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We consider the minimization problem f (x)→min, x ∈ K , where K is a closed
subset of an ordered Banach spaceX and f belongs to a space of increasing lower
semicontinuous functions on K . In our previous work, we showed that the com-
plement of the set of all functions f , for which the corresponding minimization
problem has a solution, is of the first category. In the present paper we show that
this complement is also a σ-porous set.

1. Introduction

The study of a generic existence of solutions in optimization has recently been
a rapidly growing area of research (see [1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15]
and the references mentioned there). Instead of considering the existence of so-
lutions for a single cost function, we study it for a space of all such cost functions
equipped with an appropriate complete uniformity and show that a solution ex-
ists for most of these functions. Namely, we show that in the space of functions,
there exists a subset which is a countable intersection of open everywhere dense
sets such that for each cost function in this subset, the corresponding minimiza-
tion problem has a unique solution. This approach allows us to establish the ex-
istence of solutions of minimization problems without restrictive assumptions
on the functions and on their domains.

Let K be a nonempty closed subset of a Banach ordered space (X,‖ · ‖,≥). A
function f : K →R1∪{+∞} is called increasing if

f (x)≤ f (y) ∀x, y ∈ K such that x ≤ y. (1.1)

Increasing functions are considered in many models of mathematical econom-
ics. As a rule, both utility and production functions are increasing with respect
to natural order relations.
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In this paper, we study the existence of a solution of the minimization prob-
lem

f (x)−→min, x ∈ K, (1.2)

where f : K → R1 ∪ {+∞} is an increasing lower semicontinuous function. In
[10, 12], it was established the generic existence of solutions of problem (1.2)
for certain classes of increasing lower semicontinuous functions f . Note that the
perturbations which are usually used to obtain a generic existence result are not
suitable for these classes since they break the monotonicity. In [10], we proposed
the new kind of perturbations which allowed us to establish the generic existence
of solutions for certain classes of increasing lower semicontinuous functions. In
the present paper, we show that the complement of the set of all functions f , for
which the corresponding minimization problem has a solution, is not only of
the first category but also σ-porous.

Before we continue, we briefly recall the concept of porosity [2, 4]. As a matter
of fact, several different notions of porosity have been used in the literature. In
the present paper, we will use porosity with respect to a pair of metrics, a concept
which was introduced in [15].

When (Y,d) is a metric space, we denote by Bd(y,r) the closed ball of center
y ∈ Y and radius r > 0. Assume that Y is a nonempty set and d1,d2 : Y ×Y →
[0,∞) are two metrics which satisfy d1(x, y)≤ d2(x, y) for all x, y ∈ Y . A subset
E ⊂ Y is called porous in Y with respect to the pair (d1,d2) (or just porous in Y
if the pair of metrics is understood) if there exist α∈ (0,1) and r0 > 0 such that
for each r ∈ (0, r0] and each y ∈ Y , there exists z ∈ Y for which d2(z, y)≤ r and
Bd1 (z,αr)∩E =∅. A subset of the space Y is called σ-porous in Y with respect
to (d1,d2) (or just σ-porous in Y if the pair of metrics is understood) if it is a
countable union of porous (with respect to (d1,d2)) subsets of Y . Note that if
d1 = d2, then by [15, Proposition 1.1] our definitions reduce to those in [2, 4].
We use porosity with respect to a pair of metrics because in applications a space
is usually endowed with a pair of metrics and one of them is weaker than the
other. Note that porosity of a set with respect to one of these two metrics does
not imply its porosity with respect to the other metric. However, it is shown
in [15, Proposition 1.2] that if a subset E ⊂ Y is porous in Y with respect to
(d1,d2), then E is porous in Y with respect to any metric which is weaker than
d2 and stronger than d1.

We obtain our main results as a realization of a general variational principle
which is established in Section 3.

2. Well-posedness of optimization problems with increasing cost functions

In this paper, we use the following notations and definitions. Let (X,‖ · ‖,≥) be a
Banach ordered space and X+ = {x ∈ X : x ≥ 0} the cone of its positive elements.
Assume that X+ is a closed convex cone such that ‖x‖ ≤ ‖y‖ for each x, y ∈ X+

satisfying x ≤ y. We assume that the cone X+ has the following property:
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(A) if {xi}∞i=1 ⊂ X , xi+1 ≤ xi, for all integers i≥ 1 and sup{‖xi‖ : i= 1,2, . . .} <
∞, then the sequence {xi}∞i=1 converges.

The property (A) is well known in the theory of ordered Banach spaces (see,
e.g., [7, 10, 11]). Recall that the cone X+ has the property (A) if the space X is re-
flexive. The property (A) also holds for the cone of nonnegative functions (with
respect to usual order relation) in the space L1 of all integrable on a measure
space functions.

Assume that K is a closed subset of X . For each function f : Y → [−∞,+∞],
where Y is a nonempty set, we define

dom( f )= {y ∈ Y :
∣∣ f (y)

∣∣ <∞}, inf( f )= inf
{
f (y) : y ∈ Y}. (2.1)

We use the convention that∞−∞= 0,∞/∞= 1, and ln(∞)=∞.
Assume that � is a nonempty set and dw,ds : �×�→ [0,∞) are two metrics

which satisfy dw(a,b)≤ ds(a,b) for all a,b ∈�. We assume that the metric space
(�,ds) is complete. The topology induced in � by the metric ds is called the
strong topology and the topology induced in � by the metric dw is called the
weak topology.

We assume that with every a∈� a lower semicontinuous function fa : K →
[−∞,+∞] is associated and fa is not identically∞ for all a∈�.

Let a∈�. We say that the minimization problem for fa on K is strongly well
posed with respect to (�,dw) if the following assertions hold:

(1) the infimum inf( fa) is finite and attained at a point x(a) ∈ K such that
for each x ∈ K satisfying fa(x)= inf( fa), the inequality x ≤ x(a) holds;

(2) for any ε > 0, there exist δ > 0 and a neighborhood U of a in � with the
weak topology such that for each b ∈ U , inf( fb) is finite; and if x ∈ K
satisfies fb(x)≤ inf( fb) + δ, then | fa(x(a))− fb(x)| < ε and there is u∈ X
such that ‖u‖ < ε and x ≤ x(a) +u.

Note that if X+ = {0}, then our definition reduces to those in [6, 13].
For each integer n ≥ 1, denote by �n the set of all a ∈ � which have the

following property:

(P1) there exist x ∈ K and positive numbers r, η, and c such that

−∞ < fa(x) < inf
(
fa
)

+
1
n
, (2.2)

and for each b ∈� satisfying dw(a,b) < r, inf( fb) is finite; and if z ∈
K satisfies fb(z) ≤ inf( fb) + η, then ‖z‖ ≤ c, | fb(z)− fa(x)| ≤ 1/n, and
there is u∈ X such that ‖u‖ ≤ 1/n and z ≤ x+u.

Proposition 2.1. Assume that a∈∩∞n=1�n. Then the minimization problem for
fa on K is strongly well posed with respect to (�,dw).
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Proof. By (P1) for each integer n≥ 1, there exist xn ∈ K , rn > 0, ηn > 0, and cn > 0
such that

−∞ < fa
(
xn
)
< inf

(
fa
)

+ 2−n (2.3)

and the following property holds:

(P2) for each b ∈� satisfying dw(a,b) < rn, inf( fb) is finite; and if z ∈ K sat-
isfies fb(z)≤ inf( fb) +ηn, then there exists u∈ X such that

‖u‖ ≤ 2−n, z ≤ xn +u, ‖z‖ ≤ cn,
∣∣ fb(z)− fa

(
xn
)∣∣≤ 2−n. (2.4)

We may assume without loss of generality that for all integers n≥ 1,

ηn,rn < 4−n−1, ηn < η1. (2.5)

There exists a strictly increasing sequence of natural numbers {kn}∞n=1 such that

4 · 2−kn+1 < η
(
kn
)

for all integers n≥ 1. (2.6)

Let n≥ 1 be an integer. Inequality (2.3) implies that

−∞ < fa
(
xkn+1

)
< inf

(
fa
)

+ 2−kn+1 < inf( fa) +η
(
kn
)
. (2.7)

By (2.7), (2.5), and the definition of c1,

∥∥xkn+1

∥∥≤ c1. (2.8)

It follows from (2.7), (P2) (see (2.4)), and the definitions of xkn and ηkn that there
exists un ∈ X such that

∥∥un∥∥≤ 2−kn , xkn+1 ≤ xkn +un, (2.9)∣∣ fa(xkn+1

)− fa
(
xkn
)∣∣≤ 2−kn . (2.10)

Set

yn = xkn +
∞∑
i=n
ui. (2.11)

Clearly, the sequence {yn}∞n=1 is well defined. By (2.11) and (2.9), for each integer
n≥ 1,

yn+1− yn = xkn+1 +
∞∑

i=n+1

ui−
(
xkn +

∞∑
i=n
ui

)
= xkn+1 − xkn −un ≤ 0. (2.12)
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Equation (2.11) and inequalities (2.9) and (2.8) imply that

sup
{∥∥yn∥∥ : n= 1,2, . . .

}
<∞. (2.13)

It follows from (2.13), (2.12), and the property (A) that there is x(a) = limn→∞ yn.
Combined with (2.11) and (2.9), this equality implies that

x(a) = lim
n→∞xkn . (2.14)

By (2.14), (2.3), and the lower semicontinuity of fa,

fa
(
x(a))= inf

(
fa
)
. (2.15)

Assume now that x ∈ K and fa(x) = inf( fa). By the definition of xkn , n =
1,2, . . . (see the property (P2)), for each integer n≥ 1, there is vn ∈ X such that

∥∥vn∥∥≤ 2−kn , x ≤ xkn + vn. (2.16)

These inequalities and (2.14) imply that x ≤ x(a).
By (2.15) and the property (P2), for all integers n≥ 1,

∣∣ fa(x(a))− fa
(
xn
)∣∣≤ 2−n. (2.17)

Let ε > 0. Choose a natural number m for which

∥∥x(a)− xkm
∥∥ < 4−1ε, 2−km < 4−1ε. (2.18)

Assume that b ∈ Bw(a,rkm/2), x ∈ K , and

fb(x)≤ inf
(
fb
)

+ηkm . (2.19)

By (2.19) and the definitions of ηkm , rkm , and xkm (see the property (P2)),

∣∣ fb(x)− fa
(
xkm
)∣∣≤ 2−km (2.20)

and there is v ∈ X such that

‖v‖ < 2−km , x ≤ xkm + v. (2.21)
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It follows from (2.21) and (2.18) that

x ≤ xkm + v = x(a) +
(
xkm − x(a) + v

)
,∥∥xkm − x(a) + v

∥∥≤ ∥∥x(a)− xkm
∥∥+‖v‖ < ε

2
.

(2.22)

Inequalities (2.20), (2.17), and (2.18) imply that

∣∣ fa(x(a))− fb(x)
∣∣≤ ∣∣ fa(x(a))− fa

(
xkm
)∣∣+

∣∣ fa(xkm)− fb(x)
∣∣

≤ 2−km + 2−km <
ε
2
.

(2.23)

This completes the proof of Proposition 2.1. �

An element x ∈ K is called minimal if for each y ∈ K satisfying y ≤ x, the
equality x = y is true. Denote by Kmin the set of all minimal elements of K .

For each integer n≥ 1, denote by �̃n the set of all a∈� which has the prop-
erty (P1) with x ∈ Kmin.

Analogously to the proof of Proposition 2.1, we can prove the following re-
sult.

Proposition 2.2. Assume that the set Kmin is a closed subset of the Banach space
X and a ∈ ∩∞n=1�̃n. Then the minimization problem for fa on K is strongly well
posed with respect to (�,dw) and inf( fa) is attained at a unique point.

In the proof of Proposition 2.2, we choose xn ∈ Kmin, n= 1,2, . . . . This implies
that inf( fa) is attained at the unique point x(a) ∈ Kmin (see (2.13)).

Remark 2.3. Note that assertion (1) in the definition of a strongly well-posed
minimization problem for fa can be represented in the following way: inf( fa) is
finite and the set

argmin
x∈K

fa =
{
x ∈ K : fa(x)= inf

(
fa
)}

(2.24)

has the largest element.
We construct an example of an increasing function h for which the set

argmin(h) is not a singleton and has the largest element. Define a continuous
increasing function ψ : [0,∞)→R1 by

ψ(t)= 0, t ∈
[

0,
1
2

]
, ψ(t)= 2t− 1, t ∈

(
1
2
,∞
)
. (2.25)

Let n be a natural number and consider the Euclidean space Rn. Let K = {x =
(x1, . . . ,xn)∈Rn : xi ≥ 0, i= 1, . . . ,n}. Define a function h : K →R1 by

h(x)= ψ(max
{
xi : i= 1, . . . ,n

})
, x ∈ K. (2.26)
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It is easy to see that h is a continuous increasing function:

inf
{
h(x) : x ∈ K}= 0 (2.27)

and the set

{
x ∈ K : h(x)= 0

}= {x = (x1, . . . ,xn
)∈R

n : xi ∈
[

0,
1
2

]
, i= 1, . . . ,n

}
(2.28)

is not a singleton and has the largest element (1/2, . . . ,1/2).

Remark 2.4. The following example shows that in some cases the sets �n can
be empty. Let �= K =R1. For each a∈R1, consider the function fa : K →R1,
where fa = 0 for any x ≤ a and fa(x) > 0 for any x > a. It is easy to see that the
set �n is empty for any natural number n.

3. Variational principles

We use the notations and definitions introduced in Section 2. The following are
the basic hypotheses about the functions:

(H1) for each a∈�, inf( fa) is finite;
(H2) for each ε > 0 and each integer m ≥ 1, there exist numbers δ > 0 and

r0 > 0 such that the following property holds:
(P3) for each a∈� satisfying inf( fa)≤m and each r ∈ (0, r0], there exist

ā∈�, x̄ ∈ K , and d̄ > 0 such that

ds(a, ā)≤ r, inf
(
fā
)≤m+ 1, fā(x̄)≤ inf

(
fā
)

+ ε, (3.1)

and if x ∈ K satisfies

fā(x)≤ inf
(
fā
)

+ δr, (3.2)

then ‖x‖ ≤ d̄ and there exists u∈ X for which ‖u‖ ≤ ε and x ≤ x̄+u;
(H3) for each integer m ≥ 1, there exist α ∈ (0,1) and r0 > 0 such that for

each r ∈ (0, r0], each a1,a2 ∈� satisfying dw(a1,a2)≤ αr, and each x ∈
K satisfying min{ fa1 (x), fa2 (x)} ≤m, the inequality | fa1 (x)− fa2 (x)| ≤ r
is valid.

Theorem 3.1. Assume that (H1), (H2), and (H3) hold. Then there exists a set
� ⊂� such that the complement � \� is σ-porous in � with respect to (dw,ds)
and for each a ∈�, the minimization problem for fa on K is strongly well posed
with respect to (�,dw).

Proof. Recall that for each integer n≥ 1, �n is the set of all a∈� which has the
property (P1). By Proposition 2.1, in order to prove the theorem, it is sufficient
to show that the set � \�n is σ-porous in � with respect to (dw,ds) for any
integer n≥ 1. Then the theorem is true with �=∩∞n=1�n.
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Let n ≥ 1 be an integer. We will show that the set � \�n is σ-porous in �
with respect to (dw,ds). To meet this goal, it is sufficient to show that for each
integer m≥ 1, the set

Ωnm := {a∈� \�n : inf
(
fa
)≤m} (3.3)

is porous in � with respect to (dw,ds).
Let m≥ 1 be an integer. By (H3), there exist

α1 ∈ (0,1), r1 ∈
(

0,
1
2

)
(3.4)

such that for each r ∈ (0, r1], each a1,a2 ∈� satisfying dw(a1,a2)≤ α1r, and each
x ∈ K satisfying

min
{
fa1 (x), fa2 (x)

}≤m+ 4, (3.5)

the inequality | fa1 (x)− fa2 (x)| ≤ r holds.
By (H2), there exist α2, r2 ∈ (0,1) such that the following property holds:

(P4) for each a∈� satisfying inf( fa)≤m+ 2 and each r ∈ (0, r2], there exist
ā∈�, x̄ ∈ K , and d̄ > 0 such that

ds(a, ā)≤ r, inf
(
fā
)≤m+ 3, fā(x̄)≤ inf

(
fā
)

+ (2n)−1, (3.6)

and if x ∈ K satisfies fā(x)≤ inf( fā) + 4rα2, then ‖x‖ ≤ d̄ and there ex-
ists u∈ X for which ‖u‖ ≤ (2n)−1 and x ≤ x̄+u.

Choose

ᾱ∈
(

0,
α1α2

16

)
, r̄ ∈

(
0,
r1r2ᾱ

n

)
. (3.7)

Let a∈� and r ∈ (0, r̄]. There are two cases

Bds

(
a,
r

4

)
∩ {ξ ∈� : inf

(
fξ
)≤m+ 2

}=∅, (3.8)

Bds

(
a,
r

4

)
∩ {ξ ∈� : inf

(
fξ
)≤m+ 2

} �= ∅. (3.9)

Assume that (3.8) holds. We will show that for each ξ ∈ Bdw (a, r̄), the inequality
inf( fξ) >m is valid. Assume the contrary. Then there exists ξ ∈� such that

dw(ξ,a)≤ r̄, inf
(
fξ
)≤m. (3.10)

There exists y ∈ K such that

fξ(y)≤m+
1
2
. (3.11)
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It follows from the definitions of α1, r1 (see (3.4), (3.5)), (3.11), (3.10), and (3.7)
that

∣∣ fa(y)− fξ(y)
∣∣≤ α−1

1 r̄ ≤ 1
4
. (3.12)

This inequality and (3.11) imply that

inf
(
fa
)≤ fa(y)≤ fξ(y) +

1
4
≤m+ 1, (3.13)

a contradiction (see (3.8)). Therefore

Bdw (a, r̄)⊂ {ξ ∈� : inf
(
fξ
)
>m

}
(3.14)

and by (3.3),

Bdw (a, r̄)∩Ωnm =∅. (3.15)

Thus, we have shown that (3.8) implies (3.15).
Assume that (3.9) holds. Then there exists a1 ∈� such that

ds
(
a,a1

)≤ r

4
, inf

(
fa1

)≤m+ 2. (3.16)

By the definitions of α2, r2, the property (P4), (3.16), and (3.7), there exist ā∈�,
x̄ ∈ K , d̄ > 0 such that

ds
(
a1, ā

)≤ r

4
, inf

(
fā
)≤m+ 3, fā(x̄)≤ inf

(
fā
)

+ (2n)−1 (3.17)

and that the following property holds:

(P5) if x ∈ K satisfies fā(x)≤ inf( fā) + rα2, then ‖x‖ ≤ d̄ and there exists u∈
X for which ‖u‖ ≤ (2n)−1 and x ≤ x̄+u.

Inequalities (3.17) and (3.16) imply that

ds(a, ā)≤ r

2
. (3.18)

Assume that

ξ ∈ Bdw (ā, ᾱr). (3.19)

By (3.17),

inf
(
fā
)= inf

{
fā(z) : z ∈ K, fā(z)≤m+

7
2

}
. (3.20)

Let x ∈ K satisfy

fā(x)≤m+
7
2
. (3.21)
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It follows from (3.19), (3.21), (3.7), and the definitions of α1, r1 (see (3.4), (3.5))
that

∣∣ fā(x)− fξ(x)
∣∣≤ ᾱrα−1

1 ≤ α2r

16
. (3.22)

Since these inequalities hold for any x ∈ K satisfying (3.21), the relation (3.20)
implies that

inf
(
fξ
)≤ inf

{
fξ(x) : x ∈ K, fā(x)≤m+

7
2

}

≤ inf
{
fā(x) +

α2r

16
: x ∈ K, fā(x)≤m+

7
2

}

= α2r

16
+ inf

(
fā
)
.

(3.23)

Moreover, since (3.21) holds with x = x̄ (see (3.17)), we obtain that | fā(x̄)−
fξ(x̄)| ≤ α2r/16. Thus

inf
(
fξ
)≤ inf

(
fā
)

+
α2r

16
,

∣∣ fā(x̄)− fξ(x̄)
∣∣≤ α2r

16
. (3.24)

Let x ∈ K satisfy

fξ(x)≤ inf
(
fξ
)

+
1
4
. (3.25)

Inequalities (3.25), (3.24), (3.17) and (3.7) imply that fξ(x)≤m+ 7/2. It follows
from this inequality, (3.19), (3.7), and the definitions of α1, r1 (see (3.4), (3.5))
that

∣∣ fā(x)− fξ(x)
∣∣≤ ᾱrα−1

1 ≤ α2r

16
. (3.26)

Thus, the following property holds:

(P6) if x ∈ K satisfies (3.25), then | fā(x)− fξ(x)| ≤ α2r/16.

The property (P6) implies that

inf
(
fā
)≤ inf

{
fā(x) : x ∈ K, fξ(x)≤ inf

(
fξ
)

+
1
4

}

≤ inf
{
fξ(x) +

α2r

16
: x ∈ K, fξ(x)≤ inf

(
fξ
)

+
1
4

}

= α2r

16
+ inf

(
fξ
)
.

(3.27)

Therefore

inf
(
fā
)≤ inf

(
fξ
)

+
α2r

16
. (3.28)
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Combined with (3.24) and (3.17), this inequality implies that

∣∣ inf
(
fā
)− inf

(
fξ
)∣∣≤ α2r

16
, fξ(x̄)≤ inf

(
fξ
)

+
α2r

8
+ (2n)−1. (3.29)

Assume that x ∈ K and

fs(x)≤ inf
(
fξ
)

+
α2r

16
. (3.30)

By (P6),

∣∣ fā(x)− fξ(x)
∣∣≤ α2r

16
. (3.31)

Inequalities (3.30), (3.29), (3.17) and (3.7) imply that

∣∣ fξ(x)− fā(x̄)
∣∣≤ ∣∣ fξ(x)− inf

(
fξ
)∣∣+

∣∣ inf
(
fξ
)− inf

(
fā
)∣∣

+
∣∣ inf

(
fā
)− fā(x̄)

∣∣
≤ α2r

16
+
α2r

16
+ (2n)−1 < n−1,

(3.32)

∣∣ fξ(x)− fā(x̄)
∣∣ < n−1. (3.33)

It follows from (3.31), (3.30), and (3.29) that

fā(x)≤ fξ(x) +
rα2

16
≤ inf

(
fξ
)

+
α2r

8
≤ inf

(
fā
)

+
3α2r

16
, (3.34)

fā(x)≤ inf
(
fā
)

+
3α2r

16
. (3.35)

It follows from (3.35) and the property (P5) that ‖x‖ ≤ d̄ and there is u∈ X such
that ‖u‖ ≤ (2n)−1 and x ≤ u+ x̄. Therefore, if x ∈ K satisfies (3.30), then (3.33)
is valid, ‖x‖ ≤ d̄, and there is u∈ X for which ‖u‖ ≤ (2n)−1 and x ≤ u+ x̄.

Thus, we have shown that for each ξ ∈ Bdw (ā, ᾱr), the inequalities (3.29) are
true and if x ∈ K satisfies (3.30), then (3.33) is valid, ‖x‖ ≤ d̄, and there is u∈ X
for which ‖u‖ ≤ (2n)−1 and x ≤ u+ x̄.

By the definition of �n and (3.3),

Bdw

(
ā,
ᾱr

2

)
⊂�n ⊂� \Ωnm. (3.36)

Since (3.8) implies (3.15), we obtain that, in both cases, Bdw (ā, ᾱr/2)∩Ωnm =∅
with ā ∈ � satisfying (3.18). (Note that if (3.8) is valid, then ā = a.) Hence,
the set Ωnm is porous in � with respect to (dw,ds). This implies that � \�n

is σ-porous in � with respect to (dw,ds) for all integers n ≥ 1. Therefore, � \
(∩∞n=1�n) is σ-porous in � with respect to (dw,ds). This completes the proof of
Theorem 3.1. �

We also use the following hypotheses about the functions:
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(H4) for each ε > 0 and each integer m ≥ 1, there exist numbers δ > 0 and
r0 > 0 such that the following property holds:

(P7) for each a∈� satisfying inf( fa)≤m and each r ∈ (0, r0], there exist
ā∈�, x̄ ∈ Kmin, and d̄ > 0 such that (3.1) is true; and if x ∈ K satisfies
(3.2), then ‖x‖ ≤ d̄ and there exists u ∈ X for which ‖u‖ ≤ ε, x ≤
x̄+u.

Theorem 3.2. Assume that (H1), (H3), and (H4) hold and Kmin is a closed subset
of the Banach space X . Then there exists a set � ⊂� such that the complement
� \� is σ-porous in � with respect to (dw,ds) and that for each a∈� the following
assertions hold:

(1) the minimization problem for fa on K is strongly well posed with respect to
(�,dw),

(2) the infimum inf( fa) is attained at a unique point.

We can prove Theorem 3.2 analogously to the proof of Theorem 3.1. Recall
that for each integer n≥ 1, Ãn is the set of all a∈� which have the property (P1)
with x ∈ Kmin. Set � = ∩∞n=1Ãn. By Proposition 2.2 for each a ∈�, assertions
(1) and (2) hold. Therefore, in order to prove Theorem 3.2, it is sufficient to
show that for each integer n≥ 1, the set � \ �̃n is σ-porous in � with respect to
(dw,ds). We can show this fact analogously to the proof of Theorem 3.1.

4. Spaces of increasing functions

In the sequel, we use the functional λ : X →R1 defined by

λ(x)= inf
{‖y‖ : y ≥ x}, x ∈ X. (4.1)

The function λ has the following properties (see [10, Proposition 6.1]):

(i) the function λ is sublinear. Namely,

λ(αx)= αλ(x) ∀α≥ 0 and all x ∈ X,
λ
(
x1 + x2

)≤ λ(x1
)

+ λ
(
x2
) ∀x1,x2 ∈ X, (4.2)

(ii) λ(x)= 0 if x ≤ 0,
(iii) if x1,x2 ∈ X and x1 ≤ x2, then λ(x1)≤ λ(x2),
(iv) 0≤ λ(x)≤ ‖x‖ for all x ∈ X .

Clearly, |λ(x)− λ(y)| ≤ ‖x− y‖ for each x, y ∈ X .
Denote by � the set of all increasing lower semicontinuos bounded-from-

below functions f : K → R1 ∪ {+∞} which are not identically +∞. For each
f ,g ∈�, set

d̃s( f ,g)= sup
{∣∣ f (x)− g(x)

∣∣ : x ∈ X},
ds( f ,g)= d̃s( f ,g)

(
1 + d̃s( f ,g)

)−1
.

(4.3)
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It is not difficult to see that the metric space (�,ds) is complete. Denote by �v

the set of all finite-valued functions f ∈� and by �c the set of all finite-valued
continuous functions f ∈�. Clearly, �v and �c are closed subsets of the metric
space (�,ds).

We say that the set K has property (C) if Kmin is a closed subset of K and for
each x ∈ K , there is y ∈ Kmin such that y ≤ x.

Denote by �g the set of all f ∈� such that f (x)→∞ as ‖x‖ →∞. Clearly,
�g is a closed subset of the metric space (�,ds). Set �gc =�g ∩�c and �gv =
�g ∩�v.

It is easy to see that

�c ⊂�v ⊂�, �gc ⊂�gv ⊂�g ⊂�. (4.4)

Remark 4.1. Let K = X+ and define

f1(x)= ‖x‖, x ∈ K, f2(x)= ‖x‖, x ∈ K \ {0}, f2(0)=−1,

f3(x)= ‖x‖ if x ∈ K, ‖x‖ ≤ 1, f3(x)= +∞ if x ∈ K, ‖x‖ > 1.
(4.5)

Clearly,

f1 ∈�gc, f2 ∈�gv \�gc, f3 ∈�g \�gv. (4.6)

Theorem 4.2. Assume that � is either �g , �gv, or �gc and that fa = a for all
a∈�. Then there exists a set �⊂� such that the complement � \� is σ-porous
in � with respect to (ds,ds) and that for each f ∈� the minimization problem for
f on K is strongly well posed with respect to (�,ds). If K has the property (C), then
for each f ∈�, inf( f ) is attained at a unique point.

Proof. By Theorems 3.1 and 3.2, we need to show that (H1), (H2), and (H3) hold
and that the property (C) implies (H4). Clearly, (H1) holds. For each f ,g ∈�,
we have that

d̃s( f ,g)= ds( f ,g)
(
1−ds( f ,g)

)−1
(4.7)

and that if ds( f ,g)≤ 1/2, then d̃s( f ,g)≤ 2ds( f ,g). Combined with (4.7), this
property implies (H3).

We will show that (H2) holds and that the property (C) implies (H4).
Let f ∈�, ε ∈ (0,1), and r ∈ (0,1]. Choose x̄ ∈ K such that

f (x̄)≤ inf( f ) +
εr
8
. (4.8)

If K has the property (C), then we assume that x̄ is a minimal element of K .
Define

f̄ (x)= f (x) + 2−1rmin
{

1,λ(x− x̄)
} ∀x ∈ K. (4.9)
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Evidently, f̄ ∈�, ds( f , f̄ )≤ d̃s( f , f̄ )≤ r/2, and

inf
(
f̄
)≤ f̄ (x̄)= f (x̄)≤ inf( f ) +

εr
8
. (4.10)

Let x ∈ K and f̄ (x)≤ inf( f̄ ) + εr/8. Then by (4.9) and (4.8),

f (x) + 2−1rmin
{

1,λ(x− x̄)
}= f̄ (x)≤ inf

(
f̄
)

+
εr
8
≤ f̄ (x̄) +

εr
8

= f (x̄) +
εr
8
≤ f (x) +

εr
4
,

min
{

1,λ(x− x̄)
}≤ ε

2
, λ(x− x̄)≤ ε

2
.

(4.11)

By (4.1), there exists u ∈ X such that x ≤ x̄ + u and ‖u‖ < ε. Since f̄ (y)→∞
as ‖y‖ →∞, we obtain that ‖x‖ ≤ d̄, where d̄ > 0 is a constant which depends
only on f̄ . Thus, (H2) is true and if K has the property (C), then (H4) holds.
Theorem 4.2 is proved. �

Theorem 4.3. Assume that there exists z̄ ∈ X such that z̄ ≤ x for all x ∈ K , that a
space � is either �, �v, or �c, and that fa = a for all a∈�. Then there exists a set
� ⊂� such that � \� is σ-porous in � with respect to (ds,ds) and that for each
f ∈�, the minimization problem for f on K is strongly well posed with respect
to (�,ds). If K has the property (C), then for each f ∈�, inf( f ) is attained at a
unique point.

Proof. We can prove Theorem 4.3 analogously to the proof of Theorem 4.2. The
existence of a constant d̄ is obtained in the following manner. Let x ∈ K , u∈ X ,
x ≤ x̄+u, and ‖u‖ < ε. Then

‖x‖ ≤ ‖x− z̄‖+‖z̄‖ ≤ ‖z̄‖+‖x̄+u− z̄‖ ≤ 2|z̄‖+‖x̄‖+ ε,

‖x‖ ≤ d̄, (4.12)

where d̄ = 2‖z̄‖+‖x̄‖+ ε. �

Denote by �+ the set of all f ∈� such that f (x) ≥ 0 for all x ∈ K . Clearly,
�+ is a closed subset of the metric space (�,ds). Define

�+
v =�+∩�v, �+

c =�+∩�c, �+
g =�+∩�g ,

�+
gv =�+∩�gv, �+

gc =�+∩�gc.
(4.13)

For each f ,g ∈�+, set

d̃w( f ,g)= sup
{∣∣ ln

(
f (z) + 1

)− ln
(
g(z) + 1

)∣∣ : z ∈ K}, (4.14)

dw( f ,g)= d̃w( f ,g)
(
1 + d̃w( f ,g)

)−1
. (4.15)

It is not difficult to see that the metrtic space (�+,dw) is complete and that �+
v ,

�+
c , �+

g , �+
gv, and �+

gc are closed subsets of (�+,dw). Clearly, dw( f ,g)≤ ds( f ,g)
for all f ,g ∈�+.
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Theorem 4.4. Assume that one of the following cases holds:

(1) the space � is either �+
g , �+

gv, or �+
gc;

(2) there is z̄ ∈ X such that z̄ ≤ x for all x ∈ K and that � is either �+, �+
v , or

�+
c .

Let fa = a for all a ∈�. Then there exists a set � ⊂� such that � \� is σ-
porous in � with respect to (dw,ds) and that for each f ∈ �, the minimization
problem for f on K is strongly well posed with respect to (�,dw). If K has the
property (C), then for each f ∈�, inf( f ) is attained at a unique point.

Proof. By Theorems 3.1 and 3.2, we need to show that (H1), (H2), and (H3)
hold and that the property (C) implies (H4). Clearly, (H1) holds. Analogously
to the proofs of Theorems 4.2 and 4.3, we can show that (H2) is true. Therefore,
in order to prove Theorem 4.4, it is sufficient to show that (H3) holds.

Let m≥ 1 be an integer. Choose α∈ (0,1) such that

α < 4−1(2e(m+ 1)
)−1

. (4.16)

Let r ∈ (0,1], x ∈ K, f1, f2 ∈�,

dw
(
f1, f2

)≤ αr, min
{
f1(x), f2(x)

}≤m. (4.17)

We may assume without loss of generality that f1(x)≤ f2(x). Then d̃w( f1, f2)≤
2dw( f1, f2)≤ 2αr,

ln
(
f2(x) + 1

)− ln
(
f1(x) + 1

)≤ 2αr,

f2(x) + 1≤ ( f1(x) + 1
)
e2αr ,∣∣ f2(x)− f1(x)

∣∣≤ ( f1(x) + 1
)(
e2αr − 1

)
≤ (m+ 1)

(
e2αr − 1

)= 2αr(m+ 1)er1 ,

(4.18)

with r1 ∈ [0,2αr]. Then by (4.16),

∣∣ f2(x)− f1(x)
∣∣≤ 2(m+ 1)αre2αr ≤ 2αe(m+ 1)r < r. (4.19)

Thus, (H3) holds and Theorem 4.4 is proved. �

Fix a number c0 > 0 and denote by �(co) the set of all convex functions f ∈�
such that f (x)≥ c0‖x‖ for all x ∈ K . Clearly, �(co) is a closed subset of the metric

space (�+,dw). Set �(co)
v =�(co) ∩�+

v and �(co)
c =�(co) ∩�+

c . Clearly, �(co)
v

and �(co)
c are closed subsets of the metric space (�+,dw).

Theorem 4.5. Assume that a space � is either �co, �(co)
v , or �(co)

c and that fa = a
for all a∈�. Then there exists a set �⊂� such that the complement � \� is σ-
porous in � with respect to (dw,dw) and that for each f ∈�, the minimization
problem for f on K is strongly well posed with respect to (�,dw). If the set K has
the property (C), then for each f ∈�, inf( f ) is obtained at a unique point.
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Proof. By Theorems 3.1 and 3.2, we need to show that (H1), (H2), and (H3)
hold and that the property (C) implies (H4). Clearly, (H1) holds. Analogously
to the proof of Theorem 4.4, we can show that (H3) holds.

Now, we show that (H2) holds and that the property (C) implies (H4).
Let f ∈�, ε ∈ (0,1), and m≥ 1 an integer. Choose a natural number m0 and

a number r0 > 0 such that

m0 >
(
m+ c0 + 2

)(
min

{
c0,1

})−1
, r0 <

(
m0 + 2

)−1
. (4.20)

Choose a positive number

δ < 8−1εmin
{

1, c0
}
. (4.21)

Assume that f ∈�,

r ∈ (0, r0
]
, inf( f )≤m. (4.22)

There exists x̄ ∈ K such that

f (x̄)≤ inf( f ) + 4−1δr(m+ 1)−1. (4.23)

If K has the property (C), we assume that x̄ is a minimal element of K . Define

f̄ (x)= f (x) + 4−1rmin
{

1, c0
}

(m+ 1)−1λ(x− x̄), x ∈ K. (4.24)

It is easy to see that f̄ ∈�. It follows from (4.23) and (4.22) that

c0‖x̄‖ ≤ f (x̄)≤ inf( f ) + 1≤m+ 1, ‖x̄‖ ≤ (m+ 1)c−1
0 . (4.25)

By (4.14) and (4.24),

dw( f , f̄ )≤ d̃w( f , f̄ )= sup
{∣∣ ln

(
f̄ (x) + 1

)− ln
(
f (x) + 1

)∣∣ : x ∈ K}
= sup

x∈K

{
ln
(
1 +

(
f̄ (x)− f (x)

)(
f (x) + 1

)−1)}

≤ sup
x∈K

{
ln
(
1 +

(
4−1rmin

{
1, c0

}
λ(x− x̄)

)((
1 + c0‖x‖

)
(m+ 1)

)−1)}

≤ sup
x∈K

{
4−1rmin

{
1, c0

}
λ(x− x̄)

((
1 + c0‖x‖

)
(m+ 1)

)−1}

≤ 4−1r sup
x∈K

{
min

{
1, c0

}‖x− x̄‖((1 + c0‖x‖
)
(m+ 1)

)−1}

≤ 4−1r sup
x∈K

{
c0‖x‖

(
1 + c0‖x‖

)−1

+‖x̄‖min
{

1, c0
}

(m+ 1)−1}≤ 2−1r.
(4.26)

Thus

dw
(
f , f̄

)≤ 2−1r. (4.27)
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Equation (4.24) and inequality (4.23) imply that

f̄ (x̄)= f (x̄)≤ inf( f ) + 4−1δr(m+ 1)−1 ≤ inf
(
f̄
)

+ 4−1δr(m+ 1)−1. (4.28)

Then by (4.22),

inf
(
f̄
)≤ f̄ (x̄)= f (x̄)≤ inf( f ) + 4−1δr(m+ 1)−1 ≤m+ 1. (4.29)

Let x ∈ K and

f̄ (x)≤ inf
(
f̄
)

+ 4−1δr(m+ 1)−1. (4.30)

Inequality (4.30) and equation (4.29) imply that

c0‖x‖ ≤m+ 2, ‖x‖ ≤ c−1
0 (m+ 2). (4.31)

By (4.24), (4.30), (4.23), and (4.21),

f (x) + 4−1r(m+ 1)−1 min
{

1, c0
}
λ(x− x̄)

= f̄ (x)≤ f̄ (x̄) + 4−1δr(m+ 1)−1

= f (x̄) + 4−1δr(m+ 1)−1 ≤ f (x) + 2−1δr(m+ 1)−1,

min
{

1, c0
}
λ(x− x̄)≤ 2δ, λ(x− x̄)≤ 2δ

(
min

{
1, c0

})−1
< 4−1ε.

(4.32)

Therefore, there exists u∈ X such that ‖u‖ < 4−1ε and x ≤ x̄+u. Hence, (H2) is
true and if K has the property (C), then (H4) holds. This completes the proof of
Theorem 4.5. �

A function f : K →R1∪{∞} is called quasiconvex if the set {x ∈ K : f (x)≤
α} is convex for any α∈R1. Denote by �(qu) the set of all quasiconvex functions
f ∈�. Clearly, �(qu) is a closed subset of the metric space (�,ds). Set

�
(qu)
v =�(qu)∩�v, �

(qu)
c =�(qu)∩�c, �

(qu)
g =�(qu)∩�g ,

�
(qu)
gv =�(qu)∩�gv, �

(qu)
gc =�(qu)∩�gc.

(4.33)

Theorem 4.6. Assume that one of the following cases holds:

(1) a space � is either �
(qu)
g , �

(qu)
gv , or �

(qu)
gc ;

(2) there is z̄ ∈ X such that z̄ ≤ x for all x ∈ K and a space � is either �(qu),

�
(qu)
v , or �

(qu)
c .

Let fa = a for all a ∈�. Then there exists a set � ⊂� such that the comple-
ment � \� is σ-porous in � with respect to (ds,ds) and that for each f ∈�, the
minimization problem for f on K is strongly well posed with respect to (�,ds). If
K has the property (C), then for each f ∈�, inf( f ) is attained at a unique point.
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Proof. By Theorems 3.1 and 3.2, we need to show that (H1), (H2), and (H3)
hold and that the property (C) implies (H4). Clearly, (H1) holds. Analogously
to the proof of Theorem 4.2, we can show that (H3) is true (see (4.7)). Now, we
show that (H2) holds and that the property (C) implies (H4).

Let f ∈�, ε ∈ (0,1], and r ∈ (0,1]. Choose x̄ ∈ K such that

f (x̄)≤ inf( f ) +
εr
8
. (4.34)

If K has the property (C), then we assume that x̄ is a minimial element of K .
Define

f̄ (x)=max
{
f (x), f (x̄) + 2−1rmin

{
λ(x− x̄),1

}}
, x ∈ K. (4.35)

Clearly, f̄ ∈�,

ds
(
f , f̄

)≤ d̃s( f , f̄ )≤ r,
f̄ (x̄)= f (x̄)≤ inf( f ) +

εr
8
≤ inf

(
f̄
)

+
εr
8
,

inf
(
f̄
)≤ f̄ (x̄)= f (x̄)≤ inf( f ) + 1.

(4.36)

Let x ∈ K and

f̄ (x)≤ inf
(
f̄
)

+
εr
8
. (4.37)

Then by (4.35) and (4.37),

2−1rmin
{
λ(x− x̄),1

}
+ f (x̄)≤ f̄ (x)≤ f̄ (x̄) +

εr
8
= f (x̄) +

εr
8
,

min
{
λ(x− x̄),1

}≤ ε
4
, λ(x− x̄)≤ ε

4
,

(4.38)

and there exists u∈ X such that

‖u‖ < ε
2
, x ≤ x̄+u. (4.39)

In the first case, we choose d̄ > 0 such that f̄ (y) > inf( f̄ ) + 1 for all y ∈ K satis-
fying ‖y‖ > d̄ and obtain that ‖x‖ ≤ d̄. In the second case,

z̄ ≤ x ≤ x̄+u,

‖x‖ ≤ ‖z̄‖+‖x− z̄‖ ≤ ‖z̄‖+‖x̄+u− z̄‖
≤ 2‖z̄‖+‖x̄‖+‖u‖ ≤ 2‖z̄|+‖x̄‖+ 1,

(4.40)

and ‖x‖ ≤ d̄ := 2‖z̄‖+ ‖x̄‖+ 1. Therefore, in both cases, (H2) is true and if the
set K has the property (C), then (H4) holds. Theorem 4.6 is proved. �
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Theorem 4.7. Let � be defined as in Theorem 4.6 and let �+ be the set of all
f ∈� such that f (x)≥ 0 for all x ∈ K . Assume that fa = a for all a∈�+. Then
the metric spaces (�+,ds) and (�+,dw) are complete and there exists a set �⊂�+

such that the complement �+ \� is σ-porous in �+ with respect to (dw,ds) and
that for each f ∈�, the minimization problem for f on K is strongly well posed
with respect to (�+,dw). If the set K has the property (C), then for each f ∈�,
inf( f ) is attained at a unique point.

Proof. By Theorems 3.1 and 3.2, we need to show that (H1), (H2), and (H3)
hold and that the property (C) implies (H4). Clearly, (H1) holds. Analogously
to the proof of Theorem 4.6, we can show that (H2) is true and that the property
(C) implies (H4). We can prove (H3) as in the proof of Theorem 4.4. �
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