Some Results on Bessel Functionals for GSp(4)
We prove that every irreducible, admissible representation $\pi$ of $\GSp(4,F)$, where $F$ is a non-archimedean local field of characteristic zero, admits a Bessel functional, provided $\pi$ is not one-dimensional. If $\pi$ is not supercuspidal, we explicitly determine the set of all Bessel functionals admitted by $\pi$, and prove that Bessel functionals of a fixed type are unique. If $\pi$ is supercuspidal, we do the same for all split Bessel functionals.
2010 Mathematics Subject Classification: Primary 11F70 and 22E50
Keywords and Phrases:
Full text: dvi.gz 170 k, dvi 662 k, ps.gz 643 k, pdf 820 k.
Home Page of DOCUMENTA MATHEMATICA