ′

s)∗(π
′
s)
∗E′

s ≃ ((π ′
s)∗OY′

s
)⊕r ,

and(π ′
s)∗OY′

s
is a direct sum of torsion line bundles of orders prime top, it follows

that for everys∈U the bundleE′
s is also a direct sum of torsion line bundles of order

prime top.
We consider the unionM(X′/S, r) of the components ofMP(X′/S) containing moduli
points of numerically flat bundles, as defined in Section 3. Let us consider theS-
morphismψ : M(X′/S,1)×Sr → M(X′/S) given by([L1], ..., [Lr ])→ [⊕Li ] (in fact we
give it by this formula on the level of functors; existence ofthe morphism follows
from the fact that moduli schemes corepresent these functors). The bundleE′ gives us
a sectionτ : S→ M(X′/S, r), and by the above for everyk-rational points of U , the
pointτ(s) is contained in the image ofψ . Thereforeτ(S) is contained in the image of
ψ asψ is projective (thus proper).
Let us consider the fibre product

M(X′/S,1)×Sr ×M(X′/S,r) S //

��

S

τ
��

M(X′/S,1)×Sr // M(X′/S, r)

Let us recall that in positive characteristic the canonicalmap M(X′ ×SS′/S′, r) →
M(X′/S, r)×SS′ need not be an isomorphism (although it is an isomorphism forr = 1).
Anyway we can find an étale morphismS′ → S over some non-empty open subset
of S, such that there exists a mapυ : S′ → M(X′ ×SS′/S′,1)×S′ r which composed
with M(X′×SS′/S′,1)×S′ r → M(X′×SS′/S′, r) → M(X′/S, r) gives the composition
of S′ → S with τ. This shows that the pull backE′′ of E′ to X′×SS′ has a filtration
whose quotients are line bundles which are of degree 0 on the fibres ofX′×SS′ → S′.
Now let us note the following lemma:
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LEMMA 5.2. Let f : X → S be a projective morphism of k-varieties. Let0→ G1 →
G → G2 → 0 be a sequence of locally free sheaves on X. Assume that there exists a
dense subset U⊂ S(k) such that for each s∈U this sequence splits after restricting to
Xs. Then it splits on the fibre Xη over the generic pointη of S.

Proof. By shrinkingS if necessary, we may assume thatS is affine and the relative
cohomology sheafR1p∗H om(G2,G1) is locally free. The above short exact sequence
defines a classλ ∈ Ext1(G2,G1)≃ H0(S,R1 f∗H om(G2,G1)), such thatλ (s) = 0 for
everyk-rational pointsof U . It follows thatλ = 0 and hence the sequence is split over
the generic point ofS.

Now let us note that on a smooth projective variety every short exact sequence of the
form 0→ G1 → G → G2 → 0 in which G is a direct sum of line bundles of degree
0 andG2 is a line bundle of degree 0 splits. So the filtration ofE′′ restricted to the
closed fibers splits. Therefore the above lemma and easy induction show thatE′′

η ′ is a
direct sum of line bundles, whereη ′ is the generic point ofS′. This shows the first
part of the theorem.

To prove the second part of the theorem, we may assume thatU = S. Let us take a
line bundleL on X such that for everyk-rational points the line bundleLs is étale
trivializable. We need to prove that there exists a positiveintegern prime to p and
such thatL⊗n

η ≃ OXη .

We thank the referee for showing us the following lemma.

LEMMA 5.3. Let g: A→ S be an abelian scheme and letσ be a section of g such that
for all s∈ S(k), σ(s) is torsion of order prime to p. Thenσ is torsion of order prime
to p.

Proof. We may assume thatS is normal and affine. Let us choose a subfieldk′ ⊂ k
that is finitely generated and transcendental overFp and such thatA→ Sandσ come
by base change Speck→ Speck′ from an abelian schemeg′ : A′ → S′ and a sectionσ ′

defined overk′. Letm> 1 be prime top and letΓ be the subgroupA′(S′)∩[m]−1(Z.σ ′)
of A′(S′). ThenΓ is a finitely generated group. Note that assumptions of Néron’s
specialization theorem [L, Chapter 9, Theorem 6.2] are satisfied and therefore there
exists a Hilbert setΣ of points s′ ∈ S′ for which the specialization mapA′(S′) →
A′

s′(k(s
′)) is injective onΓ. Since the Hilbert subsetΣ ⊂ S′ contains infinitely many

closed points (see [L, Chapter 9, Theorems 5.1, 5.2 and 4.2]), there is a closed point
s∈ S the image of which inS′ lies inΣ. The specialization ofZ.σ ats is injective and
henceσ is torsion of order dividing the order ofσ(s), which is prime top.

Let us first assume thatX →Sis of relative dimension 1. By passing to a finite cover of
Swe can assume thatf has a section. The relative Picard schemeA= Pic0(X/S)→ S
is smooth. Using the above lemma to the section corresponding to the line bundleL
we see that there exists some positive integern prime to p and a line bundleM on S
such thatL⊗n ≃ f ∗M. In particular,L⊗n

η ≃ OXη .
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Now we use induction on the relative dimension off : X → S to prove the theorem
in the general case. Note that our assumptions imply thatLη̄ is numerically flat and
therefore the family{L⊗n

η̄ }n∈Z is bounded. Thus for any sufficiently ample divisorH

onXη̄ we haveH1(Xη̄ ,L
⊗n
η̄ (−H)) = 0 for all integersn. We consider such anH which

is defined overη .
Using Bertini’s theorem we can find a very ample divisorY ⊂ X in the linear system
|H| such thatf |Y : Y → S is smooth (possibly after shrinkingS) and such that for
every positive integern we haveH1(Xη ,L⊗n(−Y)|Yη ) = 0. Indeed, shrinkingS and
using semicontinuity of cohomology, we may assume thatH is defined overS, that
the function dimH0(Xs,OXs(H)) is constant andS is affine. Let us choose ak-rational
point s in S. Then by Grauert’s theorem (see [Ha, Chapter III, Corollary12.9]) the
restriction map

H0(X,OX(H))→ H0(Xs,OXs(H))

is surjective. By Bertini’s theorem in the linear system|OXs(H)| there exists a smooth
divisor. By the above we can lift it to a divisorY ⊂ X, which after shrinkingS is the
required divisor.
Applying our induction assumption toL|Y onY →X we see that there exists a positive
integern prime top such that(L|Y)⊗n

η ≃ OYη . Using the short exact sequence

0→ L⊗n
η (−Yη)→ L⊗n

η → (L⊗n
Y )η → 0

we see that the map
H0(Xη ,L

⊗n
η )→ H0(Yη ,(L

⊗n
Y )η )

is surjective. In particular,L⊗n
η has a section and hence it is trivial.

Remarks5.4. 1. Laszlo’s example shows that the first part of the theorem isfalse
if one does not assume that orders of the monodromy groups ofEs are prime
to p (in this exampleEη̄ is a stable rank 2 vector bundle). Note that in this
example,E has even the richer structure of a relatively stratified bundle (see
Proposition 1.3).

2. Let E be a supersingular elliptic curve defined overk = F̄p. Let M be a line
bundle of degree 0 and of infinite order onEFp(t)

. Then one can find a smooth
curveSdefined overk such that there exists a line bundleL onX = S×k E → S
such thatLη̄ ≃ M. In this example the line bundleLs is torsion for everyk-
rational pointsof S as it is defined over a finite field. SinceE is a supersingular
elliptic curve, there are no torsion line bundles of order divisible byp. So in this
case all line bundlesLs for s∈ S(k) are étale trivializable (and the monodromy
group has order prime top).

This shows that the second part of Theorem 5.1 is no longer true if k is an
algebraic closure of a finite field.

Let us keep the notation from the beginning of the section, i.e.,k is an algebraically
closed field of positive characteristicp and f : X →Sis a smooth projective morphism
of k-varieties (in particular connected) with geometrically connected fibers. For sim-
plicity, we also assume thatf has a sectionσ : S→ X.
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LEMMA 5.5. Let E be a locally free sheaf on X. If there exists a point s0 ∈ S(k) such
that Es0 is numerically flat then Ēη is also numerically flat. In particular, if there exists
a point s0 ∈ S(k) such that there is a finite coveringπs0 : Ys0 → Xs0 such thatπ∗

s0
(Es0)

is trivial, then Ēη is also numerically flat.

Proof. Let us fix a relatively ample line bundle. IfEs0 is numerically flat then it
is strongly semistable with numerically trivial Chern classes (see [La2, Proposition
5.1]). SinceE is S-flat, the restriction ofE to any fiber has numerically trivial Chern
classes (as intersection numbers remain constant on fibres). Now note that for anyn
the sheaf(Fn

Xs0/k
)∗Es0 is slope semistable. Since slope semistability is an open prop-

erty, it follows that(Fn
Xη/K

)∗Eη is also slope semistable. By [HL, Corollary 1.3.8] it

follows that(Fn
Xη̄/K̄

)∗Eη̄ is also slope semistable. ThusEη̄ is strongly semistable with

vanishing Chern classes and hence it is numerically flat by [La2, Proposition 5.1].

Let us recall that numerically flat sheaves on a properk-varietyY form a Tannakian
category. A rational pointy∈Y(k) neutralizes it. Thus we can defineS-fundamental
group scheme of Y at the point y(see [La2, Definition 6.1]). For a numerically flat
sheafE onY, we consider the Tannakak-groupπS(〈E〉,y) := Aut⊗(〈E〉,y)⊂ GL(Ey),
where now〈E〉 is the full tensor subcategory of numerically flat bundles spanned by
E. We call it theS-monodromy group scheme. Using this language we can reformulate
Theorem 5.1 in the following way (for simplicity we reformulate only the second part
of the theorem).

THEOREM 5.6. Let E be an S-flat family of numerically flat sheaves on the fibres of
X → S. Let us assume that k is not algebraic over its prime field andthere exists a
non-empty open subset U⊂ S(k) such that for every s in U, the S-monodromy group
schemeπS(〈Es〉,σ(s)) is finiteétale of order prime-to-p. ThenπS(〈Eη̄ 〉,σ(η̄)) is also
finite étale.

6 Verschiebung divisible points on abelian varieties: on the the-
orem by M. Raynaud

Let K be an arbitrary field of positive characteristicp and letA be an abelian variety
defined overK. The multiplication bypn map[pn] : A→ A factors through the relative
Frobenius morphismFn

A/K : A→ A(n) and hence defines theVerschiebung morphism

Vn : A(n) → A such thatVnFn
A/K = [pn].

Definition 6.1. A K-point P of A is said to beV-divisible if for every positive
integern there exists aK-pointPn in A(n) such thatVn(Pn) = P.

Let T be an integral noetherian separated scheme of dimension 1 with field of rational
functionsK. Let us recall that a smooth, separated group scheme of finitetypeA →T
is called aNéron modelof A if the general fiber ofA → T is isomorphic toA and for
every smooth morphismX → T, a morphismXK → AK extends (then uniquely) to a
T-morphismX → A .
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Assume that the base fieldK is the function field of a normal projective varietyS
defined over a fieldk of positive characteristicp.
We say thatA hasa good reductionat a codimension 1 points∈ S if the Néron model
of A over SpecOS,s is an abelian scheme (the usual definition is slightly different as
it assumes that the identity component of the special fibre ofthe Néron model is an
abelian variety; it is equivalent to the above one by [BLR, 7.4, Theorem 5]). We say
that A has potential good reductionat a codimension 1 points∈ S if there exists a
finite Galois extensionK′ of K such that ifS′ is the normalization ofS in K′ thenAK′

has good reduction at every codimension 1 points′ ∈ S′ lying overs.
We say thatA has(potential) good reductionif it has (potential) good reduction at ev-
ery codimension 1 point ofS. Assume thatA has good reduction at every codimension
1 point ofS. Then there exists abig opensubsetU ⊂ S (i.e., the codimension of the
complement ofU in S is ≥ 2) and an abelianU-schemeA →U . Note that the group
A(K) of K-points ofA is isomorphic via the restriction map to the group of rational
sectionsU 99K A of A → U defined over some big open subset ofU . The section
corresponding toP∈ A(K) will be denoted byP̃ : U 99K A .
Let c∈ PicA be a class of a line bundleL. By the theorem of the cubec, satisfies the
following equality:

m∗
123c−m∗

12c−m∗
13c−m∗

23c+m∗
1c+m∗

2c+m∗
3c= 0,

wheremI for I ⊂ {1,2,3} is the mapA×K A×K A→ A defined by addition over the
factors inI . (In particular,mi is thei-th projection). Combining [MB, Chapter III, 3.1]
(relying on [MB, Chapter II, Proposition 1.2.1]), the line bundleL ∈ Pic(A) extends
uniquely (at least if we fix a rigidification) to a line bundleL̃ overAV such that the
class ˜c= [L̃] ∈ Pic(AV) is cubical, i.e., satisfies the relation

m̃∗
123c̃− m̃∗

12c̃− m̃∗
13c̃− m̃∗

23c̃+ m̃∗
1c̃+ m̃∗

2c̃+ m̃∗
3c̃= 0,

whereV ⊂ U is a big open subset and where ˜mI for I ⊂ {1,2,3} is the mapA ×S

A ×SA → A defined by addition over the factors inI .
Now let us choose an ample line bundleH on S. Then the map̂hc : A(K)→ Z given
by

ĥc(P) = degH(P̃− 0̃)
∗
c̃

is well defined as̃P is defined on a big open subset ofSandP̃∗L̃ extends to a rank 1
reflexive sheaf onS. This map is the canonical (Néron–Tate) height ofA corresponding
to c (see [MB, Chapter III, Section 3]).

The following theorem was suggested to the authors by M. Raynaud (in the good
reduction case over a curveS, and with a somewhat different proof).

THEOREM6.2. Assume that A has potential good reduction. If P∈A(K) is V-divisible
and c is symmetric then̂hc(P) = 0.

Proof. Let us first assume thatA has good reduction. By assumption there exists a
K-point Pn of A(n) such thatVn(Pn) = P. SinceA →U is an abelian scheme, so is
A (n) →U , thusPn is the restriction to SpecK of P̃n ∈ A (n)(U).
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Let us factor the absolute Frobenius morphismFn
A into the composition of the relative

Frobenius morphismFn
A/K : A → A(n) andWn : A(n) → A. Let us setcn = W∗

n c. Its

cubical extension ˜cn ∈ Pic(A (n)
Vn

), for some big openVn ⊂U , together withH allows

one to definêhcn(Pn) by the corresponding formula. Since(Fn
A)

∗c = pnc, we have
(Fn

A/K)
∗cn = pnc. On the other hand, sincec is symmetric, we have[pn]∗c= p2nc and

hence(Fn
A/K)

∗((Vn)∗c) = p2nc. Therefore

(Fn
A/K)

∗((Vn)∗c− pncn) = 0.

SinceFn
A/K is an isogeny this implies that the classd = (Vn)∗c− pncn is torsion. By

additivity and functoriality of the canonical height (see [Se, Theorem, p. 35]) we have

ĥc(P) = ĥ(Vn)∗c(Pn) = ĥpncn(Pn)+ ĥd(Pn) = pn · ĥcn(Pn)

(note that additivity implies that̂hmd = mĥd, so sincemd= 0 for somem, we get
ĥd = 0). Therefore ifĥc(P) 6= 0 then|ĥc(P)| ≥ pn and we get a contradiction ifn is
sufficiently large.
Now let us consider the general case. Since there exist only finitely many codimension
1 pointss∈ Sat whichA has bad reduction, one can find a finite Galois extensionK′

of K such that ifS′ is the normalization ofS in K′ thenAK′ has good reduction at
every codimension 1 points′ ∈ S′. On the other hand, ifP∈ A(K) is V-divisible on
A, P⊗K′ ∈ A(K′) is V divisible onAK′ . Then by the above we haveĥπ∗c(P′) = 0 and
functoriality of the canonical height implies thatĥc(P) = 0.

Remark6.3. It is an interesting problem whether Theorem 6.2 holds for anarbitrary
abelian varietyA/K. Its proof shows that one can use the semiabelian reduction
theorem to reduce the general statement to the case whenA has semiabelian reduction
(see [BLR, 7.4, Theorem 1]).

Now assume thatS is geometrically connected. Then the extensionk ⊂ K is regular
(i.e., K/k is separable andk is algebraically closed inK). Let (B,τ) be theK/k-
trace of the abelianK-varietyA, whereB is an abeliank-variety andτ : BK → A is a
homomorphism of abelianK-varieties (it exists by [Co, Theorem 6.2]). Let us recall
that by definition(B,τ) is a final object in the category of pairs consisting of an abelian
k-variety and aK-map from the scalarK-extension of this variety toA.
Since the extensionk ⊂ K is regular, the kernelK-group scheme ofτ is connected
(with connected dual) ([Co, Theorem 6.12]). Thereforeτ is injective onK-points and
in particular we can treatB(k) as a subgroup ofA(K).

COROLLARY 6.4. Assume that A has potential good reduction. If P∈ A(K) is V-
divisible then[P] ∈ (A(K)/B(k))tors. In particular, if k is algebraically closed then
P∈ B(k)+A(K)tors⊂ A(K).

Proof. We can choose the classc∈Pic(A) so that it is ample and symmetric. Then the
first part of the corollary follows from Theorem 6.2 and [Co, Theorem 9.15] (which
is true for regular extensionsK/k).
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To prove the second part take positive integerm such thatmP= Q ∈ B(k). Sincek
is algebraically closed, the setB(k) is divisible and there existsQ′ ∈ B(k) such that
mQ′ = Q. ThenP= Q′+(P−Q′), wherem(P−Q′) = 0.

Let us assume that the fieldk is algebraically closed. It is an interesting question
whether aV-divisibleK-pointP of A can be written as a sum ofQ+R, whereQ∈B(k)
andR∈ A(K)tors is torsionof order prime-to-p.
By the Lang–Néron theorem ([Co, Theorem 2.1]), the groupsA(i)(K)/B(i)(k) are
finitely generated. It follows that the groupsGi = (A(i)(K)/B(i)(k))tors are finite.
Note that the homomorphismB(k) → B(i)(k) induced byF i

B/k is a bijection. One

has a factorizationF i
A/K : A(K1/pi

) → A(i)(K) → A(i)(K1/pi
), inducing a bijection

A(K1/pi
)→ A(i)(K). Thus in particular,

Fi : A(K)/B(k)→ A(i)(K)/B(i)(k)

is injective.
Moreover, the Verschiebung morphism induces the homomorphisms

Vi : A(i)(K)/B(i)(k)→ A(K)/B(k)

such thatViFi = pi andFiVi = pi . This shows that prime-to-p torsion subgroups of
groupsGi are isomorphic and in particular have the same orderm.
Now let us assume that orders of thep-primary torsion subgroups of the abelian groups
Gi are uniformly bounded by somepe. Then for alli ≥ e

Fi(m[P]) = Fi(Vi(m[Pi ])) = pim[Pi] = 0.

This implies thatm[P] = 0, somP∈ B(k). Now B(k) is a divisible group so there
exists someQ′ ∈ B(k) such thatmP= mQ. ThenR= P−Q∈ A(K) is torsion of order
prime top. So we conclude

LEMMA 6.5. If the order of the Gi is bounded as i goes to infinity, under the as-
sumption the Theorem 6.2, there exists a positive integer m,prime to p and such that
m·Pi ∈ B(k) for every integer i.

Note that the above assumption onGi is satisfied, e.g., ifA is an elliptic curve over the
function fieldK of a smooth curve overk = k̄. If A is isotrivial then the assertion is
clear. IfA is not isotrivial then thej-invariant ofA is transcendental overk. In this case
A(Kperf)tors is finite (see [Le]) so orders of the groupsGi = A(i)(K)tors are uniformly
bounded.

7 Stratified bundles

In this section we use the height estimate of the previous section and the fact that
torsion stratified line bundles on a perfect field have order prime to p (apply Proposi-
tion 2.2 together with Lemma 1.1).
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Let k be an algebraically closed field of positive characteristicp. Let f : X → S
be a smooth projective morphism ofk-varieties with geometrically connected fibres.
Assume thatS is projective, which surely is a very strong assumption. Indeed, if
k 6= Fp , and in the statement of Theorem 7.1,S′ is open, then one obtains the stronger
Theorem 7.2. For simplicity, let us also assume thatf has a sectionσ : S→ X.
Consider the torsion component Picτ(X/S) → S of identity of Pic(X/S) → S. Let
ϕn : Pic(X/S)→ Pic(X/S) be the multiplication byn map. Then there exists an open
subgroup scheme Picτ(X/S) of Pic(X/S) such that every geometric points of S the
fibre of Picτ (X/S) overs is the union

⋃

n>0

ϕ−1
n (Pic0(Xs)),

where Pic0(Xs) is the connected component of the identity of Pic(Xs/s). It is well
known that Picτ(X/S) → S is also a closed subgroup scheme of Pic(X/S). More-
over, the morphism Picτ(X/S)→ S is projective and the formation of Picτ(X/S)→ S
commutes with a base change ofS(see, e.g., [Kl, Theorem 6.16 and Exercise 6.18]).
We assume that Pic0(Xs) is reduced for every points∈ S.

THEOREM 7.1. LetL= {Li ,σi} be a relatively stratified line bundle on X/S. Assume
that there exists a dense subset S′ ⊂ S(k) such that for every s∈S′ the stratified bundle
Ls = L|Xs has finite monodromy. ThenLη̄ has finite monodromy.

Proof. ReplacingL by a powerL⊗N, whereN is sufficiently large, we may assume
thatLs ∈ Pic0(Xs) for all closed pointss in S(see [Kl, Corollary 6.17]).
By assumption̂π : ˆA = Pic0(X/S)→Sis an abelian scheme. Let us consider the dual
abelian schemeA → S. We have a well defined Albanese morphismg : (X,σ) →
(A ,e) (see [FGA, Exposé VI, Théorème 3.3]). Moreover, the mapg∗ : Pic0(A /S)→

ˆA = Pic0(X/S) is an isomorphism ofS-schemes. Let us setÂ= ˆAη .
Let Pi be theK-point of Â(i) corresponding to(Li)η . Note that theK-point P0 ∈ Â is
V-divisible. Indeed, by the definition of a relative stratification we haveVn(Pn) = P0

for all integersn. Similarly, we see that all the pointsPi ∈ Â(i)(K) areV-divisible. By
Corollary 6.4 it follows thatPi ∈ B̂(i)(k)+ Â(i)(K)tors, where(B̂/k, τ̂ : B̂K → Â) is the
K/k-trace ofÂ (note that(B̂(i)/k, τ̂(i)) is theK/k-trace ofÂ(i)). So for everyi ≥ 0 we
can writePi = Qi +Ri for someQi ∈ B̂(i)(k) andRi ∈ Â(i)(K)tors.
Now we transpose the above by duality. LetA be the dual abelianK-variety of Â

andB the dual abeliank-variety of B̂. We have theK/k-imagesτ(i) : A(i)
η → B(i)

K and
an S-morphismτ : A → B×k S (possibly after shrinkingS). By abuse of notation
we can treatLi as line bundles onA becauseg∗ : Pic0(A /S) → Pic0(X/S) is an
isomorphism. LetMi be the line bundle onB(i) corresponding toQi and letπi : B(i)×k

S→ B(i) denote the projection. Let us fix a non-negative integeri and take a positive
integerni such thatniRi = 0. Then the line bundleL⊗ni

i ⊗ τ∗π∗
i M⊗−ni

i has degree 0 on
every fiber ofA → S. Thus it is trivial after restriction toAη . Hence after shrinking
Swe can assume thatL⊗ni

i ≃ τ∗π∗
i M⊗ni

i .
Let us fix a points∈ S(k) and consider the morphism

π ′
i = (τ(i)πi)

A
(i)

s
: A

(i)
s → B(i).
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Note thatτ(i) has connected fibres and hence(π ′
i )∗OA

(i)
s

= OB(i) . By assumption there

exists a positive integeras, such that for everyi the order of the line bundle(Li)As

dividesas. The important point is thatas is prime top.
Therefore(π ′

i )
∗M⊗asni

i ≃ OAs and by the projection formula

M⊗asni
i ≃ (π ′

i )∗(π
′
i )
∗M⊗asni

i ≃ (π ′
i )∗OAs ≃ OB.

This implies thatMi is a torsion line bundle and henceQi ∈ Â(i)(K)tors. Therefore

Pi = Qi +Ri ∈ Â(i)(K)tors.

Let us recall that the set ofp-torsion points ofÂ(K) is finite. Assuming it is not empty,
we can therefore find a non-empty open subsetU ⊂ Ssuch that for everys∈U(k) and
every p-torsion pointT ∈ Â(K) the sectionT̃ is defined onU and the pointT̃(s) is
non-zero.
Let us write the order ofPi asmi pei , wheremi is not divisible byp. If e0 ≥ 1 then the
pointm0pe0−1P0 is p-torsion inÂ(K). If we takes∈S′∩U(k), thenasm0pe0−1P̃0(s) =
[L⊗asm0

0 ]s = 0, a contradiction. It follows thatm0P0 = 0. Similarly, the order of allPi

is prime top.
As already mentioned in the last section, the homomorphismÂ(K1/pi

)→ Â(i)(K) in-
duced byF i

A/K is a bijection. So we have an induced injection

Fi : Â(K)→ Â(i)(K).

On the other hand, the Verschiebung morphism induces homomorphisms

Vi : Â(i)(K)→ Â(K)

such thatViFi(P) = piP andFiVi(Q) = piQ for all P∈ Â(K) andQ∈ Â(i)(K). Hence

pim0Pi = FiVi(m0Pi) = Fi(m0P0) = 0

and since the order ofPi is prime to p we havem0Pi = 0 for all i ≥ 0. Therefore
(Li)

⊗m0
η̄ ≃ OXη̄ for all i and the stratified line bundleLη̄ has finite monodromy.

Now we fix the following notation:k is an algebraically closed field of positive char-
acteristicp and f : X → S is a smooth projective morphism ofk-varieties with geo-
metrically connected fibres.

THEOREM7.2. LetE= {Ei,σi} be a relatively stratified bundle on X/S. Assume that
there exists a dense subset U⊂ S(k) such that for every s∈ U the stratified bundle
Es = E|Xs has finite monodromy of order prime to p.

1) Then there exists a finite Galoisétale coveringπη̄ :Yη̄ →Xη̄ of order prime-to-p
such thatπ∗

η̄Eη̄ is a direct sum of stratified line bundles.
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2) If k 6= F̄p and U is open in S(k), then the monodromy group ofEη̄ is finite, and
Eη̄ trivializes on a finitéetale cover Z̄η → Xη̄ which factors as a Kummer (thus
finite abelian of order prime to p) cover Zη̄ →Yη̄ and a Galois cover Ȳη → Xη̄
of order prime to p.

Proof. We prove 1). Let us first remark that the schemesX(i)
η̄ , i ≥ 0, are all isomorphic

(as schemes, not ask-schemes). Therefore the relative Frobenius induces an isomor-
phism on fundamental groups.
By the first part of Theorem 5.1 we know that there exists a finite Galois étale covering

πi : Yη̄,i → X(i)
η̄ of degree prime top such thatπ∗

i (Ei) is a direct sum of line bundles
⊕r

1Li j . Note that from the proof of Theorem 5.1 the degree ofπi depends only on

π p′

1 (X(i)
η̄ ,σ (i)(η̄)) and the Brauer-Feit constantj(r), and therefore it can be bounded

independently ofi. Using the Lang–Serre theorem (see [LS, Théorème 4]) we can

therefore assume thatYη̄,i =Y(i)
η̄ , whereYη̄ =Yη̄,0. Now we know that

⊕r
j=1Li j ≃ (F i

Y
(i)
η̄ /η̄

)∗
(
⊕r

j ′=1 Li+1, j ′
)
.

By the Krull-Schmidt theorem, the set of isomorphism classes of line bundles{Li j} j

is the same as the set of isomorphism classes of lines bundleswhich come by pull-back
{(F i

Y
(i)
η̄ /η̄

)∗(Li+1, j ′)} j ′ . So we can reorder the indicesj ′ so that

(F i

Y
(i)
η̄ /η̄

)∗(Li+1, j)∼= Li, j .

This finishes the proof of 1).
To prove 2), we do the proof 1) replacingYη̄ → Xη̄ by Zη̄ → Xη̄ of Theorem 5.1 2).
This finishes the proof of 2).

Remarks7.3. 1) Case 2) of Theorem 7.2 applied to a line bundle extends Theo-
rem 7.1, whereSwas assumed to be projective, Pic0(Xs) reduced for alls∈ S
closed,S′ ⊂ S(k) dense, to the case whenS is not necessarily projective and
S′ ⊂ S(k) is open and dense, but we have to assume thatk is not algebraic over
its prime field.

2) If Yη̄ has a good projective model satisfying assumptions of Theorem 7.1 then
it follows thatEη̄ has finite monodromy.
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1 Definitions and Notation

Our main result, theorem 3.6, shows that there is an equivalence of categories
between the orthogonal components for the slice filtration (see definition 1.1)
and the weakly birational motivic stable homotopy categories which are con-
structed in this paper (see definition 2.9). Relying on this equivalence; we are
able to describe over an arbitrary base scheme (see theorems 4.2, 4.4 and 4.6)
the slices for projective spaces (including P∞), Thom spaces and blow ups. We
also construct the birational motivic stable homotopy categories (see definition
2.4), which are a natural generalization of the weakly birational motivic sta-
ble homotopy categories, and show (see proposition 2.12) that there exists a
Quillen equivalence between them when the base scheme is a perfect field. Our
approach was inspired by the work of Kahn-Sujatha [1] on birational motives,
where the existence of a connection between the layers of the slice filtration
and birational invariants is explicitly suggested. Furthermore, this approach
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allows to obtain analogues for the slice filtration in the unstable setting (see
remark 3.8).

In this paper X will denote a Noetherian separated base scheme of finite Krull
dimension, SchX the category of schemes of finite type over X and SmX the
full subcategory of SchX consisting of smooth schemes over X regarded as
a site with the Nisnevich topology. All the maps between schemes will be
considered over the base X . Given Y ∈ SchX , all the closed subsets Z of Y
will be considered as closed subschemes with the reduced structure.

Let M be the category of pointed simplicial presheaves in SmX equipped with
the motivic Quillen model structure [14] constructed by Morel-Voevodsky [8, p.
86 Thm. 3.2], taking the affine line A1

X as interval. Given a map f : Y →W in
SmX , we will abuse notation and denote by f the induced map f : Y+ →W+

in M between the corresponding pointed simplicial presheaves represented by
Y and W respectively.

We define T in M to be the pointed simplicial presheaf represented by S1∧Gm,
where Gm is the multiplicative group A1

X − {0} pointed by 1, and S1 denotes
the simplicial circle. Given an arbitrary integer r ≥ 1, Sr (respectively Grm)
will denote the iterated smash product S1∧· · ·∧S1 (respectively Gm∧· · ·∧Gm)
with r-factors; S0 = G0

m will be by definition equal to the pointed simplicial
presheaf X+ represented by the base scheme X .

Let Spt(M) denote Jardine’s category of symmetric T -spectra on M equipped
with the motivic model structure defined in [6, Thm. 4.15] and let SH denote
its homotopy category, which is triangulated. We will follow Jardine’s notation
[6, p. 506-507] where Fn denotes the left adjoint to the n-evaluation functor

Spt(M)
evn // M

(Xm)m≥0
� // Xn

Notice that F0(A) is just the usual infinite suspension spectrum Σ∞
T A.

For every integer q ∈ Z, we consider the following family of symmetric T -spectra

Cqeff = {Fn(S
r ∧Gsm ∧ U+) | n, r, s ≥ 0; s− n ≥ q;U ∈ SmX} (1.1)

where U+ denotes the simplicial presheaf represented by U with a disjoint base
point. Let ΣqTSH

eff denote the smallest full triangulated subcategory of SH
which contains Cqeff and is closed under arbitrary coproducts. Voevodsky [16]
defines the slice filtration in SH to be the following family of triangulated
subcategories

· · · ⊆ Σq+1
T SHeff ⊆ ΣqTSH

eff ⊆ Σq−1
T SHeff ⊆ · · ·

It follows from the work of Neeman [9], [10] that the inclusion

iq : Σ
q
TSH

eff → SH
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has a right adjoint rq : SH → ΣqTSH
eff , and that the following functors

fq :SH → SH

s<q :SH → SH

sq :SH → SH

are triangulated, where fq is defined as the composition iq ◦ rq; and s<q, sq
are characterized by the fact that for every E ∈ SH, we have distinguished
triangles in SH:

fqE
θEq // E

πE
<q // s<qE // S1 ∧ fqE

fq+1E
ρEq // fqE

πE
q // sqE // S1 ∧ fq+1E

We will refer to fqE as the (q − 1)-connective cover of E, to s<qE as the
q-orthogonal component of E, and to sqE as the q-slice of E. It follows di-
rectly from the definition that s<q+1E, sqE satisfy that for every symmetric

T -spectrum K in Σq+1
T SHeff :

HomSH(K, s<q+1E) = HomSH(K, sqE) = 0

Definition 1.1. Let E ∈ Spt(M) be a symmetric T -spectrum. We will say
that E is n-orthogonal, if for all K ∈ ΣnTSH

eff

HomSH(K,E) = 0

Let SH⊥(n) denote the full subcategory of SH consisting of the n-orthogonal
objects.

The slice filtration admits an alternative definition in terms of (left and right)
Bousfield localization of Spt(M) [11, 12]. The Bousfield localizations are con-
structed following Hirschhorn’s approach [2]. In order to be able to apply
Hirschhorn’s techniques, it is necessary to know that Spt(M) is cellular [2,
Def. 12.1.1] and proper [2, Def. 13.1.1].

Theorem 1.2. The Quillen model category Spt(M) is:

1. cellular (see [5], [3, Cor. 1.6] or [12, Thm. 2.7.4]).

2. proper (see [6, Thm. 4.15]).

For details and definitions about Bousfield localization we refer the reader to
Hirschhorn’s book [2]. Let us just mention the following theorem of Hirschhorn,
which guarantees the existence of left and right Bousfield localizations.
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Theorem 1.3 (see [2, Thms. 4.1.1 and 5.1.1]). Let A be a Quillen model
category which is cellular and proper. Let L be a set of maps in A and let K
be a set of objects in A. Then:

1. The left Bousfield localization of A with respect to L exists.

2. The right Bousfield localization of A with respect to the class of K-colocal
equivalences exists.

Now, we can describe the slice filtration in terms of suitable Bousfield localiza-
tions of Spt(M).

Theorem 1.4 (see [12]). 1. Let RCq

eff
Spt(M) be the right Bousfield local-

ization of Spt(M) with respect to the set of objects Cqeff (see Eqn. (1.1)).
Then its homotopy category RCq

eff
SH is triangulated and naturally equiv-

alent to ΣqTSH
eff . Moreover, the functor fq is canonically isomorphic to

the following composition of triangulated functors:

SH
R // RCq

eff
SH

Cq // SH

where R is a fibrant replacement functor in Spt(M), and Cq a cofibrant
replacement functor in RCq

eff
Spt(M).

2. Let L<qSpt(M) be the left Bousfield localization of Spt(M) with respect
to the set of maps

{Fn(S
r ∧Gsm ∧ U+) → ∗| Fn(S

r ∧Gsm ∧ U+) ∈ Cqeff }

Then its homotopy category L<qSH is triangulated and naturally equiva-

lent to SH⊥(q). Moreover, the functor s<q is canonically isomorphic to
the following composition of triangulated functors:

SH
Q // L<qSH

Wq // SH

where Q is a cofibrant replacement functor in Spt(M), and Wq a fibrant
replacement functor in L<qSpt(M).

3. Let SqSpt(M) be the right Bousfield localization of L<q+1Spt(M) with
respect to the set of objects

{Fn(S
r ∧Gsm ∧ U+) | n, r, s ≥ 0; s− n = q;U ∈ SmX}

Then its homotopy category SqSH is triangulated and the identity functor

id : RCq

eff
Spt(M) → SqSpt(M)

is a left Quillen functor. Moreover, the functor sq is canonically isomor-
phic to the following composition of triangulated functors:

SH
R // RCq

eff
SH

Cq // SqSH
Wq+1 // RCq

eff
SH

Cq // SH
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Proof. (1) and (3) follow directly from [12, Thms. 3.3.9, 3.3.25, 3.3.50, 3.3.68].
On the other hand, (2) follows from proposition 3.2.27(3) together with theorem
3.3.26; proposition 3.3.30 and theorem 3.3.45 in [12]

2 Birational and Weakly Birational Cohomology Theories

In this section, we construct the birational and weakly birational motivic sta-
ble homotopy categories. These are defined as left Bousfield localizations of
Spt(M) with respect to maps which are induced by open immersions with a
numerical condition in the codimension of the closed complement (which is
assumed to be smooth in the weakly birational case). The existence of the
left Bousfield localizations considered in this section follows immediately from
theorems 1.2 and 1.3.

Lemma 2.1. Let a, a′, b, b′, p, p′ ≥ 0 be integers such that a − p = a′ − p′ and
b − p = b′ − p′. Assume that p ≥ p′, then for every Y ∈ SmX , there is a weak
equivalence in Spt(M), which is natural with respect to Y

ga,bp,p′(Y ) : Fp(S
a ∧Gbm ∧ Y+) → Fp′(S

a′ ∧Gb
′

m ∧ Y+)

Proof. We have the following adjunction (see [12, Def. 2.6.8])

(Fp, evp, ϕ) : M → Spt(M)

Using this adjunction, we define ga,bp,p′(Y ) as adjoint to the identity map:

Sa ∧Gbm ∧ Y+
id
−→ evp(Fp′ (S

a′ ∧Gb
′

m ∧ Y+)) ∼= Sp−p
′

∧Gp−p
′

m ∧ Sa
′

∧Gb
′

m ∧ Y+
∼= Sa ∧Gbm ∧ Y+

Thus, it is clear that ga,bp,p′(Y ) is natural in Y , and it follows from [12, Prop.
2.4.26] that it is a weak equivalence in Spt(M).

Definition 2.2 (see [13, section 7.5]). Let Y ∈ SchX , and Z a closed sub-
scheme of Y . The codimension of Z in Y , codimY Z is the infimum (over the
generic points zi of Z) of the dimensions of the local rings OY,zi .

Since X is Noetherian of finite Krull dimension and Y is of finite type over X ,
codimY Z is always finite.

Definition 2.3. We fix an arbitrary integer n ≥ 0, and consider the following
set of open immersions which have a closed complement of codimension at least
n+ 1

Bn = {ιU,Y :U → Y open immersion |

Y ∈ SmX ;Y irreducible; (codimY Y \U) ≥ n+ 1}

The letter B stands for birational.
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Now we consider the left Bousfield localization of Spt(M) with respect to a
suitable set of maps induced by the families of open immersions Bn described
above.

Definition 2.4. Let n ∈ Z be an arbitrary integer.

1. Let BnSpt(M) denote the left Bousfield localization of Spt(M) with
respect to the set of maps

sBn = {Fp(G
b
m ∧ ιU,Y ) : b, p, r ≥ 0, b− p ≥ n− r; ιU,Y ∈ Br}.

2. Let b(n) denote its fibrant replacement functor and SH(Bn) its associated
homotopy category.

For n 6= 0 we will call SH(Bn) the codimension n+ 1-birational motivic stable
homotopy category, and for n = 0 we will call it the birational motivic stable
homotopy category.

Lemma 2.5. Let n ∈ Z be an arbitrary integer. Then for every a ≥ 0, the maps

Sa ∧ sBn = {Fp(S
a ∧Gbm ∧ ιU,Y ) : b, p, r ≥ 0, b− p ≥ n− r; ιU,Y ∈ Br}

are weak equivalences in BnSpt(M).

Proof. Let Fp(G
b
m ∧ ιU,Y ) ∈ sBn with ιU,Y ∈ Br. Both Fp(G

b
m ∧ U+) and

Fp(G
b
m ∧Y+) are cofibrant in Spt(M) (see [12, Props. 2.4.17, 2.6.18 and Thm.

2.6.30]) and hence also in BnSpt(M). By construction, Fp(G
b
m∧ιU,Y ) is a weak

equivalence in BnSpt(M); and [2, Thm. 4.1.1.(4)] implies that BnSpt(M) is
a simplicial model category. Thus, it follows from Ken Brown’s lemma (see [4,
lemma 1.1.12]) that Fp(S

a∧Gbm∧ιU,Y ) is also a weak equivalence in BnSpt(M)
for every a ≥ 0.

Proposition 2.6. Let E be an arbitrary symmetric T -spectrum. Then E is
fibrant in BnSpt(M) if and only if the following conditions hold:

1. E is fibrant in Spt(M).

2. For every a, b, p, r ≥ 0 such that b− p ≥ n− r; and every ιU,Y ∈ Br, the
induced map

HomSH(Fp(S
a ∧Gbm ∧ Y+), E) ∼=

ι∗U,Y // HomSH(Fp(S
a ∧Gbm ∧ U+), E)

is an isomorphism.

Proof. (⇒): Since the identity functor

id : Spt(M) → BnSpt(M)
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is a left Quillen functor, the conclusion follows from the derived adjunction

(Q, b(n), ϕ) : SH → SH(Bn)

together with lemma 2.5.
(⇐): Assume that E satisfies (1) and (2). Let ω0, η0 denote the base points of
the pointed simplicial sets Map∗(Fp(G

b
m ∧Y+), E) and Map∗(Fp(G

b
m ∧U+), E)

respectively. Since Fp(G
b
m ∧ Y+) and Fp(G

b
m ∧U+) are always cofibrant, by [2,

Def. 3.1.4(1)(a) and Thm. 4.1.1(2)] it is enough to show that every map in
sBn induces a weak equivalence of simplicial sets:

Map∗(Fp(G
b
m ∧ Y+), E)

ι∗U,Y // Map∗(Fp(G
b
m ∧ U+), E)

Since Spt(M) is a pointed simplicial model category, we observe that lemma
6.1.2 in [4] and remark 2.4.3(2) in [12] imply that the following diagram is
commutative for a ≥ 0 and all the vertical arrows are isomorphisms

πa,ω0Map∗(Fp(G
b
m ∧ Y+), E)

ι∗U,Y ++WWWWWWWWWWWWWWWWWWWW

∼=

��

πa,η0Map∗(Fp(G
b
m ∧ U+), E)

∼=

��

HomSH(Fp(S
a ∧Gbm ∧ Y+), E)

ι∗U,Y

++WWWWWWWWWWWWWWWWWWWW

HomSH(Fp(S
a ∧Gbm ∧ U+), E)

by hypothesis, the bottom row is an isomorphism, hence the top row is also an
isomorphism. This implies that for every map in sBn, the induced map

Map∗(Fp(G
b
m ∧ Y+), E)

ι∗U,Y // Map∗(Fp(G
b
m ∧ U+), E)

is a weak equivalence when it is restricted to the path component of
Map∗(Fp(G

b
m ∧ Y+), E) containing ω0. This holds in particular for

Map∗(Fp+1(G
b+1
m ∧ Y+), E)

ι∗U,Y // Map∗(Fp+1(G
b+1
m ∧ U+), E)

Therefore, the following map is a weak equivalence of pointed simplicial sets,
since taking S1-loops kills the path components that do not contain the base
point

Map∗(S
1,Map∗(Fp+1(G

b+1
m ∧ Y+), E))

��
Map∗(S

1,Map∗(Fp+1(G
b+1
m ∧ U+), E))
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Now, since Spt(M) is a simplicial model category we deduce that the rows in
the following commutative diagram are isomorphisms

Map∗(S
1,Map∗(Fp+1(G

b+1
m ∧ Y+), E))

∼= ++WWWWWWWWWWWWWWWWWWWWW

ι∗U,Y

��

Map∗(Fp+1(S
1 ∧Gb+1

m ∧ Y+), E)

ι∗U,Y

��

Map∗(S
1,Map∗(Fp+1(G

b+1
m ∧ U+), E))

∼= ++WWWWWWWWWWWWWWWWWWWWW

Map∗(Fp+1(S
1 ∧Gb+1

m ∧ U+), E)

Thus, by the three out of two property for weak equivalences, we conclude that

Map∗(Fp+1(S
1 ∧Gb+1

m ∧ Y+), E)
ι∗U,Y // Map∗(Fp+1(S

1 ∧Gb+1
m ∧ U+), E)

is also a weak equivalence of pointed simplicial sets. Finally, lemma 2.1 implies
that the following diagram is commutative and the vertical arrows are weak
equivalences in Spt(M)

Map∗(Fp+1(S
1 ∧Gb+1

m ∧ Y+), E)
ι∗U,Y // Map∗(Fp+1(S

1 ∧Gb+1
m ∧ U+), E)

Map∗(Fp(G
b
m ∧ Y+), E)

ι∗U,Y //

g1,b+1
p+1,p(Y )∗

OO

Map∗(Fp(G
b
m ∧ U+), E)

g1,b+1
p+1,p(U)∗

OO

Thus, we conclude by the two out of three property for weak equivalences that
the bottom arrow is also a weak equivalence in Spt(M).

Proposition 2.7. The homotopy category SH(Bn) is a compactly generated
triangulated category in the sense of Neeman [9, Def. 1.7].

Proof. We will prove first that SH(Bn) is a triangulated category. For this, it
is enough to show that the smash product with the simplicial circle induces a
Quillen equivalence (see [14, sections I.2, I.3])

(− ∧ S1,ΩS1−, ϕ) : BnSpt(M) → BnSpt(M)

It follows from [2, Thm. 4.1.1.(4)] that this adjunction is a Quillen adjunction,
and the same argument as in [12, Cor. 3.2.38] (replacing [12, Prop. 3.2.32]
with proposition 2.6) allows us to conclude that it is a Quillen equivalence.
Finally, since SH is a compactly generated triangulated category (see [12, Prop.
3.1.5]) and the identity functor is a left Quillen functor

id : Spt(M) → BnSpt(M)
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it follows from the derived adjunction

(Q, b(n), ϕ) : SH → SH(Bn)

that SH(Bn) is also compactly generated, having exactly the same set of gen-
erators as SH.

Definition 2.8. We fix an arbitrary integer n ≥ 0, and consider the following
set of open immersions with smooth closed complement of codimension at least
n+ 1

WBn = {ιU,Y :U → Y open immersion |

Y, Z = Y \U ∈ SmX ;Y irreducible; (codimY Z) ≥ n+ 1}

Notice that every map in WBn is also in Bn, but the converse doesn’t hold.
The reason to consider maps ιU,Y in WBn is that if the closed complement
is smooth, then the Morel-Voevodsky homotopy purity theorem (see [8, Thm.
2.23]) characterizes the homotopy cofibre of ιU,Y in terms of the Thom space
of the normal bundle for the closed immersion Y \U → Y .

Definition 2.9. Let n ∈ Z be an arbitrary integer.

1. Let WBnSpt(M) denote the left Bousfield localization of Spt(M) with
respect to the set of maps

sWBn = {Fp(G
b
m ∧ ιU,Y ) : b, p, r ≥ 0, b− p ≥ n− r; ιU,Y ∈ WBr}.

2. Let wb(n) denote its fibrant replacement functor and SH(WBn) its asso-
ciated homotopy category.

For n 6= 0 we will call SH(WBn) the codimension n + 1-weakly birational
motivic stable homotopy category, and for n = 0 we will call it the weakly
birational motivic stable homotopy category.

Proposition 2.10. Let E be an arbitrary symmetric T -spectrum. Then E is
fibrant in WBnSpt(M) if and only if the following conditions hold:

1. E is fibrant in Spt(M).

2. For every a, b, p, r ≥ 0 such that b − p ≥ n − r; and every ιU,Y ∈ WBr,
the induced map

HomSH(Fp(S
a ∧Gbm ∧ Y+), E) ∼=

ι∗U,Y // HomSH(Fp(S
a ∧Gbm ∧ U+), E)

is an isomorphism.

Proof. The proof is exactly the same as in proposition 2.6.
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Proposition 2.11. The homotopy category SH(WBn) is a compactly gener-
ated triangulated category in the sense of Neeman.

Proof. The proof is exactly the same as in proposition 2.7.

Proposition 2.12. Assume that the base scheme X = Spec k, with k a perfect
field, then the Quillen adjunction:

(id, id, ϕ) :WBnSpt(M) → BnSpt(M)

is a Quillen equivalence.

Proof. Consider the following commutative diagram

Spt(M)

id

wwppppppppppp
id

&&MMMMMMMMMM

WBnSpt(M)
id

//_________ BnSpt(M)

where the solid arrows are left Quillen functors. Clearly, WBr ⊆ Br for every
r ≥ 0, so sWBn ⊆ sBn, and we conclude that every sWBn-local equivalence
is a sBn-local equivalence. Therefore, the universal property of left Bousfield
localizations implies that the horizontal arrow is also a left Quillen functor.
The universal property for left Bousfield localizations also implies that it is
enough to show that all the maps in

sBn = {Fp(G
b
m ∧ ιU,Y ) : b, p, r ≥ 0, b− p ≥ n− r; ιU,Y ∈ Br}

become weak equivalences in WBnSpt(M). Given Fp(G
b
m ∧ ιU,Y ) ∈ sBn with

ιU,Y ∈ Br, we proceed by induction on the dimension of Z = Y \U . If dim Z =
0, then Z ∈ SmX since k is a perfect field (and we are considering Z with the
reduced scheme structure), hence Fp(G

b
m ∧ ιU,Y ) ∈ sWBn and then a weak

equivalence in WBnSpt(M).
If dim Z > 0, then we consider the singular locus Zs of Z over X . We have
that dim Zs < dim Z since k is a perfect field. Therefore, by induction on
the dimension Fp(G

b
m ∧ ιV,Y ) is a weak equivalence in WBnSpt(M), where

V = Y \Zs. On the other hand, Fp(G
b
m ∧ ιU,V ) is also a weak equivalence in

WBnSpt(M) since ιU,V is also in Br and its closed complement V \U = Z\Zs
is smooth over X , by construction of Zs.
But Fp(G

b
m ∧ ιU,Y ) = Fp(G

b
m ∧ ιV,Y ) ◦ Fp(G

b
m ∧ ιU,V ), so by the two out of

three property for weak equivalences we conclude that Fp(G
b
m∧ ιU,Y ) is a weak

equivalence in WBnSpt(M).

3 A Characterization of the Slices

This section contains our main results. We give a characterization of the slices
in terms of effectivity and birational conditions (in the sense of definition 3.1),
and we also show that there is an equivalence between the notion of orthogo-
nality (see definition 1.1) and weak birationality (see definition 3.1).

Documenta Mathematica 18 (2013) 51–70



Birational Motivic Homotopy Theories 61

Definition 3.1. Let E ∈ Spt(M) be a symmetric T -spectrum and n ∈ Z.

1. We will say that E is n+1-birational (respectively weakly n+1-birational),
if E is fibrant in BnSpt(M) (respectively WBnSpt(M)). If n = 0, we
will simply say that E is birational (respectively weakly birational).

2. We will say that E is an n-slice if E is isomorphic in SH to sn(E
′) for

some symmetric T -spectrum E′.

Definition 3.2. 1. Let ιU,Y be an open immersion in SmX . Let Y/U de-
note the pushout of the following diagram in M (i.e. the homotopy
cofibre of ιU,Y in M)

U+
ιU,Y //

��

Y+

��
X // Y/U

2. Given a vector bundle π : V → Y with Y ∈ SmX , let Th(V ) denote the
Thom space of V , i.e. V/(V \σ0(Y )), where σ0 : Y → V denotes the zero
section of V .

Lemma 3.3. Let ιU,Y ∈ WBr for some r ≥ 0, and let a, b, p ≥ 0 be arbitrary
integers such that b − p ≥ n− r. Then

Fp(S
a ∧Gbm ∧ Y/U) ∈ Σn+1

T SHeff

Proof. Since Σn+1
T SHeff is a triangulated category, it is enough to consider the

case a = 0. It is also clear that it suffices to show that F0(Y/U) ∈ Σr+1
T SHeff .

Now, it follows from the Morel-Voevodsky homotopy purity theorem (see [8,
Thm. 2.23]) that there is an isomorphism in SH

F0(Y/U) → F0(Th(N))

where Th(N) is the Thom space of the normal bundle N of the (smooth)
complement Z of U in Y :

e : Y \U = Z → Y

But, ιU,Y ∈WBr; so e is a regular embedding of codimension c at least r + 1,
hence N is a vector bundle of rank at least r + 1. Therefore, if N is a trivial
vector bundle we conclude from [8, Prop. 2.17(2)] that

F0(Th(N)) ∼= F0(S
c ∧Gcm ∧ Z+) ∈ ΣcTSH

eff ⊆ Σr+1
T SHeff

Finally, we conclude in the general case by choosing a Zariski cover of Z which
trivializes N and using the Mayer-Vietoris property for Zariski covers.
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Lemma 3.4. Let U ∈ SmX . Consider the open immersion in SmX

mU : A1
U\U → A1

U

given by the complement of the zero section. Then mU ∈ WB0, and there exists
a weak equivalence in Spt(M) between its homotopy cofibre in M, A1

U/(A
1
U\U)

and S1 ∧Gm ∧ U+

tU : A1
U/(A

1
U\U) → S1 ∧Gm ∧ U+

Proof. Since the zero section i0 : U → A1
U is a closed embedding of codimension

1 between smooth schemes over X , it follows from the definition of WB0 that
mU ∈ WB0. Finally, [8, Prop. 2.17(2)] implies the existence of the weak
equivalence tU .

Proposition 3.5. Let E ∈ Spt(M) be a symmetric T -spectrum and n ∈ Z.
Consider the following conditions:

1. E is fibrant in L<n+1Spt(M).

2. E is weakly n+ 1-birational (see definition 3.1(1)).

3. E is n+ 1-birational (see definition 3.1(1)).

Then (1) and (2) are equivalent. In addition, if the base scheme X = Spec k,
with k a perfect field, then (1), (2) and (3) are equivalent.

Proof. (1)⇒(2): Assume that E is fibrant in L<n+1Spt(M). By proposition
2.10 it suffices to show that for every a, b, p, r ≥ 0 with b−p ≥ n− r, and every
ιU,Y ∈ WBr; the induced map

HomSH(Fp(S
a ∧Gbm ∧ Y+), E) ∼=

ι∗U,Y // HomSH(Fp(S
a ∧Gbm ∧ U+), E)

is an isomorphism. We observe that

Fp(S
a ∧Gbm ∧ −) : M → Spt(M)

is a left Quillen functor, therefore the following

Fp(S
a ∧Gbm ∧ U+)

Fp(S
a∧Gb

m∧ιU,Y )// Fp(Sa ∧Gbm ∧ Y+) // Fp(Sa ∧Gbm ∧ Y/U)

is a cofibre sequence in Spt(M). However, SH is a triangulated category and
lemma 2.1 implies that

Fp+1(S
a ∧Gb+1

m ∧ Y/U) ∼= ΩS1 ◦R ◦ Fp(S
a ∧Gbm ∧ Y/U)

are isomorphic in SH, where R denotes a fibrant replacement functor in
Spt(M). Hence it suffices to show that

HomSH(Fp+1(S
a ∧Gb+1

m ∧ Y/U), E) = HomSH(Fp(S
a ∧Gbm ∧ Y/U), E) = 0

Documenta Mathematica 18 (2013) 51–70



Birational Motivic Homotopy Theories 63

But this follows from lemma 3.3 together with [12, Prop. 3.3.30], since we are
assuming that E is fibrant in L<n+1Spt(M).
(2)⇒(1) Assume that E is n + 1-weakly birational. Then, proposition 3.3.30
in [12] implies that it suffices to show that

HomSH(Fp(S
a ∧Gbm ∧ U+), E) = 0

for every Fp(S
a ∧Gbm ∧ U+) ∈ Cn+1

eff .
The same argument as in lemma 2.5 implies that it is enough to consider the
case when Fp(G

b
m ∧ U+) ∈ Cn+1

eff . Moreover, we can further reduce to the case

where b, p ≥ 1 and Fp(S
1∧Gbm∧U+) ∈ Cn+1

eff . In effect, if Fp(G
b
m∧U+) ∈ Cn+1

eff ,
then lemma 2.1 implies that the natural map

g1,b+1
p+1,p(U) : Fp+1(S

1 ∧Gb+1
m ∧ U+) → Fp(G

b
m ∧ U+)

is a weak equivalence in Spt(M).
Now, it follows from lemma 3.4, that if b ≥ 1, and 0 − p + (b − 1) ≥ n (i.e.
b − p ≥ n + 1); then Fp(G

b−1
m ∧ mU ) ∈ sWBn, i.e. a weak equivalence in

WBnSpt(M).
Since SH(WBn) is a triangulated category, id : Spt(M) → WBnSpt(M) is a
left Quillen functor, and Fp(G

b−1
m ∧ (A1

U/(A
1
U\U+))) is the homotopy cofibre of

Fp(G
b−1
m ∧mU ); we deduce that E being n+ 1-weakly birational implies that

HomSH(Fp(G
b−1
m ∧ (A1

U/(A
1
U\U+))), E) = 0

Finally, it follows from lemma 3.4 that the following groups are isomorphic

0 = HomSH(Fp(G
b−1
m ∧ (A1

U/(A
1
U\U+))), E)

∼= HomSH(Fp(S
1 ∧Gbm ∧ U+), E)

(2)⇔(3): This follows directly from proposition 2.12.

Theorem 3.6. The Quillen adjunction

(id, id, ϕ) :WBnSpt(M) → L<n+1Spt(M)

is a Quillen equivalence. In addition, if the base scheme X = Spec k, with k a
perfect field, then the Quillen adjunction

(id, id, ϕ) : BnSpt(M) → L<n+1Spt(M)

is also a Quillen equivalence.

Proof. We show first that WBnSpt(M) and L<n+1Spt(M) are Quillen equiv-
alent. Since WBnSpt(M), L<n+1Spt(M) are both left Bousfield localizations
of Spt(M), we deduce that they are simplicial model categories with the same
cofibrant replacement functor Q. Thus, it suffices to show that they have the
same class of weak equivalences.
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However, proposition 3.5 implies that WBnSpt(M), and L<n+1Spt(M) also
have the same class of fibrant objects. Therefore, it follows from [2, Thm. 9.7.4]
that they have exactly the same class of weak equivalences.
Finally, if the base scheme is a perfect field, by proposition 2.12 we conclude
that WBnSpt(M) and BnSpt(M) are Quillen equivalent.

Theorem 3.7. Let E be fibrant in Spt(M). Then E is an n-slice (see definition
3.1(2)) if and only if the following conditions hold:

S1 E is n-effective, i.e. E ∈ ΣnTSH
eff .

S2 E is n+ 1-weakly birational.

In addition, if the base scheme X = Spec k, with k a perfect field, then E is
an n-slice if and only if the following conditions hold:

GSS1 E is n-effective, i.e. E ∈ ΣnTSH
eff .

GSS2 E is n+ 1-birational.

Proof. Assume that E is an n-slice. Then theorems 1.4(1) and 1.4(3) imply
that E is n-effective and fibrant in L<n+1Spt(M). Hence, proposition 3.5
implies that E is also n+ 1-weakly birational.
Now we assume that E satisfies the conditions S1 and S2 above. Then, propo-
sition 3.5 implies that E is fibrant in L<n+1Spt(M). Therefore, theorem 1.4(3)
implies that E is isomorphic in SH to its own n-slice sn(E).
Finally, if the base scheme is a perfect field, then by proposition 3.5 the condi-
tions S2 and GSS2 are equivalent; hence we can conclude applying the same
argument as above.

Remark 3.8. Notice that theorem 3.6 implies that it is possible to construct
the slice filtration directly from the Quillen model categories WBnSpt(M)
described in definition 2.9 without making any reference to the effective cat-
egories ΣqTSH

eff . One of the interesting consequences of this fact is that it
is possible to obtain analogues of the slice filtration in the unstable setting,
since the suspension with respect to T or S1 does not play an essential role
in the construction of WBnSpt(M), i.e. we could consider the left Bousfield
localization of the motivic unstable homotopy category M with respect to the
maps in definition 2.8. We will study the details of this construction in a future
work.

4 Some Computations

In this section we use the characterization of the slices obtained in theorem 3.7
to describe the slices of projective spaces, Thom spaces and blow ups.
To simplify the notation, given a simplicial presheaf K ∈ M or a map f ∈ M;
let sj(K), sj(f) (respectively s<j(K), s<j(f)) denote sj(F0(K)), sj(F0(f))
(respectively s<j(F0(K)), s<j(F0(f))).
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Lemma 4.1. Let g : E → F be a map in SH such that s<n(g) and s<n+1(g) are
both isomorphisms in SH. Then the n-slice of g, sn(g) is also an isomorphism
in SH.

Proof. It follows from [12, Prop. 3.1.19] that the rows in the following commu-
tative diagram are distinguished triangles in SH

sn(E)

sn(g)

��

// s<n+1(E)

s<n+1(g)

��

// s<n(E)

s<n(g)

��

// S1 ∧ sn(E)

S1∧sn(g)

��
sn(F ) // s<n+1(F ) // s<n(F ) // S1 ∧ sn(F )

Thus, we conclude that sn(g) is also an isomorphism in SH.

Consider Y ∈ SmX . Let Pn(Y ) denote the trivial projective bundle of rank
n over Y , and let P∞(Y ) denote the colimit in M of the following filtered
diagram

P0(Y ) → P1(Y ) → · · · → Pn(Y ) → · · · (4.1)

given by the inclusions of the respective hyperplanes at infinity.

Theorem 4.2. Let Y ∈ SmX . Then for any integer j ≤ n, the diagram 4.1
induces the following isomorphisms in SH

sj(P
n(Y )+)

∼= // sj(Pn+1(Y )+)
∼= // · · ·

∼= // sj(P∞(Y )+)

Proof. Let k > n, and consider the closed embedding induced by the dia-
gram (4.1) λkn : Pn(Y ) → Pk(Y ). It is possible to choose a linear embedding
Pk−n−1(Y ) → Pk(Y ) such that its open complement Uk,n contains Pn(Y ) and
has the structure of a vector bundle over Pn(Y ), with zero section σkn:

Uk,n
vkn //

��

Pk(Y ) Pk−n−1(Y )oo

Pn(Y )

σk
n

OO

λk
n

GG

By homotopy invariance s<j(σ
k
n) is an isomorphism in SH for every integer j.

On the other hand, if j ≤ n, then F0(v
k
n) is a weak equivalence inWBjSpt(M)

since the codimension of its closed complement is n+1. Thus, theorems 1.4(2)
and 3.6 imply that if j ≤ n+ 1, then s<j(v

k
n) is also an isomorphism in SH.

Therefore, s<j(λ
k
n) = s<j(v

k
n)◦ s<j(σ

k
n) is an isomorphism in SH for j ≤ n+1;

and using lemma 4.1 we conclude that the induced map on the slices sj(λ
k
n) is

also an isomorphism for j ≤ n.
Finally, the result for P∞(Y ) follows directly from the fact that the slices
commute with filtered homotopy colimits.
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LetHZ denote Voevodsky’s Eilenberg-MacLane spectrum (see [15, section 6.1])
representing motivic cohomology in SH.

Corollary 4.3. Assume that the base scheme X = Spec k, with k a perfect
field. Then, in the following diagram all the symmetric T -spectra are isomor-
phic to HZ:

HZ
∼= // s0(P0(k)+)

∼= // s0(P1(k)+)
∼= // · · ·

· · ·
∼= // s0(Pn(k)+)

∼= // · · ·
∼= // s0(P∞(k)+)

Proof. This follows immediately from theorem 4.2 together with the compu-
tation of Levine [7, Thm. 10.5.1] and Voevodsky [17] for the zero slice of the
sphere spectrum.

Theorem 4.4. Let ιU,Y ∈WBn, π : V → Y a vector bundle of rank r together
with a trivialization t : π−1(U) → ArU of its restriction to U . Then for every
integer j ≤ n, there exists an isomorphism in SH (see definition 3.2(2))

sj(Th(V )) ∼= Sr ∧Grm ∧ sj−r(Y+)

Proof. Let Z ∈ SmX be the closed complement of ιU,Y . Consider the following
diagram in SmX , where all the squares are cartesian

π−1(Z) ∩ (V \σ0(Y )) //

��

V \σ0(Y )

��

π−1(U) ∩ (V \σ0(Y ))
βoo

��
π−1(Z) //

��

V

π

��

π−1(U)
αoo

��
Z // Y UιU,Y

oo

and let γ : Th(π−1(U)) → Th(V ) be the induced map between the corre-
sponding Thom spaces. We observe that α, β also belong to WBn; thus, if
j ≤ n we conclude that F0(ιU,Y ), F0(α), F0(β) are all weak equivalences in
WBjSpt(M). Therefore, theorems 1.4(2) and 3.6 imply that if j ≤ n+1, then
s<j(ιU,Y ), s<j(α), s<j(β) are isomorphisms in SH. We claim that if j ≤ n+1,
then

s<j(γ) : s<j(Th(π
−1(U))) → s<j(Th(V ))

is also an isomorphism in SH. In effect, by construction of the Thom spaces,
we deduce that for any integer j ∈ Z, the rows in the following commutative
diagram in SH are in fact distinguished triangles

s<j((π
−1(U) ∩ (V \σ0(Y )))+) //

s<j(β)

��

s<j(π
−1(U)+) //

s<j(α)

��

s<j(Th(π
−1(U)))

s<j(γ)

��
s<j((V \σ0(Y ))+) // s<j(V+) // s<j(Th(V ))
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Since s<j(α), s<j(β) are isomorphisms in SH for j ≤ n + 1, we conclude that
for j ≤ n+ 1, s<j(γ) is also an isomorphism in SH.
Thus, lemma 4.1 implies that for j ≤ n, sj(ιU,Y ), sj(γ) are isomorphisms in SH.
Now, we use the trivialization t to obtain the following commutative diagram
in SmX where the rows are isomorphisms

ArU\U

��

π−1(U) ∩ (V \σ0(Y ))
t̃
∼=

oo

��
ArU

""E
EEEEEEE

π−1(U)

πU

wwooooooooooooo

t
∼=

oo

U

The same argument as above, shows that for every integer j ∈ Z, there is an
isomorphism in SH

sj(t̄) : sj(Th(π
−1(U))) → sj(Th(A

r
U ))

On the other hand, [8, Prop. 2.17(2)] implies that there is a weak equivalence
w : F0(Th(A

r
U )) → Sr ∧ Grm ∧ F0(U+) in Spt(M). Thus, for j ≤ n there exist

isomorphisms in SH

sj(Th(π
−1(U)))

sj(t̄) //

sj(γ)

��

sj(Th(A
r
U ))

sj(w)

��
sj(Th(V )) sj(S

r ∧Grm ∧ U+)

However, there exists a canonical isomorphism in SH

sj(S
r ∧Grm ∧ U+) → Sr ∧Grm ∧ sj−r(U+)

Finally, we conclude by using the isomorphism sj−r(ιU,Y ) (notice that if j ≤ n
then certainly j − r ≤ n, since r ≥ 0).

Corollary 4.5. Assume that the base scheme X = Spec k, with k a perfect
field. Let ιU,Y ∈ Bn, π : V → Y a vector bundle of rank r together with a
trivialization t : π−1(U) → ArU of its restriction to U . Then for every integer
j ≤ n, there exists an isomorphism in SH

sj(Th(V )) ∼= Sr ∧Grm ∧ sj−r(Y+)

Proof. Proposition 2.12 implies that F0(ιU,Y ) is a weak equivalence in
WBjSpt(M) for j ≤ n. Hence, the result follows using exactly the same
argument as in theorem 4.4.
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Given a closed embedding Z → Y of smooth schemes over X , let BℓZY denote
the blowup of Y with center in Z.

Theorem 4.6. Let ιU,Y ∈ WBn with closed complement Z, and j ∈ Z an
arbitrary integer. Consider the following cartesian square in SmX

D

q

��

d // BℓZY

p

��

U
uoo

Z
i

// Y UιU,Y

oo

(4.2)

and let qj , dj , pj, ij denote sj(q), sj(d), sj(p), sj(i) respectively. Then the carte-
sian square (4.2) induces the following distinguished triangle in SH

sj(D+)
(−dj

qj
)

// sj(BℓZY+)⊕ sj(Z+)
(pj ,ij) // sj(Y+) (4.3)

If j ≤ n, then sj(ιU,Y ) is an isomorphism in SH, and the following distin-
guished triangles in SH split

sj(D+)

(−dj
qj
)

//
sj(BℓZY+)⊕ sj(Z+)oo

(pj ,ij) //
sj(Y+)

(rj0 )
oo (4.4)

sj(Y+)
rj //

sj(BℓZY+)
pj

oo
//
sj(Th(OD(1)))oo (4.5)

where rj = sj(u) ◦ (sj(ιU,Y ))
−1, and OD(1) denotes the canonical line bundle

of the projective bundle q : D → Z.

Proof. It follows from [8, Prop. 2.29 and Rmk. 2.30] that the following square
is homotopy cocartesian in M

S1 ∧D+

id∧q

��

id∧d // S1 ∧ BℓZY+

id∧p

��
S1 ∧ Z+ id∧i

// S1 ∧ Y+

Thus, we deduce that the following diagram is a distinguished triangle in SH

F0(D+)
(−F0(d)

F0(q) ) // F0(BℓZY+)⊕ F0(Z+)
(F0(p),F0(i)) // F0(Y+)

Since the slices sj are triangulated functors, it follows that diagram (4.3) is a
distinguished triangle in SH.
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Now, we prove that sj(ιU,Y ) is an isomorphism for j ≤ n. By lemma 4.1, it
suffices to show that s<j(ιU,Y ) is an isomorphism in SH for j ≤ n+1. But this
follows directly from theorems 3.6 and 1.4(2) since F0(ιU,Y ) is clearly a weak
equivalence in WBjSpt(M) for j ≤ n.
Thus, rj is well defined for j ≤ n, and the following diagram shows that it gives
a splitting for the distinguished triangle (4.4)

sj(U+)
sj(u) // sj(BℓZY+)

pj

��
sj(U+)

sj(ιU,Y )
// sj(Y+)

(4.6)

Finally, since the normal bundle of the closed embedding d : D → BℓZY is given
by OD(1), we deduce from the Morel-Voevodsky homotopy purity theorem (see
[8, Thm. 2.23]) that the following diagram is a distinguished triangle in SH

sj(U+)
sj(u) // sj(BℓZY+) // sj(Th(OD(1)))

Combining this distinguished triangle with diagram (4.6) above, we conclude
that diagram (4.5) is a split distinguished triangle in SH for j ≤ n.
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Études Sci. Publ. Math., (90):45–143 (2001), 1999.

[9] A. Neeman. The Grothendieck duality theorem via Bousfield’s techniques
and Brown representability. J. Amer. Math. Soc., 9(1):205–236, 1996.

[10] A. Neeman. Triangulated categories, volume 148 of Annals of Mathematics
Studies. Princeton University Press, Princeton, NJ, 2001.

[11] P. Pelaez. Mixed motives and the slice filtration. C. R. Math. Acad. Sci.
Paris, 347(9-10):541–544, 2009.

[12] P. Pelaez. Multiplicative properties of the slice filtration. Astérisque,
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Abstract. We define weak units in a semi-monoidal 2-category C

as cancellable pseudo-idempotents: they are pairs (I, α) where I is
an object such that tensoring with I from either side constitutes a
biequivalence of C , and α : I ⊗ I → I is an equivalence in C . We
show that this notion of weak unit has coherence built in: Theorem A:
α has a canonical associator 2-cell, which automatically satisfies the
pentagon equation. Theorem B: every morphism of weak units is
automatically compatible with those associators. Theorem C: the 2-
category of weak units is contractible if non-empty. Finally we show
(Theorem E) that the notion of weak unit is equivalent to the notion
obtained from the definition of tricategory: α alone induces the whole
family of left and right maps (indexed by the objects), as well as the
whole family of Kelly 2-cells (one for each pair of objects), satisfying
the relevant coherence axioms.

2010 Mathematics Subject Classification: 18D05; 18D10
Keywords and Phrases: Monoidal 2-categories, units, coherence.

Introduction

The notion of tricategory, introduced by Gordon, Power, and Street [2] in
1995, seems still to represent the highest-dimensional explicit weak categorical
structure that can be manipulated by hand (i.e. without methods of homotopy
theory), and is therefore an important test bed for higher-categorical ideas. In
this work we investigate the nature of weak units at this level. While coherence
for weak associativity is rather well understood, thanks to the geometrical
insight provided by the Stasheff associahedra [12], coherence for unit structures
is more mysterious, and so far there seems to be no clear geometric pattern for
the coherence laws for units in higher dimensions. Specific interest in weak units
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stems from Simpson’s conjecture [11], according to which strict n-groupoids
with weak units should model all homotopy n-types.

In the present paper, working in the setting of a strict 2-category C with
a strict tensor product, we define a notion of weak unit by simple axioms
that involve only the notion of equivalence, and hence in principle make sense
in all dimensions. Briefly, a weak unit is a cancellable pseudo-idempotent.
We work out the basic theory of such units, and compare with the notion
extracted from the definition of tricategory. In the companion paper Weak
units and homotopy 3-types [4] we employ this notion of unit to prove a version
of Simpson’s conjecture for 1-connected homotopy 3-types, which is the first
nontrivial case. The strictness assumptions of the present paper should be
justified by that result.

By cancellable pseudo-idempotent we mean a pair (I, α) where I is an object in
C such that tensoring with I from either side is an equivalence of 2-categories,
and α : I ⊗ I ∼→ I is an equi-arrow (i.e. an arrow admitting a pseudo-inverse).
The remarkable fact about this definition is that α, viewed as a multiplication
map, comes with canonical higher order data built in: it possesses a canonical
associator A which automatically satisfies the pentagon equation. This is our
Theorem A. The point is that the arrow α alone, thanks to the cancellability
of I, induces all the usual structure of left and right constraints with all the
2-cell data that goes into them and the axioms they must satisfy.

As a warm-up to the various constructions and ideas, we start out in Section 1
by briefly running through the corresponding theory for cancellable-idempotent
units in monoidal 1-categories. This theory has been treated in detail in [8].

The rest of the paper is dedicated to the case of monoidal 2-categories. In
Section 2 we give the definitions and state the main results: Theorem A says
that there is a canonical associator 2-cell for α, and that this 2-cell automati-
cally satisfies the pentagon equation. Theorem B states that unit morphisms
automatically are compatible with the associators of Theorem A. Theorem C
states that the 2-category of units is contractible if non-empty. Hence, ‘being
unital’ is, up to homotopy, a property rather than a structure.

Next follow three sections dedicated to proofs of each of these three theorems.
In Section 3 we show how the map α : II ∼→ I alone induces left and right
constraints, which in turn are used to construct the associator and establish
the pentagon equation. The left and right constraints are not canonical, but
surprisingly the associator does not depend on the choice of them. In Sec-
tion 4 we prove Theorem B by interpreting it as a statement about units in
the 2-category of arrows, where it is possible to derive it from Theorem A. In
Section 5 we prove Theorem C. The key ingredient is to use the left and right
constraints to link up all the units, and to show that the unit morphisms are
precisely those compatible with the left and right constraints; this makes them
‘essentially unique’ in the required sense.
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In Section 6 we go through the basic theory of classical units (i.e. as extracted
from the definition of tricategory [2]). Finally, in Section 7 we show that the
two notions of unit are equivalent. This is our Theorem E. A curiosity implied
by the arguments in this section is that the left and right axioms for the 2-
cell data in the Gordon-Power-Street definition (denoted TA2 and TA3 in [2])
imply each other.
(We have no Theorem D.)

This notion of weak units as cancellable idempotents is precisely what can be ex-
tracted from the more abstract, Tamsamani-style, theory of fair n-categories [7]
by making an arbitrary choice of a fixed weak unit. In the theory of fair cate-
gories, the key object is a contractible space of all weak units, rather than any
particular point in that space, and handling this space as a whole bypasses co-
herence issues. However, for the sake of understanding what the theory entails,
and for the sake of concrete computations, it is interesting to make a choice and
study the ensuing coherence issues, as we do in this paper. The resulting ap-
proach is very much in the spirit of the classical theory of monoidal categories,
bicategories, and tricategories, and provides some new insight to these theories.
To stress this fact we have chosen to formulate everything from scratch in such
classical terms, without reference to the theory of fair categories.
In the case of monoidal 1-categories, the cancellable-idempotent viewpoint on
units goes back to Saavedra [10]. The importance of this viewpoint in higher
categories was first suggested by Simpson [11], in connection with his weak-unit
conjecture. He gave an ad hoc definition in this style, as a mere indication of
what needed to be done, and raised the question of whether higher homotopical
data would have to be specified. The surprising answer is, at least here in
dimension 3, that specifying α is enough, then the higher homotopical data is
automatically built in.

Acknowledgements. We thank Georges Maltsiniotis for pointing out to us
that the cancellable-idempotent notion of unit in dimension 1 goes back to
Saavedra [10], and we thank Josep Elgueta for catching an error in an ear-
lier version of our comparison with tricategories. The first-named author was
supported by the NSERC. The second-named author was very happy to be
a CIRGET postdoc at the UQAM in 2004, and currently holds support from
grants MTM2009-10359 and MTM2010-20692 of Spain.

1 Units in monoidal categories

It is helpful first briefly to recall the relevant results for monoidal categories,
referring the reader to [8] for further details of this case.

1.1. Semi-monoidal categories. A semi-monoidal category is a category
C equipped with a tensor product (which we denote by plain juxtaposition),
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i.e. an associative functor

C × C −→ C

(X,Y ) 7−→ XY.

For simplicity we assume strict associativity, X(Y Z) = (XY )Z.

1.2. Monoidal categories. (Mac Lane [9].) A semi-monoidal category C

is a monoidal category when it is furthermore equipped with a distinguished
object I and natural isomorphisms

IX
λX // X XI

ρX
oo

obeying the following rules (cf. [9]):

λI = ρI (1)

λXY = λXY (2)

ρXY = XρY (3)

XλY = ρXY (4)

Naturality of λ and ρ implies

λIX = IλX , ρXI = ρXI, (5)

independently of Axioms (1)–(4).

1.3 Remark. Tensoring with I from either side is an equivalence of categories.

1.4 Lemma. (Kelly [5].) Axiom (4) implies axioms (1), (2), and (3).

Proof. (4) implies (2): Since tensoring with I on the left is an equivalence, it
is enough to prove IλXY = IλXY . But this follows from Axiom (4) applied
twice (swap λ out for a ρ and swap back again only on the nearest factor):

IλXY = ρIXY = IλXY.

Similarly for ρ, establishing (3).
(4) and (2) implies (1): Since tensoring with I on the right is an equivalence,
it is enough to prove λII = ρII. But this follows from (2), (5), and (4):

λII = λII = IλI = ρII. ✷

The following alternative notion of unit object goes back to Saavedra [10]. A
thorough treatment of the notion was given in [8].
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1.5. Units as cancellable pseudo-idempotents. An object I in a semi-
monoidal category C is called cancellable if the two functors C → C

X 7−→ IX

X 7−→ XI

are fully faithful. By definition, a pseudo-idempotent is an object I equipped
with an isomorphism α : II ∼→ I. Finally we define a unit object in C to be a
cancellable pseudo-idempotent.

1.6 Lemma. [8] Given a unit object (I, α) in a semi-monoidal category C , for
each object X there are unique arrows

IX
λX // X XI

ρX
oo

such that

(L) IλX = αX

(R) ρXI = Xα.

The λX and ρX are isomorphisms and natural in X.

Proof. Let L : C → C denote the functor defined by tensoring with I on the
left. Since L is fully faithful, we have a bijection

Hom(IX,X) → Hom(IIX, IX).

Now take λX to be the inverse image of αX ; it is an isomorphism since αX is.
Naturality follows by considering more generally the bijection

Nat(L, idC ) → Nat(L ◦ L,L);

let λ be the inverse image of the natural transformation whose components are
αX . Similarly on the right. ✷

1.7 Lemma. [8] For λ and ρ as above, the Kelly axiom (4) holds:

XλY = ρXY.

Therefore, by Lemma 1.6 a semi-monoidal category with a unit object is a
monoidal category in the classical sense.

Proof. In the commutative square

XIIY
XIλY //

ρXIY

��

XIY

ρXY

��

XIY
XλY

// XY
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the top arrow is equal to XαY , by X tensor (L), and the left-hand arrow is
also equal to XαY , by (R) tensor Y . Since XαY is an isomorphism, it follows
that XλY = ρXY . ✷

1.8 Lemma. For a unit object (I, α) we have: (i) The map α : II → I is
associative. (ii) The two functors X 7→ IX and X 7→ XI are equivalences.

Proof. Since α is invertible, associativity amounts to the equation Iα = αI,
which follows from the previous proof by setting X = Y = I and applying L and
R once again. To see that L is an equivalence, just note that it is isomorphic
to the identity via λ. ✷

1.9. Uniqueness of units. Just as in a semi-monoid a unit element is unique
if it exists, one can show [8, 2.20] that in a semi-monoidal category, between
any two units there is a unique isomorphism of units. This statement does not
involve λ and ρ, but the proof does: the canonical isomorphism I ∼→ J is the

composite I
ρ−1
I−→ IJ

λJ−→ J .

2 Units in monoidal 2-categories: definition and main results

In this section we set up the necessary terminology and notation, give the main
definition, and state the main results.

2.1. 2-categories. We work in a strict 2-category C . We use the symbol # to
denote composition of arrows and horizontal composition of 2-cells in C , always
written from the left to the right, and occasionally decorating the symbol # by
the name of the object where the two arrows or 2-cells are composed. By an
equi-arrow in C we understand an arrow f admitting an (unspecified) pseudo-
inverse, i.e. an arrow g in the opposite direction such that f#g and g#f are
isomorphic to the respective identity arrows, and such that the comparison 2-
cells satisfy the usual triangle equations for adjunctions. (The usual word for
‘equi-arrow’ is of course ‘equivalence’; we reserve the latter word for equivalence
of categories and 2-categories. We find it useful to have a different word for
the equivalences inside a 2-category.) It is worth pointing out that it is not
necessary to insist on the triangle equations. If the 2-cells exist but do not
satisfy the triangle equation, they can always be replaced by 2-cells that do.
We shall make extensive use of arguments with pasting diagrams [6]. Our
drawings of 2-cells should be read from bottom to top, so that for example

X
h //

f
  

@@
@@

@@
@ Z

Y

U
g

??~~~~~~~

denotes U : f #
Y
g ⇒ h. The symbol © will denote identity 2-cells.
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The few 2-functors we need all happen to be strict. By natural transformation
we always mean pseudo-natural transformation. Hence a natural transforma-
tion u : F ⇒ G between two 2-functors from D to C is given by an arrow
uX : FX → GX for each object X ∈ D , and an invertible 2-cell

FX
uX //

F (x)

��

ux

GX

G(x)

��

FX ′
uX′

// GX ′

for each arrow x : X → X ′ in D , subject to the usual compatibility condi-
tions [6]. The modifications we shall need will happen to be invertible.

2.2. Semi-monoidal 2-categories. By semi-monoidal 2-category we mean
a 2-category C equipped with a tensor product, i.e. an associative 2-functor

⊗ : C × C −→ C

(X,Y ) 7−→ XY,

denoted by plain juxtaposition. We already assumed C to be a strict 2-category,
and we also require ⊗ to be a strict 2-functor and to be strictly associative:
(XY )Z = X(Y Z). This is mainly for convenience, to keep the focus on unit
issues.
Note that the tensor product of two equi-arrows is again an equi-arrow, since
its pseudo-inverse can be taken to be the tensor product of the pseudo-inverses.

2.3. Semi-monoids. A semi-monoid in C is a triple (X,α, Ã) consisting of an

object X , a multiplication map α : XX → X , and an invertible 2-cell Ã called
the associator,

XXX
αX //

Xα

��

Ã

XX

α

��

XX α
// X

required to satisfy the ‘pentagon equation’:

XXXX
αXX //

XXα

��

XαX

!!D
DD

DD
DD

DD
DD

D

ÃX

XXX

αX

!!D
DD

DD
DD

DD
DD

D

XÃXXX

Xα

!!D
DD

DD
DD

DD
DD

D XXX
αX //

Xα

��

Ã

XX

α

��
XX

α
// X

=

XXXX
αXX //

XXα

��

©

XXX

Xα

��

αX

!!D
DD

DD
DD

DD
DD

D

ÃXXX
αX

//

Xα

!!D
DD

DD
DD

DD
DD

D

Ã

XX

α

!!D
DD

DD
DD

DD
DD

D XX

α

��
XX

α
// X
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In the applications, α will be an equi-arrow, and hence we will have

Ã = A #
XX

α

for a some unique invertible

A : Xα⇒ αX,

which it will more convenient to work with. In this case, the pentagon equation
is equivalent to the more compact equation

XXXX
αXX //

XXα

��

XA XαX

��

XXX

αX

��

ÃX

XXX
αX

// XX

=

XXXX
αXX //

XXα

��

©

XXX

Xα

��

A αX

��

XXX
αX

// XX

(6)
which we shall also make use of.

2.4. Semi-monoid maps. A semi-monoid map f : (X,α, Ã) → (Y, β, B̃) is the
data of an arrow f : X → Y in C together with an invertible 2-cell

XX
ff

//

α

��

F

Y Y

β

��

X
f

// Y

such that this cube commutes:

Y Y Y
βY

// Y Y

β

��
XXX

fff

==zzzzzzzzzzzz αX //

Xα

��

Ff

XX

ff

==zzzzzzzzzzzz

α

��

Y

Ã

F

XX
α

// X

f

==zzzzzzzzzzzz

=

Y Y Y
βY

//

Y β

��

Y Y

β

��

B̃

XXX

fff

==zzzzzzzzzzzz

Xα

��

Y Y
β

// YfF

XX

ff

==zzzzzzzzzzzz

α
//

F

X

f

==zzzzzzzzzzzz

When β is an equi-arrow, the cube equation is equivalent to the simpler equa-
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tion:

XXX
fff

//

Xα

��

A αX

��

Y Y Y

βY

��

Ff

XX
ff

// Y Y

=

XXX
fff

//

Xα

��

fF

Y Y Y

Y β

��

B βY

��

XX
ff

// Y Y

(7)

which will be useful.

2.5. Semi-monoid transformations. A semi-monoid transformation be-
tween two parallel semi-monoid maps (f,F) and (g,G) is a 2-cell T : f ⇒ g in
C such that this cylinder commutes:

XX

gg

&&

TT

ff

88

α

��

Y Y

β

��

X

F

f

99 Y

=

XX

gg

&&

G

α

��

Y Y

β

��

X

g

%%
T

f

99 Y

2.6 Lemma. Let f : X → Y be a semi-monoid map. If f is an equi-arrow (as
an arrow in C ) with quasi-inverse g : Y → X, then there is a canonical 2-cell
G such that (g,G) is a semi-monoid map.

Proof. The 2-cell G is defined as the mate [6] of the 2-cell F−1. It is routine to
check the cube equation in 2.4. ✷

2.7. Pseudo-idempotents. A pseudo-idempotent is a pair (I, α) where α :
II → I is an equi-arrow. A morphism of pseudo-idempotents from (I, α) to
(J, β) is a pair (u,U) consisting of an arrow u : I → J in C and an invertible
2-cell

II
uu //

α

��

U

JJ

β

��

I u
// J.

If (u,U) and (v,V) are morphisms of pseudo-idempotents from (I, α) to (J, β),
a 2-morphism of pseudo-idempotents from (u,U) to (v,V) is a 2-cell T : u⇒ v
satisfying the cylinder equation of 2.5.

Documenta Mathematica 18 (2013) 71–110



80 André Joyal and Joachim Kock

2.8. Cancellable objects. An object I in C is called cancellable if the two
2-functors C → C

X 7−→ IX

X 7−→ XI

are fully faithful. (Fully faithful means that the induced functors on hom cat-
egories are equivalences.) A cancellable morphism between cancellable objects
I and J is an equi-arrow u : I → J . (Equivalently it is an arrow such that
the functors on hom cats defined by tensoring with u on either side are equiv-
alences, cf. 5.1.) A cancellable 2-morphism between cancellable arrows is any
invertible 2-cell.

We are now ready for the main definition and the main results.

2.9. Units. A unit object is by definition a cancellable pseudo-idempotent.
Hence it is a pair (I, α) consisting of an object I and an equi-arrow α : II → I,
with the property that tensoring with I from either side define fully faithful
2-functors C → C .
A morphism of units is a cancellable morphism of pseudo-idempotents. In other
words, a unit morphism from (I, α) to (J, β) is a pair (u,U) where u : I → J is
an equi-arrow and U is an invertible 2-cell

II
uu //

α

��

U

JJ

β

��

I u
// J.

A 2-morphism of units is a cancellable 2-morphism of pseudo-idempotents.
Hence a 2-morphism from (u,U) to (v,V) is an invertible 2-cell T : u⇒ v such
that

II

vv

%%

TT

uu

99

α

��

JJ

β

��

I

U

u

:: J

=

II

vv

%%

V

α

��

JJ

β

��

I

v

$$
T

u

:: J

This defines the 2-category of units.

In the next section we’ll see how the notion of unit object induces left and right
constraints familiar from standard notions of monoidal 2-category. It will then
turn out (Lemmas 5.1 and 5.2) that unit morphisms and 2-morphisms can be
characterised as those morphisms and 2-morphisms compatible with the left
and right constraints.
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Theorem A (Associativity). Given a unit object (I, α), there is a canonical
invertible 2-cell

III
αI //

Iα

��

Ã

II

α

��

II α
// I

which satisfies the pentagon equation

IIII
αII //

IIα

��

IαI

!!D
DD

DD
DD

DD
DD

D

ÃI

III

αI

!!D
DD

DD
DD

DD
DD

D

IÃIII

Iα

!!D
DD

DD
DD

DD
DD

D III
αI //

Iα

��

Ã

II

α

��
II

α
// I

=

IIII
αII //

IIα

��

©

III

Iα

��

αI

!!D
DD

DD
DD

DD
DD

D

ÃIII
αI

//

Iα

!!D
DD

DD
DD

DD
DD

D

Ã

II

α

!!D
DD

DD
DD

DD
DD

D II

α

��
II

α
// I

(8)

In other words, a unit object is automatically a semi-monoid. The 2-cell A is
characterised uniquely in 3.7.

Theorem B. A unit morphism (u,U) : (I, α) → (J, β) is automatically a
semi-monoid map, when I and J are considered semi-monoids in virtue of
Theorem A.

Theorem C (Contractibility). The 2-category of units in C is con-
tractible, if non-empty.

In other words, between any two units there exists a unit morphism, and be-
tween any two parallel unit morphisms there is a unique unit 2-morphism.
Theorem C shows that units objects are unique up to homotopy, so in this
sense ‘being unital’ is a property not a structure.

The proofs of these three theorems rely on the auxiliary structure of left and
right constraints which we develop in the next section, and which also displays
the relation with the classical notion of monoidal 2-category: in Section 7 we
show that the cancellable-idempotent notion of unit is equivalent to the notion
extracted from the definition of tricategory of Gordon, Power, and Street [2].
This is our Theorem E.

3 Left and right actions, and associativity of the unit (Theo-
rem A)

Throughout this section we fix a unit object (I, α).
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3.1 Lemma. For each object X there exists pairs (λX , LX) and (ρX ,RX),

λX : IX → X, LX : IλX ⇒ αX

ρX : XI → X, RX : Xα⇒ ρXI

where λX and ρX are equi-arrows, and LX are RX are invertible 2-cells.
For every such family, there is a unique way to assemble the λX into a natural
transformation (this involves defining 2-cells λf for every arrow f in C ) in
such a way that L is a natural modification. Similarly for the ρX and RX .

The λX is an action of I on each X , and the 2-cell LX expresses an associativity
constraint on this action. Using these structures we will construct the associator
for α, and show it satisfies the pentagon equation. Once that is in place we
will see that the actions λ and ρ are coherent too (satisfying the appropriate
pentagon equations).

We shall treat the left action. The right action is of course equivalent to
establish.

3.2. Construction of the left action. Since tensoring with I is a fully
faithful 2-functor, the functor

Hom(IX,X) → Hom(IIX, IX)

is an equivalence of categories. In the second category there is the canonical
object αX . Hence there is a pseudo pre-image which we denote λX : IX → X ,
together with an invertible 2-cell LX : IλX ⇒ αX :

IIX

αX

%%

LX

IλX

99 IX

Since α is an equi-arrow, also αX is equi, and since LX is invertible, we conclude
that also IλX is an equi-arrow. Finally since the 2-functor ‘tensoring with I’
is fully faithful, it reflects equi-arrows, so already λX is an equi-arrow.

3.3. Naturality. A slight variation in the formulation of the construction
gives directly a natural transformation λ and a modification L: Let L : C → C

denote the 2-functor ‘tensoring with I on the left’. Since L is fully faithful,
there is an equivalence of categories

Nat(L, IdC ) → Nat(L ◦ L,L).

Now in the second category we have the canonical natural transformation whose
X-component is αX (and with trivial components on arrows). Hence there
is a pseudo pre-image natural transformation λ : L → idC , together with a
modification L whose X-component is LX : IλX ⇒ αX .
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However, we wish to stress the fact that the construction is completely object-
wise. This fact is of course due to the presence of the isomorphism LX : some-
thing isomorphic to a natural transformation is again natural. More precisely,
to provide the 2-cell data λf needed to make λ into a natural transformation,
just pull back the 2-cell data from the natural transformation αX . In detail,
we need invertible 2-cells

IX
λX //

If

��

λf

X

f

��

IY
λY

// Y.

To say that the LX constitute a modification (from λ to the identity) is to have
this compatibility for every arrow f : X → Y :

IIX

αX

&&

LX

IλX

88

IIf

��

IX

If

��

IIY

Iλf

IλY

88 IY

=

IIX

αX

&&

©

IIf

��

IX

If

��

IIY

αY

&&

LY

IλY

88 IY

(Here the commutative cell is actually the 2-cell part of the natural transfor-
mation αX .) Now the point is that each 2-cell λf is uniquely defined by this
compatibility: indeed, since the other three 2-cells in the diagram are invertible,
there is a unique 2-cell that can fill the place of Iλf , and since I is cancellable
this 2-cell comes from a unique 2-cell λf . The required compatibilities of λf
with composition, identities, and 2-cells now follows from its construction: λf
is just the translation via L of the identity 2-cell αX .

3.4. Uniqueness of the left constraints. There may be many choices
for λX , and even for a fixed λX , there may be many choices for LX . However,
between any two pairs (λX , LX) and (λ′X , L

′
X) there is a unique invertible 2-cell

Uleft

X : λX ⇒ λ′X such that this compatibility holds:

IλX
IUleft

X +3

LX

� 
::

::
::

::
::

::
::

::
::

::
Iλ′X

L
′

X

~� ��
��

��
��

�

��
��

��
��

�

αX

Indeed, this diagram defines uniquely an invertible 2-cell IλX ⇒ Iλ′X , and
since I is cancellable, this 2-cell comes from a unique 2-cell λX ⇒ λ′X which
we then call Uleft

X .
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There is of course a completely analogous statement for right constraints.

3.5. Construction of the associator. We define A : Iα ⇒ αI as the
unique 2-cell satisfying the equation

IIII

IαI

!!B
BB

BB
BB

BB
BB

III

αI

��

A
Iα

))
II

=

IIII

IαI

))
R

−1

I I

ρII

55

IαI

��

IL−1

I IIλ

��

III

Iλ

��

LI αI

��

©

III

ρI

((
RI

Iα

66 II

(9)
This definition is meaningful: since IαI is an equi-arrow, pre-composing with
IαI is a 2-equivalence, hence gives a bijection on the level of 2-cells, so A is
determined by the right-hand side of the equation. Note that A is invertible
since all the 2-cells in the construction are.

The associator Ã is defined as A-followed-by-α:

Ã := A #
II
α,

but it will be more convenient to work with A.

3.6 Proposition. The definition of A does not depend on the choices of left
constraint (λ, L) and right constraint (ρ,R).

Proof. Write down the right-hand side of (9) in terms of different left and right
constraints. Express these cells in terms of the original LI and RI , using the
comparison 2-cells Uleft

I and U
right

I of 3.4. Finally observe that these comparison
cells can be moved across the commutative square to cancel each other pairwise.

✷
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3.7. Uniqueness of A. Equation (9) may not appear familiar, but it is
equivalent to the following ‘pentagon’ equation (after post-whiskering with α):

IIII
ρII

//

IIλ

��

IαI

!!D
DD

DD
DD

DD
DD

D

(RI)#(αI)

III

αI

!!D
DD

DD
DD

DD
DD

D

(IL)#(Iα)III

Iα

!!D
DD

DD
DD

DD
DD

D III
αI //

Iα

��

A#α

II

α

��
II

α
// I

=

IIII
ρII

//

IIλ

��

©

III

Iλ

��

αI

!!D
DD

DD
DD

DD
DD

D

L#αIII
ρI

//

Iα

!!D
DD

DD
DD

DD
DD

D

R#α

II

α

!!D
DD

DD
DD

DD
DD

D II

α

��
II

α
// I

(10)
From this pentagon equation we shall derive the pentagon equation for A,
asserted in Theorem A. To this end we need comparison between α, λI , and
ρI , which we now establish, in analogy with Axiom (1) of monoidal category:
the left and right constraints coincide on the unit object, up to a canonical
2-cell:

3.8 Lemma. There are unique invertible 2-cells

ρI
E
⇒ α

D
⇒ λI ,

such that

III

αI

""

Iλ
L

ID

//

Iα

<< II = III

αI

&&

A

Iα

88 II = III

αI

""
ρI

EI

R

//

Iα

<< II

(11)

Proof. The left-hand equation defines uniquely a 2-cell Iα ⇒ IλI , and since I
is cancellable, this cell comes from a unique 2-cell α ⇒ λI which we then call
D. Same argument for E. ✷

Theorem A (Associativity). Given a unit object (I, α), there is a canonical
invertible 2-cell

III
αI //

Iα

��

Ã

II

α

��

II α
// I

which satisfies the pentagon Equation (8).
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Proof. On each side of the cube equation (10), paste the cell EII on the top,
and the cell IID on the left. On the left-hand side of the equation we can
use Equations (11) directly, while on the right-hand side we first need to move
those cells across the commutative square before applying (11). The result is

precisely the pentagon cube for Ã = A#α. ✷

3.9. Coherence of the actions. We have now established that (I, α, Ã) is
a semi-monoid, and may observe that the left and right constraints are coherent
actions, i.e. that their ‘associators’ L and R satisfy the appropriate pentagon
equations. For the left action this equation is:

IIIX
αIX //

IIλ

��

IαX

!!D
DD

DD
DD

DD
DD

D

ÃX

IIX

αX

!!D
DD

DD
DD

DD
DD

D

(IL)#(Iλ)IIX

Iλ

!!D
DD

DD
DD

DD
DD

D IIX
αX //

Iλ

��

L#λ

IX

λ

��
IX

λ
// X

=

IIIX
αIX //

IIλ

��

©

IIX

Iλ

��

αX

!!D
DD

DD
DD

DD
DD

D

L#λIIX
αX

//

Iλ

!!D
DD

DD
DD

DD
DD

D

L#λ

IX

λ

!!D
DD

DD
DD

DD
DD

D IX

λ

��
IX

λ
// X

Establishing this (and the analogous equation for the right action) is a routine
calculation which we omit since we will not actually need the result. We also
note that the two actions are compatible—i.e. constitute a two-sided action.
Precisely this means that there is a canonical invertible 2-cell

IXI
λXI //

IρX

��

B

XI

ρX

��

IX
λX

// X.

This 2-cell satisfies two pentagon equations, one for IIXI and one for IXII.

4 Units in the 2-category of arrows in C , and Theorem B

In this section we prove Theorem B, which asserts that a morphism of units
(u,U) : (I, α) → (J, β) is automatically a semi-monoid map (with respect to the
canonical associators A and B of the two units). We have to establish the cube
equation of 2.4, or in fact the reduced version (7). The strategy to establish
Equation (7) is to interpret everything in the 2-category of arrows of C . The
key point is to prove that a morphism of units is itself a unit in the 2-category
of arrows. Then we invoke Theorem A to get an associator for this unit, and a
pentagon equation, whose short form (6) will be the sought equation.
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4.1. The 2-category of arrows. The 2-category of arrows in C , denoted
C 2, is the 2-category described as follows. The objects of C 2 are the arrows of
C ,

X0
x // X1 .

The arrows from (X0, X1, x) to (Y0, Y1, y) are triples (f0, f1, F ) where f0 : X0 →
Y0 and f1 : X1 → Y1 are arrows in C and F is a 2-cell

X0
f0

//

x

��

F

Y0

y

��

X1
f1

// Y1.

If (g0, g1, G) is another arrow from (X0, X1, x) to (Y0, Y1, y), a 2-cell from
(f0, f1, F ) to (g0, g1, G) is given by a pair (m0,m1) where m0 : f0 ⇒ g0 and
m1 : f1 ⇒ g1 are 2-cells in C compatible with F and G in the sense that this
cylinder commutes:

X0

g0

%%
m0

f0

99

x

��

Y0

y

��

X1

F

f1

99
Y1

=

X0

g0

%%

G

x

��

Y0

y

��

X1

g1

%%
m1

f1

99
Y1

Composition of arrows in C 2 is just pasting of squares. Vertical composition
of 2-cells is just vertical composition of the components (the compatibility is
guaranteed by pasting of cylinders along squares), and horizontal composition
of 2-cells is horizontal composition of the components (compatibility guaranteed
by pasting along the straight sides of the cylinders). Note that C 2 inherits a
tensor product from C : this follows from functoriality of the tensor product on
C .

4.2 Lemma. If I0 and I1 are cancellable objects in C and i : I0 → I1 is an
equi-arrow, then i is cancellable in C 2.

Proof. We have to show that for given arrows x : X0 → X1 and y : Y0 → Y1,
the functor

HomC2(x, y) → HomC2(ix, iy)

defined by tensoring with i on the left is an equivalence of categories (the check
for tensoring on the right is analogous).

Documenta Mathematica 18 (2013) 71–110



88 André Joyal and Joachim Kock

Let us first show that this functor is essentially surjective. Let

I0X0
s0 //

ix

��

S

I0Y0

iy

��

I1X1 s1
// I1Y1

be an object in HomC2(ix, iy). We need to find a square

X0
k0 //

x

��

K

Y0

y

��

X1
k1

// Y1

and an isomorphism (m0,m1) from (s0, s1, S) to (I0k0, I1k1, iK), i.e. a cylinder

I0X0

I0k0

''

m0

s0

77

ix

��

I0Y0

iy

��

I1X1

S

s1

77
I1Y1

=

I0X0

I0k0

''

iK

ix

��

I0Y0

iy

��

I1X1

I1k1

''

m1

s1

77
I1Y1

Since I0 is a cancellable object, the arrow s0 is isomorphic to I0k0 for some
k0 : X0 → Y0. Let the connecting invertible 2-cell be denoted m0 : s0 ⇒ I0k0.
Similarly we find k1 and m1 : s1 ⇒ I1k1. Since m0 and m1 are invertible, there
is a unique 2-cell

I0X0
I0k0 //

ix

��

T

I0Y0

iy

��

I1X1
I1k1

// I1Y1

that can take the place of iK in the cylinder equation; it remains to see that
T is of the form iK for some K. But this follows since the map

2CellC (k0#y, x#k1) −→ 2CellC (i(k0#y), i(x#k1))

K 7−→ iK (12)

is a bijection. Indeed, the map factors as ‘tensoring with I0 on the left’ followed
by ‘post-composing with iY1’; the first is a bijection since I0 is cancellable, the
second is a bijection since i (and hence iY1) is an equi-arrow).
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Now for the fully faithfulness of HomC2(x, y) → HomC2(ix, iy). Fix two objects
in the left-hand category, P and Q:

X0
p0

//

x

��

P

Y0

y

��

X1 p1
// Y1

X0
q0

//

x

��

Q

Y0

y

��

X1 q1
// Y1.

The arrows from P to Q are pairs (m0,m1) consisting of

m0 : p0 ⇒ q0 m1 : p1 ⇒ q1

cylinder-compatible with the 2-cells P and Q. The image of these two objects
are

I0X0
I0p0

//

ix

��

iP

I0Y0

iy

��

I1X1
I1p1

// I1Y1

I0X0
I0q0

//

ix

��

iQ

I0Y0

iy

��

I1X1
I1q1

// I1Y1.

The possible 2-cells from iP to iQ are pairs (n0, n1) consisting of

n0 : I0p0 ⇒ I0q0 n1 : I1p1 ⇒ I1q1

cylinder-compatible with the 2-cells iP and iQ. Now since I0 is cancellable,
every 2-cell n0 like this is uniquely of the form I0n0 for some n0. Hence there
is a bijection between the possible m0 and the possible n0. Similarly for m1

and n1. So there is a bijection between pairs (m0,m1) and pairs (n0, n1).
Now by functoriality of tensoring with i, all images of compatible (m0,m1) are
again compatible. It remains to rule out the possibility that some (n0, n1) pair
could be compatible without (m0,m1) being so, but this follows again from the
argument that ‘tensoring with i on the left’ is a bijection on hom sets, just like
argued for (12). ✷

4.3 Lemma. An arrow in C 2,

X0
f0

//

x

��

F

Y0

y

��

X1
f1

// Y1

is an equi-arrow in C 2 if the components f0 and f1 are equi-arrows in C and
F is invertible.
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Proof. We can construct an explicit quasi-inverse by choosing quasi-inverses to
the components. ✷

4.4 Corollary. If (I0, α0) and (I1, α1) are units in C , and (u,U) : I0 → I1
is a unit map between them, then

u : I0 → I1

is a unit object in C 2 with structure map

I0I0
α0 //

uu

��

U−1

I0

u

��

I1I1 α1

// I1.

Proof. The object u is cancellable by Lemma 4.2, and the morphism
(α0, α1,U

−1) from uu to u is an equi-arrow by Lemma 4.3. ✷

Theorem B. Let (I0, α0) and (I1, α1) be units, with canonical associators A0

and A1, respectively. If (u,U) is a unit map from I0 to I1 then it is automatically
a semi-monoid map. That is,

I0I0I0
uuu //

I0α0

��

A0 α0I0

��

I1I1I1

α1I1

��

Uu

I0I0 uu
// I1I1

=

I0I0I0
uuu //

I0α0

��

uU

I1I1I1

I1α1

��

A1 α1I1

��

I0I0 uu
// I1I1

Proof. By the previous Corollary, (u,U−1) is a unit object in C 2. Hence there
is a canonical associator

B : uU−1 ⇔ U−1u.

By definition of 2-cells in C 2, this is a pair of 2-cells in C

B0 : I0α0 ⇒ α0I0 B1 : I1α1 ⇒ α1I1,

fitting the cylinder equation

I0I0I0

α0I0

''

B0

I0α0

77

uuu

��

I0I0

uu

��

I1I1I1

uU−1

I1α1

77
I1I1

=

I0I0I0

α0I0

''

U−1u

uuu

��

I0I0

uu

��

I1I1I1

α1I1

''

B1

I1α1

77
I1I1
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This is precisely the cylinder diagram we are looking for—provided we can show
that B0 = A0 and B1 = A1. But this is a consequence of the characterising
property of the associator of a unit: first note that as a unit object in C 2, u
induces left and right constraints: for each object x : X0 → X1 in C 2 there
is a left action of the unit u, and this left action will induce a left action of
(I0, α0) on X0 and a left action of (I1, α1) on X1 (the ends of the cylinders).
Similarly there is a right action of u which induces right actions at the ends of
the cylinder. Now the unique B that exists as associator for the unit object u
compatible with the left and right constraints induces B0 and B1 at the ends
of the cylinder, and these will of course be compatible with the induced left
and right constraints. Hence, by uniqueness of associators compatible with
left and right constraints, these induced associators B0 and B1 must coincide
with A0 and A1. Note that this does not dependent on choice of left and right
constraints, cf. Proposition 3.6. ✷

5 Contractibility of the space of weak units (Theorem C)

The goal of this section is to prove Theorem C, which asserts that the 2-category
of units in C is contractible if non-empty. First we describe the unit morphisms
and unit 2-morphisms in terms of compatibility with left and right constraints.
This will show that there are not too many 2-cells. Second we use the left and
right constraints to connect any two units.

The following lemma shows that just as the single arrow α induces all the
λX and ρX , the single 2-cell U of a unit map induces families Uleft

X and U
right

X

expressing compatibility with λX and ρX .

5.1 Lemma. Let (I, α) and (J, β) be units, and let (u,U) be a morphism of
pseudo-idempotents from (I, α) to (J, β). The following are equivalent.

(i) u is an equi-arrow (i.e. u is a morphism of units).
(ii) u is left cancellable, i.e. tensoring with u on the left is an equivalence of

categories Hom(X,Y ) → Hom(IX, JY ).
(ii’) u is right cancellable, i.e. tensoring with u on the right is an equivalence

of categories Hom(X,Y ) → Hom(XI, Y J).
(iii) For fixed left actions (λX , LX) for the unit (I, α) and (ℓX , L

′
X) for the

unit (J, β), there is a unique invertible 2-cell Uleft

X , natural in X:

IX
uX //

λX

��

Uleft

X

JX

ℓX

��

X
X

// X
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such that this compatibility holds:

IIX
uuX //

IλX

��

LX αX

��

JJX

βX

��

UX

IX
uX

// JX

=

IIX
uuX //

IλX

��

uUleft

X

JJX

JℓX

��

L′X βX

��

IX
uX

// JX

(13)
(iii’) For fixed right actions (ρX ,RX) for the unit (I, α) and (rX ,R

′
X) for the

unit (J, β), there is a unique invertible 2-cell Uright

X , natural in X:

XI
Xu //

ρX

��

U
right

X

XJ

rX

��

X
X

// X

such that this compatibility holds:

XII
Xuu //

Xα

��

RX ρXI

��

XJJ

rXJ

��

U
right

X u

XI
Xu

// XJ

=

XII
Xuu //

Xα

��

XU

XJJ

Xβ

��

R′
X rXJ

��

XI
Xu

// XJ

(14)

Proof. (i) implies (ii): ‘tensoring with u’ can be done in two steps: given an
arrow X → Y , first tensor with I to get IX → IY , and then post-compose
with uY to get IX → JY . The first step is an equivalence because I is a unit,
and the second step is an equivalence because u is an equi-arrow.
(ii) implies (iii): In Equation (13), the 2-cell labelled uUleft

X is uniquely defined
by the three other cells, and it is invertible since the three other cells are. Since
tensoring with u on the left is an equivalence, this cell comes from a unique
invertible cell Uleft

X , justifying the label uUleft

X .
(iii) implies (i): The invertible 2-cell Uleft

X shows that uX is isomorphic to
an equi-arrow, and hence is an equi-arrow itself. Now take X to be a right
cancellable object (like for example I) and conclude that already u is an equi-
arrow.
Finally, the equivalence (i)⇒(ii’)⇒(iii’)⇒(i) is completely analogous. ✷

Note that for (u,U) the identity morphism on (I, α), we recover Observation 3.4.
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5.2 Lemma. Let (I, α) and (J, β) be units; let (u,U) and (v,V) be morphisms
of pseudo-idempotents from I to J ; and consider a 2-cell T : u ⇒ v. Then the
following are equivalent.

(i) T is an invertible 2-morphism of pseudo-idempotents.
(ii) T is a left cancellable 2-morphism of pseudo-idempotents (i.e., induces a

bijection on hom sets (of hom cats) by tensoring with T from the left).
(ii’) T is a right cancellable 2-morphism of pseudo-idempotents (i.e., induces

a bijection on hom sets (of hom cats) by tensoring with T from the right).
(iii) For fixed left actions (λX , LX) for (I, α) and (ℓX , L

′
X) for (J, β), with

induced canonical 2-cells Uleft

X and Vleft

X as in 5.1, we have:

IX

vX

&&

TX

uX

88

λX

��

JX

ℓX

��

X

Uleft

X

X

99 X

=

IX

vX

&&

Vleft

X

λX

��

JX

ℓX

��

X

X

%%
©

X

99 X

(15)

(iii’) For fixed right actions (ρX ,RX) for (I, α) and (rX ,R
′
X) for (J, β), with

induced canonical 2-cells U
right

X and V
right

X as in 5.1, we have:

XI

Xv

&&

XT

Xu

88

ρX

��

XJ

rX

��

X

U
right

X

X

99 X

=

XI

Xv

&&

V
right

X

ρX

��

XJ

rX

��

X

X

%%
©

X

99 X

(16)

Proof. It is obvious that (i) implies (ii). Let us prove that (ii) implies (iii),
so assume that tensoring with T on the left defines a bijection on the level
of 2-cells. Start with the cylinder diagram for compatibility of tensor 2-cells
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(cf. 2.5). Tensor this diagram with X on the right to get

IIX

vvX

&&

TTX

uuX

88

αX

��

JJX

βX

��

IX

UX

uX

88 JX

=

IIX

vvX

&&

VX

αX

��

JJX

βX

��

IX

vX

&&

TX

uX

88 JX

On each side of this equation, paste an LX along αX , apply Equation (13) on
each side, and cancel the L′X that appear on the other side of the square. The
resulting diagram

IIX

vvX

&&

TTX

uuX

88

IλX

��

JJX

JℓX

��

IX

uUleft

X

uX

88 JX

=

IIX

vvX

&&

vVleft

X

IλX

��

JJX

JℓX

��

IX

vX

&&

TX

uX

88 JX

is the tensor product of T with the promised equation (15). Since T is can-
cellable, we can cancel it away to finish.
(iii) implies (i): the arguments in (ii)⇒(iii) can be reversed: start with (15),
tensor with T on the left, and apply (13) to arrive at the axiom for being a
2-morphism of pseudo-idempotents. Since both Uleft

X and Vleft

X are invertible,
so is TX . Now take X to be a right cancellable object, and cancel it away to
conclude that already T is invertible.
Finally, the equivalence (i)⇒(ii’)⇒(iii’)⇒(i) is completely analogous. ✷

5.3 Corollary. Given two parallel morphisms of units, there is a unique unit
2-morphism between them.

Proof. Choose left actions for (I, α) and (J, β) as in Lemma 5.2 (iii), and take
X to be a right cancellable object. For given morphisms of units u and v
as in Lemma 5.2, Equation (15) defines the 2-cell T uniquely, since λX is an
equi-arrow and X is right cancellable. ✷

Next we aim at proving that there is a unit morphism between any two units.
The strategy is to use the left and right constraints to produce a unit morphism

I // IJ // J.

As a first step towards this goal we have:
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5.4 Lemma. Let I and J be units, and pick a left constraint λ for I and a right
constraint r for J . Put

γ := rIλJ : IJIJ → IJ

Then (IJ, γ) is a unit.

Proof. Since I and J are cancellable, clearly IJ is cancellable too. Since λJ
and rI are equi-arrows, γ is too. ✷

5.5 Lemma. There is an invertible 2-cell

IJIJ
λJλJ //

γ

��

Z

JJ

β

��

IJ
λJ

// J.

Hence (λJ ,Z) is a unit map. (And there is another 2-cell making rI a unit
map.)

Proof. The 2-cell Z is defined like this:

IJIJ

IJλJ

��

λJλJ

��

IJJ

λJJ

**
Kλ

λJJ

44

rIJ

��

R−1 Iβ

��

λβ

JJ

β

��

IJ
λJ

// J

where the 2-cell Kλ is constructed in Lemma 7.2. ✷

5.6 Corollary. Given two units, there exists a unit morphism between them.

Proof. Continuing the notation from above, by Lemma 5.4, (IJ, γ) is a unit,
and by Lemma 5.5, λ : IJ → J is a morphism of units. Similarly, r : IJ → I is
a unit morphism, and by Lemma 2.6 any chosen pseudo-inverse r−1 : I → IJ
is again a unit morphism. Finally we take

I
r−1

// IJ
λ // J.

✷
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Theorem C (Contractibility). The 2-category of units in C is con-
tractible, if non-empty. In other words, between any two units there exists a
unit morphism, and between any two parallel unit morphisms there is a unique
unit 2-morphism.

Proof. By Lemma 5.6 there is a unit morphism between any two units (an equi-
arrow by definition), and by Corollary 5.3 there is a unique unit 2-morphism
between any two parallel unit morphisms. ✷

6 Classical units

In this section we review the classical theory of units in a monoidal 2-category,
as extracted from the definition of tricategory of Gordon, Power, and Street [2].
In the next section we compare this notion with the cancellable-idempotent
approach of this work. The equivalence is stated explicitly in Theorem E.

6.1. Tricategories. The notion of tricategory introduced by Gordon, Power,
and Street [2] is roughly a weak category structure enriched over bicategories:
this means that the structure maps (composition and unit) are weak 2-functors
satisfying weak versions of associativity and unit constraints. For the associa-
tivity, the pentagon equation is replaced by a specified pentagon 3-cell (TD7),
required to satisfy an equation corresponding to the 3-dimensional associahe-
dron. This equation (TA1) is called the nonabelian 4-cocycle condition. For the
unit structure, three families of 3-cells are specified (TD8): one corresponding
to the Kelly axiom, one left variant, and one right variant (those two being
the higher-dimensional analogues of Axioms (2) and (3) of monoidal category).
Two axioms are imposed on these three families of 3-cells: one (TA2) relating
the left family with the middle family, and one (TA3) relating the right family
with the middle family. These are called left and right normalisation. (These
two axioms are the higher-dimensional analogues of the first argument in Kelly’s
lemma 1.6.) It is pointed out in [2] that the middle family together with the
axioms (TA2) and (TA3) completely determine the left and right families if
they exist.

6.2. Monoidal 2-categories. By specialising the definition of tricategory
to the one-object case, and requiring everything strict except the units, we
arrive at the following notion of monoidal 2-category: a monoidal 2-category
is a semi-monoidal 2-category (cf. 2.2) equipped with an object I, two natural
transformations λ and ρ with equi-arrow components

λX : IX → X

ρX : XI → X

Documenta Mathematica 18 (2013) 71–110



Coherence for Weak Units 97

and (invertible) 2-cell data

IX
λX //

If

��

λf

X

f

��

IY
λY

// Y

XI
ρX

//

fI

��

ρf

X

f

��

Y I ρY
// Y,

together with three natural modifications K, Kλ, and Kρ, with invertible com-
ponents

K : XλY ⇒ ρXY

Kλ : λXY ⇒ λXY

Kρ : XρY ⇒ ρXY .

We call K the Kelly cell.
These three families are subject to the following two equations:

XλY Z
XK

λ
Y,Z +3

KX,Y Z

� 
::

::
::

::
:

::
::

::
::

:
XλY Z

KX,Y Z

~� ��
��

��
��

�

��
��

��
��

�

ρXY Z

(17)

XρY Z
K

ρ

X,Y
Z

+3
X`

XKY,Z
::

::
::

::
:

::
::

::
::

:
ρXY Z>F

KXY,Z

��
��

��
��

�

��
��

��
��

�

XY λZ

(18)

6.3 Remark. We have made one change compared to [2], namely the direction
of the arrow ρX : from the viewpoint of α it seems more practical to work with
ρX : XI → X rather than with the convention of ρX : X → XI chosen in [2].
Since in any case it is an equi-arrow, the difference is not essential. (Gurski in
his thesis [3] has studied a version of tricategory where all the equi-arrows in the
definition are equipped with specified pseudo-inverses. This has the advantage
that the definition becomes completely algebraic, in a technical sense.)

6.4 Lemma. The object I is cancellable (independently of the existence of K,
Kλ, and Kρ.)

Proof. We need to establish that ‘tensoring with I on the left’,

L : Hom(X,Y ) → Hom(IX, IY ),
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is an equivalence of categories. But this follows since the diagram

Hom(X,Y )
L //

Id

��

Hom(IX, IY )

_ # λY

��

Hom(X,Y )
λX # _

// Hom(IX, Y )

is commutative up to isomorphism: the component at f : X → Y of this
isomorphism is just the naturality square λf . Since the functors λX #_ and
_#λY are equivalences, it follows from this isomorphism that L is too. ✷

6.5. Coherence of the Kelly cell. As remarked in [2], if the Kλ and Kρ

exist, they are determined uniquely from K and the two axioms. Indeed, the
two equations

IλY Z
IKλ

Y,Z +3

KI,Y Z

� 
::

::
::

::
:

::
::

::
::

:
IλY Z

KI,Y Z

~� ��
��

��
��

�

��
��

��
��

�

ρIY Z

XρY I
K

ρ
X,Y I +3 ρXY I

XY λI

XKY,I

X`:::::::::

:::::::::
KXY,I

>F
���������

���������

(19)

which are just special cases of (17) and (18) uniquely determine Kλ and Kρ, by
cancellability of I. But these two special cases of the axioms do not imply the
general case.
We shall take the Kelly cell K as the main structure, and say that K is coherent
on the left (resp. on the right) if Axiom (17) (resp. (18)) holds for the induced
cell Kλ (resp. Kρ). We just say coherent if both hold. We shall see (7.8) that
in fact coherence on the left implies coherence on the right and vice versa.

6.6. Naturality. The Kelly cell is a modification. For future reference we
spell out the naturality condition satisfied: given arrows f : X → X ′ and
g : Y → Y ′, we have

XIY

ρXY

''

KX,Y

XλY

77

fIg

��

XY

fg

��

X ′IY ′

fλg

X′λY ′

77X
′Y ′

=

XIY

ρXY

''

ρfg

fIg

��

XY

fg

��

X ′IY ′

ρX′Y ′

''

KX′,Y ′

X′λY ′

77X
′Y ′
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6.7 Remark. Particularly useful is naturality of λ with respect to λX and
naturality of ρ with respect to ρX . In these cases, since λX and ρX are equi-
arrows, we can cancel them and find the following invertible 2-cells:

Nλ : IλX ⇒ λIX

N
ρ : ρXI ⇒ XρI ,

in analogy with Observation (5) of monoidal categories.

The following lemma holds for K independently of Axioms (17) and (18):

6.8 Lemma. The Kelly cell K satisfies the equation

XIIY

ρXIY

""
XλIY

KX,IY

XNλ

//

XIλY

<<XIY = XIIY

ρXIY

""
ρXIY

NρY

KXI,Y

//

XIλY

<<XIY

Proof. It is enough to establish this equation after post-whiskering with XλY .
The rest is a routine calculation, using on one side the definition of the cell Nλ,
then naturality of K with respect to f = X and g = λY . On the other side,
use the definition of Nρ and then naturality of K with respect to f = ρX and
g = Y . In the end, two K-cells cancel. ✷

Combining the 2-cells described so far we get

ρII
K

−1

⇒ IλI
N

λ

⇒ λII
K

λ

⇒ λII

and hence, by cancelling I on the right, an invertible 2-cell

P : ρI ⇒ λI .

Now we could also define Q : ρI ⇒ λI in terms of

IρI
K

ρ

⇒ ρII
N

ρ

⇒ ρII
K

−1

⇒ IλI .

Finally, in analogy with Axiom (1) for monoidal categories:

6.9 Lemma. We have P = Q. (This is true independently of Axioms (17) and
(18).)

Proof. Since I is cancellable, it is enough to show IPI = IQI. To establish this
equation, use the constructions of P and Q, then substitute the characterising
Equations (19) for the auxiliary cells Kλ and Kρ, and finally use Lemma 6.8. ✷
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6.10. The 2-category of GPS units. For short we shall say GPS unit for
the notion of unit just introduced. In summary, a GPS unit is a quadruple
(I, λ, ρ,K) where I is an object, λX and ρX are natural transformations with
equi-arrow components, and K : XλY ⇒ ρXY is a coherent Kelly cell (natural
in X and Y , of course).
A morphism of GPS units from (I, λ, ρ,K) to (J, ℓ, r,H) is an arrow u : I → J
equipped with natural families of invertible 2-cells

IX
uX //

λX

��

Uleft

X

JX

ℓX

��

X
X

// X

XI
Xu //

ρX

��

U
right

X

XJ

rX

��

X
X

// X

satisfying the equation

XIY
XuY //

XλY

��

K ρXY

��

XJY

rXY

��

U
right

X Y

XY
XY

// XY

=

XIY
XuY //

XλY

��

XUleft

Y

XJY

XℓY

��

H rXY

��

XY
XY

// XY

(20)
Finally, a 2-morphism of GPS unit maps is a 2-cell T : u ⇒ v satisfying the
compatibility conditions (15) and (16) of Lemma 5.2.

6.11. Remarks. Note first that u is automatically an equi-arrow. Observe
also that Uleft and Uright completely determine each other by Equation (20), as
is easily seen by taking on the one hand X to be a left cancellable object and on
the other hand Y to be a right cancellable object. Finally note that there are
two further equations, expressing compatibility with Kλ and Kρ, but they can
be deduced from Equation (20), independently of the coherence Axioms (17)
and (18). Here is the one for Kλ for future reference:

IXY
uXY //

λXY

��

Kλ λXY

��

JXY

ℓXY

��

Uleft

X Y

XY
XY

// XY

=

IXY
uXY //

λXY

��

Uleft

XY

JXY

ℓXY

��

Hℓ ℓXY

��

XY
XY

// XY

(21)

7 Comparison with classical theory (Theorem E)

In this section we prove the equivalence between the two notions of unit.
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7.1. From cancellable-idempotent units to GPS units. We fix a unit
object (I, α). We also assume chosen a left constraint λX : IX → X with
LX : IλX ⇒ αX , and a right constraint ρX : XI → X with RX : Xα⇒ ρXI.
First of all, in analogy with Axioms (2) and (3) of monoidal categories we have:

7.2 Lemma. In the situation of 7.1, there are unique natural invertible 2-cells

Kλ : λXY ⇒ λXY

Kρ : XρY ⇒ ρXY

satisfying

IIXY

IλXY

((

IKλ

IλXY

66IXY = IIXY

IλXY

##

αXY
L−1Y

L

//

IλXY

;;IXY (22)

XY II

ρXY I

((

KρI

XρY I

66XY I = XY II

ρXY I

##

XY α
R

XR−1

//

XρY I

;;XY I (23)

Proof. The conditions precisely define the 2-cells, since I is cancellable. ✷

7.3 Lemma. In the situation of 7.1, there is a canonical family of invertible
2-cells (the Kelly cell)

K : XλY ⇒ ρXY,

natural in X and Y .

Proof. This is analogous to the construction of the associator: K is defined as
the unique 2-cell K : XλY ⇒ ρXY satisfying the equation

XIIY

XαY

**
XL

XIλY

44

XαY

��

RY ρXIY

��

©

XIY

ρXY

��

XIY
XλY

// XY

=

XIIY

XαY

!!C
CC

CC
CC

CC
C

XIY

ρXY

��

K
XλY

))
XY

(24)
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This makes sense since XαY is an equi-arrow, so we can cancel it away. Clearly
K is invertible since L and R are. ✷

We constructed Kλ and Kρ directly from L, and R. Meanwhile we also con-
structed K, and we know from classical theory (6.5) that this cell determines
the two others. The following proposition shows that all these constructions
match up, and in particular that the constructed Kelly cell is coherent on both
sides:

7.4 Proposition. In the situation of 7.1, the families of 2-cells K, Kλ and Kρ

(constructed in 7.2 and 7.3) satisfy the GPS unit axioms (17) and (18):

XλY Z
XK

λ
Y,Z +3

KX,Y Z

� 
::

::
::

::
:

::
::

::
::

:
XλY Z

KX,Y Z

~� ��
��

��
��

�

��
��

��
��

�

ρXY Z

XρY Z
K

ρ

X,Y
Z

+3
X`

XKY,Z
::

::
::

::
:

::
::

::
::

:
ρXY Z>F

KXY,Z

��
��

��
��

�

��
��

��
��

�

XY λZ

Proof. We treat the left constraint (the right constraint being completely anal-
ogous). We need to establish

XIY Z

ρXY Z

""
XλY Z

KX,Y Z

XKλY,Z

//

XλY Z

<<XY Z = XIY Z

ρXY Z

((
KX,Y Z

XλY Z

66XY Z

and it is enough to establish this equation pre-whiskered with XαY Z. In the
diagram resulting from the left-hand side:

XIIY Z
XαY Z // XIY Z

ρXY Z

""
XλY Z

KX,Y Z

XKλY,Z

//

XλY Z

<<XY Z

we can replace (XαY Z)#(KX,Y Z) by the expression that defined KX,Y Z
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(cf. (24)), yielding altogether

XIY Z

ρXY Z

""D
DDD

DD
DDD

DDD
DDD

DDD
D

XIIY Z

XαY Z

55

XLY Z
XIλY Z

FF

ρXIY Z

��

RXY Z
XαY Z

))

© XY Z

XIY Z

XλY Z

55

XKλY,Z
XλY Z

GG

Here we can move the cell XKλY,Z across the square, where it becomes XIKλY,Z
and combines with XLY Z to give altogether XLY Z (cf. (22)). The resulting
diagram

XIY Z

ρXY Z

""D
DDD

DD
DDD

DDD
DDD

DDD
D

XIIY Z

XαY Z

55

XLY Z
XIλY Z

FF

ρXIY Z

��

RXY Z
XαY Z

))

© XY Z

XIY Z

XλY Z

GG

is nothing but

XIIY Z
XαY Z // XIY Z

ρXY Z

((
KX,Y Z

XλY Z

66XY Z

(by Equation (24) again) which is what we wanted to establish. ✷

Hereby we have concluded the construction of a GPS unit from (I, α). We will
also need a result for morphisms:

7.5 Proposition. Let (u,U) : (I, α) → (J, β) be a morphism of units in the
sense of 2.9, and consider the two canonical 2-cells Uleft and Uright constructed
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in Lemma 5.1. Then Equation (20) holds:

XIY
XuY //

XλY

��

K ρXY

��

XJY

rXY

��

U
right

X Y

XY
XY

// XY

=

XIY
XuY //

XλY

��

XUleft

Y

XJY

XℓY

��

H rXY

��

XY
XY

// XY

(Hence (u,Uleft,Uright) is a morphism of GPS units.)

Proof. It is enough to prove the equation obtained by pasting the 2-cell XUY
on top of each side of the equation. This enables us to use the characterising
equation for K and H. After this rewriting, we are in position to apply Equa-
tions (13) and (14), and after cancelling R and L cells, the resulting equation
amounts to a cube, where it is easy to see that each side is just U

right

X Uleft

Y . ✷

7.6. From GPS units to cancellable-idempotent units. Given a GPS
unit (I, λ, ρ,K), just put

α := λI ,

then (I, α) is a unit object in the sense of 2.9. Indeed, we already observed
that I is cancellable (6.4), and from the outset λI is an equi-arrow. That’s all!
To construct it we didn’t even need the Kelly cell, or any of the auxiliary cells
or their axioms.

7.7. Left and right actions from the Kelly cell. Start with natural
left and right constraints λ and ρ and a Kelly cell K : XλY ⇒ ρXY (not
required to be coherent on either side). Construct Kλ as in 6.5, put α := λI ,
and define left and right actions as follows. We define LX as

IλX
N

λ

⇒ λIX
K

λ

⇒ λIX = αX,

while we define RX simply as

Xα = XλI
KX,I

⇒ ρXI.

7.8 Proposition. For fixed (I, λ, ρ,K), the following are equivalent:
(i) The left and right 2-cells L and R just constructed in 7.7 are compatible

with the Kelly cell in the sense of Equation (24).
(ii) The Kelly cell K is coherent on the left (i.e. satisfies Axiom (17)).
(ii’) The Kelly cell K is coherent on the right (i.e. satisfies Axiom (18)).

Proof. Proposition 7.4 already says that (i) implies both (ii) and (ii’). To prove
(ii)⇒(i), we start with an auxiliary observation: by massaging the naturality
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equation

XIIY

ρXIY

''
KX,IY

XλIY

77

XIλY

��

XIY

XλY

��

XIY

XλλY

XλY

77XY

=

XIIY

ρXIY

''

©

XIλY

��

XIY

XλY

��

XIY

ρXY

''
KX,Y

XλY

77XY

we find the equation

XIIY

XλIY

''

XNλ

XIλY

77

ρXIY

��

XIY

ρXY

��

XIY

©

XλY

77 XY

=

XIIY

XλIY

''
K

−1

X,IY

ρXIY

77

ρXIY

��

XIY

XλY

��

KX,Y ρXY

��

XIY

©

XλY

66
XY,

(25)
tailor-made to a substitution we shall perform in a moment.

Now for the main computation, assuming first that K is coherent on the left,
i.e. that Axiom (17) holds. Start with the left-hand side of Equation (24), and
insert the definitions we made for L and R to arrive at

XIIY

©

XλIY

%%
XλIY

XKλ

XNλ

//

XIλY

99

XλIY

��

KX,IY ρXIY

��

XIY

ρXY

��

XIY
XλY

// XY
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in which we can now substitute (25) to get

XIIY

©

XλIY

%%
XλIY

XKλ

K
−1

X,IY

//

ρXIY

99

XλIY

��

KX,IY ρXIY

��

XIY

XλY

��

KX,Y ρXY

��

XIY
XλY

// XY

Here finally the three 2-cells incident to the XIIY vertex cancel each other
out, thanks to Axiom (17), and in the end, remembering α = λI , we get

XIIY

XαY

!!C
CC

CC
CC

CC
CC

XIY

ρXY

��

K
XλY

))
XY

as required to establish that K satisfies Equation (24). Hence we have proved
(ii)⇒(i), and therefore altogether (ii)⇒(ii’). The converse, (ii’)⇒(ii) follows
now by left-right symmetry of the statements. (But note that the proof via (i)
is not symmetric, since it relies on the definition α = λI . To spell out a proof of
(ii’)⇒(ii), use rather α = ρI , observing that the intermediate result (i) would
refer to different L and R.) ✷

We have now given a construction in each direction, but both constructions
involved choices. With careful choices, applying one construction after the
other in either way gets us back where we started. It is clear that this should
constitute an equivalence of 2-categories. However, the involved choices make
it awkward to make the correspondence functorial directly. (In technical terms,
the constructions are ana-2-functors.) We circumvent this by introducing an
intermediate 2-category dominating both. With this auxiliary 2-category, the
results we already proved readily imply the equivalence.
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7.9. A correspondence of 2-categories of units. Let U be following
2-category. Its objects are septuples

(I, α, λ, ρ, L,R,K),

with equi-arrows

α : II → I, λX : IX → X, ρX : XI → X,

(and accompanying naturality 2-cell data), and natural invertible 2-cells

L : IλX ⇒ αX, R : Xα⇒ ρXI, K : XλY ⇒ ρXY.

These data are required to satisfy Equation (24) (compatibility of K with L and
R).
The arrows in U from (I, α, λ, ρ, L,R,K) to (J, β, ℓ, r, L′,R′,H) are quadruples

(u,Uleft,Uright,U),

where u : I → J is an arrow in C , Uleft and Uright are as in 6.10, and U

is a morphism of pseudo-idempotents from (I, α) to (J, β). These data are
required to satisfy Equation (20) (compatibility with Kelly cells) as well as
Equations (13) and (14) in Lemma 5.1 (compatibility with the left and right
2-cells).
Finally a 2-cell from (u,Uleft,Uright,U) to (v,Vleft,Vright,V) is a 2-cell

T : u⇒ v

required to be a 2-morphism of pseudo-idempotents (compatibility with U and
V as in 2.5), and to satisfy Equation (15) (compatibility with Uleft and Vleft) as
well as Equation (16) (compatibility with Uright and Vright).
Let E denote the 2-category of cancellable-idempotent units introduced in 2.9,
and let G denote the 2-category of GPS units of 6.10. We have evident forgetful
(strict) 2-functors

U

Φ

~~~~
~~

~~
~~

~~
Ψ

  A
AA

AA
AA

AA
A

E G .

Theorem E (Equivalence). The 2-functors Φ and Ψ are 2-equivalences.
More precisely they are surjective on objects and strongly fully faithful (i.e. iso-
morphisms on hom categories).

Proof. The 2-functor Φ is surjective on objects by Lemma 3.1 and Proposi-
tion 7.4. Given an arrow (u,U) in E and overlying objects in U , Lemma 5.1
says there are unique Uleft and Uright, and Proposition 7.5 ensures the required
compatibility with Kelly cells (Equation (20)). Hence Φ induces a bijection on
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objects in the hom categories. Lemma 5.2 says we also have a bijection on the
level of 2-cells, hence Φ is an isomorphism on hom categories. On the other
hand, Ψ is surjective on objects by 7.7 and Proposition 7.8. Given an arrow
(u,Uleft,Uright) in G , Lemma 7.10 below says that for fixed overlying objects in
U there is a unique associated U, hence Ψ induces a bijection on objects in the
hom categories. Finally, Lemma 5.2 gives also a bijection of 2-cells, hence Ψ is
strongly fully faithful. ✷

7.10 Lemma. Given a morphism of GPS units

(I, λ, ρ,K)
(u,Uleft,Uright)

// (J, ℓ, r,H)

fix an equi-arrow α : II ∼→ I with natural families LX : IλX ⇒ αX and RX :
αX ⇒ ρXI satisfying Equation (24) (compatibility with K), and fix an equi-
arrow β : JJ ∼→ J with natural families L′X : IℓX ⇒ βX and R′

X : βX ⇒ rXI
also satisfying Equation (24) (compatibility with H). Then there is a unique
2-cell

II
uu //

α

��

U

JJ

β

��

I u
// J

satisfying Equations (13) and (14) (compatibility with Uleft and the left 2-cells,
as well as compatibility with Uright and the right 2-cells).

Proof. Working first with left 2-cells, define a family WX by the equation

IIX
uuX //

IλX

��

LX αX

��

JJX

βX

��

WX

IX
uX

// JX

=

IIX
uuX //

IλX

��

uUleft

X

JJX

JℓX

��

L′X βX

��

IX
uX

// JX

It follows readily from Equation (21) that the family has the property

WXY = WXY

for all X,Y , and it is a standard argument that since a unit object exists, for
example (I, λI), this implies that

WX = UX

for a unique 2-cell

II
uu //

α

��

U

JJ

β

��

I u
// J,
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and by construction this 2-cell has the required compatibility with Uleft and the
left constraints. To see that this U is also compatible with Uright and the right
constraints we reason backwards: (u,U) is now a morphisms of units from (I, α)
to (J, β) to which we apply the right-hand version of Lemma 5.1 to construct a
new Uright, characterised by the compatibility condition. By Proposition 7.5 this
new Uright is compatible with Uleft and the Kelly cells K and H (Equation (20)),
and hence it must in fact be the original Uright (remembering from 6.10 that
Uleft and Uright determine each other via (20)). So the 2-cell U does satisfy both
the required compatibilities. ✷
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