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This paper is concerned with the internal and boundary stabilization of the
steady-state solutions to quasilinear heat equations via internal linear feedback
controllers provided by an LQ control problem associated with the linearized
equation.

1. Introduction

Let Ω∈Rn be an open and bounded subset with smooth boundary ∂Ω, let ω ⊂
Ω be an open subset, and let m be the characteristic function of ω. Let Q =Ω×
(0,∞) and Γ= ∂Ω× (0,∞). We will study here the internal feedback stabilization
of steady-state solutions to the quasilinear heat equation

yt(x, t)−∆y(x, t) + f
(
x, y(x, t),∇y(x, t)

)=m(x)u(x, t) in Q,

y(x,0)= y0(x) in Ω,

y(x, t)= 0 on Γ,

(1.1)

and the boundary feedback stabilization to the semilinear heat equation

zt(x, t)−∆z(x, t) + a(x)z(x, t) + g
(
z(x, t)

)= 0 in Q,

z(x,0)= z0(x) in Ω,

z(x, t)= u(x, t) on Γ,

(1.2)

where a∈ L∞(Ω).
Let ye be a steady-state solution to (1.1), that is,

−∆ye(x) + f
(
x, ye(x),∇ye(x)

)= 0 in Ω,

ye(x)= 0 on ∂Ω.
(1.3)
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It turns out (see [1, 3]) that if f = f (x,r) is locally Lipschitz continuous in r,
then any sufficiently smooth steady-state solution ye is locally controllable in
any finite time T and so, in particular, it is stabilizable.

In the present paper, we will prove (Theorem 2.1) that if f is of polynomial
growth in (r,θ) with suitable exponents (which will be precised later), then (1.1)
is locally exponentially stabilizable by the feedback controller

u=−mP(y− ye
)
, (1.4)

where P is the solution to an algebraic Riccati equation associated with the lin-
earized equation. We must stress that we do not use the local null controllability
of (1.1) to get the stabilization but approach the stabilization in a different way
which is inspired by Lyapunov stability theory for finite-dimensional systems.
More precisely, by defining an appropriate infinite horizon LQ problem with
unbounded cost functional, we find a linear selfadjoint and positive operator
P, which is the solution to an algebraic Riccati equation associated with the LQ
problem such that the feedback law (1.4) makes ye locally exponentially stable.

In a similar way, we obtain a boundary feedback controller which locally ex-
ponentially stabilizes (1.2). Previously, such a result was obtained (see [2]) for
3-dimensional Navier-Stokes equations.

Throughout this paper, we let H = L2(Ω) with the norm | · | and V =H1
0 (Ω)

with the norm ‖ · ‖. We denote by | · |s the norm of Ls(Ω) and by ‖ · ‖r the norm
of Hr(Ω). We use (·,·) to denote the inner product inH and the paring between
V and V ′ and between Hr(Ω) and (Hr(Ω))′, respectively. Use | · |ω and (·,·)ω
to denote the norm and the inner product of L2(ω), respectively.

This paper is organized as follows. In Section 2, we present assumptions and
the main results of the paper (Theorems 2.1 and 2.2) while in Sections 3 and 4,
we prove Theorems 2.1 and 2.2, respectively.

2. Assumptions and the main results

Throughout this paper, we will assume the following conditions:

(H1) the steady-state solution ye is smooth enough such that ye, ∇ye ∈
C(Ω)n;

(H2) the function f (x,r,θ), where θ = (θ1, . . . ,θn)∈Rn, is continuously differ-
entiable with respect to all arguments, fr(x,·,θ) and fθ(x,r,·) are locally
Lipschitz continuous, where fθ = ( fθ1 , . . . , fθn). Moreover, f satisfies the
growth condition

∣∣ f (x,r,θ)
∣∣≤ C

( m∑
i=1

|r|pi +
l∑
j=1

|θ|qj
)

∀x ∈Ω, r ∈R, θ ∈R
n, (2.1)
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where |θ|2 =∑n
i=1 θ

2
i , m,l ≥ 2 are arbitrary positive integers, pi and qj ,

i= 1, . . . ,m, j = 1, . . . , l, are such that 1≤ p1 < p2 ··· < pm, 1≤ q1 < q2 <
··· < ql, and
(i) if n= 1, then pi > 1 and 1 < qj ≤ 2 for all i= 2, . . . ,m and j = 2, . . . , l;

(ii) if n= 2, then 1 < pi ≤ 5 and 1 < qj ≤ 5/3 for all i= 2, . . . ,m and j =
2, . . . , l;

(iii) if 3≤ n≤ 9, then 1 < pi ≤ (n+ 3)/(n− 1) and 1 < qj ≤ n/(n− 1) for
all i= 2, . . . ,m and j = 2, . . . , l;

(iv) if n > 9, then 1 < pi ≤ n/(n− 3) and 1 < qj ≤ n/(n− 1) for all i =
2, . . . ,m and j = 2, . . . , l;

(H3) the function g : R→R is continuous with g(0)=0 and satisfies the growth
condition

∣∣g(y)
∣∣≤ C|y|p ∀y ∈R, (2.2)

where p satisfies

1 < p ≤min
{

2,
n+ 1 + 4ε
n− 1 + 4ε

}
(2.3)

with some ε > 0 arbitrary small but fixed.

The following notations will be used. We will omit all x, t in the functions of x,
t if there is no ambiguity. Let A=−∆ with D(A)=H2(Ω)∩H1

0 (Ω) and A0y =
fr(x, ye,∇ye)y + fθ(x, ye,∇ye) · ∇y. We denote by As, s ∈ (0,1), the fractional
power of operator A. Let W =D(A1/4) with the graph norm |y|W = |A1/4y|. Re-
call that (see [7, page 66])D(A1/4)= {y ∈H1/2(Ω); (dist(x,∂Ω))−1/2y ∈ L2(Ω)}.

Now we are ready to formulate the main results.

Theorem 2.1. Suppose that (H1) and (H2) hold. Then there exists a linear selfad-
joint positive operator P :H →H with the domain D(P) satisfying V ⊂D(P)⊂W
such that the feedback controller

u=−mP(y− ye
)

(2.4)

exponentially stabilizes ye in a neighborhoodWρ = {y0 ∈W ; |y− ye|W < ρ} of ye.
More precisely, for each y0 ∈Wρ, there is a solution y ∈ C(R+;H)∩L2

loc(R+;V) to
the closed-loop equation

yt +Ay + f (x, y,∇y) +mP
(
y− ye

)= 0, t > 0,

y(0)= y0,
(2.5)

such that ∫∞
0

∣∣A3/4y(t)
∣∣2
dt ≤ C∣∣y0− ye

∣∣2
W,∣∣y(t)− ye

∣∣≤ Ce−γt∣∣y0− ye
∣∣
W ∀t > 0,

(2.6)
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where γ > 0. Moreover, P is the solution to the algebraic Riccati equation

((
A+A0

)
y,Py

)
+

1
2
|mPy|2 = 1

2

∣∣A3/4y
∣∣2 ∀y ∈D(A). (2.7)

For the stabilization of (1.2), we will transform the boundary control problem
into a distributed control problem via the method provided in [5]. We denote
by A again the extension of A from H to (D(A))′ (the dual space of D(A)), that
is, the operator defined by

(Az,ϕ)=
∫
Ω
z∆ϕdx ∀ϕ∈H1

0 (Ω)∩H2(Ω). (2.8)

Let A1z = az and B :U ≡ L2(∂Ω)→ (D(A))′ be defined by

Bu= Aθ, (2.9)

where θ is the solution to

∆θ = 0 in Ω, θ = u on ∂Ω. (2.10)

We will denote by | · |U and (·,·) the norm and the inner product of U and by
B∗ the adjoint operator of B. It is well known (see [5, 7]) that θ ∈D(A1/4−ε) for
ε > 0 arbitrarily small, and so, we have

A−3/4−εB ∈ L(U,H). (2.11)

Then (1.2) can be written as (see [5])

z′ +Az+A1z+ g(z)= Bu, t > 0, z(0)= z0. (2.12)

Theorem 2.2. Suppose that hypothesis (H3) holds. Then there is a linear operator
P : (D(A1/4+ε))′ → D(A1/4+ε), where ε > 0 is arbitrarily small but fixed, such that
the operatorA+A1 +BB∗P generates a C0-semigroup S(t) on (D(A1/4+ε))′ and the
feedback law

u=−B∗Py (2.13)

locally exponentially stabilizes (2.12). More precisely, there is a ρ > 0 such that for
any z0 ∈ Vρ ∩D(A1/4−ε), where Vρ = {(D(A1/4+ε))′; (Pz0, z0) < ρ}, there is a mild
solution z ∈ C([0,∞);(D(A1/4+ε))′) to (2.12) satisfying

∫∞
0

∣∣A1/4−εz(t)
∣∣2
dt ≤ C∣∣z0

∣∣2
(D(A1/4+ε))′ ,∣∣A−1/4−εz(t)

∣∣≤ Ce−γt∣∣z0
∣∣

(D(A1/4+ε))′ , ∀t > 0.
(2.14)
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3. Internal stabilization of quasilinear equation

We consider the linearized equation

yt +Ay +A0y =mu, t > 0,

y(0)= y0 ≡ y0− ye,
(3.1)

where A and A0 were given in Section 2, and the LQ optimal control problem

ϕ
(
y0)=Min

{
1
2

∫∞
0

(∣∣A3/4y(t)
∣∣2

+
∣∣u(t)

∣∣2
ω

)
dt, subject to (3.1)

}
. (3.2)

We denote byD(ϕ) the set of all y0 ∈H such that ϕ(y0) <∞. It is well known (see
[1, 3]) that, for each y0 ∈H , the linear equation (3.1) is exactly null controllable
on each interval [0,T]. More precisely, there is u ∈ L2(0,T ;L2(Ω)) and t1/2y ∈
L2(0,T ;D(A)) satisfying (3.1) such that y(T)= 0. If y0 ∈D(A1/4), then A3/4y ∈
L2(0,T ;H), and so

ϕ
(
y0)≤ C∣∣A1/4y0

∣∣2
, ∀y0 ∈D(A1/4), (3.3)

because ϕ is linear quadratic. (Here and throughout the paper, C denotes several
positive constants.)

On the other hand, we have

ϕ
(
y0)≥ C∣∣A1/4y0

∣∣2 ∀y0 ∈D(A1/4). (3.4)

Indeed, it is easy to see that, for each y0 ∈D(ϕ), problem (3.2) has a unique solu-
tion (y∗,u∗)∈L2(R+;D(A3/4))×L2(R+;L2(ω)). Moreover, y∗ ∈ C(R+;D(A1/4)).
If we multiply (3.1), where y = y∗ and u = u∗, by A1/2y∗ and integrate it on
(0,∞), we obtain

1
2

∣∣A1/4y0
∣∣2 ≤

∫∞
0

((
Ay∗,A1/2y∗

)
+
(
A0y∗,A1/2y∗

)
+
∣∣u∗∣∣ω∣∣A1/2y∗

∣∣)dt
≤ C

∫∞
0

(∣∣A3/4y∗
∣∣2

+ |u|2ω
)
dt = Cϕ(y0)

(3.5)

because

∣∣(A0y
∗,A1/2y∗

)∣∣≤ C(∥∥ye∥∥C(Ω) +
∥∥∇ye∥∥C(Ω)

)(∣∣y∗∥∥A1/2y∗
∣∣+

∣∣A1/2y∗
∣∣2
)

≤ C∥∥y∗∥∥2
.

(3.6)

It follows immediately from (3.3) and (3.4) that D(ϕ)=D(A1/4)≡W . Since
the functional ϕ is quadratic, there exists a linear selfadjoint positive operator
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P :H →H with domain D(P)⊂W such that

1
2

(
Py0, y0)= ϕ(y0) ∀y0 ∈D(P). (3.7)

Moreover, P extends to all of W and P ∈ L(W,W ′).

Lemma 3.1. Let (y∗,u∗) ∈ L2(0,∞;D(A3/4))× L2(0,∞;L2(Ω)) be the optimal
pair for problem (3.2) corresponding to y0 ∈D(A1/4). Then

u∗(t)=−mPy∗(t) ∀t > 0. (3.8)

Moreover, V ⊂D(P), that is,

|Py| ≤ C‖y‖ ∀y ∈V, (3.9)

and there exist Ci > 0, i= 1,2, such that

C1‖y‖2
W ≤ (Py, y)≤ C2‖y‖2

W ∀y ∈W. (3.10)

The operator P is the solution to the algebraic Riccati equation

(
Ay +A0y,Py

)
+

1
2
|mPy|2 = 1

2

∣∣A3/4y
∣∣2 ∀y ∈D(A). (3.11)

Proof. Estimate (3.10) follows immediately from (3.3) and (3.4). Since the qua-
dratic cost functional (3.2) is unbounded on H , the conclusions of the lemma
are not implied by the general theory of infinite-dimensional LQ control prob-
lems (see [5]). We treat it in the following way.

By the dynamic programming principle, it follows that for eachT>0, (y∗,u∗)
is the solution to the optimal control problem

Min
{

1
2

∫ T
0

(∣∣A3/4y(t)
∣∣2

+
∣∣u(t)

∣∣2
ω

)
dt

+ϕ
(
y(T)

)
; (y,u) subject to (3.1)

}
.

(3.12)

By the maximum principle, we obtain that

u∗(t)=mqT(t) ∀t ∈ [0,T), (3.13)

where qT is the solution to the adjoint equation

d

dt
qT − (A+A0

)∗
qT =A3/2y∗, t ∈ (0,T),

qT(T)=−Py∗(T).
(3.14)

Since qT ∈W ′ ⊂ V ′, it follows from the standard existence theory for linear
evolution equations that qT ∈ L2(0,T ;H)∩C([0,T],V ′). Moreover, if y0 ∈ V ,
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we have qT ∈ C([0,T];H). Indeed, y∗ ∈ L2(0,T ;D(A)) if y0 ∈ V . If we set z =
A−1/2qT , it follows from (3.4) that

z′ −Az−A−1/2A∗0 A
1/2z =Ay∗. (3.15)

It is easy to check that

∣∣(A−1/2A∗0 A
1/2z,Az

)∣∣≤ C(∥∥ye∥∥C(Ω) +
∥∥ye∥∥C(Ω)

)
‖z‖2, (3.16)

which, together with (3.14), shows that z ∈ C([0,T];V). Hence, qT ∈ C([0,T);
H) as claimed.

By (3.13) and by the unique continuation property for the linear parabolic
equation

qt −
(
A+A0

)∗
q = 0 in Q,

q = 0 on Γ,
(3.17)

it follows that qT = qT′ on (0,T) for 0 < T < T′. Hence, qT = q is independent of
T , and so, (3.13) and (3.14) extend to all of R+. Moreover, we have

Py0 =−qT(0). (3.18)

Here is the argument. For all z0 ∈D(A1/4), we have

ϕ
(
y0)−ϕ(z0)≤

∫ T
0

((
A3/4y∗(t),A3/4(y∗(t)

− z∗(t)
))

+
(
u∗(t),u∗(t)− v∗(t)

)
ω

)
dt

+
(
Py∗(T), y∗(T)− z∗(T)

)
,

(3.19)

where (z∗,v∗) is the optimal pair of problem (3.2) corresponding to z0. On the
other hand, it follows from (3.14) that

d

dt

(
qT(t), y∗(t)− z∗(t)

)= (A3/4y∗(t),A3/4(y∗(t)− z∗(t)
))

+
(
u∗(t),u∗(t)− v∗(t)

)
ω.

(3.20)

Integrating it on (0,T) and then substituting the result into (3.19), we obtain
that

ϕ
(
y0)−ϕ(z0)≤−(qT(0), y0− z0), (3.21)

which yields (3.18) as desired.
By (3.14) and (3.18), we infer that q(t)=−Py∗(t) for all t ≥ 0, which shows

(3.8) as desired.
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Now let y0 ∈V . Then, by the previous argument, we see that q ∈ C([0,T];H),
which, together with (3.18), shows that P :V →H . By the closed graph theorem,
one obtains (3.9) as desired.

Next we have

ϕ
(
y∗(t)

)= 1
2

∫∞
t

(∣∣A3/4y∗(s)
∣∣2

+
∣∣u∗(s)

∣∣2
ω

)
ds ∀t ≥ 0, (3.22)

and therefore
(
Py∗(t),

d

dt
y∗(t)

)
+

1
2

∣∣A3/4y∗(t)
∣∣2

+
1
2

∣∣mPy∗(t)
∣∣2 = 0, a.e. t > 0. (3.23)

Since |mPy| ≤ C‖y‖, for all y ∈ V , we see that the operator A+A0 +mP with
the domain D(A) generates a C0-semigroup in H . This implies that Ay∗,A0y∗,
mPy∗ ∈ C([0,∞) :H). Then, it follows from (3.23) that, for y0 ∈D(A),

− (Py∗(t),Ay∗(t) +A0y
∗(t)

)− 1
2

∣∣mPy∗(t)
∣∣2

+
1
2

∣∣A3/4y∗(t)
∣∣2 = 0 ∀t ≥ 0,

(3.24)

which implies (3.11) thereby completing the proof. �

Proof of Theorem 2.1. Let P be the operator given in Lemma 3.1. Consider the
closed-loop system

yt +Ay + f (x, y,∇y) +mP
(
y− ye

)= 0, t > 0,

y(0)= y0.
(3.25)

It is well known (see [8, Theorem 8.4.5]) that, under hypotheses (H1) and (H2),
(3.25) has a unique local solution y ∈ L2(0,T ;V)∩C([0,T);H) for each y0 ∈
W , u∈ L2(R+;H), where T > 0. Moreover, t1/2y ∈ L2(0,T ;D(A))∩W1,2([0,T);
H). We will show that if y0 ∈Wρ for ρ sufficiently small, then this local solution
is global and exponentially stabilizes ye. To this end, we substitute y by y + ye
into (3.25) and reduce the problem to that of stability of the null solution to
equation

yt +Ay +A0y +R(y) +mPy = 0, t > 0,

y(0)= y0 ≡ y0− ye,
(3.26)

where R(y) = f (x, y + ye,∇(y + ye))− f (x, ye,∇ye)−A0y. By hypotheses (H1)
and (H2), we see that

∣∣R(y)
∣∣≤ C

( m0∑
i=1

|y|pi +
l0∑
j=1

|∇y|qj
)

(3.27)
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for some positive integers m0 and l0, where pi and qj satisfy 1 < p1 < ··· < pm0 ,
1 < q1 < ··· < ql0 , and conditions (i), (ii), (iii), and (iv) in hypothesis (H2).

We multiply (3.26) by Py and use (3.11) to get, after some calculation, that

d

dt

(
Py(t), y(t)

)
+
∣∣mPy(t)

∣∣2
+
∣∣A3/4y(t)

∣∣2

≤ 2
∣∣(Py(t),R

(
y(t)

))∣∣, a.e. t ∈ (0,T).
(3.28)

We will show that there exist C > 0 and λ > 0 independent of y such that

∣∣(Py,R(y)
)∣∣≤ C∣∣A1/4y

∣∣λ∣∣A3/4y
∣∣2 ∀y ∈D(A3/4). (3.29)

From (3.27), it is sufficient to show that

∣∣(Py,|y|p)∣∣≤ C∣∣A1/4y
∣∣p−1∣∣A3/4y

∣∣2 ∀y ∈D(A3/4), (3.30)∣∣(Py,|∇y|q)∣∣≤ C∣∣A1/4y
∣∣q−1∣∣A3/4y

∣∣2 ∀y ∈D(A3/4), (3.31)

where p > 1 and q > 1 satisfy conditions (i), (ii), (iii), and (iv) in hypothesis (H2).
We recall that D(As) =H2s

0 (Ω) for s > 1/4 and D(A1/4) ⊂H1/2(Ω). Thus the
norm | · |D(As) and ‖ · ‖2s are equivalent for s > 1/4.

We have, by (3.9) and by interpolation inequality, that

∣∣(Py,|y|p)∣∣≤ C‖y‖|y|p2p ≤ C∣∣A1/4y
∣∣1/2∣∣A3/4y

∣∣1/2|y|p2p, (3.32)

while, by Sobolev’s imbedding theorem,

|y|2p ≤ C‖y‖α (3.33)

for α≥ n(1/2− 1/2p). We assume that 1/2 < α≤ 3/2 and n > 1, that is,

1 < p ≤ n

n− 2α
. (3.34)

Then again, by the interpolation inequality, we obtain that

‖y‖α ≤ C
∣∣A1/4y

∣∣3/2−α∣∣A3/4y
∣∣α−1/2

. (3.35)

This, together with (3.32), implies that

∣∣(Py,|y|p)∣∣≤ C∣∣A1/4y
∣∣1/2+(3/2−α)p∣∣A3/4y

∣∣1/2+(α−1/2)p
. (3.36)

Similarly, taking into account that

|∇y|2q ≤ C‖∇y‖β for
1

2q
≥ 1

2
− β

n
, (3.37)
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we have, by the interpolation inequality, that

∣∣(Py,|∇y|q)∣∣≤ |Py||∇y|q2q ≤ C∣∣A1/4y
∣∣1/2∣∣A3/4y

∣∣1/2‖y‖β+1

≤ C∣∣A1/4y
∣∣1/2∣∣A3/4y

∣∣1/2∣∣A1/4y
∣∣(1/2−β)q∣∣A3/4y

∣∣(1/2+β)q

≤ C∣∣A1/4y
∣∣1/2+q(1/2−β)∣∣A3/4y

∣∣1/2+(1/2+β)q
,

(3.38)

where β and q are such that

0 < β ≤ 1
2
, 1 < q ≤ n

n− 2β
. (3.39)

Assume first that n > 1. Then in virtue of (3.36), inequality (3.30) is satisfied
if, besides (3.34), we also have that

(
α− 1

2

)
p ≤ 3

2
for some α∈

(
1
2
,
3
2

]
. (3.40)

But it is easily seen that both (3.34) and (3.40) are satisfied if

1 < p ≤ n+ 3
n− 1

for 1 < n≤ 9,

1 < p ≤ n

n− 3
for n > 9.

(3.41)

Similarly, it follows by (3.38) that estimate (3.31) holds if, besides (3.39), q
also satisfies the condition

1
2

+
(

1
2

+β
)
q ≤ 2. (3.42)

By an elementary calculation, it follows that (3.39) and (3.42) hold for some
β ∈ (0,1/2] if

1 < q ≤ n+ 3
n+ 1

for 1≤ n < 3,

1 < q ≤ n

n− 1
for n≥ 3.

(3.43)

Note that, in this case, n= 1 is allowed.
If n, p, q satisfy conditions (ii), (iii), (iv) of hypothesis (H2), then clearly

(3.41) and (3.43) (and consequently (3.30) and (3.31)) are satisfied.
Consider now the case where n= 1. In this case, D(A1/4)⊂ Lp(Ω) for all p ≥

1, and so, we get, as above, that

∣∣(Py,|y|p)∣∣≤ C∣∣A1/4y
∣∣p+1/2∣∣A3/4y

∣∣1/2
(3.44)
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for all p. Inequality (3.31), in this case, follows from (3.43). This completes the
proof of (3.30) and (3.31).

Now we come back to (3.28) and set E = {y0 ∈W ; (Py0, y0) < ρ}. Then, by
(3.28) and (3.29), we see that for ρ small enough, if y0 ∈ E, we have

d

dt

(
Py(t), y(t)

)
+

1
2

∣∣A3/4y(t)
∣∣2 ≤ 0, a.e. t ∈ (0,T), (3.45)

where (0,T) is the maximal interval of existence of solution, from which it fol-
lows that the solution y is global. Moreover, by (3.10), it follows that, for some
γ > 0, we have

d

dt

(
Py(t), y(t)

)
+ γ
(
Py(t), y(t)

)≤ 0, a.e. t > 0, (3.46)

and this implies that

∫∞
0

∣∣A3/4y(t)
∣∣2
dt ≤ 2

(
Py0, y0),∣∣y(t)

∣∣≤ ∣∣y(t)
∣∣
W ≤ C

∣∣y0
∣∣
We

−γt, ∀t ≥ 0.
(3.47)

This completes the proof. �

Remark 3.2. It should be mentioned that the feedback controller u=−mP(y−
ye) is robust with respect to smooth perturbations. More precisely, if Qε ∈ L(V,
H) is such that |Qεy| ≤ δ(ε)|Py|, for all y ∈ V , where δ(ε)→ 0 as ε→ 0, then
for ε > 0 sufficiently small, the feedback controller u=−m(P +Qε)(y− ye) still
exponentially stabilizes ye in the neighborhoodWρ. Indeed, if we multiply equa-
tion

yt +
(
A+A0

)
y +m

(
P +Qε

)
y +R(y)= 0, t ≥ 0,

y(0)= y0 (3.48)

by Py and proceed as above, we find that

d

dt
(Py, y) +

∣∣A3/4y
∣∣2

+
1
2
|mPy|2

≤ ∣∣(R(y),Py
)∣∣+

∣∣Qεy
∣∣|mPy|

≤ ∣∣(R(y),Py
)∣∣+

1
2
|mPy|2

+ δ(ε)|Py|2, ∀t > 0,

(3.49)

which, in virtue of (3.9) and (3.29), implies the desired result for ε small enough.
This is in particular useful when one replaces an exact solution P to (3.11) by an
approximating one. (See also the example which follows.)

We can illustrate the above result by two examples.



708 Feedback stabilization of semilinear heat equations

Example 3.3. Consider the controlled equation

yt −∆y− λs(x) f (y)=mu, x ∈Ω, t > 0,

y = 0 on ∂Ω× (0,∞),

y(x,0)= y0(x) in Ω,

(3.50)

where Ω∈Rn, n≤ 3, is a bounded and open connected subset with C2 bound-
ary, λ > 0 is a constant, s∈ L∞(Ω), and y0 ∈H1

0 (Ω) are given functions such that
0≤ y0(x)≤ 1, a.e. x ∈Ω, f (y)= y(1− y)(ay + (1− a)(1− y)) for a constant a
in (0,1). This equation describes the change of gene frequency in a population
to migration and selection (see [4, page 315]). It turns out that if λ > λ0, where
λ0 is the first eigenvalue for the linearized equation, then the zero solution to the
steady-state equation is unstable.

If we apply Theorem 2.1 to (3.50), we can conclude that the feedback law
u=−mPy locally exponentially stabilizes (3.50), where P is the solution to the
algebraic Riccati equation (3.11), that is,

(
A+A0

)
P +P

(
A+A0

)
+PBB∗P =A3/2, (3.51)

where Bu=mu and A0y = f ′(0)s(x)y.
By the Schwartz-Kernel theorem (see [6, page 157]), we may represent P as

Py(x)=
∫
Ω
P̃(x,ξ)y(ξ)dξ ∀y ∈�(Ω), (3.52)

where P̃(x,ξ) is a distribution on Ωx ×Ωξ determined uniquely by P. Then, it
follows from (3.51), after some calculation, that P̃ is the solution to the elliptic
equation

−∆xP̃(x,ξ)−∆ξ P̃(x,ξ)− λ f ′(0)
(
s(x) + s(ξ)

)
P̃(x,ξ) +

∫
ω
P̃(x,η)P̃(η,ξ)dη

=A3/2δ(x− ξ) in Ω×Ω,

P̃ = 0 on ∂Ω× ∂Ω, P̃(x,ξ)= P̃(ξ,x) ∀x,ξ ∈Ω,
(3.53)

where A3/2δ(x− ξ)(ϕ)=A3/2ϕ(x) for all ϕ∈� (Ω).
Equation (3.53) can be approximated by

−∆xP̃N (x,ξ)−∆ξ P̃N (x,ξ) + λ f ′(0)
(
s(x) + s(ξ)

)
P̃N (x,ξ)

+
∫
ω
P̃N (x,η)P̃N (η,ξ)dη

=
N∑
j=1

λ3/2
j ϕj(x)ϕj(ξ), (x,ξ)∈Ω×Ω,

P̃N (x,ξ)= 0 on ∂Ω× ∂Ω,

(3.54)
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where N is a natural number and (λj ,ϕj) are the eigenvalues and eigenfunc-
tions, respectively, to the Laplace operator with Dirichlet homogeneous bound-
ary value conditions. According to Remark 3.2, one might suggest that the feed-
back controller u=−mPN (y− ye) is a local stabilizing feedback for (3.50).

Example 3.4. The steady-state solution ye = 0 to nonlinear heat equation

yt − yxx− ay + by3 =mu in (0,π)× (0,∞),

y(0, t)= y(π,t)= 0 in (0,∞),

y(x,0)= y0(x) in (0,π),

(3.55)

is unstable for a > 1 (see [4]). However, according to Theorem 2.1, the feedback
controller u = −Py, where P is the solution to the algebraic Riccati equation
(3.11).
Equivalently,

−P̃xx(x,ξ)− P̃ξξ(x,ξ)− 2aP̃(x,ξ) +
∫
ω
P̃(x,η)P̃(η,ξ)dη= A3/2δ(x− ξ),

P̃(0,0)= P̃(π,π)= 0
(3.56)

exponentially stabilizes (3.55) in a neighborhood of the origin.

4. Boundary feedback stabilization of semilinear equation

In this section, we will prove Theorem 2.2. Proceeding as above, we consider the
linearized form of (2.12), that is,

z′ +Az+A1z = Bu, t > 0, z(0)= z0, (4.1)

and the linear quadratic optimal control problem

ψ
(
z0
)=Min

{
1
2

∫∞
0

(∣∣A1/4−εz(t)
∣∣2

+
∣∣u(t)

∣∣2
U

)
dt, subject to (4.1)

}
, (4.2)

where ε > 0 is arbitrarily small but fixed. By a similar argument as that used in
the proof of Lemma 3.1, taking into account (2.11) and the boundary exact null
controllability of linear parabolic equation (see [1, 3]), we obtain the following
lemma.

Lemma 4.1. There are the constants ci > 0, i= 1,2, such that

c2
∣∣A−1/4−εz0

∣∣2 ≤ ψ(z0
)≤ c1

∣∣A−1/4−εz0
∣∣2 ∀z0 ∈

(
D
(
A1/4+ε))′, (4.3)

where (D(A1/4+ε))′ denotes the dual of D(A1/4+ε) in the pairing induced by H .

Now we are ready to prove Theorem 2.2.



710 Feedback stabilization of semilinear heat equations

Proof of Theorem 2.2. Let P : (D(A1/4+ε))′ → D(A1/4+ε) be the differential of ψ,
that is,

ψ
(
z0
)= 1

2

(
Pz0, z0

) ∀z0 ∈
(
D
(
A1/4+ε))′. (4.4)

Let (z∗,u∗) be optimal for problem (4.2). By a similar argument to the proof of
Lemma 3.1, it follows that, for each T > 0,

u∗(t)= B∗p(t) ∀t ≥ 0, (4.5)

p′ −Ap−A1p = A1/2−2εz∗, t ∈ (0,T),

p(T)=−Pz∗(T),
(4.6)

Pz0 =−p(0). (4.7)

Note that the solution p to (4.6) satisfies that A3/4+ε p ∈ L2(0,T ;H) for all T > 0,
and, by (4.4), (4.5), and (4.7), we have, via dynamic programming theory, that

d

dt
ψ
(
z∗(t)

)=−1
2

(∣∣A1/4−εz∗(t)
∣∣2

+
∣∣B∗Pz∗(t)

∣∣2
U

)
, a.e. t > 0, (4.8)

and therefore

((
A+A1

)
z∗(t),Pz∗(t)

)
+

1
2

∣∣B∗Pz∗(t)
∣∣2
U

= 1
2

∣∣A1/4−εz∗(t)
∣∣2
, a.e. t > 0.

(4.9)

On the other hand, it is readily seen, via the dynamic programming princi-
ple, that the flow t→ z∗(t) is a C0-semigroup on X ≡ (D(A1/4+ε))′. Let � be its
infinitesimal generator. Then we have

�z∗(t)=Az∗(t) +A1z
∗(t) +BB∗Pz∗(t), a.e. t > 0, (4.10)

and this implies that

�z0 = A+A1 +BB∗Pz0 ∀z0 ∈D(�), (4.11)

where A+A1 +BB∗P denotes the closure of A+A1 +BB∗P.
We claim that the operatorA+A1 +BB∗P is closed inX . Indeed, if zk → z ∈ X

as k→∞ and (A+A1 +BB∗P)zk → ξ in X , then it follows that

zk +A−1A1zk +A−1BB∗Pzk −→ A−1ξ in D
(
A3/4−ε). (4.12)

LetD :U →D(A1/4−ε) be defined byDu= θ, where θ is the solution to (2.10).
We have B =AD, and so

A−1BB∗Pzk =DB∗Pzk. (4.13)
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Let θk =DB∗Pzk, then θk is the solution to Dirichlet’s problem

∆θk = 0 in Ω, θk =− ∂

∂γ

(
Pzk

)
on ∂Ω, (4.14)

because B∗p =−(∂/∂γ)p, for all p ∈D(A).
It follows, by (4.13), that

θk + zk +A−1(A1zk
)−→ A−1ξ in D

(
A3/4−ε). (4.15)

By (4.14), we have

∫
Ω
θk∆ϕdx =−

∫
∂Ω

∂ϕ

∂γ

∂

∂γ

(
Pzk

)
dσ ∀ϕ∈H1

0 (Ω)∩H2(Ω), (4.16)

while, by (4.15), it follows that

θk −→ θ in
(
D
(
A1/4+ε))′ as k −→∞. (4.17)

Thus, for ϕ∈H3(Ω)∩H1
0 (Ω), we have that

∫
Ω
θ∆ϕdx =−

∫
∂Ω

∂ϕ

∂γ
ηdσ, (4.18)

where η = limk→∞(∂/∂γ)(Pzk) in H−3/2(∂Ω). Hence, from (4.14) and (4.18), we
have that

∆θ = 0 in Ω, θ = η on ∂Ω, (4.19)

which, together with (4.18), shows thatA−1ξ=DB∗Pz+z+A−1(A1z) as claimed.
Thus, �= A+A1 +BB∗P with the domain {z ∈H ; Az+A1z+BB∗Pz ∈ X}

generates a C0-semigroup on X . Then it follows from (4.9) that

((
A+A1

)
z0,Pz0

)
+

1
2

∣∣B∗Pz0
∣∣2
U

= 1
2

∣∣A1/4−εz0
∣∣2 ∀z0 ∈D(�)∩D(A1/4−ε). (4.20)

Next we consider the closed-loop system

z′ +Az+A1z+ g(z) +BB∗Pz = 0, t > 0, z(0)= z0. (4.21)

We note first that, for each z0 ∈ D(A1/4−ε), (4.21) has a local mild solution z ∈
C([0,T];D(A1/4−ε)) for some T > 0. Indeed, we may rewrite (4.21) as

z(t) +
∫ t

0
S(t− s)g(z(s)

)
ds= S(t)z0, z0 ≥ 0, (4.22)
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where S(t) is the semigroup on X generated by �. By (4.3), we have the estimate

∫∞
0

∣∣A1/4−εS(t)z0
∣∣2
dt ≤ C∣∣A−1/4−εz0

∣∣2
. (4.23)

On the other hand, we have (via Sobolev’s imbedding theorem)

∣∣A−1/4−εg(z)
∣∣≤ sup

{∣∣(g(z),ϕ
)∣∣;
∣∣A1/4+εϕ

∣∣≤ 1
}
,

C ≤ sup
{∣∣(g(z),ϕ

)∣∣;|ϕ|Lp∗ (Ω) ≤ 1
}≤ C∣∣g(z)

∣∣
Lq∗ (Ω),

(4.24)

where p∗ =∞, q∗ = 1 if n= 1, and

p∗ = 2n
n− (1 + 4ε)

, q∗ = 2n
n+ 1 + 4ε

if n > 1. (4.25)

This, together with condition (2.2) in hypothesis (H3), implies that

∣∣A−1/4−εg(z)
∣∣≤ C(

∫
Ω
|z|pq∗dx

)1/q∗

, (4.26)

which, combined with Sobolev’s imbedding theorem, shows that, for p ≤ (n+
1 + 4ε)/(n− 1 + 4ε), we have

∣∣A−1/4−εg(z)
∣∣≤ C∣∣A1/4−εz

∣∣p ∀z ∈D(A1/4−ε). (4.27)

Denote byΨ : C([0,T];D(A1/4−ε))→C([0,T];D(A1/4−ε)) the integral operator

Ψ(z)(t)=
∫ t

0
S(t− s) f (z(s)

)
ds+ S(t)z0, (4.28)

where T > 0 is arbitrary but fixed. By (4.23) and (4.27), we obtain that

∣∣Ψ(z)(t)
∣∣
D(A1/4−ε) ≤ C

∫ t
0

∣∣G(t− s)∣∣∣∣A−1/4−εg
(
z(s)

)∣∣ds+
∣∣A1/4−εS(t)z0

∣∣
≤ C

∫ t
0

∣∣G(t− s)∣∣∣∣A1/4−εz(s)
∣∣pds+

∣∣A1/4−εz0
∣∣,

(4.29)

where G(t− s)= A1/4−εS(t− s)A1/4+ε.
Let K = {z ∈ C([0,T];D(A1/4−ε)); sup0≤t≤T |A1/4−εz(t)| ≤M}. Then Ψ maps

K into itself if T is small enough and M > 0 is large enough. It is also clear that
K is compact in C([0,T];H) and this implies, by standard Schauder fixed-point
theorem, the local existence as claimed.

Now, for z0 ∈ D(A1/4−ε)∩Vρ, we assume first that the local mild solution z
to (4.21) is a strong solution. Then we may multiply (4.21) by Pz and use (4.20)
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and (4.27) to get that

d

dt
(Pz,z) +

∣∣A1/4−εz
∣∣2 ≤ C∣∣A1/4−εz

∣∣p∣∣A1/4+εPz
∣∣

≤ C∣∣A1/4−εz
∣∣2∣∣A−1/4−εz

∣∣p−1
(4.30)

because P : (D(A1/4+ε))′ → D(A1/4+ε) is continuous and 1 < p ≤ 2. This implies
that, for ρ > 0 small enough, we have

d

dt
(Pz,z) +

1
2

∣∣A1/4−εz
∣∣2 ≤ 0, a.e. t > 0, (4.31)

which shows that the solution z is global and satisfies estimates (2.14).
If z is not a strong solution, we may approximate (4.21) by

zt + �z+
(
I + λ�

)−1
g(z)= 0, t > 0, z(0)= z0, (4.32)

where λ > 0. By the same argument as above, (4.32) has a local mild solution zλ
which must be a strong solution because (I + λ�)−1g :D(A1/4−ε)→ X is contin-
uously differentiable. Then we may get estimate (4.31) for each zλ, λ > 0. Passing
to the limit for λ→ 0, we obtain (4.31) for a local mild solution z to (4.21). This
completes the proof. �
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