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EXISTENCE OF MULTIPLE POSITIVE SOLUTIONS FOR
DISCRETE PROBLEMS WITH P-LAPLACIAN VIA

VARIATIONAL METHODS

YU TIAN, WEIGAO GE

Abstract. Using critical point theory, we prove the existence of multiple
positive solutions for second-order discrete boundary-value problems with p-
Laplacian.

1. Introduction

In recent years, a great deal of work has been done in the study of the exis-
tence of multiple positive solutions for discrete boundary value problems describing
physical and biological phenomena. For the background and summary of results,
we refer the reader to the monograph by Agarwal et al [2], and for some recent con-
tributions to [1, 3]. Various fixed point theorems have been applied for obtaining
solutions, among them, Krasnosel’skii fixed point theorem, Leggett-Williams fixed
point theorem, fixed point theorem in cones; see [4, 5, 8, 10, 13] and the references
therein.

There is also a trend to study difference equation using variational methods
which lead to many interesting results; see for example [3, 6, 9, 14]. Li [9] studied
the existence of solutions for the problem

∆(p(k)∆x(k − 1)) + f(k, x(k)) = g(k)

x(0) = x(T + 1) = 0,
(1.1)

where f ∈ C(R2,R), p, g ∈ C(R,R). Using variational methods, the existence of at
least one non-trivial solution was obtained. Agarwal et al [3] show the existence of
multiple positive solutions for the discrete boundary-value problem

∆2y(k − 1) + f(k, y(k)) = 0, k ∈ [1, T ],

y(0) = 0 = y(T + 1),
(1.2)

2000 Mathematics Subject Classification. 39A10, 34B18, 58E30.
Key words and phrases. Discrete boundary value problem; variational methods;
mountain pass theorem.
c©2011 Texas State University - San Marcos.
Submitted February 22, 2011. Published April 4, 2011.
Supported by grants 11001028 from the National Science Foundation for Young Scholars,
and BUPT2009RC0704 from the Chinese Universities Scientific Fund.

1



2 Y. TIAN, W. GE EJDE-2011/45

where [1, T ] is the discrete interval {1, 2, . . . , T}, ∆y(k) = y(k + 1) − y(k), f ∈
C([1, T ] × [0,∞),R) satisfies f(k, 0) ≥ 0, for all k ∈ [1, T ]. They applied critical
point theory under the following conditions:

(a) mink∈[1,T ] lim infu→∞
f(k,u)

u > λ1, where λ1 is the smallest eigenvalue of
∆2y(k − 1) + λy(k) = 0, y ∈ H;

(b) there is a positive constant M , independent of λ, such that ‖y‖ 6= M for
every solution y ≥ 0 of the equation

∆2y(k − 1) + λf(k, y(k)) = 0, y ∈ H, λ ∈ (0, 1].

We remark that is not easy to verify Condition (b) in applications.
To the best of our knowledge, very few authors have studied the existence of

multiple positive solutions for discrete boundary value problem with a p-Laplacian
by using variational methods. As a result the goal of this paper is to fill the gap in
this area. It is well known that positive solutions are very important in applications.
Motivated by the above results, in this paper, we study the existence of multiple
positive solutions for the second-order discrete boundary-value problem (BVP)

∆(Φp(∆y(k − 1))) + f(k, y(k)) = 0, k ∈ [1, T ],

y(0) = 0 = y(T + 1),
(1.3)

where T is a positive integer, [1, T ] is the discrete interval {1, . . . , T} and ∆y(k) =
y(k + 1) − y(k) is the forward difference operator, p > 1, Φp(y) := |y|p−2y, f ∈
C([1, T ]× [0,+∞), [0,+∞)), f(k, 0) 6≡ 0 for k ∈ [1, T ], F (k, x) =

∫ x

0
f(k, s)ds. For

a review of variational methods, we refer the reader to [11, 12].
Our aim of this paper is to apply critical point theory to (1.3) and prove the

existence of two positive solutions. We impose some conditions on the nonlinearity
f that are different from those in [2] for p = 2, and are easy to verify.

In this article, we assume the following conditions:
(C1) there exist µ > p, h ∈ C([1, T ] × [0,+∞), [0,+∞)), l : [1, T ] → (0,+∞),

mink∈[1,T ] l(k) > 0 such that

f(k, y) = l(k)Φµ(y) + h(k, y);

(C2) there exist functions c, d : [1, T ] → [0,+∞) such that

h(k, y) ≤ c(k) + d(k)Φp(y).

2. Related Lemmas

Here, and in the sequel, we denote

Y = W 1,p
0 [0, T + 1] = {y : [0, T + 1] → R : y(0) = y(T + 1) = 0}

whihc is a T -dimensional Banach space with the norm

‖y‖ =
( T+1∑

k=1

|∆y(k − 1)|p
)1/p

.

Lemma 2.1. Let y± = max{±y, 0}, then the following five properties hold:
(i) y = y+ − y−;
(ii) ‖y+‖ ≤ ‖y‖;
(iii) y+(t)y−(t) = 0, (y+)′(t)(y−)′(t) = 0 for t ∈ [0, T + 1];
(iv) Φp(y)y+ = |y+|p, Φp(y)y− = −|y−|p.
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Lemma 2.2. If y is a solution of the equation

∆(Φp(∆y(k − 1))) + f(k, y+(k)) = 0, y ∈ Y, (2.1)

then y ≥ 0, y(k) 6≡ 0, k ∈ [0, T + 1] and hence it is a solution of (1.3).

Proof. If y is a solution of (2.1), then

0 =
T∑

k=1

[
∆(Φp(∆y(k − 1))) + f(k, y+(k))

]
y−(k)

= Φp(∆y(k − 1))y−(k)|T+1
k=1 −

T∑
i=1

Φp(∆y(k))∆y−(k) +
T∑

k=1

f(k, y+(k))y−(k)

≥ −Φp(y(1))y−(1) +
T∑

k=1

|∆y−(k)|p

= |y−(1)|p +
T+1∑
k=2

|∆y−(k − 1)|p,

(2.2)
so ∆y−(k) = 0, k ∈ [1, T ] and y−(1) = 0, which yield that y−(k) = 0, k ∈ [1, T +1];
that is, y ≥ 0. If y(k) = 0 for every k ∈ [0, T + 1], the fact f(k, 0) 6≡ 0 for every
k ∈ [1, T ] gives a contradiction. �

Remark 2.3. By Lemma 2.2, to find positive solutions of (1.3) it suffices to obtain
solutions of (2.1).

For y ∈ Y , put

ϕ(y) :=
T+1∑
k=1

[1
p
|∆y(k − 1)|p − F (k, y+(k)) + f(k, 0)y−(k)

]
. (2.3)

Clearly, the functional ϕ is C1 with

〈ϕ′(y), z〉 =
T+1∑
k=1

[
Φp(∆y(k − 1))∆z(k − 1)− f(k, y+(k))z(k)

]
(2.4)

for every z ∈ Y . So the solutions of (2.1) are precisely the critical points of the
functional ϕ.

Lemma 2.4. For y ∈ Y , we have ‖y‖∞ ≤ (T + 1)1/q‖y‖, where

‖y‖∞ = max
i∈[0,T+1]

|y(i)|.

Proof. For y ∈ Y , it follows from Hölder’s inequality, that

|y(k)| =
∣∣y(0) +

k−1∑
i=0

∆y(i)
∣∣ ≤ T∑

i=0

|∆y(i)|

≤ (T + 1)1/q
( T∑

i=0

|∆y(i)|p
)1/p

= (T + 1)1/q‖y‖,

which completes the proof. �

Lemma 2.5 ([15, Theorem 38.A]). For the functional F : M ⊆ X → [−∞,+∞]
with M 6= ∅, minu∈M F (u) = α has a solution when the following conditions hold:
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(i) X is a real reflexive Banach space;
(ii) M is bounded and weak sequentially closed; i.e., by definition, for each

sequence (un) in M such that un ⇀ u as n→∞, we always have u ∈M ;
(iii) F is weak sequentially lower semi-continuous on M .

Lemma 2.6 ([6]). Let E be a Banach space and ϕ ∈ C1(E,R) satisfy Palais-Smale
condition. Assume there exist x0, x1 ∈ E, and a bounded open neighborhood Ω of
x0 such that x1 6∈ Ω and

max{ϕ(x0), ϕ(x1)} < inf
x∈∂Ω

ϕ(x).

Let Γ = {h : h : [0, 1] → E is continuous, h(0) = x0, h(1) = x1} and

c = inf
h∈Γ

max
s∈[0,1]

ϕ(h(s)).

Then c is a critical value of ϕ; that is, there exists x∗ ∈ E such that ϕ′(x∗) = Θ
and ϕ(x∗) = c, where c > max{ϕ(x0), ϕ(x1)}.

Lemma 2.7. Suppose that (C1), (C2) hold. Furthermore, we assume

(C3) (T + 1)p/q
∑T+1

k=1 d(k) <
µ
p − 1.

Then the functional ϕ satisfies Palais-Smale condition; i.e., every sequence {yn} in
Y satisfying ϕ(yn) is bounded and ϕ′(yn) → 0 has a convergent subsequence.

Proof. Since Y is a finite dimensional Banach space, we only need to show that
(yn) is a bounded sequence in Y .

For this, by Lemma 2.1 (iv) and (2.4) we have

〈ϕ′(yn), y−n 〉 =
T+1∑
k=1

[
Φp(∆yn(k − 1))∆y−n (k − 1)− f(k, y+

n (k))y−n (k)
]

≤ −
T+1∑
k=1

|∆y−n (k − 1)|p = −‖y−n ‖p.

(2.5)

Set w−n = y−n
‖y−n ‖

. Dividing by ‖y−n ‖ on the both sides of the above inequality, we
have

‖y−n ‖p−1 ≤ −〈ϕ′(yn), w−n 〉 → 0 as n→∞.

So y−n → 0 in Y .
Now we show that (y+

n ) is bounded. By (2.3) (2.4) we have

µ

p
‖yn‖p − ‖y+

n ‖p = µϕ(yn)− 〈ϕ′(yn), y+
n 〉 −

T+1∑
k=1

µf(k, 0)y+
n (k)

+
T+1∑
k=1

[
µF (k, y+

n (k))− f(k, y+
n (k))y+

n (k)
]
.

(2.6)
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By (C1) (C2) Lemma 2.4 one has
T+1∑
k=1

[
µF (k, y+

n (k))− f(k, y+
n (k))y−n (k)

]
≤

T+1∑
k=1

[
c(k)y+

n (k) + d(k)|y+
n (k)|p

]
≤ (T + 1)1/q‖y+

n ‖
T+1∑
k=1

c(k) + (T + 1)p/q‖y+
n ‖p

T+1∑
k=1

d(k).

(2.7)

Substituting (2.7) into (2.6), in view of Lemma 2.1 (ii), one has(µ
p
− 1

)
‖y+

n ‖p ≤ µϕ(yn)− 〈ϕ′(yn), y+
n 〉+ (T + 1)1/q‖y+

n ‖
T+1∑
k=1

c(k)

+ (T + 1)p/q‖y+
n ‖p

T+1∑
k=1

d(k).

(2.8)

Suppose that (y+
n ) is unbounded. Passing to a subsequence, we may assume if

necessary, that ‖y+
n ‖ → ∞ as n → ∞. Dividing the both sides of (2.8) by ‖y+

n ‖p,
denoting w+

n = y+
n

‖y+
n ‖

, we have

µ

p
− 1 ≤ µϕ(yn)

‖y+
n ‖p

− 〈ϕ′(yn), w+
n 〉

‖y+
n ‖p−1

+ (T + 1)1/q‖y+
n ‖1−p

T+1∑
k=1

c(k)

+ (T + 1)p/q
T+1∑
k=1

d(k).

(2.9)

Since ϕ(yn) is bounded and ϕ′(yn) → 0, y−n → 0 in Y , let n→∞, we have

µ

p
− 1 ≤ (T + 1)p/q

T+1∑
k=1

d(k),

which contradicts to (C3). Therefore, (yn) is bounded in Y . �

3. Main Results

Theorem 3.1. Suppose that (C1)–(C3) hold. Furthermore, we assume

(C4) (T + 1)
µ
q

∑T
k=1 b(k) + (T + 1)1/q

∑T
k=1 c(k) + (T + 1)p/q

∑T
k=1 d(k) < 1.

Then (1.3) has two positive solutions x0, x
∗.

Proof. By Lemma 2.7 the functional ϕ satisfies Palais-Smale condition. Now we
shall show that there exists R > 0 such that the functional ϕ has a local minimum
x0 ∈ BR := {x ∈ X : ‖x‖ < R}.

Let R = 1. First we claim that the functional ϕ has a minimum on BR. Clearly
BR is a bounded and weak sequentially closed. Now we claim that ϕ has a minimum
x0 ∈ BR. We will show that ϕ is weak sequentially lower semi-continuous on BR.
For this, let

ϕ1(y) =
1
p

T+1∑
k=1

|∆y(k − 1)|p, ϕ2(y) =
T+1∑
k=1

[
−F (k, y+(k)) + f(k, 0)y−(k)

]
,
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then ϕ(y) = ϕ1(y) + ϕ2(y). By yn ⇀ y on Y we have (yn) uniformly converges to
y in C([0, T + 1]). So ϕ2 is weak sequentially continuous. Clearly ϕ1 is continuous,
which together with the convexity of ϕ1 we have ϕ1 is weak sequentially lower
semi-continuous. Therefore, ϕ is weak sequentially lower semi-continuous on BR.
Besides, Y is a reflexive Banach space, BR is a bounded and weak sequentially
closed, so our claim follows from Lemma 2.5.

If y0 ∈ ∂BR and y0 is a local minimum of the functional ϕ, then it is also a
minimizer of ϕ|∂BR

, so the gradient of ϕ at y0 point is in the direction of the inward
normal to ∂BR. Since y0 ∈ ∂BR = ∂B1 is a local minimum of the functional ϕ, ϕ(y)
have a conditional minimum at the point y0 about the condition ϕ(y) = 1

p (‖y‖p−1).
By [6], there exists γ ∈ [0,∞) such that

〈ϕ′(y0), v〉 = −γ〈ψ′(y0), v〉 for all v ∈ Y.

That is,
∆(Φp(∆y0(k − 1))) + λf(k, y+

0 (k)) = 0, y0 ∈ Y (3.1)

with λ = 1
1+γ ∈ (0, 1], ‖y0‖ = R = 1 holds.

Multiplying y0(t) on the both sides of equation in (3.1), then summing on [1, T ],
we have

0 =
T∑

k=1

[
∆(Φp(∆y0(k − 1))) + λf(k, y+

0 (k))
]
× y0(k)

= Φp(∆y0(k − 1))y0(k)|T+1
k=1 −

T∑
k=1

Φp(∆y0(k))∆y0(k) +
T∑

k=1

λf(k, y+
0 (k))y0(k)

= −Φp(y0(1))y0(1)−
T∑

k=1

|∆y0(k)|p +
T∑

k=1

λf(k, y+
0 (k))y0(k)

≤ −‖y0‖p +
T∑

k=1

λf(k, y+
0 (k))y0(k).

Then

‖y0‖p ≤
T∑

k=1

λf(k, y0(k))y0(k)

≤
T∑

k=1

b(k)|y0(k)|µ + c(k)y0(k) + d(k)|y0(k)|p

≤ (T + 1)
µ
q ‖y0‖µ

T∑
k=1

b(k) + (T + 1)1/q‖y0‖1/p
T∑

k=1

c(k)

+ (T + 1)p/q‖y0‖p
T∑

k=1

d(k).

Since ‖y0‖ = 1, we have

1 ≤ (T + 1)µ/q
T∑

k=1

b(k) + (T + 1)1/q
T∑

k=1

c(k) + (T + 1)p/q
T∑

k=1

d(k),
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which contradicts (C4). Therefore, for any λ ∈ (0, 1], the solution of (3.1) is
not on ∂BR. Therefore, y0 ∈ BR and hence it is a local minimizer of ϕ, and
ϕ(y0) < miny∈∂BR

ϕ(y).
Next we show that there exists y1 with ‖y1‖ > R = 1 such that ϕ(y1) <

miny∈∂BR
ϕ(y). Let ẽ(k) = 1 ∈ Y . Then

ϕ(λẽ) ≤ −
T∑

k=1

[F (k, λ)− f(k, 0)λ]

= −
T∑

k=1

[ l(k)λµ

µ
+H(k, λ)− f(k, 0)λ

]
≤ −

T∑
k=1

l(k)λ
µ

µ
+

T∑
k=1

[
c(k)λ+ d(k)λ

p
+ f(k, 0)λ

]
.

(3.2)

Since µ > p, we have limλ→+∞ ϕ(λẽ) = −∞. So there exists sufficiently large λ0

with ‖λ0ẽ‖ > R such that ϕ(λ0ẽ) < miny∈∂BR
ϕ(y).

Lemma 2.6 now gives the critical value

c = inf
h∈Γ

max
t∈[0,1]

ϕ(h(t)),

where Γ = {h : h : [0, 1] → E is continuous, h(0) = y0, h(1) = y1}; that is, there
exists y∗ ∈ Y such that ϕ′(y∗) = 0. Therefore, y0, y∗ are two critical points of ϕ,
and hence they are classical solutions of (2.1). Lemma 2.2 means y0, y∗ are positive
solutions of problem (1.3). �

Corollary 3.2. Suppose that (C1) (C4) hold. Moreover we assume
(C2’) there exists 0 ≤ s < p, c ∈ L1([a, b], [0,+∞)), d ∈ C([a, b], [0,+∞)) such

that
h(t, x) ≤ c(t) + d(t)Φs(x).

Then (1.3) has two positive solutions x0, x
∗.
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