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EXPLICIT SOLUTIONS FOR A SYSTEM OF FIRST-ORDER
PARTIAL DIFFERENTIAL EQUATIONS

KAYYUNNAPARA THOMAS JOSEPH

ABSTRACT. In this paper we construct explicit weak solutions of a system
of two partial differential equations in the quarter plane {(x,t) : > 0,t >
0} with initial conditions at ¢ = 0 and a weak form of Dirichlet boundary
conditions at x = 0. This system was first studied by LeFloch [9], where he
constructed explicit formula for the weak solution of pure initial value problem.

1. INTRODUCTION

LeFloch [9] constructed an explicit formula for the solution to initial-value prob-
lem
u + f(u)e =0,

vt + fl(u)vz =0,

(Zg 8;) - (Zféf?) ’ (1.2)

in the domain {(z,t) : —co < & < oo,t > 0}, where f(u) is strictly convex. The
first equation is a convex conservation law and the Lax formula [8] gives the en-
tropy weak solution u(x,t) when the initial data u(x,0) = ug(z) is in the space of
bounded measurable functions. The solution u(x,t) remains in the space bounded
functions and is locally a BV function for ¢ > 0. Then the second equation for
v is a nonconservative scalar equation with bounded and BVj,. function f’(u) as
coefficient and LeFloch [9] gave an explicit formula for the solution v(x,t) satis-
fying initial data v(x,0) = vo(x), when vy is Lipschitz continuous. To justify the
nonconservative product which appear in the second equation Volpert product [11]
was used and the second equation was interpreted in the sense of measures.

In this paper we study in the quarter plane {(x,t) : x > 0,¢ > 0}, supple-
mented with an initial condition at ¢ =0

<zg 8;) B ng))) (1.3)
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with initial conditions
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and a weak form of the Dirichlet boundary condition,

u(Ovt) _ ub(t)

(virn) = (ni0) 4
where ug(z) is bounded measurable and vo(x) are Lipschitz continuous functions
of x and up(t) and vy (t) are Lipschitz continuous functions of ¢. Indeed with strong
form of Dirichlet boundary conditions , there is neither existence nor unique-
ness as the speed of propagation A\ = f’(u) depends on the unknown variable u
and does not have a definite sign at the boundary z = 0. We note that the speed
is completely determined by the first equation. We use the Bardos Leroux and

Nedelec [I] formulation of the boundary condition for the u component which for
our case is equivalent to the following condition (see LeFloch [10]):

either u(0+,t) = u (t)

(1.5)
or f'(u(0+,1)) <0 and f(u(0+,t)) > f(u (£)).

Here u; (t) = max{u,(t), \} where X is the unique point where f’(u) changes sign.

Because of convexity of f, f(\) = inf f(u). There are explicit representations of
the entropy weak solution of of the first component u of with initial condition
u(z,0) = up(z) and the boundary condition by Joseph and Gowda [5] and
LeFloch [I0]. We use the formula in [5] for u which involve a minimization of
functionals on certain class of paths and generalized characteristics. Once u is
obtained, the equation for v is linear equation with a discontinuous coefficient
f(u(z,t)). Now v(0+,t) = wp(t) is prescribed only if the characteristics at (0,t)
has positive speed, ie f'(u(0+,%)) > 0. So the weak form of boundary conditions
for v component is

if f'(u(0+,¢)) > 0, then v(0+,t) = vp(2). (1.6)

The aim of this paper is to construct explicit formula for ([1.1)), with initial condition
(1.3) and boundary conditions (1.5 and (|1.6)). We also indicate some generaliza-
tions to some other systems. The question of uniqueness is under investigation.

2. A FORMULA FOR THE SOLUTION

In this section, using the explicit formula derived in [3, ] for the scalar convex
conservation laws with initial condition and Bardos Leroux and Nedelec boundary
condition , we construct a solution for the problem stated in the introduction.
To be more precise, We assume f(u) satisfies the following conditions

f(u) >0, lim flw) _ 00, (2.1)
u—oo U
and let f*(u) be the convex dual of f(u) namely, f*(u) = maxg[fu — f(0)].

For each fixed (z,y,t),z > 0,y > 0,t > 0, C(z,y,t) denotes the following class
of paths (8 in the quarter plane D = {(z,s) : z > 0,s > 0}. Each path is connected
from the initial point (y,0) to (z,t) and is of the form z = [(s), where (3 is a
piecewise linear function of maximum three lines and always linear in the interior
of D. Thus for x > 0 and y > 0, the curves are either a straight line or have exactly
three straight lines with one lying on the boundary z = 0. For y = 0 the curves
are made up of one straight line or two straight lines with one piece lying on the
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boundary z = 0. Associated with the flux f(u) and boundary data uy(t), we define
the functional J(() on C(x,y,t)

«(dB(s)
JB) = - up(s)*)ds ds. 2.2
7 /{S:B(S)O} fuz (o)) +/{s:ﬁ(s)7ﬁ0}f ( ds ) (2:2)

We call fy is straight line path connecting (y,0) and (z,t) which does not touch
the boundary = = 0, {(0,¢),¢ > 0}, then let

Ale,y,t) = J(Bo) = tf = (<2)- (2.3)

For any 8 € C*(x,y,t) = C(z,y,t) — Bo, that is made up of three straight lines
connecting (y,0) to (0,%1) in the interior and (0,%1) to (0,¢2) on the boundary and
(0,%2) to (x,t) in the interior, it can be easily seen from (2.2)) that

to

J(B) = Iy ttrste) = = | f(uB(8)+)d3+t1f*(%)+(t_t2>f*(t ftz)'

(2.4)
For the curves made up two straight lines with one piece lying on the boundary
2 = 0 which connects (0,0) and (0,t2) and the other connecting (0,t2) to (z,).

T = St =0, == [ fun(o) s + 1 - ) ()

It was proved in [3] [5], that there exists a 0* € C*(x,y,t) or correspondingly
ti(x,y,t), ta(x,y,t) so that

=min{J(3) : f € C*(x,y,t)}

2.5
:min{J(m,y,t,tl,tg):OStl <t2<t} ( )
= J(SU, Y, t, tl(xa Y, t)v tQ(xa Y, t))
is a Lipschitz continuous so that
Q(z,y,t) =min{J(B) : B € C(z,y,t)} (26)
= min{A(x,y,t),B(m,y,t)}, ’
and
U(z,t) = min{Q(z,y,t) + Up(z), 0 <y < oo} (2.7)
are Lipschitz contmuous functions in their variables, where Uy(y fo uo(z

Further minimum in is attained at some value of y > 0 Wthh depends on
(art), we call (e ) T Ao 0000 < Blory (e 1.0

UG, 1) = 15 (E0ED) 1 ), (2.)

and if A(z, y(z,0),1) > Blx, y(,t),1)

U(xat) ( y(x,t) tatl(xay(xat)vt),tQ(x,y(x’t)at)) + UO(y)' (29)

Here and hence forth y(z, t) is a minimizer in (2.7)) and in the case of (2.9)), to(x,t) =
ta(z,y(x,t),t) and t1(2,t) = tr(z, y(, 1), 1).
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Theorem 2.1. For every (x,t) minimum in is achieved by some y(x,t),
and U(z,t) is a Lipschitz continuous and for almost every (x,t) there is only one
minimizer y(x,t).

For every points (x,t) satisfying U(x,t) = A(z,y(z,t),t) < B(z,y(z,t),t), define

Y, wfy(mat)
u(z,t) = (f") (f) (2.10)

v(x, t) = vo(y(z,t)).
and for the points (x,t) where B(x,y(z,t),t) < A(x,y(x,t),t),define
uet) = ey (2.11)
v(x, t) = vp(ta(x, t)).

Then the function (u(xz,t),v(x,t)) is a weak solution of (1.1), satisfying the initial
condition (1.3]) and boundary conditions (1.5)) and (1.6

Proof. First we recall from [3 [5] some properties of minimizers y(z,t) in
and corresponding to(x,t) and t1(z,t) that are required for our analysis. These
minimizers y(z,t) may not be unique for every (z,t). Let y~(z,t) and y*(z,t)
are the smallest and the largest of the minimizers in , for each t > 0, they
are nondecreasing function of x and hence except for a countable number of points
they are equal. Corresponding t; (z,t) and ¢ (z,t) have the following properties.
They are nondecreasing function of x, for each fixed ¢t and except for a countable
number of points x they are equal and nondecreasing function of ¢, for each fixed
x and except for a countable number of points ¢ they are equal.

Further if A(z,y(x,t),t) < B(xz,y(x,t),t), for some & = x( then this continues
to be so for all < xg and if A(x,y(x,t),t) > B(z,y(z,t),t), for some x = x¢ then
this continues to be so for all z > xg.

It was proved in [5], that u(z,t) = Q1(x, y(x,t)) = 0,U(z,t) where Q1(z,y,t) =
0:Q(x,y,t), is the weak solution of

ur + f(u)y =0 (2.12)

satisfying the initial condition u(x, 0) = ug(z) and weak form of boundary condition
(1.5). To show that v satisfies the second equation, we follow LeFloch [9] and use
the nonconservative product of Volpert [II] in sense of measures. Since u is a
function of bounded variation, we write

[0,00) x [0,00) =S, US; US,
where S, and S; are points of approximate continuity of u and points of approximate
jump of u and S, is a set of one dimensional Hausdorff-measure zero. At any point
(x,t) € Sj, u(x — 0,t) and u(z + 0,t) denote the left and right values of u(z,t).
For any continuous function g : R! — R, the Volpert product g(u)v, is defined as

a Borel measure in the following manner. Consider the averaged superposition of
g(u) (see Volpert [I1])

—_— ~Jglu(z,t)), if (z,t) € S,
glu)a, 1) = {fol g(1 — a)(u(z—,t) + au(z+,t))da, if (z,t) € S; (2.13)

and the associated measure

o)) = [ Gl(e. e, (214

A
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where A is a Borel measurable subset of S, and

[g(u)ve]({(z,6)}) = g(u)(@,t)(v(z +0,8) — v(z = 0,1)) (2.15)
provided (x,t) € S;. The second equation in is understood as
p= e+ f(u)(w)ve =0 (2.16)

z—y(z,t)

in the sense of measures. Let (z,¢) € S, and u = f*' (=4

(2.12), we have

), since u satisfies

(LC — y(xvt)) o aty(xat) (]- — azy(xvt))

o L
This can be written as
71D ) Loy ) + f@)deyte 0l 0. (217

Using f”(u) > 0 and f’(u) and (f*')(u) are inverses of each other, it follows from

[@2:17) that

Oy(z,t) + f(u)0py(x,t) = 0. (2.18)
Now
Op(@,t) + f'(u)Opv(z,t) = (%)(y(%t){aty(%t) + f'(w)0sy(@, 1)}
and from , we get
Ov(z,t) + f(u)0pv(x,t) = 0. (2.19)

Similarly if (x,t) € S, and u(z,t) = f*'( , we can show that

D)

8t(t2(x,y(ac,t),t)) + f/(u(l‘,t))ﬁx(tg(.ﬁ, y(x, t)vt) =0

and hence
Ov(x,t) + f(u)dypv(z,t) =0, (2.20)
So from ([2.19)) and (2.20]), for any Borel subset A of S,
w(A) =0. (2.21)

Now we consider a point (s(t),t) € S;, then
ds(t) _ flu(s()+,t)) = flu(s(t)= 1))
dt u(s(t)+,t) —u(s(t)—,t)
is the speed of propagation of the discontinuity at this point.

p{(s(t), 1)}

_ds(t)
= = o s(0), ) — ols(t) 1)
1
[ 1 s+ aluls01.8) — ulste)= H)dao(s(t) 1) = o(s(t)-.0)
= (- 4 L D= O Do t4,) — o(st0)-.1)

(2.22)

Form (2.21)) and (2.22), (2.16] follows.




6 K. T. JOSEPH EJDE-2008/157

To show that the solution satisfies the initial conditions, first we observe that
given € > 0 there exists § > 0 such that for all z > ¢, t <,

(e 1) = (248D,

where y(x,t) minimizes miny>o[Uo(y) + tf*(*32)] see [5]. So u and v are given

by the formula (2.10). Then Lax’s argument []], gives lim; g u(x,t) = ugp(z) a.e.
x > €. Since € > 0 is arbitrary,

PH(I) u(z,t) = up(x), a.e. x.

Since f’ and f*' are inverses of each other y(z,t) —x = —tf’(u(z,t)), then it follows
that y(z,t) — x as t — 0 a.e x. Since vy is continuous we get

}in%v(x,t) = }iH(l) vo(y(z,t)) = vo(x), a.e. .

Now we show the solution satisfies the boundary condition (1.5 and (1.6). That
the u component satisfies the boundary condition (1.5 is proved in [5]. Further if
f(u(0+,t)) > 0 then f'(u(z,t)) > 0 for 0 < x < € for some sufficiently small e and

u and v are given by (2.11]). Now
x
)= () (—).
uat) = (1Y ()

so that t — ta(z,t) = x/f'(u(x,t)), and it follows that lim,_qte(x,t) = ¢, since we
assumed that lim,_.o f'(u(z,t)) = f(u(0+,¢)) > 0. So we have

lir% v(x,t) = hr% vp(ta(z,t)) = vp(t).

as vy, is continuous. This proves v satisfies the boundary condition ([1.6)). The proof
of the theorem is complete. O

3. EXTENSIONS TO SOME OTHER CASES

Generalized Lax equation. The initial value problem for the system
us + (log(ae™ +be ™)), =0
ae* — be™" (3.1)
v+ ————v, =0
ae¥ + be~u

was studied and explicit solution was constructed by Joseph and Gowda [7] using
a difference scheme of Lax [§]. This system of equations is of the form (|1.1]),with

f(u) =log(ae™ + be™) (3.2)
For the case f(u) satisfying (2.1), f* is defined everywhere. The flux f(u) given by

(3.2) is convex but does not satisfies (2.1)) and f* is not defined everywhere. Indeed
f* is defined only on (—1,1) and is given by

f(u) = %log (T4 u) (1 —u)t~v) - %log (4atTupt—v) (3.3)

and its derivative is
1 bl+u

7w = Slog(- ). (3.4)

Explicit formula of the theorem (2.1) can be obtained for (3.1)) on the domain
D = {(z,t),z > 0,t > 0} with initial condition (1.3)) and boundary conditions (|1.5)
and (|1.6) with minor modifications. Here we define C(x,y,t), the set of curves 8
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as in section 2, but with a restriction on its slope \%(Ss” < 1. Using the same
notations as in theorem, and using the explicit form of f*'(u) given by (3.4)), we
have the following result.

Theorem 3.1. For every (x,t), © > 0, t > 0, let (u,v) be defined as follows: When
A(z,y(z,t),t) < Bz, y(z,1),1), by
bt+az—y(z,t)
at—x+y(z,t)
when A(z,y(z,t),t) > B(z,y(x,t),t), by

u(e ) = ;log[sm], ol t) = vnltala. 1),

Then (u,v) solves (3.1)), satisfies the initial conditions (1.3)) and the boundary con-
ditions (|1.5) and (|L.6).

Generalized Hopf equation. Solution for the initial-value problem for the non-

(e 1) = 5 log] (e t) = wly(0)

conservative system for u;,j =1,2,...,n
n
(uj)t—l—(chuk)(uj)w =0, j=12,...,n (3.5)
k=1

was constructed by Joseph [4, [6] by a vanishing viscosity method and a general-
ization of Hopf-Cole transformation. Here we assume that at least one k, ¢ # 0.
When n = 1,¢; = 1, is the inviscid Burgers equation or the Hopf equation
and Hopf [2] derived a formula for the entropy weak solution for the initial value
problem and boundary case was treated in [3]. In the present discussion we consider
in D= {(x,t): 2 > 0,t > 0} with initial condition

uj(z,0) = upi(z), >0, j=12,...,n (3.6)
and boundary conditions
u;i(0,t) = up;(t), t>0 j=1,2,...,n. (3.7)

Here again a weak form of the boundary condition is required as characteristic
speed of the system, o = ZZ=1 crug need not be positive at the boundary = = 0.
First we note from (3.5)) that u; satisfies

(uj)e +o(uj)s =0, 7=12,....n (3.8)
where o satisfies
o2
oy + (?)z =0. (3.9)

Now (3.9) together with (3.8) is exactly the form of equation we have studied in
section 1, with f(u) = u?/2. Let o is the entropy weak solution of (3.9) with the
initial condition

o(x,0) = og(x) (3.10)
and weak form of boundary condition

either o(0+,t) = o} (t)
uw(0+,1) _ up (1) (3:11)
2 - 27

with og(z) = >")_; cruor(z) and oy (t) = Y 1 _; crupk(t) constructed in [3} [5].

or 0(0+,t) <0 and
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The analysis of section 1 then shows that with the formulation of boundary
condition
if 0(04,¢) > 0, then u;(0+,t) = up;(2). (3.12)

for u;, Theorem (1.1) applies to the present case with f(u) = “72 With the same
notations as Theorem 1.1, we obtain the following theorem.

Theorem 3.2. Forxz >0, t >0, let u; be defined as follows:
For points (x,t) where U(x,t) = A(x,y(x,t),t) < B(z,y(x,t),t), define

Uj (J?, t) = ’U/Oj(y(l‘v t))a
and for the points (x,t) where B(x,y(z,t),t) < A(z,y(z,t),t), define

uj(z,t) = up;(ta(z, t)).
Then uj(z,t), j =1,2,...,n is a solution to (3.5) with initial condition (3.6) and
boundary condition (3.12)).
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