Electronic Journal of Differential Equations, Vol. 2011 (2011), No. 105, pp. 1-8. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

EXISTENCE OF SOLUTIONS FOR P-KIRCHHOFF TYPE PROBLEMS WITH CRITICAL EXPONENT

AHMED HAMYDY, MOHAMMED MASSAR, NAJIB TSOULI

Abstract

We study the existence of solutions for the p-Kirchhoff type problem involving the critical Sobolev exponent, $$
\begin{gathered} -\left[g\left(\int_{\Omega}|\nabla u|^{p} d x\right)\right] \Delta_{p} u=\lambda f(x, u)+|u|^{p^{\star}-2} u \quad \text { in } \Omega \\ u=0 \quad \text { on } \partial \Omega \end{gathered}
$$ where Ω is a bounded smooth domain of $\mathbb{R}^{N}, 1<p<N, p^{\star}=N p /(N-p)$ is the critical Sobolev exponent, λ is a positive parameter, f and g are continuous functions. The main results of this paper establish, via the variational method. The concentration-compactness principle allows to prove that the Palais-Smale condition is satisfied below a certain level.

1. Introduction and main results

We are concerned with the existence of solutions for the p-Kirchhoff type problem

$$
\begin{gather*}
-\left[g\left(\int_{\Omega}|\nabla u|^{p} d x\right)\right] \Delta_{p} u=\lambda f(x, u)+|u|^{p^{\star}-2} u \quad \text { in } \Omega \tag{1.1}\\
u=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

where Ω is a bounded smooth domain of $\mathbb{R}^{N}, 1<p<N, p^{\star}=N p /(N-p)$ is the critical Sobolev exponent, and $f: \bar{\Omega} \times \mathbb{R} \rightarrow \mathbb{R}, g: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$are continuous functions that satisfy the following conditions:
(F1) $f(x, t)=o\left(|t|^{p-1}\right)$ as $t \rightarrow 0$, uniformly for $x \in \Omega$;
(F2) There exists $q \in\left(p, p^{\star}\right)$ such that

$$
\lim _{|t| \rightarrow+\infty} \frac{f(x, t)}{|t|^{q-2} t}=0, \quad \text { uniformly for } x \in \Omega
$$

(F3) There exists $\theta \in\left(p / \sigma, p^{\star}\right)$ such that $0<\theta F(x, t) \leq t f(x, t)$ for all $x \in \Omega$ and $t \neq 0$, where $F(x, t)=\int_{0}^{t} f(x, s) d s$ and σ is given by (G2) below.
(G1) There exists $\alpha_{0}>0$ such that $g(t) \geq \alpha_{0}$ for all $t \geq 0$;
(G2) There exists $\sigma>p / p^{\star}$ such that $G(t) \geq \sigma g(t) t$ for all $t \geq 0$, where $G(t)=$ $\int_{0}^{t} g(s) d s ;$

[^0]Much interest has grown on problems involving critical exponents, starting from the celebrated paper by Brezis and Nirenberg [5], where the case $p=2$ is considered. We refer the reader to [1, 1, 10] and reference therein for the study of problems with critical exponent.

Problem (1.1) is a general version of a model presented by Kirchhoff [11. More precisely, Kirchhoff introduced a model

$$
\begin{equation*}
\rho \frac{\partial^{2} u}{\partial t^{2}}-\left(\frac{\rho_{0}}{h}+\frac{E}{2 L} \int_{0}^{L}\left|\frac{\partial u}{\partial x}\right|^{2} d x\right) \frac{\partial^{2} u}{\partial x^{2}}=0 \tag{1.2}
\end{equation*}
$$

where ρ, ρ_{0}, h, E, L are constants, which extends the classical D'Alembert's wave equation by considering the effects of the changes in the length of the strings during the vibrations. The problem

$$
\begin{gather*}
-\left(a+b \int_{\Omega}|\nabla u|^{2} d x\right) \Delta u=f(x, u) \quad \text { in } \Omega \tag{1.3}\\
u=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

received much attention, mainly after the article by Lions [12]. Problems like (1.3) are also introduced as models for other physical phenomena as, for example, biological systems where u describes a process which depends on the average of itself (for example, population density). See [3] and its references therein. For a more detailed reference on this subject we refer the interested reader to [4, 6, 7, 8, 14, 15].

Motivated by the ideas in [2], our approach for studying problem (1.1) is variational and uses minimax critical point theorems. The difficulty is due to the lack of compactness of the imbedding $W_{0}^{1, p}(\Omega) \hookrightarrow L^{p^{\star}}(\Omega)$ and the Palais-Smale condition for the corresponding energy functional could not be checked directly. So the concentration-compact principle of Lions [13] is applied to deal with this difficulty.

The main result of this paper is the following theorem.
Theorem 1.1. Suppose that (G1)-(G2), (F1)-(F3) hold. Then, there exists $\lambda_{*}>0$, such that (1.1) has a nontrivial solution for all $\lambda \geq \lambda_{*}$.

2. Preliminary Results

We consider the energy functional $I: W_{0}^{1, p}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
I(u)=\frac{1}{p} G\left(\|u\|^{p}\right)-\lambda \int_{\Omega} F(x, u) d x-\frac{1}{p^{\star}} \int_{\Omega}|u|^{p^{\star}} d x \tag{2.1}
\end{equation*}
$$

where $W_{0}^{1, p}(\Omega)$ is the Sobolev space endowed with the norm $\|u\|^{p}=\int_{\Omega}|\nabla u|^{p} d x$. It is well known that a critical point of I is a weak solution of problem 1.1.

To use variational methods, we give some results related to the Palais-Smale compactness condition. Recall that a sequence $\left(u_{n}\right)$ is a Palais-Smale sequence of I at the level c, if $I\left(u_{n}\right) \rightarrow c$ and $I^{\prime}\left(u_{n}\right) \rightarrow 0$.

In the sequel, we show that the functional I has the mountain pass geometry. This purpose is proved in the next lemmas.

Lemma 2.1. Suppose that (F1), (F2), (G1) hold. Then, there exist $r, \rho>0$ such that $\inf _{\|u\|=r} I(u) \geq \rho>0$.
Proof. It follows from (F1) and (F2) that for any $\varepsilon>0$, there exists $C(\varepsilon)>0$.

$$
\begin{equation*}
F(x, t) \leq \frac{1}{p} \varepsilon|t|^{p}+C(\varepsilon)|t|^{q} \quad \text { for all } t . \tag{2.2}
\end{equation*}
$$

By (G1) and the Sobolev embdding, we have

$$
\begin{align*}
I(u) & \geq \frac{\alpha_{0}}{p}\|u\|^{p}-\lambda C_{1} \varepsilon\|u\|^{p}-\lambda C_{2}(\varepsilon)\|u\|^{q}-C_{3}\|u\|^{p^{\star}} \tag{2.3}\\
& =\|u\|\left[\left(\frac{\alpha_{0}}{p}-\lambda C_{1} \varepsilon\right)\|u\|^{p-1}-\lambda C_{2}(\varepsilon)\|u\|^{q-1}-C_{3}\|u\|^{p^{\star}-1}\right]
\end{align*}
$$

Taking $\varepsilon=\alpha_{0} /\left(2 p \lambda C_{1}\right)$ and setting

$$
\xi(t)=\frac{\alpha_{0}}{2 p} t^{p-1}-\lambda C_{2} t^{q-1}-C_{3} t^{p^{\star}-1}
$$

Since $p<q<p^{\star}$, we see that there exist $r>0$ such that $\max _{t \geq 0} \xi(t)=\xi(r)$. Then, by (2.3), there exists $\rho>0$ such that $I(u) \geq \rho$ for all $\|u\|=\bar{r}$.

Lemma 2.2. Suppose that (G2), (F3) hold. Then for all $\lambda>0$, there exists a nonnegative function $e \in W_{0}^{1, p}(\Omega)$ independent of λ, such that $\|e\|>r$ and $I(e)<0$.
Proof. Choose a nonnegative function $\phi_{0} \in C_{0}^{\infty}(\Omega)$ with $\left\|\phi_{0}\right\|=1$. By integrating (G2), we obtain

$$
\begin{equation*}
G(t) \leq \frac{G\left(t_{0}\right)}{t_{0}^{1 / \sigma}} t^{1 / \sigma}=C_{0} t^{1 / \sigma} \quad \text { for all } t \geq t_{0}>0 \tag{2.4}
\end{equation*}
$$

By (F3), $\int_{\Omega} F\left(x, t \phi_{0}\right) d x \geq 0$. Hence

$$
I\left(t \phi_{0}\right) \leq \frac{C_{0}}{p} t^{p / \sigma}-\frac{t^{p^{\star}}}{p^{\star}} \int_{\Omega} \phi_{0}^{p^{\star}} d x \quad \text { for all } t \geq t_{0}
$$

Since $p / \sigma<p^{\star}$, the lemma is proved by choosing $e=t_{*} \phi_{0}$ with $t_{*}>0$ large enough.

In view of Lemmas 2.1 and 2.2, we may apply a version of the Mountain Pass theorem without Palais-Smale condition to obtain a sequence $\left(u_{n}\right) \subset W_{0}^{1, p}(\Omega)$ such that

$$
I\left(u_{n}\right) \rightarrow c_{*} \quad \text { and } \quad I^{\prime}\left(u_{n}\right) \rightarrow 0
$$

where

$$
\begin{equation*}
c_{*}=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} I(\gamma(t))>0, \tag{2.5}
\end{equation*}
$$

with

$$
\Gamma=\left\{\gamma \in C\left([0,1], W_{0}^{1, p}(\Omega)\right): \gamma(0)=0, I(\gamma(1))<0\right\}
$$

Denoted by S_{*} the best positive constant of the Sobolev embedding $W_{0}^{1, p}(\Omega) \hookrightarrow$ $L^{p^{\star}}(\Omega)$ given by

$$
\begin{equation*}
S_{*}=\inf \left\{\int_{\Omega}|\nabla u|^{p} d x: u \in W_{0}^{1, p}(\Omega), \int_{\Omega}|u|^{p^{\star}} d x=1\right\} \tag{2.6}
\end{equation*}
$$

Lemma 2.3. Suppose that (G1)-(G2), (F1)-(F3) hold. Then there exists $\lambda_{*}>0$ such that $c_{*} \in\left(0,\left(\frac{1}{\theta}-\frac{1}{p^{\star}}\right)\left(\alpha_{0} S_{*}\right)^{\frac{N}{p}}\right)$ for all $\lambda \geq \lambda_{*}$, where c_{*} is given by 2.5).
Proof. For e given by Lemma 2.2, we have $\lim _{t \rightarrow+\infty} I(t e)=-\infty$, then there exists $t_{\lambda}>0$ such that $I\left(t_{\lambda} e\right)=\max _{t \geq 0} I(t e)$. Therefore,

$$
t_{\lambda}^{p-1} g\left(\left\|t_{\lambda} e\right\|^{p}\right)\|e\|^{p}=\lambda \int_{\Omega} f\left(x, t_{\lambda} e\right) e d x+t_{\lambda}^{p^{\star}-1} \int_{\Omega} e^{p^{\star}} d x
$$

thus

$$
\begin{equation*}
g\left(\left\|t_{\lambda} e\right\|^{p}\right)\left\|t_{\lambda} e\right\|^{p}=\lambda t_{\lambda} \int_{\Omega} f\left(x, t_{\lambda} e\right) e d x+t_{\lambda}^{p^{\star}} \int_{\Omega} e^{p^{\star}} d x \tag{2.7}
\end{equation*}
$$

By (2.4), it follows that

$$
\frac{C_{0}}{\sigma}\|e\|^{p / \sigma} t_{\lambda}^{p / \sigma} \geq t_{\lambda}^{p^{\star}} \int_{\Omega} e^{p^{\star}} d x, \quad \text { with } t_{0}<t_{\lambda}
$$

Since $p / \sigma<p^{\star},\left(t_{\lambda}\right)$ is bounded. So, there exists a sequence $\lambda_{n} \rightarrow+\infty$ and $s_{0} \geq 0$ such that $t_{\lambda_{n}} \rightarrow s_{0}$ as $n \rightarrow \infty$. Hence, there exists $C>0$ such that

$$
g\left(\left\|t_{\lambda_{n}} e\right\|^{p}\right)\left\|t_{\lambda_{n}} e\right\|^{p} \leq C \quad \text { for all } n
$$

that is,

$$
\lambda_{n} t_{\lambda_{n}} \int_{\Omega} f\left(x, t_{\lambda_{n}} e\right) e d x+t_{\lambda_{n}}^{p^{\star}} \int_{\Omega} e^{p^{\star}} d x \leq C \quad \text { for all } n
$$

If $s_{0}>0$, the above inequality implies that

$$
\lambda_{n} t_{\lambda_{n}} \int_{\Omega} f\left(x, t_{\lambda_{n}} e\right) e d x+t_{\lambda_{n}}^{p^{\star}} \int_{\Omega} e^{p^{\star}} d x \rightarrow+\infty \leq C, \quad \text { as } n \rightarrow \infty
$$

which is impossible, and consequently $s_{0}=0$. Let $\gamma_{*}(t)=t e$. Clearly $\gamma_{*} \in \Gamma$, thus

$$
0<c_{*} \leq \max _{t \geq 0} I\left(\gamma_{*}(t)\right)=I\left(t_{\lambda} e\right) \leq \frac{1}{p} G\left(\left\|t_{\lambda} e\right\|^{p}\right)
$$

Since $t_{\lambda_{n}} \rightarrow 0$ and $\left(\frac{1}{\theta}-\frac{1}{p^{\star}}\right)\left(\alpha_{0} S_{*}\right)^{N / p}>0$, for $\lambda>0$ sufficiently large, we have

$$
\frac{1}{p} G\left(\left\|t_{\lambda} e\right\|^{p}\right)<\left(\frac{1}{\theta}-\frac{1}{p^{\star}}\right)\left(\alpha_{0} S_{*}\right)^{N / p}
$$

and hence

$$
0<c_{*}<\left(\frac{1}{\theta}-\frac{1}{p^{\star}}\right)\left(\alpha_{0} S_{*}\right)^{N / p}
$$

This completes the proof.
Proof of Theorem 1.1. From Lemmas 2.1, 2.2 and 2.3, there exists a sequence $\left(u_{n}\right) \subset W_{0}^{1, p}(\Omega)$ such that

$$
\begin{equation*}
I\left(u_{n}\right) \rightarrow c_{*} \quad \text { and } \quad I^{\prime}\left(u_{n}\right) \rightarrow 0 \tag{2.8}
\end{equation*}
$$

with $c_{*} \in\left(0,\left(\frac{1}{\theta}-\frac{1}{p^{\star}}\right)\left(\alpha_{0} S_{*}\right)^{N / p}\right)$ for $\lambda \geq \lambda_{*}$. Then, there exists $C>0$ such that $\left|I\left(u_{n}\right)\right| \leq C$, and by (F3) for n large enough, it follows from (G1) and (G2) that

$$
\begin{align*}
C+\left\|u_{n}\right\| & \geq I\left(u_{n}\right)-\frac{1}{\theta}\left\langle I^{\prime}\left(u_{n}\right), u_{n}\right\rangle \\
& \geq \frac{1}{p} G\left(\|u\|^{p}\right)-\frac{1}{\theta} g\left(\left\|u_{n}\right\|^{p}\right)\left\|u_{n}\right\|^{p} \tag{2.9}\\
& \geq\left(\frac{\sigma}{p}-\frac{1}{\theta}\right) \alpha_{0}\left\|u_{n}\right\|^{p}
\end{align*}
$$

Since $\theta>p / \sigma,\left(u_{n}\right)$ is bounded. Hence, up to a subsequence, we may assume that

$$
\begin{align*}
u_{n} \rightharpoonup u & \text { weakly in } W_{0}^{1, p}(\Omega) \\
u_{n} & \rightarrow u \quad \text { a.e. in } \Omega \\
u_{n} \rightarrow u & \text { in } L^{s}(\Omega), 1 \leq s<p^{\star} \tag{2.10}\\
\left|\nabla u_{n}\right|^{p} \rightharpoonup \mu & \left(\text { weak }^{*} \text {-sense of measures }\right) \\
\left|u_{n}\right|^{p^{\star}} \rightharpoonup \nu \quad(\text { weak } & \text {-sense of measures })
\end{align*}
$$

where μ and ν are a nonnegative bounded measures on $\bar{\Omega}$. Then, by concentrationcompactness principle due to Lions [13], there exists some at most countable index set J such that

$$
\begin{gather*}
\nu=|u|^{p^{\star}}+\sum_{j \in J} \nu_{j} \delta_{x_{j}}, \quad \nu_{j}>0 \\
\mu \geq|\nabla u|^{p}+\sum_{j \in J} \mu_{j} \delta_{x_{j}}, \quad \mu_{j}>0 \tag{2.11}\\
S_{*} \nu_{j}^{p / p^{\star}} \leq \mu_{j}
\end{gather*}
$$

where $\delta_{x_{j}}$ is the Dirac measure mass at $x_{j} \in \bar{\Omega}$.
Let $\psi(x) \in C_{0}^{\infty}$ such that $0 \leq \psi \leq 1$,

$$
\psi(x)= \begin{cases}1 & \text { if }|x|<1 \tag{2.12}\\ 0 & \text { if }|x| \geq 2\end{cases}
$$

and $|\nabla \psi|_{\infty} \leq 2$.
For $\varepsilon>0$ and $j \in J$, denote $\psi_{\varepsilon}^{j}(x)=\psi\left(\left(x-x_{j}\right) / \varepsilon\right)$. Since $I^{\prime}\left(u_{n}\right) \rightarrow 0$ and $\left(\psi_{\varepsilon}^{j} u_{n}\right)$ is bounded, $\left\langle I^{\prime}\left(u_{n}\right), \psi_{\varepsilon}^{j} u_{n}\right\rangle \rightarrow 0$ as $n \rightarrow \infty$; that is,

$$
\begin{align*}
& g\left(\left\|u_{n}\right\|^{p}\right) \int_{\Omega}\left|\nabla u_{n}\right|^{p} \psi_{\varepsilon}^{j} d x \\
&=-g\left(\left\|u_{n}\right\|^{p}\right) \int_{\Omega} u_{n}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla \psi_{\varepsilon}^{j} d x \tag{2.13}\\
&+\lambda \int_{\Omega} f\left(x, u_{n}\right) u_{n} \psi_{\varepsilon}^{j} d x+\int_{\Omega}\left|u_{n}\right|^{p^{\star}} \psi_{\varepsilon}^{j} d x+o_{n}(1)
\end{align*}
$$

By 2.10 and Vitali's theorem, we see that

$$
\lim _{n \rightarrow \infty} \int_{\Omega}\left|u_{n} \nabla \psi_{\varepsilon}^{j}\right|^{p} d x=\int_{\Omega}\left|u \nabla \psi_{\varepsilon}^{j}\right|^{p} d x
$$

Hence, by Hölder's inequality we obtain

$$
\begin{align*}
& \left.\limsup _{n \rightarrow \infty}\left|\int_{\Omega} u_{n}\right| \nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla \psi_{\varepsilon}^{j} d x \mid \\
& \leq \limsup _{n \rightarrow \infty}\left(\int_{\Omega}\left|\nabla u_{n}\right|^{p} d x\right)^{(p-1) / p}\left(\int_{\Omega}\left|u_{n} \nabla \psi_{\varepsilon}^{j}\right|^{p} d x\right)^{1 / p} \\
& \leq C_{1}\left(\int_{B\left(x_{j}, 2 \varepsilon\right)}|u|^{p}\left|\nabla \psi_{\varepsilon}^{j}\right|^{p} d x\right)^{1 / p} \tag{2.14}\\
& \leq C_{1}\left(\int_{B\left(x_{j}, 2 \varepsilon\right)}\left|\nabla \psi_{\varepsilon}^{j}\right|^{N} d x\right)^{1 / N}\left(\int_{B\left(x_{j}, 2 \varepsilon\right)}|u|^{p^{\star}} d x\right)^{1 / p^{\star}} \\
& \leq C_{2}\left(\int_{B\left(x_{j}, 2 \varepsilon\right)}|u|^{p^{\star}} d x\right)^{1 / p^{\star}} \rightarrow 0 \quad \text { as } \varepsilon \rightarrow 0
\end{align*}
$$

On the other hand, from 2.10 we have

$$
f\left(x, u_{n}\right) u_{n} \rightarrow f(x, u) u \quad \text { a.e. in } \Omega,
$$

and $u_{n} \rightarrow u$ strongly in $L^{p}(\Omega)$ and in $L^{q}(\Omega)$. By (F1)-(F3), for any $\varepsilon>0$ there exists $C_{\varepsilon}>0$ such that

$$
\begin{equation*}
|f(x, t)| \leq \varepsilon|t|^{p-1}+C_{\varepsilon}|t|^{q-1} \quad \text { for all }(x, t) \in \Omega \times \mathbb{R} \tag{2.15}
\end{equation*}
$$

thus

$$
\left|f\left(x, u_{n}\right) u_{n}\right| \leq \varepsilon\left|u_{n}\right|^{p}+C_{\varepsilon}\left|u_{n}\right|^{q} .
$$

This is what we need to apply Vitali's theorem, which yields

$$
\lim _{n \rightarrow \infty} \int_{\Omega} f\left(x, u_{n}\right) u_{n} d x=\int_{\Omega} f(x, u) u d x
$$

Since ψ_{ε}^{j} has compact support, letting $n \rightarrow \infty$ in 2.13 we deduce from 2.10 and (2.14) that

$$
\alpha_{0} \int_{\Omega} \psi_{\varepsilon}^{j} d \mu \leq C_{2}\left(\int_{B\left(x_{j}, 2 \varepsilon\right)}|u|^{p^{\star}} d x\right)^{1 / p^{\star}}+\lambda \int_{B\left(x_{j}, 2 \varepsilon\right)} f(x, u) u d x+\int_{\Omega} \psi_{\varepsilon}^{j} d \nu
$$

Letting $\varepsilon \rightarrow 0$, we obtain $\alpha_{0} \mu_{j} \leq \nu_{j}$. Therefore,

$$
\begin{equation*}
\left(\alpha_{0} S_{*}\right)^{N / p} \leq \nu_{j} \tag{2.16}
\end{equation*}
$$

We will prove that this inequality is not possible. Let us assume that $\left(\alpha_{0} S_{*}\right)^{N / p} \leq$ $\nu_{j_{0}}$ for some $j_{0} \in J$. From (G2) we see that

$$
\frac{1}{p} G\left(\left\|u_{n}\right\|^{p}\right)-\frac{1}{\theta} g\left(\left\|u_{n}\right\|^{p}\right)\left\|u_{n}\right\|^{p} \geq 0 \quad \text { for all } n
$$

Since

$$
c_{*}=I\left(u_{n}\right)-\frac{1}{\theta}\left\langle I^{\prime}\left(u_{n}\right), u_{n}\right\rangle+o_{n}(1)
$$

it follows that

$$
\begin{aligned}
c_{*} & \geq\left(\frac{1}{\theta}-\frac{1}{p^{\star}}\right) \int_{\Omega}\left|u_{n}\right|^{p^{\star}} d x+o_{n}(1) \\
& \geq\left(\frac{1}{\theta}-\frac{1}{p^{\star}}\right) \int_{\Omega} \psi_{\varepsilon}^{j_{0}}\left|u_{n}\right|^{p^{\star}} d x+o_{n}(1)
\end{aligned}
$$

Letting $n \rightarrow \infty$, we obtain

$$
c_{*} \geq\left(\frac{1}{\theta}-\frac{1}{p^{\star}}\right) \sum_{j \in J} \psi_{\varepsilon}^{j_{0}}\left(x_{j}\right) \nu_{j} \geq\left(\frac{1}{\theta}-\frac{1}{p^{\star}}\right)\left(\alpha_{0} S_{*}\right)^{N / p} .
$$

This contradicts Lemma 2.3. Then $J=\emptyset$, and hence $u_{n} \rightarrow u$ in $L^{p^{\star}}(\Omega)$. By 2.15) we have

$$
\begin{aligned}
\int_{\Omega}\left|f\left(x, u_{n}\right)\left(u_{n}-u\right)\right| d x \leq & \int_{\Omega}\left(\varepsilon\left|u_{n}\right|^{p-1}+C_{\varepsilon}\left|u_{n}\right|^{q-1}\right)\left|u_{n}-u\right| d x \\
\leq & \varepsilon\left(\int_{\Omega}\left|u_{n}\right|^{p} d x\right)^{p-1) / p}\left(\int_{\Omega}\left|u_{n}-u\right|^{p} d x\right)^{1 / p} \\
& +C_{\varepsilon}\left(\int_{\Omega}\left|u_{n}\right|^{q} d x\right)^{(q-1) / q}\left(\int_{\Omega}\left|u_{n}-u\right|^{q} d x\right)^{1 / q}
\end{aligned}
$$

Then, using again 2.10, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega} f\left(x, u_{n}\right)\left(u_{n}-u\right) d x=0 \tag{2.17}
\end{equation*}
$$

Since $u_{n} \rightarrow u$ in $L^{p^{\star}}(\Omega)$, we see that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega}\left|u_{n}\right|^{p^{\star}-2} u_{n}\left(u_{n}-u\right) d x=0 \tag{2.18}
\end{equation*}
$$

From $\left\langle I^{\prime}\left(u_{n}\right), u_{n}-u\right\rangle=o_{n}(1)$, we deduce that

$$
\begin{aligned}
\left\langle I^{\prime}\left(u_{n}\right), u_{n}-u\right\rangle= & g\left(\left\|u_{n}\right\|^{p}\right) \int_{\Omega}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla\left(u_{n}-u\right) d x \\
& -\lambda \int_{\Omega} f\left(x, u_{n}\right)\left(u_{n}-u\right) d x-\int_{\Omega}\left|u_{n}\right|^{p^{\star}-2} u_{n}\left(u_{n}-u\right) d x=o_{n}(1)
\end{aligned}
$$

This, 2.17 and 2.18 imply

$$
\lim _{n \rightarrow \infty} g\left(\left\|u_{n}\right\|^{p}\right) \int_{\Omega}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla\left(u_{n}-u\right) d x=0 .
$$

Since u_{n} is bounded and g is continuous, up to subsequence, there is $t_{0} \geq 0$ such that

$$
g\left(\left\|u_{n}\right\|^{p}\right) \rightarrow g\left(t_{0}^{p}\right) \geq \alpha_{0}, \quad \text { as } n \rightarrow \infty
$$

and so

$$
\lim _{n \rightarrow \infty} \int_{\Omega}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla\left(u_{n}-u\right) d x=0 .
$$

Thus by the $\left(S_{+}\right)$property, $u_{n} \rightarrow u$ strongly in $W_{0}^{1, p}(\Omega)$, and hence $I^{\prime}(u)=0$. The proof is complete.

3. A special case

We consider the problem

$$
\begin{gather*}
-\left(\alpha+\beta \int_{\Omega}|\nabla u|^{p} d x\right) \Delta_{p} u=\lambda f(x, u)+|u|^{p^{\star}-2} u \quad \text { in } \Omega \tag{3.1}\\
u=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

where Ω is a bounded smooth domain of $\mathbb{R}^{N}, 1<p<N<2 p, \alpha$ and β are a positive constants.

Set $g(t)=\alpha+\beta t$. Then, $g(t) \geq \alpha$ and

$$
G(t)=\int_{0}^{1} g(s) d s=\alpha t+\frac{1}{2} \beta t^{2} \geq \frac{1}{2}(\alpha+\beta t) t=\sigma g(t) t
$$

where $\sigma=1 / 2$. Hence the conditions (G1) and (G2) are satisfied.
For this case, a typical example of a function satisfying the conditions (F1)-(F3) is given by

$$
f(x, t)=\sum_{i=1}^{k} a_{i}(x)|t|^{q_{i}-2} t
$$

where $k \geq 1,2 p<q_{i}<p^{\star}$ and $a_{i}(x) \in C(\bar{\Omega})$. In view of Theorem 1.1, we have the following corollary.

Corollary 3.1. Suppose that (F1)-(F3) hold. Then, there exists $\lambda_{*}>0$, such that problem (3.1) has a nontrivial solution for all $\lambda \geq \lambda_{*}$.

References

[1] J. G. Azorero, I. P. Alonso; Multiplicity of solutions for elliptic problems with critical exponent or with a non symmetric term, Trans. Amer. Math. Soc, 323, 2 (1991), 877-895.
[2] C. O. Alves, F. J. S. A. Corrêa, G. M. Figueiredo; On a class of nonlocal elliptic problems with critical growth, Differential Equation and Applications, 2, 3 (2010), 409-417.
[3] C. O. Alves, F. J. S. A. Corrêa, T. F. Ma; Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl, 49 (2005), no. 1, 85-93.
[4] A. Arosio, S. Pannizi; On the well-posedness of the Kirchhoff string, Trans. Amer. Math.Soc, 348 (1996) 305-330.
[5] H. Brezis, L. Nirenberg; Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math, 36 (1983) 437-477.
[6] M. M. Cavalcanti, V. N. Cavacanti, J. A. Soriano; Global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear dissipation, Adv. Differential Equations, 6 (2001), 701-730.
[7] F. J. S. A. Corrêa, G. M. Figueiredo; On a elliptic equation of p-Kirchhoff type via variational methods, Bull. Aust. Math. Soc, 74, 2 (2006), 263-277.
[8] F. J. S. A. Corrêa, R. G. Nascimento; On a nonlocal elliptic system of p-Kirchhoff type under Neumann boundary condition, Mathematical and Computer Modelling (2008), doi:10.1016/j.mcm.2008.03.013.
[9] P. Drábek, Y. X. Huang; Multiplicity of positive solutions for some quasilinear elliptic equation in \mathbb{R}^{N} with critical Sobolev exponent, J. Differential Equations, 140 (1997), 106-132.
[10] G. M. Figueiredo, M. F. Furtado; Positive solutions for some quasilinear equations with critical and supercritical growth Nonlinear Anal, 66 (2007), 1600-1616.
[11] G. Kirchhoff; Mechanik, Teubner, Leipzig, 1883.
[12] J. L. Lions; On some questions in boundary value problems of mathematical physics, International Symposium on Continuum Mechanics and Partial Differential Equations, Rio de Janeiro, 1977, Mathematics Studies, vol. 30, North-Holland, Amsterdam, (1978), 284-346.
[13] P. L. Lions; The concentration-compactness principle in the calculus of variations, The limit case, part 1, Rev. Mat. Iberoamericana, 1 (1985), 145-201.
[14] T. F. Ma; Remarks on an elliptic equation of Kirchhoff type, Nolinear Anal, 63, 5-7 (2005), 1967-1977.
[15] K. Perera, Z. Zhang; Nontrivial solutions of Kirchhoff type problems via the Yang index, J. Differential Equations, 221 (2006), 246-255.

Ahmed Hamydy
University Mohamed I, Faculty of sciences, Department of Mathematics, Oujda, MoROCCO

E-mail address: a.hamydy@yahoo.fr
Mohammed Massar
University Mohamed I, Faculty of sciences, Department of Mathematics, Oujda, MoROCCO

E-mail address: massarmed@hotmail.com
Najib Tsouli
University Mohamed I, Faculty of sciences, Department of Mathematics, Oujda, MoROCCO

E-mail address: tsouli@hotmail.com

[^0]: 2000 Mathematics Subject Classification. 35A15, 35B33, 35J62.
 Key words and phrases. p-Kirchhoff; critical exponent; parameter; Lions principle.
 © 2011 Texas State University - San Marcos.
 Submitted July 26, 2011. Published August 16, 2011.

