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A note of the Conjectured of Sierpinski on triangular

numbers1

Shichun Yang

Abstract

Recently, Bennett arononled that he proved a conjecture of Sier-

pinski on triangular numbers. In this paper, we firstly modified the

mistakes in reference [7] of Bennett and [8] of Chen and Fang, and

then using Störmer’s theorem of the solutions of Pell equation, and

a deep result of primitive divisor of Bilu, Hanrot and Voutier, we

proved that there do not exist four distinct triangular numbers in

geometric progression {AQr}∞r=1
. Therefore we totally solved the

question of Sierpinski on triangular numbers.
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1 Introduction

Let Q, N, P be the sets of all rational number, positive integers and primes.

Let n ∈ N, let Tn be the nth triangular number, then

(1) Tn =
1

2
n(n + 1)
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The study of triangular number problem is very active so far (see [1-5]).

For example, power number in triangular numbers, Fibonacci number in

triangular numbers, Lucas number in triangular numbers etc (see [2,3]).

The problem of finding three such three triangular numbers in geomet-

ric progression is readily reduced to finding solutions to a Pell equation,

implies that there are infinitely many such triples, the smallest of which

is (T1, T3, T8). In [5, D23] by Guy, it is stated that Sierpinski asked the

question as following

Question. Are there four distinct triangular numbers in geometric

progression?

Szymiczek conjecture that the answer to Sierpinski’s question is nega-

tive [6]. Recently, Bennett[7] proved that there do not exist four distinct

triangular numbers in geometric progression with the ratio being positive

integer. Moreover Chen and Fang[8] extend Bennett’s result to the rational

common ratio. But their proof is not complete in reference [7] and [8]. Be-

cause they supposed that the four distinct triangular are A,AQ,AQ2, AQ3,

where A ∈ N, Q ∈ Q. In fact, arbitrary four numbers in a geometric pro-

gression {AQr}∞r=1
, for example, AQ,AQ2, AQ3, AQ6, does not in geometric

progression.

In this paper, using Störmer’s theorem of the solutions of Pell equation,

and a deep result of primitive divisor of Bilu, Hanrot and Voutier([9,10]),

we completely solved the question of Sierpinski on triangular numbers. We

prove a more general result as follows.

Theorem. There do not exist four distinct triangular numbers in ge-

ometric progression {AQr}∞r=1
.

2 Preliminaries

We give the following lemma.
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Lemma 1. (Störmer theorem) If (x, y) is solution of the Pell equation

(2) x2 − Dy2 = 1, D, x, y ∈ N

and ε is the fundamental solution of (2), then every solution of (2) can be

expressed as x + y
√

D = εk, where k ∈ N. If y = y′, y′ |∗ D, where y′ |∗ D

denotes every prime factor of y′ dividing D, then

(3) x + y
√

D = ε.

Proof. See Lemma 2 of [1] p122-123.

A Lucas pair (α, β) is a pair of algebraic integers α, β, such as that α+β

and αβ are nor-zero co-prime rational integers, and
α

β
is not a root of unity.

Further, let s = α + β and t = αβ, then we have

α =
1

2
(s + λ

√
d), β = (s − λ

√
d)

where d = s2 − 4t, λ ∈ {1,−1}. For a given Lucas pair (α, β), one defines

the corresponding sequence of Lucas numbers by

un(α, β) =
αn − βn

α − β
, n = 1, 2, 3, . . .

Definition. Let p be a prime. The prime p is a primitive divisor of the

Lucas number un(α, β), if p | un(α, β) and p 6 |(α−β)2u1(α, β) · · · un−1(α, β).

Lemma 2. If 4 < n ≤ 30, n 6= 6, and the Lucas sequence whose nth term

has no primitive divisor, then

(1)n = 5, (s, d) = (1, 5), (1,−7), (2,−40), (1,−11), (1,−15), (12,−76),

(12,−1346);

(2)n = 7, (s, d) = (1,−7), (1,−19);

(3)n = 8, (s, d) = (1,−7), (2,−24);

(4)n = 10, (s, d) = (2,−8), (5,−3), (5,−47);

(5)n = 12, (s, d) = (1, 5), (1,−7), (1,−11), (2,−56), (1,−15), (1,−19);

(6)n = 13, (s, d) = (1,−7).
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(7)n = 18, (s, d) = (1,−7).

(8)n = 30, (s, d) = (1,−7).

Proof. See Theorem 1 of [5].

Lemma 3. For any integer n > 30, every n-th term of any Lucas sequence

has a primitive divisor.

Proof. See Theorem 1.4 of [10].

3 Proof of Theorem

Suppose that there exist four distinct triangular numbers Tx, Ty, Tz, Tw in a

geometric progression {AQr}∞r=1
, let Tx be smallest, and the ratio is Q =

q

p
,

gcd(q, p) = 1, q > p. Let 8Tx = A, then there exist 1 ≤ r1 < r2 < r3 ∈ N,

satisfy

(4) 8Ty = A

(

q

p

)r1

, 8Tz = A

(

q

p

)r2

, 8Tw = A

(

q

p

)r3

where x, y, z, w, q, p, A ∈ N. Because 8Tw is positive integers, we have pr3|A.

Let A = apr3 , a ∈ N. By (1) and (4) we have

(5) apr3 + 1 = u2, apr3−r1qr1 + 1 = v2, apr3−r2qr2 + 1 = w2, aqr3 + 1 = m2

where u, v, w,m ∈ N.

Case 1: p = 1

If there are two odd numbers among r1, r2 and r3. Without loss of

generality, we may assume that 2 6 |r1, 2 6 |r2, r2 > r1 ≥ 1. By (5) we have

aq is not a perfect square, then by (5) we get,

(6) aq(q
r1−1

2 )2 + 1 = v2, aq(q
r2−1

2 )2 + 1 = w2,

So Pell equation x2 − aqy2 = 1 have solutions (x, y) = (v, q
r1−1

2 ), (w, q
r2−1

2 ).

Since q |∗ aq, by Lemma 1, we get

(7) u + q
r1−1

2

√

Aq = ε, v + q
r2−1

2

√

Aq = ε
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where ε is the fundamental solution of x2 − aqy2 = 1. But r2 > r1, it is

impossible.

If there are two odd numbers among r1, r2 and r3, we may assume that

2 | r1, 2 | r2, r2 > r1 ≥ 2, by (5), we get the Pell equation x2 − ay2 = 1 have

solutions (x, y) = (u, q
r1

2 ), (v, q
r2

2 ). By (5), we have a + 1 = u2, then the

fundamental solution of x2−ay2 = 1 is ε = a+
√

a2 − 1. Let ε̄ = a−
√

a2 − 1,

thus there exist k1 < k2 ∈ N, satisfy that

(8) q
r1

2 =
εk1 − ε̄k1

ε − ε̄
, q

r2

2 =
εk2 − ε̄k2

ε − ε̄

Let α = a +
√

a2 − 1, β = a −
√

a2 − 1, then α + β and αβ are nor-zero

co-prime rational integers, and
α

β
is not a root of unity, then (α, β) is a

Lucas pair. Let the sequence of Lucas numbers is

(9) un = un(ε, ε̄) =
εn − ε̄n

ε − ε̄

by (8), we have

(10) uk1
(ε, ε̄) | uk2

(ε, ε̄)

then uk2
(a +

√
a2 − 1, a −

√
a2 − 1) has no primitive divisor. By Lemma 2,

Lemma 3, we have k2 = 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 18, 30. But by Lemma 2,

k2 can not be 5, 7, 8, 10, 12, 13, 18, 30, then k2 = 2, 3, 4, 6.

By (9), we get u1 = 1, u2 = 2a, u3 = 4a2 − 1, u4 = 8a3 − 4a, u5 =

16a4 − 12a2 + 1, u6 = 32a5 − 32a3 + 6a. If k2 = 2, then k1 = 1, but by

(5), (8), it is impossible. If k2 = 3, then k1 = 2, then by (5), (8), we have

q
r1

2 = 2a, q
r2

2 = 4a2 − 1, but gcd(2a, 4a2 − 1) = 1, it is also impossible.

If k2 = 4, then k1 = 3, 2. If k1 = 3, then gcd(u3, u4) = gcd(4a2−1, 8a3−
4a) = gcd(4a2 − 1, 2a) = 1, but by (10), it is impossible. If k1 = 2, by (10),

we have q
r1

2 = 2a, q
r2

2 = 8a3 − 4a, then q
3r1

2 − 2q
r1

2 = q
r2

2 , then

(11) qr1 − 2 = q
r2−r1

2
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then by (11), we get q = 2, r1 = 2, r2 = 4, then a = 1, but by (5), it is also

impossible.

If k2 = 6, then k1 = 5, 4, 3, 2. Since gcd(u6, u5) = gcd(32a5 − 32a3 +

6a, 16a4 − 12a2 + 1) = 1,
u6

u4

=
16a4 − 16a2 + 3

4a2 − 2
, but 2 6 |(16a4 − 16a2 + 3),

16a4 − 16a2 + 3

4a2 − 2
6∈ N, gcd

(

u6

u3

, u3

)

= gcd(8a3 − 6a, 4a2 − 1) = 1, then if

k1 = 5, 4, 3, by (8), it is impossible. If k1 = 2, gcd

(

u6

u2

, u2

)

= gcd(16a4 −
16a2 + 3, 2a) = 1, 3, then a = 3, by (8), it is also impossible.

Case 2: p > 1

If 2 6 |r3, 2 6 |r2, then by (5), we get

(12) aq(p
r3−r2

2 q
r2−1

2 )2 + 1 = w2, aq(q
r3−1

2 )2 + 1 = m2

we have aq is not a perfect square. Then Pell equation x2 − aqy2 = 1 have

solutions (x, y) = (w, p
r3−r2

2 q
r2−1

2 ), (m, q
r3−1

2 ). Since q
r3−1

2 |∗ aq, by Lemma

1, we have ε = m + q
r3−1

2

√
aq is the fundamental solution of Pell equation

x2 − aqy2 = 1, which is impossible, because m > w.

If 2 6 |r3, 2|r2, then by (5), we get

(13) ap(p
r3−1

2 )2 + 1 = u2, ap(p
r3−r2−1

2 q
r2

2 )2 + 1 = w2

Because ap is not a perfect square, then Pell equation x2 − apy2 = 1 have

solutions (x, y) = (u, p
r3−1

2 ), (w, p
r3−r2−1

2 q
r2

2 ). Since p
r3−1

2 |∗ ap, by Lemma

1, we have ε = u + p
r3−1

2

√
ap is the fundamental solution of Pell equation

x2 − apy2 = 1, let ε̄ = u − p
r3−1

2

√
ap , then there exist k ∈ N, satisfy that

(14) p
r3−r2−1

2 q
r2

2 =
εk − ε̄k

2
√

ap
=

εk − ε̄k

ε − ε̄
p

r3−1

2

But r2 > 1, gcd(p, q) = 1, which is impossible.

If 2|r3, 2 6 |rr2, then by (5), we get

(15) apq(p
r3−r1−1

2 q
r1−1

2 )2 + 1 = v2, apq(p
r3−r2−1

2 q
r2−1

2 )2 + 1 = w2
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Because apq is not a perfect square, then Pell equation x2 − apqy2 = 1 have

solutions (x, y) = (v, p
r3−r1−1

2 q
r1−1

2 ), (w, p
r3−r2−1

2 q
r2−1

2 ). Since q
r3−1

2 |∗ aq, by

Lemma 1, we have ε = v + p
r3−r1−1

2 q
r1−1

2

√
ap = w + p

r3−r2−1

2 q
r2−1

2 is the

fundamental solution of Pell equation x2 − apqy2 = 1, which is impossible.

If 2|r3, 2|r1r2, without loss of generality, we may assume that 2|r1, then

by (5), we get

(16) a(p
r3

2 )2 + 1 = u2, a(p
r3−r1

2 q
r1

2 )2 + 1 = v2, a(q
r3

2 )2 + 1 = m2

By (16) we have a is not a perfect square. Let ε1 = x0 +y0

√
a be the funda-

mental solution of Pell equation x2−ay2 = 1, then there exist k1, k2, k3 ∈ N,

satisfy that

(17)

p
r3

2 =
εk1

1
− ε̄k1

1

2
√

a
=

εk1

1
− ε̄k1

1

ε1 − ε̄1

y0, p
r3−r1

2 q
r1

2 =
εk2

1
− ε̄k2

1

ε1 − ε̄1

y0, q
r3

2 =
εk3

1
− ε̄k3

1

ε1 − ε̄1

y0

Where ε̄1 = x0 − y0

√
a, k1 < k2 < k3. But gcd(p, q) = 1, by (17) we have

y0 = 1, then x2

0
= a + 1, a = x2

0
− 1, so ε1 = x0 +

√

x2

0
− 1.

Since k3 > k2,
r1

2
≥ 1, q > p, then from (17) we obtain that uk3

(x0 +
√

x2

0
− 1, x0 −

√

x2

0
− 1) has no primitive divisor. Same method of consid-

eration as case 1, we get it is also impossible.

The proof is complete.
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