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We study a sequence of generalized projections in a reflexive, smooth, and strictly
convex Banach space. Our result shows that Mosco convergence of their ranges
implies their pointwise convergence to the generalized projection onto the limit
set. Moreover, using this result, we obtain strong and weak convergence of resol-
vents for a sequence of maximal monotone operators.

1. Introduction

Let C be a nonempty closed convex subset of a Hilbert space H . For an arbitrary
point x of H , consider the set {z ∈ C : ‖x− z‖ =miny∈C ‖x− y‖}. It is known
that this set is always a singleton. Let PC be a mapping from H onto C satisfying

∥∥x−PCx
∥∥=min

y∈C
‖x− y‖. (1.1)

Such a mapping PC is called the metric projection. The metric projection has the
following important property: x0 = PCx if and only if 〈x− x0,x0− y〉 ≥ 0, for all
y ∈ C.

If C is a nonempty closed convex subset of a Banach space E whose norm is
Gâteaux differentiable, then the metric projection PC has the following property:
x0 = PCx if and only if

〈
J
(
x− x0

)
,x0− y

〉≥ 0 ∀y ∈ C, (1.2)

where J is a normalized duality mapping from E to E∗. Likewise, if QC is a surjec-
tive sunny nonexpansive retraction on a smooth Banach space E, then x0 =QCx
if and only if

〈
x− x0, J

(
x0− y

)〉≥ 0 ∀y ∈ C. (1.3)

Copyright © 2003 Hindawi Publishing Corporation
Abstract and Applied Analysis 2003:10 (2003) 621–629
2000 Mathematics Subject Classification: 41A65, 47H05, 46B20
URL: http://dx.doi.org/10.1155/S1085337503207065

http://dx.doi.org/10.1155/S1085337503207065


622 Convergence theorems for generalized projections

Notice that QC is identical with the metric projection if E is a Hilbert space.
Let {Cn} be a sequence of nonempty closed convex subsets of E and suppose

that {Cn} converges to C0 in a sense of Mosco [4]. In [7], Tsukada proved that
{PCn} converges weakly to PC0 if E is reflexive and strictly convex. Moreover, if E
has the Kadec-Klee property, the convergence is in the strong topology. On the
other hand, Kimura and Takahashi [3] proved the following. Suppose that each
Cn is a sunny nonexpansive retract, E is a reflexive Banach space with a uniformly
Gâteaux differentiable norm, and every weakly compact convex subset of E has
the fixed-point property for nonexpansive mappings. If the duality mapping J is
weakly sequentially continuous, then QCn converges strongly to QC0 .

One of the purposes of this paper is to obtain an analogous result for a gen-
eralized projection ΠC which was defined by Alber [1]. A weak convergence the-
orem is in Section 3 and a strong convergence theorem appears in Section 4.

In Section 5, we discuss sequences of maximal monotone operators. For a sin-
gle operator A with A−10 �= ∅, it is known that, for every x∗ ∈ E∗, (J + λA)−1x∗

converges strongly to π∗A−10x
∗ as λ→∞ when E is smooth and E∗ has a Fréchet

differentiable norm [5]. The mapping π∗A−10 is defined by π∗A−10 =ΠA−10 ◦ J−1. Us-
ing convergence theorems shown in Sections 3 and 4, we obtain a result which
replaces a single operator A with a sequence of operators {An}.

2. Preliminaries

Let E be a real Banach space with its dual E∗. We denote by J the normalized
duality mapping from E to E∗. If E is smooth, reflexive, and strictly convex, J is
a bijection. Let C be a nonempty closed convex subset of E. Define V : E×E→R

by

V(x, y)= ‖x‖2− 2
〈
J(x), y

〉
+‖y‖2. (2.1)

Suppose that E is smooth, reflexive, and strictly convex. Then, for arbitrarily
fixed x ∈ E, there exists a unique point yx ∈ C such that

V
(
x, yx

)=min
y∈C

V(x, y). (2.2)

Following the notation of [1], we let ΠC(x) = yx and call ΠC a generalized pro-
jection onto C. Notice that if E is a Hilbert space, then ΠC is identical with the
metric projection onto C.

The following is a well-known result. See, for example, [1, 5].

Proposition 2.1. Let C be a nonempty closed convex subset of a smooth Banach
space E and x ∈ E. Then, x0 =ΠCx if and only if

〈
J(x)− J

(
x0
)
,x0− y

〉≥ 0 ∀y ∈ C. (2.3)
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Using a generalized projection ΠC, we define a mapping π∗C from E∗ to E by

π∗C =ΠC ◦ J−1. (2.4)

From Proposition 2.1, we obtain that, for x∗ ∈ E∗, x0 = π∗C x∗ if and only if

〈
x∗ − J

(
x0
)
,x0− y

〉≥ 0 ∀y ∈ C. (2.5)

Let E be a Banach space and let C1,C2,C3, . . . be a sequence of weakly closed
subsets of E. We denote by s-LinCn the set of limit points of {Cn}, that is, x ∈
s-LinCn if and only if there exists {xn} ⊂ E such that {xn} converges strongly to x
and that xn ∈ Cn for all n∈N. Similarly, we denote by w-LinCn the set of cluster
points of {Cn}; y ∈ w-LinCn if and only if there exists {yni} such that {yni}
converges weakly to y and that yni ∈ Cni for all i∈N. Using these definitions, we
define the Mosco convergence [4] of {Cn}. If C0 satisfies

s-Li
n
Cn = C0 = w-Ls

n
Cn, (2.6)

we say that {Cn} is a Mosco convergent sequence to C0 and write

C0 = M-lim
n→∞Cn. (2.7)

Notice that the inclusion s-LinCn ⊂ w-LsnCn is always true. Therefore, to show
the existence of M-limn→∞Cn, it is sufficient to prove w-LsnCn ⊂ s-LinCn. For
more details, see [2].

3. Weak convergence of a sequence of generalized projections

In this section, we prove a pointwise weak convergence theorem for a sequence of
generalized projections. The sequence of ranges of these projections is assumed
to converge in the sense of Mosco.

Theorem 3.1. Let E be a smooth, reflexive, and strictly convex Banach space and C
a nonempty closed convex subset of E. Let C1,C2,C3, . . . be nonempty closed convex
subsets of C. If C0 = M-limn→∞Cn exists and nonempty, then C0 is a closed convex
subset of C and, for each x ∈ C, ΠCn(x) converges weakly to ΠC0 (x).

Proof. It is easy to prove that C0 is closed and convex if Cn is a closed convex
subset of C for each n ∈ N. Fix x ∈ C. For the sake of simplicity, we write xn
instead of ΠCn(x) for n∈N. Since C0 = M-limn→∞Cn, we have, for each y ∈ C0

there exists {yn} ⊂ E such that yn→ y as n→∞ and that yn ∈ Cn for each n∈N.
From Proposition 2.1, we have

〈
J(x)− J

(
xn
)
,xn− yn

〉≥ 0. (3.1)
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Hence, we obtain

0≤ 〈J(x)− J
(
xn
)
,xn− x

〉
+
〈
J(x)− J

(
xn
)
,x− yn

〉
≤−(‖x‖−∥∥xn∥∥)2

+
(‖x‖+

∥∥xn∥∥)∥∥x− yn
∥∥, (3.2)

thus

(‖x‖−∥∥xn∥∥)2 ≤ (‖x‖+
∥∥xn∥∥)∥∥x− yn

∥∥. (3.3)

Assume that {xn} is unbounded. Then there exists a subsequence {xni} of {xn}
such that limi→∞‖xni‖ = ∞. From yn → y and (3.3), we get a contradiction.
Hence {xn} is bounded.

Since {xn} is bounded, there exists a subsequence, again denoted by {xn},
such that it converges weakly to x0 ∈ C. From the definition ofC0, we get x0 ∈ C0.

Now, we prove that ΠC0 (x)= x0. From lower semicontinuity of the norm, we
have

liminf
n→∞ V

(
x,xn

)= liminf
n→∞

(
‖x‖2− 2

〈
J(x),xn

〉
+
∥∥xn∥∥2

)
≥ ‖x‖2− 2

〈
J(x),x0

〉
+
∥∥x0

∥∥2

=V
(
x,x0

)
.

(3.4)

On the other hand, we get

liminf
n→∞ V

(
x,xn

)≤ liminf
n→∞ V

(
x, yn

)=V(x, y), (3.5)

that is,

V
(
x,x0

)=min
y∈C0

V(x, y). (3.6)

Hence we get ΠC0 (x)= x0.
According to our consideration above, each sequence {xn} has, in turn, a sub-

sequence which converges weakly to the unique point ΠC0 (x). Therefore, the se-
quence {xn} converges weakly to ΠC0 (x). �

4. Strong convergence of a sequence of generalized projections

A Banach space E is said to have the Kadec-Klee property if a sequence {xn} of
E satisfying that w-limn→∞ xn = x0 and limn→∞‖xn‖ = ‖x0‖ converges strongly
to x0. It is known that E∗ has a Fréchet differentiable norm if and only if E is
reflexive, strictly convex, and has the Kadec-Klee property; see, for example, [6].

Theorem 4.1. Let E be a smooth Banach space such that E∗ has a Fréchet differ-
entiable norm. Let C be a nonempty closed convex subset of E. Let C1,C2,C3, . . . be
nonempty closed convex subsets of C. If C0 = M-limn→∞Cn exists and nonempty,
then for each x ∈ C, ΠCn(x) converges strongly to ΠC0 (x).
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Proof. Fix x ∈ C arbitrarily. We write xn =ΠCn(x) and x0 =ΠC0 (x). By Theorem
3.1, we obtain w-limn→∞ xn = x0. Since E∗ has a Fréchet differentiable norm, E
has the Kadec-Klee property. Therefore, it is sufficient to prove that ‖xn‖→ ‖x0‖
as n→∞. Since x0 ∈ C0, there exists a sequence {yn} ⊂ C such that yn → x0 as
n→∞ and yn ∈ Cn for each n∈N. It follows that

V
(
x,x0

)≤ liminf
n→∞ V

(
x,xn

)≤ limsup
n→∞

V
(
x,xn

)
≤ lim

n→∞V
(
x, yn

)≤V
(
x,x0

)
.

(4.1)

Hence we obtain V(x,x0)= limn→∞V(x,xn). Since 〈J(x),xn〉 converges to 〈J(x),
x0〉, we get

lim
n→∞

∥∥xn∥∥= ∥∥x0
∥∥. (4.2)

Using the Kadec-Klee property of E, we obtain that {xn} converges strongly to
x0. �

On the other hand, the following theorem shows that the pointwise strong
convergence of {ΠCn(x)} implies the Mosco convergence of {Cn} under certain
conditions.

Theorem 4.2. Let E be a reflexive and strictly convex Banach space with a Fréchet
differentiable norm, and C a nonempty closed convex subset of E. Let C0,C1,C2, . . .
be nonempty closed convex subsets of C. Suppose that

lim
n→∞ΠCn(x)=ΠC0 (x) ∀x ∈ C. (4.3)

Then

C0 = M-lim
n→∞Cn. (4.4)

Proof. For the sake of simplicity, we write Πn instead of ΠCn for n∈N∪{0}. For
an arbitrary x ∈ C0, we have

x =Π0(x)= lim
n→∞Πn(x) (4.5)

and Πn(x) ∈ Cn for all n ∈ N. This means that x ∈ s-LinCn and hence we have
C0 ⊂ s-LinCn. Next, we show that w-LsnCn ⊂ C0. For any z ∈ w-LsnCn, there
exists {zi} such that {zi} converges weakly to z as i→∞ and that zi ∈ Cni for
each i∈N. Using Proposition 2.1, we have

〈
J(z)− J

(
Πi(z)

)
,Πi(z)− zi

〉≥ 0. (4.6)

Since E has a Fréchet differentiable norm, the duality mapping J is strongly con-
tinuous. Thus we get

〈
J(z)− J

(
Π0(z)

)
,Π0(z)− z

〉≥ 0. (4.7)
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By the strict convexity of E, J is strictly monotone. Hence z =Π0(z)∈ C0. This
means that w-LsnCn ⊂ C0, and consequently, we obtain C0 = M-limn→∞Cn. �

5. Convergence of resolvents for a sequence of maximal
monotone operators

In this section, we consider a set-valued mapping called monotone operator. A
set-valued mapping T from X into Y is denoted by T : X ⇒ Y .

Let E be a real Banach space. A set-valued mapping A : E ⇒ E∗ is called a
monotone operator if, for any x, y ∈ E and x∗, y∗ ∈ E∗ with x∗ ∈ Ax and y∗ ∈
Ay,

〈
x∗ − y∗,x− y

〉≥ 0. (5.1)

If a monotone operator A has no monotone extension, then A is said to be max-
imal monotone.

For a maximal monotone operator A and a real number λ with 0 < λ <∞, we
define a set-valued mapping Jλ : E∗ ⇒ E by

Jλ : E∗ � x∗ �−→ (J + λA)−1x∗ ⊂ E. (5.2)

It is known that Jλ is a single-valued mapping if E is reflexive, smooth, and
strictly convex.

First we show the following lemma.

Lemma 5.1. Let E be a reflexive Banach space and C a nonempty closed convex
subset of E. Let {xn} be a sequence of E converging weakly to x0 ∈ C. For a sequence
{Cn} of nonempty closed convex subsets of E such that M-limn→∞Cn = C, it follows
that

C = M-lim
n→∞co

({
xn
}∪Cn

)
. (5.3)

Proof. We write Dn = co({xn}∪Cn) for all n∈N. Fix y ∈ w-LsnDn. Then there
exist {yi ∈Dni}, {zi ∈ Cni}, and {αi} ⊂ [0,1] such that

yi = αixni +
(
1−αi

)
zi; w-lim

i→∞
yi = y;

w-lim
i→∞

zi = z0 ∈ C; lim
i→∞

αi = α0 ∈ [0,1].
(5.4)
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Hence, we have y = α0x0 + (1− α0)z0 ∈ C and therefore w-LsnDn ⊂ C. On the
other hand, it is obvious that

C ⊂ s-Li
n
Cn ⊂ s-Li

n
Dn. (5.5)

Thus we have C = M-limn→∞Dn = M-limn→∞ co({xn}∪Cn). �

Theorem 5.2. Let E be a reflexive, smooth, and strictly convex Banach space and
let {A0,A1,A2, . . .} be a sequence of maximal monotone operators from E into E∗.
Suppose that M-limn→∞A−1

n 0=A−1
0 0 �= ∅ and that

w-Ls
n
A−1
n y∗n ⊂A−1

0 0 (5.6)

for any {y∗n } ⊂ E∗, converging strongly to 0. For x∗ ∈ E∗ and {λn} ∈]0,∞[ with
λn →∞, define a single-valued mapping Jλn(x∗) = (J + λnAn)−1x∗. Then Jλnx

∗

converges weakly to π∗A−1
0 0x

∗.

Proof. For the sake of simplicity, we write xn= Jλnx
∗ for each n∈N. Since J(xn) +

λnAnxn � x∗, there exists w∗n ∈ Anxn such that

J
(
xn
)

+ λnw
∗
n = x∗ ∀n∈N. (5.7)

From the assumption, there exists a bounded sequence {un} such that un ∈A−1
n 0

for each n∈N. Since An is monotone, we have
〈
J
(
xn
)− J

(
un
)
,xn−un

〉= 〈x∗ − λnw
∗
n − J

(
un
)
,xn−un

〉
= 〈x∗ − J

(
un
)
,xn−un

〉− λn
〈
w∗n ,xn−un

〉
≤ 〈x∗ − J

(
un
)
,xn−un

〉
.

(5.8)

Thus we get

∥∥xn∥∥2− 2
∥∥xn∥∥∥∥un∥∥+

∥∥un∥∥2 ≤ ∥∥x∗ − J
(
un
)∥∥(∥∥xn∥∥+

∥∥un∥∥). (5.9)

Suppose that {xn} is not bounded. Then there exists a subsequence {xni} of {xn}
such that ‖xni‖→∞. It follows that

∥∥xni∥∥− 2
∥∥uni∥∥+

∥∥uni∥∥2∥∥xni∥∥ ≤ ∥∥x∗ − J(u)
∥∥(1 +

∥∥uni∥∥∥∥xni∥∥
)

(5.10)

for a sufficiently large number i ∈ N. As i→∞, we obtain +∞≤ ‖x∗ − J(u)‖ <
+∞. This is a contradiction. Hence we have that {xn} is bounded.

Fix an arbitrary subsequence {xni} of {xn} converging weakly to x0. Since
J(xni) + λniAnixni � x∗, we have

xni ∈A−1
ni

(
x∗ − J

(
xni
)

λni

)
. (5.11)
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Using (5.6), we get

x0 = w-lim
i→∞

xni ∈ M-lim
n→∞A

−1
n 0. (5.12)

Let Ci = co({xni} ∪ A−1
ni 0) for each i ∈ N. Then Lemma 5.1 implies that

A−1
0 0= M-limi→∞A−1

ni 0= M-limi→∞Ci. Now we fix i∈N. For any v ∈ Ci, there
exist α ∈ [0,1] and u ∈ A−1

ni 0 such that v = αxni + (1− α)u. Since Ani is mono-
tone, we obtain

〈
x∗ − J

(
xni
)

λni
− 0,xni −u

〉
≥ 0. (5.13)

This implies that 〈x∗ − J(xni),xni − v〉 ≥ 0. Hence, we have xni = π∗Ci
x∗. Using

Theorem 3.1, we obtain w-limi→∞ xni = π∗A−1
0 0x

∗. Since {xni} is an arbitrary
weakly convergent subsequence of a bounded sequence {xn}, it follows that

w-lim
n→∞xn = π∗A−1

0 0x
∗. (5.14)

This completes the proof. �

Assuming that E has the Kadec-Klee property, we obtain a strong convergence
theorem. The proof is almost the same as the previous one.

Theorem 5.3. Let E be a smooth Banach space and suppose that E∗ has a Fréchet
differentiable norm. Let {A0,A1,A2, . . .}, x∗, {λn}, {Jλn} be the same as Theorem 5.2
and suppose that (5.6) holds. Then Jλnx

∗ converges strongly to π∗A−1
0 0x

∗.

We can apply Theorems 5.2 and 5.3 to a single maximal monotone operator
A with A−10 �= ∅. Namely, for an arbitrary sequence {y∗n } of E∗ converging to
0, it holds that

w-Ls
n
A−1y∗n ⊂ A−10. (5.15)

Indeed, for x ∈ w-LsnA−1y∗n , there exists a sequence {xi} such that xi ∈ A−1y∗ni
for each i ∈ N and that xi converges weakly to x. For any v ∈ E and v∗ ∈ E∗

satisfying v∗ ∈ Av, we have

〈
y∗ni − v∗,xni − v

〉≥ 0. (5.16)

As i→∞, it follows that

〈
0− v∗,x− v

〉≥ 0 (5.17)

and hence x ∈ A−10.
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