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We determine the systoles for a family of closed hyperbolic tri-
angle surfaces which admit a particularly simple combinatorial
description. We show that, in this family, there are exactly four
surfaces which are maximal, i.e., for which the length of the
systole is a local maximum in Teichmitiller space. One of these
surfaces gives a new example of a maximal surface.

1. INTRODUCTION

A systole of an oriented closed hyperbolic surface S is
a simple closed geodesic on S of minimal length. The
length of the systole depends on the choice of the hyper-
bolic metric; hence, this length defines for every g > 2,
a continuous positive nonconstant function on the Te-
ichmiiller space 7, of hyperbolic metrics on a closed sur-
face of genus g which is invariant under the action of
the mapping class group. This function is bounded from
above on 7, by a constant depending on g which tends
to infinity as g tends to infinity [Buser and Sarnak 94].
It is not bounded from below on 7.

A triangle group of type (a,b,c) for integers 2 < a <
b < c is a discrete group of isometries of the hyperbolic
plane H? which is generated by reflections across the
sides of some triangle with angles 7w /a,w/b,7/c. A trian-
gle surface of type (a,b,c) is a closed hyperbolic surface
which is the quotient of H? under a subgroup of finite
index in a triangle group of type (a,b,c). Such a surface
can be triangulated by hyperbolic triangles with fixed
angles 7/a, /b, 7 /c.

The simplest triangle surfaces are closed triangle sur-
faces S of type (a,b,¢) which admit a cyclic group I of
orientation preserving isometries such that S/T" is a topo-
logical 2-sphere and the projection S — S/T" is a c-fold
covering which is ramified at three points of S/T". We
call such a triangle surface elementary and the group I'
the basic group of isometries of S. There may be sev-
eral non-isometric elementary triangle surfaces of a given
type (a,b,c).
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Define a fundamental polygon of type (a,b,c) to be a
2c-gon in the hyperbolic plane H? with alternating an-
gles 27 /a, 27 /b and sides of equal length. Such a polygon
Q admits a cyclic group I of order ¢ of isometries whose
elements rotate €2 about a fixed point, with a multiple
of 27 /c as rotation angle. We call the fixed point of the
elements of T the center of Q. If we draw 2¢ geodesic seg-
ments from the center to the vertices of the boundary 92
of €2, then these segments decompose {2 into 2¢ triangles
with angles 7/a, /b, 7/c. The vertices of the boundary
092 of Q will be numbered counterclockwise such that the
angle at the vertices with an even number equals 27 /a
and the angle at the vertices with an odd number is 27 /b.

An elementary triangle surface S of type (a, b, ¢) is ob-
tained from a fundamental polygon Q of type (a,b, c) by
quotienting with a group generated by suitable side pair-
ing transformations. The basic group I' of isometries of S
lifts to the cyclic group T of rotations of Q; therefore, the
set of these side pairing transformations which define S is
invariant under conjugation with these rotations. Thus,
the set A of vertices with an odd number is invariant
under the side pairing transformations, and the same is
true for the set B of vertices with an even number. A
vertex cycle which is contained in the set A has exactly
a elements, and a vertex cycle which is contained in the
set B has b elements. In particular, a and b divide c.

The triangulation of € into 2¢ triangles with vertices
at the center 0 and on the boundary 99 of € descends to
a triangulation of the quotient surface S with m = ¢/a+
¢/b+ 1 vertices which we call the canonical triangulation
of S. The Gauss-Bonnet formula shows that the genus g
of S equals £(c —m +2).

This paper gives a precise combinatorial description
of the systoles of an elementary triangle surface (The-
orem 5.6 in Section 5). To prove this result, we use a
computer program which computes the systoles of any
given specific example. The program takes as input a
choice of type (a,b,c) and a choice of side identifications
for the fundamental polygon of this type and checks first
whether these side identifications give rise to a smooth
closed surface. If this is the case, then the program deter-
mines the systoles of the quotient surface and computes
their length.

Following Schmutz [Schmutz 93], we call a point in 7,
a mazimal surface if the length of the systole has a local
maximum at that point. Maximal surfaces always ex-
ist, and Schmutz found explicit examples [Schmutz 93].
Using our combinatorial description of systoles, we give
a complete list of all elementary triangle surfaces which
are maximal. There are exactly 4 examples. Three of

them are of type (p,p,p) (for p = 7,13,21) and genus
g = 3,6,10. The fourth is a surface of type (6,24,24)
and genus g = 10. The maximal surface of type (7,7,7)
is the well-known Klein surface which was analyzed ear-
lier by Schmutz [Schmutz 93]. The two examples of type
(13,13,13) and (21,21,21) were found by the first au-
thor [Hamenstadt 02] with purely combinatorial meth-
ods. The example of type (6,24, 24) is new. We summa-
rize this application of our combinatorial description of
systoles as follows.

Theorem 1.1. There is exactly one maximal sur-
face among all elementary triangle surfaces of type
(p/L,p/s,p) for some p > 5 and some divisor £ > 2 of p.
This surface is of type (6,24,24) and genus 10.

In Section 2, we deduce some combinatorial properties
Moreover, we classify
elementary triangle surfaces of type (p/¢,p,p) for some
£ > 2 which admit a nontrivial group X of orientation-
preserving isometries normalizing the basic group I

In Section 3, we give a combinatorial description of a
class of geodesics on an elementary triangle surface which

of elementary triangle surfaces.

contains all systoles. In Section 4, we describe some sys-
toles for a particular subfamily of our family of elemen-
tary triangle surfaces. With length estimates for geodes-
ics and some explicit computations with our computer
program, we find (Section 5) a combinatorial description
of the systoles on every elementary triangle surface and
finish the proof of our theorem. The appendices con-
tain tables with some specific computations needed for
the argument in Section 5 and a short description of our
computer program.

A maximal surface is called globally mazimal if the
length of its systole is a global maximum in Teichmiiller
space [Schmutz 93]. Globally maximal surfaces are
known for the genus ¢ = 2 and for certain surfaces of
finite type with cusps [Schmutz 94] (where one can make
the same definitions and ask the same questions). These
globally maximal surfaces can be constructed and de-
scribed with number theoretical methods, in particular
they are arithmetic.

On the other hand, hyperelliptic surfaces of large
genus are never globally maximal [Bavard 92]. These
facts, together with our analysis of a specific class of ex-
amples, seem to support the idea that (globally) maximal
surfaces are arithmetic triangle surfaces with large auto-
morphism groups. We refer to [Buser and Sarnak 94| for
interesting constructions of surfaces with systoles of large
length and related results.
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2.  FUNDAMENTAL POLYGONS FOR ELEMENTARY
TRIANGLE SURFACES

This section gives a combinatorial description of all
side pairings of a given fundamental polygon 2 of type
(p/l,p/s,p) (£ > s > 1) which define elementary triangle
surfaces.

Lemma 2.1. Let Q) be a fundamental polygon of type
(p/l,p/s,p) for divisors £ > s > 1 of p. There is a side
pairing for £ which defines an elementary triangle sur-
face and which identifies the edge 1 of  with the edge 2k
for some k > 2 if and only if the following two conditions
are satisfied.

(i) k =ml for somem € {1,...
to p/L.

(i) k — 1 = ns for somen € {1,...
prime to p/s.

,0/0—1} which is prime

,p/s — 1} which is

Proof: Let Q be a fundamental domain of type
(p/l,p/s,p) as above, with a numbering of vertices and
edges.

Choose a number k € {2,...,p—1} and define a family
of side pairing transformations of 02 by requiring that
the (oriented) edge with odd number 25 + 1 be mapped
onto the (oriented) edge 2j 4+ 2k by an orientation-
reversing isometry. This isometry then maps the vertex
2m to the vertex 2m+ 2k, the vertex 2m+1 to the vertex
2m+2k—1 and extends to an orientation-preserving isom-
etry of H? which maps the interior of  to H? — . We
claim that these side pairings generate a discrete torsion-
free subgroup of PSL(2,R) with fundamental domain
if and only if k satisfies conditions (i) and (ii).

Recall that the angles of Q are 2¢7/p at the even ver-
tices and 2sw/p at the odd vertices. Thus, for every
boundary identification which gives rise to a smooth hy-
perbolic surface, there are precisely £ 4+ s vertex cycles.
The odd vertices are divided into s pairwise-disjoint ver-
tex cycles containing p/s elements each, and the even
vertices are divided into ¢ pairwise-disjoint vertex cycles
containing p/¢ elements each. This is the case if and only
if we have k = m/{ for a number m < p/¢ which is prime
to p/¢ and such that m¢ — 1 = ns for a number n > 1
which is prime to p/s. |

Corollary 2.2. If there exists an elementary triangle sur-

face of type (p/e,p/s,p) for some divisors £ > s of p,
then £ and s are prime.

From now on, we denote by S(p/{,p/s,p;k) an ele-
mentary triangle surface which is obtained from a funda-

mental polygon Q of type (p/f,p/s,p) by a side pairing
which identifies the edge 1 with the edge 2k.

For the remainder of this section, we only consider
triangle surfaces of type (p/¢, p,p) for a divisor £ > 2 of
p. By Lemma 2.1, such an elementary triangle surface
is a surface S = S(p/¢,p,p; k) for a number k& > 2 with
,p/t—1}
which is prime to p/¢ and such that mf — 1 is prime to

1

p. The genus of S equals 5(p — £) and therefore £ has to

be even if this is true for p.

the property that k = m/ for some m € {1,...

The next lemma shows that this is the only obstruction
for the existence of an elementary triangle surface of type

(p/4;p,p).

Lemma 2.3. Letp > 5 and let £ € {2,...,p — 1} be a
divisor of p. Then there is an elementary triangle surface
of type (p/l,p,p) if and only if p and £ have the same
parity.

Proof: Let p > 5 and let £ < p be a divisor of p. Write
g = p/¢. By Lemma 2.1, we have to show that we can
find a number m < ¢ which is prime to ¢ and such that
m¥ — 1 is prime to p provided that p and ¢ have the same
parity.

Assume first that £ > 2 and that p = £g is odd. Then
£ and q are odd as well and £+ 1 and £ — 1 have 2 as their
unique common divisor.

Notice that it is enough to find an arbitrary number
m > 1 which is prime to ¢ and such that m¢ — 1 is prime
to q as well. Namely, if for such a m, we choose j > 0 in
such a way that m =m — jg € {1,...,q — 1}, then m is
prime to ¢ and mf — 1 = mf — 1 — jgf is prime to q as
well; therefore, m is as required.

To find such a number m, let ¢ = ¢1---qx be the
decomposition of ¢ into primes. After reordering, we may
assume that for some j € {0, ..., k} the numbers ¢; divide
{ —1 for i < j, but the numbers ¢; do not divide ¢ — 1
fori > 54 1. If j = k, then ¢ is prime to £ + 1 since
¢ —1 and ¢ + 1 have 2 as their unique common divisor
and m=¢g—1and ml —1=¢gl — ({+ 1) are prime to gq.

For the case that j < k —1, define u = ¢g;11--- g and
let » > 1 be a number which is prime to g; - --¢; such
that ru Z —1 mod ¢; for every i < j. Then m = ru + 1
is prime to ¢ and ruf + ¢ — 1 is prime to ¢f since ¢ and
{ — 1 are prime.

The existence of a number r as above is immediate
from the following:

Let ¢1,...,q; be pairwise distinct odd primes and let
u,v be prime to ¢i,...,q;. Let a; € {0,...,¢; — 1} and
let b; € {0,...,¢; — 1}. Then there is a number s > 0
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such that
sv # a; mod ¢; and svu Z b; mod ¢; (%)

for every i < j.

Write Z =Z /g1 X - -- X Z/q; and define a map ¥ of Z
by ¥(a1,...,a;) = (a1 +v,...,a; +v). Since v is prime
to q1,. ..
a € Z if and only if m is a multiple of ¢; - - - ¢;. But this

,4q;j, we have ¥™a = a for some m > 1 and some

then means that the action of ¥ on Z is transitive. In
particular, the orbit of v is all of Z.

Thus, we just have to find a point (z1,...,2;) € Z
such that z; # a; mod ¢; and z;u #Z b; mod ¢;. Since
q; > 3 for all ¢ and w is prime to every g;, this is clearly
possible and shows our claim. This finishes the proof of
our lemma, in the case that p is odd.

If p and { are even, then the numbers £+ 1 and ¢/ — 1
are prime and odd and the primes g1, ..., q; defined as
above are odd as well. We then can argue as before. This
finishes the proof of the lemma. O

Next we look at elementary triangle surfaces with ad-
ditional symmetries.

Lemma 2.4.

(i) Forp>5, a divisor £ > 2 of p and k € {{,...,p—1}
the surface S(p/f,p,p; k) is isometric to the surface
S(p/L,p,p;r) provided that (r — 1)(k — 1) = 1 mod
.

(it) For p > 5 and a divisor £ > 2 of p, an elementary
triangle surface S of type (p/¢, p,p) with basic group
of isometries I' admits a nontrivial group X ¢ T of
orientation-preserving isometries which normalizes
T if and only if S = S(p/¢, p,p;ml) where p/t > m
s a divisor of mf — 2 which is odd if m is even. The
group X is then cyclic of order 2.

Proof: Let p > 5, 1let £ € {2,...
p and let  be a fundamental 2p-gon of type (p/¢, p,p)
whose angle at even vertices equals 27¢/p and at odd

,p0 — 1} be a divisor of

vertices equals 27 /p. Write ¢ = p/¢. Write A; for the
vertex with number 27 — 1 and B; for the vertex with
number 2i.

Assume that the edge 1 is adjacent to the vertices
2p and 1. Let m > 1 be such that £ = mf < p and
that m and mf — 1 are prime to ¢. By Lemma 2.1, we
obtain an elementary triangle surface of type (p/¢,p,p)
by identifying the edge 1 with the edge 2k.

Let 0 be the center of €2, i.e., the fixed point of the
cyclic group of order p of isometries of 2. Cut £ open
along the segments @ We obtain a collection of p geo-
desic quadrangles Qq, . ..
ary of @; consists of the segments B;0,0B; ; and the
edges 25 — 1, 25.

Put P, = @ and, for 1 < j < p—1, define inductively
a polygon P;y1 by glueing the quadrangle Q;x—1)4+1 to
P; along the edge 2j(k — 1) + 2 which is identified with
the edge 2(j — 1)(k — 1) + 1 of P;. The boundary of P;
consists of 2j + 2 edges and 2j + 2 vertices. There are

, Qp where the oriented bound-

J + 1 vertices of type B (i.e., which correspond to one of
the vertices B; of ), j vertices of type 0 and one vertex
of type A.

Since mf < p—2 and since mf—1 is prime to ¢, there is
a unique number r < p such that (r—1)(mf—1) =1 mod
p. Then rmf —r — mf = 0 mod p and therefore r = b¢
for some b > 2. The polygon P, contains the quadrangle
Q(r—1)(k—1)+1, and this quadrangle contains the segment
0B(r—1)(k—1)- In the chain of the 2r edges of the poly-
gon P, joining vertices of type 0 and B there are exactly
2r edges lying between the edges B;0 and m
Since the vertex B(,_1yx—1) coincides with the vertex
By, this means that on the boundary of the polygon P,
the first vertex of type B is identified with the r-th ver-
tex of type B. In other words, the side identifications
which define S from Q where the center of  projects
to the vertex A identifies the edge 1 with the edge 2r.
With this construction, we obtain the required isometry
of S(p/¢,p,p; k) onto S(p/L, p,p;T).

Now let S = S(p/¢, p,p; k) be an elementary triangle
surface which admits a non-trivial group ¥ of orientation-
preserving isometries such that the basic group I is nor-
mal in the group G generated by ¥ and T'.

Then the action of ¥ on S descends to an isometric
action on the sphere S/T. Such an action has to preserve
the singular set {A, B,0} ¢ S/T of ramification points.

Since, by assumption, the elements of ¥ preserve the
orientation of S and hence of S/T', we conclude that nec-
essarily ¥ fixes the singular point BofS /T and permutes
the two other ones. This implies that (k —1)(k—1) =1
mod p or equivalently that k(k — 2) = 0 mod p.

Now set & = mf. Since m > 1 is a unit in the ring
Z/q, we conclude that ¢ divides fm — 2 and is odd if m is
even. Moreover, by assumption, m{ < ¢f and therefore
q>m.

On the other hand, for every divisor ¢ > m of m¢ — 2
which is odd if m is even, m is necessarily a unit in Z/q
and mf — 1 is a unit in Z/¢q. This finishes the proof of
part (ii) of our lemma. d
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Remark 2.5. For a given type (p/{,p,p), there are at
most two elementary triangle surfaces with the properties
described in the second part of Lemma 2.4. To see this,
let ¢ > 2 be arbitrary and let £ > 2 be a number which
is even if this is true for g. If there is some m < g such
that mf¢ = 2 mod g, then either ¢ and g are prime and m
is unique, or the biggest common divisor of £ and ¢ is 2
and there are at most two solutions.

We conclude this section with some examples.

Example 2.6. For u > 1, the surfaces S(u + 2,2(u +
2),2(u + 2);2) and S(4u, 8u, 8u;4u + 2) satisfy the con-
dition in part (i) of Lemma 2.4. These surfaces give all
the examples with £ = 2.

Example 2.7. For ¢ = 3, all odd numbers which do not
have 3 as a divisor are possible for q. There is a surface
of type (5,15,15) and genus g = 6 with m = 4, and a
surface of type (7,21,21) with m = 3.

Example 2.8. For ¢ = 4, all numbers ¢ > 2,q # 0 mod
4 are possible for ¢q. For ¢ = 2, this yields the surface
S5(2,8,8;4) of genus g = 2 with m = 1. For ¢ = 3,
we obtain the surface S(3,12,12;8) of genus g = 4 with
m = 2. For ¢ = 5, there is the surface S(5,20,20;12)
of genus ¢ = 8 with m = 3. For ¢ = 6, we obtain
the surface S(6,24,24;20) of genus g = 10 which is the
maximal surface from Theorem 1.1.

3. FIRST PROPERTIES OF SYSTOLES OF ELEMENTARY
TRIANGLE SURFACES

In this section, we derive some first easy properties
of systoles of an elementary triangle surface S =
S(p/t.p/s,p;k).

The canonical triangulation of the surface S =
S(p/t,p/s,p; k) is invariant under the basic group I' of
isometries of S. The projection of the center of €2 is a
vertex 0 of the canonical triangulation which is a fixed
point for the action of I'. The remaining s 4+ ¢ vertices
.,As and By,..., By.
The angle of the triangles of the canonical triangulation

are contained in two I'-orbits Ay, ..

equals 7 /p at the vertex 0, s7/p at the vertices Ay, ..., A,
and {r/p at the vertices By, ..., By.

Recall that S/T' is a topological 2-sphere which
consists
w/p,sw/p,fr/p glued at their boundaries. The hyper-
bolic metric on S projects to a hyperbolic metric on S/T'
with 3 singular points A, B,0. Here the point 0 is the

of two hyperbolic triangles with angles

projection of the vertex 0 of S, A is the projection of the
vertices A1, ..., A,, and B is the projection of the vertices
By, ..., By. The sphere S/T" admits a natural-orientation
reversing isometry ¥ of order 2 which exchanges the two
triangles and leaves their common boundary pointwise
fixed. Every closed geodesic on S projects to a closed
geodesic on S/T with respect to this metric which may
pass through a singular point.

Let A be
w/p, sw/p,fr/p. The triangle A will be viewed as a bil-

a hyperbolic triangle with angles

liard table. A billiard orbit consists of smooth geodesic
arcs inside A which are joined at points of the bound-
ary O\ according to the rule that the angle of incidence
equals the angle of reflection.

A closed geodesic on S/T" which does not pass through
a vertex of the canonical triangulation corresponds to a
periodic billiard orbit in A. The prime period of such an
orbit is the number of collisions with the boundary before
returning to the original position for the first time. We
divide such periodic billiard orbits into three different

types.

(1) A periodic billiard orbit with an odd prime period
such that none of the collisions with the boundary
is perpendicular.

We call such a billiard orbit an A-orbit. The double of a
prime A-orbit 4 admits a unique lift to a closed geodesic 4
on S/T" which is invariant under the orientation-reversing
isometry ¥, and its length is twice the length of 7.

(2) A periodic billiard orbit whose trace consists of one
piecewise geodesic arc which meets the boundary 9A
orthogonally at its endpoints.

We call such an orbit a B-orbit. A prime B-orbit 7 admits
a unique lift to S/I" which is invariant under the natural
isometry U and whose length is twice the length of the
trace of 4.

(3) A periodic billiard orbit with an even prime period
such that none of the collisions with the boundary
of A is perpendicular.

We call such an orbit a C-orbit. A prime C-orbit 4 ad-
mits two different lifts to S/T" which are images of each
other under the isometry . The length of each of these
lifts coincides with the length of 4.

A periodic billiard orbit 4 on A as above is liftable to
S if there is a closed geodesic v on S whose projection to
S/T is a lift 4 of 4 to S/T". Then ~ is called a lift of 4 to
S.
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An example of a liftable billiard orbit is given in the
next lemma.

Lemma 3.1.
3 collisions with the boundary. The length of 1 is not
larger than 3arccosh % ~ 2.8872 and its double is liftable.

There is a unique A-orbit 1 in /\ with

Proof: Let S = S(p/¢,p/s,p; k) and let Q be a fundamen-
tal polygon of type (p/¢,p/s,p). Connect the midpoint
of the edge 1 in Q with the midpoint of the edge 3 by a
simple arc, and connect the midpoint of the edge 2k with
the midpoint of the edge 2k + 2 by a simple arc. These
two arcs together project to a simple closed curve on S
which is freely homotopic to a closed geodesic v on S.
The geodesic 7y is necessarily a lift of the double of an
A-orbit 41 in A of period 3. The length ¢; of a lift of 4,
to S is bounded from above by 6arccosh %, which is twice
the minimal circumference of a triangle with vertices on
the boundary of an ideal triangle in H? (compare Lemma
3.2 of [Hamenstadt 02]). O

There are two natural ways to define billiard orbits
which pass through a vertex of A.

(1) The outgoing arc of an orbit through a vertex B of
A equals the reflection of the incoming arc along the
unique geodesic line which bisects the angle at that
vertex.

(2) The outgoing arc of an orbit through a vertex B of
A coincides with the incoming arc.

We require that a billiard orbit which passes through
a vertex B of A be reflected as in (1) above if the angle
at B equals 7 /q for an odd number ¢ > 3, and we call
such a vertex B, a bending vertez. If the angle at a vertex
B equals 7 /q for an even number ¢ > 2, then we require
that a billiard orbit which passes through B be reflected
as in (2) above, and we call B a reflecting vertez. Our
definition is such that each closed geodesic on our triangle
surface S which possibly passes through a vertex of the
canonical triangulation is the lift of a billiard orbit.

The next lemma shows that a systole on S does not
pass more than once through a vertex of the canonical
triangulation.

Lemma 3.2. A periodic billiard orbit on /\ which passes
more than once through a vertex of /\ does not lift to a
systole on S.

Proof: Let {1 be the length of the prime A-orbit 4; from
Lemma 3.1. By Lemma 3.1 it is enough to show that
the length of a billiard orbit 4 in A which passes twice
through a vertex of A is bigger than 2/;.

Since ¢; is the smallest circumference of a triangle with
vertices on the three different sides of A\, it is smaller
than the circumference of every degenerate triangle with
one vertex at a vertex of A and two identical sides which
join this vertex to the opposite side. Thus, every arc in
/A which connects a vertex of /A to the opposite side is
longer than ¢1/2. Since our billiard orbit 4 contains at
least four such arcs, it is necessarily longer than 2¢;. [

We can extend our definition of A, B, C-orbits to or-
bits passing through vertices of /A. To avoid confusion
later on, we denote these extended classes by A%, B9, C°.
Notice that with this definition, a billiard orbit which
passes through a reflecting vertex is necessarily a B°-
orbit.

Lemma 3.3.
(i) A C°-orbit in A\ does not lift to a systole on S.

(ii) The double of an A®-orbit can only lift to a systole
on S if this orbit is the A-orbit from Lemma 3.1.

Proof: By Lemma 3.2, it suffices to show the lemma
for A-orbits and for C%-orbits which pass at most once
through a vertex of A. This can be done with the argu-
ments from Section 3 of [Hamenstédt 02]. We call a curve
a on S/T' admissible if « is a closed curve with the ad-
ditional property that every connected component of an
intersection of & with one of the two triangles which make
up S/T consists of a single geodesic segment. We require,
moreover, that there is at most one pair of adjacent such
segments with one endpoint at a vertex V' € {A, B, O} of
S/T

An admissible homotopy of an admissible curve « is
a homotopy of a through admissible curves which pre-
serves an intersection with the set of vertices {0, 4, B}.
We call the admissible curve a essential if it can not be
homotoped to a simple admissible curve. A simplifica-
tion of a is an admissible essential subcurve 3 of « such
that a can be written in the form a = (v where ~ is
nonessential and does not meet the vertices of S/T.
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Let v be an arbitrary closed piecewise geodesic in A
with breakpoints only on the boundary of A and with
an even number of segments. We assume that each of
these segments meets the boundary of A only at its end-
points. Furthermore, we require that v contains at most
one pair of (adjacent) segments with one endpoint at a
vertex of A.

A lift of v to S/T is a closed admissible piecewise geo-
desic 4 in S/T which projects onto v. By our assumption,
~ has exactly two (not necessarily distinct) lifts which
are mapped to one another by the orientation-reversing
isometry 0.

For these slightly extended definitions, the arguments
in Section 3 of [Hamenstadt 02] are valid. They show
that after finitely many simplifications of a lift 4 of an
A-orbit or of a C%-orbit as above, we obtain a curve B
which contains an admissible subcurve homotopic to the
lift of the double of the A-orbit 4; from Lemma 3.1. But
then 4 either coincides with the lift of this orbit, or it is
strictly longer than this lift; the lemma follows. O

Lemma 3.4. A systole for S = S(p/¢,p/s,p) does not
pass through a vertex of the canonical triangulation.

Proof: The case £ = s = 1 is contained in [Hamenstadt
02], so we may assume that ¢ > 2.

Notice, first, that a systole can not pass through the
projection x to S of the center of the fundamental poly-
gon €. Every geodesic passing through x is at least as
long as a geodesic obtained from a side pairing transfor-
mation for Q, with equality only if such a side pairing
identifies the edge 1 of Q) with the edge 2k = p+1. But ¢
is a common divisor of p and k and, therefore, this is only
possible if £ = 1. Thus, a systole does not pass through
a fixed point of the basic group I' of isometries.

Now, let v be a closed geodesic on S which passes
through a vertex V' of the canonical triangulation which
is not fixed by I'. We need to show that ~y is not a systole.
If v contains an edge of the canonical triangulation, then
~ has self-intersections and therefore can not be a systole
[Schmutz 93]. Thus, by Lemma 3.2 and Lemma 3.3, we
may assume that 7 is the lift of a B-orbit 7 in A whose
trace has one of its endpoints at a vertex B of A and
does not have any other intersections with the vertices
of A.

Orient the orbit 4 in such a way that its first segment
11 connects the vertex B to the opposite edge b. We
consider first the case that the interior of every side of
A contains a collision point with 4. The trace of 4 con-
sists of at least three segments. The second segment 7,

connects the side b to a side a adjacent to B. There is
also a segment with one endpoint E on the third side ¢
of /A. By the triangle inequality, the trace of 7 is longer
than the piecewise geodesic which contains the segments
71,72, and the arc 73 connecting the endpoint of 75 to E.
Notice that 73 and n; intersect. By making 73 shorter,
we may assume that it meets the side ¢ orthogonally at
a (possibly) different point which we denote again by E.
But then the angle at E of the triangle T inscribed in A
which consists of the sides 73,73, and a third side con-
necting the endpoint of 73 to the beginning point of 7,
on the edge b is smaller than 7/2. From strict convexity
of the distance function from the beginning point of 7,
on b, we conclude that the third side of this triangle is
shorter than 7;. In other words, the trace of 4 is longer
than the circumference of the triangle T and the orbit ¥
is longer than the double of the orbit 4; from Lemma 3.1.

Next we show that an orbit 4 whose trace contains a
single segment passing through a bending vertex B does
not lift to a systole on S. By our above consideration,
we may assume that there is a side ¢ of A adjacent to B
whose interior does not intersect the trace of 7.

By definition of a bending vertex, the segment 7; of
the trace of 4 with one endpoint at B bisects the angle at
B. Thus, either 7 consists of the single segment 71, or the
angles at the vertices different from B do not coincide.
In both cases, our side ¢ which is not intersected by ¥ can
be chosen to be opposite to a vertex 0 with angle /.

As a consequence, a lift v of 4 to the polygon €2 con-
sists of a single geodesic arc connecting two preimages
of B. By convexity, the shortest such arc connects two
neighboring preimages of B on the boundary of Q. As-
sume that the angle at B equals {r/p; then we may
choose 7y in such a way that it connects the vertices 2p
and 2/.

Now B is a bending vertex, and therefore the number
g = p/¢is odd. If v is the lift of a closed geodesic on the
surface S = S(p/¢,p/s,p;ml), then in the arrangement
of the triangles of the canonical triangulation around
a lift of B there are q2;1 quadrangles with angle 27 /q
between the quadrangles with vertices 2p — 1,2p,1 and
20 —1,2¢,2¢+ 1. In particular, we have %m =41 mod
q. Since m < ¢, this shows that m = 2 or m = g — 1.
But then our curve is homotopic to a geodesic which is
induced by a side-pairing transformation; this is impos-
sible. As a consequence, a systole on S does not pass
through a bending vertex of A.

Now let B be a reflecting vertex. The angle at B
equals 7/q for an even number ¢. If £ is a generator of
the basic group I, then the subgroup {¢* | k > 0} of T
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fixes a lift B of B to the surface S and acts as a group
of rotations about B with rotation angle a multiple of
27 /q. In particular, there is some k > 0 such that ER s
an involution which fixes B. A closed geodesic v on S
which passes through B is invariant under this involution.
If 7y is simple, then it passes through a second fixed point
of £¥¢. However, each fixed point for £%¢ is a vertex of
the canonical triangulation and, therefore, v is the lift
of a B%orbit which contains at least two arcs through a
vertex of A. By Lemma 3.3, « is not a systole.

Thus, a systole on an elementary triangle surface does

not pass through a vertex of the canonical triangulation.
|

Consider any piecewise geodesic « in /A with the fol-
lowing properties:

(1) There is a pair ey, ez of sides of A which is connected
by at most one subarc of a.

(2) If eg is the third side of A, then the subcurves a;, as
of a which contain all arcs of « joining e1,es to es
are connected, and either a = ajas or ajas is not
connected.

We call such a curve irreducible (see [Hamenstadt 02] for
a motivation for this notation). From Lemma 3.4 and the
arguments in [Hamenstadt 02] which are equally valid in
our situation, we obtain:

Corollary 3.5. A systole in S is either a lift of the double
of the A-orbit 41 from Lemma 3.1 or a lift of a B-orbit
with irreducible trace.

4. EXAMPLES OF SYSTOLES

In this section, we compute some examples of systoles
on elementary triangle surfaces. We continue to use the
assumptions and notation from Section 3. In partic-
ular, we denote by A, a hyperbolic triangle with an-
gles ¢m/p,sw/p,7/p for an integer p > 0 and divisors
¢ > s >1of p. Let 0, A, B be the vertex of A with
angles ¢ /p, sw/p, T /p, respectively.

Recall the definition of irreducible curves from Sec-
tion 3. A lift to S/T of an irreducible curve « is a closed
piecewise geodesic curve in S/T' — {A, B,0} which is in-
variant under the natural isometry ¥ of order 2 of S/T
exchanging the two triangles and which projects to a.
Call two irreducible curves «, 8 in A homotopic if there
are lifts of 8 and « to S/T which are freely homotopic in
S/T —{A, B,0}.

Define an irreducible curve of type 1 to be an irre-
ducible curve a with the additional property that every
pair of sides of A is connected by a segment of . An
irreducible curve which is not of type 1 will be called of
type 0. Define a Bi-orbit to be a B-orbit whose trace is
an irreducible curve of type 1. A B-orbit with irreducible
trace of type 0 will be called a By-orbit.

The next lemma gives a useful criterion for the exis-
tence of B-orbits with irreducible trace.

Lemma 4.1. Let a be an irreducible curve in A\ and let
mg, M 5, Mg be the number of geodesic arcs of a con-
necting the edges adjacent to the vertices 0, A, B. For a
verter C € {0, A, B}, define me = mg + 1 if a is of
type 1 and if the edges adjacent to C are connected by a
subarc of a containing one of the endpoints of a. Define
meg = M, otherwise. If there is a B-orbit ¥ whose trace
is homotopic to o, then we have myz < p/2,m; < p/2s
and mp < p/2¢; moreover p/t > 3 unless « is of type 0
and min{m z, Mg} = 1.

Proof: Let a be the irreducible trace of a By-orbit in A,
and let a; be the connected subcurve of « consisting of
all geodesic segments which connect a fixed pair of edges
of A\, say the edges d and e. Assume that «; contains one
of the endpoints of a. Let m be the number of geodesic
arcs of aj.

Denote by C, the vertex of A adjacent to the sides
d and e, and let § be the angle of A at the vertex C.
Choose a vertex C of the canonical triangulation of S
which is a lift of C. Then C has an open contractible
neighborhood U in S which is isometric to the interior of
a convex 27 /d-gon consisting of 27/4 isometric triangles.

There is a lift of the subarc a; to a connected geodesic
arc in .S which is entirely contained in U and neither goes
through the center of U nor through any of the vertices
of its boundary. Thus if k£ is the number of geodesic
arcs in U which connect the center to one of the vertices
2m + 1.
convexity we always have k < 2w /§ — 1, we conclude that

and is intersected by «j, then k = Since by
m < w/d — 1. This shows the lemma in the case that our
irreducible curve is of type 0. The case of an irreducible
curve of type 1 follows in the same way. |

Our next goal is to study the question of liftability for
By-orbits. We denote by c the side of A which is opposite
to the vertex 0 with angle /D, by a the side opposite to
the vertex A with angle /s, and by b the side opposite
to the vertex B with angle £r /p.
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Lemma 4.2. Let 7] be the trace of a Bg-orbit in /A which
consists of at least 3 segments. We divide 7 into two
connected subarcs f1,M2. The subarc 71 consists of r1 > 1
segments connecting the edge e to the edge f of A\, and
the subarc 7o consists of ro > 1 segments connecting the
edge e to the edge g of A. Then 1) admits a lift to a closed
geodesic on S = S(p/L,p/s,p; k) if and only if one of the
following possibilities is satisfied.

(i)
(ii)
(iii)
(iv)
(v)
(vi)

r1+rek =0 mod p

ro + 11k =0 mod p

r1 — 1ok + 1o =0 mod p
ro —r1k+r; =0 mod p
k(ri 4+ 1) —ro =0 mod p
k(ri +r2) —r1 =0 mod p

TR 0 Q2 0 S =

OO0 T e Qo

Q Q9 o o>olv

Proof: We show only case (ii) of the lemma; the other
cases follow by the same arguments.

Let © be a fundamental 2p-gon of type (p/¢,p/s,p).
Let k > 2 be such that the side pairings for {2 which
induce our surface S in such a way that the center of 2
corresponds to the vertex 0, identify the edge 1 with the
edge 2k. By Lemma 2.1, kK = m{ for some m > 1, and
k —1 = ns for some n > 1.

Let 77 be as in case (ii) of the lemma. Denote by a;
the connected subarc of 7 which consists of 7 — 1 seg-
ments connecting the edge c to the edge a of A and which
contains one of the endpoints of 7. Denote by ao the
connected subarc 7 — a; of 7; it consists of 7o + 1 > 2
segments and has one endpoint on the edge ¢ of A.

Assume that the billiard orbit with trace 7 lifts to
a closed geodesic on S. This geodesic then lifts to a
piecewise geodesic « in 0 which we can choose in such
a way that a lift of the endpoint of @, on the edge ¢
is contained in the edge 2 of 2. Then « consists of 1
connected arcs o i,...,Q1 -1,z in ). The arc ay is
a lift of a&p. Its first intersection with the geodesics in )
which connect 0 to the vertices of €2 is a lift of the edge
a which connects 0 to B.

This means that as connects the edge 2 to the edge
2r9 + 3. Similarly, since « is the lift of a closed curve
on S, the arc a;,; connects the edge 2ry + 2ki + 2 to the
edge 2ro + 2ki +3 (i = 1,...,r1 — 1). The endpoints of
01,71 and ag are identified by a side pairing of {2 and
consequently, we have 2rs + 2r1k + 2 = 2 mod 2p and
hence p divides ry + 71k, proving the lemma. O

Let Q be a fundamental polygon of type (p/¢,p/s,p).
The side pairings for 2 which induce the surface S define

a particular By-orbit 45 which can be described as fol-
lows. Assume that the side pairings identify the edge 1
with the edge 2k for k € [2,p/2]. Let 0 be the vertex
of A corresponding to the center of 2. Then 7y has the
following properties:

(a) The trace of 4 is a piecewise geodesic which consists
of exactly k geodesic segments.

(b) One of the two endpoints of the trace of o lies on
the edge c opposite to 0 and is the only intersection
with this edge.

(¢) The segment with one endpoint on ¢ has its second
endpoint on the edge joining 0 to A.

C

pls p/l

Similarly, if the side pairings identify the edge 1 with
the edge 2k for some k € [p/2, p—1] then the side pairings
for S define a By-orbit whose trace satisfies (b) above,
and moreover

(a’) The trace of 7y is a piecewise geodesic which consists
of exactly p — k geodesic segments.

(¢/) The segment with one endpoint on ¢ has its second
endpoint on the edge joining 0 to B.

C

pls p/l

We call such an orbit a side pairing orbit. In other
words, a side pairing orbit is a liftable orbit whose trace
has properties (a), (b), (c) or (a’), (b), (¢’).

For ¢ = 1, there are three different side pairing or-
bits. They are of the same length if and only if S admits
a nontrivial group Y of orientation-preserving isometries
normalizing the basic group I' (see [Hamenstadt 02]). For
¢ > 2 and a surface S of type (p/{,p,p), there are ex-
actly two different side pairing orbits. They are of the
same length if and only if S is one of the surfaces from
Lemma 2.4. If s > 2, then a side pairing orbit is unique.
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The following two corollaries are immediate conse-
quences of Lemma 4.2.

Corollary 4.3. Let 7} be a liftable Bg-orbit in /\ with the
additional property that one of the edges of /\ contains
one endpoint of the trace of 7 and no other collision point.
Then 7 is a side pairing orbit.

Proof: We need to show that if 77 is a liftable By-orbit in
A as in the corollary, then the edge of /A which contains
one endpoint of the trace of 77 and no other collision point
is opposite a vertex with angle 7 /p.

Our orbit 7 corresponds to the case r1 = 1 in
Lemma 4.2, and we need to show that either f = ¢, or
f=aand s=1,or f =0band £ = 1. However, since
£ is a common divisor of k and p and s is a common di-
visor of k — 1 and p, this is immediate from the table in
Lemma 4.2. |

Corollary 4.4. Let 7j be a By-orbit in /A whose trace has
5 intersections with the boundary and such that both end-
points lie on the same edge of /\. Then 7} admits a lift to
a closed geodesic on S if and only if one of the following
two possibilities holds.

(i) £ =2,s =1, the endpoints of the trace of 7} lie on an
edge adjacent to the vertex with angle {w/p and S =
S(p/t,p/s,p;(p—1)) or S = S(p/l,p/s,p;3(2p —
r)).

(i) £ = 2,s = 1, the endpoints of the trace of 7 lie on
the edge opposite to the vertex with angle ¢w/p and
S is one of the surfaces described in Lemma 2.4.

Proof: Let 11 be as in Lemma 4.2 with r1 = ro = 2.
Assume that 7 lifts to a closed geodesic on S. Since
k = m{ for some m > 1 and ¢ divides p, we conclude
from the list in Lemma 4.2 that ¢ divides 2 and necessarily
¢ =2,5 =1. On the other hand, we have m{ < p. Thus,
in the first part of Lemma 4.2, only the cases 2mf = p—2
or 2mf = 2p — 2 are possible. The corollary now follows
from Lemma 4.2. |

In the next lemma we compare the length of the A-
orbit 47 from Lemma 3.1 with the length of a specific
B-orbit in a triangle A with angles ¢« /p,7/p,m/p for
some £ > 2.

Lemma 4.5. Let £ > 2,s = 1 and let 72 be a B-orbit in
A\ with the following properties.

(i) The trace of 2 has 5 intersections with the bound-
ary.

(i) Both endpoints of the trace of 42 as well as a third
intersection point lie on the edge of A\ opposite to
the vertex B with angle ¢ /p.

If £ > 3, then the length of 72 is larger than the length
of the double of the A-orbit 41 from Lemma 3.1. For
{ =2, equality holds.

(s

Proof: Let 45 be a B-orbit in A as in the statement of
the lemma; it is necessarily unique. Denote by ¢ the
length of the trace ¢ of 7».

Draw the perpendicular g from the vertex B of A with
angle ¢m/p to the opposite side b; it meets b at the mid-
point E of b. The orbit 75 is invariant under the reflection
A along g and hence the point E is the unique intersec-
tion point of ¢ with b which is not an endpoint of (.

Consider the subtriangle A of A with vertices A, B, E.
The angle of A at the vertex B is ¢ /2p, and the angle
at A equals 7 /p. Denote by £y the length of the side b of
A\ opposite to B, by h the length of the perpendicular g
from B to b. Hyperbolic trigonometry for the triangle A
gives

sinh b = sinh h—SiI_1 Eﬂ/2p,
2 sinm/p
and hence ¢y/2 < h for £ =1, £,/2 = h for £ = 2 and
ly/2 > h for £ > 3.

Let ¥ be the reflection in the hyperbolic plane across
the hyperbolic geodesic which contains the side ¢ of A
connecting A to B. Then A and UA form together a
geodesic quadrangle ) with a right angle at the vertex
E and the angle 27 /p at the vertex A. The length £5/2
of ¢ N A equals the distance between E and the side Wb
of UA C Q.

Hyperbolic trigonometry shows that

1 1
sinh 52 = sinh 50 sin 27 /p.

Again let 47, be the A-orbit as in Lemma 3.1 of length
{1; it is invariant under the reflection A along the perpen-
dicular g from B to b. Thus 7; meets the fix point set g
of A perpendicularly and has F as a collision point. This
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means that the length ¢1 /2 of 41N A equals the distance
between the point E and the side ¥g of VA C Q.
Hyperbolic trigonometry shows that

14
sinh 51 = sinh A sin ¢7 /p.

Thus ¢5 > £ if and only if % sin 27w /p > sindr/p

which implies our lemma. O

The next lemma gives a description of systoles for a
specific family of elementary triangle surfaces.

Lemma 4.6. Let 43 be a By-orbit in /\ with the following
properties.

(i) The trace of 43 has 5 intersections with the bound-
ary.

(ii) Both endpoints of the trace of 43 lie on the same
edge of A.

Then 43 admits a lift to a systole vs of S if and only if
one of the following two possibilities is satisfied.

(1) £ =2,s =1, S is one of the surfaces described in
Lemma 2.4, and the lifts to S of the double of the
A-orbit 41 are systoles of S. Moreover the edge of /\
containing the endpoints of the trace of 43 is opposite
to the vertex B with angle Ir/p.

(2) £ =2,p=2mod 4, S = S(p/2,p,p;1(p — 2)) and
the edge of /A containing the endpoints of the trace
of 73 is adjacent to the vertex B with angle Ur/p. In
addition there is no liftable irreducible B-orbit for S
which is strictly shorter than 7s.

B

Proof: As before, denote by B the vertex of A with angle
(r/p, let A be the vertex with angle sw/p and let 0 be
the remaining vertex. Denote by b, a, c the edges of A
which are opposite to B, A,0. The proof of the lemma is
divided into 2 steps.

Step 1: Let 42 be a By-orbit in A as in the statement
of the lemma with the additional property that the end-
points of the trace of 4, lie on the edge of /A opposite to
the vertex with angle ¢r/p. Such an orbit is necessarily
unique.

By Corollary 4.4, 75 is liftable if and only if £ = 2,
s =1, and S is one of the surfaces from Lemma 2.4. On
the other hand, by Lemma 4.5, the length ¢ of the trace
of 45 is equal to the length of the unique A-orbit 47 of
period 3.

Step 2: Let 43 be as in the lemma with the additional
property that the edge of A containing the endpoints of
the trace of 45 is adjacent to the vertex B. By Corollary
4.4, 43 admits a lift to a closed geodesic 7y on the surface
S if and only if S = S(p/2,p, p; %(p —2)). This implies,
in particular, that p = 2 mod 4 and hence S is not a
surface from the list in Lemma 2.4.

Since £ = 2 the discussion in the proof of Lemma 4.5
shows that the trace of the orbit 73 is shorter than 4; and
the length of v is smaller than the length of a lift of the A-
orbit 4;. From Corollary 3.5, we infer that every liftable
billiard orbit which is shorter than 73 is necessarily an
irreducible B-orbit. This shows case (2) in the statement
of our lemma. |

Example. The surface S(9,18,18;14) of type (9, 18,18)
and genus g = 8 admits systoles of the type described
under (ii) above. It has, moreover, the interesting prop-
erty that there is a second set of 18 systoles whose free
homotopy classes are given by the side identifications of
the fundamental polygon  which identify the sides 1
and 28.

5. LENGTH ESTIMATES FOR SYSTOLES

In this section, we give a precise combinatorial descrip-
tion of the billiard orbits which lift to systoles on an ele-
mentary triangle surface S. From this, we deduce Theo-
rem 1.1

We showed in Section 3 that a systole on S is either
the lift of an irreducible B-orbit or the lift of the double
of the A-orbit from Lemma 3.1. Our strategy is to give
explicit length estimates for irreducible B-orbits and use
a comparison argument.

Recall from Section 4 the definition of homotopy for
irreducible arcs in a hyperbolic triangle A. Two homo-
topic arcs correspond to freely homotopic curves on the
thrice punctured sphere S/T' — {A, B, 0}, and therefore
we can also speak of homotopic irreducible arcs if these
arcs are contained in two nonisometric triangles. More
precisely, given two hyperbolic triangles A, A’ with (posi-
tive) angles «, 3,7 and o/, #’, 7/, there is a natural home-
omorphism of A onto A’ which maps the vertex with
angle a, 3,7 to the vertex with angle o/, 3’,7'. We call
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two billiard orbits 4,5" in A and A’ homotopic if this
homeomorphism maps the trace of 4 to an arc which is
homotopic to the trace of 7.

Lemma 5.1. Let A\, A’ be triangles with angles o, 3,
and o/ < o, < B,7 <~. Let 7,5 be two homotopic
B-orbits in A\, /\'. Then the length of v is not bigger
than the length of ~'.

Proof: The trace of a B-orbit in A is the shortest curve
in A in its homotopy class. Let 7 be the trace of such a
B-orbit in a hyperbolic triangle Ty with arbitrary angles
g, Bo,Yo. If T is a hyperbolic triangle with angles o <
ag, B < Bo,v < 7 then there is a B-orbit in T whose
trace is homotopic to v9. We claim that the length of
~ is longer than the length of vy, with equality only if
T ="Tp.

It is sufficient to consider a triangle T' with angle
a < ag close to a and angles 3 = By, = 9. There is
an isometric embedding of T into T which maps the two
sides of Ty adjacent to Gy to the two sides of T adjacent
to 8. If « is sufficiently close to ag, then every geodesic
segment of the B-orbit v in T intersects Ty. This means
that the components of v — T} are either single arcs con-
taining an endpoint of v or they consist of two geodesic
segments with endpoints on the same side of Ty which
meet on a side of 7. Remove the components containing
an endpoint of v and replace every remaining component
by a single geodesic arc contained in the boundary of Tj.
The resulting curve 7 is shorter than v and homotopic
to 79 as a curve in Ty. Since g is the shortest curve
in its homotopy class, we conclude that ~ is longer
than ~y. O

Recall from Section 3 that we divided the family of ir-
reducible B-orbits into two subfamilies, the By-orbits and
Bi-orbits. We use Lemma 5.1 to describe all Bg-orbits
in A which admit a lift to a systole on some elementary
triangle surface S.

Lemma 5.2. Let 7 be a Bg-orbit in /N which lifts to a
systole on S. Then either 7 is a side pairing orbit, or 7
and S are as in Lemma 4.6.

Proof: We show in 3 steps that every liftable By-orbit
whose trace consists of at least 5 segments and is not
a side pairing orbit is longer than the double of the A-
orbit 4; from Lemma 3.1 and therefore does not lift to
a systole. With the notation from Lemma 4.2, such an
orbit satisfies min{ry,r2} > 2 and r; 4+ r2 > 5. The case

¢ =1 is contained in [Hamenstadt 02], so we may assume
that £ > 2.

Step 1: Let 45 be an orbit with r; +r2 = 5. Without
loss of generality, we may assume that r; = 2 and ro = 3.
Note that by Lemma 4.1, the angle of A at the vertex G
adjacent to e and f is at most 7/5, and the angle at the
vertex F' adjacent to g and e is at most 7/7.

Tables 2 and 3 (Appendix B) contain a list of lengths
of the trace of 45 in triangles with angles of the form
Ir[p, sw/p, /p which we computed with our computer
program. From Lemma 5.1, Lemma 3.1, and this list, we
see that for p/¢ > 9 the length of the trace of 45 is longer
than the length of the A-orbit 41 from Lemma 3.1.

Now let s = 1,/ > 2. For e = b, the trace of the
orbit 45 contains a subcurve homotopic to the trace of
the orbit 4, from Lemma 4.5 and therefore, 75 is longer
than ;.

By Lemma 4.2, for s = 1 and e # b the orbit 75 is
liftable to S only in the following cases.

(1) g=0b,p/t>5and £ =3.
(2) f=bp/t>Tand (=2

However, as we can see from Tables 2 and 3, in these
cases the trace of the orbit is longer than the A-orbit 41
from Lemma 3.1.

For s > 2, the orbit 45 is liftable only if £ < 5. Table
1 (Appendix A) contains a complete list of all surfaces
S(p/l,p/s,p; k) with £ < 5,p/¢ < 8 and s > 2. The orbit
75 exists and is liftable only for the surfaces S(3,5,15; 10)
and S(4,10,20;15) in this list. From the table in Appen-
dix B, for these two cases the trace of 75 is longer than
the A-orbit A;.

Step 2: Let 45 be the orbit whose trace consists of 6
segments and corresponds to the case r; = 3 = ry. Such
an orbit can only exist if the angles at the vertices G and
F are at most w/7. In the case s = 1, we obtain as in
Step 1 above from Lemma 4.5 and the list in Appendix
B, that the trace of qg is longer than the A-orbit ;.
If s > 2, then Lemma 5.1 and the list in Appendix B
imply that this orbit is longer than a systole provided
that p/s > 8. Table 1 (Appendix A) contains a complete
list of all surfaces with s > 2, p/s < 7. The orbit is only
liftable for the surface S(4, 10, 20;15), and in this case it
is longer than the double of the A-orbit 4.

Step 3: Let 47 be a Byp-orbit with min{ry,r2} = 2
and r1 + ro = 6. Assume without loss of generality that
r1 = 2 and ro = 4. The angle at the vertex G adjacent to
the edges f and e is at most 7/5, the angle at the vertex
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F adjacent to e and g is at most 7/9, and the angle at
the vertex E adjacent to f and g is at most 7/3. Since
the trace of 47 contains a subarc which is homotopic to
the trace of 45, we conclude that the trace of 47 is longer
than the A-orbit 4y provided that either p/£ > 9or s =1
and g # b.

In the case s = 1,g = b, we again use numerical com-
putations given in Appendix B to show that the trace of
A7 is longer than ;.

Now let s > 2. From the list in Appendix A and
Lemma 5.1 the orbit 77 is longer than a systole whenever
p/s > 11. Appendix A contains a list of all surfaces
with p/s < 10 and s > 2. Comparison with the list in
Appendix B shows that for each of these surfaces, the
trace of the orbit is longer than the A-orbit 7;.

As a consequence, a liftable By-orbit which is not a
side pairing orbit and whose trace either consists of 5 or
6 segments or contains a subarc homotopic to the trace of
A7 is longer than a systole. The lemma now follows from
the fact that the trace of every liftable Bg-orbit which is
not a side pairing orbit and which has at least 7 segments
contains a subarc homotopic to the trace of ;. O

With a similar argument we can show that Bj-orbits
never lift to systoles on elementary triangle surfaces.
Again we begin our analysis with the question of lifta-
bility.

Lemma 5.3. Let 7j be a By-orbit in /. Denote by i1 B
the trace of 7 where the subarc 7, consists of r1 > 1
segments connecting the edge e to the edge f of /\, the
subarc 3 contains a unique seqgment joining f to the third
edge g, and Ty consists of ro > 1 segments joining e to
g. Then 7 admits a lift to a closed geodesic on S if and
only if S = S(p/t,p/s,p;k) and if one of the following
possibilities is satisfied.

el flg
(i) la|b|c|k(re+1)—r1—1=0 modp
(i) |a|lc|b|klri+1)—ro—1=0 modp
(it;)) | b | a|c|k(ra+1)+ra—r1 =0 modp
(iv) |b|cl|la|k(ri+1)+rea—r1 =0 modp
(w) |eclal|b|klro—r1)+r+1=0modp
(vi) | c|b|la]|k(ri—re)+re+1=0 modp

Proof: As before, we show the lemma only for the case
(i) above. Let @&z be the subarc of the trace of 7 which
contains 3 and 7js.
damental polygon Q of type (p/¢,p/s,p) which consists
of ri + 1 arcs ag,0q1,...,
connects the edge 1 to the edges 2r; + 2, and the arc ay;
connects the edge 2ro — 25k + 1 to the edge 2rs + 2 — 2jk.

Then there is a lift of 77 to a fun-

oy, as follows: The arc as

Then 7 lifts to a closed geodesic on S if and only if
2ro +2 — 2r1k — 2k + 1 = 1 mod p, or equivalently, if
k(ri+1)—r2—1=0mod p. O

Corollary 5.4. A Bj-orbit whose trace has subarcs 71,72
as in Lemma 5.3 with the same number of segments (i.e.,
for which r1 = rq) is not liftable.

Proof: Let 7 be a By-orbit whose trace consists of 2r + 1
segments and which corresponds to the case r1 =19 =7
in Lemma 5.3. If S = S(p/¢,p/s,p; k), then k does not
divide p and therefore only the case 7k = r mod p is
possible by Lemma 5.3. But then 7(k — 1) = 0 mod p
which is impossible since £ — 1 can not divide p. O

Lemma 5.5. A Bi-orbit does not lift to a systole on S.

Proof: We proceed exactly as in the proof of Lemma
5.3. As before, we only have to treat the case £ > 2
[Hamenstddt 02].

We found that every liftable By-orbit which is different
from a side pairing orbit is longer than the double of
the A-orbit 4; from Lemma 3.1. This is not true for
Bj-orbits. We find surfaces S(p/¢,p/s,p; k) for s > 2
admitting a liftable Bj-orbit which is shorter than ;.
However, a systole for such a surface is a lift of the unique
side pairing orbit. We describe these surfaces:

Step 1: Let 774 be a Bj-orbit whose trace consists of
4 segments and which is liftable to S = S(p/¢,p/s,p; k).
Without loss of generality, and using the notations from
Lemma 5.3, we may assume that 1 = 1 and ro = 2.
Since both k£ and p are multiples of £ > 2, by Lemma 5.3
one of the following cases is satisfied.

(1) f
(2) g=
(3)
4) f

f=b,3k=2modpand s=1,¢=2.
,2(k—1)=1modpand s=1, £ =3.
g=b k=-2modpands=1,{¢=2.

4 =b,k=3modpand{=3,s=2o0r s=1.

Assume first that s > 2. Then necessarily case (4)
holds, and therefore we have f = b, ¢ = e, g = a and,
in particular, p/¢ > 6. The surface of this form with
the largest angles is the surface S(6,9,18;3). The trace
of the orbit 74 is shorter than the A-orbit ;.
explicit computation with our computer program shows
that the systoles of S(6,9,18; 3) are the lifts of the unique
side pairing orbit.

On the other hand, by Lemma 5.1 and Appendix B
the trace of the orbit 7, is longer than the upper bound

However,
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3arccosh% for the length of the A-orbit 4; whenever
p/¢ > 11. All surfaces with s > 2 and p/¢ < 10 are listed
in Appendix A. In addition to the surface S(6,9,18;3),
there are only two more examples in this list for which
the orbit 74 is liftable, namely the surfaces S(8, 12, 24; 3)
and 5(10,20,30;3). Appendix B shows that for these
two surfaces the trace of the orbit 7, is longer than the
A-orbit 41 from Lemma 3.1.

Now let s =1 and let S = S(p/¢, p,p; k) be such that
74 is liftable to S. Then one of the possibilities (1)—(4)
above is satisfied.

In case (1), we have 3(k — 1) = —1 mod p, and hence
by Lemma 2.4 the surface has a side pairing orbit whose
trace consists of 2 segments. This orbit is shorter than
fa. Similarly, in case (3), there is a side pairing orbit
whose trace consists of 2 segments and which is shorter
than 7.

In case (2), we have g = b, { =3 and 2(k — 1) = 1
mod p, and thus by Lemma 2.4 the surface is isometric to
a surface with a side pairing orbit whose trace consists
of 3 segments. The trace of this side pairing orbit is
homotopic to the trace of the orbit which we obtain from
71 by replacing the first and the second segment by a single
arc. In particular, the side pairing orbit is shorter than
s

In case (4), the orbit exists for p/¢ > 6 and p > 18.
Since it is liftable only if & = 3 mod p, we conclude that
p is odd; in particular we may assume that p/¢ > 7 and
p > 21. From Lemma 5.1 and the list in Appendix B, we
conclude that the orbit is longer than the double of the
A-orbit 1.

Step 2: Let 75 be a Bi-orbit with 1 = 1,70 = 3.
Such an orbit exist only if the angle at the vertex F' is at
most 7/8. By Lemma 5.3, if 75 is liftable then one of the
following cases is satisfied.

(1) f=0band 4k = 2 mod p or 2k = 4 mod p.
(2) f=aand 4k = —2 mod p or 2k = —2 mod p.
(3) f =cand 2k =4 mod p or 2k = —2 mod p.

Appendix B shows that for p/¢ > 9 the orbit is longer
than an upper bound for the length of the double of the
A-orbit ;.

We again treat first the case s > 2 which is only pos-
sible if / = 4,s = 3 and 2k = 4 mod p. The list in
the appendix shows that there is no such surface with
p/f < 8 for which 7j5 is liftable.

Now for s = 1, we observe that the orbit 75 is longer
than the By-orbit whose trace consists of 4 segments and

is obtained from 7j5 by replacing the arc 771,5’ by a single
segment. Thus by Lemma 4.5, for e = b the orbit is
longer than the double of the A-orbit 4; from Lemma
3.1.

If e # b, then necessarily p/¢ > 4 and £ =4 or £ = 2.
We first consider the case ¢ = 4 which is only possible
if 2k = 4 mod p, and therefore if p/¢ is odd. Appendix
B shows that the trace of the orbit is longer than ;.
For ¢ = 2, the triangle with the biggest possible angle
corresponds to a surface of type (4,8,8). If 7 is liftable,
then there is a side pairing orbit whose trace consists of 2
segments and is shorter than 7;. The remaining surfaces
are treated in the tables in Appendix B.

Step 3: Consider now the Bi-orbit 7 whose trace
has 6 segments and which corresponds to the case r; =
1,70 = 4. This orbit can only exist if the angle at the
vertex F' is at most 7/10. The tables in Appendix B
show that the trace of 75 is longer than the upper bound
3arccosh % for the length of the A-orbit 47 provided that
p/f>5and p/s > 10 or p/s > 13.

As before, if s = 1 and e = b, then necessarily the
trace of 7 is longer than ;. The remaining cases are
listed in Appendix B. On the other hand, Appendix A
contains a complete list of all surfaces of type (p/£,p/s, p)
with s > 2, p/s <10 or p/¢ < 4 and p/s < 12. Appendix
B shows that for each of these, the trace of the orbit 75
is longer than the orbit 41. In particular, the trace of no
Bj-orbit which lifts to a systole can have a subarc which
is homotopic to the trace of 7.

Step 4: Consider the Bj-orbit 7; whose trace has 6
segments given by ry = 2,79 = 3. This orbit can only
exist if the angle at the vertex G is at most 7/6 and
the angle at the vertex F' is at most 7/10. The trace
of the orbit contains a subarc homotopic to the trace of
75. From Lemma 4.5, the argument in Step 2 above, and
Appendix B, we conclude that for s = 1, 77 is longer than
the double of the A-orbit 7.

The case s > 2 follows as before from the list in Ap-
pendix A and a length comparison, using Appendix B.
As a conclusion, the orbit 77 is always longer than the
double of the A-orbit 4;. In particular, the trace of no
Bj-orbit which lifts to a systole can have a subarc ho-
motopic to the trace of 7;. The lemma follows as in the
proof of Lemma 5.2. O

We can now summarize our considerations as follows:

Theorem 5.6. Let S be an elementary triangle surface
of type (p/t,p/s,p) for some £ > 2,1 < s < L. Then
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every systole vy of S satisfies one of the following three
possibilities.

(i) v is the lift of the double of the A-orbit 41 in A of
period 3.

(it) 7 is the lift of a side pairing orbit.
(i) £ =2 and v and S are as in Lemma 4.6.

In Section 1, we called a closed hyperbolic surface S
mazximal if the length of its systole is a local maximum
in Teichmiiller space. A surface S can only be maxi-
mal if the lengths of its systoles locally parameterize Te-
ichmiiller space near S. Since the dimension of the Te-
ichmiiller space of closed surfaces of genus g > 2 equals
6g — 6, this implies that a maximal surface has at least
6g — 5 systoles (see [Schmutz 93]). This observation to-
gether with Theorem 5.6 implies that among our elemen-
tary triangle surfaces of type (p/¢,p,p) for some £ > 2,
there is at most one maximal example.

Proposition 5.7. An elementary triangle surface of
type (p/l,p,p) for some £ > 2 which is different from
S(6,24,24;20) is not mazimal.

Proof: Let S be an elementary triangle surface of type
(p/t,p,p) for some p > 6 and divisors £ > 2, s > 1 of
p. Denote by ¢; the length of the A-orbit 47, and let £
be the minimal length of the trace of a side pairing orbit
for S. We first analyse the surfaces listed in part (ii) of
Lemma 2.4.

Case 1: Surfaces with additional symmetries. In Lemma
2.4 we gave a combinatorial description of all surfaces
which admit a cyclic group X of order 2 of isometries
normalizing the basic group I Among them, we find
the surfaces S = S(h,2h,2h;2) for some h > 3 as in the
example in Section 2. They correspond to the case m =1
in Lemma 2.4 and have a side pairing orbit 4y whose
trace consists of exactly two segments. The trace of this
side pairing orbit is shorter than the A-orbit 4; from
Lemma 3.1. The orbit 49 admits 2h different lifts to a
closed geodesic on S, and this set of geodesics is invariant
under the action of ¥ on S. By Theorem 5.6, these lifts
are exactly the systoles of our surface S(h,2h,2h;2). In
other words, the surface S(h,2h,2h;2) has 2h systoles
and is not maximal.

Recall from Lemma 2.4 that every surface S with a
group Y. of symmetries as in Lemma 2.4 which is different
from one of the surfaces S(h,2h,2h;2) is determined by
a number ¢ > 2, a number m > 1, and a divisor ¢ > m of

ml — 2. The side pairings for S identify the edge 1 with
the edge 2mf. By Theorem 5.6, the length of the systole
of S equals min{2¢y, 2¢;}.

We claim that there are only finitely many among
those surfaces S with additional symmetries for which
fy < {1 and which do not belong to the family
{S(h,2h,2h;2) | h > 3}. We write p = {q, and we esti-
mate the length £, for S = S(q, p, p; m¢) as follows: Let
be a fundamental polygon of type (g, p,p) with center 0,
and let v be a geodesic arc of minimal length in Q which
connects the edges 1 and 2m/f of Q. Let T' C Q be the
hyperbolic triangle with one vertex at 0, one vertex C
at the intersection of v with the edge 1, and one vertex
C5 at the orthogonal projection of the center 0 onto ~.
Then T has a right angle at Co and the length of the side
of T connecting C7 to Cy equals £y/2. The angle a of T
at the vertex 0 is contained in ((mf — 1)7/p, mér/p).

Let A be the hyperbolic triangle with angles
¢r/p,w/p, 7 /p. The length £5 of the side of T' connecting
0 to C; is not smaller than the distance h of a vertex A of
A with angle 7 /p to the opposite edge. From hyperbolic
trigonometry, we obtain: sinh %0 > sinh A - sin a.

To compute h, let 3 be the length of the side of A
adjacent to the vertex B with angle {7 /p. Then sinh h =
sinh #3 - sin ¢7 /p and

cos{m/2p - cosT/p

h{s = .
oSt s siném/2p - sinm/p

For ¢ > 0, we have sinht > cosht — 1 and therefore

sinh lo /2 > (cosﬁﬂ'/p~cos7r/p B

sinfm/p - sinm/p 1) sinfr/p-sina.

Recall that o € ((mf—1)w/p, méw/p) where m < g—1
and ¢ divides m¢ — 2. In particular, we have /¢ < a <
m—7/q and sin « is bounded from below by sinw/q. To-
gether with the above inequality, this implies that there
is a number 79 > 0 such that ¢y > ¢; for every surface
S = S(p/L,p,p;mL) as above with £ > ry. On the other
hand, for every fixed ¢ < ry and every fixed r; > 0 we
obtain from the fact that ¢ divides mf — 2 that there are
only finitely many such surfaces with m < r;. Once again
using the above inequality, this shows that indeed among
the surfaces S = S(p/¢, p, p; mf) with additional symme-
tries, there are only finitely many for which ¢y < ¢;.

We computed the systoles for these surfaces with
our computer program and found that the surface
S(6,24,24;20) is the only one among the surfaces in
Lemma 2.4 for which equality ¢y = ¢1 holds.

As a consequence of this observation, Lemma 4.6, and
Theorem 5.6, the surfaces S(4h,8h,8h;4h + 2) (h > 1)
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have exactly 2p = 16h = 4g + 4 systoles of length
min{2¢y,2¢1 }. In other words, among these surfaces only
the surface S(4,8,8;6) has more than 6g — 5 systoles.
However, if a surface S is maximal, then the lengths of
its systoles locally parameterize Teichmiiller space near
S. This is not the case for the surface S(4,8,8;6) (this
was stated by Schmutz in [Schmutz 93], but it also follows
from the arguments in [Hamenstadt 02]). Thus none of
the surfaces S(4h, 8h,8h; 4h+2) is maximal. Thus, there
is no maximal surface with additional symmetries of type
(p/2,p,p) for some p > 6.

For ¢ > 3 and (¢,p/f) # (4,6), the surfaces
S(p/¢,p,p;ml) with additional symmetries either have
p =29+ £ — 2 systoles (if 1 < £y) or 2p = 4g + 2 — 2
systoles (if £y < £1) and are not maximal.

Case 2: Surfaces without additional symmetries. Let S
be a surface of type (p/2, p, p) which is different from one
of the surfaces S(h,2h,2h;2). If the By-orbit 73 whose
trace has 5 intersections with the boundary of A as in
(2) of Lemma 4.6 is liftable, then the lift of 3 to S is a
systole provided that there is no side pairing orbit for S
which is shorter than 743. In particular, every systole is
either a lift of a side pairing orbit of minimal length or
a lift of 43, and there are at most 4g + 4 systoles (where
again g is the genus of S). As before, we conclude that
S is not maximal.

In the case that 43 is not liftable or for surfaces S of
type (p/£,p,p) for some £ > 3, the length of the systoles
of S equals min{2¢y,2¢1} and we conclude, as before,
that there are at most 4g + 4 systoles and that S is not
maximal. Namely, the set of 2p curves which are lifts
of the A-orbit v; and of one side pairing orbit for A is
not parameterizing for Teichmiiller space. (We can also
argue that we have 4g4+4 > 69— 5 only if g < 4, and the
surfaces of small genus can be checked explicitly.) O

By Proposition 5.7, among the elementary triangle
surfaces of type (p/¢,p,p) for some £ > 2, only the sur-
face S = S(6,24,24;20) of genus g = 10 with 72 systoles
can be maximal. To finish the proof of the Theorem 1.1,
we have to show that the lengths of the systoles of S are
locally parameterizing for the Teichmiiller space 71y near
S [Schmutz 93].

Let Q be a fundamental polygon of type (6,24,24)

The side pairings for €2 which define S identify the edges
2i + 1 and 2¢ 4+ 40. The triangulation of €2 into these

48 triangles induces a triangulation of S with 6 vertices.

for S which consists of 48 triangles with angles %

The cyclic group of order 24 of rotations of 2 about the
center with rotation angle m/12 descends to a group I of

automorphisms of S which leaves two of the six vertices
of the canonical triangulation fixed and permutes the re-
maining 4 vertices. The surface S admits, in addition,
a group X of order 2 of isometries which normalizes the
group I' and exchanges the two fixed points of I'.

The surface S has 72 systoles 7y1,...,7vr2 which can
be divided into 3 orbits O; (i = 0,1,2) under the action
of I'. The orbit Oy consists of the 24 lifts of the double
of the A-orbit from Lemma 3.1 and is ¥-invariant. The
orbits O, Os consist of lifts of side pairing orbits and are
exchanged by the generator J of the group X.

Let ¢; be the function on the Teichmiiller space Tig
which assigns to a surface M the length of the geodesic
~v; on M. The differential of ¢; is dual with respect to
the Weil Petersen Kahler form to the tangent X; of the
earthquake path along the geodesic v; [Wolpert 82]. Thus,
the lengths of the geodesics v; locally parameterize Tig
near S if and only if the tangent space Tg of T1g at S is
spanned by the vectors X1,..., X7, and this is the case
if and only if the rank of the (72, 72)-matrix A = (a; ;)
with entries a; ; = d¢;(X;) equals 54.

Following Wolpert [Wolpert 82], the entries a; ; of the
matrix A can be computed as follows: For i # j, the
geodesics vy; and -, intersect transversely in at most one
point, with oriented intersection angle 6; ; measured from
v; to 7. The differential X;(¢;) of the length ¢; of ;
in the direction of the earthquake path along v; equals
a;,; = cosb; ; [Wolpert 82].

Using the symmetries of our surface S, the matrix A
can easily be determined explicitly with our computer
program. The computation shows that the rank of A
equals indeed 54.

We can simplify our computation by using the sym-
metries of the surface S in a more essential way. Namely,
let £ be a generator of the cyclic group I'. It acts as
an isometry (with respect to the Weil Petersen metric)
of order 24 on Tg, and therefore its eigenvalues are the
24th roots of unity. For 0 < j < 12, we denote by Z; the
generalized eigenspace which corresponds to the complex
conjugate pair of eigenvalues e27%7/24 ¢=27ij/24

The isometry ¢'2 = ( is an involution of S. Its fixed
points are precisely the 6 vertices of the canonical trian-
gulation. By the Riemann Hurwitz formula, the quotient
S/¢ is a surface of genus 4.

For each g > 2, the tangent space of the Teichmiller
space T, of Riemann surfaces of genus g at a surface M
can be identified naturally with the space of holomorphic
quadratic differentials on M. The isometry ( is a biholo-
morphic automorphism of the Riemann surface S, and
hence it acts on the space of holomorphic quadratic dif-
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ferentials. Each such differential which is preserved under
the action of ¢ descends to a meromorphic quadratic dif-
ferential on the surface S/¢ with at most simple poles at
the projections of the 6 fixed points of (.

On the other hand, every meromorphic quadratic dif-
ferential on S with at most simple poles at these six
points lifts to a (-invariant holomorphic quadratic dif-
ferential on S. Thus, by the Riemann Roch theorem,
the (real) dimension of the subspace ®S_yZ2; of Ts of
(-invariant quadratic differentials on S is 30 and conse-
quently, the dimension of @?=0Z2j+1 equals 24.

With the same argument, we conclude that the
eigenspace of &8, €5, &% €3, €2, ¢ with respect to the eigen-
value 1 is of dimension 18,12,6,6,2,0. Thus, we can
determine the dimensions of some of the spaces Z;.

On the other hand, our argument is valid for every
choice of a generator for the cyclic group I', and therefore
the dimension of a generalized eigenspace with respect to
a pair of complex conjugate eigenvalues e2™%/24 ¢—2mij/24
only depends on the order of the eigenvalue, i.e., on the
smallest number p > 0 such that pj = 0 mod 24. We can
thus obtain a complete list of the dimensions of all the
generalized eigenspaces.

Order of eigenvalue | 1 | 2 | 3|4 |6 | 8| 12| 24
Dimension 0]2]6]|4|6]|6 4 4

Note that there are two pairs of complex conjugate
eigenvalues of order 8 and of order 12, and there are
four pairs of order 24. Thus, the table gives a complete
description of the representation of I' on T%.
the generalized eigenspaces are orthogonal with respect
to the Weil Petersen Kéahler form.

The generator J of the cyclic group X acts as an invo-
lution on S and normalizes I". The proof of Lemma 2.4
shows that for a suitable choice of the generator £ of T,
we have J o € o J = €9, In particular, J permutes the
generalized eigenspaces of & with respect to eigenvalues

Moreover,

of order 24, 12,8 and preserves the remaining ones.

On the other hand, there are 6 fixed points for the
action of J on S and hence, the eigenspace of J with
respect to the eigenvalue 1 is of dimension 30. This de-
termines the representation of the semidirect product G
of I" and ¥ on Tg.
respect to the eigenvalue —1 intersects the sum of the

Namely, the eigenspace of J with

generalized eigenspaces for I' of order 24,12,8,6,4,3,2
in a subspace of dimension 8,4,6,2,2,2,0. We then can
use this knowledge on the representation of G on Tg to
determine the rank of our matrix A. Namely, let H;
(i = 0,1,2) be the subspace of Ts which is spanned by
the tangents of the earthquake paths along the geodes-

ics yoas15 (1 < j < 24). The spaces H; are invariant
under I', and H = ), H; is the span of the tangents
of the earthquake paths along all the geodesics ;. We
claim that H contains the generalized eigenspaces for the
eigenvalues of order 12 and 24.

Consider our matrix A. For a suitable numbering of
the geodesics +;, the geodesic 7, intersects the geodesics
Y25, Y29, Y30, Y34 transversely in a single point, and it in-
tersects no other of the geodesics yo44; (1 < j < 24). By
invariance of the intersection angles under the symme-
tries of our polygon {2, there are numbers 1 > ¢ > b > 0
such that aj 2445 = —b, Aj,28+5 =
a;33+; = b for some ¢ > b > 0 (indices are taken modulo

—c, Gj29+; = ¢ and

24). Let X be a complex eigenvector for the action of I’
on Hy with respect to a 24th root of unity a. There is
a complex number x # 0 such that X = /121 Lo,
Thus, if X = 0 in Hy, then dfs5(X) = 0 and hence by
the above we have 2(a® — 1) = a* — a®. Since 2 € (0,1)
there is a 24th root of unity o # 1 solving thls equa-
tion only if either the order of « is 6 or 8. In particular,
the intersection of H; with a generalized eigenspace Z
for an eigenvalue of order 12 or 24 is 2. By our above
calculation, the dimension of Z is 4, and therefore from
invariance under the action of I' we conclude that the
space Z is contained in H if and only if the intersections
Z N H; do not all coincide. By invariance under 7, it is
therefore enough to show that the image under J of the
intersection Z N Hy is not contained in H7.

Since the Weil Petersen Kéahler form w is invariant
under the action of 7, this can easily be checked as
follows: Let a be a root of unity of order 24 and let
X = Z?il o'~ 'X; .04 € H; be an eigenvector for &
If 7X € Hy, then
X194 for some k € C and there-

with respect to the eigenvalue a.
JX = HZ24 19(i—1)
fore for each Z € Hy, we have

2341 o' w(Z, Xitod) = “Zl ol

This however is not the case.

(i= 1>w(JZ X7,+24>

As a summary, the orthogonal complement of H in
Ts with respect to the Weil Petersen metric is contained
in the sum of the generalized eigenspace for eigenvalues
of order at most 8. Thus, if we denote once again by
& a generator of ', then it is enough to show that the
dimension of the space {Z?:o X | X € H} equals
18, and the dimension of {Z?:O X | X € H} is 14.
In other words, we can verify that the lengths of the
systoles of S locally parametrize 719 near .S by computing
the rank of an explicitly given (24,24)-matrix and an
explicitly given (18,18)-matrix. This computation can

easily be done numerically. It can also be carried out
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type triangle surfaces

p/l=3=s | S(3,4,12;4),5(3,5, 15;10), 8(3,7,21;7), S(3,8, 24; 16),
5(3,10,30; 10), S(3, 11, 33; 22)

p/l=4=s | S(4,5,20;5),5(4,7,28;21),5(4,9,36,9), (4, 11, 44; 33)

p/l=4,s=2 | S(4,6,12;3),5(4, 10, 20; 15)

p/t=5=s | S(5,6,30;6),5(5,7,3521), S(5,8, 40; 16), S(5,9, 45; 36),
S(5,11,55;11)

p/l=6=s | S(6,7,42:7),5(6, 11,66, 55)

p/l=6,s=3 | S(6,8,24;4),5(6,10,30; 10)

p/l—=6,s=2 | 5(6,9,18:3),5(6,9, 18; 15), 5(6, 15, 30; 5)

p/l=T=s S(7,8,56;8)

p/l=8=s S5(8,9,72;9)

p/l=8,s=4 | 5(8,10,40;5)

p/l=8,s=2 | S(8,12,24;3), S(8, 12, 24; 15), 5(8, 20, 40; 15), S(8, 20, 40; 35)

TABLE 1. List of triangle surfaces.

by a further reduction as above using the matrix which
determines the restriction of the Weil Petersen Kéahler
form to the space Hy.

APPENDIX A

See Table 1 for a list of triangle surfaces of type
(p/l,p/s,p) for £ > s > 1, such that either

1) p/¢ <8 and p/s < 10 or
2) p/¢ <8and £ <5 or

3) p/f <4 and p/s < 12.

APPENDIX B

See Table 2 for a classification of lengths of By-orbits and
Table 3 for a classification of Lengths of Bj-orbits.

APPENDIX C: THE COMPUTER PROGRAM FUNDA

In this appendix, we give a short description of our com-
puter program funda which computes the systoles of an
elementary triangle surface and their lengths.

Our program uses the combinatorial description of an
elementary triangle surface from Section 2 and computes
for a given type (p/¢,p/s,p), the coordinates in the hy-
perboloid model of the hyperbolic plane of a fundamental
polygon € of this type.

Side identifications can be defined by simply prescrib-
ing the number of the edge with which the edge 1 is iden-
tified. If the result of these identifications is a smooth
closed surface, then the program computes the lengths of

all closed geodesics which have the particular combina-
torial type described in Corollary 3.5.

Let Q be a fundamental polygon of type (p/¢£,p/s,p)
for some p > 5 and some divisors £ > s of p, and let
S = S(p/l,p/s,p; k) be an elementary triangle surface
of type (p/l,p/s,p). A lift ¥ to Q of a closed geodesic
~v on S consists of n > 1 geodesic arcs with endpoints
on the boundary 02 of Q. Since we are only interested
in systoles, by the results in Section 3 we may assume
that every endpoint of such a segment is contained in
the interior of a boundary edge.

Since a closed geodesic v on S is unique in its free
homotopy class, its lift 4 to Q is uniquely determined
by the sequence of edges containing the endpoints of its
consecutive segments. For a choice of an orientation and
a basepoint for v denote by k;, the number of the side of
Q) from which the 7th segment emanates and by K; be the
side where the ith segment ends. Then, k;1 = K;+2k—1
mod 2p if K; is odd, and k;;1 = K; — 2k + 1 mod 2p if
K; is even, and ~ is determined by the string

ki — K, ks — Ko, ... kn — K.

In Section 3, we obtained some information on the
combinatorial type of a systole. To use this for our pro-
gram, we extend the notion of the canonical triangulation
for S to 2. An edge of this triangulation will be called
inner if the edge connects the center of € to one of the
vertices on the boundary.

Recall that the boundary of Q only contains vertices
of two different types, namely odd edges which we call
edges of type 1 and even edges which we call edges of type
2. We call an inner edge of the triangulation an edge of
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(G,F,E) length length illustration
of By-Orbit | of A-Orbit
T = 2, To = 3
(9,9,9) 2.804
(5,15,15) 2.811 2.667 F
(6,18,18) 2.952 ¢
(14,7,14) 2.808 2.750 E .
(16,8,16) 2.919
(5,15,3) 2.504 2.139 f
(20,10,4) 2.895 2.546 G
r =r9 = 3
(7,7,12) 2.890
(8,7,7) 2.940 . F
E €
f
G
T = 2, T9 = 4
(5,10,10) 2.849 2.613
(5,11,11) 2.909 o F
(11,11,3) 2.904
(7,9,9) 2.929 E e
(5,15,3) 2.727 2.139
(7,14,3) 2.900 £
(20,10,3) 2.892 G
(5,20,4) 2.932
(36,9,4) 2.952
(6,12,4) 2.909
(5,30,6) 3.071
(5,9,45) 2.799 2.648
(45,9,5) 3,014
(6,9,15) 2.890

TABLE 2. Lengths of Bp-orbits.

type i (i = 1,2) if it connects the center to a vertex of
type i. We now divide the geodesic segments in 2 with
endpoints in interior points of the boundary edges into
mutually disjoint subsets as follows.

(1) A segment of type i (i = 1,2) connects two adjacent
edges of 0f) and intersects an inner edge of type i of
the canonical triangulation.

(2) A segment which does not pass through the center
and which intersects more than one inner edge is a
segment of type i (i = 1,2) if the first and the last

inner edge intersected is of type ¢ (i = 1,2).

A segment which is not of one of the types above
will be called a segment of type 12.

Using this terminology, we obtain from Corollary 3.5 that
the lift 4 to Q of a systole on S satisfies one of the fol-
lowing possibilities.

(I) # consists of an arbitrary segment of type ii (i = 1,2)
and possibly some additional segments of type j for
some j € {1,2}.

(IT) 4 consists of a string of edges of type 1 followed by
a string of edges of type 2.

(III) % consists of two edges of type 12 which separate
(possibly empty) strings of edges of type 1 from
(possibly empty) strings of edges of type 2.
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(G,F,E) length length illustration
of B1-Orbit | of A-Orbit
T = 1,7"2 =2
(11,11,11) 2.901
(9,6,18) 2.599 2.692 o
(12,8,24) 2.824 2.778
(20,10,30) 2.936 e
(21,7,21) 2.786 2.776
(27,9,27) 2.910 f
T = 1, To = 3
(7,9,9) 2.905
(5,10,10) 2.826 2.613 .
(6,12,12) 3.013
(5,20,20) 3.053
(16,8,19) 2.963
f
T = 1,7"2 =4
(11,11,3) 2.937
(10,10,4) 2.985 .
(5,10,10) 2.8882
(4,13,13) 2.905
(4,12,3) 2.518 1.992
(5,15,3) 2.835 2.139 f
(7,21,3) 3.087
(4,20,5) 2.956
(5,20,4) 3.070
(4,12,6) 2.791 2.432
(6,12,4) 2.978
(4,10,20) 2.717 2.546
(5,11,6) 2.919
(6,10,5) 2.904
L= 2, Ty = 3
(7,21,3) 3.145
(6,12,4) 3.026

TABLE 3. Lengths of Bi-orbits.



Hamenstadt and Koch: Systoles of a Family of Triangle Surfaces 269

We say that a geodesic is of type j (j = I,I1,11I) if
it admits a lift to 2 with the properties as for j above.
Notice that a geodesic may be of more than one type.

We determine the systoles of a given surface numer-
ically by computing the lengths of all closed geodesics
of type I,1I,I1I. By Lemma 4.1 there are only finitely
many such geodesics for each of these types. The geo-
desics of the shortest length from this family are the sys-
toles of our surface. For our computations, we use the
hyperboloid model of the hyperbolic plane. Unparame-
terized geodesics in this model correspond precisely to 2-
dimensional linear subspaces in R? which have nontrivial
intersection with the hyperboloid. Every such subspace
can be represented by a choice for its normal vector.
Using the hyperbolic cross product, we can determine
whether or not two distinct geodesics intersect. If they
do, we can compute the coordinates of their intersection
point again using the hyperbolic cross product.

Side identifications for a fundamental polygon 2 are
isometries of the hyperbolic plane. The length of the geo-
desic on S which corresponds to a side pairing ® equals
the translation length of ® along its unique invariant geo-
desic and is determined by the trace of ® as a linear map.
Namely, this translation length simply equals

arccosh 5

trace(®P) ‘

To compute the length of a geodesic whose lift ¥ to
Q consists of more than one segment we proceed as fol-
lows. Assume for simplicity that 4 consists of exactly
two segments. This lift then can be represented as z-y,
y'-z', where x,y € {1,...,2p} and ¥’ is the side which is
identified with ¥y, =’ is the side which is identified with
z. To compute the length of the geodesic z-y, y'-z’, we
first determine the isometry ® which maps the side 3’
onto the side y. Next we compute the isometry ¥ which
maps the side x onto the side " = ®(z'). The length of
the geodesic z-y, 3'-z’ can then be calculated as above
from the trace of ¥. With this method (combining the n
segments of the lift of the geodesic to one big segment),
we compute the length of any closed geodesic on S which
is represented as above.

In the same way, we can also compute the length of
billiard orbits in an arbitrary hyperbolic triangle. The
triangle is determined by its ordered triple of angles. The
orbit is given by a word in the edges of the triangle which
does not contain a subword made out of two identical
edges.

To determine the systoles of our surface, we have to
look in a systematic way for irreducible B-orbits which

lift to closed geodesics on S. For example, to find all the
geodesics of type I we check for every m € {1,2,3,...,p}
whether or not there exists a geodesic of type x € {11, 22}
connecting the sides 1 and 2m. We use that fact that for
a given m the segment 1 — (2m) is of the following type:

1 ifm=1
if2<m<p/2

22 ifp/2<ki<p-1

2 ifm=p

segment type =

We then attach to our initial segment at most p — 1
additional segments of type 1 or type 2 in a combinatorial
pattern prescribed by our side pairings until we obtain
a closed curve and compute its length with the above
procedure.

The computer program is available at www.math.uni-
bonn.de/ ursula
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