
FOCAL DECOMPOSITIONS FOR LINEAR
DIFFERENTIAL EQUATIONS OF
THE SECOND ORDER

L. BIRBRAIR, M. SOBOLEVSKY, AND P. SOBOLEVSKII

Received 10 November 2002

Focal decomposition associated to an ordinary differential equation of the sec-
ond order is a partition of the set of all two-points boundary value problems ac-
cording to the number of their solutions. Two equations are called focally equiv-
alent if there exists a homomorphism of the set of two-points problems to itself
such that the image of the focal decomposition associated to the first equation
is a focal decomposition associated to the second one. In this paper, we present
a complete classification for linear second-order equations with respect to this
equivalence relation.

1. Introduction

The notion of focal decomposition was introduced by Peixoto (see [2, 3, 4]) for
the topological investigation of differential equations of the second order and for
the topological investigation of exponential maps on Riemannian manifolds.

Basically, the focal decomposition of the equation x′′ = f (t,x,x′) can be de-
scribed in the following way. Consider a 4-dimensional space R4 with coordi-
nates (t1, t2,x1,x2). A point (t1, t2,x1,x2) has the index i (note that i can be ∞) if
there are exactly i solutions of the following boundary value problem:

x′′ = f (t,x,x′), x
(
t1
)= x1, x

(
t2
)= x2. (1.1)

Let Σi( f ) be the set of points in R4 with the index i. The collection {Σi( f )} of
these sets is a partition of R4. This partition is called a focal decomposition.

We say that two equations are focally equivalent if there exists a homeomor-
phism of R4 to itself such that the image of every set Σi for the first equation is
the corresponding set Σi for the second one. In other words, a focal equivalence
means that the “global behaviour” of the set of all boundary value problems for
the first equation is similar to the “global behaviour” of the set of all boundary
value problems for the second one.

Copyright © 2003 Hindawi Publishing Corporation
Abstract and Applied Analysis 2003:14 (2003) 813–821
2000 Mathematics Subject Classification: 34A26
URL: http://dx.doi.org/10.1155/S1085337503212057

http://dx.doi.org/10.1155/S1085337503212057


814 Focal decompositions

Thus, we can consider a question of the focal classification. This question is
an analog (but not a direct analog) of the question of topological classification
of vector fields or dynamical systems. The difference is the following: in the the-
ory of dynamical systems, one is interested in the global behaviour of all the
trajectories, but in our case, we study just the number of solutions.

For some equations, the sets Σi are not necessary manifolds. As was shown
by the example of Peixoto and Thom [4], Σi can be subanalytic sets with rather
complicated singularities. We analyze here the question of focal classification
of linear differential equations—the first and more simple case. As a result, we
obtain a complete classification. In particular, we will show that in this case, Σi
are C2-manifolds.

We consider the following equation: x′′ = −x. We define the family of straight
lines on the plane {(t1, t2)} : t2 = t1 + πk (where k ∈ Z). For this equation, Σ1 =
σ1×R2, where σ1 = {(t1, t2)∈R2 | t2 �= t1 +πk}. The sets Σ∞ and Σ0 can be de-
fined as follows:

Σ∞ =
{(
t1, t2,x1,x2

)∈R
4 | t2 = t1 +πk,

x1 = x2 (if k is even), x1 =−x2 (if k is odd)
}
,

Σ0 =R
4− (Σ1∪Σ∞

)
.

(1.2)

Now we give a description of the focal decomposition for all linear differential
equations of the second order. Consider a square (−S,S)× (−S,S) on the plane
{(x1,x2)} with the center (0,0). Note that S can be∞.

Our main result is the following. The focal decomposition of the equation

x′′ = a(t)x′ + b(t)x+ c(t) (1.3)

can be obtained using a homeomorphism H : (−S,S)2 ×R2 → R4, preserving
fibers, such that

Σi =H
(
Σi(−x)∩ (−S,S)2×R

2) (1.4)

(see Theorems 3.1 and 3.9.)
Since H preserves fibers, we obtain that Σ1 = σ1×R2, where σ1 is the collec-

tion of open sets bounded by graphs of some monotone functions. The number
of the curves (or the number of the straight lines: t2 = t1 + πk) intersecting the
given square (−S,S)2 is the invariant. Observe that this number can be infinite. In
this case, the equation x′′ = a(t)x′ + b(t)x+ c(t) is focally equivalent to x′′ = −x.
It may be interesting to describe the number of the connected components of
Σ1 as a function of coefficients a(t), b(t), and c(t). For example, using the maxi-
mum principle, one can show that if b(t) > 0, then Σ1 has exactly two connected
components, that is, the focal decomposition for the equation is the same as for
the equation x′′ = 0.
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Finally, we state the realization theorem which means that for any picture
described above, there exists a second-order differential equation providing this
picture.

Note that it could be natural to consider the question from the following
viewpoint. A boundary value problem can be reduced to another one with
boundary conditions equal to 0 (see [1]). Then one can use the Fredholm theory.
But we doubt if this approach can give a geometric structure of the sets Σi. Our
approach is based on the consideration of geometric properties of fundamental
solutions.

2. Focal decompositions

Let

x′′ = f (t,x,x′) (2.1)

(where f ∈ C1(R3,R)) be a second-order differential equation. Let Σi( f ) (here
i = 0,1, . . . ,∞) be a subset of R4 defined as follows: Σi( f ) = {(t1, t2,x1,x2) ∈ R4

such that the number of solutions of the boundary value problem x′′ = f (t,x,x′),
x(t1)= x1, x(t2)= x2 is equal to i}.

Clearly, {Σi( f )} is a decomposition of R4. This decomposition is called a focal
decomposition corresponding to (2.1) (see [2, 3, 4]).

Definition 2.1. Two second-order differential equations x′′ = f (t,x,x′) and x′′ =
g(t,x,x′) are called focally equivalent if there exists a homeomorphism H : R4 →
R4 such that H(Σi( f ))= Σi(g), for every i.

These equations are called strongly focally equivalent if the homeomorphism
H can be presented in the following form:

H
(
t1, t2,x1,x2

)= (h(t1, t2), H̃(t1,t2)
(
x1,x2

))
, (2.2)

where h : R2 → R2 is a homeomorphism and H̃(t1,t2) : R2 → R2 is a family of
homeomorphisms depending continuously on (t1, t2).

Remark 2.2. Let ΣTi ( f ) = Σi( f )∩{(−T,T)× (−T,T)×R2}. Hence, ΣTi ( f ) is a
decomposition of (−T,T)× (−T,T)×R2. We call this decomposition a restric-
tion of the focal decomposition for f to (−T,T).

Definition 2.3. The restriction of the equation x′′ = f (t,x,x′) to (−T1,T1) is
strongly focally equivalent to the restriction of the equation x′′ = g(t,x,x′) to
(−T2,T2) if there exists a homeomorphism H : (−T1,T1)2 ×R2 → (−T2,T2)2 ×
R2 such that H(ΣT1

i ( f ))= ΣT2
i (g) and

H
(
t1, t2,x1,x2

)= (h(t1, t2), H̃(t1,t2)
(
x1,x2

))
, (2.3)
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where h : (−T1,T1)2 → (−T2,T2)2 is a homeomorphism and H̃(t1,t2) : R2 →R2 is
a family of homeomorphisms depending continuously on (t1, t2).

Example 2.4. Consider the equation x′′ = 0. Then

Σ∞ =
{(
t1, t2,x1,x2

) | t1 = t2, x1 = x2
}
,

Σ0 =
{(
t1, t2,x1,x2

) | t1 = t2, x1 �= x2
}
,

Σ1 =R
4− {Σ∞ ∪Σ0

}
.

(2.4)

Example 2.5. Consider the equation x′′ = −x. Then

Σ∞ =
{(
t1, t2,x1,x2

) | t2 = t1 + kπ, x1 = (−1)kx2
}
,

Σ0 =
{(
t1, t2,x1,x2

) | t2 = t1 + kπ, x1 �= (−1)kx2
}
,

Σ1 =R
4− {Σ∞ ∪Σ0

}
.

(2.5)

Remark 2.6. It is easy to see that equation (2.4) is strongly focally equivalent to
the restriction of equation (2.5) to (−π/2,π/2). The homeomorphism is given by
the following formula:H(t1, t2,x1,x2)=(h(t1),h(t2),x1,x2), where h(t)=arctan t.

3. Linear differential equations of the second order

Theorem 3.1. Consider a linear homogeneous differential equation

x′′ = a(t)x′ + b(t)x, (3.1)

where a(t) and b(t) are continuous functions. Then one of the two following state-
ments is true.

(1) Equation (3.1) is strongly focally equivalent to the equation x′′ = −x.
(2) There exists an integer number k ≥ 0 such that (3.1) is strongly focally equiv-

alent to the restriction of the equation x′′ = −x to (−π/2−πk,π/2 +πk).

To prove this theorem, we need some preliminary lemmas. Let U ⊂ R4 be a
plane defined by the equation x1 = x2 = 0. Let {φ1(t),φ2(t)} be a fundamental
solution of (3.1). The pair {φ1(t),φ2(t)} can be considered as a map φ : R→R2

such that φ(t) = (φ1(t),φ2(t)). Let Φ : R→ RP1 
 S1 be the standard projec-
tivization of φ such that Φ(t) is a 1-dimensional subspace of R2 defined by
Φ(t) = {z ∈ R2 | z = λφ(t), for some λ ∈ R}. Let σ� ⊂ U be a subset defined
as follows: σ� = {(t1, t2) |Φ(t1)=Φ(t2)}. Let σ1 =U − σ�. Observe that the sets
σ1 and σ� do not depend on a fundamental solution of (3.1) because any funda-
mental solution can be obtained from φ using a linear nondegenerate transfor-
mation.

Lemma 3.2. The following identity holds: Σ1 = σ1×R2.
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Proof. By the classical results of the theory of ordinary differential equations, the
set Σ1 is given by inequality

det

(
φ1
(
t1
)

φ1
(
t2
)

φ2
(
t1
)

φ2
(
t2
)) �= 0. (3.2)

Since inequality (3.2) does not depend on (x1,x2), we obtain the proposition.
�

Remark 3.3. Consider equation (2.5) and consider the following fundamental
solution: φ1(t)= cos t, φ2(t)= sin t. Then the map Φ : R→RP1 can be presented
in the following form: Φ(t)= (cos2t,sin2t). Observe that we use the identifica-
tion of RP1 and S1.

Then the set σ� is the collection of the straight lines t2 = t1 + kπ (here k ∈ Z)
and σ1 is the collection of open sets between these lines. Observe that the sets σ1,
σ� can be associated with any map Φ : (T1,T2)→ RP1. We are going to use the
notations σ1(Φ), σ�(Φ) for these sets.

Let Φ : I1 → RP1 and Ψ : I2 → RP1 be two continuous maps (here I1, I2 ⊂ R

are open intervals (bounded or unbounded)).

Definition 3.4. The maps Φ and Ψ are topologically conjugate if there exist a
homeomorphism h : I1 → I2 and a homeomorphism h̃ : RP1 → RP1 such that
the following diagram is commutative:

I1
Φ

h

RP1

h̃

I2
Ψ

RP1.

(3.3)

The maps h and h̃ are called conjugations.

Lemma 3.5. Let Φ : I1 → RP1 and Ψ : I2 → RP1 be two topologically conjugate
maps. Then there exists a homeomorphism h� : I1 × I1 → I2 × I2 such that
h�(σ1(Φ))= σ1(Ψ) and h�(σ�(Φ))= σ�(Ψ).

Proof. Let h and h̃ be the corresponding conjugations. Define

h�
(
t1, t2

)= (h(t1),h(t2)). (3.4)

Clearly, h� is a homeomorphism. We prove that h�(σ�(Φ))= σ�(Ψ). Consider
(t1, t2)∈ σ�(Φ). Then

Ψ
(
h
(
t1
))= h̃(Φ(t1))= h̃(Φ(t2))=Ψ

(
h
(
t2
))
. (3.5)
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Thus,

h�
(
t1, t2

)= (h(t1),h(t2))∈ σ�(Ψ). (3.6)

In the same way, one can prove that h−1
� (σ�(Ψ))= σ�(Φ). The lemma is proved.

�

Lemma 3.6. Let Φ : R→ RP1 be a projectivization of the fundamental solution
(φ1,φ2) of (3.1). Then one of the following propositions is true:

(1) there exists a number T > 0 such that Φ is topologically conjugate to the
restriction of the map ν defined by

ν(t)= (cos2t,sin2t) (3.7)

to the interval (−T,T);
(2) there exists T > 0 such that Φ is topologically conjugate to ν|(−T,+∞);
(3) Φ is topologically conjugate to ν on R.

Proof. Observe that the curve parametrized by (φ1(t),φ2(t)) has no return points
because the Wronski determinant is never equal to zero. Let h1 : R→ R be a
lifting of Φ to the covering space (R,ν,RP1), that is, the following diagram is
commutative:

R
h1

Φ

R

ν

RP1.

(3.8)

By the observation, h1 is a monotone function and, thus, a homeomorphism.
If | limt→∞h1(t)| = ∞ and |limt→−∞h1(t)| = ∞, then h = h1 is a conjugation

of Φ with ν. This corresponds to case (3).
Let |limt→∞h1(t)| <∞ and |limt→−∞h1(t)| <∞. Let I = Im(h1). Using some

translation in R and a rotation on RP1, we can transform I into (−T,T) and
obtain that ν(0)= (1,0). It is case (1).

Case (2) is obtained if one of the limits is finite and the other is not. �

Now we are going to use the following notation:

S(T)=
([

2T
π

]
+ 1
)
π

2
, (3.9)

where [x] is an integer part of x.

Lemma 3.7. (1) For each T > 0, there exists a homeomorphism H : (−T,T)2 →
(−S(T),S(T))2 such that

H
(
σ�(ν)∩ (−T,T)2)= σ�(ν)∩ (− S(T),S(T)

)2
. (3.10)
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(2) Let S(T1) �= S(T2). Then there is no homeomorphism H : (−T1,T1)2 →
(−T2,T2)2 such that

H
(
σ�(ν)∩ (−T1,T1

)2
)
= σ�(ν)∩ (−T2,T2

)2
. (3.11)

(3) For each T ∈ R, there exists a homeomorphism H : (T,∞)× (T,∞)→ R2

such that

H
(
σ�(ν)∩ (T,∞)2)= σ�(ν). (3.12)

The lemma is a straightforward consequence of the topological structure of
σ�(ν). Observe that the number S (as well as T) depends only on (3.1).

Let Vt′1,t
′
2
⊂ R4 = {(t1, t2,x1,x2)} be the plane given by the equations t1 = t′1

and t2 = t′2.

Lemma 3.8. The set Σ∞ has the following structure:

(1) if (t1, t2)∈ σ1, then Σ∞ ∩Vt1,t2 =∅;
(2) if (t1, t2)∈ σ�, then Σ∞ ∩Vt1,t2 is a one-dimensional subspace in Vt1,t2 .

Proof. Statement (1) follows from Lemma 3.2. As for statement (2), the set Σ∞
∩Vt1,t2 can be obtained as the set of solutions of the following system of equa-
tions:

det

(
φ1
(
t1
)

x1

φ1
(
t2
)

x2

)
= 0, det

(
x1 φ2

(
t1
)

x2 φ2
(
t2
))= 0, (3.13)

where φ = {φ1,φ2} is a fundamental solution. Since (t1, t2)∈ σ�, the matrix(
φ1
(
t1
)

φ2
(
t1
)

φ1
(
t2
)

φ2
(
t2
)) (3.14)

has rank 1. Thus, the set of solutions is a 1-dimensional subspace in Vt1,t2 .
�

Observe that the subspace Σ∞ ∩Vt1,t2 is given by an equation of the follow-
ing type: x1 = λ(t1, t2)x2, where λ(t1, t2) = φ(t1)/φ(t2). Note that λ(t1, t2) is well
defined, λ(t1, t2) �= 0, for every (t1, t2)∈ σ�, and λ(t1, t2)= 1 if t1 = t2.

Let Lt1,t2 : R2 →R2 be a linear transformation defined as follows:

Lt1,t2
(
x1,x2

)= (x1,
∣∣λ(t1, t2)∣∣x2

)
. (3.15)

Hence, the map Lt1,t2 transforms the line x1 = λ(t1, t2)x2 into the line x1 = x2

if λ(t1, t2) > 0 and into the line x1 = −x2 if λ(t1, t2) < 0. Let µ : R2 → R+ be a
continuous function such that µ(t1, t2)= |λ(t1, t2)| if (t1, t2)∈ σ�. The existence
of this function follows from Titze theorem because σ� is a closed subset of R2.
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Let L̃ : R2 →GL(2,R) be a map defined as follows:

L̃t1,t2 =
(

1 0
0 µ

(
t1, t2

)) . (3.16)

Hence, if (t1, t2)∈ σ�, then L̃t1,t2 = Lt1,t2 .

Proof of Thereom 3.1. Using Lemmas 3.6 and 3.7, we can construct a homeo-
morphism h : R2 → (−S,S)× (−S,S) (where S is the number defined in (3.9) or
equal to infinity in Lemma 3.6(2) and (3)) such that the image of σ1 is equal to
σ1(ν)∩ (−S,S)2 and the image of σ� is equal to σ�(ν)∩ (−S,S)2.

Let (t1, t2) ∈ σ�. Since any curve (φ1(t),φ2(t)) has no return points, then
Σ∞(−x)∩Vh(t1,t2) is the line x1 = x2 if λ(t1, t2) > 0 and it is the line x1 = −x2

if λ(t1, t2) < 0. We obtain that the map H : R4 →R4, defined by

H
(
t1, t2,x1,x2

)= (h(t1, t2), L̃t1,t2(x1,x2
))
, (3.17)

is a homeomorphism and we have

H
(
Σ1
(
a(t)x′ + b(t)x

))= Σ1(−x)∩ (−S,S)2×R
2,

H
(
Σ∞
(
a(t)x′ + b(t)x

))= Σ∞(−x)∩ (−S,S)2×R
2.

(3.18)
�

Now consider a nonhomogeneous linear differential equation of the second
order

x′′ = a(t)x′ + b(t)x+ c(t). (3.19)

Theorem 3.9. Equation (3.19) is focally equivalent to the corresponding homoge-
neous equation (3.1). A homeomorphism H can be given in the following form:

H
(
t1, t2,x1,x2

)= (t1, t2,x1 +ψ
(
t1
)
,x2 +ψ

(
t2
))
, (3.20)

where ψ : R→R is a continuous function.

Proof. It is clear that the sets Σ1 for both equations are equal. Let (t1, t2)∈ σ�. Let
ψ(t) be a particular solution of (3.19). The intersection of the sets Σ∞ for (3.19)
and Vt1,t2 can be described as the set of solutions of the following equation:

det

(
φ1
(
t1
)

x1−ψ
(
t1
)

φ1
(
t2
)

x2−ψ
(
t2
))= 0. (3.21)

Thus, this set can be obtained from the corresponding set for the homogeneous
equation (3.1) using the translation(

x1,x2
)−→ (

x1 +ψ
(
t1
)
,x2 +ψ

(
t2
))
. (3.22)

�
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Theorem 3.10 (realization theorem). For any k, there exists a linear differential
equation of the second order focally equivalent to the restriction of the equation of
Example 2.5 to (−T,T), where T = π/2 +πk.

This theorem follows from the fact that for any pair of functions (φ1,φ2) with
Wronskian different from zero, there exists a linear differential equation of the
second order such that (φ1,φ2) is a fundamental solution of this equation.
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