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In the previous paper [1], a filtration by ramification groups and its logarithmic
version are defined on the absolute Galois group G of a complete discrete
valuation field K without assuming that the residue field is perfect. In this
paper, we study the graded pieces of these filtrations and show that they are
abelian except possibly in the absolutely unramified and non-logarithmic case.
Let G, (j > 0,€ Q) denote the decreasing filtration by ramification groups

and G]}(’log ( > 0,€ Q) be its logarithmic variant. We put GIF = Uj,>j G%
and GjKJ{log = Uj~; G%,log' In [1], we show that the wild inertia subgroup
P C Gk is equal to G};r = G(I);flog. The main result is the following.
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6 AHMED ABBES AND TAKESHI SAITO

THEOREM 1 Let K be a complete discrete valuation field.

1. (see Theorem 2.15) Assume either K has equal characteristics p > 0 or K
has mized characteristic and p is not a prime element. Then, for a rational
number j > 1, the graded piece GriGg = GJI‘(/G%;Ir 1s abelian and is a subgroup
of the center of the pro-p-group G}(JF/GJ;.

2. (see Theorem 5.12) For a rational number j > 0, the graded piece GrljogGK =

Klog/GK log U5 abelian and is a subgroup of the center of the pro-p-group

0+
GK log/GK log*

The idea of the proof of 1 is the following. Under some finiteness assumption,
denoted by (F), we define a functor X7 from the category of finite étale K-
algebras with ramification bounded by j+ to the category of finite étale schemes
over a certain tangent space ©7 with continuous semi-linear action of G . For
a finite Galois extension L of K with ramification bounded by j+, the image
XJ(L) has two mutually commuting actions of G = Gal(L/K) and Gf. The
arithmetic action of Gx comes from the definition of the functor X7 and the
geometric action of G is defined by functoriality. Using these two commuting
actions, we prove the assertion. The assumption that p is not a prime element
is necessary in the construction of the functor X7.
In Section 1, for a rational number j > 0 and a smooth embedding of a finite
flat Ok -algebra, we define its j-th tubular neighborhood as an affinoid variety.
We also define its j-th twisted reduced normal cone.
We recall the definition of the filtration by ramification groups in Section 2.1
using the notions introduced in Section 1. In the equal characteristic case,
under the assumption (F), we define a functor X7 mentioned above in Section
2.2 using j-th tubular neighborhoods. In the mixed characteristic case, we give
a similar but subtler construction using the twisted normal cones, assuming
further that the residue characteristic p is not a prime element of K in Section
2.3. Then, we prove Theorem 2.15 in Section 2.4. We also define a canonical
surjection m3P(07) — Gr/Gx under the assumption (F).
After some preparations on generalities of log structures in Section 3, we study
a logarithmic analogue in Sections 4 and 5. We define a canonical surjection
(0],y) — Gri,,Gx under the assumption (F) and prove the logarithmic
part Theorem 5.12, of the main result in Section 5.2. Among other results,
we compare the construction with the logarithmic construction given in [1]
in Lemma 4.10. We also prove in Corollary 4.12 a logarithmic version of [1]
Theorem 7.2 (see also Corollary 1.16).
In Section 6, assuming the residue field is perfect, we show that the surjection
(@10g) — G}, G induces an isomorphism 7rab gp(@bg) — G}y, G Where
ab’gp(@] ) denotes the quotient classifying the étale isogenies to @fog regarded
as an algebraic group.
When one of the authors (T.S.) started studing mathematics, Kazuya Kato,
who was his adviser, suggested to read [13] and to study how to generalize it
when the residue field is no longer assumed perfect. This paper is a partial
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answer to his suggestion. The authors are very happy to dedicate this paper
to him for his 51st anniversary.

NOTATION. Let K be a complete discrete valuation field, Ok be its valuation
ring and F be its residue field of characteristic p > 0. Let K be a separable
closure of K, Og be the integral closure of Ok in K, F be the residue field
of Og, and Gk = Gal(K/K) be the Galois group of K over K. Let m be a
uniformizer of O and ord be the valuation of K normalized by ordm = 1. We
denote also by ord the unique extension of ord to K.

1 TUBULAR NEIGHBORHOODS FOR FINITE FLAT ALGEBRAS

For a semi-local ring R, let mpr denote the radical of R. We say that an Og-
algebra R is formally of finite type over Ok if R is semi-local, mp-adically
complete, Noetherian and the quotient R/mp is finite over F'. An Og-algebra
R formally of finite type over O is formally smooth over Ok if and only if its
factors are formally smooth. We say that an Og-algebra R is topologically of
finite type over Ok if R is w-adically complete, Noetherian and the quotient
R/7R is of finite type over F. For an Ok-algebra R formally of finite type over
Ok, we put QR/OK = liin”Q(R/m%)/oK. For an Og-algebra R topologically
of finite type over Ok, we put QR/OK = mn Q(Rr/amR)/0x- Here and in
the following, 2 denotes the module of differential 1-forms. For a surjection
R — R’ of rings, its formal completion is defined to be the projective limit
RM =lim R/(Ker(R — R'))".

In this section, A will denote a finite flat Ox-algebra.

1.1 EMBEDDINGS OF FINITE FLAT ALGEBRAS

DEFINITION 1.1 1. Let A be a finite flat Ok -algebra and A be an Ok -algebra
formally of finite type and formally smooth over O . We say that a surjection
A — A of Ok-algebras is an embedding if it induces an isomorphism A /ma —
A/mA.
2. We define Embo, to be the category whose objects and morphisms are as
follows. An object of Embo,. is a triple (A — A) where:

o A is a finite flat Ok -algebra.

o A is an Ok -algebra formally of finite type and formally smooth over Ok .

e A — A is an embedding.
A morphism (f,f) : (A — A) — (B — B) of Embo, is a pair of Ok-
homomorphisms f : A — B and f : A — B such that the diagram

A— A

‘| |7

B—— B

DOCUMENTA MATHEMATICA - EXTRA VOLUME KATO (2003) 5-72



8 AHMED ABBES AND TAKESHI SAITO

18 commutative.

3. For a finite flat Ok -algebra A, let Embo, (A) be the subcategory of Embo .
whose objects are of the form (A — A) and morphisms are of the form (idy, f).
4. We say that a morphism (f,f) : (A — A) — (B — B) of Embo, is
finite flat if £ : A — B is finite and flat and if the map B @ A — B is an
isomorphism.

If (A — A) is an embedding, the A-module QA/OK is locally free of finite rank.

LEMMA 1.2 1. For a finite flat Ok -algebra A, the category Embo,. (A) is non-
empty.

2. For a morphism f : A — B of finite flat Ok -algebras and for embeddings
(A — A) and (B — B), there exists a morphism (f,f): (A — A) — (B — B)
lifting f.

3. For a morphism f: A — B of finite flat Ok -algebras, the following condi-
tions are equivalent.

(1) The map f: A — B is flat and locally of complete intersection.

(2) Their exists a finite flat morphism (f,f) : (A — A) — (B — B) of
embeddings.

Proof. 1. Take a finite system of generators ti,...,t, of A over
Ok and define a surjection Og|[Ty,...,T,] — A by T; — t;. Then
the formal completion A — A of Okl[Th,...,T,] — A, where A =
liinm Ok[Ty,...,T,]/(Ker(Ok[Ty,...,T,) — A))™, is an embedding.

2. Since A is formally smooth over O and B = lim B/I" where I = Ker(B —
B), the assertion follows.

3. (1)=(2). We may assume A and B are local. By 1 and 2, there exists a
morphism (f,f) : (A — A) — (B — B) lifting f. Replacing B — B by the
projective limit lim (A/m} ®o, B/m§)" — B/m} of the formal completion
(A/my ®o, B/mE)" — B/m}, of the surjections A/m’y ®o, B/m} — B/m7},
we may assume that the map A — B is formally smooth. Since A — B is
locally of complete intersection, the kernel of the surjection B ® 4 A — B is
generated by a regular sequence (t1,...,t,). Take a lifting (¢,...%,) in B and
define a map Al[[Ty,...,T,]] — B by T; — t;. We consider an embedding
Al[[Ty,...,T,])] — A defined by the composition A[[T1,...,T,]] = A — A
sending T; to 0. Replacing A by A[[T1,...,T,]], we obtain a map (A —
A) — (B — B) such that the map B ®4 A — B is an isomorphism and
dim A = dim B. By Nakayama’s lemma, the map A — B is finite. Hence the
map A — B is flat by EGA Chap Ory Corollaire (17.3.5) (ii).

(2)=(1). Since A and B are regular, B is locally of complete intersection over
A. Since B is flat over A, B is also flat and locally of complete intersection
over A. O
The base change of an embedding by an extension of complete discrete valuation
fields is defined as follows.
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RAMIFICATION OF LocAL FIELDS 9

LEMMA 1.3 Let K’ be a complete discrete valuation field and K — K’ be a
morphism of fields inducing a local homomorphism Ok — Ogs. Let (A —
A) be an object of Embo,.. We define A®o, Ok to be the projective limit
ligln(A/mK ®ox Ox). Then the O -algebra Ao, O is formally of finite
type and formally smooth over Ok:. The natural surjection A®o, Ok —
A®OKOK/ defines an object (A®OKOK’ — A®OK OK/) of SmboK,.

Proof. The Ok-algebra A is finite over the power series ring Ok [[T1, . . ., T,]] for
some n > 0. Hence the Og-algebra A®p,. Ox is finite over O/ [[T1, ..., Ty]]
and is formally of finite type over Og/. The formal smoothness is clear from
the definition. The rest is clear. 0.
For an object (A — A) of Embo,. , we let the object (A®o, O — A®o, Ox’)
of Embo,., defined in Lemma 1.3 denoted by (A — A)®o, Ok’. By sending
(A — A) to (A — A)®o, Ok, we obtain a functor ®o, Ok : Embo, —
Embo,.,. If K’ is a finite extension of K, we have A®0, Ox = A ®0, Ok

1.2 TUBULAR NEIGHBORHOODS FOR EMBBEDINGS

Let (A — A) be an object of Embo, and I be the kernel of the surjection
A — A. Mimicing [3] Chapter 7, for a pair of positive integers m,n > 0,
we define an Opg-algebra A™/™ topologically of finite type as follows. Let
A[I™/7™] be the subring of A ®¢,. K generated by A and the elements f/7™
for f € I and let A™/™ be its m-adic completion. For two pairs of positive
integers m,n and m/,n’, if m’ is a multiple of m and if m’/n’ < m/n, we have
an inclusion A[I™ /=™'] ¢ A[I™/x™)]. It induces a continuous homomorphism
A /m" . Am/n Then we have the following.

LEMMA 1.4 Let (A — A) be an object of Embo,. and m,n > 0 be a pair of
positive integers. Then,

1. The Og-algebra A™'™ is topologically of finite type over Ok . The tensor
product Ag/n = A™/" @0, K is an affinoid algebra over K.

2. The map A — A™/™ is continuous with respect to the ma -adic topology on
A and the w-adic topology on A™/™.

3. Let m’,n' be another pair of positive integers and assume that m’ is a mul-
tiple of m and j' = m//n’ < j =m/n. Then, by the map X™/™ = Sp Aﬁ/" —
xm'/n" = §p A7Kn//"l induced by the inclusion A[I" /7™ c A[I"/7™], the
affinoid variety X™/™ is identified with a rational subdomain of xm'/n

4. The affinoid variety X™/™ = Sp .A?/n depends only on the ratio j = m/n.

The proof is similar to that of [3] Lemma 7.1.2.

Proof. 1. Since the Og-algebra A™/" is 7-adically complete, it is sufficient
to show that the quotient A[I™/7™]/(r) is of finite type over F. Since it is
finitely generated over A/(m,I™) and A/(w,I) = A/(w) is finite over F, the
assertion follows.
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10 AHMED ABBES AND TAKESHI SAITO

2. Since A/m = A/(w,I) is of finite length, a power of mp is in (7, I™). Since
the image of (7™, I"™) in A™/™ is in 7™ A™/™ the assertion follows.

3. Take a system of generators fi,...,fny of I" and define a surjection
Al [z [Ty, ..., Tn])/ (™ Ti— f;) — A[I™/7™] by sending T to f;/x™. Since
it induces an isomorphism after tensoring with K, its kernel is annihilated by

a power of m. Hence it induces an isomorphism A%//"/ (Ty,....,Tn)/(n™T; —
fii=1,...,N) — AT/
4. Further assume m/n = m//n’ and put k = m//m. Let f1,...,fn € I"

be a system of generators of I"™ as above. Then A[I"™/n™] is generated by
(fi/m™)k o (fy /™) 0 < k; < k as an A[I" /7™ ]-module. Hence the
cokernel of the inclusion A™/™" — A™/" is annihilated by a power of 7 and
the assertion follows. a
If A = Og[[Ty,...,Tn]] and I = (Ty,...,Ty), the ring A™/1 is isomor-
phic to the m-adic completion of O[Ty /7™, ..., Ty/7™] and is denoted by
Ok (Ty /7™, ..., Tn/7™). By Lemma 1.4.4, the integral closure A’ of A™/™ in
the affinoid algebra A™/" ®0, K depends only on j = m/n.

DEFINITION 1.5 Let (A — A) be an object of Embo,. and j > 0 be a rational
number. We define A7 to be the integral closure of A™/™ for j = m/n in the
affinoid algebra A™" @0, K and define the j-th tubular neighborhood XI(A —
A) to be the affinoid variety Sp A%

In the case A = Ok][[T1,...,T,]] and the map A — A = Ok is defined by
sending 7T} to 0, the affinoid variety X7(A — A) is the n-dimensional polydisk
D(0, 7)™ of center 0 and of radius 7. For each positive rational number j > 0,
the construction attaching the j-th tubular neighboorhood X7(A — A) to an
object (A — A) of Embo,. defines a functor

X9 : Embo,. — (Affinoid/K)

to the category of affinoid varieties over K. For j° < j, we have a natural
morphism X7 — X7 of functors. A finite flat morphism of embeddings induces
a finite flat morphism of affinoid varieties.

LEMMA 1.6 Let j > 0 be a positive rational number and (A — A) — (B — B)
be a finite and flat morphism in Embo,.. Then, the induced map f7 : X7 (B —
B) — XI(A — A) is a finite flat map of affinoid varieties.

Proof. Let I and J = IB be the kernels of the surjections A — A and B — B.
Since the map A — B is flat, it induces isomorphisms B ®a A[I"/7"™] —
B[J"/7™] and B ®a A}, — Bj.. The assertion follows from this immediately.
O

For an extension K’ of complete discrete valuation field K, the construction of
j-th tubular neighborhoods commutes with the base change. More precisely, we
have the following. Let K’ be a complete discrete valuation field and K — K’
be a morphism of fields inducing a local homomorphism Og — Og/. Then by
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RAMIFICATION OF LocAL FIELDS 11

sending an affinoid variety Sp Ag over K to the affinoid variety Sp Ax®@x K’
over K’ we obtain a functor ®x K’ : (Affinoid/K) — (Affinoid/K’) (see [2]
9.3.6). Let e be the ramification index eg//x and j > 0 be a positive rational
number. Then the canonical map A — A®o, Ok induces an isomorphism
XA - Ao K — X9((A — A)®0o, Ok) of affinoid varieties over K’. In
other words, we have a commutative diagram of functors

X7 Embo,, —— (Affinoid/K)
®OKOK/J( l@KK/
X¢i: Embo,, — (Affinoid/K’).

LEMMA 1.7 For a rational number j > 0, the affinoid algebra AJI; is smooth
over K.

Proof. By the commutative diagram above, it is sufficient to show that there
is a finite separable extension K’ of K such that the base change X7(A —
A)@xg K' = X7(A ®0, Oxr — A®0, Ok) is smooth over K’. Replacing K
by K’ and separating the factors of A, we may assume A/my = F. Then we
also have A/ma = F and an isomorphism Ok [[T1,...,T,]] — A. We define an
object (A — Ok) of Embo,. by sending T; € A to 0. Let I and I’ be the kernel
of A — A and A — Ok respectively and put j = m/n. Since A/(zx™,I") is
of finite length, there is an integer n’ > 0 such that I’*" C (7™, I"). Then we
have an inclusion A[I" /x™] — A[I"/7™] and hence a map X™/"(A — A) —
Xm/n' (A — Og). By the similar argument as in the proof of Lemma 1.4.3,
the affinoid variety X™/™(A — A) is identified with a rational subdomain of
X™/" (A — Og). Since the affinoid variety X”/" (A — Ok) is a polydisk,
the assertion follows. O
By Lemma 1.7, the j-th tubular neighborhoods in fact define a functor

X7 : Embo,, — (smoooth Affinoid/K)

to the category of smooth affinoid varieties over K. Also by Lemma 1.7,
QA]-/OK ® K is a locally free AJ.-module.

An idea behind the definition of the j-th tubular neighborhood is the fol-
lowing description of the valued points. Let (A — A) be an object of
Embo, and j > 0 be a rational number. Let A}, be the affinoid alge-
bra defining the affinoid variety X7(A — A) and let X7(A — A)(K) be
the set of K-valued points. Since a continuous homomorphism A} — K
is determined by the induced map A — O, we have a natural injection
XI(A — A)(K) — HoMeont.0x-alg(A, Og). The surjection A — A induces an
injection

(1.8.0) Homo,.-aig(A, Og) —— XI(A — A)(K).

For a rational number j > 0, let m’/ denote the ideal m? = {z € K;ordx > j}.
We naturally identify the set Homo,-alg(A4, O /m?) of Ok-algebra homomor-
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12 AHMED ABBES AND TAKESHI SAITO

phisms with a subset of the set Homcont.0x-alg(A, O /m?) of continuous O -
algebra homomorphisms.

LEMMA 1.8 Let (A — A) be an object of Embo, and j > 0 be a rational
number. Then by the injection X7(A — A)(K) — Homcont.0x -aig(A, OF)
above, the set XI(A — A)(K) is identified with the inverse image of the
subset Homo . -aig(A, O /m7) by the projection Hom cont.0x-alg(A,Og) —
Hom cont.0x-alg(A, O /m?). In other words, we have a cartesian diagram

XI(A— A)(K) ———  HoMcont.0x-alg(A,Of)

(1.8.1) l l

HomoK_alg(A, OI-(/mj) E— Homcont,oK_alg(A, O[(/mj).
The arrows are compatible with the natural G -action.

Proof. Let j = m/n. By the definition of A™/™a continuous morphism
A — Oy is extended to A} — K, if and only if the image of I™ is contained
in the ideal (7). Hence the assertion follows. O
For an affinoid variety X over K, let my(X %) denote the set @K,/K mo(X k)
of geometric connected components, where K’ runs over finite extensions of K
in K. The set mo(X) is finite and carries a natural continuous right action of
the absolute Galois group Gx. To get a left action, we let 0 € Gk act on X
by o~1. The natural map X7(A — A)(K) — m(Xg) is compatible with this
left Gi-action. Let Gi-(Finite Sets) denote the category of finite sets with a
continuous left action of Gk and let (Finite Flat/Og) be the category of finite
flat Og-algebras. Then, for a rational number j > 0, we obtain a sequence of
functors

(Finite Flat/Og) «—— Embo, E.SR

(smooth Affinoid/K) XomXg),

G k- (Finite Sets).

We show that the composition Embo,, — Gk-(Finite Sets) induces a functor
(Finite Flat/Ok) — G k-(Finite Sets).

LEMMA 1.9 Let j > 0 be a positive rational number. -
1. Let (A — A) be an embedding. Then, the map X7 (A — A)(K) —
Homoy-alg(A, Og /m?) (1.8.1) induces a surjection

(1.9.1) Homo,-aig(A, Og /mi) —— mo(XI (A — A)g).

2. Let (A — A) and (A’ — A) be embeddings. Then, there exists a unique
bijection mo(X7 (A — A)g) — mo(XI (A’ — A)g) such that the diagram

Homo,c-aig(A, O /m?) —— (X7 (A — A)g)
(1.9.2) H |
Homo,-aig(A, O /m?) —— mo(X7 (A" — A)g)
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18 commutative.

3. Let (f,f): (A — A) — (B — B) be a morphism of Embo,.. Then, the
induced map 7o(X? (B — B)g) — mo(X7(A — A)g) depends only on f.

4. Let (f,f) : (A = Og) — (B — B) be a finite flat morphism of Embo,, .
Then the map (1.8.0) induces a surjection

(1.9.3) Homo,-aig(B,0Og) —— mo(X?(B — B) ).

Proof. 1. The fibers of the map Homcont.0g-alg(A,Ox) —
HoMeont.0xc-alg(A, O /m?) are K-valued points of polydisks. Hence the
surjection X7 (A — A)(K) — HoMcont.0x-alg(A, Og /m7) induces a surjection
Homeont.0x-alg (A, Og/m?) — my(XI(A — A)g) by Lemma 1.8.

2. By 1 and Lemma 1.2.2, there exists a unique surjection 7o (X7 (A — A) ) —
7o(X7 (A’ — A)g) such that the diagram (1.9.2) is commutative. Switching
A — Aand A’ — A, we obtain the assertion.

3. In the commutative diagram

Homcont.OK—aIg(BaoR'/mj) B WO(Xj(B - B)R)

r] !

Homeont.0c-a1g(A, O /m? ) ——— mo(X7(A — A)g),

the horizontal arrows are surjective by 1. Hence the assertion follows.

4. The map f/ : X/(B — B) — X7(A — Og) is finite and flat by Lemma 1.6.
Let y : X7(A — Og)(K) be the point corresponding to the map A — Og.
Then the fiber (f7)7!(y) is identified with the set Homoaig(B,Of). Since
XJ(A — Og)f is isomorphic to a disk and is connected, the assertion follows.
O

For a rational number j > 0 and a finite flat O-algebra A, we put

W)= lm o (XA A)g)
(A—A)eEmbo . (A)

By Lemmas 1.2.1 and 1.9.2, the projective system in the right is constant.
Further by Lemma 1.9.3, we obtain a functor

W/ : (Finite Flat/Ox) —— Gg-(Finite Sets)

sending a finite flat Og-algebra A to W/(A). Let ¥ : (Finite Flat/Og) —
G-(Finite Sets) be the functor defined by ¥(A) = Homoy-ag(A4, K). Then,
the map (1.9.1) induces a map ¥ — W/ of functors.

1.3 STABLE NORMALIZED INTEGRAL MODELS AND THEIR CLOSED FIBERS

We briefly recall the stable normalized integral model of an affinoid variety
and its closed fiber (cf. [1] Section 4). It is based on the finiteness theorem of
Grauert-Remmert.
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14 AHMED ABBES AND TAKESHI SAITO

THEOREM 1.10 (Finiteness theorem of Grauert-Remmert, [1] Theorem 4.2)
Let A be an Og-algebra topologically of finite type. Assume that the generic
fiber Ax = ARo, K is geometrically reduced. Then,

1. There exists a finite separable extension K' of K such that the geometric
closed fiber Ao,., ®o,. F of the integral closure Ao,., of Ain A®o, K' is
reduced.

2. Assume further that A is flat over Ok and that the geometric closed fiber
A®o, F is reduced. Let K' be an extension of complete discrete valuation field
over K and 7’ be a prime element of K'. Then the n’-adic completion of the

base change A ®o, Ok is integrally closed in A ®p, K'.

Let A be an Og-algebra topologically of finite type such that Ag is smooth. If
a finite separable extension K’ satisfies the condition in Theorem 1.10.1, we say
that the integral closure Ao, of A in Ak is a stable normalized integral model
of the affinoid variety Xx = Sp Ak and that the stable normalized integral
model is defined over K’. The geometric closed fiber X = Spec Ao o Q0 F of
a stable normalized integral model is independent of the choice of an extension
K’ over which a stable normalized integral model is defined, by Theorem 1.10.2.
Hence, the scheme X carries a natural continuous action of the absolute Galois
group Gk = Gal(K/K) compatible with its action on F.

The construction above defines a functor as follows. Let Gx-(Aff/F) denote
the category of affine schemes of finite type over F' with a semi-linear continuous
action of the absolute Galois group Gx. More precisely, an object is an affine
scheme Y over F with an action of Gx compatible with the action of Gx on
F satisfying the following property: There exist a finite Galois extension K’
of K in K, an affine scheme Y- of finite type over the residue field F’ of K’,
an action of Gal(K’/K) on Yk compatible with the action of Gal(K’/K) on
F’ and a Gg-equivariant isomorphism Y+ ®p F — Y. Then Theorem 1.10
implies that the geometric closed fiber of a stable normalized integral model
defines a functor

(smooth Affinoid/K) — Gg-(Aff/F): X — X.

COROLLARY 1.11 Let A be an Ok -algebra topologically of finite type such that
the generic fiber Ax is geometrically reduced as in Theorem 1.10. Let Xy =
Sp Ax be the affinoid variety and Xz be the geometric closed fiber of the
stable normalized integral model. Then the natural map mo(Xp) — mo(Xg) is
a bijection.

Proof. Replacing A by its image in Ag, we may assume A is flat over Og.
Let K’ be a finite separable extension of K in K such that the stable normal-
ized integral model Ao, is defined over K’. Then since Ao, is m-adically
complete, the canonical maps mo(SpecAo,.,) — mo(Spec(Ao,, ®o,, F')) is
bijective. Since the idempotents of A/ are in Ao,,, the canonical maps
mo(SpecAo,.,) — mo(SpecAk) is also bijective. By taking the limit, we obtain
the assertion. a
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By Corollary 1.11, the functor (smooth Affinoid/K) — G k-(Finite Sets) send-
ing a smooth affinoid variety X to mo(X ) may be also regarded as the com-
position of the functors

(smooth Affinoid/K) =%, Gr-(Aff/F) —™ Gx-(Finite Sets)-

LEMMA 1.12 Let j > 0 be a positive rational number and (f,f) : (A — Og) —
(B — B) be a finite flat morphism of Embo, . Let fI : X/(B — B) —
XI(A — Og) be the induced map and f7 : X/(B — B) — X/(A — Ok)
be its reduction. Let y € XJ(A — Og)(K) be the point corresponding to
A > A=0r — K and (TS Xj(A — Og) be its specialization. Then the
surjections (f7) "' (y) = Homoy-aig(B,Og) — m0(X? (B — B)g) (1.9.3) and
the specialization map (f7)~*(y) — (f7)~1(7) induces a bijection

(1.12.1) lim,_mo(X7' (B — B)g) —— (f)) (7).

Proof. The map (f7)~(y) — (X7 (B — B)g) is a surjection of finite sets
by Lemma 1.9.4. Hence there exists a rational number j° > j such that the
surjection mo (X' (B — B)g) — h_r)nj”>j m0o(X7"(B — B)g) is a bijection.
Let K’ be a finite separable extension such that the surjection mo(X7 (B —
B)g) — ’/To(Xj,(B — B)gs) is a bijection and that the stable normalized
integral models B]OK/ of X7(B — B) is defined over K'. Enlarging K’ further if

necessary, we assume that e’j is an integer where ¢’ = ey /K is the ramification
index. Then the integral model Ag)K/ of X7(A — Ok) is also defined over K'.
If Ok[[T1,...,Tn]] — A is an isomorphism such that the kernel of A — Ok
is generated by Ti,... ’TT‘ and 7’ is/a prime element of K’, it induces an
isomorphism Ox/(Ty /7’7, ... T, /n'®7) — Ay, . Let A, . — Ok be the
map induced by A — Op and Aﬁ)K, be the formal completion respect to
the surjection AJOK, — Ogr. If Og[[T1,...,T,]] — A is an isomorphism as
above, it induces an isomorphism O [[Ty /'€, ..., T, /x'¢7]] — A]bK/. We
put B/ o= B]OK/ ®AJ(-3K/ AJOK/' The ring B%)K/ is finite over A]OK/ since B]OK,
is finite over AjOK,. Enlarging K’ further if necessary, we assume that the
canonical map (f7)~!(7) — mo(Spec B%)K,) is a bijection.

We show that the surjection mo(X7 (B — B)g+) — mo(Spec B{)K,) is a bijec-
tion. For a rational number ;' > 0, let AJIQ and B% denote the affinoid K-
algebras defining X7 (A — Og) and X7 (B — B). We have B% =B ®a .AJ];.
Since m(X7 (B — B)g) — lii>nj//>j mo(X?" (B — B)g) is a bijection, the in-
jection Bg — B}(/ induce a bijection of idempotents for 5 < 5" < j'. Since
(X7 (B — B)g) — m(X7 (B — B)g/) is a bijection, the idempotents of
Bi—; are in B%,. Hence, for j < j” < j', the map B% — B%, induces a bi-

jection of idempotents for j < j” < j'. Therefore, the map BgK, — B%;,
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16 AHMED ABBES AND TAKESHI SAITO

induces a bijection of idempotents by [3] 7.3.6 Proposition. Thus, the map
70(X7 (B — B)k+) — mo(Spec B{DK/) is a bijection as required. O

For later use in the proof of the commutativity in the logarithmic case, we give a
more formal description of the functor (smooth Affinoid/K) — Gx-(Aff/F) :
X — X. For this purpose, we introduce a category th//K(Aff/F’) and
K//K(Aff/F’) — G-(Aff/F) of categories. More gener-

. N . .
ally, we define a category h_r)n KK V(K') in the following setting. Suppose we

an equivalence lim

are given a category V(K') for each finite separable extension K’ of K and
a functor f* : V(K”) — V(K') for each morphism f : K/ — K" of finite
separable extension of K satisfying (f o g)* = g* o f* and idy, = idy k).
In the application here, we will take V(K’) to be (Aff/F’) for the residue
field F'. In Section 4, we will take V(K') to be Embo,,. We say that a
full subcategory C of the category (Ext/K) of finite separable extensions in
K is cofinal if C is non empty and a finite extension K" of an extension K’
in C is also in C. We define th,/K V(K') to be the category whose ob-
jects and morphisms are as follows. An object of lim K V(K') is a sys-
tem ((Xk')kreobc), (9f) f:k7—K"emor(c)) Where C is some cofinal full sub-
category of (Ext/K), Xk is an object of V(K') for each object K’ in C
and ¢y @ Xgv — f*(Xg) is an isomorphism in V(K") for each morphism
f iK' — K" in C satisfying ¢y = f*(¢y) 0 ¢y for morphisms ' : K’ — K"
and f: K" — K" in C. For objects X = ((Xx/)kreob(c), (#f) f:k'— K" emor(c))
and Y = ((YK’)K’Eob(C’)ﬂ (’@[Jf)f:K/—J(”Gmor(C’ ) of the category th//K V(K/)7
a morphism g : X — Y is a system (9x+)k-ecob(cr), Wwhere C” is some cofinal
full subcategory of CNC’ and gxs : Xg» — Yg is a morphism in V(K') such
that the diagram

XK” L} YK//

wl lw

X 2 Y

is commutative for each morphism f: K’ — K" in C".

Applying the general construction above, we define a category
lim K,/K(AH/F’) An equivalence llmK,/K(Aﬁ/F') —  Gg-(Aff/F)
of categories is defined as follows. Let X = ((Xk/)kreob(c)s
(f*) f:x'— K7 emor(c)) be an object of lim (Aff/F"). Let Cx be the category

S U KreCr X
is an affine scheme over F' and has a natural continuous semi-linear ac-
tion of the Galois group Gg. By sending X to X, we obtain a functor
li_n)1K,/K(Aff/F’) — Gg-(Aff/F). We can easily verify that this functor gives
an equivalence of categories.

The reduced geometic closed fiber defines a functor (smooth Affinoid/K) —

. , : .
hLQK//K(AﬂC/F ) as follows. Let X be a smooth affinoid variety over K. Let Cx

—SK'/K
of finite extensions of K in K which are in C. Then, Xz = = lim
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be the full subcategory of (Ext/K) consisting of finite extensions K’ such that a
stable normalized integral model Ao, , is defined over K ’. By Theorem 1.10.1,
the subcategory Cx is cofinal. Further, by Theorem 1.10.2, the system X =
(Spec Ao, ®E)K, F'kreobcy defines an object of li_r)nK,/K(Aff/F’). Thus,_by
sending X to X, we obtain a functor (smooth Affinoid/K) — li_r)nK,/K(Aff/F’).
By taking the composition with the equivalence of categories, we recover the
functor (smooth Affinoid/K) — Gg-(Aff/F).

1.4 TWISTED NORMAL CONES

Let (A — A) be an object in Embo, and j > 0 be a positive rational number.
We define X7(A — A) to be the geometric closed fiber of the stable normalized
integral model of X7(A — A). We will also define a twisted normal cone
CI(A — A) as a scheme over Ap oq = (A ®0, F)rea and a canonical map
XI(A — A) = CI(A — A).

Let I be the kernel of the surjection A — A. Then the normal cone Cy,a
of Spec A in Spec A is defined to be the spectrum of the graded A-algebra
@;’LO:O I" /1"t We say that a surjection R — R’ of Noetherian rings is regular
if the immersion SpecR’ — SpecR is a regular immersion. If the surjection
A — A is regular, the conormal sheaf Ny/a = I/1 2 is locally free and the
normal cone Cy, 4 is equal to the normal bundle, namely the covariant vector
bundle over SpecA defined by the locally free A-module Homa(Na/a,A).
For a rational number j, let m? be the fractional ideal m’ = {z € Og;ord(z) >
j} and put NV =mJ @¢, F.

DEFINITION 1.13 Let (A — A) be an object of Embo,, and j > 0 be a rational
number. We define the j-th twisted normal cone CI(A — A) to be the reduced
part

(svecars 0, 7))
red

n=0

of the spectrum of the A ®o, F-algebra @, ,(I" /1" @0, N~I™).

It is a reduced affine scheme over Spec Ap ,.q non-canonically isomorphic to
the reduced part of the base change C4 A ®0, F. Tt has a natural continuous
semi-linear action of G via N~7". The restriction to the wild inertia sub-
group P is trivial and the G g-action induces an action of the tame quotient
Gtame = G /P. If the surjection A — A is regular, the scheme C7(A — A)
is the covariant vector bundle over Spec Af ,.q defined by the Ag ,.q-module
(HomA(I/127 A) ok N]) ®A®OKF AF‘,red'

A canonical map X7(A — A) — CI(A — A) is defined as follows. Let K’ be a
finite separable extension of K such that the stable normalized integral model
AJOK, is defined over K’ and that the product je with the ramification index
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18 AHMED ABBES AND TAKESHI SAITO

€ = eg//k is an integer. Then, we have a natural ring homomorphism

@In(@ol{mi—(j/‘en_)AjK/ f®ar—af.

n>0

Since I.A o C mjKe,Ag)K,7 it induces a map @, I"/I"" ®o, ma" —
AJOK, /mK/.AfJK,. Let F’ be the residue field of K’. Then by extending the
scalar, we obtain a map ;2 (I"/I""! @0, N77") — Ay, | [mr A @p F.
By the assumption that AJOK, is a stable normalized integral model, we have
X7(A — A) =Spec (A, /mpr Ay, @p F). Since X7(A — A) is a reduced
scheme over F, we obtain a map X7(A — A) — C9(A — A) of schemes over
F.

For a positive rational number j > 0, the constructions above define a functor
C7: Embo,. — Gi-(Aff/F) and a morphism of functors X7 — C7.

LEMMA 1.14 Let (A — A) be an object of Embo,. and j > 0 be a rational
number. Then, we have the following.

1. The canomnical map X7 (A — A) — CI(A — A) is finite.

2. Let (A — A) — (B — B) be a morphism in Embo,, . Then, the canonical
maps form a commutative diagram

X/(B— B) —— C/(B— B) —— Spec Bp eq

| ! l

X/(A—A) —— CI(A— A) —— Spec Ap 4.

If the morphism (A — A) — (B — B) is finite flat, then the right square in
the commutative diagram is cartesian.

8. Assume A = Og. Then the surjection A — A is reqular and the canonical
map Na/a — QA/OK Ra A is an isomorphism. The twisted normal cone

CI(A — A) is equal to the F-vector space Homp(QA/oK ®a F,N7). The
canonical map X7 (A — A) — CI(A — A) is an isomorphism.

Proof. 1. Let K’ be a finite extension such that the stable normalized integral
model .AJOK/ is defined. Let A" denote the 7’-adic completion of the image of

the map @, -, [" ®ox Mzl — A ®0, K’'. Then by the definition and by
Lemma 1.3, A]éK/ is the integral clpsure of A" in A%.. Hence A]éK/ /mK/.AjOK,
is finite over @,, I" /1" ®0, m“". Thus the assertion follows.

2. Clear from the definitions.

3. If A = Ok, there is an isomorphism Ok|[T4,...,T,]] — A for some n such
that the composition Og|[[T1,...,T,]] — A maps T; to 0. Then the assertions
are clear. O
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1.5 ETALE COVERING OF TUBULAR NEIGHBORHOODS

Let A and B be the integer rings of finite étale K-algebras. For a finite flat
morphism (A — A) — (B — B) of embeddings, we study conditions for the
induced finite morphism X7(A — A) — X’(B — B) to be étale.

Let X = Sp Bg and Y = Sp Ax be geometrically reduced affinoid varieties
and A and B be the maximum integral models. Then a finite map f: X — Y
of affinoid varieties is uniquelly extended to a finite map A — B of integral
models.

PROPOSITION 1.15 Let A and B = Oy, be the integer rings of finite separable
extensions of K and (A — A) — (B — B) be a finite flat morphism of
embeddings. Let j > 1 be a rational number, wr a prime element of L and
e = ordmy, be the ramification indez.

1. ([1] Proposition 7.3) Assume A = Og. Suppose that, for each j' > j,
there exists a finite separable extension K’ of K such that the base change
Xj/(B — B) g is isomorphic to the disjoint union of finitely many copies of
X7'(A — Ak as an affinoid variety over X3’ (A — A). Then there is an
integer 0 < n < ej such that 7} annihilates Qp /4.

2. ([1] Proposition 7.5) If there is an integer 0 < n < ej such that 7} annihi-
lates Qpa, then the finite flat map X7(B — B) — X7(A — A) is étale.

COROLLARY 1.16 ([1] Theorem 7.2) Let A = Ok and let B be the integer ring
of a finite étale K-algebra. Let (A — A) — (B — B) be a finite flat morphism
of embeddings. Let j > 1 be a rational number. Suppose that, for each j' > j,
there exists a finite separable extension K' of K such that the base change
Xj/(B — B) g is isomorphic to the disjoint union of finitely many copies of
le(A — A)gr as in Proposition 1.15.1. Let I be the kernel of the surjection
B — B and let Np/g be the B-module I/I?. Then, we have the following.

1. The finite map X7(B — B) — X7(A — A) is étale and is extended to a
finite étale map of stable normalized integral models.

2. The finite map X/(B — B) — X7(A — A) is étale.

3. The twisted normal cone C?(B — B) is canonically isomorphic to the
covariant vector bundle defined by the Bp .q-module (Homp(Np B, B) @0
N7) @B, Bp yea and the finite map X7 (B — B) — C7(B — B) is étale.

Though these statements except Corollary 1.16.3 are proved in [1] Section 7,
we present here slightly modified proofs in order to compare with the proofs of
the corresponding statements in the logarithmic setting given in Section 4.3.
To prove Proposition 1.15, we use the following.

LEMMA 1.17 Let A = Oy, be the integer ring of a finite separable extension L,
A — A be an embedding and let M be an A-module of finite type. Let j > 1
be a rational number and K' be a finite separable extension of K such that the
stable normalized integral model AJOK/ of X7(A — A) is defined over K'. Let

e and €' be the ramification indices of L and of K' over K and 7, and ' be
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prime elements of L and K'. Assume that €' /e and €'j are integers. Then, the
following conditions are equivalent.

(1) There exists an integer 0 < n < ej such that the A-module M = M ®@a A
is annihilated by 7.

(2) The Ap, ,-module M7 = M ®a Ay, is annihilated by re'i=1,

Proof of Lemma 1.17. The image of an element in the kernel I of the surjection
A — Ain AJOK, is divisible by 7’¢7. Hence we have a commutative diagram

A — AjoK,

! |

A —— AL (7).

We show that the ideals of AjoK, /(w'¢'7) generated by the image of 7, € A
and by the image of re'le g A{)K, are equal. Take a lifting a € A of mp € A.
Then, the image of a® is a unit times 7 and hence is a unit times ¢ in
A%)K,/(ﬂ'le/j). Sinpe Ap,, s w’—adically complete, we have af = un’® +or’¢
for some u € AJOZ, and v € .AJOK,. Since j > 1 and A%)K/ is w'—adlcz_mlly
complete, we have (a/7'¢/€)¢ = u + v7’¢ =1 is a unit in Ap,,- Since Ag,
is normal, we have a/7¢'/¢ € AjoxK, and the claim follows.

Assume that the A-module M is isomorphic to A" ® @;_, A/(x}') for in-
tegers 0 < n; < ... < n,. Then, by the commutative diagram above and
by the equality (7z) = (7/¢/¢) of the ideals of AJOK,/(W’e/j) proved above,
the A{DK,/(w'e/j)—module M /7¢I MI s isomorphic to (A]bK,/(W’e/j))T )
®_, AJbK,/(W/ mi“(elj’e/"i/e)). The condition (1) is clearly equivalent to that
r =0 and ng < ej. We see that the condition (2) is also equivalent to this con-
dition by taking the localization at a prime ideal A]OK/ of height 1 containing
. O
Proof of Proposition 1.15. 1. Since A = Og, there is an isomorphism
Ok|[[T1,-..,Ty]] — A such that the composition Ok|[[Th,...,T,]] — A maps
T; to 0. For j > 0, the affinoid variety X/(A — A) is a polydisk. By
the proof of Lemma 1.7, there exist a finite separable extension K’ of K
of ramification index e/, an embedding (B ®o, Oxr — B’) in Embo,,, iso-
morphic to the embbedding (Og/[[S1,. .., S]] — OX,) sending S; to 0 for
some N > 0, a positive rational number ¢ < j and an open immersion
X/(B — B)®@x K' — X““(B ®o, Ox' — B') as a rational subdomain.
The affinoid variety X¢ (B ®o, Ox+ — B') is the disjoint union of finitely
many copies of polydisks. Enlarging K’ if necessary, we may assume that e’j
and €’e are integers. We may further assume that there is a rational number
j < 7' < j+ € such that €’j’ is an integer, that the stable normalized integral
models ng and Bg:, of X/ (B — B) and of X¢“(B ®o, Ox — B') are
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defined over K’ and that X7 (B — B)g: is isomorphic to the disjoint union
of copies of Xj'(A — A)gs. Since €’j’ is an integer, the stable normalized
integral model Ajo/K, of X9'(A — A) is also defined over K’. Then we have a
commutative diagram

A AOK’
B—— BSIE — B .
K/ ’
We  consider the modules Qp,0, = mn Qa/mn)/0x); QAJ-O/KI/OK, =
hm Q(A /W’"AEIK/)/OK' etc as defined in the beginning of Section 1.1.
By Lemma 1.4.2, we have a commutative diagram
j/ A j/ A
BOK, Ra QA/OK _— BOK’ ®AJ‘O'K/ QA{D/K/ /O g1

l |

j/ ~ j/ A
BOK’ “B QB/OK - BOK’ ®Bé)e;;/ QBS;//OK’ - Q OK//OK/
We show that the five BJ ,-modules are free of rank n and that the five
maps are injective. We also show that by 1dent1fy1ng the modules with

their images in 2 B IO we have an inclusion 7'¢'J’ BJOK, QB QB/OK C

n'e GBOK/ RA QA/OK of submodules of Q By the assumption on

o/ Oxr”
the covering X/ (B — B)gr — X/ (A — A)K/, the AgK,—algebra BgK
is isomorphic to the product of finitely many copies of .Aj/K,. Hence the

. . 5 A . .
right vertical map B - ®A{)/K, QA?)'K,/OK/ — Q /O is an isomorphism.
The isomorphism Og|[T1,...,T,])] — A in the begmmng of the proof induces
an isomorphism O/ (T} /'€, ..., T, /7T/e/j> — Ap , and we see that the A-

module QA/OK and the .Aj ,-module Q /O are free of rank n. Hence

Q is also a free B -module of rank n. Further by the canonical maps
By, /Oxs Ok

.Aj/K/ RA QA/OK — QAjO/ 10 the module Aj/ , QA QA/OK is identified with
K/

the submodule 7/¢'7" ) ]-/ /o . Similarly, the B-module QB/OK and the B’e €.
K/

module QB’OE;;, /O, Are free of rank n and B/e ¢ QB QB/OK is identified with the

submodule w’eleQBgye JO,.,- Since X7(B — B) @k K' is a rational subdomain
KI

7 j/ A~
of X¢¢(B®o, Ox' — B’), the map BOK/ ®B/OE:, QB/OE;;,/OK’ — Q is an

/OK’
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. . . . . . //'l i/ A ’ i’
injection. Thus, we obtain an inclusion 7/'¢7 BJOK/ ®B B0, C T'° CB]OK, ®aA

Qa0 as submodules of QBSK,/OK/'

Thus the BgK,—module BJ/K, ®B {lB/A = Coker(BéK, A QA/OK — BSK, B
QB/OK) is annihilated by 7/¢'" =9 Since 0 < j — e < j/ — € < j, it suffices to
apply Lemma 1.17 (2)=(1).

2. Let K’ be a finite separable extension such that e’j is an integer and the
stable normalized integral models A7, |, and By, , are defined over K'. By the
proof of Lemma 1.9.2, we have Bjé,(/ ®o,, K' =B ®a Ajokl ®0,, K’ and the
map AJéK/ ®o, K' — BéK, ®0,., K’ is finite flat. By Lemma 1.17 (1)=(2), the
BéK/—module B]éw @B (2B/a is annihilated by 7™ for an integer 0 < n’ < €’j.
Hence the map A’ o Q0 K — BéK, ®o,, K’ is étale. O
Proof of Corollary 1.16. 1. Tt follows from Proposition 1.15 that the map
XI(B — B) — X7(A — A) is finite étale. By Lemma 1.12, the fiber (f7)~%(7)
has the same cardinality as the degree of the map X’/(B — B) — X7(A — A)
in the notation there. Hence the finite map X’/(B — B)o,, — X’(A — A)o,,
of the normalized integral models is étale at a point of X7/(A — A)o,, in the
closed fiber. Since X7(A — A)o,, is a regular Noetherian scheme, the assertion
follows by the purity of branch locus.

2. Clear from 1.

3. Since the surjection B — B is regular, the twisted normal cone C?(B — B)
is canonically isomorphic to the covariant vector bundle defined by the By .q-
module (Homp(I/I?,B) ®0, N?) ®p,, B 1eq- We consider the commutative
diagram

X/(B—B) —— Ci(B— B) —— Spec Bp cq

l l l

XI(A - Og) —— CI(A - Og) ——— Spec F

in Lemma 1.14.2. Since the map (A — A) — (B — B) is finite and flat,
the right square is cartesian. Hence the middle vertical arrow is étale. Since
A = Og, the lower left horizontal arrow is an isomorphism by Lemma 1.14.3.
By 2, the left vertial arrow is finite étale. Thus the assertion is proved. a

2  FILTRATION BY RAMIFICATION GROUPS: THE NON-LOGARITHMIC CASE

2.1 CONSTRUCTION

In this subsection, we rephrase the definition of the filtration by ramification
groups given in the previous paper [1] by using the construction in Section 1.
The main purpose is to emphasize the parallelism between the non-logarithmic
construction recalled here and the logarithmic construction to be recalled in
Section 5.1.
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Let ® : (Finite Etale/K) — Gg-(Finite Sets) denote the fiber functor send-
ing a finite étale K-algebra L to the finite set ®(L) = Homg az(L, K) with
the continuous G-action. For a rational number j > 0, we define a functor
&7 : (Finite Etale/K) — Gg-(Finite Sets) as the composition of the functor
(Finite Etale/K) — (Finite Flat/Og) sending a finite étale K-algebra L to
the integral closure Op, of Ok in L and the functor ¥/ : (Finite Flat/Ox) —
G- (Finite Sets) defined at the end of Section 1.2. The map (1.9.3) defines a
surjection ® — ®J of functors. In [1], we define the filtration by ramification
groups on Gk by using the family of surjections (& — ®7);-¢ g of functors.
The filtration by the ramification groups Gi( C Gg,j > 0,€ Q is characterized
by the condition that the canonical map ®(L) — ®7/(L) induces a bijection
®(L)/Gy, — ®I(L) for each finite étale algebra L over K.

The functor ®7 is defined by the commutativity of the diagram

I

(Finite Etale/K) G i-(Finite Sets)

| ]

(Finite Flat/Ok) Gr-(Aff/F)
T TX»—»X
Embo — (smooth Affinoid/K)

We briefly recall how the other arrows in the diagram are defined. The for-
getful functor Embp,. — (Finite Flat/Ok) sends (A — A) to A. The functor
X7 1 Embo, — (smooth Affinoid/K) is defined by the j-th tubular neigh-
borhood. The functor (smooth Affinoid/K) — Gg-(Aff/F) sends X to the
geometric closed fiber X of the stable normalized integral model. The functor
7o : Gr-(Aff/F) — Gk-(Finite Sets) is defined by the set of connected com-
ponents. They induce a functor W7 : (Finite Flat/Og) — G -(Finite Sets)
by Lemma 1.9. The functor ®’ is defined as the composition of U7 with the
functor (Finite Etale/K) — (Finite Flat/Ox) sending a finite étale algebra L
over K to the integral closure Oy, in L of Og. More concretely, we have

()=  lm (XA —OL)
(AﬂOL)GgmboK (Or)

for a finite étale K-algebra L. )
For a rational number j > 0, we define a functor ®/* : (Finite Etale/K) ——
G k- (Finite Sets) by ®/*(L) = li_r)nj/>j ®J (L) for a finite étale K-algebra L. We

define a closed normal subgroup Gj; to be Uj/>jG%. Then we have ®/+ (L) =
®(L)/G5E. The finite set ®7+(L) has the following geometric description.

LEMMA 2.1 Let B be the integer ring of a finite étale algebra L over K and
Jj > 0 be a rational number. Let (f,f) : (A — Og) — (B — B) be a finite
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flat morphism of embeddings. Let f7 : X7(B — B) — X/(A — Og) and f7 :
Xi(B — B) — XI(A — Ok) be the canonical maps. Let 0 € XI(A — Ok)
be the point corresponding to the map A — Ok and 0 € X7(A — Og) be its
specialization. Then the maps (1.8.0), (1.12.1) and the specialization map form
a commutative diagram

o(L) —— (L) —— /(L)

(2.1.1) l l l
(f)7H0) —— (f))71(0) —— m(X/(B — B))
and the vertical arrows are bijections.

Proof. Since the map (A — Og) — (B — B) is finite flat, the map B — B
induces an isomorphism B, ® 4 K — L. Hence we obtain a bijection ®(L) =
Homy aig(L, K) — (f7)71(0). By Lemma 1.12 and the definition of ®/* (L),
we have a bijection ®/*(L) — (f7)~1(0). The bijection ®I (L) — mo(X’/(B —
B)) is clear from the definition of ®’(L). The commutativity is clear. O
For a finite étale algebra L over K and a rational number j > 0, we say that
the ramification of L is bounded by j if the canonical map ®(L) — ®/(L)
is a bijection. Let A = Ok and let B = O, be the integer ring of a finite
étale K-algebra L and (A — A) — (B — B) be a finite flat morphism of
embeddings. Then, since the map X7 (B — B) — X7(A — A) is finite flat of
degree [L : K], the ramification of L is bounded by j if and only if there exists a
finite separable extension K’ of K such that the affinoid variety X7(B — B) -
is isomorphic to the disjoint union of finitely many copies of X7(A — A)g:
over X7(A — A)g,. We say that the ramification of L is bounded by j+ if the
ramification of L is bounded by every rational number j > j. The ramification
of L is bounded by j+ if and only if the canonical map ®(L) — ®/(L) is a
bijection.

LEMMA 2.2 Let K — K’ be a map of complete discrete valuation fields induc-
ing a local homomorphism Ok — Og: of integer rings. Assume that a prime
element of K goes to a prime element of K' and that the residue field F' of
K' is a separable extension of the residue field F' of K. Then, for a rational
number j > 0, the map G — Gk induces a surjection G, — G

Proof. Let A be the integer ring of a finite étale K-algebra L and (A — A)
be an object of Embo, . By the assumption, the tensor product A ®o, Ok
is the integer ring of L ®x K'. By the isomorphism X7/(A — A)&xK' —
X1 (A®0, Ok — A ®p, Ok) in Section 1.2 and Theorem 1.10, the natural
map ®/ (L @ K') — ®(L) is a bijection. Hence the assertion follows. O

Ezample. Let K = Fy(z,y)((7)) and put L = K[]/(t" —t — =), M =
Llti,t2] /(8] —t1 — —m,th —t2 — %5) and G = Gal(M/K) ~ F3. Then we
have G7 = G for j < p?, GY = H = Gal(M/L) ~ F? for p*> < j < p® and
G7 =1 for p? < j.
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We put z = 7Pt. Then we have O, = Ok|[z]/(z? — 7P~z —2) and L =
Fp(z,y)((7)). By putting s = t1 — —5, we also have M = L[s, t2]/(s” — s —
2
%,tﬁ —t2— —I5). We put My = L(s) C M. Then we have H' =H
for j < p(p? —p+1), H = Gal(M/M,;) ~TF, for p(p®> —p+1) < j < p? and
H) =1 for p3 < j.
This example shows that the filtration on the subgroup H induced from the fil-
tration by ramification groups on G is not the filtration by ramification groups
on H even after renumbering. It also shows that the “lower numbering” fil-
tration is not equal to the upper numbering filtration defined here even after
renumbering.

2.2 FUNCTORIALITY OF THE CLOSED FIBERS OF TUBULAR NEIGHBOR-
HOODS: AN EQUAL CHARACTERISTIC CASE

For a positive rational number j > 0, let (Finite Etale/ K)SJT denote the full
subcategory of (Finite Etale/K) consisting of étale K-algebras whose ramifi-
cation is bounded by j4. In this subsection and the following one, we assume
the following condition (F) is satisfied.

(F) There exists a perfect subfield Fy of F' such that F' is finitely generated
over Fj.

Further assuming that p is not a uniformizer of K, we will define a twisted
tangent space ©’ and show that the functor X? : Embo, — Gg-(Aff/F)
induces a functor

X7 : (Finite Etale/K)S/T — Gg-(Finite Etale/©7).

In this subsection, we study the easier case where K is of characteristic p.

Let Fy be a perfect subfield of F' such that F' is finitely generated over Fj. We
assume K is of characteristic p. Then, Fy is naturally identified with a subfield
of K. We first define a functor

(Finite Etale/K) — Embo, .
In this subsection, A denotes the integer ring of a finite étale K-algebra.

LEMMA 2.3 Let A be the integer ring of a finite étale K-algebra.
1. Let (A/m" @, Ok)" denote the formal completion of A/m" @, Ok of the
surjection A/m"y ®p, Ox — A/m" sending a ® b to ab. Then the projective
limit

(A& p,O0x)" = lim(A/m’} @, Ok)"
is an Ok -algebra formally of finite type and formally smooth over Ok .
2. Let (A®p,Ok)" — A be the limit of the surjections (A/m" @5, Ok)" —
A/m". Then ((A®p,Ok)" — A) is an object of Embo, .
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8. Let A — B be a morphism of the integer rings of finite étale K-algebras.
Then it induces a finite flat morphism ((A®p,Ok)" — A) — ((B&fp,Ok)" —
B) of Embo, .

Proof. 1. We may assume A is local. Let E be the residue field of A and take a
transcendental basis (1, . .., T, ) of E over the perfect subfield Fj such that E is
a finite separable extension of Fy(f1,...,tm). Take a lifting (¢1,...,tm) in A of
(t1,...,tm) and a prime element ¢ty € A. We define a map Fy[Tp, ..., Tm] — A
by sending T; to t;. Then A is finite étale over the completion of the local ring
of Fy[Ty, ..., T] at the prime ideal (Tp). Hence there exist an étale scheme X
over A%H, a point £ of X above (Tp) and an Fp-isomorphism ¢ : OAx,g — A.
Let i : Spec A — X ®p, Ox be the map defined by ¢ and Ox — A. Then
(A®r,Ox)" is isomorphic to the coordinate ring of the formal completion
of X ®p, Or along the closed immersion ¢ : Spec A — X ®p, Or. Hence
(A® g, Of )" is formally of finite type and formally smooth over O.

2. Since the map (A®p,Ok)" — A is surjective, the assertion follows from 1.
3. Since (B&p,Ox)" = B®a (A®F9 Oxk)", the assertion follows. O
Thus, we obtain a functor (Finite Etale/K) — Embg, sending a finite étale
K-algebra L to ((OL®p,Ox)" — Op). For a rational number j > 0, we have
a sequence of functors

(Finite Etale/K) —— Embo,, —
(smooth Affinoid/K) —— Gg-(Aff/F).

We also let X7 denote the composite functor (Finite Etale/K) — Gx-(Aff/F).
For a finite étale K-algebra L, we have

XJ(L) = Xj((OL®FOOK)A — Op).

We define an object ©7 of Gg-(Aff/F) to be the F-vector space €7 =
Homp(Q0, /r, ®0, F, N7) regarded as an affine scheme over F' with a natural
Gk-action. Let Gg-(Finite Etale/©7) denote the subcategory of GK-(Aff/F)
whose objects are finite étale schemes over ©7 and morphisms are over ©7.

LEMMA 2.4 For a rational number j > 1, the functor X7 : (Finite Etale/K) —
Gi-(Aff/F) induces a  functor X :  (Finite Etale/K)Sit  —
Gk -(Finite Etale/©7).

Proof. The canonical map QOK/FO ®0x (Ox®@p,OK)" — Q(0K®FOOK)/\/OK is
an isomorphism by the definition of (OK® Fy Oxk)". Hence, we obtain isomor-
phisms X/ (K) — CI((Ox®F,Ok)" — Ok) — ©7 by Lemma 1.14.3. We
identify X7(K) with ©7 by this isomorphism. Let L be a finite étale K-
algebras whose ramification is bounded by j+. Then, by Corollary 1.16, the
map X7(L) — X’(K) = © is finite and étale. Thus the assertion is proved.
O

The construction in this subsection is independent of the choice of perfect
subfield Fy C F by the following Lemma.
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LEMMA 2.5 Let K be a complete discrete valuation field of characteristic p > 0
satisfying the condition (F). Let Fy and F} be perfect subfields of F such that
F is finitely generated over Fy and FY.

1. There exists a perfect subfield Fjj of F containing Fy and Fj.

2. Assume Fy C Fi. Then Fj is a finite separable extension of Fy. For the in-
teger ring A of a finite étale algebra over K, the canonical map (A® g, Ok )" —
(A& Ok )" is an isomorphism.

Proof. 1. The maximum perfect subfield (), FP" of F' contains Fy and I} as
subfields.

2. Since F{ is a perfect subfield of a finitely generated field F' over Fp,
it is a finite extension of Fy. Since the canonical map (A®p,Ok)" —
(A® g Ok)" is finite étale and the induced map (A®FOOK)A/m(A®FOOK)A —

(A®F60K)A/m(A®F/OK)A is an isomorphism, the assertion follows. O
0

2.3 FUNCTORIALITY OF THE CLOSED FIBERS OF TUBULAR NEIGHBORHOODS:
A MIXED CHARACTERISTIC CASE

In this subsection, we keep the assumption:

(F) There exists a perfect subfield Fy of F' such that F is finitely generated
over Fy.

We do not assume that the characterisic of K is p. Under the assumption (F),
there exists a subfield Ky of K such that Ok, = Ox NKj is a complete discrete
valuation ring with residue field Fy. If K is of characteristic 0, the fraction field
Ky of the ring of the Witt vectors W (Fy) = Of, regarded as a subfield of K
satisfies the conditions. If K is of characteristic p, we naturally identify Fj
as a subfield of K and the subfield Fy((¢)) for any non-zero element t € mg
satisfies the conditions. In this subsection, we take a subfield Ky of K such
that Ok, = Ox N Ky is a complete discrete valuation ring with residue field
Fy. Here, we do not define a functor (Finite Etale/K) — Embo,,. Instead, we
introduce a new category Embg,o x, and a functor

5mbK,OKD — 5mbOK .

In this subsection, A denotes the integer ring of a finite étale K-algebra and g
denotes a prime element of the subfield Ky C K. For a complete Noetherian
local Og,-algebra R formally smooth over Ok, , we define its relative dimension
over Ok, to be the sum tr.deg(E/k)+dimg mp/(m, m%) of the transcendental
degree of E = R/mp over k and the dimension dimg mpg/(m, m%).

DEFINITION 2.6 Let K be a complete discrete valuation field and Kq be a sub-
field of K such that Ox, = Og N Ky is a complete discrete valuation ring with
perfect residue field Fy and that F' is finitely generated over Fy.
1. We define EmbK,OKO to be the category whose objects and morphisms are
as follows. An object of Embk 0, is a triple (Ag — A) where:
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e A is the integer ring of a finite étale K -algebra.

o Ay is a complete semi-local Noetherian Ok, -algebra formally smooth of
relative dimension tr.deg(F/Fy) + 1 over Ok, .

o Ay — A is a regqular surjection of codimension 1 of Ok, -algebras inducing
an isomorphism Ag/ma, — A/my.

A morphism (f,f) : (Ag — A) — (Bog — B) is a pair of an O -homomorphism
f+A— B and an Og,-homomorphism £ : Ag — Bg such that the diagram

Ay — A

fl lf
By, —— B

18 commutative.

2. For the integer ring A of a finite étale K-algebra, we define Embk o, (A)
to be the subcategory of Embk o, whose objects are of the form (Ag — A) and
morphisms are of the form (ida,f).

3. We say that a morphism (Ag — A) — (Bg — B) is finite flat if Ay — By
is finite flat and the map Bo ®a, A — B is an isomorphism.

LEMMA 2.7 1. If A is the integer ring of a finite étale K-algebra, then the
category Embr,0,, (A) is non-empty.

2. Let (Ag — A) and (Bo — B) be objects of Embk 0, and A — B be an Ok -
homomorphism. Then there exists a homomorphism (Ag — A) — (Bg — B)
mn EmprKo extending A — B.

3. Let (Ag — A) — (Bo — B) be a morphism of Embr oy, - If a prime
element mg of Ky is not a prime element of any factor of A, then the map
(Ag — A) — (By — B) is finite and flat.

Proof. 1. We may assume A is local. Take a transcendental basis (f1,...,%m)
of the residue field E' of A over k such that F is a finite separable extension
of k(t1,...,tm). Take a lifting (t1,...,tm,) in Ok of (t1,...,t,) and a prime
element to of A. Then A is unramified over the completion of the local ring of
Ok, [To, - - ., Trm] at the prime ideal (7, To) by the map sending 7T; to ¢;. Hence
there are an étale scheme X over Ab”:ol, a point £ of X above (mg,Tp) and a

regular surjection ¢ : OX7§ — A of codimension 1. Let A be the O, -algebra
OAX{. Then (Ay — A) is an object of 5mbK,oKO.

2. Since Ay is formally smooth over O, it follows from that By is the formal
completion of itself with respect to the surjection By — B.

3. We may assume A and B are local. We show that the map By ®a, A — B
is an isomorphism. Let f be a generator of the kernel of Ay — A and con-
sider the class of f in ma,/m% . We show that the image of the class of
f in mBU/m]Q30 is not 0. Let tg € Ay and t, € By be liftings of prime
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elements of A and B respectively. By the assumption that my is not a
prime element, the surjection Q4 /0K, — Qa /0K, induces an isomorphism
QAO/OKO ®A, A/my — QA/OKO ®4 A/m4. Hence the image of dtg is a basis of
the kernel of QAO/OKO ®ay A/ma — Qa/may k- Therefore, (mg, o) is a basis
of ma, /mio. Further, by the assumption that 7y is not a prime element, the
kernel of the map ma,/m% — ma/m% is generated by the class of m. Hence
the class of f is a non-zero multiplie of the class of mg. Similarly (7o, %}) is a
basis of mgp, /mQBU. Thus the image of f in mp, /mf30 is not zero as is claimed.
Hence the kernel of By — B is also generated by the image of f and the map
By ®a, A — B is an isomorphism. Since B is finite over A, By is also finite

over Ay by Nakayama’s lemma. Since dimAy = dimBy = 2, the assertion
follows by EGA Chap 0Oy Corollaire (17.3.5) (ii). O

COROLLARY 2.8 Let A be the integer ring of a finite étale K-algebra. If a
prime element mg of Ky is not a prime element of any factor of A, then every
morphism of Embk o, (A) is an isomorphism.

Proof. If (A9 — A) — (A{ — A) is a map, the map Ay — Aj is finite flat of
degree 1 by Lemma 2.7.3. Hence it is an isomorphism. a
We define a functor EmbK’oKO — Embo,, -

LEMMA 2.9 Let (Ag — A) be an object of Emb oy, -
1. Let (Ag/m ®o,, Ok)" denote the formal completion of Ag/mx R0, O
of the surjection Ag/mR ®o,, Ox — A/m’ sending a ® b to ab. Then the
projective limit

(A0®0K0 OK)A = liLH(Ao/mKO ®OK0 OK)A
is an Ok -algebra formally of finite type and formally smooth over Ok .
2. Let (A0®OKO Or)N — A be the limit of the surjections (Ag/m}, R0k,
Ox)" — A/my. Then ((Ao®o,, Ok)" — A) is an object of Embo, .
3. Let (Ao — A) — (Bo — B) be a morphism of Embi 0y, - Then it induces
a morphism ((Ao®o,, Ox)" = A) = (Bo®oy, Ok)" — B) of Embo, .

Proof. 1. We may assume A and hence Ay are local. Let E be the residue field
of A and take a transcendental basis (f1,...,¢m) of E over k such that E is a
finite separable extension of k(t1,...,%,,). Take a lifting (t1,...,%,) in Ag of
(t1,...,tm). By our assumption, the quotient ring Ag/mgAyg is a regular local
ring of dimension 1 and hence is a discrete valuation ring. Take a lifting ty € A
of a prime element of Ag/mgAg. We define a map Og,[To, - .., Tm] — Ag by
sending T; to t;. Then Aj is finite étale over the completion of the local ring of
Ok, [To, - -, Trm] at the prime ideal (Tp, 7). Hence there exist an étale scheme
X over A’g:ol, a point £ of X above (Tp, mp) and a O, -isomorphism ¢ : OX75 —
Ay. Let i: Spec A — X®OK0 Ok be the map defined by ¢ and Og — A. Then
(A0®0KO Oxk)" is isomorphic to the coordinate ring of the formal completion
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of X ®o,, Ok along the closed immersion i : Spec A — X ®o, Ok. Hence
(A0®0K0 Ok )" is formally of finite type and formally smooth over Of.

2. Since the map (A0®0KO Ok)" — A is surjective, the assertion follows from
1.

3. Clear. O
In the rest of this subsection, we put A = (AO®OKO Ok)" for an object (Ag —
A) of Embk 0,- By Lemma 2.9, we obtain a functor Embr,0,, — Embo,
sending (Ag — A) to (A — A). For a rational number j > 0, we have a
sequence of functors

Embk 0y, — Embo, X—j>(sm00th Affinoid/K) —— Gg-(Aff/F).

We also let X7 denote the composite functor Embk 0y, — Gx-(Aff/F). For an
object (Ag — A) of Embk 0y, , we have X7 (Ag — A) = X7 ((Ay®0,, Ox)" —
A).

We study the dependence of the construction on the choice of a subfield K C
K, assuming the characteristic of K is 0.

LEMMA 2.10 Let K be a complete discrete valuation field of mized character-
istic satisfying the condition (F). Let Ko and K|, be subfields of K such that
Ok, = OxkNKy and OK() = OxNK]| are complete discrete valuation rings with
perfect residue field Fy and F} and that F is finitely generated over Fy and F{.
1. There exists a subfield K§ of K such that Ogy = Orx N K{ is a complete
discrete valuation ring with perfect residue field and that K{j contains Ky and
K|, as subfields.

2. Assume Ko C K|,. Then K| is a finite extension of Ko. For an object
(Ao — A) of Embk oy, , the formal completion Ay — A of the surjection
A¢®0y, Oy — A defines an object (A — A) ofgmbKOK[,). Further, we have

a canonical isomorphism ((Aj®o,, Ox)" — A) — ((Ao®o,, Ok)" — A) in
0
SmboK .

Proof. 1. By Lemma 2.5, we may assume the residue fields Fy and F{ are the
maximum perfect subfields of F. Then both of Ky and K|, are finite over the
fraction field of W (Fy) regarded as a subfield of K. Hence it is sufficient to
take the composition field.

2. By Lemma 2.5.2, the extension K}, is finite over Kj. The rest is clear from
the construction. a
If K is of characteristic p, the construction in this subsection is related to
that in the last subsection as follows. Let K be a subfield of K such that
Ok, = Ox N Ky is a complete discrete valuation ring with perfect residue
field Fy and that F' is finitely generated over Fj. Then, if g is a prime ele-
ment of Ky, we have an isomorphism Fy((t)) — Ky sending t to mg. For the
integer ring A of a finite étale algebra over K, let (A®g Og,)" denote the
projective limit of the formal completions (A/m’} ® g, Ok, )" of the surjections
A/m% ®@p, Ok, — A/m%. The surjection (A®p,Ok,)" — A defines an object
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(A®F, Ok, )" — A) of Embk 0y, Further, we have a canonical isomorphism
((A®FOOKO)/\®OKOOK)/\ — A) — (A2, 0k)" — A) in Embo,, .

In order to define a functor similar to the functor (Finite Etale/K)<it —
(Finite Etale/©7) in Section 2.2, we assume that m is not a prime element of
K in the rest of this subsection. Note that if p is not a prime element of K and
if the condition (F) is satisfied, there exists a subfield Ky C K with residue
field Fy such that a prime element of Kj is not a prime element of K.

We compute the twisted normal cone C7((A¢®o,, Ox)" — A) for an object
(Ag — A) of Embr 0y, - Let Naja = I/1? be the conormal module where T is

the kernel of the surjection A — A. We put QOK/OK = lim Q(OK/m )/Oxk,
and let Qp be the F-vector space QOK/OK ®og F. Slmllarly, we put QA/AO
hm Q(A/mn )/A,- We also consider the canonical maps Ny/a — QA/AO A A

and QOK/OK R0k A— QA/AU XA A.

LEMMA 2.11 Assume 7y is not a prime element of K and let m be the tran-
scendental dimension of F' over k. Let (Ao — A) be an object of Embk oy, -
Then, ~

1. The dimension of the F-vector space Qp is m + 1. A

2. The map Na/a — Qa/a, ®a A is a surjection and the map QOK/OKO R0k
A— QA/AO ®@a A is an isomorphism. They induce an isomorphism N/ ®a
A/mA — Qr Qp A/mA~

3. Let (Ag — A) — (Bo — B) be a morphism of Embg o, and put B =
(Bo®oy,Ok)". Then, the diagram

Nija®aAmy —— Qp@p A/my

l !

NB/B Xp B/mB R — QF Rp B/mB
s commutative.

Proof. 1. By the assumption that 7 is not a prime element of K, we have an
exact sequence 0 — my /m% — Qp — Qg — 0. Since the F-vector space
Qp/ is of dimension m, the assertion follows.

2. Since the cokernel of the map Ny/a — QA/AO @A Ais Qa/a, =0, it is
a surjection. By the definition of A, the map QOK/OKO ®ox A — Qa/a, is
an isomorphism. Hence the map QOK/OKO ®o, A — QA/AO ®a A is also an
isomorphism. Then the codimension of the regular surjection A — A is m + 1
and hence N4 is free of rank m+1. Since the induced map Ng/ja®4A4/m4 —
Qp @p A/my is a surjection of free A/ma-modules of rank m + 1, it is an
isomorphism.

3. By the assumption that 7y is not a prime element of K, every map in
5mbK,0K0 is finite flat by Lemma 2.7.3. Hence the assertion follows. ]
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For a rational number j > 0, let ©7 be the F-vector space ©7 = Homp(Qp, N7)
regarded as an affine scheme over F.

COROLLARY 2.12 Assume that mg is not a prime element of K. Let (Ag — A)
be an object of Embr 0, and let (A — A) be the image in Embr 0, . Let
7 > 0 be a rational number.

1. The isomorphism in Lemma 2.11.2 induces an isomorphism C7 (A — A)—
@j ®F’ AF’,red'

2. Let (Ag — A) — (Bg — B) be a morphism of Embi o, - Then the diagram

Xj(B—>B) s C'j(B—>B) NS V) Qp BF‘,red

XI(A—A) —— CI(A—A) —— ez AR red
18 commutative.
3. If the ramification of A ®o, K is bounded by j+ and j > 1, then the
composition X7(A — A) — C/(A — A) — 07 @p Ap oq — ©7 is finite and
étale.

Proof. 1. Since the surjection A — A is regular, the assertion follows from the
isomorphism in Lemma 2.11.2.
2. The left square is commutative by the construction. The commutativity of
the right square is a consequence of Lemma 2.11.3.
3. By Lemma 2.7, there exist an embedding (A — Ok) in Embr oy, (Ok)
and a finite flat morphism (Aj — Ok) — (Ag — A). Since the ramification
is bounded by j+, the finite map X/(A — A) — C7(A — A) is étale by
Corollary 1.16.3. Since A ,.q is étale over F, the assertion follows from 1 and
2. 0.
For a rational number j > 0, we regard ©7 as an object of G-(Aff/F) with
the natural Gg-action. Let Gg-(Finite Etale/©7) denote the subcategory of
G-(Aff/F) whose objects are finite étale schemes over ©7 and morphisms are
over ©7. Let Emb%gKo denote the full subcategory of Embr,0,, consisting of
the objects (Ag — A) such that the ramifications of A ®o, K are bounded by
j+. By Corollary 2.12, the functor X7 : Embk o,, — Gx-(Aff/F) induces a
functor X7 : Emby/y  — G- (Finite Etale/©7).

’ 0 s z .
We show that the functor X7 : Emb%gKo — Gg-(Finite Etale/©7) further
induces a functor (Finite Etale/K)</* — G g-(Finite Etale/©7).

LEMMA 2.13 Assume g is not a prime element of K. Let (f,f),(g,8) : (Ap —
A) — (Bo — B) be maps in Embk 0, and j > 1 be a rational number. If the
ramifications of A®o, K and B®o, K are bounded by j+ and if f = g, then
the induced maps

(f,£)s (9,8)« : X7 (Ao — A) —— X/(Bg — B)

are equal.
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Proof. By Corollary 2.12, the schemes X7(Ag — A) and X7(Bg — B) are fi-
nite étale over ©7 and the maps (f,f)., (g,8)« : X7 (Ag — A) — X7 (By — B)
are maps over ©7. Hence they are determined by the restrictions on the inverse
images of a point. The inverse images of the origin 0 € ©7 are canonically iden-
tified with the sets Homo,, (A, K) and Homo, (B, K) respectively by Lemma
2.1. Hence the assertion follows. O

COROLLARY 2.14 Assume mg is not a prime element of K. Let j > 1 be a
rational number.

1. Let L be a finite étale K-algebra with ramification bounded by j+. Then
the system XJ(Ag — Opr) parametrized by the objects (Ag — Opr) of
Embr, 0y, (OL) is constant and the limit

XI(L) = lim XI(Ag — Op)
(Ao—‘OL)65mb1<,oK0 (Or)

is a finite étale scheme over o7, )
2. The functor X7 : 5mb§(JgK — Gk -(Finite Etale/©7) induces a functor
'YK

X7 : (Finite Etale/K)<I* ——— Gg-(Finite Etale/©7).

Proof. 1. By Corollary 2.8 and by the assumption that my is not a prime
element, every map in 5mbK,OKU (Or) induces an isomorphism. By Lemma
2.7.1, the category Embk o, (Or) is connected. To see that the system is
constant, it suffices to apply Lemma 2.13 for f = g = idp,. The map X7(L) —
©7 is finite étale by Corollary 2.12.3.

2. It is also an immediate consequence of Lemma 2.13. a
By Lemma 2.10 and the canonical isomorphism QOK/OKO R0k
F — QOK/OKg, ®o, F, the functor X7 : (Finite Etale/K)<it —

Gk-(Finite Etale/©7) is independent of the choice of subfield K, if the
characteristic of K is 0. If the characteristic of K is p, it is the same as that
defined in Section 2.2.

2.4 PROOF OF COMMUTATIVITY

Now we are ready to prove the main result. For an integer m prime to p, let
I, be the unique open subgroup of the inertia subgroup I C Gk of index m.

THEOREM 2.15 Let K be a complete discrete valuation field. Let j > 1 be a
rational number and m be the prime-to-p part of the denominator of j. Assume
either K has equal characteristics p > 0 or K has mized characteristic and p
is not a prime element. Then we have the following.

1. The graded piece GriGyg = GJK/GJ; is abelian.

2. The commutator [I,, G%(] is a subgroup of G?. In particular, GriGg is a
subgroup of the center of the pro-p-group G?/GQ.
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Proof. We first prove the case where the condition
(F) There exists a perfect subfield Fyy of F' such that F' is finitely generated
over Fj.
is satisfied. We use the functor X7 : (Finite Etale/K)Sit —
Gk-(Finite Etale/©7) defined in Sections 2.2 and 2.3.
Let L be a finite Galois extension of K of ramification bounded by j+ and put
G = Gal(L/K). To prove 1, it is sufficient to show that G’ is commutative. By
the definition of the functor, the image X7(L) is a finite étale covering of ©7
with a left action of Gx. We call this action of Gx on X7(L) the arithmetic
action. On the other hand, by functoriality, we have a right action of G on
X79(L), which commutes with the arithmetic action of Gx. We call this action
of G on X7(L) the geometric action. We identify the inverse image in X7 (L) of
the origin of ©7 with ®(L) as in Lemma 2.1. The arithmetic action of 0 € G
on ®(L) = Homg (L, K) is given by f + o o f and the geometric action of
T € G is given by f +— for. Hence ®(L) is a G-torsor and the étale covering
XJ(L) is also a G-torsor over ©7.
The stabilizer in Gk of each connected component of X7 (L) with respect to
the arithmeric action is equal to G% since ®J(L) is identified with mo(X7(L)).
Take a connected component X7(L)y of X7(L). Then, the stabilizer of the
intersection X7(L)oN®(L) in G, with respect to the geometric action, is equal
to G7. Hence the stabilizer of the component X7(L)g in G, with respect to the
geometric action, is also equal to G7 and X7(L)g is a connected GJ-torsor over
©7. Therefore the map GY — Aut(X7(L)o/©7) is an isomorphism.
On the other hand, by the assumption that j > 1, the group G% is a subgroup
of the wild inertia subgroup GL' = P. Hence the restriction to G’ of the
arithmetic action on ©7 is trivial and we get a map Gi( — Aut(X7(L)o/07).
Since G acts on the intersection X7(L)o N ®(L) transitively, the map G4, —
Aut(X7(L)o/©7) is surjective. Since the geometric action of G/ and the arith-
metic action of GJ; on XJ(L)y are commutative to each other, the group
G7 ~ Aut(X7(L)o/©7) is commutative. Thus assertion 1 is proved in this
case.
We prove assertion 2 assuming the condition (F). We define a canonical
map mP(07) — GriGg as follows. By 1, the image of the functor X7 :
(Finite Etale/K)</* — G- (Finite Etale/©7) is in the full subcategory con-
sisting of abelian coverings. Taking the Galois groups, we obtain a map
m3P(07) — G /G inducing a surjection

7P (07) —— GriGk.
The canonical map 7?(67) — GriG is compatible with the actions of Gx-.
The action of Gx on 73" (©7) is induced by that on ©7 and the action on G/ G i
is by conjugation. Since the subgroup I,, acts trivially on ©7, it also acts
trivially on 73P(67). Hence, assertion 2 follows in this case by the compatibility
of the surjection 72°(©7) — GriG with the Gx-action.
To reduce the general case to the special case proved above, we show the
following Lemma.
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LEMMA 2.16 Let K be a complete discrete valuation field and Ky be a subfield
of K such that Og, = O N K is a complete discrete valuation ring with
perfect residue field Fy. Then there exist a filtered family of subextensions
K, C K,ue M of Ky satisfying the following conditions:

For each p € M, the intersection OKM = Og N K, is a complete discrete
valuation ring and the residue field F), is finitely generated over Fy, the residue
field F' is a separable extension of F,, and a prime element of K, is a prime

element of K. The residue field F' is equal to the union h—1>nueM E,.

Proof. Let mg be a prime element of K. Take a transcendental basis ())xea
of F over Fy such that F is separable over Fy(fy,A € A). We take liftings
tx € Og, A € A of ty. For a finite subset 0 C A, let Ko, be the fraction
field of the completion of the local ring at the prime ideal (mg) of the ring
Ok, [T\, A € o] and regard it as a subfield of K. Let Ky, C K,u € My be
the family of finite unramified subextensions of Ky ,,0 C A. Let K| be the
completion of the union hi>nue Mo Ky, Then K is a finite totally ramified

extension of K|,. Hence there is an index pg € My and a finite totally ramified
extension K, of Ky ,, such that K is the composite of K, and K;. We put
M = {p € My : Ko, C Kou}. Then the family K, = K, Ko, pn € M
satisfies the conditions. a
We complete the proof of Theorem. It is sufficient to show assertion 2. Let
Fy =), F?" be the maximum perfect subfield of the residue field F. If the
characteristic of K is positive, we take a element my € m%,# 0 of K and put
Ky = Fo((mp)) € K. If the characteristic of K is 0, let K be the fraction
field of W (Fp) and regard it as a subfield of K. By the assumption that p is
not a prime element of K, a prime element of K is not a prime element of K.
Let K,,,x € M be a family of subfields of K as in Lemma 2.16. Since Kj is a
subfield of K, satisfying the condition (F) and a prime element of K is not a
prime element of K, we have [Im,KM,G]%(#] C G%;Z for p e M.

Since K’ = lim K, is a Henselian discrete valuation field and K is the

—upeM

completion of K’, the canonical maps Gx — Gg' — liinue " Gk, are isomor-
phisms. It induces an isomorphism I,, x — @H I k,. By Lemma 2.2 and
by the assumption that the residue field I’ is separable over F), and a prime

element of K, is a prime element of K, the map G]%( — GJKH is surjective.

: : j : i it 1 it
Hence we have isomorphisms G.K — m#eM Gy, and Gy - HMEM Gk,
By taking the limit of [I, k,,, G%,] C GJKJ;7 we obtain I, x,G%] C G3. O

3 SOME GENERALITIES ON LOG STRUCTURES
To study the logarithmic filtration in later sections, we recall and establish
some generalities on log structures. More systematic account of a part is given

in [10] Section 4. For the basic definitions on log schemes, we refer to [6]. In
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this paper, a log structure Mx — Ox on a scheme X means a Zariski fs-log
structure.

We prepare some basic terminologies on log schemes. We call a pair (X, P) of
a log scheme X and a chart P on X a charted log scheme. For charted log
schemes (X, P) and (S, N), we call a pair (f,¢) of amap f: X — S of log
schemes and a map N — P of fs-monoid a map (X, P) — (S, N) of charted
log schemes if the diagram

N —— T(S, Ms)

I l 0

P — T(X, My)

is commutative.

For an fs-monoid P, we regard Spec Z[P] as a log scheme with the log structure
defined by the chart P — Z[P]. For maps X — S and Y — S of log schemes,
let X x?g Y denote the fibered product in the category of fs-log schemes. If
S = Spec A, X = Spec B and Y = Spec C are affine, N — A,P — B and
Q@ — C are charts and if (f,¢) : (X, P) — (S,N) and (g,¢) : (Y,Q) — (S,N)
are morphisms of charted log schemes, we have X xlé?gY = Spec B ®fgC where
B ®f§g C = (B®aC)®@zpiq) ®LP +%* Q] and P +3* Q is the saturation of
the image of P + @ in the fibered sum P8P @ pner Q8P = Coker(p — ¢ : N8 —
PeP @ Q2P).

DEFINITION 3.1 Let X — S be a morphism of log schemes.

1. (cf. [7], [11] Theorem 4.6 (iv)) We say that X — S is log flat if the following
conditions are satisfied:

For each x, there exist a commutative diagram

U ——YV

Lo

X — S

of log schemes, charts P on U and N on V' and morphism (U, P) — (V,N) of
charted log schemes such that the underlying map U — X is a flat surjection to
an open neighborhood of x, the underlying map V — S is flat, the map N — P
is injective and the underlying map U — V ®zn) Z[P] is flat.

2. We say that X — S is log locally of complete intersection if the following
conditions are satisfied:

For each x, there exist a commutative diagram

U——V

L

X —— S
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of log schemes such that U is an open neighborhood of x, the map V. — S is
log smooth and U — V is an exact and regular immersion.

3. We say that X — S is log syntomic if it is log flat and log locally of complete
intersection.

For the log syntomic morphisms, the definition here is slightly different from
that in [9] (2.5). We introduce the new definition because it is a special case
of the general definition due to Illusie and Olsson [5], [11] Definition 4.1 by
Lemma 3.3 below. An equivalent statement of Lemma 3.2 in the resp. cases
is proved in [6], and in the log flat case in [11] Theorem 4.6. Another proof is
given in [10] Section 4.4.

LEMMA 3.2 (cf. [11] Theorem 4.6) For a morphism X — S of log schemes,
the following conditions are equivalent.

(1) The map X — S is log flat (resp. log smooth, log étale).

(2) Let

X — 9

Lo

X —— S8

be a commutative diagram of log schemes such that X' — X x?g S’ is log étale
and X' — 8" is strict. Then the underlying map X' — S’ is flat (resp. smooth,
étale).

LEMMA 3.3 For a morphism X — S of log schemes, the following conditions
are equivalent.

(1) The map X — S is log syntomic.

(2) Let

XI S/

Lo

X — S

be a commutative diagram of log schemes such that X' — X xlé?g S’ is log étale
and X' — S’ is strict. Then the underlying map X' — S’ is flat and locally of
complete intersection.

To deduce Lemma 3.3 from Lemma 3.2, we introduce some basic constructions
on log schemes.

LEMMA 3.4 Let f : X — S be a morphism of log schemes and x € X. Then
there exist charts P and N on open neighborhoods U of x and V' O f(U) of
s = f(z) and a morphism (U, P) — (V,N) of charted log schemes such that
the map Spec Z[P] — Spec Z[N] is log smooth.
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P’I"OOf. We put MS = Ms/Og, MX = MX/O;Z'; N = MS,37 PO = MX@ and let
N — Py be the canonical map. We take charts N — I'(V, My ), Py — I'(U, My)
on open neighborhoods lifting the identities. We define an fs-monoid P to be
the inverse image of Py by the map P§*®&N&P — PSP sending (m, n) to m+f(n).
Then, shrinking U if necessary, we find a unique map P — T'(U, Mx) extending
the composition Py + N — I'(X, Mx) + I'(S, Mg) — I'(X, Mx). Thus, we
obtain a morphism (U, P) — (V,N) of charted log schemes. Since the map
N&P — P8P ig an isomorphism to a direct summand, the map Spec Z[P] —
Spec Z[N] is log smooth. 0
For a morphism f : N — P of fs-monoids, we define an fs-monoid (P +y P)"~
to be the inverse image of P by the map P8P @ yep P8P — P8P sending (m,m’)
to m+m'.

LEMMA 3.5 Let N — P be a map of fs-monoids and let (P+n P)~ C P8 @ e
P®P be as above. Then,

1. The map P x (P8 /N8P) — (P +x P)~ sending (m,m’) to (m +m/, —m/)
is an isomorphism.

2. The ring homomorphism Z[P] — Z[(P +n P)"~] induced by the map P —
(P +n P)™ of monoids sending m to (m,0) is faithfully flat.

3. The map P + P + (P8 /N®) — (P +x P)~ sending (m,m’,m") —
(m4+m",m' —m') induces an isomorphism Z[P x P x (P& /N&P)]/((m,0,0) —
(0,m,m);m € P) — Z[(P +n P)™] of rings.

Proof. 1. The inverse (P +x P)~ — P x (P8 /N®P) is given by (m,m') —
(m+m/,—m’).
2 and 3. Clear from 1. O

COROLLARY 3.6 Let (X,P) — (S,N) be a morphism of charted log schemes
and put 8" = S ®z;N) Z[P] and X' = X ®gz;p) Z[(P +n P)~]. Then the map
X' — 8 is strict, the map X' — X X?g S’ is log étale and X' — X is faithfully
flat.

Proof. The map X' — X ngg S’ is log étale by the definition of (P +xn P)™.
The map X’ — S’ is strict by Lemma 3.5.1. The map X’ — X is faithfully
flat by Lemma 3.5.2. O
Proof of Lemma 3.3. Since the assertion is local on X, we may assume there
exist a log smooth scheme Y over S, an exact closed immersion X — Y over §
and a morphism (Y, P) — (5, N) of charted log schemes as in Lemma 3.4. We
put S = S @y, ZIP|, Y1 =Y @3% Z[(P+x P)~] and X; = X xy* V7.

We show (1)=(2). We assume X — S is log syntomic. We consider the
diagram in (2). Since the question is local on X', we may assume there exist
a log étale scheme Y’ over Y xg S’ and an isomorphism X' — X xlf,’g Y.
Shrinking Y’/, we may assume that the map Y’ — S’ is strict. Hence by
Lemma 3.2, the underlying map Y’ — S’ is smooth. It is sufficient to show
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that the closed immersion X’ — Y’ is a regular immersion. We consider a
commutative diagram

X ——=Y/

L\

X/ vy’ X, Xlgg S —Y] Xlsog Sl—>Si
XXy =y xEg g X1 7 5
X Y s

by putting S} = S; x'$8 S, Y/ =Y} x 28 Y’ and X} = X; x'28 X',

Since Y — S is log smooth, Y7 — S is strict and Y1 — Y xls?g S1 is log étale,
the underlying map Y; — 57 is smooth by Lemma 3.2. Similarly, since X — .S
is log flat, X; — S is strict and X; — X x?g S1 is log étale, the underlying
map X; — 57 is flat by Lemma 3.2. Since Y7 — Y is flat by Lemma 3.5.2 and
X — Y is a regular immersion, the immersion X; — Y7 is a regular immersion.
Thus X; — S is flat and locally of complete intersection. Since the maps
X1 — Y7 — S; are strict, the underlying map X, x?g S’ — 81 is flat and
locally of complete intersection and the immersion X1 xlsog S'—-" xlsc’g S’ is
a regular immersion by EGA IV Propositions (19.3.9)(ii) and (19.3.7). Since
V! =Y x'$8 S is a base change of Y/ — Y x '8 §’, the map Y] — Y} x'$& &’
is log étale. Since it is strict, the underlying map Yy — Y3 xlsc’g S’ is étale
by Lemma 3.2. Since X — Y] is the base change of the regular immersion
X, xl,;)g S -1 xl,;)g S’ by the étale map Yy — Y3 xl,;)g S’, it is also a regular
immersion. Since the regular immersion Xj — Y7 is also the base change of
the immersion X’ — Y’ by the faithfully flat and strict map Y; — Y, the
immersion X’ — Y” is a regular immersion as required.

We show (2)=(1). We assume the condition (2) is satisfied. It is sufficient
to show that the exact closed immersion X — Y is a regular immersion. By
(2), the underlying map X; — S is flat and locally of complete intersection
and the underlying map Y; — S7 is smooth. Hence the immersion X; — Y;
is a regular immersion by EGA IV Proposition (19.3.7). Since the regular
immersion X; — Y7 is the base change of the immersion X — Y by the strict
and faithfully flat map Y7 — Y, the immersion X — Y is a regular immersion
as required. O

COROLLARY 3.7 (cf. [11] Corollary 4.12) Let f : X — S and S — S be
morphisms of log schemes and let f' : X' = X xg’g S — S8’ be the log base
change. Then, if f : X — S is log flat (resp. log syntomic), the base change
f: X" — S is also log flat (resp. log syntomic).
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Proof. Clear from Lemmas 3.2 and 3.3. O

LEMMA 3.8 Let X — S be a log scheme over S log locally of complete inter-
section, Y — S be a log smooth log scheme over S and X — Y be an exact
closed immersion over S. Then,

1. The immersion X — Y is a regular immersion.

2. LetY' — S be another log smooth log scheme over S and X — Y be an exact
closed regular immersion over S. Let n and n’ be the relative dimensions of Y
and of Y' over S and r and r’ be the codimensions of the reqular immersions
X =Y and of X — Y’ respectively. Then we haven —r =n' —r'.

Proof. 1. Since the assertion is local, we may assume there is an exact regular
closed immersion X — Y’ into a log smooth scheme Y’ over S. By the same
argument as in the proof of Lemma 3.4, we may assume that there exist a

commutative diagram
(X, p) —— (¥, P)

| l

(Y/>P) - (S’N)

of charted log schemes. We define an fs-monoid (P +x P)~ C P8P @ nep PSP as
above and put Y = (Y x ¢ Y”) ®IZ°[%,+P] Z|(P +x P)~]. Then the projections
Y” —Y and Y — Y’ are log smooth and strict and hence are smooth. Since
the immersion X — Y’ is a regular immersion, the immersion X — Y is
a regular immersion. Since the map Y” — Y is also smooth, the immersion
X —Y is also a regular immersion by EGA IV Proposition (19.1.5)(iv)b)=-a)
applied to the immersions X xlx‘fg Y" -Y"and X — X xl;’g Y’ and by loc.cit
(ii). Hence the assertion follows.

2. In the notation above, the relative dimensions of Y over Y and Y’ are n’
and n respectively. Hence the assertion follows. a
If X — Y is an exact regular immersion of codimension r, and Y is log smooth
over S of relative dimension n, we say that X — S is of relative dimension
n—r.

LEMMA 3.9 Let X and S be log regular schemes and f : X — S be a morphism
of finite type. Then f : X — S is log locally of complete intersection.

Proof. Since the assertion is local, we may assume there is a morphism
(X,P) — (S,N) of charted log schemes as in Lemma 3.4. The map S’ =
S ®IZO[%V] Z[P] — S is log smooth and the map X — S is factorized as
X — 8 — S where X — S’ is strict. Hence by replacing S by S’, we
may assume X — S is strict. Further replacing S by a smooth scheme over .5,
we may assume X — S is an exact immersion. It is sufficient to show that the
immersion X — S is a regular immersion.

Since the question is local, we may assume S = Spec A and X = Spec B
are local. We put P = Ms,s and take a chart o : P = ]\7[5,5 — A. We
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put A = A/a(P —{1}) and B = B®4 A. Since A — B is a surjection of
regular local rings, the kernel is generated by a regular sequence ({1,...,%,)
of A. We take a lifting (1,...,t,) in the maximal ideal m4. We show that
A; = A/(t1,...,t;) is log regular of dimension dim A — ¢ and that (¢y,...,t;)
is a regular sequence. By induction on ¢ = 1,...,r, it is sufficient to show the
case i = 1. Since t; # 0 and A is normal, we have dim A; = dim A — 1. On the
other hand, we have dim A; + rank P8 = dim A — 1 4 rank P2P. Hence, we
have dim A; = dim A; + rank P® and A; is log regular. Thus by induction,
A, is log regular of dimension dim A — r and (1, ...,t,) is a regular sequence.
Since dim B = dim B + rank P& = dim A — r 4+ rank P = dim A4, and A,
is normal, the surjection A, — B is an isomorphism. Hence the immersion
X — S is a regular immersion of codimension 7. O
Let f : X — S be amap of log schemes such that the map of underlying schemes
is locally of finite presentation and 2 € X. We put s = f(x), Xy = X ®(s) k()
and define

dimy?® f7(f(2)) =
=dimOx, . /((Mx z — O% ,)) + tr.deg #(z)/r(s) + rank Mi‘;/Mgg.

LEMMA 3.10 Let f: X — S be a morphism of log schemes such that the map
of underlying schemes is of finite presentation.

1. Let (X, P) — (S,N) be a morphism of charted log schemes and let x € X.
Regard x as a log scheme with the log structure defined by the chart P. We put
X!, = (X x5 x) @zp4p) Z[(P +n P)~] and let x — X, be the section defined
by x — X and the map (P +y P)~ — P — k(x). Then, we have an equality

dim}® f~1(f(2)) = dim Ox/ 4.

2. If X — S is log flat, the function dim'®® f=1(f(x)) is a locally constant
function of x € X.

8. Assume X — S is log locally of complete intersection of relative dimension
d. If we have an equality dim'®® f=1(f(z)) = d for all x € X, the map X — S
is log flat and hence log syntomic.

Proof. 1. By Lemma 3.5.3, X, is the closed subscheme of (X ®,s) #(x)) ®z
Z[P'8? /N8P] defined by the ideal I generated by (a(m)®1) — (1® a,(m)) - (m)
for m € P. The ideal I is generated by a(m) ® 1 for m € P\Ker(P — Mx ,)
and (m) — (1® az(m)) " (a(m)®1) for m € Ker(P — Mx ). Hence X/, is the
closed subscheme of (X, ®(s) k(x)) @z Z[MS,/Mg"] defined by the ideal J
generated by a(m)®1 for m € P\Ker(P — Mx ). Thus the assertion follows.

2. Let &' = S @y4 ZIP], X' = X @5% Z[(P +n P)~] and f' : X' — &'

be the map. Since the map X' — X x?g S’ is log étale, and the compo-
sition X’ — S’ is strict, the underlying map X' — S’ is flat. Hence the
function dim,: f~1(f'(2')) = dim Ox, ., . is locally constant on e X'

The function dim'°® f~1(f(z)) is the pull-back of the locally constant function
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dim,s f'~(f'(2")) by the section X — X’ induced by the map (P+yP)~ — P.
Thus the assertion is proved.

3. Since the question is local, we may further assume that there is an exact
regular immersion X — Y to a log scheme Y log smooth over S. Let n be
the relative dimension of Y over S and r = n — d be the codimension of the

regular immersion X — Y. Weput Y/ =Y ®IZ°[%D/] Z[(P' +n P')™]. Then we

have X' = X xlﬁg Y’. Since X’ — X is faithfully flat by Lemma 3.5.2, it is
sufficient to show that the map X’ — S’ is flat. Since Y’ — Y is flat, the
immersion X’ — Y is regular of codimension r. The map Y’/ — S’ is smooth
of relative dimension n. Hence the strict map X’ — S’ is locally of complete
intersection of relative dimension d. By the assumption and the computation
above, each fiber of X’ — S’ has dimension d. Hence by EGA IV Théoreéme
(11.3.8) d)=a), X' — S’ is flat.

COROLLARY 3.11 Let f: X — S be a finite morphism of log reqular schemes.
Assume dim X = dim S and f*Mgp ®Q — MY ® Q is surjective. Then X is
log flat and hence log syntomic over S.

Proof. By Lemma 3.9, the map f : X — S is log locally of complete intersec-
tion. Further, by the assumption that X — S is finite and dim X = dim .5,
the map X — S has relative dimension 0. Since dim!°® f~1(f(z)) = 0 for all
x € X, it is sufficient to apply Lemma 3.10 a

For a ring A, we call a Zariski fs-log structure on X = Spec A a log structure
on A. We call a ring with a log structure a log ring. If A is a local ring, a log
structure on A is defined by a chart P — A. We say that a map A — B of log
rings is a surjection if the underlying ring homomorphism A — B is surjective
and the map f*My — My is surjective where f : X = Spec B — Y = Spec A
denotes the corresponding map of log schemes and Mx and My denote the log
structures. We say that a surjection A — B of log rings is an exact surjection
if the log structure My is the pull-back log structure of My. We say that
a surjection A — B is regular if the immersion Spec B — Spec A of the
underlying schemes is a regular immersion. For a map A — B of log rings, let
Qp/a(log /log) denote the module of logarithmic differential forms, denoted by
wpya in [6]. If A and B are local and N and P denote the stalks of the log
structures at the closed points, we have

Qp/a(log /log) = (Qpja ® (B ®z (P& /N®?))) /(dm —m @ m : m € P).
We study formally log smooth maps of complete local Noetherian log rings.

DEFINITION 3.12 (cf. [11] Definition 4.4) Let A and B be complete local
Noetherian rings with log structures and f : A — B a morphism of log rings
such that the underlying ring homomorphism is local.

1. We say f : A — B is formally log smooth (resp. formally log étale) if, for a
nilpotent exact surjection R — R’ of discrete log A-algebras and a continuous
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homomorphism B — R’ of log A-algebras, there exists a (resp. a unique)
continuous homomorphism B — R of log A-algebras lifting B — R’.

2. We put QB/A(log/log) =lm_ Qp/my) a(log/log).

LEMMA 3.13 Let A and B be complete local Noetherian rings with log struc-
tures and f : A — B a morphism of log rings such that the underlying ring
homomorphism is local. Assume that the residue field of B is finitely generated
over the residue field of A. Then, the following conditions are equivalent.

(1) B is formally log smooth over A.

(2) There exist a log smooth scheme X over A, a point x of X over the closed
point of Spec A and an étale local homomorphism B — OAXJC over A.

Proof. Tt is clear that (2) implies (1). The implication (1)=-(2) is proved
similarly as in the proof of [6] (3.5.1)=(3.5.2). 0

COROLLARY 3.14 Let A — B be as in Lemma and assume A — B is log
smooth.

1. The B-module QB/A(log/log) is free of finite rank.

2. If A is log regular (cf. [8] Definition (2.1)), then B is also log regular.

Proof. 1. It follows from Lemma 3.13 (1)=-(2) and [6] Proposition (3.10).
2. It follows from Lemma 3.13 (1)=-(2) and [8] Theorem (8.2). O

4 TUBULAR NEIGHBORHOODS FOR FINITE FLAT AND LOG FLAT LOG ALGE-
BRAS

In the rest of the paper, the integer ring O is considered as a log ring with
its canonical log structure defined by the chart N — Ok sending 1 € N to a
prime element. The letter A denotes a finite flat and log flat log O k-algebra
such that the log structure on Ak is trivial. For a finite étale algebra L over
K, its integer ring Oy, is considered as a log Og-algebra with its canonical log
structure defined by taking the product of the canononical log structures on its
factors. The log Ogk-algebra Oy is log flat by Corollary 3.11. Hence it is finite
flat and log flat and the log structure on L is trivial.

4.1 LOG EMBEDDINGS

DEFINITION 4.1 1. Let A be a finite flat and log flat log O -algebra such
that the log structure on Ay is trivial. Let A be a log Ok -algebra formally of
finite type and formally log smooth over Ok . We say that an exact surjection
A — A of log Og-algebras is a log embedding if it induces an isomorphism
A/ma — A/my.

2. We define 5mblooi to be the category whose objects and morphisms are as
follows. An object of Emblgi is a triple (A — A) where:

o A is a finite flat and log flat log Ok -algebra such that the log structure
on Ax is trivial.
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o A is alog Ok-algebra formally of finite type and formally log smooth over
Ok.

e A — A is alog embedding.

A morphism (f,f) : (A — A) — (B — B) is a pair of homomorphisms
f:A— B andf: A — B of log Ok-algebras such that the diagram

A—— A

fl lf

of log Ok -algebra homomorphisms is commutative.

8. For a finite flat and log flat log O -algebra A such that the log structure on
Ag is trivial, let 5mblgi (A) be the subcategory of Smblgi whose objects are of
the form (A — A) and morphisms are of the form (id4,f).

4. We say that a morphism (f,f) : (A — A) — (B — B) of Embo,. is finite
flat and log flat if A — B is finite flat and log flat and the map B ®11§g A— B
is an isomorphism of log O -algebras.

5. We say that a log embedding A — A is strict if the maps O — A and
Ox — A of log rings are strict.

For a complete semi-local Noetherian log Ox-algebra R such that R/mp, is finite
over F', we put QR/OK (log /log) = lim Q(r/mp)/0x (log /log). If (A — A) is
a log embedding, the A-module QA/OK (log /log) is locally free of finite rank.
If (A — A) is a strict object of Emblgi, by forgetting the log structures, we
obtain an object (A — A)° of Embo,.. For an object (A — A) of Embo,, by
putting the pull-back log structures on A and A from that on Og, we obtain
an object (A — A)°8 of Smblgi . Thus, we obtain an equivalence of categories

between Embo, and the full subcategory of £ mblgi consisting of strict objects.

LEMMA 4.2 Let A be a finite flat and log flat log Ok -algebra such that the log
structure on Ak is trivial. We put X = Spec A and S = Spec Og.

1. For a closed point x of X = Spec A, the stalk Mx . of the sheaf Mx =
MX/O)X( is isomorphic to N and the map Ms,s =N — Mx,z = N is the
multiplication by an integer e, > 1.

2. Let (A — A) be a log embedding. Then, the ring A is regular and the
reduced closed fiber (A ®o, F)rea 18 a regular divisor. The log ring A is log
reqular and the log structure is defined by the reduced closed fiber (A®o, F)red-
3. A log embedding (A — A) is strict if and only if the map O — A is strict.

Proof. 1. Clear from Lemma 3.10.1.

2. We may assume A is local and the log structure is defined by a chart N — A.
Since A is formally log smooth over Ok, it is log regular by Corollary 3.14.2.
Since the stalks of M are either N or 0, the ring A is regular and the image
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t € A of 1 € N defines a regular divisor. Since 7/t®> € A*, the assertion
follows.

3. We may assume A is local. Assume the map Ok — A is strict. Then, in
the notation of the proof of 2, we have e, = 1 and 7/t € A*. Hence the map
Ok — A is strict. The only if part is obvious. O
To prove the logarithmic version Lemma 4.5 below of Lemma 1.2, we make
another definition.

DEFINITION 4.3 1. Let A be a finite flat and log flat log Ok -algebra such
that the log structure on Ak is trivial. Let A be a log Ok -algebra formally of
finite type, formally smooth and formally log smooth over Ox. We say that
a surjection A — A of log Ok -algebra is a log pre-embedding if it induces an
isomorphism A/ma — A/my of underlying F-algebras.

2. We define preé’mblgi to be the category whose objects and morphisms are

as follows. An object of Smblgi is a triple (A — A) where:

o A is a finite flat and log flat log O -algebra such that the log structure
on Ax is trivial.

o A is a log Ok-algebra formally of finite type, formally smooth and for-
mally log smooth over Ok .

e A — A is alog pre-embedding.

A morphism (f,f): (A — A) — (B — B) is a pair of log Ox-homomorphism
f:A— B and f: A — B such that the diagram

A—— A

f| |7

18 commutative.

8. For a finite flat and log flat log Ok -algebra A such that the log structure on
Ag is trivial, let pregmblgi (A) be the subcategory ofpreé'mblgi whose objects
are of the form (A — A) and morphisms are of the form (ida,f).

A log pre-embedding (A — A) is an embedding together with log structures on
A and on A such that the log ring A is formally log smooth, that the log ring
A is log flat and the log structure on Ay is trivial and that the map A — A
is a surjection of log O-algebras. Hence, by forgetting the log structures, we
obtain a functor preé‘mblgi — Embo,, -

We also define a functor preé’mblgi — Emblgi. For an object (A — A) of

pre€ mblooi , we attach a log embedding (A~ — A) as follows. First, we consider
the case where A is local. Assume the log structure of A is defined by a chart
P — A. Let P — N be the map P — Mx , = N where z is the closed point of
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X = Spec A and we identify ]\74)(737 = N by the unique isomorphism. Let P~
be the inverse image of N by the induced map P — M = Z. The map
P — A — A is extended uniquely to a map P~ — A. We define A™ to be the
formal completion of the surjection A ®zp) Z[P~] — A induced by P~ — A.
Let A~ — A be the canonical map. The log ring A~ and the homomorphism
A~ — A are independent of the choice of the chart P — A upto a unique
isomorphism. In general, we define A~ and A~ — A by taking the product.
By the construction, the canonical map A — A"~ is formally log étale.

LEMMA 4.4 Let A be a finite flat and log flat log Ok -algebra such that the log
structure on Ag is trivial.

1. The category preé’mblgi (A) is non-empty.

2. Let (A — A) be an object of pregmblgi and define A~ and A~ — A as
above. Then (A~ — A) is an object of Emblgi.

Proof. 1. We may assume A is local. Take a system of generators tq,...,t, of
A over Ok and a chart N — A. Let tg € A be the image of 1 € N. We define
a surjection Ok|[Tp,...,T,] — A by sending T; to ¢; and a log structure on
Ok|To, - .., T,] by the chart N> — Ok[Ty, ..., T,] sending (1,0) and (0,1) € N?
to Ty and m. Then its formal completion A — A is a log pre-embedding.

2. By the definition, the Og-algebra A™ is formally of finite type over O and
the surjection A~ — A is exact. Since the map A — A" is formally log étale,
the log Og-algebra A™ is formally log smooth over Og. Hence the assertion
follows. a
By Lemma 4.4.2, we obtain a functor preé’mblgi — Emblgi.

LEMMA 4.5 1. For a finite flat and log flat log Ok -algebra A such that the log
structure on Ay is trivial, the category Emblooi (A) is non-empty.

2. For a morphism f : A — B of finite flat and log flat log Ok -algebras such
that the log structures on Ax and Bk are trivial and for objects (A — A) and
(B — B) of Smblgi, there exists a morphism (f,f) : (A — A) - (B — B)
lifting f.

3. For a morphism f : A — B of finite flat and log flat log Ok -algebras such
that the log structures on Ak and By are trivial, the following conditions are
equivalent.

(1) The map f: A — B is log syntomic.

(2) Their ezists a finite flat and log flat morphism (f,f) : (A — A) — (B — B)
of log embeddings.

Proof. 1. Clear from Lemma 4.4.

2. Since A is formally log smooth, B = lim B/I" where I = Ker(B — B)
and the surjection B/I™ — B is exact, the assertion follows.

3. (1)=(2). We may assume A and B are local. We take log embeddings
A — A and B — B. We define a log embedding B’ — B by applying an
argument similar to the proof of Lemma 4.4.2 to lim (A /m}y ®18i B/mi)N —
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B. Replacing B — B by B’ — B, we may assume that there is a map
(A — A) — (B — B) such that A — B is formally log smooth. Since A — B
is log syntomic, the exact surjection B ®1°g’ A — B is regular by Lemma 3.8.1
and the kernel is generated by a regular sequence (t1,...,t,). Take a lifting
(t1,...t,) in B and define a map A[[T1,...,T,]] — B by sending T; to t;. We
consider A[[Ty,...,T,]] as a log ring with the pull-back log structure by the
map A — AJ[T},...,T,]]. Then the composition A[[Ty,...,T,]] = A — A
sending T; to 0 defines a log embedding. Replacing A by A[[Ty,...,T,]], we
obtain a map (A — A) — (B — B) such that the map B ®'%® 4 — B is
an isomorphism and that dim A = dim B. By Nakayama’s lemma, the map
A — B is finite. Since A and B are regular, the map A — B is flat by EGA
Chap Opy Corollaire (17.3.5) (ii). Further by Corollary 3.11, it is log syntomic.
(2)=(1). Since A and B are log regular and have the same dimension, B is
log syntomic over A by Corollary 3.11. Hence B is also log syntomic over A
by Lemma 3.7.2. a
The base change of a log embedding by an extension of complete discrete val-
uation fields is defined as follows.

LEMMA 4.6 Let K' be a complete discrete valuation field and K — K' be
a morphism of fields inducing a local homomorphism O — Og/. Let

(A — A) be an object of Smblog. We define A®lgiOK/ to be the projec-
tive limit lim (A /m}y ®1°g Ox). Then the log Ok -algebra A®OKOK/ is for-
mally of ﬁmte type and formally log smooth over OK/ The natural surjection

gioK, — A®lgi01{r defines an object (A®O Ogr — A ®10g Ok') of
EmbSE,.

Proof. Since A®looi Og: is finite over A®p, Ok, it is formally of finite type
over Og. The formal log smoothness is clear from the definition. The rest is
clear. 0.
Thus we obtain a functor ®18g Ok : Emblog — Emblog/. If K" is an exten-

sion of complete discrete valuation fields of K’, the composition é’mblog —
Emblog Emblgg ., is the same as ®O OKu é'mblog — Emblgg L K is a
finite extension, we have A ®10g O = log Ok If (A — A) is strict, we

have (A — A) @10% Ok = (A — A)° @0, oK,)log.

Similarly as for hm K/ o (Aff/F") defined in Section 1.3, we define a category

lim Embo ... We define a functor Emb1 S— lim
Py K Ok

KK Embo,., as follows.

—K'/K
LEMMA 4.7 Let A be a finite flat and log flat log Ok -algebra. Let e = e4 /0,
denote the least common multiple of e, in Lemma 4.2.1 for the closed points
x in X = Spec A. Let K’ be a finite separable extension of K of ramification
index e k. If e e is divisible by e 4 /0, , then the log tensor product Ao, ., =
A ®1°g Ogx is strict over O .
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Proof. We may assume A is local. We put P = N’ = N x Z and define maps
N — P and N — N’ by sending 1 € N to (ea/0,,1) and to (eo,,/0x,1)
respectively. There exist morphisms of charts (N — Og) — (P — A) and
(N — Og) — (N" — Og). Since es)0, divides ep,, 0, the saturation
P 4§ N’ is isomorphic to N x (Z/eq,0, Z) x 7?2 and the composition N C
N’ — P+ N’ — N is the identity. Hence A ®13g Ok is strict over Og/. O

Let (A — A) be an object of Emblog and define e = ey, as in Lemma
4.7. Let C. be the full subcategory of the category (Ext/K) of finite separable
extensions of K consisting of the extensions with ramification index divisible
by e. If K’ is a finite separable extension in C,, then by Lemmas 4.7 and 4.2.3,
the base change (A ®log O — A ®1°g Ogx) is strict and defines an object
(A ®log Ogr — A ®1°g Ok)° of Embo,.,. We consider a system consisting

of (A ®1°g Ok — A ®1°g Ok)° for extensions K’ in C. and isomorphisms
( IOg OK/ — A@lOg OK/) ®OK’ OK// — (A_ ®10g OK// — A®10g OI(//)O
for K morphlsms K’ — K" of extensions in C,. Then it defines an object of

hLQK//K Embo,.,. Thus we obtain a functor Smblgg — th,/K Embo,, .

4.2 TUBULAR NEIGHBORHOODS FOR LOG EMBEDDINGS
For a rational number j; > 0, a functor X7 li_n)lK,/KEmboK, —

lim (smooth Affinoid/K”) is defined as the limit of the functors X7¢x’/x .
—SK'/K

Embo,., — (smooth Affinoid/K’) defined in Section 1.2. We define a functor
h_n)lK,/K(smooth Affinoid/K") — @K,/K(AH/F’) as follows. Let (Xk/) k' cobe
be an object of (smooth Affinoid/K’). Then the extensions K’ in C such
that the stable normalized integral model Ao, , is defined over K' form
a cofinal full subcategory C’ by Theorem 1.10. For an extension K’ in
C’, let Xp/ denote the affine scheme Ao,., ®o,, F' over the residue field
F' of K'. By sending (Xg')krcobc t0 (Xp' )k cobcrs We obtain a functor

@K,/K(smooth Affinoid/K’) — lim Aff/F"). Thus, we have a sequence

of functors

//K(

Smblog — lim Embo, — lim

Mk i, e (smooth Affinoid/K”)

Af/F) — Gr-(Aff/F).

i th,/K(

The compositions X7 Emblog — lim y i (smooth Affinoid/K") and leog :

Emblgi — G-(Aff/F) are more concretely described as follows. For an object

log *

(A — A) of Smblgi and a finite separable extension K’ such that the ramifica-
tion index €’ = e/ is divisible by the integer e4,0, in Lemma 4.7, the base

change (A®O Ogr — A ®Og Of) is strict and we define an affinoid variety

Xfog(A — A)gs over K’ by
Xi (A — A = X (ASGE Oxr — ADSE Ox)°).
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The composite functors Xﬂ)g : Emblgi — h_H)lK//K (smooth Affinoid/K’) sends

an object (A — A) of Emblgg to the system X/ (A — A) = (X (A —
K og og

A) i)k where K’/ runs over finite separable extensions such that the ramifica-

tion index e’ = e/ is divisible by the integer 4,0, -

By Lemma 1.8 and the universality of ®!'°%, we obtain a cartesian diagram

Xj

10g(A — A) (I_() - HomcontlogOK—alg(Aa Og)

| l

HomlogOK—alg(Aa Of{/mj) — Homcont.logOK—alg(A7 OI_{/mj)~

Here O /m’ denotes the limit O Jmix’ /5 of fs-log rings where K’ runs finite
extensions in K such that jeg: k is an integer. Similarly as in Section 1.2, the
surjection X! (A — A)(K) — mo(X7

iog iog (A — A)) g induces a surjection

(4.2.1) Homcont.1og0-alg (A, Og/m) —— WO(Xi];)g(A —A))k-
The map A — A also induces a map
(4.2.2) Homiogo-aig(A, Og) —— X}, (A — A)(K).

Similarly as Lemma 1.9.4, if (f,f) : (A — Ok) — (B — B) is a finite flat and
log flat morphism of Emblgi , the map (4.2.2) induces a surjection

(4.2.3) Homiog 0-alg(B,0g) — mo(Xi (B — B)g).

log

Let (Finite Flat and Log Flat/Og) denote the category of finite flat and log flat
log Ox-algebras A such that the log structure on A®o, K is trivial. We define
functors Wio and ¥y : (Finite Flat and Log Flat/Ox) — Gx-(Finite Sets)
for a rational number j > 0 as in Section 1.2 by sending a finite flat and
log flat log Ok-algebra A such that the log structure on A ®o,. K to the set
Ui (A) = Homlgi (A, Of) and to the set

J
\I,log

(A) = lim mo (X

log(A - A)I_()
(A—»A)Ggmblooi (A)

respectively. As in Section 1.2, the surjection (4.2.1) implies that the projective
system in the right hand side is constant. Further it induces a map ¥, — \I'fog
of functors.

Similarly, for an object (A — A) of 5mblgi and a finite separable extension
K’ such that the ramification index €' = ey k is divisible by the integer
ea/0, and that a stable normalized integral model Af)K/ of Xﬂ)g(A — A
is defined over K’, an affine scheme Xﬂ)g(A — A)g over the residue field

F’ of K' is defined as the closed fiber Spec(A? . ®0,, I'). The system
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Xﬂ)g(A — A) = (Xﬂ)g(A — A)g/)+ defines an object of lim

I K,/K(AH/F’).
_ K,/K(AH/F’) with Gg-(Aff/F'), we obtain the
composite functor Xj, : EmblOoi — Gg-(Aff/F). For j > 0, the functor
\Ilfog : (Finite Flat and Log Flat/Og) — Gk-(Finite Sets) is induced by the
composition of the functors

By identifying the category hl)n

b'él _
EmbSE —% Gg-(Aff/F) —— Gg-(Finite Sets).

We also have a functor C'I{)g : Smblgi — Gg-(Aff/F) and a map of functors

Xﬂ)g — C’f;)g. Let (A — A) be an object of Embgi and j > 0 be a rational
number. Let K’ be a finite separable extension of K such that the ramification

index e’ = ek, is divisible by 4,0, and by the denominator of j and that
((A ®18i O%)®0,., F')rea is étale over F’. Let I be the kernel of A®lgi O —
A ®18i O’ and we put

o0
C’ijog(A — A)gr = Spec (@ "/t eo,, medn mi{j]‘n+1>
n=0 red

Then the system (CY

fog (A — A)/) i defines an object lim

. K,/K(AH/F’) and
hence an object C’fog(A — A) of Gg-(Aff/F). Tt is a scheme over ((A ®looi

Ok')®0,., F)rea for K’ as above. In the following, we put Alog Fored = ((A®15i

Ok') ®0,, F)rea = (A ®looi F)reqa. In the right hand side, F is regarded as
the limit of an fs-log ring with the chart Q>¢ — F sending positive rational

numbers to 0. '
We study relations between X7 and leog. Let (A — A) be an object of Embo,.

and (B — B) be an object of 5mblgi. Let (A — A)!8 be the object of Emblgi
defined by the pull-back log structures. An Og-algebra homomorphism A — B
can be lifted to a morphism (A — A)!°% — (B — B) of é’mblooi by Lemma 4.2.
For a rational number j > 0, a morphism (A — A)'°® — (B — B) of Smblooi
induces a morphism Xf;)g(B — B) — Xf;)g((A — A)lo8) = XI(A — A) of
affinoid varieties.

Let (A — A) be a log pre-embedding. We have an embedding (A — A)°, a
log embedding (A~ — A) and a canonical map ((A — A)°)& — (A~ — A)
of log embeddings by the construction in Lemma 4.4.2. For a rational number
j > 0, we have affinoid varieties X7((A — A)°) and Xj,, (A~ — A) and a map
of affinoid varieties Xf;g(AN — A) — XI((A — A)°).

LEMMA 4.8 Let (A — A) be an object of preé'mblgi and j > 0 be a positive
integers. _

1. The canonical map X (A~ — A) — XI((A — A)°) is an open immersion

log
and X7

iog (A~ — A) is identified with a rational subdomain.
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2. Assume A is local and put S = Spec Ok, X = Spec A and X = Spec A and
let s and x be the closed points of S and of X. We put P = Mx . and identify
MX@ and M@S with N_ Let e = €4/0x be the image of 1 € Ms,s = N by the
composition Mg s — Mx , — Mx, = N as in Lemma 4.7. Let mq,...,my,
be a system of generators of the monoid P and e, ..., e, be their images by
P — N= My,. Letj’ > j+ max;e;/e be a rational number strictly greater
than 1. Then we have an open immersion X1 (A — A)°) — Xﬁ)g(AN — A)
of rational subdomains X7((A — A)°).

Proof. 1. We may assume A is local. We use the notation in 2. Let I be the
kernel of the surjection A — A and J be the kernel of the surjection A~ — A.
By renumbering the indices if necessary, we may assume e; = 1. We take a chart
¢ : P — Aandputt; = p(m;) € A. We define a monoid P~ as in Lemma 4.4.2
and ¢ : P~ — A~ be the extension. The monoid P~ is generated by P and
(mym7“)* i =2,... n. Hence the ring A~ is the completion of the subring
generated by p(m;m; “)*! over A. For i = 2,...,n, take liftings u; € A of
the image of ¢(m;m; ") in A*. Then, the ideal J is generated by the image
of I and @¢(m;m; ") —u;,i = 2,...,n. Hence Xﬂ)g(AN — A) is the rational
subdomain X7((A — A)°) defined by the conditions ord(¢;t; " — u;) > j for
1=2,...,n.

2. Similarly as in the proof of Lemma 1.17, we have ord ¢; = 1/e on X7 (A —
A)°) by the assumption j' > 1. Since t; — u;t;“ € I for i = 2,...,n, we have
ord(t; —uitS') > j/ > j+e;/e on X7 ((A — A)°). Hence the assertion follows.
O

COROLLARY 4.9 Let (A — A) be a log pre-embedding constucted in the proof
of Lemma 4.4.1. Then, for a rational number j > 0, we have open immersions

XH((A = A)) —— Xj

log

(A~ = A) —— X/((A— A))
of rational subdomains.

Proof. The log structure on A is defined by a chart N> — A and we have e; = 1
and ey = e,k for my = (1,0) and mo = (0, 1) in the notation of Lemma 4.8.2.
Hence the assertion follows. a
The affinoid varieties Xﬂ)g(A — A) and ygp defined in [1] Section 3.2 are
related as follows. Let L be a finite separable extension of K and A = Oy, be
the integer ring. Let Z = (z;);es be a finite system of generators of Oy, over
Ok and P C I be a subset such that z; is a prime element of Or, for some i € P
and z; is not zero for any ¢ € P. We recall a description of yJZ7 p for a rational
number j > 0. We put e; = ordp2; and e = e /i and let ™ be a prime element
of K. Let Iz be the kernel of the surjection Ok |[T;;i € I] — A sending T; to z;
and (f1,..., fm) be a finite set of generators of I;. For i € P and (i, j) € P2,
we take polynomials g;, h; ; € Og|[T;;t € I] such that the images in Oy, are

DOCUMENTA MATHEMATICA - EXTRA VOLUME KATO (2003) 5-72



52 AHMED ABBES AND TAKESHI SAITO
u; = 2§ /7% and u; ; = zji/zfj If 2, is a prime element for ¢ € P, then we have

o ordfi(x;) > j for1<l<m
% p(K) = 4 (wi)ier € Of | ord(zf/m® — g,(x:)) > j
ord(zy /xtt — hy,(25)) > j for ke P

by [1] Lemma 3.9 (2). Furthermore, for (x;);cs € yé’P(K'), we have x;/z% €
OE for i € P.

We define a log structure on Og[T;,i € I] by the chart M = N x N —
Ok|T;,i € I] sending (1,0) to 7 and (0, ;) to T; where fi € N¥ is the i-th
standard basis. Let A be the formal completion of the surjection Ok|[T;,i €
Il — A sending T; to z;.

LEMMA 4.10 Let the notation be as above. Then (A — A) is a log pre-

embedding and the affinoid variety Xf;g(AN — A)i defined by the log em-

bedding (A~ — A) is the same as y;’P defined in [1] Section 3.2.

Proof. Tt is clear that (A — A) is a log pre-embedding. We describe the log
Oxk-algebra A~. As in Lemma 4.4.2, let P~ C P® = 7 x Z¥ be the inverse
image of N by the map Z x Z — Z sending Ty = (1,0) to e and the standard
basis T; of Z¥ to e; for i € P. We consider a chart N — O and a map of
monoids N — P~ sending 1 € N to a prime element 7 € Ok and to Ty € P™.
We put A7 p = Ok @z Z[P~][Ti,i € I — P] and define a log structure by the
chart P~ — Aj p. Then, A™ is identified with the formal completion of the
natural surjection A; p — A.

Let K’ be a finite separable extension of K containing L as a subfield. We
compute the log tensor product Ay p ®18i Ogk+. By choosing a numbering,
we assume P = {1,...,r} C I ={1,...,m} and z, is a prime element. Let
T;,i = 0,...,7 be the standard basis of P = N x N and put U; = T;T,~%
fori =1,...,7—1 and Uy = TpT, ¢. Then the monoid P~ is generated by
Uiﬂ,i =0,...,7 — 1 and T, and is isomorphic to Z" x N. Let N’ be the
monoid N x Z with the map N — N x Z sending 1 € N to (¢/,1). Let 7’ be

a prime element of K’ and €’ = ek k be the ramification index and define
a unit v’ of Ogs by ™ = w7 . We consider a chart N’ — O sending
U = (0,1) to v and T = (1,0) to «’. By the assumption L C K', e =
¢’/e is an integer and the saturation P~ +3** N’ is generated by Uiil,i =
1,...,r—1,VE U'*l and T where V = T,T"~¢ and is isomorphic to Z" T x N.
Hence A1 p ®lgi Or' = Ok+ QN1 LIP™ +32¢ N'|[Ty 41, - - ., T] is isomorphic
to Ok [Ulﬂ, ceey Uri_ll, Tri1,---s T, VEL]. The log structure is the pull-back
of that on Og-.

log

The base change A®lgi Of is the formal completion of the surjection A7 p®
Ok — Op, ®100i Og. We claim that the kernel of the surjection A; p ®100i
Ok — Op, ®1O°i O is generated by Iz and Uy —7/28,U; — z; /28,0 = 1,...,r.

The kernel Ker(Aég)lgg Ok — Oy, ®lgi Ok-) is generated by Ker(A; p — Op)

K
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since the surjection A7 p — Op is exact. Since P"~ is generated by Uy =
ToT7¢, U, ..., Upr—1 and P, the ring Ay p is also generated by Uy, Uy, ..., Ur—1
over Ok [Th,...,Ty]. Hence, Ker(A; p — Op) is generated by Iz and Uy —
w/28,U; — z; /28,4 =1,...,r and the claim is proved.

For an element (ty, ..., Ur—1,0, Zpt1y-.., L) € OIX{ xOF™", weput z, = i
and x; = u;xl for i = 1,...,7 — 1. Then, the underlying set of Xl{)g(A — A
is

ordfy(z;) >j for 1<i<m

ord(ve/u' — gr(z;)) > §
ord(ug — hg(z;)) >4 fork=1,...)r

(ulw sy Up—1,V, Trg1, .- '7$m)
Xr m—r
€0; xOF

Hence the map Xﬂ)g(A —A)g — ygp sending (U1, ..., Up—1,V, Tpi1,---,Tm)

to (z1,...,Ty) is an isomorphism. O

4.3 ETALE COVERING OF LOG TUBULAR NEIGHBORHOODS

Let A and B be the integer rings of finite étale K-algebras. For a finite flat
and log flat morphism (A — A) — (B — B) of log embeddings, we study
conditions for the induced finite morphism Xj, (A — A4) — Xj, (B — B) to
be étale.

PrOPOSITION 4.11 Let A and B = Oy, be the integer rings of finite separable
extensions of K and (A — A) — (B — B) be a finite flat and log flat morphism
of log embeddings. Let j > 0 be a rational number, wp, a prime element of L
and e = ordmy, be the ramification index.

1. Assume A = Og. Suppose that, for each j' > j, there exists a finite

separable extension K' of K such that Xf;g(B — B)g is isomorphic to the
disjoint union of finitely many copies of leolg(A — A)g as an affinoid variety
over Xf;g(A — A)gs. Then there is an integer 0 < n < ej such that ©}
annihilates Qg4 (log /log).

2. If there is an integer 0 < n < ej such that 7} annihilates Qg4 (log /log),
then the finite flat map Xj, (B — B) — Xj_ (A — A) is étale.

COROLLARY 4.12 Let A = Ok and let B be the integer ring of a finite étale
K-algebra and (A — A) — (B — B) be a finite flat and log flat morphism of
log embeddings. Let j > 0 be a rational number. Suppose that, for each j' > j,

there exists a finite separable extension K' of K such that Xf;g(B — B)gs is

isomorphic to the disjoint union of finitely many copies of Xﬂ:g(A — Ak as
in Proposition 4.11.1. Let I be the kernel of the surjection B — B and let
Np/B be the B-module I/I%. Then we have the following.

1. The finite map Xj,, (B — B) — Xﬂ)g(A — A) is étale and is extended to a
finite étale map of stable normalized integral models.

2. The finite map )_(ljog(B — B) — leog(A — A) is étale.
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3. The twisted normal cone C’fo (B — B) is canonically isomorphic to the
covariant vector bundle defined by the Bp ;.q-module (Homp(Np B, B) @0

Ni)®p, Biog F rea and the finite map )_(ljog(B — B) — C‘fég(B — B) is étale.
To prove Proposition 4.11, we use the following.

LEMMA 4.13 Let A = Op, be the integer ring of a finite separable extension L,
A — A be a log embedding and let M be an A-module of finite type. Let j > 0
be a rational number and K’ be a finite separable extension of K such that the
map Ok — A®Og Ok is strict and the stable normalized integral model .Aj

of Xlog(A — A) is defined over K'. Let e and €' be the ramification indices of
L and of K’ over K and w;, and 7' be prime elements of L and K'. Assume
that €' /e and €'j are integers. Then the following conditions are equivalent.
(1) There exists an integer 0 < n < ej such that the A-module M = M ®a A
is annihilated by 77 .

(2) The Az)K/ -module M = M @4 AjOK, is annihilated by 7'¢'7=1,

Proof of Lemma 4.13. The proof is similar to that of Lemma 1.17. The image
of an element in the kernel I of the surjection A ®1°g Ogr — A ®log Og' in

AJOK/ is divisible by 7/¢/. Hence we have a commutative diagram

A —— AOK’

! |

A ——— AL (1)

of log rings. The image of 77, € A is a unit times 7/¢/¢ in AjéK,/( ’¢'7). The
rest of the proof is the same as that of Lemma 1.17.

Proof of Proposition 4.11. Proof is similar to that of Proposition 1.15.

1. For j > 0, the affinoid variety X] o(A — A) is a polydisk. By the proof
of Lemma 1.7, there exist a finite separable extension K’ of K of ramifica-
tion index €', an embedding (B ®log O — B’) in 5mboK, isomorphic to
(Ok[[T1, . .. 7Tn}] — OF, ) for some N > 0, a positive rational number € < j
and an open immersion Xlog(B — B)gr — X((B g > Ogr — B')°) as a
rational subdomain. The affinoid variety X¢'<((B ®10g OK/ — B')°) is the
disjoint union of finitely many copies of polydisks. Enlargmg K’ if necessary,
we may assume that €’j and e’e are integers. We may further assume that
there is a rational number j < j' < j + € such that €’j’ is an integer, that

the stable normalized integral models ng and Bgél of Xlog(B — B)gs and
(B — B)K/ is

of X¢“((B @38 > Ogr — B')°)k: are defined over K’ and Xfog
isomorphic to the disjoint union of copies of Xf;g(A — A)gr. Since €'’ is an

integer, the stable normalized integral model .Ajo/K/ of Xlog(A — A) is also
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defined over K’. We have a commutative diagram

A - AD
re’ e J
B —— BS, —— B .

‘We consider the modules

QA/OK (IOg/IOg) = mn Q(A/mx)/ok)(log/log)7 QAJéK/ /O = mn
. . . log
Q(Agx/ /W’"ASK/)/OK/ etc. Since A is strict over O and B R0, Ok

is strict over Op, the canonical maps QA/OK(log/log) — QA/OK and
(B ®18i Ok') ®B QB/o, (log /log) — Q(B®lo°f(0w)/0w are isomorphisms.

Thus, as in the proof of Proposition 1.15, we have a commutative diagram

-/ A j/ ~

Bo,., @a Qa0 (log / log) ————— Bow Oay Sy jose
. “ j/ ~ ,

B, @B B0, (log /log) — Bo,, @z Lpysre j0,, —= sy o,

We show that the modules are free BgK/—modules of rank n, the maps are

injective and that we have an inclusion W’e’j/BgK, ®B QB/OK (log /log) C

e o PA QA/OK(log/log) as submodules of QBZ)/K,/OK" By the as-
sumption on the covering Xf;g(B — B)gr — Xf;g(A — A)g, the .Aj/K,—

algebra BgK, is isomorphic to the product of finitely many copies of .Aj’K,.

AL QAgK,/oK, Bl ,/Oxs
isomorphism. Similarly as in the proof of Proposition 1.15.1, by the canon-
ical map AJOK, ®A Qa0 (log/log) — QAjo/K,/O , the module A]OK, ®A

Hence the right vertical map BgK, ® — is an

’

K/

QA/OK (log /log) is identified with the submodules 7/¢7'() of the

S/
AL 1Ok

free module Also by B'Oe;:, B QB/OK (log /log) — QB,(;,IS JOr?
K/

Al /O
the module B’Oe:, @B OBjoy (log/log) is identified with the submodule

’ A A . . .
m'e Qprere 1o, of the free module Q.. ,, . Hence we obtain an inclusion
Oyt /Oxr Oper /O g1

ﬂ-/e/j’BgK/ ®B QB/OK (log /log) C ﬂ’e'eBgK, RA QA/OK (log /log) as submodules
Of QBJ'/

OK,/OK/.

Thus the ng-module BgK, @B (lp/a(log/log) = Coker(BgK, Qa
Qa0 (10g /log) — B | ®8 Opjoy (log /log)) is annihilated by /0=,
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Since 0 < j — € < j' — € < j, applying Lemma 4.13 (2)=-(1), the assertion is
proved.

2. Let K’ be a finite separable extension such that €’j is an integer, that
B ®lgi Oy is strict over Ok~ and that the stable normalized integral models

Al ., and BéK/ are defined over K’'. By Lemma 4.13 (1)=(2), the Bf)K,—
module Bf)K/ ®B 2B,A (log /log) is annihilated by 7™ for an integer n’ < €.
The rest of proof is the same as that of Proposition 1.15.2. a
Proof of Corollary 4.12. The same as that of Corollary 1.16. a

’

5 FILTRATION BY RAMIFICATION GROUPS: THE LOGARITHMIC CASE

5.1 CONSTRUCTION

In this subsection, we rephrase the definition of the logarithmic filtration by
ramification groups given in the previous paper [1] by using the preceeding
constructions.

Let ® : (Finite Etale/K) — Gg-(Finite Sets) be the fiber functor as in

Section 2.1. For a rational number j > 0, we define a functor @{Og

(Finite lif)tale/K) — Gk-(Finite Sets) as the composition of the functor
(Finite Etale/K) — (Finite Flat and log Flat/Ok) sending a finite étale K-
algebra L to the integral closure O, of Ok in L with the standard log struc-

ture and the functor \Ilfog : (Finite Flat and log Flat/Ok) — Gg-(Finite Sets)

defined in Section 4.2. The map (4.2.3) defines a surjection ¢ — Q){og of func-
tors. In [1], we define the logarithmic filtration by ramification groups on G
by using the family of surjections (& — ‘p{og)j>0,€<@ of functors. The filtra-
tion by the log ramification groups G;(’log C Gg,j > 0,€ Q is characterized
by the condition that the canonical map ®(L) — ®j (L) induces a bijection
D(L)/G% 1og — Plog(L) for each finite étale algebra L over K.

’ log
The functor <I>f0g is defined by the commutativity of the diagram

J
log

(Finite Etale/K) G k-(Finite Sets)

o
(Finite Flat and Log Flat/Of) Gg-(Aff/F)
lo li Aff/F’
EmbSE g AR
( ®IOgOK/)K1 (XK’)K“_'(XF’)K/
lim Embo,, . lim (smooth Affinoid/K")

—K'/K —K'/K

(XKD
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We briefly recall how the other arrows in the diagram are defined. The
forgetful functor <5'mblog — (Finite Flat and Log Flat/Of) sends (A — A)

to A. The functor Emblgg — lim Embo,., sends a log embedding

—K'/K
to the system of strict base changes. The functor lim K Embo, —
lim y s (smooth Affinoid/K”) is defined by the system of tubular neighbor-

hoods. The functor lim (smooth Affinoid/K’) — lim (Aff/F") is de-
—K'/K —K'/K
fined by the closed fiber of the stable normalized integral models. The functor

h_n>1K//K(Aff/F’) — Gg-(Aff/F) is the equivalence of category defined in Sec-

tion 1.3. The functor mg is defined by the set of connecteds components. They
induce a functor ¥{_, : (Finite Flat and log flat/Ox) — G k-(Finite Sets). The

functor <I>fog is defined as the composition of \I/{Og with the functor sending a
finite étale algebra L to the integral closure Oy in L of Ok with the canonical
log structure. More concretely, we have

(I)J

log(L) =
lim mo( lim X /19 (A @G% Okr — O @52 Ok)°))

(,«;—>0L)e,smb‘°g (0) K’/K

for a finite étale K-algebra L. This definition agrees with that given in [1] by
Lemma 4.10.
For a rational number j > 0, we define a functor it

Gr-(Finite Sets) by élog(L) = hm <I>j

log

log ¢ (Finite Etale/K) ——
(L) for a finite étale K-algebra L.

We define a closed normal subgroup GK log 1O be Uj/>jG%. Then we have
@f(;;(L) D(L)/GoF log- Similarly as Lemma 2.1, the finite set <I>f;g(L) has the
following geometric debCI‘lptiOIl.

LEMMA 5.1 Let B be the integer ring with the standard log structure of a finite
étale algebra L over K and j > 0 be a rational number. Let (f,f) : (A —
Ok) — (B — B) be a finite flat and log flat morphism of embeddings. Let
X (B—B)— X; (A — Ok) and I leog(B — B) — leog(A — Ok)
be the canomcal maps. Let 0 e Xlog(A — Ogk) be the point corresponding to
the map A — Ok and 0 € Xfog(A — Ok) be its specialization. Then the maps
(1.8.0), (1.12.1) and the specialization map form a commutative diagram

(L) —— BE(L) —— o], (L)
(5.1.1) l l l
(f)7H0) —— (f1)71(0) —— mo(X{,, (B — B))
and the vertical arrows are bijections.

For a finite étale algebra L over K and a rational number j > 0, we say that
the log ramification of L is bounded by j if the canonical map ®(L) — &, (L)
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is a bijection. Let A = Ok and let B = Oy, be the integer ring of a finite étale
K-algebra L and (A — A) — (B — B) be a finite flat and log flat morphism
of log embeddings. Then, since the map Xj (B — B) — Xj (A — A) is
finite flat of degree [L : K], the ramification of L is bounded by j if and only if
there exists a finite separable extension K’ of K such that the affinoid variety

Xf;)g(B — B) g is isomorphic to the disjoint union of finitely many copies of

Xﬁ)g(A — A)gs over le;)g(A — A)gr. We say that the log ramification of
L is bounded by j+ if the log ramification of L is bounded by every rational
number j° > j. The log ramification of L is bounded by j+ if and only if the
canonical map ®(L) — @fog(L) is a bijection.

LEMMA 5.2 Let K — K’ be a map of complete discrete valuation fields in-
ducing a local homomorphism O — Og of integer rings. Assume that the
ramification index e = ey is prime to p and that the residue field F' of K’ is
a separable extension of the residue field F' of K. Then, for a rational number
j >0, the map G — G induces a surjection Gfgg’K, — Gfog’K.

Proof. Let A be the integer ring of a finite étale K-algebra L and (A — A) be
an object of Embgo, . By the assumption, the log tensor product A ®18i Ok is
the integer ring of L @ K’. The rest is the same as the proof of Lemma 2.2.
O

The two filtrations by ramification groups are related as follows.

LEMMA 5.3 Let K be a complete discrete valuation field and j > 0 be a rational
number. Then, we have inclusions G D G 140 D G

Proof. By Corollary 4.9, there are natural morphisms ®/+! — &/ , — ® of
functors. Hence the assertion follows. |

5.2  FUNCTORIALITY OF THE CLOSED FIBERS OF LOG TUBULAR NEIGHBOR-
HOODS

<j+

e denote the

For a positive rational number j > 0, let (Finite Etale/K)

full subcategory of (Finite Etale/ K) consisting of étale K-algebras whose log
ramification is bounded by j+. At the end of the section, we prove Theorem
5.12. As in the proof of Theorem 2.15, we reduce it to the case where the
condition

(F) There exists a perfect subfield Fy of F such that F is finitely generated
over Fjy.

J

is satisfied. Assuming the condition (F), we define a twisted tangent space Oy,

and show that the functor Xﬂ)g : Emblgi — G-(Aff/F) induces a functor

Xﬂ)g : (Finite ]:iltale/K)lf)éJr — Gk-(Finite Etale/©7 ).

log
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In this subsection, L denotes a finite étale K-algebra and A = Oy, denotes the
integer ring with the canonical log structure.

We assume that the condition (F) is satisfied. Let K be a subfield of K
such that Ok, = Ox N Ky is a complete discrete valuation ring with perfect
residue field Fjy and F is finitely generated over F{ as in Section 2.3. Let
o denote a prime element of Ok,. We consider O, as a log ring with the
trivial log structure. We introduce a new category 5mb§%0K0 and a functor

SmbE:gOKO — 5mblgi similarly as in Section 2.3.

DEFINITION 5.4 Let K be a complete discrete valuation field and Kq be a sub-
field of K such that Ox, = Og N Ko is a complete discrete valuation ring
with perfect residue field Fy and that F is finitely generated over Fy. We put
m = tr.deg(F/Fy). We consider O, as a log ring with the trivial log structure.
1. We define EmblggoKo to be the category whose objects and morphisms are

as follows. An object of Smbﬁ%oKO is a triple (Ao — A) where:

e A is the integer ring of a finite étale K-algebra with the canonical log
structure.

o Ay is a complete semi-local Noetherian log O, -algebras formally smooth
and formally log smooth of relative dimension m + 1 = tr.deg(F/Fp) + 1
over Ok, .

o Ay — A is an exact and regular surjection of codimension 1 of log Ok, -
algebras and induces an isomorphism Ag/ma, — A/ma of underlying
Fy-algebras.

A morphism (f,f) : (Ag — A) — (Bo — B) is a pair of a log Ok-
homomorphism f : A — B and a log Ok,-homomorphism £ : Ay — By such

that the diagram
Ay — A

| |7

BO —— B

18 commutative.

2. For the integer ring A of a finite étale K-algebra, we define SmbljﬁjgoKo (A)
to be the subcategory offmb?%OKo whose objects are of the form (Ag — A) and
morphisms are of the form (ida, f).

3. We say that a morphism (Ag — A) — (Bg — B) is finite flat and log flat
if Ag — By is finite flat and log flat and the canonical map By ®i§§ A— B is
an isomorphism.

An object (Ag — A) of 5mb113:50K0 is an object (Ao — A) of Embi 0, together
with a log strucure on Ag such that the log ring A is formally log smooth over
Ok, and that the surjection Ag — A is exact.
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LEMMA 5.5 1. Let A be the integer ring of a finite étale K-algebra with the
canonical log structure. Then, the category Smblffoko (A) is non-empty.

2. Let (Ag — A) and (Bg — B) be objects omebl;%OKO and A — B be an Ok -
homomorphism. Then there ezists a homomorphism (Ag — A) — (Bg — B)
in Smbll'fOKo extending A — B.

3. Every morphism in Emblffol(o is finite flat and log flat.

Proof. 1. We may assume A is local. Take a transcendental basis (¢1,...,%m)
of the residue field E of A over Fy such that E is a finite separable extension
of Fo(t1,...,tm). Take a lifting (¢1,...,tm) in A of (¢1,...,%,) and prime
elements ¢y of A and 7y of Ok,. Then A is unramified over the completion of
the local ring of Ok, [To, . . ., Tin] at the prime ideal (7o, Tp) by the map defined
by sending T; to t;. Hence there are an étale scheme X over A’g:ol, a point &

of X above (m,Tp) and a regular immersion ¢ : OAX7§ — A of codimension 1.
Let Ay be the Og,-algebra O x,¢ with the log structure defined by the chart
N — Aj sending 1 € N to Ty. Then (Ag — A) is an object of Embli(foKo.

2. Since Ay is formally log smooth over Og,, it follows from that Bg is the
formal completion of itself with respect to the surjection By — B.

3. We may assume A and B are local. We show that the map By ®IX§ A— Bis
an isomorphism. Let f be a generator of the kernel of Ay — A. It is sufficient
to show that the image of f in mBO/mf30 is not 0. We take charts N — Ay
and N — By and let ¢t € Ag and ¢ € By be the images of 1 € N. The charts
N — Ay and N — By induces isomorphisms N — My , and N — Mx , where y
and x are the closed points of the log schemes Y = Spec Ay and X = Spec X,.
The map N = My, — N = Mx , is the multiplication by the ramification
index e of B ®p,, K over A®op, K.

Since dtg is in the kernel of the surjection QAO/OKO Ra, A/ma — Qea/ma)/Fy
and is non-zero, (mo,to) is a basis of ma,/m% . We put f = am + bty in
mp, /m%  for some element a,b in the residue field E of A. Since the surjection
Ay — A is regular of codimension 1, either of a and b is not 0. Since the image
of to is a basis of m4/m% and the image of f is 0, we have a # 0. Similarly
(70, t)) is a basis of mp,/mg . Since the map N = My, — N = Mx, is the
multiplication by the ramification index e, the image of ¢y is a unit times ¢{.
Hence the image of f in mp, /m]230 is not zero. Thus the map By ®£§§ A— B
is an isomorphism. Since B is finite over A, By is also finite over Ay by
Nakayama’s lemma. Since dimAy = dimBg = 2 the assertion follows by
Corollary 3.11. a

COROLLARY 5.6 FEvery morphism in Embllgjgol{o (A) is an isomorphism.

Proof. Tt (Ag — A) — (A{ — A) is a map, the map Ay — Aj is finite flat of

degree 1 and is an isomorphism. a

We define a functor Smblfégok — Emblgi as follows. Let (Ayg — A) be an
WK

object of Smblffoko. We define an embedding ((Ao®o,, Ox)" — A) by

DOCUMENTA MATHEMATICA - EXTRA VOLUME KATO (2003) 5-72



RAMIFICATION OF LocAL FIELDS 61

regarding (Ao — A) as an object of Embk o, . Since the underlying ring
of A/m% ®log Ok /m is A/m} ®o,, Ok/mf, we define a log structure
on (A0®OKOOK)/\ as the limit of those on A/m’%} ®log O /m%. We let
(Ao®lgi Ox)" denote the log ring (Ag®o,, Ox)" with this log structure.

LEMMA 5.7 Let (Ag — A) be an object of EmbljégoK Then,

~ lo,

((A0®Og Ok)N — A) is a log pre-embedding and hence ((A0®log O)N —
A)isa log embedding.

Proof. By the construction, the log O g-algebra (Ao®lgi0 Og)" is formally log
smooth and ((A0®10g Og)" — A) is a log pre-embedding. The rest follows
from Lemma 4.4.2. O
In the following, we put A = (AO®0KO Ok)™. We obtain a functor
<S'mblog — gmblgi sending (Ag — A) to (A — A) = ((Ae®0,, Ox)"™ —
A) by Lemma 5.7. For a rational number j > 0, we have a sequence of functors

X7
log log log
é'mbKOKO — EmbOK —

hﬂ)lK//K(smooth Affinoid/K') —— Gg-(Aff/F).

We also let leog denote the composite functor c‘,’mblog — Gg-(Aff/F).

Thus, for an object (Ag — A) of SmbIK%OKO, we have Xﬂ,g(Ao — A) =

10g((A0®OK OK)/\N - A)
For a rational number j > 0, the composition

o
5mb1;;%oko ——— EmbSE —= Gg-(Aff/F).

defines a functor C_'ﬂ)g : 5mbl§gOK — Gg-(Aff/F). We compute the twisted
) Y Kq
normal cone Cj, (A — A) for an object (Ag — A) of Emb;‘foko and A =

(A0®0y,, Or ). Tt is a scheme over (A,y 7)rea = (A ®gi Frea. Let Naja =
I/I? be the conormal module where I is the kernel of the surjection A — A.
We put QOK/OKO (log) = @n Qox /mp)/0x, (log) with respect to the canonical
log structure on Ok and the trivial log structure on Og,. Similarly, we put
QA/AO(log/log) = lim QA mz)/a,(log/log). Since the map A — A is

—n
strict, we have Qa/a,(log /log) = Qa/a,. Let Qp(log) be the F-vector space
Q) r, (log) with respect to the trivial log structure on Fy and the log structure
on F' defined by the chart N — F sending 1 € N to 0. The canonical map

Qo «/O0x, (log)®o, F — Qp(log) is an isomorphism. We have an exact sequence

0 — Qp/r, = Qr/r,(log) =
Qa/a, ®a A and Qo /0, (log) ®o, A — QA/AU (log /log) ®a A. Similarly as
Lemma 2.11, we have the following.

— F — 0. We have canonical maps Ng/a —
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LEMMA 5.8 Let (Ag — A) be an object of Embllcé;goko.

1. If m is the transcendental dimension of F over Fy, the dimension of the
F-vector space Qp(log) is m + 1.

2. The map Naa — Qaj/a, @A A is a surjection and the map
Qo /0, (log) ®ox A — Qa/a, ®a A is an isomorphism. They induce an
isomorphism Naja @4 A/ma — Qp(log) @p A/ma.

3. Let (Ag — A) — (Bog — B) be a morphism of SmblféigoKo and put B =
(Bo®oy,Ox)"~. Then, the diagram

NA/A XA A/mA _ QF(IOg) RF A/mA

l l

NB/B XRp B/mB _ QF(log) Rp B/mB
15 commutative.

For a rational number j > 0, let ©/  be the F-vector space

) log B
Homp(Qp(log), N7) regarded as an affine scheme over F. Similarly as

Corollary 2.12, we have the following.

COROLLARY 5.9 Let (Ag — A) be an object of Emblfé;gOKU and let (A — A) be
1ts image in Smblooio. Let j > 0 be a rational number.

1. Let Cfog(A — A) be the twisted normal cone. The isomorphism in Lemma
5.8.2 induces an isomorphism C{ (A — A) — O] . @ (Alpg p)red-

2. Let (Ag — A) — (Bg — B) be a morphism ofgmbllo(:goKO. Then the diagram

leog(B - B) - C’fog(B - B) - @{og Qp (BlogF')red

! ! !

Xl]og (A - A) C’ljog (A - A) @{og ®F‘ (Alog F)red
18 commutative.
3. If the ramification of A ®o, K is bounded by j+, then the composition
Xipg(A — A) = Cf (A — A) — O] is finite and étale.

log

For a rational number j > 0, we regard @{Og as an object of G -(Aff/F) with

the natural G g-action. Let G g-(Finite Etale/@{og) denote the subcategory of
J

G -(Aff/F) whose objects are finite étale schemes over ©7 and morphisms are

. K log
over ©7,.. Let 5mb£%§jj denote the full subcategory of 5mb1§jgoK0 consisting
of the objects (Ag — A) such that the log ramifications of A®o, K are bounded

by j-+. By Corollary 5.9, the functor Xﬂ)g : 5mb113:goK0 — Gg-(Aff/F) induces

a functor Xﬂ)g : Smblfgg(’ij: — Gg-(Finite Etale/@{og).
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The functor Xf;)g : Smblﬁg’oij+ — Gg-(Finite Etale/ @{Og) further induces a
YKo

functor X{;g : (Finite E')tale/K)ifo;+ — Gg-(Finite Etale/ﬂig). In fact, simi-
larly as Lemma 2.13 and Corollary 2.14, we have the following.

LEMMA 5.10 Let f : A — B be a map over O and let (f,£),(9,8) : (Ag —
A) — (Bg — B) be maps in Emblfé;gOKO. If f = g, then the induced maps

(£ ), (9, 8)x : Xioy(Ag — A) —— X{,,(Bo — B)
are equal.

COROLLARY 5.11 Let j > 0 be a rational number.
1. Let L be a finite étale K -algebra L such that the log ramification is bounded by
j+. Then the system Xfog(Ao — Or) parametrized by the objects (Ag — Op)

of €mb1§gom (Or) is constant and the limit

I
Xlog

(L) = lim X/

log (AO - OL)
(Ao—)oL)esmb‘Ig%OKO (Or)

. . , ‘7
s a finite étale scheme over @log.

2. The functor Xﬂ)g : Embll‘};gbij:r — G -(Finite Etale/@{og) induces a functor

)_(f;g : (Finite Etale/K)E)?‘ — Gk -(Finite Etale/@fog).
Using the functor X{;g . (Finite Etale/K)</* — G-(Finite Etale/©7) defined
under the condition (F), we obtain the following theorem by the same argument
as the proof of Theorem 2.15.

THEOREM 5.12 Let K be a complete discrete valuation field and let j > 0 be
a rational number. Let m be the prime-to-p part of the denominator of j and
I, be the subgroup of the inertia group I C Gk of index m. Then we have the
following. ' _

1. The graded piece GriGy = leog/Gijlog is abelian.

2. The commutator [y, G]k’log] s a subgroup ofG}:bg. In particular, GrljogGK

is a subgroup of the center of the pro-p-group G%‘log/GjI(Jflog.

Similarly as in the proof of Theorem 2.15, assuming the condition (F), we
obtain a canonical surjection

(5.12.1) b (o]

J
log) GrlogGK .

The canonical surjections Fiib(@{()g) — GrljogGK and T3P (©7) — GriGg are

related as follows. The exact sequences 0 — N — Qr — Qp — 0 and 0—
Qr — Qp(log) — F — 0 induces canonical maps ©],, — ©7 and ©/*! — ©] .
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LEMMA 5.13 Assume that the condition (F) is satisfied and that p is not a
prime element of K. Then, for a rational number j > 0, we have a commutative
diagram

(eIt —— mb(ef) —— 7 (e)

| ! |

GritlGg —— Gl ,Gx —— GriGg.

Proof. We show the commutativity of the left square. Let L be a finite separable
extension of K such that the log ramification is bounded by j+ and A be the
integer ring of L. By Lemma 5.3, the ramification of L is bounded by (5 + 1)+.
Let (Ag — A) be an object of Embllcé:gOKU. By Lemma 5.7, the surjection
A=A ®lgio Ok — A defines a log pre-embedding (A ®18i0 Ok — A). By
forgetting the log structure, we obtain an embedding (A — A)°. By applying
Lemma 4.4, we obtain a log embedding (A~ — A). Then, by Lemma 4.8
we have an open immersion X7t ((A — A)°) — Xj (A~ — A) of affinoid
subdomains of X7((A — A)°). It induces a map X/+1(L) — Xﬂ)g(L). By the
functoriality, we obtain a commutative diagram

X (L) —— X (L)

| l

Qi1 —XIH(K) —— Of,, =X}, (K).
From this diagram, we deduce the commutativity of the left square. The proof
for the right square is similar and omitted. |

6 THE PERFECT RESIDUE FIELD CASE

6.1 THE NEWTON POLYGON OF A POLYNOMIAL

We recall the notion of Newton polygons and establish some properties. We
say that a function ! : [0,n] — R U {oo} is convex if for every 0 < z < y < n,
the graph of [ is below the line segment connecting (x,1(x)) and (y,1(y)). If at
least one of I(x) and I(y) is co, we define the line segment connecting (z,1(x))
and (y,{(y)) to be the union {(z,00)|x < z < y} U {(z,l(x)), (v,1(y))}. For a
polynomial h(T) = Y7 b, T"" € K[T] of degree < n, we define its Newton
polygon to be the graph of the maximum convex function Iy, : [0,n] — RU{co}
satisfying I, (7) < ord b;.

If o = 1, the Newton polygon of h and the solutions of the equation
h(T) = 0 are related as follows. Let z1,...,2, be the solution of h(T) =
[T°,(T — z;) = 0 and assume ordz; is increasing in i. Then, since b; =
(1) Y i<ki<..<ki<n Zk1 """ 2k, the slope of [, on the interval (i —1,7) is equal
to ordz;. If I(z) = oo, we define the slope of [ at z to be oco.
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LEMMA 6.1 Let f(T) =Y 1 ,a,T" " € Og[T] be a polynomial of degree n and

z be an element of K* such that ordz = % We assume ag = 1 and orda; > 1

for1 <i<n. We put

iy = LT = 1G) S LT e K1)
=0

and let I, : [0,n] — R U {oo} be the function defining the Newton polygon
of (T'). Then, for an integer 0 < i < m, the equality l,(i) = ordb; implies
i =mn—p* for some integer k > 0.

Proof. For an integer 0 < r < n, we put f.(T) = an—,T", h(T) = (fr(2(T +
D) = fr(2)/2" = ap_pz=")(T 4+ 1)" — 1) and let I, : [0,n] — RU {oo}
denote the function defining the Newton polygon of h,.(T'). We have

n

WT) =Y ho(T) = il (i n_yz= ) (Z)) i,

r=1

Since ordz = %, we have ord b,_; = min;<,<,(ord ap_pz= (T (:)) Hence I},
is the maximum convex function satisfying I, <, for 1 <r < n.
We compute the function /. for 1 < r < n. We have h.(T) =

ap—rz” (" ST (7) T For an integer 0 < i < p¥|r, we have

i—1 .
T r r— r r
ord(_) =ord — —l—Zord —] =ord - > ord —-
i i e J i p
Jj=1
The equality holds only for i = p*. Hence, [, is the maximum convex function
satisfying

0 fi=n-—r

. r
Lr (@) = (ord a””_l)—i_ﬁ—i_ ord Lk if i = n — p¥ for an integer 0 < k < ord,r.
p

Thus, for an integer i satisfying n — p°*%" < i < n, the equality I5,(i) = 1,-(i)
implies i = n — p* for an integer 1 < k < ord,r. It also follows that we have
0 =1,0) < l(n—7) =l(n—p>%") for 1 < r < n. Hence the equality
I(i) = 1.(i) implies i > n — p°*4»". Thus the assertion is proved. O
For a polynomial h(T) € K[T],# 0, let ord h(T) denote the minimum of
the valuations of the coefficients. For a rational number u, let 7% denote an
element of K* satisfying ordm* = u. We define a function ¢y, : [0,00) — [0, 00)
by @p(u) = ord h(x"T). The function ¢}, is continuous, convex and piecewise
linear.

LEMMA 6.2 Let h(T) = Y1 b;T" " = [[\_ (T — z;) € K[T] be a monic
polynomial of degree n. Let I, : [0,n] — R U {oo} be the function defining the
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Newton polygon of h(T) and ¢y, : [0,00) — [0,00) be the function @p(u) =
ord h(m*T) defined above. Then,
1. The minimum value of the function Iy (t) + (n — t)u on t € [0,n] is equal to

en(u).
2. We have an equality

on(u) = Zmin(u,ord 2i)-
i=1

h(m®T _
3. If the coefficient of T" in ( (;rh( ))) € F[T] is not zero, then the function
T u

In(t) + (n — t)u attains the minimum value at t = r and we have Iy, (r) = ordb,.

Proof. 1. Since the function I (t) + (n — t)u defines the Newton polygon of
h(m"T), the assertion follows.

2. We put s; = ord z;. Let ¢y € [0,n] be the minimum where the function
In(t) + (n — t)u takes the minimum value. Then t( is the maximum such that
the function 5 (t) + (n — t)u is strictly decreasing on [0,t]. Hence to is the
cardinality of the set {i|s; < u} and the minimum value of I, (t) + (n — t)u is
given by

n

In(to) + (n—to)u = Z s+ Z u = Zmin(si,u).

si<u Si>u i=1

Thus the assertion follows from 1.

3. The coefficient of T" in h(7%T)/7#»() € F[T] is not zero if and only if the
value of the function defining the Newton polygon of h(7"T)/7#"(") at r is
zero and [, (r) = ordb,.. Hence the assertion follows from 1. O

6.2 THE STRUCTURE OF GRADED PIECES

In this subsection, we assume that the residue field F' is perfect. Since the
residue map Qg (log) — F is an isomorphism in this case, we have an isomor-
phism 6, — N7 of F-vector spaces of dimension 1. Let W?b’gp(Nj) denote

the quotient of 7#P(N7) classifying the étale isogenies to the algebraic group
NJ.

PROPOSITION 6.3 Let K be a complete discrete valuation field with perfect
residue field and j > 0 be a positive rational number. Then,

1. ([1] Propositions 3.7 (3) and 3.15 (4)) We have Gy, ;o = GIFY. Ifp is not a
prime element of K, the horizontal arrows in the diagram of Lemma 5.13 are
isomorphism. '

2. The canonical surjection 73®(N7) — GrngGK (5.12.1) induces an isomor-

phism w2 (N7) — GrljogGK.
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Contrary to the proof given in [12], we give a proof without using the “lower
numbering” filtration or local class field theory.

Before starting proof, we introduce some notations. Let L be a finite separable
extension of K and 7y, be a prime element of L. Let K| be the maximum un-
ramified extension of K in L and let f(T') € Ok, [T] be the minimal polynomial
of mp, over Kj. Since, L is totally ramified over K7, the polynomial f(7') is an
Eisenstein polynomial. We put n = [L: K;| = deg f.

We put A = O, and Ky = K and define an object (A — A) of Emblf‘fOKo
as follows. We define a log structure on Ok, [T] by the chart N — O, [T]
sending 1 to T. We define a log Og,-algebra A = O, [[T]] to be the formal
completion of the surjection O, [T] — Op, sending T to 7z, with the induced log
structure. Then the surjection A — A defines an object (A — A) of 5mb1§%0}<0.
By Lemma 5.7, it defines a log pre-embedding (A ®looi0 Ok — A). The log
ring A ®lgi ) Og is the ring A itself with the log structure defined by the chart
N2 — A sending (1,0) to 7" and (0, 1) to a prime element 7 of Ox. By forgetting
the log structure, we obtain an embedding (A — A)°. By applying Lemma
4.4, we obtain a log embedding (A~ — A). The log ring A™ is identified
with the formal completion of the surjection Oy [T, U*']/(T" — Ur) — A of
log Ogk-algebras sending T' to 7 and U to 7} /m € A* with log structure
defined by the chart N — Og, [T, U*!]/(T™ — Ur) sending 1 to T. Let K’ be a
finite separable extension of K containing the conjugates of Ky over K and an
element z of ord z = 1/n. Then, the log tensor product A~ ®looi Ok is further
identified with the formal completion of the surjection O, ®o, Ox/[W*!] =
[k, .k O/ [WH] — A ®lgi Og: of strict log Ok -algebras sending W to
(rp®1)/(1®z). With this identification, the canonical map A~ — Aw®lgi Og
sends 7' to (1®z)W and U to ((1®2)™/m)-W™. Further, we identify the affinoid
variety Xj, (A~ — A) as an affinoid subdomain of [,z SpK'(W#1).
Similarly as for (A — A), by taking a prime element 7 of Ok, we define an
object (B — Og) of 5mb113%0K0 as the formal completion of the surjection
Ok, [S] — Ok sending S to m. By Lemma 4.4, the log ring B™ is identified
with the formal completion of the surjection Ox[V*!] — A of strict log Og-
algebras sending V' to 1. With this identification, the canonical map B — B™
sends S to V. Further, we identify the affinoid variety leog(BN — Ok)k
with the subdisk D(1,77) C SpK(V*!).

We define a map (B — Ok ) — (A — A) of Embll(fOKo as follows. Since f(T)
is an Eisenstein polynomial of degree n, ¢(T) = (T™ — f(T))/7 is in Ok, [T]
and its image is invertible in A. By sending S to T"g(T)~!, we obtain a map
(B — Og) — (A — A) of gmbl;foKo.

The Herbrand functions ¢ and 1 : [0,00) — [0, 00) are defined as follows (cf. [4]
Appendix). We put h(T) = f(nr(T+1))/7} and define ¢ to be the function ¢y,
in Lemma 6.2. The function ¢ is strictly increasing, continuous and piecewise
linear. We define 1 : [0,00) — [0,00) to be the inverse ¢~!. The function ¥ is
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also strictly increasing, continuous and piecewise linear.

For an embedding o : K1 — K over K, let f°(T) € Og[T] denote the image
of f(T) by o. For w € K and a rational number u > 0, let D(w,7") denote
the disk with center w and radius 7*.

LEMMA 6.4 Let the notation be as above. 4

1. The open immersion X T1((A — A)°) C leog(AN — A) in Corollary 4.9
is an isomorphism.

2. As affinoid subdomains of [1,. _ g SpK’(W*Y) | we have an equality

J
X log

A~—-4= 1] D(i,ww@)). (2)

z
o:K1—K' fo(27)=0

The log ramification of L is bounded by j if and only if 1(j) is larger than the
slope sn—1 of the Newton polygon of h on the interval (n — 2,n — 1).
3. Let o : K1 — K be an embedding and z{ € Og be a solution of f7(T) = 0.
We put
[ OT + %))

m f2(0)
Then we have hY € Og[T]. Let h¢ € F|T) be the reduction and let he -
Al — Al be the map defined by the polynomial h¢. Then the isomorphisms
Xﬂw(j)—l—é :D(0,1) — D(%,ﬂ'w(j)) C X{;g(AN — A) and x7/+1: D(0,1) —
D(1,77) induce a commutative diagrams

h(T) = -

A' —— D(E mv0) C X, (A~ — A)

d 1

Al —— D(1,m) = X[ (B~ — Og)=N’.

Proof. 1. As in Lemma 4.8, we identify Xﬂ)g(AN — A) and X/T((A —
A)°) as affinoid subdomains of X7((A — A)°). The kernels of the surjections
A — A and A~ — A are generated by f(T) and U™ — g(T) = f(T)/=
respectively. Hence, the affinoid subdomains Xj, (A~ — A) and X/*'((A —
A)°) of XI((A — A)°) are defined by the conditions ord f(x)/7 > j and by
ord f(z) > j + 1 respectively. Hence the assertion follows.
2. Since the kernel of surjection A~ — A is generated by f(T)/m, the kernel
of surjection A™ ®100i Ogr — A ®lgi Og is generated by (2"/7) - (f(zW)/2).
Hence we have

X/

log

(AY = A)(K)= J[ {weOglord f7(zw)/=" > j}

o:Ki—K'

We fix an embedding o : K; — K and drop o in the notation. Fori = 1,...,n,
we put U; = {wlord(w — z;/2z) > ord(w — z;/z) for k = 1,...,n}. By the
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equality above, to prove (2), it is sufficient to show

{w € Oglord f(zw)/z" > 5} NU; C
D(z;/z, 79 € {w € Oglord f(zw)/z" > j}

for each i. Let w € Og. We put I; = {k : ord(w — z;/z) > ord(w — 2z /z)} and
I = {k:ord(w—2z;/2) < ord(w— 2 /z)}. Fori € I, we have ord(w — 2z, /2) =
ord(zr, — 2;)/z < ord(w — z;/z) and, for i € I, we have ord(w — z/z) >
ord(w — z;/z) with the equality if € U;. Since f(zW)/2™ = [[1_, (W — z/2),
we have an inequality

f(zw) = 2k
i — ) >
ord o ,; 1ord(w . )

> ordz—kfiqL ord(w — 2 :wordwfﬁ .
S ontZ =2+ 3 ondlw— 2) = ploratw = 2)

We have an equality if « € U;. Thus the equality (2) is proved. The last
assertion follows from the equality (2) and s,_1 = max; ord (2;/z — 21,/2).
3. We show h?(T) € Og[T]. We extend o : K; — K to o; : L — K by
sending 7y, to z7 and put u = t(j). Then we have h?(T) = —h% (7% - (2/2;) -
T)/7%™ £(0). Since z/z; and f(0)/z" are units, we have h¢(T) € Ox|[T] by
the definition of ¢(u).
We show the commutativity of the diagram. Since B — A sends S to
T"g(T)~!, the induced map B~ — A~ ®18i Ok sends V to

™ A1) . f(leaW)
mg@ mog@ T rgegw) T T

We fix ¢ : K1 — K and we drop o in the notation. We define a map
D(zi/z,m%U)) — D(1,77) by sending w to (f(zw)/(rg(zw))) + 1. Then, we
have a commutative diagram

D(z,7%0) —S— X] (A~ — A)

l l

D(].,ﬂ'j) pr— leog(BN — OK)
The polynomial g(2W) is congruent to the constant — f(0)/7 modulo the max-
imal ideal. Hence, by substituting W = 7%U)T + z;/z, we get the assertion.
O

Proof of Proposition 6.3. 1. The equality Gi( log = Gjljl follows from Lemma
6.4.1. The rest is clear. '
2. First we show that the map 73*(N7) — G, G factors the quotient

72P8P(N7). By Lemma 6.4.3, it is sufficient to show that the map hZ : Al — Al
is an isogeny. In other words, it is enough to show that if the coefficient of T
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in h¢ is non-zero, then r is a power of p. Since hZ(T) = —h% (7% - (2/2) -
T)/7%™ f(0) and z/z; and f(0)/2" are units, the coefficient of T" in h¢ is
non-zero if and only if the coefficient of 7™ in h(7w*T)/7#() is non-zero. Let
[, be the function defining the Newton polygon of h. We apply Lemma 6.2
to h(T) = f(rp(T + 1))/} = Z?;ol b;T"~%. Then, if the coefficient of T" in
h(7uT)/m#(®) is non-zero, we have I;(r) = ord b,. Since ord z = 1/n, we may
apply Lemma 6.1 to the polynomial A(T'). Thus the equality I, (r) = ord b,
implies that r is a power of p as required. ‘

We show that the surjection W?b’gp(Nj) — Gr|,,Gx is an isomorphism. By
Lemma 5.2, we may replace K by the completion of a maximum unramified
extension and assume the residue field F' is algebraically closed. To show the
isomorphism, it is sufficient to construct every étale isogeny of degree p to
N7 from a finite separable extension of K. Recall that every étale isogeny of
degree p to N7 is obtained by pulling-back the isogeny A! — A! defined by the
polynomial TP — T by an isomorphism N7 — Al

We show the following Lemma.

LEMMA 6.5 Let n,m,l > 1 be integers such that m < n and pl < n, m and
I are prime to p and that p*|n. Let ® be a prime element of Ok and a,b be
element of Og. We put m’ =n-ord a+m andl’ = n-ord b+ pl and assume
pl! <m' <pl'+n-ord p and pl' < n-ord p-ord,(n/p*). Let f(T) be the
FEisenstein polynomial

f(T)=T" — n(aT™ — bT?" 4 1)

and let z = 7y, be the image of T in L = K[T)/f(T). We put

p m' =0

bzpl

maz™ P
p—1 n

and 7 = maz™ (

Then,

1. The log ramification of the extension L = K[T]/(f(T)) is bounded by j+.
2. We define a map (B~ — Og) — (A~ — Op) as above and consider
Xfog(AN — A)r, as an affinoid subdomain of SpOL (W) by taking K' = L and z
to be the image of T. Let A — A' be the map defined by the polynomial TP —T.

Then, D(1,7%1)) is a connected component of Xfog(AN — A). Further, the

isomorphism xmJ +1: D(0,1) — D(1,77) induce a commutative diagram
Al —— D(1,7%) C X{Og(AN — A)

l l

A' —— D(@,n) = X (B~ — Og)= Ni.

log

Proof. 1. We put h(T) = f(2(T + 1))/2" and let I, : [0,n] — R U {oo}
be the function defining the Newton polygon of h(T). Let I : [0,n] — RU
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{00} be the linear function characterized by l1(n — 1) = m//n and l1(n —
p) = pl’/n. We claim that we have an equality I, = l; on and only on the
interval (n — p,n — 1). By Lemma 6.1, it is sufficient to show l;(n — 1) =
m'/n,l(n — p) = pl’/n and l,(n — p?) > l1(n — p?). By the proof of Lemma
6.1, we have l;(n — 1) = min(ord n,ord maz™,ord plbzP!) = min(ord p -
ordyn, m’/n,ord p + pl’/n). By the assumptions, we have m’ < n-ord p +
pl' < n-ord p-ordyn and lp(n — 1) = m//n. Similarly, we have {,(n — p) =
min(ord (Z),m’/n,ord (’;l)bzpl) = min(ord p - ord,(n/p),m’/n,pl’/n) = pl'/n
and I;,(n — p?) > min(ord (;;),m’/n,pl’/n) =pl'/n>11(n—p) > l1(n—p?).
Thus the claim is proved.

By Lemma 6.4.2, it is sufficient to show that the slope s, _1 of I;, on the interval
(n—2,n—1) is ¢(j). By the claim above, we have s,_1 = (ln(n —1) —Ip(n —
p))/(p=1) and (sn_1) = ln(n—=1)+sn-1 = (p-ln(n—=1)=ln(n—p))/(p—1) =
p(m’ —=1")/(p — 1)n = j. Thus the assertion follows.

2. In Lemma 6.4.3, we put 7¢0) = (mazm/bzpl)l/(p_l) and 7/ = mazmr?0),
Then we have

F(2(m?DT 4 1)) — (l;l)bzplﬂ'pw(j)Tp + maz" 7?0 T —
BTN = -
Hence the assertion follows. |

We complete the proof of Proposition 6.3.2. By Lemma 6.5, it is sufficient
to show the following: For every rational number j > 0, there exist integers
n,m’, I’ > 0 satisfying the conditions in Lemma 6.5 and, for every non-zero
element = of N7, there exist a,b € O such that ord a is the integral part of
m’/n, ord b is the integral part of pl’/n and = = maz™(maz™ /bzP')/ =1,
First, we prove the claim for j. Assume p is odd (resp. even). Let n > 0 be an
integer such that n(p — 1)j/p (resp. n(p — 1)j/2p) and n/p? are integers and
(p—1)j/p€l(p+1)/n,(p—1)n/p* ord p-ord,(n/p*) — (p+1)/n]. Then there
exist integers I',m’ such that (p — 1)j/p = (m’ —1I')/n, I’ and m’ are prime to
p, pl' <m/ < pl'’ +n-ord p and pl’ < n-ord p-ord,(n/p®). Thus the claim
is proved for j. Since we may multiply a an arbitrary unit, the claim for = is
clear. Hence the assertion is proved. O
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