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We consider the applications of the theory of condensing set-valued maps, the
theory of set-valued linear operators, and the topological degree theory of the
existence of mild solutions for a class of degenerate differential inclusions in a
reflexive Banach space. Further, these techniques are used to obtain the solv-
ability of general boundary value problems for a given class of inclusions. Some
particular cases including periodic problems are considered.

1. Introduction

In the last decades the theory of degenerate differential equations in Banach
spaces attracted the attention of a large number of researchers (see, e.g., Favini
and Yagi [5], Showalter [13], and [6] and the references therein). One of the
main reasons is that many partial differential equations arising in mathematical
physics and in applied sciences may be naturally presented in this form.

In this paper, we introduce a class of degenerate differential inclusions in a
reflexive Banach space and define the notion of mild solution for such inclusion.
Applying the techniques of the theory of condensing multimaps (see Kamenskii
et al. [8]) and the methods of the theory of multivalued linear operators [3,
5], we first prove existence results for the Cauchy problem for various types of
multivalued nonlinearities. Then we consider the solvability of general boundary
value problems and discuss some particular cases including periodic problem. It
should be noted that, starting from the paper of Zecca and Zezza [15], nonlinear
boundary value problems for nondegenerate differential inclusions in Banach
spaces were studied in a number of papers (see, e.g., [4, 9, 10, 11, 12]) under
compactness conditions on the evolution operator generated by the linear part
of the problem. In our paper we do not suppose compactness for the linear part
nor for the multivalued nonlinearity. We only assume some regularity conditions
expressed in terms of the measures of noncompactness.
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2. Preliminaries

2.1. Multivalued linear operators. We present some necessary definitions and
results from the theory of multivalued linear operators. Details can be found in
[3, 5].

Let E be a complex Banach space.

Definition 2.1. A multivalued map (multimap) A : E→ 2E is said to be a multi-
valued linear operator (MLO) in E if

(1) D(A)= {x ∈ E : Ax �= ∅} is a linear subspace of E;
(2) the following linearity relations hold:

Ax+Ay ⊂A(x+ y), ∀x, y ∈D(A),

λAx ⊆ A(λx), ∀λ∈C, x ∈D(A).
(2.1)

It is an easy consequence of the definition to note that Ax+Ay = A(x+ y) for
all x, y ∈D(A) and λAx =A(λx) for all x ∈D(A), λ �= 0.

Definition 2.2. The inverse A−1 of an MLO is defined as

(1) D(A−1)= R(A);
(2) A−1y = {x ∈D(A) : y ∈ Ax}.
It is easy to verify that A−1 is an MLO in E.

Definition 2.3. Let A and B be two MLOs in E. The sum and the product of A
and B are defined, respectively, by the relations

D(A+B)=D(A)∩D(B), (A+B)x =Ax+Bx,

D(AB)= {x ∈D(B) : D(A)∩Bx �= ∅}, ABx =A
(
D(A)∩Bx

)
.

(2.2)

One can observe that A+B and AB are MLOs in E and that

(AB)−1 = B−1A−1. (2.3)

Definition 2.4. The resolvent set ρ(A) of an MLO A is defined as the collection of
all λ∈C for which

(1) R(λI −A)=D((λI −A)−1)= E;
(2) (λI −A)−1 is a single-valued bounded operator on E.

The operator (λI −A)−1 is called the resolvent of A.

Definition 2.5. An MLO A satisfies the Hille-Yosida condition (H-Y) if

(i) the resolvent set ρ(A) contains an interval (β,+∞), −∞ < β < +∞;
(ii) the resolvent (λI −A)−1 satisfies the estimates

∥∥(λI −A)−n
∥∥

�(E) ≤
C

(λ−β)n
, λ > β, n= 1,2, . . . , (2.4)

for some positive constant C.
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The following statement gives an example of MLO satisfying (H-Y). Let E∗

denote a space dual to E and J : E→ 2E
∗

be the duality map.

Proposition 2.6. Given an MLO A, suppose that for every x ∈D(A) there exists
x∗ ∈ J(x) such that

Re
〈
y,x∗

〉≤ β‖x‖2 (2.5)

for all y ∈ Ax, where β is a real number. Let also

R
(
λ0I −A

)= E (2.6)

for some λ0 > β. Then (β,+∞)⊂ ρ(A) and the resolvent (λI −A)−1 satisfies (ii) of
condition (H-Y) with C = 1.

The proof follows the lines of [5, Theorem 2.7].
Let A be an MLO satisfying (H-Y).

Definition 2.7. For an integer n > β, the bounded linear operator

An = n
[− I +n(nI −A)−1] (2.7)

is called a Yosida approximation of A.

Denote by exp{tAn} the semigroups generated by An, n > β.

Proposition 2.8 (see [5, Section 2.1]). Let E be a reflexive Banach space and A
an MLO on E satisfying (H-Y). The space E can be represented as E = E0 ⊕ E1,
where E0 = D(A) and E1 = A0. The sequence exp{tAn}, t > 0, converges strongly
to a bounded linear operator exp{tA} ∈�(E) which defines a semigroup on E with
the estimate

∥∥exp{tA}∥∥≤ Ceβt. (2.8)

The restriction of exp{tA} on E0 defines a C0-semigroup on E0 and the restriction
on E1 vanishes for t > 0.

Definition 2.9. Let P : E → E0 be the projection; we will say that the strongly
continuous operator-valued function U : [0,+∞)→�(E), U(t)x = exp{tA}Px,
is a generalized semigroup generated by the MLO A.

2.2. Degenerate differential inclusions. Let E be a real reflexive Banach space
and let M and L be single-valued linear operators on E satisfying the condition

(ML) D(L)⊆D(M) and M(D(L))⊆ R(M).

Let F : [0,T]×E � E be a given multimap.
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Consider the following Cauchy problem for a degenerate differential inclu-
sion of the form

dMx(t)
dt

∈ Lx(t) +F
(
t,Mx(t)

)
, t ∈ [0,T],

Mx(0)= y0 ∈M
(
D(L)

)
.

(2.9)

With the change y(t)=Mx(t), we can rewrite problem (2.9) in the form

dy

dt
∈Ay(t) +F

(
t, y(t)

)
, t ∈ [0,T],

y(0)= y0,
(2.10)

where A= LM−1. It is clear that A is an MLO operator if M is noninvertible.
We suppose that A satisfies the (H-Y) condition.

Definition 2.10. A function x : [0,T]→ E is a mild solution of problem (2.9) if
the function Mx has the form

Mx(t)=U(t)Mx(0) +
∫ t

0
U(t− s) f (s)ds, (2.11)

where f ∈ L1((0,T);E) is a measurable selection of the multifunction t � F(t,
Mx(t)).

The definition is motivated by the following facts. First of all, following [5,
Theorem 2.6], it is easy to verify that given a function f ∈ L1((0,T);E), every
Carathéodory solution to the problem

dy(t)
dt

∈ Ay(t) + f (t), y(0)= y0 ∈D(A) (2.12)

is necessarily of the form

y(t)=U(t)y0 +
∫ t

0
U(t− s) f (s)ds. (2.13)

Furthermore, the function

t −→U(t)y0 +
∫ t

0
U(t− s) f (s)ds, y0 ∈D(A), (2.14)

takes its values in the subspace D(A)=M(D(L))⊆ R(M) (see condition (ML)).
At last, in the nondegenerate case M = I , the given definition agrees with the
notion of mild solution for a semilinear differential inclusion (see, e.g., [8]).

To present sufficient conditions under which the MLO A = LM−1 satisfies
(H-Y), we recall that, in the Banach space E, a semiscalar product can be defined
as [u,v]= 〈u,v∗〉 with v∗ ∈ J(v) (see [14]).
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Proposition 2.11. Suppose that

(a) [Lx,Mx]≤ β‖Mx‖2 for all x ∈D(L) for some real β;
(b) R(λ0M−L)= E for some λ0 > β.

Then the MLO A= LM−1 satisfies (H-Y) with C = 1.

This statement follows directly from Proposition 2.6.

2.3. Multimaps and measures of noncompactness. Let X be a metric space and
Y a normed space. Let P(Y) denote the collection of all nonempty subsets of Y .
We denote

K(Y)= {S∈ P(Y) : S is compact
}
,

Kv(Y)= {S∈ K(Y) : S is convex
}
.

(2.15)

We recall some notions (see, e.g., [8] for further details).

Definition 2.12. A multivalued map (multimap) � : X → P(Y) is

(a) upper semicontinuous (u.s.c.) if �−1(V)= {x ∈ X : �(x)⊂V} is an open
subset of X for every open set V ⊂ Y ;

(b) lower semicontinuous (l.s.c.) if �−1(W) is a closed subset of X for every
closed set W ⊂ Y .

Definition 2.13. Let � be a Banach space and (�,≥) a partially ordered set.
A function β : P(�)→� is called a measure of noncompactness (MNC) in � if

β(coΩ)= β(Ω) for every Ω∈ P(�). (2.16)

A MNC β is called

(i) monotone if Ω0,Ω1 ∈ P(�) and Ω0 ⊆Ω1 implies β(Ω0)≤ β(Ω1);
(ii) nonsingular if β({a}∪Ω)= β(Ω) for every a∈� and Ω∈ P(�);

(iii) invariant with respect to reflection through the origin if β(−Ω) = β(Ω)
for every Ω∈ P(�);

(iv) semiadditive if β(Ω0 ∪ Ω1) = max{β(Ω0),β(Ω1)} for every Ω0,Ω1 ∈
P(�).

If � is a cone in �, we say that the MNC β is

(v) algebraically semiadditive if β(Ω0 + Ω1) ≤ β(Ω0) + β(Ω1) for every Ω0,
Ω1 ∈ P(�);

(vi) regular if β(Ω)= 0 is equivalent to the relative compactness of Ω.

As an example of MNC satisfying all the above properties, we can consider
the Hausdorff MNC

χ(Ω)= inf{ε > 0 : Ω has a finite ε-net}. (2.17)
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Another example can be presented by the following MNC φ defined on the
space of continuous functions C([0,T];E) with the values in a Banach space E:

φ(Ω)= sup
t∈[0,T]

χE
(
Ω(t)

)
, (2.18)

where χE is the Hausdorff MNC in E and Ω(t) = {y(t) : y ∈ Ω}. The MNC φ
satisfies all the above-mentioned properties except regularity. It is known (see
[8]) that for every set Ω⊂ C([0,T];E),

φ(Ω)≤ χC(Ω), (2.19)

where χC is the Hausdorff MNC in C([0,T];E). Moreover, φ coincides with χC
on equicontinuous sets Ω (see [8]).

Let � and �′ be Banach spaces with MNCs β and β′, respectively, and let
N : �→�′ be a bounded linear operator.

Definition 2.14 (see [1]). The value

‖N‖(β,β′) = inf
{
C : β′(NΩ)≤ Cβ(Ω), Ω⊂� is a bounded set

}
(2.20)

is called the (β,β′)-norm of N .

In particular, if β and β′ are the Hausdorff MNCs χ and χ′, then the value
‖N‖(χ,χ′) is denoted by ‖N‖(χ) and is called the χ-norm of N . The χ-norm may
be evaluated by the formula (see [1])

‖N‖(χ) = χ′(NS)= χ′(NB), (2.21)

where S is a unit sphere and B is a unit ball in �. The above formula easily implies

‖N‖(χ) ≤ ‖N‖. (2.22)

Definition 2.15. A multimap F : X ⊆ � → K(�) or a family of multimaps G :
[0,1]×X → K(�) is called condensing relative to a MNC β (or β-condensing) if
for every set Ω⊆ X not relatively compact,

β
(
F(Ω)

)
� β(Ω) or β

(
G
(
[0,1]×Ω

))
� β(Ω), (2.23)

respectively.

Let W ⊂� be an open set, �⊆� a closed convex subset, β a monotone MNC
in �, and F : W� → Kv(�) an u.s.c. multimap such that x /∈ F(x) for all x ∈
∂W�, where W� and ∂W� denote, respectively, the closure and the boundary of
the set W� =W ∩� in the relative topology of the space �.

In such a setting, the relative topological degree deg�(F,W) satisfying the
standard properties is defined (see [8, Chapter 3]).



V. Obukhovskii and P. Zecca 775

3. Existence results

3.1. Cauchy problem. We consider the Cauchy problem (2.9) under the as-
sumptions that the operators M and L satisfy condition (ML) and A =ML−1

satisfies condition (H-Y).
On the multivalued nonlinearity F : [0,T]×E � E, we first suppose the fol-

lowing assumptions:

(F0) F has nonempty, compact, and convex values;
(F1) the multifunction F(·,x) : [0,T]→ Kv(E) has a strongly measurable se-

lection for every x ∈ E;
(F2) the multimap F(t,·) : E→ Kv(E) is u.s.c. for a.a. t ∈ [0,T];
(F3) there exists a function α(·)∈ L1

+([0,T]) such that∥∥F(t,x)
∥∥ := sup

{‖z‖ : z ∈ F(t,x)
}≤ α(t)

(
1 +‖x‖) for a.a. t ∈ [0,T]; (3.1)

(F4) there exists a function k(·)∈ L1
+([0,T]) such that

χ
(
F(t,D)

)≤ k(t)χ(D), for a.a. t ∈ [0,T], (3.2)

for every bounded set D ⊂ E.

Theorem 3.1. Under conditions (ML), (H-Y), (F0), (F1), (F2), (F3), and (F4),
the set Σ of all mild solutions of problem (2.9) is nonempty. Moreover, the set MΣ=
{y ∈ C([0,T];E) : y(t)=Mx(t), x ∈ Σ} is compact.

Proof. From assumptions (F0), (F1), (F2), and (F3), it follows that the superpo-
sition multioperator �F : C([0,T];E) � L1([0,T];E) given by

�F(y)= { f ∈ L1([0,T];E
)

: f (t)∈ F
(
t, y(t)

)
a.e. t ∈ [0,T]

}
, (3.3)

is correctly defined (see [8]), so we can define an integral multioperator Γ :
C([0,T],E) � C([0,T],E) as

Γy =
{
z : z(t)=U(t)y0 +

∫ t

0
U(t− s) f (s)ds : f ∈�F(y)

}
. (3.4)

To prove the theorem, it is sufficient to verify that the fixed-point set FixΓ is
nonempty and compact.

Consider the closed, convex set � = {y : y(0) = y0} ⊂ C([0,T];E) and the
parametrized family of multioperators Γ̃ : �×[0,1] � � such that

Γ̃(y,λ)=
{
z : z(t)=U(t)y0 + λ

∫ t

0
U(t− s) f (s)ds : f ∈�F(y)

}
. (3.5)

Following [8] it is easy to verify that the multimap Γ̃ has compact, convex
values; it is u.s.c. and ν-condensing on bounded sets of �, where ν is the MNC
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in C([0,T];E) with values in the naturally partially ordered R2
+, defined as

ν(Ω)= max
�⊂∆(Ω)

(
γ(�),modC(�)

)
, (3.6)

where ∆(Ω) is the collection of all denumerable subsets of Ω,

γ(�)= sup
t∈[0,T]

e−btχ
(
�(t)

)
(3.7)

given by b > 0 large enough and modC(�) is the modulus of equicontinuity of
� defined as

modC(�)= lim
δ→0

sup
y∈�

max
|t1−t2|≤δ

∥∥y(t1)− y
(
t2
)∥∥. (3.8)

Furthermore, using condition (F3) and the standard technique based on the
Gronwall-type inequality, it is possible to prove that the set of solutions of the
family of inclusions

y ∈ Γ̃(y,λ) (3.9)

is a priori bounded in norm by the constant

r0 = R
(∥∥y0

∥∥+ a
)
eRa, (3.10)

where

a=
∫ T

0
α(s)ds, R= sup

t∈[0,T]

∥∥U(t)
∥∥. (3.11)

Hence, if we take W as an open ball in C([0,T];E) centered at the origin with
radius r > r0, from the basic properties of the topological degree, we have

deg�

(
Γ,W

)= deg�

(
Γ̃(·,1),W

)= deg�

(
Γ̃(·,0),W

)= 1, (3.12)

and the result follows. �

We now consider the case when the nonlinearity F : [0,T]× E → K(E) has
nonconvex values, but instead of upper Carathéodory conditions (F1) and (F2),
it satisfies the almost lower semicontinuity assumption that

(FL) there exists a sequence of disjoint compact sets {In}, In ⊆ [0,T], such
that

(i) meas([0,T]\I)= 0, where I =∪nIn;
(ii) the restriction of F on each set In×E is l.s.c.

We also assume that the space E is separable.

Theorem 3.2. Under conditions (ML), (H-Y), (FL), (F3), and (F4), there exists a
mild solution of problem (2.9).
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Proof. We only give a sketch of the proof. In this situation, the superposition
multioperator �F(x) is correctly defined and it is l.s.c.; hence, by Fryszkowski-
Bressan-Colombo theorem (see, e.g., [2]), it admits a continuous selection ρ(x).
The same arguments used in the proof of [8, Theorem 5.5.1] imply that there
exists a compact convex subset X ⊂ C([0,T];E) invariant with respect to the
action of the integral multioperator Γ. The continuous map γ : X → X defined
by

γ(x)(t)=U(t)y0 +
∫ t

0
U(t− s)ρ(x)(s)ds (3.13)

is clearly a continuous selection of Γ. The application of the Schauder fixed-point
theorem to γ proves the statement. �

3.2. Boundary value problems. Let E be a real separable reflexive Banach space.
Under hypotheses (ML), (H-Y), (F0), (F1), (F2), (F3), and F(4), we consider the
following general boundary value problem:

dMx(t)
dt

∈ Lx(t) +F
(
t,Mx(t)

)
, t ∈ [0,T], (3.14)

�(Mx)=	(Mx), (3.15)

where � : C([0,T];E)→ E is a bounded linear operator and 	 : C([0,T];E)→ E
is a nonlinear (in general) completely continuous operator.

We call generalized Cauchy operator a bounded linear operatorG : L1([0,T];E)
→ C([0,T];E) defined as

(G f )(t)=
∫ t

0
U(t− s) f (s)ds. (3.16)

Consider the linear operator D : C([0,T];E)→ C([0,T];E) defined as

D(x)(t)= x(t)−U(t)x(0) (3.17)

and denote �0 =�|Ker(D). Our main assumption on operators � and 	 is the
following:

(�	) there exists a bounded linear operator Λ : E→ KerD such that

(
I −�0Λ

)(
	y−�G f

)= 0 (3.18)

for all y ∈ C([0,T];E) and f ∈�F(y).
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We introduce the multioperator Q : C([0,T];E) � C([0,T];E) defined in the
following way:

Q(y)=Λ	y + (I −Λ�)G�F(y) (3.19)

(see [15]).
It is easy to see that the fixed points of Q coincide with the functions y(·)

defined by the equality y(t) =Mx(t), where x(·) is a mild solution of problem
(3.14) and (3.15).

To study further properties of the multioperator Q, we recall some known
facts from [8].

Proposition 3.3. Let S : L1([0,T];E)→ C([0,T];E) be an abstract operator sat-
isfying the following conditions:

(S1′) there exists K ≥ 0 such that

‖S f − Sg‖C ≤ K‖ f − g‖L1 , ∀ f ,g ∈ L1
(
[0,T];E

)
; (3.20)

(S2) for any compact set X ⊂ E and sequence { fn} ⊂ L1([0,T],E) such that
{ fn(t)} ⊂ X for a.a. t ∈ [0,T], the weak convergence fn⇀ f0 implies S fn
→ S f0.

If �F is a superposition multioperator generated by a multimap F satisfying (F0),
(F1), (F2), (F3), and (F4), then the composition S�F is an u.s.c. multimap with
compact values.

Following the lines of [8, Lemma 4.2.1], it is possible to verify the following
proposition.

Proposition 3.4. The generalized Cauchy operatorG satisfies properties (S1′) and
(S2).

Since (I −Λ�) is a bounded linear operator, we obtain as an immediate con-
sequence the following proposition.

Proposition 3.5. The multioperator Q is u.s.c. and has compact convex values.

Our goal is to give conditions under which the multioperator Q is condensing
on bounded subsets of C([0,T];E).

We assume that the linear operator � satisfies the following condition:

(�) the operator � is (b,φ,χE)-bounded, that is, there exists a constant b ≥ 0
such that for every bounded set Ω⊂ C([0,T];E) we have that

χE(�Ω)≤ bφ(Ω), (3.21)

where φ is the MNC in C([0,T];E) defined by (2.18).
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We further suppose that the linear operators U(t) satisfy the following esti-
mate for the χ-norm:

∥∥U(t)
∥∥(χ) ≤ h(t), (3.22)

where h : [0,T]→R+ is a summable function.
At last, let the following condition holds:

(C) (1 + b‖Λ‖(χE,φ))sup0≤t≤T
∫ t

0 h(t− s)k(s)ds= µ < 1, where k(·) is the func-
tion from condition (F4).

Note that condition (C) is satisfied when the generalized semigroup U(t) is
compact (h(·) = 0) or when F is completely u.s.c. in the second argument (in
the sense that k(·)= 0).

Consider the MNC

ϕ(Ω)= (φ(Ω),modC(Ω)
)

(3.23)

on the space C([0,T];E) with values in the cone R+
2 , where modC(Ω) is the mod-

ulus of equicontinuity (see Section 2). The MNC ϕ is monotone, regular, and
invariant with respect to union with a compact set.

Proposition 3.6. Under conditions (�) and (C), the multioperator Q is ϕ-con-
densing on bounded subsets of C([0,T];E).

Proof. Let Ω be a bounded subset of C([0,T];E) such that

ϕ
(
Q(Ω)

)≥ ϕ(Ω) (3.24)

in the sense of the order generated by the cone R2
+.

We estimate the value of φ(Q(Ω)). Since the operator 	 is completely contin-
uous, we need to estimate only

φ
(
(I −Λ�)G�F(Ω)

)
. (3.25)

We have

φ
(
Λ�G�F(Ω)

)≤ ‖Λ‖(χE,φ)χE
(
�G�F(Ω)

)≤ ‖Λ‖(χE,φ)bφ
(
G�F(Ω)

)
. (3.26)

To estimate φ(G�F(Ω)), note that

χE
(
U(t− s)F

(
s,Ω(s)

))≤ ∥∥U(t− s)
∥∥(χ)

χE
(
F
(
s,Ω(s)

))
≤ h(t− s)k(s)χE

(
Ω(s)

)
≤ h(t− s)k(s)φ(Ω).

(3.27)
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Hence, by the theorem on χ-estimates for a multivalued integral (see [8, Theo-
rem 4.2.3]), we have for every t ∈ [0,T]

χE
(
G�F(Ω)(t)

)≤ φ(Ω) ·
∫ t

0
h(t− s)k(s)ds. (3.28)

Therefore,

φ
(
G�F(Ω)

)≤ φ(Ω) · sup
0≤t≤T

∫ t

0
h(t− s)k(s)ds,

φ
[
(I −Λ�)G�F(Ω)

]≤ [1 + b‖Λ‖(χE,φ)] sup
0≤t≤T

∫ t

0
h(t− s)k(s)ds ·φ(Ω)

= µφ(Ω).

(3.29)

So

φ(Ω)≤ φ
(
Q(Ω)

)≤ µφ(Ω). (3.30)

It follows that φ(Ω)= 0 and hence

χE
(
Ω(t)

)≡ 0 on [0,T]. (3.31)

Now, we show that the set Ω is equicontinuous. Note that from

modC(Ω)≤modC
(
Q(Ω)

)
, (3.32)

it follows that it is sufficient to show that Q(Ω) is equicontinuous. It is also suffi-
cient to verify that the set (I −Λ�)G�F(Ω) is equicontinuous. This is equivalent
to show that every sequence {gn} ⊂ (I −Λ�)G�F(Ω) satisfies this property.

Given a sequence {gn}, there exist a sequence {yn} ⊂ Ω and a sequence of
selectors { fn}, fn ∈�F(yn), such that

gn = (I −Λ�)G
(
fn
)
, n= 1,2, . . . . (3.33)

Condition (F3) implies that the sequence of functions { fn} is integrably
bounded. The sequence {yn} satisfies the equality

χE
({
yn(t)

})= 0, ∀t ∈ [0,T], (3.34)

hence, by condition (F4), we have

χE
({

fn(t)
})= 0 for a.a. t ∈ [0,T], (3.35)
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and so the sequence { fn} is semicompact (see [8, Definition 4.2.1]). Since the
operator (I −Λ�)G satisfies conditions (S1′) and (S2), then we can use [8, The-
orem 5.1.1] to conclude that the sequence {gn} is relatively compact and, conse-
quently, equicontinuous.

Now the relative compactness of Ω follows from the Ascoli-Arzelà theorem.
�

We can now observe that it is possible to apply the topological degree theory
introduced in Section 2.3 to the multioperator Q. We can then formulate the
following general existence principle.

Theorem 3.7. Let W ⊂ C([0,T];E) be a bounded open subset such that x /∈Q(x)
for all x ∈ ∂W . If deg(Q,W) �= 0, then the set Σ of all mild solutions of problem
(3.14) and (3.15) is nonempty.

As a realization of this general principle, we can consider the following situa-
tion.

Theorem 3.8. Under the above conditions, suppose additionally that

(i) there exists a sequence of functions ωn ∈ L1
+[0,T], n= 1,2, . . . , such that

sup
‖y‖≤n

∥∥F(t, y)
∥∥≤ ωn(t) for a.a. t ∈ [0,T], n= 1,2, . . . ,

lim
n→∞

1
n

∫ T

0
ωn(t)dt = 0;

(3.36)

(ii) the following asymptotic condition holds:

lim
‖y‖→∞

‖	y‖
‖y‖ = 0. (3.37)

Then the set Σ of all mild solutions of problem (3.14) and (3.15) is nonempty.

Proof. We prove that there exists a closed ball Br ⊂ C([0,T];E) such thatQ(Br)⊆
Br .

Supposing the contrary, we have the sequences {yn},{zn} ⊂ C([0,T],E) such
that zn ∈Q(yn), ‖yn‖ ≤ n and ‖zn‖ > n. Then we obtain∥∥zn(t)

∥∥≤ ∥∥Λ	yn
∥∥+

∥∥G fn(t)
∥∥+

∥∥Λ�G fn
∥∥ (3.38)

for some fn ∈�F(yn).
Therefore∥∥zn∥∥≤ ‖Λ‖∥∥	yn

∥∥+R
∫ T

0

∥∥ fn(s)
∥∥ds+‖Λ�‖R

∫ T

0

∥∥ fn(s)
∥∥ds, (3.39)

where

R= sup
0≤t≤T

∥∥U(t)
∥∥. (3.40)
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Then we have

1≤
∥∥zn∥∥
n

≤ ‖Λ‖
∥∥	yn

∥∥
n

+R
(
1 +‖Λ�‖)1

n

∫ T

0

∥∥ fn(s)
∥∥ds. (3.41)

From (i) and (ii), we see that

lim
n→∞

∥∥zn∥∥
n

= 0, (3.42)

giving the contradiction.
It remains only to apply the fixed-point theorem for condensing multimaps

(see [8, Corollary 3.3.1]) to the restriction Q : Br → Kv(Br). �

3.3. Particular cases

3.3.1. Case of a constant c. Consider a boundary condition of the form

�(Mx)= c, (3.43)

where c ∈ E and � : C([0,T];E)→ E is, as before, a bounded linear operator sat-
isfying condition (�). To satisfy condition (�	), we define the bounded linear

operator �̃ : E→ E by

�̃u=�
(
ru
)
, (3.44)

where ru(t)=U(t)u. Then, it is easy to see that condition (�	) is satisfied if we
suppose that

(�̃) the operator �̃ has inverse �̃−1.

In fact, under this condition, we can define the operator Λ by the equality

(Λu)(t)=U(t) · �̃−1u. (3.45)

Further, since for every bounded Ω⊂ E we have that

χE
(
ΛΩ(t)

)≤ h(t)
∥∥�̃−1

∥∥(χ)
χ(Ω) (3.46)

and hence

φ(ΛΩ)≤ ∥∥�̃−1
∥∥(χ)

sup
0≤t≤T

h(t) · χ(Ω), (3.47)

to satisfy condition (C), it is sufficient to suppose that(
1 + b

∥∥�̃−1
∥∥(χ)

sup
0≤t≤T

h(t)

)
· sup

0≤t≤T

∫ T

0
h(t− s)k(s)ds < 1. (3.48)
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3.3.2. Periodic problem. We consider the periodic boundary condition of the
form

Mx(T)−Mx(0)= 0. (3.49)

Clearly this is a particular case of the previous problem with

�T y = y(T)− y(0) (3.50)

and c = 0.
Note that from the algebraic semiadditivity property of the Hausdorff MNC,

it follows that condition (�) is fulfilled for �T with the constant b = 2.
Further, the operator �̃ has the form

�̃u= [U(T)− I
]
u (3.51)

and condition (�̃) is reduced to condition (�̃T) of the existence of the inverse
[U(T)− I]−1. The operator Λ may be written as

(
ΛTu

)
(t)=U(t)

[
U(T)− I

]−1
u (3.52)

and the integral multioperator Q takes the form

QT(y)= (I −Λ�)G�F(y)

=
{
z : z(t)=

∫ T

0
U(t− s) f (s)ds

+U(t)
[
I −U(T)

]−1 ·
∫ T

0
U(T − s) f (s)ds : f ∈�F(y)

}
(3.53)

(see [7, 8]).
Condition (C) can be written as

(CT) (1 + 2‖[U(T)− I]−1‖(χ) · sup0≤t≤T h(t)) · sup0≤t≤T h(t− s)k(s)ds < 1.

As a corollary of Theorem 3.8, we obtain the following statement on the exis-
tence of a periodic solution.

Theorem 3.9. Under assumptions (�̃T) and (CT), Theorem 3.8(i) implies the ex-
istence of a mild solution of problem (3.14) and (3.49).
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