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For a scalar nonlinear delay differential equation Ṅ(t)= r(t)N(t)(K −N(h(t)))/
(K + s(t)N(g(t))), r(t) ≥ 0, K > 0, h(t) ≤ t, g(t) ≤ t and some generalizations
of this equation, we establish explicit oscillation and nonoscillation conditions.
Coefficient r(t) and delays are not assumed to be continuous.

1. Introduction

The delay logistic equation

Ṅ(t)= r(t)N(t)
(

1− N
(
h(t)

)
K

)
, h(t)≤ t, (1.1)

is known as Hutchinson’s equation, if r and K are positive constants and h(t)=
t− τ for a positive constant τ. Hutchinson’s equation has been investigated by
several authors (see, e.g., [13, 14, 18, 23]). Delay logistic equation (1.1) was stud-
ied by Gopalsamy and Zhang [7, 25] who gave sufficient conditions for the oscil-
lation and the nonoscillation of (1.1). Publications [1, 2, 3, 4, 5, 6, 10, 12, 15, 16,
17, 19, 22, 24] are devoted to various generalizations of logistic equation (1.1).

In 1963, Smith [20] proposed an alternative to the logistic equation for a
food-limited population

Ṅ(t)= rN(t)
K −N(t)
K + crN(t)

, t ≥ 0. (1.2)

Here N , r, and K are the mass of the population, the rate of increase with un-
limited food, and value of N at saturation, respectively. The constant 1/c is the
rate of replacement of mass in the population at saturation (this includes both
the replacement of metabolic loss and of dead organisms).
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In [8, 9, 11], Gopalsamy, Kulenovic, Ladas, Grove, and Qian considered the
autonomous delay food-limited equation

Ṅ(t)= rN(t)
K −N(t− τ)
K + crN(t− τ)

, t ≥ 0. (1.3)

So and Yu [21] investigated stability properties of the following nonlinear differ-
ential equation with a constant delay:

Ṅ(t)= r(t)N(t)
K −Nl(t− τ)

K + s(t)Nl(t− τ)
, t ≥ 0, (1.4)

which is a generalization of food-limited equations (1.2) and (1.3).
In this paper, we consider oscillation properties of a nonautonomous food-

limited equation with a nonconstant delay

Ṅ(t)= r(t)N(t)
K −N(h(t)

)
K + s(t)N

(
g(t)

) , t ≥ 0, h(t)≤ t, g(t)≤ t, (1.5)

which also generalizes (1.3). We compare oscillation properties of (1.5) and
some linear delay differential equations. As a corollary, we obtain explicit os-
cillation and nonoscillation conditions for (1.5). For the autonomous equation
(1.3), our conditions and the known ones in [8] coincide.

We also consider two generalizations of (1.5), the first one is (1.4) with a
nonconstant delay and the second one is (1.5) with several delays.

Our proof of the main result is based on some application of Schauder’s fixed-
point theorem which was employed for a generalized logistic equation in [4]. Ac-
cording to this method, the differential equation is transformed into an operator
equation

u= AuBu, (1.6)

where operator A is a monotone increasing operator and B is a monotone de-
creasing one. We prove that there exist two functions v, w, 0≤ v(t)≤w(t), such
that v(t) ≤ (Av)(t)(Bw)(t), w(t) ≥ (Aw)(t)(Bv)(t). Then operator Tu = AuBu
acts in the interval v(t)≤ u(t)≤w(t) and therefore, we can use Schauder’s fixed-
point theorem. Functionsw and v are the limits of two sequences {wn} and {vn},
respectively, and for the construction of the first approximation w1, we apply a
positive solution of some linear delay differential equation.

The paper is organized as follows. In Sections 2 and 3, we consider an equa-
tion which is obtained from (1.5) by the following substitution:

x(t)= N(t)
K

− 1. (1.7)

On the base of these results, in Section 4, we investigate generalized delay logistic
equation (1.5).
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2. Preliminaries

Consider a scalar delay differential equation

ẋ(t)=−r(t)x(h(t)
) 1 + x(t)

1 + s(t)
[
1 + x

(
g(t)

)] , t ≥ 0, (2.1)

under the following assumptions:

(A1) r(t) and s(t) are Lebesgue measurable locally essentially bounded func-
tions, r(t)≥ 0 and s(t)≥ 0,

(A2) h,g : [0,∞)→ R are Lebesgue measurable functions, h(t) ≤ t, g(t) ≤ t,
limt→∞h(t)=∞, and limt→∞ g(t)=∞.

Together with (2.1), we consider for each t0 ≥ 0 an initial value problem

ẋ(t)=−r(t)x(h(t)
) 1 + x(t)

1 + s(t)
[
1 + x

(
g(t)

)] , t ≥ t0, (2.2)

x(t)= ϕ(t), t < t0, x
(
t0
)= x0. (2.3)

We also assume that the following hypothesis holds:

(A3) ϕ : (−∞, t0)→R is a Borel measurable bounded function.

Definition 2.1. An absolutely continuous, in each interval [t0,b], function x :
R→R is called a solution of problem (2.2) and (2.3), if it satisfies (2.2) for almost
all t ∈ [t0,∞) and equalities (2.3) for t ≤ t0.

Equation (2.1) has a nonoscillatory solution if it has an eventually positive or
an eventually negative solution. Otherwise, all solutions of (2.1) are oscillatory.

We present here Lemma 2.2 which will be used in the proof of the main
results.

Consider the linear delay differential equation

ẋ(t) + r(t)x
(
h(t)

)= 0, t ≥ 0. (2.4)

Lemma 2.2 (see [12]). Let (A1) and (A2) hold for (2.4). Then the following hy-
potheses are equivalent:

(1) the differential inequality

ẋ(t) + r(t)x
(
h(t)

)≤ 0, t ≥ 0, (2.5)

has an eventually positive solution;
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(2) there exists t0 ≥ 0 such that the inequality

u(t)≥ r(t)exp
{∫ t

h(t)
u(s)ds

}
, t ≥ t0; u(t)= 0, t < t0, (2.6)

has a nonnegative locally integrable solution;
(3) equation (2.4) has a nonoscillatory solution.

If

lim
t→∞sup

∫ t
h(t)

r(s)ds <
1
e
, (2.7)

then (2.4) has a nonoscillatory solution. If

lim
t→∞ inf

∫ t
h(t)

r(s)ds >
1
e
, (2.8)

then all the solutions of (2.4) are oscillatory.

3. Oscillation conditions

In this section and Section 4, we assume that (A1), (A2), and (A3) hold and
consider only such solutions of (2.1) for which the following condition holds:

1 + x(t) > 0. (3.1)

We begin with the following lemma.

Lemma 3.1. Suppose

∫∞
0

r(t)
1 + s(t)

dt =∞ (3.2)

and x(t) is a nonoscillatory solution of (2.1). Then limt→∞ x(t)= 0.

Proof. Suppose first x(t) > 0, t ≥ t1. Then there exists t2 ≥ t1 such that

h(t)≥ t1, g(t)≥ t1, (3.3)

for t ≥ t2. Denote

u(t)=− ẋ(t)
x(t)

, t ≥ t2. (3.4)

Then u(t)≥ 0, t ≥ t2. Substitute

x(t)= x(t2)exp
{
−
∫ t
t2
u(s)ds

}
, t ≥ t2 (3.5)
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in (2.1). After some transformations, we have the following equation:

u(t)= r(t)
1 + s(t)

exp
{∫ t

h(t)
u(s)ds

}[1 + s(t)
][

1 + cexp
{− ∫ tt2 u(s)ds

}]
1 + s(t)

[
1 + cexp

{− ∫ g(t)
t2 u(s)ds

}] , (3.6)

where h(t)≤ t, g(t)≤ t, t ≥ t2, and c = x(t2) > 0.
Hence,

u(t)≥ r(t)
1 + s(t)

1 + s(t)
(1 + c)

(
1 + s(t)

) = r(t)
(1 + c)

(
1 + s(t)

) . (3.7)

Then, by (3.2),
∫∞
t2 u(t)dt =∞.

Now suppose −1 < x(t) < 0, t ≥ t1. Then there exists t2 ≥ t1 such that (3.3)
holds for t ≥ t2. Suppose u(t) is denoted by (3.4) and c = x(t2). Then u(t) ≥ 0,
−1 < c < 0. Substitute (3.5) into (2.1). Thus (3.6) yields

u(t)≥ r(t)
1 + s(t)

(1 + c)
(
1 + s(t)

)
1 + s(t)

= r(t)(1 + c)
1 + s(t)

. (3.8)

Then again
∫∞
t2 u(t)dt =∞.

Equation (3.5) implies limt→∞ x(t)= 0. �

Theorem 3.2. Suppose (3.2) holds and for some ε > 0, all solutions of the linear
equation

ẋ(t) + (1− ε)
r(t)

1 + s(t)
x
(
h(t)

)= 0 (3.9)

are oscillatory. Then all solutions of (2.1) are oscillatory.

Proof. First suppose x(t) is an eventually positive solution of (2.1). Lemma 3.1
implies that there exists t1 ≥ 0 such that 0 < x(t) < ε for t ≥ t1. We suppose (3.3)
holds for t ≥ t2 ≥ t1. For t ≥ t2, we have

[
1 + s(t)

](
1 + x(t)

)
1 + s(t)

[
1 + x

(
g(t)

)] ≥ 1 + s(t)
1 + s(t)(1 + ε)

≥ 1 + s(t)
(1 + ε)

(
1 + s(t)

) = 1
1 + ε

≥ 1− ε.
(3.10)

Equation (2.1) implies

ẋ(t) + (1− ε)
r(t)

1 + s(t)
x
(
h(t)

)≤ 0, t ≥ t2. (3.11)

Lemma 2.2 yields that (3.9) has a nonoscillatory solution. We have a contra-
diction.
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Now suppose −ε < x(t) < 0 for t ≥ t1 and (3.3) holds for t ≥ t2 ≥ t1. Then for
t ≥ t2

[
1 + s(t)

](
1 + x(t)

)
1 + s(t)

[
1 + x

(
g(t)

)] ≥
(
1 + s(t)

)
(1− ε)

1 + s(t)
= 1− ε. (3.12)

Hence, (3.9) has a nonoscillatory solution and we again obtain a contradiction
which completes the proof. �

Corollary 3.3. If

lim
t→∞ inf

∫ t
h(t)

r(τ)
1 + s(τ)

dτ >
1
e
, (3.13)

then all solutions of (2.1) are oscillatory.

Theorem 3.4. Suppose for some ε > 0 there exists a nonoscillatory solution of the
linear delay differential equation

ẋ(t) + (1 + ε)
r(t)

1 + s(t)
x
(
h(t)

)= 0. (3.14)

Then there exists a nonoscillatory solution of (2.1).

Proof. Lemma 2.2 implies that there exist t0 ≥ 0 and w0(t)≥ 0, t ≥ t0; w0(t)= 0,
t ≤ t0 such that

w0(t)≥ (1 + ε)
r(t)

1 + s(t)
exp

{∫ t
h(t)

w0(s)ds
}
. (3.15)

Suppose 0 < c < ε and consider two sequences:

wn(t)= r(t)exp
{∫ t

h(t)
wn−1(s)ds

} 1 + cexp
{− ∫ tt0 vn−1(s)ds

}
1 + s(t)

(
1 + cexp

{− ∫ g(t)
t0 wn−1(s)ds

}) ,

vn(t)= r(t)exp
{∫ t

h(t)
vn−1(s)ds

} 1 + cexp
{− ∫ tt0 wn−1(s)ds

}
1 + s(t)

(
1 + cexp

{− ∫ g(t)
t0 vn−1(s)ds

}) ,
(3.16)

where w0 was defined above and v0 ≡ 0. We have

w1(t)= r(t)
1 + s(t)

exp
{∫ t

h(t)
w0(s)ds

} (
1 + s(t)

)
(1 + c)

1 + s(t)
(
1 + cexp

{− ∫ g(t)
t0 w0(s)ds

})

≤ r(t)
1 + s(t)

exp
{∫ t

h(t)
w0(s)ds

}(
1 + s(t)

)
(1 + ε)

1 + s(t)
≤w0(t).

(3.17)

It is evident that v1(t)≥ v0(t), w0(t)≥ v0(t).
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Hence by induction,

0≤wn(t)≤wn−1(t)≤ ··· ≤w0(t), vn(t)≥ vn−1(t)≥ ··· ≥ v0(t)= 0,
(3.18)

and wn(t)≥ vn(t).
There exist pointwise limits of nonincreasing nonnegative sequence wn(t)

and of nondecreasing sequence vn(t). If we denote w(t) = limn→∞wn(t) and
v(t) = limn→∞ vn(t), then by the Lebesgue Convergence theorem, we conclude
that

w(t)= r(t)exp
{∫ t

h(t)
w(s)ds

} 1 + cexp
{− ∫ tt0 v(s)ds

}
1 + s(t)

(
1 + cexp

{− ∫ g(t)
t0 w(s)ds

}) ,

v(t)= r(t)exp
{∫ t

h(t)
v(s)ds

} 1 + cexp
{− ∫ tt0 w(s)ds

}
1 + s(t)

(
1 + cexp

{− ∫ g(t)
t0 v(s)ds

}) .
(3.19)

We fix b ≥ t0 and define operator T : L∞[t0,b] →: L∞[t0,b] by the following
equality:

(Tu)(t)= r(t)exp
{∫ t

h(t)
u(s)ds

} 1 + cexp
{− ∫ tt0 u(s)ds

}
1 + s(t)

(
1 + cexp

{− ∫ g(t)
t0 u(s)ds

}) , (3.20)

where L∞[t0,b] is the space of all essentially bonded on [t0,b] functions with the
usual norm.

For every function u from the interval v ≤ u ≤ w, we have v ≤ Tu ≤ w. The
result of [4, Lemma 3] implies that operatorT is a compact operator on the space
L∞[t0,b]. Then by Schauder’s fixed-point theorem there exists a nonnegative so-
lution of equation u= Tu.

Denote

x(t)=


cexp

{
−
∫ t
t0
u(s)ds

}
, t ≥ t0,

0, t < t0.
(3.21)

Then x(t) is a nonoscillatory solution of (2.1) which completes the proof. �

Corollary 3.5. If

lim
t→∞sup

∫ t
h(t)

r(τ)
1 + s(τ)

dτ <
1
e
, (3.22)

then (2.1) has a nonoscillatory solution.
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4. Main results

Now consider the delay logistic equation (1.5) where the parameters of this equa-
tion satisfy conditions (A1) and (A2), K > 0, and the initial function ψ satisfies
(A3). There exists a unique solution of (1.5) with the initial condition

N(t)= ψ(t), t < t0, N
(
t0
)= y0. (4.1)

In this section, we assume that the following additional condition holds:

(A4) y0 > 0, ψ(t)≥ 0, t < t0.

Then as in the autonomous case [8, 12] the solution of (1.5) and (4.1) is positive.
A positive solution N of (1.5) is said to be oscillatory about K if there ex-

ists a sequence tn, tn →∞, such that N(tn)−K = 0, n = 1,2, . . . ; N is said to be
nonoscillatory about K if there exists t0 ≥ 0 such that |N(t)−K| > 0 for t ≥ t0.
A solution N is said to be eventually positive (eventually negative) about K if
N −K is eventually positive (eventually negative).

Suppose N is a positive solution of (1.5) and define x as x =N/K − 1. Then x
is a solution of (2.1) such that 1 + x > 0.

Hence, oscillation (or nonoscillation) of N about K is equivalent to oscilla-
tion (nonoscillation) of x.

By applying Theorems 3.2 and 3.4, we obtain the following results for (1.5).

Theorem 4.1. Suppose (3.2) holds and for some ε > 0, all solutions of the linear
equation

ẋ(t) + (1− ε)
r(t)

1 + s(t)
x
(
h(t)

)= 0 (4.2)

are oscillatory. Then all solutions of (1.5) are oscillatory about K .

Theorem 4.2. Suppose for some ε > 0 there exists a nonoscillatory solution of the
linear delay differential equation

ẋ(t) + (1 + ε)
r(t)

1 + s(t)
x
(
h(t)

)= 0. (4.3)

Then there exists a nonoscillatory about K solution of (1.5).

Corollary 4.3. If

lim
t→∞ inf

∫ t
h(t)

r(τ)
1 + s(τ)

dτ >
1
e
, (4.4)
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then all solutions of (1.5) are oscillatory about K . If

lim
t→∞sup

∫ t
h(t)

r(τ)
1 + s(τ)

dτ <
1
e
, (4.5)

then (1.5) has a nonoscillatory about K solution.

Now consider a generalized delay food-limited equation

Ṅ(t)= r(t)N(t)
K −N(h(t)

)∣∣N(h(t)
)∣∣l−1

K + s(t)N
(
g(t)

)∣∣N(g(t)
)∣∣l−1 , (4.6)

where l > 0 and for the other parameters conditions (A1) and (A2) hold.
After the substitution y(t) = N(t)|N(t)|l−1, (4.6) turns into the following

one:

ẏ(t)= lr(t)y(t)
K − y

(
h(t)

)
K + s(t)y

(
g(t)

) . (4.7)

It is easy to see that (4.6) has a nonoscillatory about K1/l solution if and only if
(4.7) has a nonoscillatory about K solution.

For (4.7), Theorems 4.1, 4.2 and their corollary can be applied. Hence, we
have the following results.

Theorem 4.4. Suppose (3.2) holds and for some ε > 0, all solutions of the linear
equation

ẋ(t) + (1− ε)
lr(t)

1 + s(t)
x
(
h(t)

)= 0 (4.8)

are oscillatory. Then all solutions of (4.6) are oscillatory about K1/l.

Theorem 4.5. Suppose for some ε > 0 there exists a nonoscillatory solution of lin-
ear delay differential equation

ẋ(t) + (1 + ε)
lr(t)

1 + s(t)
x
(
h(t)

)= 0. (4.9)

Then there exists a nonoscillatory about K1/l solution of (4.6).

Corollary 4.6. If

lim
t→∞ inf

∫ t
h(t)

lr(τ)
1 + s(τ)

dτ >
1
e
, (4.10)
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then all solutions of (4.6) are oscillatory about K1/l. If

lim
t→∞sup

∫ t
h(t)

lr(τ)
1 + s(τ)

dτ <
1
e
, (4.11)

then there exists a nonoscillatory about K1/l solution of (4.6).

Now consider a food-limited equation with several delays

Ṅ(t)=
m∑
k=1

rk(t)N(t)
K −N(hk(t)

)
K + sk(t)N

(
gk(t)

) , (4.12)

where the parameters of this equation satisfy conditions (A1) and (A2), K > 0,
and the initial function ψ satisfies (A3).

Similar to the case m= 1, the following generalizations of Theorems 4.1 and
4.2 can be obtained.

Theorem 4.7. Suppose (3.2) holds and for some ε > 0 all solutions of the linear
equation

ẋ(t) + (1− ε)
m∑
k=1

rk(t)
1 + sk(t)

x
(
hk(t)

)= 0 (4.13)

are oscillatory. Then all solutions of (4.12) are oscillatory about K .

Theorem 4.8. Suppose for some ε > 0 there exists a nonoscillatory solution of the
linear delay differential equation

ẋ(t) + (1 + ε)
m∑
k=1

rk(t)
1 + sk(t)

x
(
h(t)

)= 0. (4.14)

Then there exists a nonoscillatory about K solution of (4.12).

Corollary 4.9. If

lim
t→∞ inf

m∑
k=1

∫ t
maxhk(t)

rk(τ)
1 + sk(τ)

dτ >
1
e
, (4.15)

then all solutions of (4.12) are oscillatory about K . If

lim
t→∞sup

m∑
k=1

∫ t
minhk(t)

rk(τ)
1 + sk(τ)

dτ <
1
e
, (4.16)

then (4.12) has a nonoscillatory about K solution.
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