Electronic Journal of Differential Equations, Vol. 2011 (2011), No. 105, pp. 1-8.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
ftp ejde.math.txstate.edu

EXISTENCE OF SOLUTIONS FOR P-KIRCHHOFF TYPE
PROBLEMS WITH CRITICAL EXPONENT

AHMED HAMYDY, MOHAMMED MASSAR, NAJIB TSOULI

ABSTRACT. We study the existence of solutions for the p-Kirchhoff type prob-
lem involving the critical Sobolev exponent,

~[s / (VulPdz) | Apu = Af(z,u) + ful” 0 i,
! u =0 on 01,

where Q is a bounded smooth domain of RV, 1 < p < N, p* = Np/(N —p) is
the critical Sobolev exponent, A is a positive parameter, f and g are continuous
functions. The main results of this paper establish, via the variational method.
The concentration-compactness principle allows to prove that the Palais-Smale
condition is satisfied below a certain level.

1. INTRODUCTION AND MAIN RESULTS

We are concerned with the existence of solutions for the p-Kirchhoff type problem

~[o( [ (vuPae)| Au = At w) + P in g
" u=0 on 09,

(1.1)

where (2 is a bounded smooth domain of RV, 1 < p < N, p* = Np/(N — p) is
the critical Sobolev exponent, and f : @ x R — R, g : Rt — RT are continuous
functions that satisfy the following conditions:
(F1) f(z,t) = o(t|P~!) as t — 0, uniformly for = € Q;
(F2) There exists g € (p,p*) such that
f(,t)
[t|—o00 [E]772¢
(F3) There exists 6 € (p/o,p*) such that 0 < 0F(x,t) < tf(x,t) for all z € Q
and t # 0, where F(z,t) = fot f(z,s)ds and o is given by (G2) below.
(G1) There exists og > 0 such that g(t) > «ap for all t > 0;
(G2) There exists o > p/p* such that G(t) > og(¢t)t for all t > 0, where G(t) =

I g(s)ds;

=0, uniformly forz € Q.
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Much interest has grown on problems involving critical exponents, starting from
the celebrated paper by Brezis and Nirenberg [5], where the case p = 2 is considered.
We refer the reader to [T, 9, [10] and reference therein for the study of problems
with critical exponent.

Problem is a general version of a model presented by Kirchhoff [I1]. More
precisely, Kirchhoff introduced a model

82 Lo 2 8211,
p@*(h 2L ‘ | )agﬂfo’ (1.2)

where p, po, h, E/, L are constants, Wthh extends the classical D’Alembert’s wave
equation by considering the effects of the changes in the length of the strings during
the vibrations. The problem

—(a—i—b/ |Vu|2das>Au:f(:c,u) in Q
Q
u=0 on 00

(1.3)

received much attention, mainly after the article by Lions [I2]. Problems like
are also introduced as models for other physical phenomena as, for example,
biological systems where u describes a process which depends on the average of itself
(for example, population density). See [3] and its references therein. For a more
detailed reference on this subject we refer the interested reader to [4}, 6} [7, 8, 141 [15].
Motivated by the ideas in [2], our approach for studying problem is varia-
tional and uses minimax critical point theorems. The difficulty is due to the lack
of compactness of the imbedding W, (Q) < LP"(Q) and the Palais-Smale condi-
tion for the corresponding energy functional could not be checked directly. So the
concentration-compact principle of Lions [I3] is applied to deal with this difficulty.
The main result of this paper is the following theorem.

Theorem 1.1. Suppose that (G1)—(G2), (F1)—(F3) hold. Then, there exists A, > 0,
such that (1.1) has a nontrivial solution for all X > ..

2. PRELIMINARY RESULTS

We consider the energy functional I : WO1 P(Q) — R defined by
1 1 x
1) = G(Jul) = X [ Plaude— - [ up”ds, (2.1)
p Q p” Ja

where W, () is the Sobolev space endowed with the norm |ju||? = Jo [VulPdz. Tt
is well known that a critical point of I is a weak solution of problem .

To use variational methods, we give some results related to the Palais-Smale
compactness condition. Recall that a sequence (u,,) is a Palais-Smale sequence of
T at the level ¢, if I(u,) — ¢ and I'(u,) — 0.

In the sequel, we show that the functional I has the mountain pass geometry.
This purpose is proved in the next lemmas.

Lemma 2.1. Suppose that (F1), (F2), (G1) hold. Then, there exist v,p > 0 such
that ianuH:r I(u) >p>0.

Proof. Tt follows from (F1) and (F2) that for any € > 0, there exists C(g) > 0

1
F(z,t) < —¢lt|P + C(e)|t|? for all t. (2.2)
p
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By (G1) and the Sobolev embdding, we have

a .

I(w) > =2 [lul|” = AChel|ul|” — ACa(e)l|ul|? — Cs]lul|”
P 1 1 . (2.3)

= [Jull {(* = AC1e) [ulP~ = ACa(e)|[ul| T — CalfullP -
Taking ¢ = ag/(2pAC1) and setting
O{O 1 *_1
t) = — ACoti™ — CtP? —7.,
£l0) = 5o :

Since p < g < p*, we see that there exist » > 0 such that r{l;ig{«f(t) = &(r). Then,
by (2.3), there exists p > 0 such that I(u) > p for all ||ul = r. O

Lemma 2.2. Suppose that (G2), (F3) hold. Then for all X\ > 0, there exists
a nonnegative function e € W,yP(Q) independent of X\, such that |e| > r and
I(e) < 0.

Proof. Choose a nonnegative function ¢g € C§°(Q2) with ||¢o|| = 1. By integrating
(G2), we obtain

G(to)
tl/a
By (F3), [, F(x,t¢o)dx > 0. Hence

P «
Cotp/a _ 7*/ qsg dx for all t > tg.
p p” Ja

G(t) < Y7 = Cott/7 for all t > to > 0. (2.4)

I(tpo) <

Since p/o < p*, the lemma is proved by choosing e = t.¢o with ¢, > 0 large
enough. ([l

In view of Lemmas 2.1] and 2:2] we may apply a version of the Mountain Pass
theorem without Palais-Smale condition to obtain a sequence (u,) C Wy () such
that

I(up) — ¢ and  I'(u,) — 0,
where

. = inf I 0, 2.5
c irérfen[%}i (v(t)) > (2.5)

with

I'={yeC(0,1],W;?(Q)) : v(0) = 0, I(v(1)) < 0}.
Denoted by S, the best positive constant of the Sobolev embeddlng Wg’p(Q) —
L?"(Q) given by

S, = inf {/ \VulPdz : u € WyP (Q) / lulP" da = 1}. (2.6)
Q

Lemma 2.3. Suppose that (G1)- (G2), (F1)-(F3) hold. Then there exists . > 0

such that c, € (0, (5 — —)(QOS )P ) for all X > X, where c, is given by (2.5).

Proof. For e given by Lemma we have lim;_, 1o I(te) = —oo, then there exists
tx > 0 such that I(tye) = ngl(te)' Therefore,

tﬁ*lg(||tAe||P)||e||P=A/ f(:c,t,\e)eda:—i—t’;*l/ o du:
Q Q
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thus
sltsel)trel” =2t [ fatscledo+8 [ o da (2.7
Q Q

By (2.4), it follows that
C o * * .
7°||e||1’/“t§/ > 8 /ep dz, with ty < ty.
Q

Since p/o < p*, (t)) is bounded. So, there exists a sequence \,, — +oo and so > 0
such that ¢y, — so as n — oo. Hence, there exists C' > 0 such that

g(l[tx.elP)tx,ell” <€ for all n;
that is,
Antx, / f(z,tr, e)eds —|—t§; / e’ dx < C  for all n.
Q “Ja
If s9 > 0, the above inequality implies that
Antx, / f(z,ty, e)edr + ti; / e dr — +o00 < C, asn — oo,
Q Q
which is impossible, and consequently sg = 0. Let 7. (t) = te. Clearly 7. € I', thus

1
< — < = Py,
0<e < I?Zag(f(’y*(t)) I(tre) < pG(HtAeH )

Since ty, — 0 and (3 — %) (apS.)N/? > 0, for A > 0 sufficiently large, we have

P

1 1 1

~G([[trell?) < (5 — =) (S)N/P,

SG(Ibel”) < (5~ ) @0S.)
and hence 1 1

N
0< Cye < (5 — E)(OZQS*> /p.

This completes the proof. (Il

Proof of Theorem[I1]. From Lemmas 2.1 [2:2] and 23] there exists a sequence
(un) C Wy P(£2) such that

I(uy) — ¢ and I'(up) — 0, (2.8)

with ¢, € (0, (5 — I%)(aoS*)N/p) for A > \.. Then, there exists C' > 0 such that

|I(u,)] < C, and by (F3) for n large enough, it follows from (G1) and (G2) that
1
C+ [Junl| > I(un) — 5([’(un),un>
1 1
> - Py _ =
> 26l - 5

> (2 = JaolunlP

g(lunll”)lunl” (2.9)

Since 6 > p/o, (u,) is bounded. Hence, up to a subsequence, we may assume that
u, — u weakly in W, ?(Q),
U, — u a.e. in £,
u, —u in L*(Q), 1 <s < p*, (2.10)
|[Vu,|P — u  (weak*-sense of measures )

lun|P” — v (weak*-sense of measures),
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where 1 and v are a nonnegative bounded measures on Q. Then, by concentration-
compactness principle due to Lions [I3], there exists some at most countable index
set J such that

*
V= |u|p + E Vjé%, , v; >0,
JeJ

p2 [Vul + 3 pos,, pg >0, (2.11)
s

S*Vf/p < s

where 5%. is the Dirac measure mass at x; € Q.
Let ¢(z) € C§° such that 0 < ¢ <1,

itz <1
Y(z) = {0 it 2] > 2 (2.12)

and |Vi|o < 2.
For ¢ > 0 and j € J, denote 9! (z) = ¥((x — z;)/e). Since I'(u,) — 0 and
(¢uy,) is bounded, (I'(uy,),¥iu,) — 0 as n — oo; that is,

oluall) [ [Tt
Q
= —g(”uan)/ Un | Vtun [PV, Viplda (2.13)
Q
2 [ fauunbidn + [ Junl? slde + on(1),
Q Q
By (2.10) and Vitali’s theorem, we see that
lim / |u, VI |Pdx = / AL
nmeeJa Q
Hence, by Holder’s inequality we obtain

limsup | | |V, P72V, Vipida|
Q

(p—1)/p ) 1/p
< limsup(/ |Vun\pd1:) (/ \unvwél”dw)
n—00 Q Q
P J|p 1/p
< Cl(/ ulP Vel d:ﬁ) (2.14)
B(:Ej,QE)

< Cl(/B(WE) nglzvdx)l/zv(/wﬂs) |u|p*d$)1/p*

. 1/p*
SC’Q(/ |u|P d:c) —0 ase—0.
B($j725)

On the other hand, from (2.10) we have
flzyun)u, — f(z,u)u  a.e. in Q,

and u, — wu strongly in LP(Q) and in L?(Q2). By (F1)—(F3), for any € > 0 there
exists C. > 0 such that

|f(x,t)] < et~ 4 C|t]9! for all (z,t) € Q x R; (2.15)
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thus
| f (@, un)un| < elun|” + Celun|?.
This is what we need to apply Vitali’s theorem, which yields

lim f(x,un)undxz/f(x,u)udx.
)

n—oo Q

Since 9J has compact support, letting n — oo in ([2.13) we deduce from (2.10) and
[@.14) that

; N 1/p* .
ao/ Pldp < Cg(/ |u|P dx) 3 +)\/ f(x,u)udx+/ Yldv.
Q B(xj,2¢) B(zj,2¢) Q

Letting € — 0, we obtain agp; < v;. Therefore,
(OL()S*)N/p < Vj. (216)

We will prove that this inequality is not possible. Let us assume that (oS, )N/? <
vj, for some jo € J. From (G2) we see that

1 1
EG(Huan) = 79lunl")lunl” = 0 for all n.

Since

1
e = I(uy) — 5([’(un),un> + 0, (1),
it follows that
1 *
- —*)/ |un [P dz + 0,(1)
p Q
1 . *
) [ ) do -+ 0, (1)
p Q
Letting n — oo, we obtain
1 oty > (L Lo N
Cx Z (@ - ];) Z% (zj)vj = (5 - ];)(040 )P
jedJ
This contradicts Lemma Then J = @, and hence u,, — u in L?" (Q). By ([2.15)

we have

/ |f (2, un) (uy — u)|de < / (elun|P~" + Celun|*™") Jun, — ulda
Q Q

< E( ., |un|pda:)pl)/p(/Q [ty — u\’%lx)l/p

(a=1)/q 1/q
+C’5(/ |un|qu) (/ \un7u|qda¢) .
Q Q
Then, using again (2.10]), we obtain

lim [ f(x,up)(u, —u)dz =0. (2.17)

n—oo o)

Since u,, — u in LP" (Q), we see that

lm [ [un]? " 2up (un — uw)dz = 0. (2.18)

n—oo
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From (I'(uy,), un — u) = 0,(1), we deduce that
(I'(up), Uy — u) = g(||un||p)/ |Vun P2V, V (u, — u)dx
Q
- )\/ flx,un) (uy — u)de — / |un|p**2un(un —u)dr = 0,(1)
Q Q
This, (2.17) and (2.18) imply
lim g([[un|]?) / V[P~ 2V ¥ (1, — w)daz = 0,

Since wu,, is bounded and g is continuous, up to subsequence, there is {3 > 0 such
that
9([unll) — g(t§) = a0, asn — oo,

and so

lim | |Vu,|P~?Vu,V(u, —u)dz = 0.
Q

n—oo

Thus by the (S, ) property, u,, — u strongly in W, ?(Q), and hence I'(u) = 0. The
proof is complete. U

3. A SPECIAL CASE
We consider the problem
—(a + ﬂ/ |Vu|pdx)Apu = Af(z,u) + |[ulP "2u inQ
Q
u=0 on 0f,

(3.1)

where Q is a bounded smooth domain of RN, 1 < p < N < 2p, o and 3 are a
positive constants.
Set g(t) = a + Bt. Then, g(t) > « and

1
G(t) = /0 g(s)ds = at + %62&2 > %(a + Bt)t = og(t)t

where o = 1/2. Hence the conditions (G1) and (G2) are satisfied.
For this case, a typical example of a function satisfying the conditions (F1)—(F3)
is given by

Qi*2t7

fla,t) = ai(@)lt

i=1

where k > 1, 2p < ¢; < p* and a;(z) € C(Q). In view of Theorem we have the
following corollary.

Corollary 3.1. Suppose that (F1)-(F3) hold. Then, there exists A > 0, such that
problem (3.1) has a nontrivial solution for all A > A,.
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