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EXISTENCE OF SOLUTIONS FOR P-KIRCHHOFF TYPE
PROBLEMS WITH CRITICAL EXPONENT

AHMED HAMYDY, MOHAMMED MASSAR, NAJIB TSOULI

Abstract. We study the existence of solutions for the p-Kirchhoff type prob-
lem involving the critical Sobolev exponent,

−
h
g

“ Z
Ω
|∇u|pdx

”i
∆pu = λf(x, u) + |u|p

?−2u in Ω,

u = 0 on ∂Ω,

where Ω is a bounded smooth domain of RN , 1 < p < N , p? = Np/(N − p) is
the critical Sobolev exponent, λ is a positive parameter, f and g are continuous
functions. The main results of this paper establish, via the variational method.
The concentration-compactness principle allows to prove that the Palais-Smale
condition is satisfied below a certain level.

1. Introduction and main results

We are concerned with the existence of solutions for the p-Kirchhoff type problem

−
[
g
( ∫

Ω

|∇u|pdx
)]

∆pu = λf(x, u) + |u|p
?−2u in Ω

u = 0 on ∂Ω,
(1.1)

where Ω is a bounded smooth domain of RN , 1 < p < N , p? = Np/(N − p) is
the critical Sobolev exponent, and f : Ω × R → R, g : R+ → R+ are continuous
functions that satisfy the following conditions:

(F1) f(x, t) = o(|t|p−1) as t→ 0, uniformly for x ∈ Ω;
(F2) There exists q ∈ (p, p?) such that

lim
|t|→+∞

f(x, t)
|t|q−2t

= 0, uniformly forx ∈ Ω.

(F3) There exists θ ∈ (p/σ, p?) such that 0 < θF (x, t) ≤ tf(x, t) for all x ∈ Ω
and t 6= 0, where F (x, t) =

∫ t

0
f(x, s)ds and σ is given by (G2) below.

(G1) There exists α0 > 0 such that g(t) ≥ α0 for all t ≥ 0;
(G2) There exists σ > p/p? such that G(t) ≥ σg(t)t for all t ≥ 0, where G(t) =∫ t

0
g(s)ds;
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Much interest has grown on problems involving critical exponents, starting from
the celebrated paper by Brezis and Nirenberg [5], where the case p = 2 is considered.
We refer the reader to [1, 9, 10] and reference therein for the study of problems
with critical exponent.

Problem (1.1) is a general version of a model presented by Kirchhoff [11]. More
precisely, Kirchhoff introduced a model

ρ
∂2u

∂t2
−

(ρ0

h
+

E

2L

∫ L

0

|∂u
∂x
|2dx

)∂2u

∂x2
= 0, (1.2)

where ρ, ρ0, h, E, L are constants, which extends the classical D’Alembert’s wave
equation by considering the effects of the changes in the length of the strings during
the vibrations. The problem

−
(
a+ b

∫
Ω

|∇u|2dx
)
∆u = f(x, u) in Ω

u = 0 on ∂Ω
(1.3)

received much attention, mainly after the article by Lions [12]. Problems like
(1.3) are also introduced as models for other physical phenomena as, for example,
biological systems where u describes a process which depends on the average of itself
(for example, population density). See [3] and its references therein. For a more
detailed reference on this subject we refer the interested reader to [4, 6, 7, 8, 14, 15].

Motivated by the ideas in [2], our approach for studying problem (1.1) is varia-
tional and uses minimax critical point theorems. The difficulty is due to the lack
of compactness of the imbedding W 1,p

0 (Ω) ↪→ Lp?

(Ω) and the Palais-Smale condi-
tion for the corresponding energy functional could not be checked directly. So the
concentration-compact principle of Lions [13] is applied to deal with this difficulty.

The main result of this paper is the following theorem.

Theorem 1.1. Suppose that (G1)–(G2), (F1)–(F3) hold. Then, there exists λ∗ > 0,
such that (1.1) has a nontrivial solution for all λ ≥ λ∗.

2. Preliminary results

We consider the energy functional I : W 1,p
0 (Ω) → R defined by

I(u) =
1
p
G(‖u‖p)− λ

∫
Ω

F (x, u)dx− 1
p?

∫
Ω

|u|p
?

dx, (2.1)

where W 1,p
0 (Ω) is the Sobolev space endowed with the norm ‖u‖p =

∫
Ω
|∇u|pdx. It

is well known that a critical point of I is a weak solution of problem (1.1).
To use variational methods, we give some results related to the Palais-Smale

compactness condition. Recall that a sequence (un) is a Palais-Smale sequence of
I at the level c, if I(un) → c and I ′(un) → 0.

In the sequel, we show that the functional I has the mountain pass geometry.
This purpose is proved in the next lemmas.

Lemma 2.1. Suppose that (F1), (F2), (G1) hold. Then, there exist r, ρ > 0 such
that inf‖u‖=r I(u) ≥ ρ > 0.

Proof. It follows from (F1) and (F2) that for any ε > 0, there exists C(ε) > 0.

F (x, t) ≤ 1
p
ε|t|p + C(ε)|t|q for all t. (2.2)
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By (G1) and the Sobolev embdding, we have

I(u) ≥ α0

p
‖u‖p − λC1ε‖u‖p − λC2(ε)‖u‖q − C3‖u‖p?

= ‖u‖
[(α0

p
− λC1ε

)
‖u‖p−1 − λC2(ε)‖u‖q−1 − C3‖u‖p?−1

]
.

(2.3)

Taking ε = α0/(2pλC1) and setting

ξ(t) =
α0

2p
tp−1 − λC2t

q−1 − C3t
p?−1.

Since p < q < p?, we see that there exist r > 0 such that max
t≥0

ξ(t) = ξ(r). Then,

by (2.3), there exists ρ > 0 such that I(u) ≥ ρ for all ‖u‖ = r. �

Lemma 2.2. Suppose that (G2), (F3) hold. Then for all λ > 0, there exists
a nonnegative function e ∈ W 1,p

0 (Ω) independent of λ, such that ‖e‖ > r and
I(e) < 0.

Proof. Choose a nonnegative function φ0 ∈ C∞0 (Ω) with ‖φ0‖ = 1. By integrating
(G2), we obtain

G(t) ≤ G(t0)

t
1/σ
0

t1/σ = C0t
1/σ for all t ≥ t0 > 0. (2.4)

By (F3),
∫
Ω
F (x, tφ0)dx ≥ 0. Hence

I(tφ0) ≤
C0

p
tp/σ − tp

?

p?

∫
Ω

φp?

0 dx for all t ≥ t0.

Since p/σ < p?, the lemma is proved by choosing e = t∗φ0 with t∗ > 0 large
enough. �

In view of Lemmas 2.1 and 2.2, we may apply a version of the Mountain Pass
theorem without Palais-Smale condition to obtain a sequence (un) ⊂W 1,p

0 (Ω) such
that

I(un) → c∗ and I ′(un) → 0,
where

c∗ = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) > 0, (2.5)

with
Γ =

{
γ ∈ C([0, 1],W 1,p

0 (Ω)) : γ(0) = 0, I(γ(1)) < 0
}
.

Denoted by S∗ the best positive constant of the Sobolev embedding W 1,p
0 (Ω) ↪→

Lp?

(Ω) given by

S∗ = inf
{ ∫

Ω

|∇u|pdx : u ∈W 1,p
0 (Ω),

∫
Ω

|u|p
?

dx = 1
}
. (2.6)

Lemma 2.3. Suppose that (G1)–(G2), (F1)–(F3) hold. Then there exists λ∗ > 0
such that c∗ ∈

(
0, ( 1

θ −
1
p? )(α0S∗)

N
p
)

for all λ ≥ λ∗, where c∗ is given by (2.5).

Proof. For e given by Lemma 2.2, we have limt→+∞ I(te) = −∞, then there exists
tλ > 0 such that I(tλe) = max

t≥0
I(te). Therefore,

tp−1
λ g(‖tλe‖p)‖e‖p = λ

∫
Ω

f(x, tλe)e dx+ tp
?−1

λ

∫
Ω

ep?

dx;
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thus
g(‖tλe‖p)‖tλe‖p = λtλ

∫
Ω

f(x, tλe)e dx+ tp
?

λ

∫
Ω

ep?

dx. (2.7)

By (2.4), it follows that
C0

σ
‖e‖p/σt

p/σ
λ ≥ tp

?

λ

∫
Ω

ep?

dx, with t0 < tλ.

Since p/σ < p?, (tλ) is bounded. So, there exists a sequence λn → +∞ and s0 ≥ 0
such that tλn → s0 as n→∞. Hence, there exists C > 0 such that

g(‖tλn
e‖p)‖tλne‖p ≤ C for all n;

that is,

λntλn

∫
Ω

f(x, tλne)e dx+ tp
?

λn

∫
Ω

ep?

dx ≤ C for all n.

If s0 > 0, the above inequality implies that

λntλn

∫
Ω

f(x, tλne)e dx+ tp
?

λn

∫
Ω

ep?

dx→ +∞ ≤ C, as n→∞,

which is impossible, and consequently s0 = 0. Let γ∗(t) = te. Clearly γ∗ ∈ Γ, thus

0 < c∗ ≤ max
t≥0

I(γ∗(t)) = I(tλe) ≤
1
p
G(‖tλe‖p).

Since tλn
→ 0 and ( 1

θ −
1
p? )(α0S∗)N/p > 0, for λ > 0 sufficiently large, we have

1
p
G(‖tλe‖p) <

(1
θ
− 1
p?

)
(α0S∗)N/p,

and hence
0 < c∗ <

(1
θ
− 1
p?

)
(α0S∗)N/p.

This completes the proof. �

Proof of Theorem 1.1. From Lemmas 2.1, 2.2 and 2.3, there exists a sequence
(un) ⊂W 1,p

0 (Ω) such that

I(un) → c∗ and I ′(un) → 0, (2.8)

with c∗ ∈
(
0, ( 1

θ −
1
p? )(α0S∗)N/p

)
for λ ≥ λ∗. Then, there exists C > 0 such that

|I(un)| ≤ C, and by (F3) for n large enough, it follows from (G1) and (G2) that

C + ‖un‖ ≥ I(un)− 1
θ
〈I ′(un), un〉

≥ 1
p
G(‖u‖p)− 1

θ
g(‖un‖p)‖un‖p

≥
(σ
p
− 1
θ

)
α0‖un‖p.

(2.9)

Since θ > p/σ, (un) is bounded. Hence, up to a subsequence, we may assume that

un ⇀ u weakly in W 1,p
0 (Ω),

un → u a.e. in Ω,

un → u in Ls(Ω), 1 ≤ s < p?,

|∇un|p ⇀ µ (weak*-sense of measures )

|un|p
?

⇀ ν (weak*-sense of measures),

(2.10)
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where µ and ν are a nonnegative bounded measures on Ω. Then, by concentration-
compactness principle due to Lions [13], there exists some at most countable index
set J such that

ν = |u|p
?

+
∑
j∈J

νjδxj , νj > 0,

µ ≥ |∇u|p +
∑
j∈J

µjδxj , µj > 0,

S∗ν
p/p?

j ≤ µj ,

(2.11)

where δxj is the Dirac measure mass at xj ∈ Ω.
Let ψ(x) ∈ C∞0 such that 0 ≤ ψ ≤ 1,

ψ(x) =

{
1 if |x| < 1
0 if |x| ≥ 2

(2.12)

and |∇ψ|∞ ≤ 2.
For ε > 0 and j ∈ J , denote ψj

ε(x) = ψ((x − xj)/ε). Since I ′(un) → 0 and
(ψj

εun) is bounded, 〈I ′(un), ψj
εun〉 → 0 as n→∞; that is,

g(‖un‖p)
∫

Ω

|∇un|pψj
εdx

= −g(‖un‖p)
∫

Ω

un|∇un|p−2∇un∇ψj
εdx

+ λ

∫
Ω

f(x, un)unψ
j
εdx+

∫
Ω

|un|p
?

ψj
εdx+ on(1).

(2.13)

By (2.10) and Vitali’s theorem, we see that

lim
n→∞

∫
Ω

|un∇ψj
ε|pdx =

∫
Ω

|u∇ψj
ε|pdx

Hence, by Hölder’s inequality we obtain

lim sup
n→∞

∣∣ ∫
Ω

un|∇un|p−2∇un∇ψj
εdx

∣∣
≤ lim sup

n→∞

( ∫
Ω

|∇un|pdx
)(p−1)/p( ∫

Ω

|un∇ψj
ε|pdx

)1/p

≤ C1

( ∫
B(xj ,2ε)

|u|p|∇ψj
ε|pdx

)1/p

≤ C1

( ∫
B(xj ,2ε)

|∇ψj
ε|Ndx

)1/N( ∫
B(xj ,2ε)

|u|p
?

dx
)1/p?

≤ C2

( ∫
B(xj ,2ε)

|u|p
?

dx
)1/p?

→ 0 as ε→ 0 .

(2.14)

On the other hand, from (2.10) we have

f(x, un)un → f(x, u)u a.e. in Ω,

and un → u strongly in Lp(Ω) and in Lq(Ω). By (F1)–(F3), for any ε > 0 there
exists Cε > 0 such that

|f(x, t)| ≤ ε|t|p−1 + Cε|t|q−1 for all (x, t) ∈ Ω× R; (2.15)
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thus
|f(x, un)un| ≤ ε|un|p + Cε|un|q.

This is what we need to apply Vitali’s theorem, which yields

lim
n→∞

∫
Ω

f(x, un)undx =
∫

Ω

f(x, u)u dx.

Since ψj
ε has compact support, letting n→∞ in (2.13) we deduce from (2.10) and

(2.14) that

α0

∫
Ω

ψj
εdµ ≤ C2

( ∫
B(xj ,2ε)

|u|p
?

dx
)1/p?

+ λ

∫
B(xj ,2ε)

f(x, u)udx+
∫

Ω

ψj
εdν.

Letting ε→ 0, we obtain α0µj ≤ νj . Therefore,

(α0S∗)N/p ≤ νj . (2.16)

We will prove that this inequality is not possible. Let us assume that (α0S∗)N/p ≤
νj0 for some j0 ∈ J . From (G2) we see that

1
p
G(‖un‖p)− 1

θ
g(‖un‖p)‖un‖p ≥ 0 for all n.

Since

c∗ = I(un)− 1
θ
〈I ′(un), un〉+ on(1),

it follows that

c∗ ≥
(1
θ
− 1
p?

) ∫
Ω

|un|p
?

dx+ on(1)

≥
(1
θ
− 1
p?

) ∫
Ω

ψj0
ε |un|p

?

dx+ on(1)

Letting n→∞, we obtain

c∗ ≥
(1
θ
− 1
p?

) ∑
j∈J

ψj0
ε (xj)νj ≥

(1
θ
− 1
p?

)
(α0S∗)N/p.

This contradicts Lemma 2.3. Then J = ∅, and hence un → u in Lp?

(Ω). By (2.15)
we have∫

Ω

|f(x, un)(un − u)|dx ≤
∫

Ω

(
ε|un|p−1 + Cε|un|q−1

)
|un − u|dx

≤ ε
( ∫

Ω

|un|pdx
)p−1)/p( ∫

Ω

|un − u|pdx
)1/p

+ Cε

( ∫
Ω

|un|qdx
)(q−1)/q( ∫

Ω

|un − u|qdx
)1/q

.

Then, using again (2.10), we obtain

lim
n→∞

∫
Ω

f(x, un)(un − u)dx = 0. (2.17)

Since un → u in Lp?

(Ω), we see that

lim
n→∞

∫
Ω

|un|p
?−2un(un − u)dx = 0. (2.18)
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From 〈I ′(un), un − u〉 = on(1), we deduce that

〈I ′(un), un − u〉 = g(‖un‖p)
∫

Ω

|∇un|p−2∇un∇(un − u)dx

− λ

∫
Ω

f(x, un)(un − u)dx−
∫

Ω

|un|p
?−2un(un − u)dx = on(1)

This, (2.17) and (2.18) imply

lim
n→∞

g(‖un‖p)
∫

Ω

|∇un|p−2∇un∇(un − u)dx = 0.

Since un is bounded and g is continuous, up to subsequence, there is t0 ≥ 0 such
that

g(‖un‖p) → g(tp0) ≥ α0, as n→∞,

and so

lim
n→∞

∫
Ω

|∇un|p−2∇un∇(un − u)dx = 0.

Thus by the (S+) property, un → u strongly in W 1,p
0 (Ω), and hence I ′(u) = 0. The

proof is complete. �

3. A special case

We consider the problem

−
(
α+ β

∫
Ω

|∇u|pdx
)
∆pu = λf(x, u) + |u|p

?−2u in Ω

u = 0 on ∂Ω,
(3.1)

where Ω is a bounded smooth domain of RN , 1 < p < N < 2p, α and β are a
positive constants.

Set g(t) = α+ βt. Then, g(t) ≥ α and

G(t) =
∫ 1

0

g(s)ds = αt+
1
2
βt2 ≥ 1

2
(α+ βt)t = σg(t)t

where σ = 1/2. Hence the conditions (G1) and (G2) are satisfied.
For this case, a typical example of a function satisfying the conditions (F1)–(F3)

is given by

f(x, t) =
k∑

i=1

ai(x)|t|qi−2t,

where k ≥ 1, 2p < qi < p? and ai(x) ∈ C(Ω). In view of Theorem 1.1, we have the
following corollary.

Corollary 3.1. Suppose that (F1)–(F3) hold. Then, there exists λ∗ > 0, such that
problem (3.1) has a nontrivial solution for all λ ≥ λ∗.
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[8] F. J. S. A. Corrêa, R. G. Nascimento; On a nonlocal elliptic system of p-Kirchhoff
type under Neumann boundary condition, Mathematical and Computer Modelling (2008),
doi:10.1016/j.mcm.2008.03.013.
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